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FOREWORD

This report contains the results of the research per-
formed during the past twelve months on Controllability and
the Singular Problem under NASA Contract NAS2-4898, Ames
Research Center. The research was performed by George W.
Haynes of the Martin Marietta Corporation, Denver, in collabora-

tion with Professor H, Hermes of the Mathematics Department,

Colorade University.
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I. INTRODUCT ION

In 1961, R. Hermann in a remarkable paper DJ , that is obscure
and difficult to read,developed algebraic techniques to solve the
accessibility or controllability problem of control theory, i.e. the
ability to transfer the state from some initial conditions to some
final conditions by suitable choice of the control vector. Hermann's
method is based on the work of Chow ﬁﬂ which, in turn, is a generaliza-
tion to a system of pfaffians, of a result proven first by Carathéodory
[3] for a single pfaffian describing a thermodynamic process.

Carathéodory showed for a single pfaffian that if there
are some points or states that are inaccessible by trajectories satis-
fying the pfaffian then the pfaffian is integrable; that is, it can be
reduced to a perfect differential by a suitable integrating factor.

The contrapositive of this theorem yields the result that is useful to
the controllability problem; namely, if there are no integral manifolds
to the system then all points are accessible. 1In fact, Hermann's work
is based on the proposition that all points are accessible, that are
not obviously inaccessible. It is better to consider the integrability
conditions in terms of the dual formulation of a distribution of

vector fields being involutive, rather than use the standard Frobenius
integration theorem [8,9] for the pfaffian system. This is a more

natural formulation of the problem since the vector fields are simply

those defined by the differential equations describing the control system,

furthermore, the integral curves of the vector fields are, in fact,



the trajectories of the control system. If the system or distribution
of vector fields form an involution, then all the integral curves lie
on an integral manifold; and for the controllability problem this is
equivalent to the existence of integrals (i.e. integral manifolds) to
the control system independant of the choice of the controls, which

is obviously contrary to the notion of controllability.

Demonstrating that a given distribution of vector fields is
involutive is a relatively simple algebraic problem involving the Lie
Bracket of vector fields. The Lie Brﬁcket of two vector fields is
another vector field and geometrically it is the vector field formed
by traversing a rectangle of integral curves to the two vector fields,
When the distribution is not involutive then at each point of the
state space this process generates new directions or in other words
the Lie Bracket generates an independent vector field.

Using these techniques, Hermann derived an algebraic criterion
for the controllability of linear time varying systems. Subsequent
to this Kalman et. al. PJ derived a less useful integral criterion

for the complete controllability of linear time varying systems. How-

ever, it was Kalman [5,6] who really popularized the concept of controlil-

ability by showing that it provided the rationale for many assumptions
invoked in the theory of control. The equivalence between the two
criteria can be established by the linear dependence of the input/
output functions on the real line, and the various degrees of inde-

pendence has generated various definitions of controllability,




Demonstrating that there exists one interval on which these functions
are linearly independent is equivalent to Kalman's integral criterion
for complete controllability at t,. If the functions are linearly
independent on every interval then the system is said to be completely
controllable or totally controllable; if the functions are linearly
independent at every point (Hermann's criterion) then the system is
uniformly controllable. These results were antedated by the earlier
work of LaSalle Dﬂ on the time optimal problem for linear systems.
LaSalle not only derived the integral criterion for complete controll-
ability; he also showed how the linear independence of the input/output
functionson the real line yielded nontrivial applications of the
maximum principle. This is a result of some significance, as pointed
out by Hermes [11] , When dealing with linearized versions of non-
1ineaf systems about the totally singular arc where the maximum principle
does not yield information about any component of the control,
Hermann's differential geometric approach to controllability
has obvious application to nonlinear control system, however, demon-
strating that there are no integral manifolds to the control system
does not imply that all points or states are accessible. There is a
fallacy in Hermann's proposition, and this fallacy is manifest in the
fact that the coordinates are not equal. For most physical problems
the cpordinate system is endowed with one special coordinate, namely
time, which has to evolve or if parametrized has to be strictly

monotone increasing. This monotonicity invalidates the geometric

’



interpretation of the Lie Bracket, we can no longer run trajectories
"backwards", and it can be demonstrated by means of obvious counter-
examples that the nonexistence of integral manifolds does not imply
full neighborhoods of attainable points but rather it yields only
"one-sided" sets of attainable points.

After the introduction the report is organized into five sections;
the second section develops the mathematical concepts of the geometry
of manifolds required for the differential geometric approach to con-
trollability as expounded in section three. Section four deals with
a special class of nonlinear control systems where the time coordinate
is an ignorable coordinate; and global conditions for controllability
in terms of noninvolutive systems are derived. In addition,the uniform
approximation of trajectories by a given control system to the tra-
jectories associated with the completed control system formed by
augmenting the control vectors to include the vector fields generated
by the Lie Bracket, is proven. This generalizes some recent work of
Kutera. Section five deals with linear systems and developes some
new algebraic equivalences with Kalman's integral criterion. Since
linear systems are basically involutive, i.e., time is no longer an
ignorable coordinate, it is shown that the skew symmetry of the vector
fields about the origin implies full neighborhoods of attainable points,
rather than one-sided sets of attainable points and this is why the
algebraic tests for controllability, despite the monotonicity of the

time coordinate, are valid.



Section six deals with involutive nonlinear systems, and develops
some meaningful equivalences between the control actuator vectors de-
fining an involutive distribution and the existence of totally singular
vector controls. Since time is no longer an ignorable coordinate the
phenomena of one-~sided sets of attainability canm no longer be ruled
out., The singular paradox, or the integrability of the linearized
approximating system about the totally singular arc is reviewed,to-
gether with the need to retain higher order approximations to establish
controllability. Finally some nonautonomous versions of the techniques

employed in section four are used to determine controllability criteria.



I1  MATHEMATICAL. PRELIMINARIES AND NOTATION

We shall briefly review some of the concepts and symbolism
associated with the geometry of manifolds [9] that is pertinent
to the geometric differential approach to controllability. For
convenience all manifolds, vector fields, curves, maps, etec., will
be assumed to be smooth, that is, differentiable as often as we
please. Any exception to this rule will be stated in the text.

All sets, manifolds and spaces will be denoted by upper case
letters, and vectors by lower case letters. To avoid the cumbersome
problem of suffices, matrix notation will be used throughout and
all vectors (including vector operators) will be considered as
column vectors. The transpose of a vector or matrix (*) will be
denoted by (')T.

Composition of mappings will be denoted either by ¢ *y when
brevity of notation is required or by the obvious notation ¢(¥(s)).
Throughout, we shall assume all manifolds M to be open sets of Euclidean
n space E., having a fixed coordinate structure (xl, Xys o o s xn).
If M is a manifold, then at a point meM we shall denote by F(M, m)
the set of smooth functions with domain a neighborhood N(m) of m,

Let Y(o) be a parametrized curve in M, then the directional
derivative of a function feF(M, m) at a given point m in the direction

of the given curve 7 gives rise to the notion of a tangent vector.




The curve Y(o) generates a tangent vector 7,(¢) which maps F(M, m)

into the reals E1 as followsj; 1f feF(M, m), m = y(o) then

1@ (© =4 ¢ N =L (o) §K2

which is the directional derivative of f in the direction 7 at the
point m. Therefore the notion of a tangent vector is simply an

association of Euclidean vectors with directional differentiations.
If t¥= {tl, e . e tn} is a vector defined at a point meM, then we

may identify t with the operator

619 + t29 4 | ..+£§—§
axl axz o

which does the usual things to sums and products of functions as
follows. If t is a tangent vector to M at a point m, then for any
functions £, geF(M, m) and constants a, beE1 we have

1) t(af + bg) = at(f) + bt(g)

11) t(£g) = t(f)g(m) + £(m)t(g)



The totality of tangent vectors to M at a point m form a linear

space denoted by Mm and is called the tangent space to M at the point

m, The dimension of Mm is n, the dimension of M; in fact, 1if
(xl, Xps + + o9 xn) is a coordinate system in a neighborhood N(m)

of a point meM, then (D_ , D_, . . ., D ) is a basis for the
x x X,
1 2 n
tangent space Mﬁ, where Dx means partial differentiation with respect
1

to the x coordinate. Since we are dealing with a fixed coordinate

system throughout, we can assume that O_ , D , , . ., D ) is the
1 % *n

basis for the tangent space Mm' Once the basis has been established
the tangent vectors can be characterized by the following.

Theorem 2,1 If (xl, x . xn) is a coordinate system at meM,

2
t a tangent vector at m, then t = :E:ti(x)Dxim). The notation (m)
following a given function or operator implies that the arguments are
evalusted at the point m. Using matrix notation this representation
of the tangent vector can be written as t = t(x)TDx(m) where t(m)

is the vector to M at the point m and Dx is the gradient operator

T
expressed as a column vector. Note, t(x) D_ is a scalar operator,

A vector fileld, F, is a function defined on a manifold M which

assigns at each point meM an element f£f(m) of the tangent space Mm.

Let (x4, X.5, . . .5 X ) be the coordinate gystem for the manifold
1 =2 n

M, then if F is a vector field defined on the manifold M we may

write F = E:fi(x)Dx = fT(x)Dx, where all the components fi(x) of
i



the vector function f(x) are real valued. Note once more that
fT(x)Dx is a scalar operator defined for all points of the manifold
M; for any smooth scalar function g defined on the manifold M,

X(g) 1is another smooth function defined on the manifold M. With

each vector fleld we can associate an integral curve Y(s) so that

the vector field at each point on the integral curve Y(o) 18 equiva-
lent te the tangent vector generated by the curve Y(¢). In other

words

¥,(0) = X(¥(a))

so that the integral curves are solutions to the system of ordinary

equations

dY(o
X = £ (1))

which are the characteristic equations to the partial differential

equation

X(g) = fT(X)ng(x) = 0,

If X and Y are smooth vector fields then we can define a smooth

A



vector field [X, Y] called the Lie Bracket of X and Y. If X and Y

have the representation

_ I = oT
X=£(0D ; Y=g (x)D_

on the manifold M with a coordinate system (xl, Xps =« o xn),

then the Lie Bracket is defined as

[x, Y] = (£' @D, g" ) - g” (=)D_£ G)ID_.

From the above form it is evident that the Lie Bracket is bi-
linear with respect to real coefficients and is also skew-symmetricj
that is [X, XJ =0, or equivalently [X, Y] = ‘[Y, X],

Let Xi be system of p (p < dim(M)) vector fields defined omn
the manifold M and assume that the system of vector fields 1s of

maximal rank p for all points of the manifold M,, 1.e., rank

i’
[fl(m)’ . .. fp(m)] = p for all meM. This system of vector fields
so defined, can be regarded as a function 6 defined on M which

assigns to each méM a p dimensional linear subspace 6(m) of the

tangent space Mm. The function @ is referred to as a distribution,

and we say that a vector field X belongs to the distribution express-
ed as Xef if for every point m of the manifold M, X(m)ef(m). A

distribution 6 is involutive if for all vector fields X, Y which

10



belong to 6, the Lie Bracket also belongs to the distribution 6,
[X, Y]eO.
We define the differential of a smooth function feF(M, m) at

the point meM by df = Z:Dx f(m)dxi = (Dxf(nb)de. Each differential
i

of a smooth function can be viewed as a linear function which maps
the tangent space Mm into the reals as follows. If t is any tangent

vector from the tangent space M and is defined by t = E‘_,t::L(x)Dx (m) =
i

tT(x)Dx(m), then t(f)(m) = tT(m)Dxf(n\) is the inner product between
the components of the tangent vector t and the components of the
differential of the function f, and is a real number. Therefore,
the differential of any smooth function f can be regarded as an

element of the cotangent space Mlt which is dual to the tangent space

M.
m

If (xl, Ros o v o xn) i8 & coordinate system for the manifold
M at m, then the dual space MI:, or cotangent space, will have

(dxl’ dx2, . e e dxn) as a basis which 1s dual to the basis

D
®,_ .

> o+ o+ D ) for the tangent space M.
1

x2 n

A differential one form (or pfaffian) w at a point meM is an

expression of the form w(m) = X:S,i(xxl)dxi = aT(m)dx, and from the
previous discussion is a linear function on the tangent space into

the reals, and are therefore elements of the cotangent space M%*,
m

11



It should be noted that every differential one form is not
necessarily the differential of a smooth function.
In an analogous manner to the distributions of vector

fields, we can speak of codistributions of differential one forms.

Let wi(x) be a system of p (p < dimM) differential one forms defined
on the manifold M and assume that the system of differential ome
forms has maximal rank p for all points of the manifold
M, i.e., rank [al(m), a,(m, . . ., ap(m)] = p for all meM, The
codistribution of differential one forms on M can be regarded as
a function 7 defined on M which assigns to each meM a p dimensional
linear subspace w(m) of the cotangent space M;?

For a given codistribution w defined on the manifold M,
certain elements of the linear subspace w(m) of the cotangent
gpace may be generated from differentisals of smooth functions. In

this case we can associate integral manifolds with the codistribution

as follows. Let N be a submanifold of M defined by fi(x) = 0,
(1=1. .. 8<p); then N 15 an integral manifold of the codis-

tribution n 1if dfem.

12



IXX DIFFERENTIAL GEOMETRIC APPROACH TO CONTROLLABILITY

The basis of Hermann's [1] differential geometric approach to
controllability is the use of Chow's theorem [2] which relates the
accessibility of points to integral curves of a pfaffian system,
Chow's theorem in turn, is a generalization to a system of pfaffians
the important theorem due to Carathéodory [3] for a single pfaffian,
We cite the following contrapositive form of Carathéodory's theorem
since it appeals directly to the physical notion of controllability.
3.1 Theorem If the differential one form w(x) = Zai(x)dx;, de~
fined on the manifold M with coordinate structure (xl, Xos o o o xn),
is not integrable then there exists some neighborhood N(xo) of a
given point xofM in which all points are accessible by integral
curves (o) satisfying w(¥) = O,

This is a significant result since there are well defined
procedures to determine whether or not a pfaffian system is integrable
and as previously mentioned theorem 3.1 was extended by Chow to
systems of pfaffians or differential one forms., In the application
of Chow's theorem to the controllability problem, Hermann's approach
is based on the proposition that every point 18 accessible that is
not obviously inaccessible. To prevent some points in N(xo) from
being obviously inaccessible it is evident that we must negate the
existence of any integral manifolds to the system of differential

one forms. The existence of integral manifolds can be determined

13




by using Frobenius' integration theorem [9] Equivalently, the
integrability conditions has a dual formulation in terms of dis-
tribution of vector fields being involutive, and this approach
has:more direct appeal since the vector fields can be related
directly to the differential equations describing the control
system.

Let 6 be a p~dimensional distribution of vector fields on a
manifold M (p < dimM), then the following theorem is standard

for the existence of integral manifolds for invelutive distribution.

3.2 Theorem An involutive distribution 6 on M is integrable.

Furthermore, through every meM there passes a unique maximal

connected integral manifold of § and every other connected integral

manifold containing m is an open submanifold of this maximal one.
Hermann applied these results to the controllability problem

as follows. Consider the control system

%, = fi(t’ X, u)

where the state x is an n vector, the control u is an s vector
(s < n) and the functions f are assumed to be smooth. In the
(n+s + 1) dimensional (t, x, u) space we can assoclate with

the control system a codistribution of one forms defined by

14



dx, ~ fi(t’ x, u)dt = 0

The dual space of vector fields is spanned by

>
1

D, + E:fi(t, X, u)Dxi

It is now a routine matter to demonstrate whether or not this dis-
tribution of vector fields i1s involutive under the Lie Bracket
operation and thus determine the existence or nonexigtence of an
integral manifold. If an integral manifold does exist then it
will constitute an integral to the system of differential equations
independent of the choice of the controls. This is obviously con-
trary to the notion of controllability since the only accessible
points will be those points on the integral manifold.

The relation of Hermann's proposition regarding the avoidance
of obviously inaccessible points as well as the Chow-Caratheodory
theorems on integrability and insccessible points to the converse
problem of accessible points follows from the geometrical inter-
pretation of the Lie Bracket of vector fields. The tangent vectors
associated with the integral curves of the vector fields do not span

the tangent space Mm. However, if the distribution is not involutive

15




then the tangent vectors associated with the derived system of vector
fields under the Lie Bracket operation do span the tangent space

Mm' If the tangent vectors span Mm, then all points in some
neighborhood N(xo) can be attained by integral curves of the

vector fields, provided we can identify the integral curves with
those vector fields that are generated by the Lie Bracket. The
following theorem resolves this problem [9].

3.3 Theorem Let X and Y be smooth vector filelds both defined

at meM, If Y(o) denotes the final point obtained by traversing

in sequence the integral curves to the vector flelds X, Y, -X,

and -Y for a fixed parameter ¢ and an initial point m, then ¥ has

[X, Y] (m) as the limit of its tangents.

Figure 3.1

16



Proof Let the vector fields X and Y have the representations

X = Zfi(x)Dxi, Y = Zgi(x)Dxi' 1f ¢(o) and Y(o) are the integral

curves to the vector fields X and Y respectively so that ¢,(¢) = X(®(0)),

and ¥, (o) = Y(y(s)), then ¢ and ¥ satisfy the differential equations

420~ £p()); $ED = gwioN).

As we traverse a rectangle of integral curves (Figure 3.1) we obtain

the following relations
ml = ¢(0’ m)
m2 = \l’(a’ ml)

n, = ¢(~o, mz)

3

m4 = Y(-a, m-3)

Since we shall compare the point m, to the point m, for small o,

we have on expanding the integral curves in a Taylor's series in ¢

2
mo=m +f(me +X(m) £ + 0(s>)

17



2
m, + s(ml)a + Y(m1)g(m1)§ + 0(03)

m, =
2 3
my = m, - f(mz)a + X(mz)f(mz)—g- + 0(a™)
2 3
m, = m, - g(ms)a +-Y(m3)g(m3}§ + 0(a7)

Expanding these terms about the point m and only retaining terms

in 62 or lower, ylelds

2

m =m + f(m)e + X(m)f(m}%

2
my = m+ (£ +g@)o + X@E@ +Y(mg(m) + 2X(m)g(m))F
2
m, = m + g(m)o + (X(mg(m) +Y(mg(m) ~ 2 (m)f(m))g
m

2
, =+ (XK@g@) - 2Y(m)f(m))—g

Therefore the curve generated by the rectangle of integral curves of

the vector fields X and Y is, for small o, given by

Vo) = m, -~ m= Xmgm) - Y(@)f@m)o?

18



The relation between the integral curve 7 and the Lie Bracket is

obvious since

[x, ¥] L), ) - TG)E, ()} Dxi

The Lie Bracket creates a second order tangent rather than a first

order tangent since

d?foz = 0

do

Therefore for any function h we have

2
2[x, YJh(m) = 9——2- (he) (0)
do

This geometrical Iinterpretation of the Lie Bracket gives
insight into the local attainability of points. Traversing a one
parameter family of rectangles whose sides are tangent to a dis-
tribution might yield locally a curve whose tangent is not in the
disgtribution, When the distribution is not involutive, we can
generate an independent set of tangent vectors which span the mani-
fold and implies local attainability of points by integral curves

to the distribution,

19



It would appear at this stage that the controllability problem
is completely solved; however, there is a fallacy in Hermann's
proposition that all points are accessible that are not obviously

inaccessible., Congider the following example,

The distribution of vector fields are given by

P
n

D +-x2D + uD
t 2 xl X

2

Application of the Lie Bracket yields

[x, Y] = -sz

[x, [%, Y]] = 2x,D_
1

Therefore provided x, # 0, these four tangent vectors span the

20



(t, X15 X, u) space. Hence, there are no integral manifolds to
the control system, #nd this would indicate that all points are
accessible. Despite this fact, it is apparent that the control
system is not controllable since the solution xl(t) for any control
u has to be monotone increasing. This example illustrates the
fallacy, which is that we deal with a coordinate structure that is
endowed with one special coordinate, namely time, which hds to evolve
or if parametrized it must be monotone increasing. In the above
example {f the time could be reversed then the control system
would be controllable, Therefore, due to the monotonicity of
time we can only speak of "one-aide" sets of attainable points
in gtate space rather than full neighborhoods of attainable points,
Obviously, the use of the Chow-Carathéodory theorem is necessary
to the controllability problem to establish the nonexistence of
integral manifolds, so that the dimension of the "one-sided"
attainable sets is equal to the dimension of the stdte space.

There is a class of control systems however where time is
an ignorable coordinate and the Chow~Carathéodory Theorem can

be applied to yield global conditions for controllability.

21



IV, NONINVOLUTIVE CONTROL SYSTEMS

In this section we shall consider control systems of the form

x(t) = B(x(t))u(t) 4.1

where x 1Is an n vector and B(x) an n x r matrix with columns denoted
by bl(x),. . . s br(x). We shall assume that the components of B(-)
are smooth functions., The control vector u will always be assumed
Lebesgue measurable; of particular interest will be the case where its
values lie in a bounded set of Euclidean r dimension space E°. Follow-
ing Chow, we shall say the system (4.1) has rank r at m if the matrix
B has rank r in every neighborhood of the point m. A point m is re-
gular for the system (4.1), if the system has rank r at m and rank
B(m) = r.

We now adjoin to B any linearly independent vectors formed by
applying the Lie Bracket operation to the column vectors of B. Con-

tinuing this procedure we obtain the derived or completed system

~

B associated with B. The columns of B will also be denoted by bl(x),
e e e bs(x) where the rank, s, of the completed system at the point
m satisfies r < s < n if r is the rank of B at x. The integer s - r
is called the index of B.

With B we associate the completed system of differential equations

X = E(x): 4.2

22



where U is now an s dimensional control vector. For this system Chow's

results give sufficient conditions that the set of points attainable
by solutions of (4.2), starting from initial data x(0) = X s form
an s dimensional manifold. It also follows that all points on this
manifold can be attained by solutions of (4.l1), starting at X and
having controls with values at time t in the set of the first r co-
ordinate vectors. This generalizes some recent wotk of Kulera [10].

The system of partial differential equations associated with the
vector fields described by B are BT(x)Dxf = 0; the ith equation has
the form b?(x)Dxf = 0, with ; = bi(x) as its characteristic equation.
One should note that the ith characteristic equation of BT(x)Dxf =0
may be obtained from the control system (4.1) by placing the ith compo-
nent of the control vector u equal to 1 and all other components equal
to zero.

Now the results of Chow [2] pertain to points attainable by
"piecing together" the characteristic solutions or integral curves
of the vector fields as elucidated in Theorem 3.3 for the geometrical
interpretation of the Lie Bracket. It is of fundamental importance
to note that the Chow formulation allows the solutions to the charac-
teristic equations to be considered with decreasing time, as well as in-
creasing time, Thus 1f ¢ is a piecing together of characteristic
solutions such that in some time interval Ii’ ¢ is a solution of the
ith characteristic equation, we only know that &(t) = + bi(¢(t)),

teIi. However, this presents no problem for the control system (4.1),

23



since the minus sign may be obtained by merely taking a control with -1
as its ith component and all other components zero.

For 1L1i<r, let e, ¢ Er(real r dimensional Euclidean space) have

i

a one in its ith component and all other components zero. Define

and U= {u measurable; u(r)evV, TZO} .

Then a solution ¢ of the control system (4.1) corresponding to a con-
trol uel is a piecing together of characteristic solutions in the
sense of Chow. With the above in mind, we may combine theorems B

and C of Chow [2] (See also Herman[l]) as follows.

Theorem 4.1 Let X be a regular point for the control system (4.1)
and its completed system (4.2), and assume that the rank of B is r
and the rank of B is s at L Then there exists an s dimensional
manifold M through X such that all points on this manifold are
attainable by solutions of (4.1) with initial data x(0) = X and
control ueU. Furthermore, given a sufficiently small neighborhood of
X s the only points attainable by such solution of (4.1), which remain
in the neighborhood, are points of MS.

The following example illustrates the need for both control

systems to be regular at the point X

24



°
Example 4.1 Consider the three dimensional system x = B(x)u where

1 0
B(x) = O 1
0 x1x3

T
The point x = (0,0,0) is regular for the system (4.1) since rank

B(xo) = 2, However, the completed system (4.2) is

1 0 0
[bl,b2]= 0 , Bx) =[o 1 o
x3 0 xlx3 x3

and we see that the completed system has rank three at x> (i.e.,

sz) has rank three in every neighborhood of xo) but X is not regular
for the completed system since rank §kxo) = 2. As a result, all solu-
tion of the completed system ; = Ekx)alstarting from x  cannot leave

the plane x, = 0; in other words the manifold of attainability from

3
X has dimension two.

The second example we shall consider illustrates that if one does
not restrict the solutions to lie in a small neighborhood of X s the
last statement of theorem 4.1 need not be valid.

Example 4.2 Once again we shall consider a three dimensional

system x = B(x)u where B(x) is a 3 x 2 matrix with elements
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t
o
-

and b = 1’ 0’

21~ Py =
where 1+l denotes the Euclidean length of a vector. All points x are

regular for the control system since rank B(x) = 2. If

o b, @] = (axe ¥ 0)
x|<t, [b; )b, )] = 0. If |x|>1,[b ()b, )] = (2x,e 50,

if I1xI>1 and X, # 0 then x is regular for the completed control system.
Consider XZ(O) # 0 and |x0|< 1, then Ekx) = B(x) and X is regular
for both control systems. 1In this case the integral manifold, M2, of
theorem 4,1 is the intersection of the unit ball (origin centered) with
the plane X = xl(O). If we choose a neighborhood of X s contained in
the unit ball, the only points attainable by trajectories of the
original system which remain in this neighborhood, are points on this
plane. However, without this restriction, all points in some neighbor-
hood of X may be attained by trajectories of the system with controls
uel. This occurs even though the unit ball is foliated by leaves
{x:x1 = constant}since we may exit the ball on the leaf X, = xl(O),
then move on an arbitrary path in the half space x2>>0 and re-enter
the ball on a different leaf to reach point near X .
Motivated by this example, we introduce another concept of con-

trollability for a general control system

;(t) = f£(t, x(t), u(t)) 4.3
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Definition 4.1 The system (4.3) 1s locally-locally controllable at

X, if given any €>0 there exists a 6>0 such that all points of the

6 neighborhood of x are accessible by trajectories emanating from X
o

which do not leave the € neighborhood. Obviously é<e€.

Definition 4.2 The system (4.3) is globally-locally controllable

at x if all points in some neighborhood of x are accessible by
—0 o
trajectories emanating from Xge

In terms of these definitions we note that if in example 4.2,
h&}<L the system is not locally-locally controllable at X, However,
with |xo|<1 and XZ(O) # 0, the system is globally locally controllable
at X It is interesting to compare these two notions with that of
complete controllability, i.e., any two points can be joined by a

solution. For example, the '"Bushaw problem’

is completely controllable, but if X # 0 then the system is not
locally-locally controllable at X, . On the other hand, complete con-
trollability certainly implies global-~local controllability.

Suppose that the system (4.1) has rank r at X s and the completed

system (4.2) has rank s at X and furthermore, X is regular for both
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systems. Then it is a consequence of theorem 4.1 that a necessary
condition for the system (4.1) to be locally-locally controllable at
X is that s = n. To show that it is a sufficient condition also,
requires that we can approximate the trajectories of the completed
system (4.2) by trajectories of the original system (4.1).

To prove this result we shall assume the rank and regularity
condition hold throughout. The tangent space to the manifold M°
of points accessible from X is spanned by bl(x), e e e s bs(x)
for all x in a neighborhood of X e Thus if ¥ is a smooth function
satisfying ¢ (0) = X ¢(t)e span {b1(¢(t)), .« . . bs(¢(t))} for

all t 2 0, then ¥ (t) describes a curve on M°. Let
T = {’1\1‘ measurable: T(t)eE®, [ T(t) <1, £>0 } .

Then clearly a solution of the completed control system (4.2), with
control uey and initial conditions x(0) = X s describes a curve on
MS. We now have to show that such a solution may be uniformly approxi-
mated (on a compact time interval) by a solution of the original control
system (4.1), however the magnitude of the control required to do
this may be very large.

Theorem 4.1 shows that all points on M° are attainable by
solution of the system (4.1) even with controls ueU., Therefore, it

is natural to attempt to approximate a solution ¥ of the completed

system (4.2) on a compact interval [O,T] by finding a solution ¢of
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the system (4.1) which agrees with ¥ at many points, i.e., say
¥(kT/m) = ¢(kT/m) for m a large integer and k = 0, 1, . . . , m.
The major difficulty that occurs in doing this is to show that
the time it takes to reach an arbitrary point on M° near X by a
solution of (4.1) tends to zero as the distance of the point from X

tends to zero. This will be the purpose of the next three lemmas,

Lemma 4.1 If the index of B is q, the highest number, p, of bracket

operations needed to obtain any vector of the completed system B is

the qth term of the sequence, 8,5 815 « « s where a = 0, a, = 1,
2 SR S T P L
Proof If the index 1s zero, then clearly p = 0, If the index is

one then p = 1, If the index is two, then p = 2. For an index of
three, we may, in the worst case, have to form the bracket of the
element in the complete system of rank r + 2 involving two brackets
with the element of the incomplete system of rank r + 1 involving

one bracket, TFrom this it follows that for index 3, p =2+ 1 + 1 = 4;

and inductively the kth term of the sequence as 815 « - . is
8, =8 _ + a _, + 1.

[ ]
Lemma 4.2 Let fi(-) denote a solution of x = bi(x), x(0) = X

where bi is obtained from b e . e br by p bracket operatioms.

1,

Then there exists a control ueU such that the corresponding solution
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¢(-, u) of the system (4.1) satisfies

(i) ¢o(4p-r; u) - x = 7P + 1bi(xo) + 0(1P + 2) as 7 =0

1/1
(i1) oPe 1+e ) - £ (t) = o(ePFH/ Pty Lo ¢ o,

Proof If bi is one of the set bl’ . e ey br then p = 0 and (4i)
merely states that there exists a ueU (in this case u = ei) such that
¢(7, ei) -x, = Tbi(xo) + 0(12) as 7=»0 which is obvious. Also (ii)
merely reduces to ¢(-, ei) = fi(-). The proof proceeds by induction,
however, the general step is similar to the case p = 1 thus for
clarity of presentation and simplicity of notation we will present
only this argument.

Suppose bi is obtained by the use of one bracket operation, i.e.,
bi = [bj, bk] . Let Tj(t)y denote the solution at time t, of
X = B(x)ej = bj(x) with x(0) = y, and 1<j<r. From the geometric in-

terpretation of the Lie bracket (Theorem 3.3),
T (-£)T, (-£)T, (£)T,(D)x. - x_ = €2[b,(x ),b, (x )]+ 0(t ) 0
k j k\HE %, T %, 1%’ Pk %o as t—»

Let u be defined by



ej if Te[O,t]
e, if 7e[t,2t]
u( ) = -ey if e [2¢,3¢t]

-e, if re[3t,4t]

k
Then ¢(4t; u) = Tk(-t)Tj(-t)Tk(t)Tj(t)xo. Let fi(-) denote the

solution of X = bi(x), x(0) = X 3 then fi(t) - X, = tﬁaj(xo), bk(xo)] +

O(tz), Since @(4t; u) - X, = tz[bj.(xo), bk(xo)] + 0(t3) as t —»0,
equation (i) and (ii) follow easily for the case p = l. The results
for arbitrary p, follow in this manner by induction,

Lemma 4.3 Let ¥(+) be a solution of (4.2) corresponding to a control
WeU and initial data x(0) = Koo Then there exists a solution (-, u)

of (4.1) with control ueU and a 7= T(to) such that @(r, u) = ¢(t0) and
T(t )=»0 as t —0,

o o
Proof Let Ti(-)y denote a solution of x = bi(x), x(0) = y,1 < i< s.
Since bl(xo)’ e e e s bs(xo) span the tangent space to the attainable
manifold Ms, at x _, we may view the curves Ti(')xo as defining

local coordinates on M° in a neighborhood of x .

Since X is a regular point for both systems (4.1) and (4.2) then
x is also regular for both systems 1if x 1s in a sufficiently small
neighborhood of X . Let to be sufficiently small so that ¢(to) is

in this neighborhood. Then we may write
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“'(to) = Ts(ts)'l‘S _ 1(tS - 1) .« e o Tl(tl)xo

and each ti——>0 as to —0,
From lemma 4.2, for each 1£i<s we may find a control u;€U and

a time 'r(ti) such that the corresponding solution ¢(-, ui) through

PH2/ptly o ¢ —so0,
L 1

an initial point y satisfies ¢(r(ti), ui) -~ Ti(ti)y = 0(t
To simplify notation we shall denote ¢(r(ti), ui) by Si(ri)y.

| Using lemma 4.2 successively s times we may "follow the coordinate
rectangle” to ¢(to) arbitrarily closely by trajectories of system
4.1), i.e.

S(1 I8, 1 (D) v v - S0y = TCeIT (e ) L Ty (e

Ss(rs). . . Sl(-rl)x0 - sl/(to) = O(to) as t_ —»0 where

= - = —
each L Ti(ti),'ri(ti) ti O(ti) and t, —0 as t, 0.

Consider the map h:ES-—PMS defined by h('rl, o o s s Ts) =

e . i =
Ss(rs) Sl(Tl)XO Since the complete system of vectors {i(O)
bi(xo) i=1, 2, . . . , s span the tangent space to M at X s using
(ii) of lemma 4.2, it follows that the Jacobian of the map is non-
singular. Thus, h 1s locally onto and the implicit function theorem

applies to show that by slightly varying the times Tl’ c e Ty to
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=

T 1 T t
times T =
1* * + + » T, one may assume that Ss(rs). . . Sl('rl)xo ¢’(to).

i

ueU in the obvious way such that its corresponding solution through

s ]
X gives ¢(¥T

Also, each 7, —=+0 as t, ~—»(0. We may now "piece together™ a control

L5 = Ss(r;). .. Sl(ri)xo = ¥(e).

. Then @(7r; u) = ¢/(to) and r(to) —»0 as t, —0

S
Let 7= 7(t_ ) = }]_?'ri

as required.

Theorem 4.2 (Uniform approximation of a golution of (4,2) by a
solution of (4.1)) Let ¥be any solution of the completed control

system (4.2) with initial data x(0) = X and ch’ﬁ, on an interval
[O,T] . Then given any €>0 there exists a solution ¢ of (4.1l) corres-
ponding to initial data x(0) = X and some bounded measurable control

u, such that max [p(t) - v(B)l<e.
05t<T

Verification We first note that if ¢(+,u) denotes a solution of

(4.1) with control u, then for any real a, ¢ (at, u) = ¢(t, au) for
all ¢,
Let N(e,¥) denote a compact € neighborhood of {w(t): OStST}

and let 8= max “b,(x)l:xeN(e,W)}. Note that with |ul<1, if
1<i<s *

#(-, u) is a solution of system (4.1) then |#(t, u) - ¥(t)|<€ on
[ ] )

[0,#]if 2u4fB<e. The factor two is needed since ¥ and ¢ may have

opposite directions.

For any integer k, consider ¥ (T/k). By the previous lemma there

is a control ueéU and a £ such that the corresponding solution ¢ of
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the system (4.1) satisfies ¢(rl, u) = ¥(T/k) and we may choose k large

enough so that 7.<u (i.e, here we need L] —»0 as T/k —0). Then

1
there exists an @ >0 such that aT/k = tl’ hence ¢(t1, u) = ¢ (T/k) =
¢@T/k, u) = ¢(T/k, au). Since £ <H, | (t, au) - ¥(t)I<e

for 0 <t <T/k. Now the solutions ¢, ¥ agree at T/k; we may repeat the
procedure with X replaced by Y (T/k) and obtain the result for [0,2T/k] s
etc. The approximation procedure is best illustrated by the following
example; however, we must first cite one important consequence of

theorem (4.2).

Corollary 4.1 If each point x€E" is regular for both systems

(i.e, (4.1) and (4.2)) and rank Ekx) = n, then the system (4.1) is
completely controllable and locally-locally controllable at every point,
Furthermore, if ¥ is any continuously differentiable map, y¥: [0,1]->En

and € >0, there exists a bounded measurable control u such that the

corresponding solution ¢(-, u) of (4.1) satisfies max [¥(t) - o(t)|<e.
0<t<1
Proof Clearly it suffices to prove the last statement. Let ¥ be a

continuously differentiable map V¥: [0, 1]-*-En. Since rank Ekx) =n

for all x, define v(t) =’;— (¥(t)) ¢(t). Then ¥(t) satisfies

¢(t) = E(w(t))v(t) and the desired result follows as in theorem 4.2.
It should be noted that rank Ekx) = n implies that the elements

of B(x) do not generate an involutive distribution of vector fields,

and since in this case systems of the form (4.1) are globally controll-

able, we have appropriately called them noninvolutive control systems.
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The following example illustrates the uniform approximation of a
trajectory of the completed system (4.2) by a trajectory of the original
system (4.1).

Example 4.3 Let B(x) be a 3 x 2 matrix with columns bl(x) and b2(x)

defined by
bl(X)T=(0:13 1 2)
1+ + xl)
T
b,G)T = (1, 0, 0

The completed system has an additional vector b3(x) generated by the

Lie Bracket as

-2(1 + xl)

T T
b,x)" = |b (x) s b, (X) = (0 s 0, i )
3 [ 1 2 ] (2 + 2x1 + xi)2

The solution ¥ of the completed system which we will approximate
will be for ¥' = (0, 0, -1) and initial conditionms xi = (0, 0, 0)
thus |,l/(t)T = (0, 0, t/2). 1If Ti(t)y denotes the solution of x = bi(x),
x(0) =y, i =1, 2; we know from the interpretation of the Lie Bracket

that we should expect to approximate ¥(t) by TZ(—t)Tl(—t)Tz(t)Tl(t)xo.
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Figure 4.1

One may note that by varying the magnitude of the control vector

u, we may vary the speed of traversing a solution of x = bi(x). Let

ul(a)T = (a, 0) and uz(a)T = (0,a) and define

u (@ 1if 0<e<Yy
u,(e) if Y<ES2Y
u(t) = ~up (@) if 27< £<3Y

-u, (a) if 37< t<4Y

for a,Y>0. Let #(c,u) denote the solution of x = B(x)u for the choice

T
of u(t) and initial data x = (0, 0, 0). Note that ¢ (v, u) = Tl(a‘y)xo

?(27, u) Tz(a‘Y)Tl(a‘r)xo, ¢ (37, u) = Tl(-aY)Tz(a‘)')Tl(a‘Y)xo and

LY, u) = Tz(—a‘Y)Tl(-a‘Y)Tz(a‘Y)Tl(a‘Y)xo.
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Calculating the actual solution yields

$(v, u) = (0,07, &

$(27, uw) = @Y,a7, T

2(¢Jr‘Y)2 + (a‘Y)3
4 + Lhay + 2(0:‘)‘)2

¢(3'Y, 'l.l) (a‘y, 0’

2@m? + (@0’
b + bav+ 2(ay)?

¢ (47, u) = (0, 0,

as illustrated on figure 4.1. Now suppose we wish an €>0 uniform
approximation to ¥ () where we take for y¢E3, Hyll = 23: Iyil and
0<€¢ <1, Our object is to choose a and Y so that #(4k7, 1u) = Y(4kY)
for k =0, 1, . . . and Ilp(t, u) - ¥(t)}|<e for all t.

Let a¥ =¢. Then | (¢, uw) - ¥ ()€ ,|# (£, u) - ¥, (o)<

Y2
22 +e
for 0L <47, and l¥,(47) - ¢, (47, wl = l2v- 51
y 4 + 4Le + 2¢
2
Choose 7= < [2 -HJ 5 8O that |¢3(4‘Y) - ¢3(4‘Y, u)| = 0 and
8 + 8¢ + 4e

obviously N/3(t) - ¢3(t, u)|€€¢ for 0<t<47. This choice of Ygives

2
8 + 8¢ + 4Le .
= [28+ 6]4 ; since a determines the "“speed" with which we move

along the solution &, we see that for small €, ¥ is small (many switches)
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and o is large.
The above choices of @ and Y, therefore, yield ¥ (4kY) - ¢(4ka;u)=0,

k=0,1,2, .. .and |]¥(t) - &(t; u )]I<€e for all t.
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V___ LINEAR SYSTEMS

The previous section has showm that global controllability
conditions can be derived for nonlinear systems with the control
appearing linearly, provided that the control actuator vectors do
not form an involutive distribution of vector fields, Therefore
in the remaining sections of this report we shall confine our
attention to those cases where the control actuator vectors when
viewed as vector fields are iInvolutive and the exceptional " time"
coordinate is no longer an ignorable coordinate. The most obvious
case which we shall treat first are linear systems which can be
characterized as being involutive and for which a large body of
theory exists.

Ag an example of the differential geometric approach to con-
trollability, Hermann derived the following algebraic test for

the controllability of the linear system,

x(t) = A()x(t) + B(t)u(t) 5.1
Theorem 5.1 If the rank of B(t), [B(t), e o o3 anlB(t)],
where I' = A(t) -~ Dt’ is n for each t then every point of the x-space

is accessible from the origin on paths that are solutions of the

linear system (5,1) for some choice of the comntrol u(t).
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The proof of this theorem is fairly trivial and proceeds as

follows. With the vector fields defimned by

X =D+ (A(t)x + B(t)u)TDx

successive application of the Lie Bracket yields

T
[¥, x] = B()™D_
T
[x, [¥, x]]= @B D
[x, [ [T, x]]]= @8N D, ete.

The distribution is not involutive if rank [B(t), I'B(t), . . .,
Fn-lB(t)] is n, which completes the proof.

Subsequent to this result, Kalman et. al. [4], derived the
following integral test for controllability.

Theorem 5.2 The linear system (5.1) is completely controllable

at t if and only if there exists a t; > t_ such that W(to, tl)
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is nonsingular, where W(to, tl) is the n x n matrix defined by

"1 T, T
Wit s ty) =f $(t , £)B(L)B ()¢ (¢t , t)dt
t

[}

and $(t, to) is the fundamental solution to the homogeneous
differential equation.

Central to the proof of this theorem is the demonstration
that there exists one interval [to’ t;] on which the functions
¢(to, t)B(t) are linearly independent. The reason for this is
obvious, If the functions ¢(t°, t)B(t) are not independent on
any interval, then this implies the existence of a constant

vector ¢ such that

cT<p(to, £)B(t) = 0

for all t. This, in turn, implies that the control system

¥ = &t t)B(t)u

derived from (5.1) by the nonsingular transformation ¢ is not

controllable since the integral manifolds would be given by cTy.
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The equivalence between Hermann'’s algebraic test and
Kalman's integral test follows from the demonstration of the
linear Independence of the functions ¢(to, t)B(t). 1If we assume
that A(t)esc:n"2 and B(t)ecnrl, then by formally differentiating
the expression cT¢(t°, t)B(t)(n - 1) times, we obtain Hermann's
algebraic test on negating the existence of the constant vector
c, In fact, there is an equivalence between this method and the
differential geometric method of showing that the distribution
is not involutive. However, the algebraic test implies that the
functions ¢(to, t)B(t) are linearly independent for all points
of the interval [totl]. Kalman's integral test on the other hand
requires that we find one interval where this is true for the
linear system to be completely controllable at - Having found
one such interval [to, tl] on which the functions are linearly
independent, there can exist subintervals of this interval on
which the functions are not independent and integral manifolds
exist. Since the integral manifolds are different on each sub-~
interval, otherwise the functions would not be independent, it
follows that the integral manifolds must span the manifold M
for prints to be accessible over the interval [to’ tl]' The
algebraic test, therefore, constitutes only a sufficient condi-
tion for complete controllability of linear systems. The various

ways In which the linear dependence of real functions on specified

42



intervals can be defined has generated a whole hierarchy of con-

trollability definitions. To cite a few of the more pertinent
definitions, we have following Silverman and Meadows [15]. If
Q(t) = [B(t), 'B(t), . . ., FnrlB(t)], then the system (5,1) is

totally controllable on the interval [to, tl] if Q(t) has rank n

on every subinterval of [to’ t1]. This is equivalent to com-

plete controllability. The system (5.1) is said to be uniformly

controllable on the interval [to’ t1] if Q(t) has rank n for all
te[to, tl]. Some equivalences are possible; for example, Chang

[16] has proven that the algebraic test for complete controllability

at to is fully equivalent to the integral criterion provided the

matrices A(t) and B(t) are analytic. The equivalence 1s established
in this case by showing that we cannot piece together integral
manifolds to span the manifold since if any row or combination of
rows of the matrix functions ¢(to, t)B(t) are zero on some interval,
then they are zero everywhere by the analyticity condition.

The following algebraic tests are fully equivalent to Kalman's
integral test for controllability.
Theorem 5.3 Consider the linear system ¥ = H(t)u where H(t) is
an n x r matrix composed of Cn-1 elements. This gystem ig com-~
pletely controllable at t if and only 1f there exists n times

tys - - o B 2 E such that
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rank [H(t,), H(t), H(ED, . . . 1D (e )] 1s n,

Proof. To show sufficilency we prove the contrapositive. If the

linear system is not completely controllable at s this implies
n-1
rank [H(t), . . ., 1 )(tn)]<n

for any set tl, e e ey tn > to. In fact, {f the linear system is
not completely controllable at t s this implies there exists a non-
gero vector ¢ such that cTH(t) = 0 for all t > to. This in turn

implies that
i, ..., O D,

are also zero for all t > t, Hence, for any set Eys o v o t >0

ranke [H(t), B, . . ., B D )] < n.
For necessity we shall agssume that the linear system is
completely controllable at t, and demonstrate the existence of a
set ti, . . ., t >t such that rank [H(tl), ﬁ(tz), ey H(n’l)(tn)]
is n,
This 1s equivalent to showing that for any nonzero vector c the nr

dimensional vector

cT[H(tI), C H(“‘l)(tn)] # 0.
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Let ey be any nenzerc vector. Since the system is assumed to be
controllable and H(t) is continuous then there exists a ty >t
such that eiﬂ(tl) ¥ 0. If rank H(tl) is n then the proof is

finished. If not, there exists a nonzero vector e, such that

egH(tl) = 0, so that e, and e, are linearly independent. Now

1

there exists a t, > t° such that egﬂ(tz) ¥ 0, if not, then

egH(t) = 0 for all t > £ This implies

t
f e'jzlﬁ(t)dt = ellzlﬂ(t) = 0
1

for all t > t and contradicts the assumption that the system is
completely controllable, Next conaider [H(tl)’ H(tz)], if the
rank of this matrix is n the proof is finished. If not, then

there exigts & nonzero vector e3 such that

T . ~ -
e3[H(tl), H(tz)] = 0; and & t, > t, such that e3H(t3) # 0,

3

Clearly e;s e, and e, are linearly independent. Continuing inductively,

either for some

j < n, rank [H(tl), ﬁ(tz), .« e e H(j-l)(tj)] is n
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or else we generate n linearly independent vectors €5 - - -5 ©

such that

e§+1 [H(tl), fl(t?_), -1 (tj)] =0

In the first instance, we are finished. In the gsecond, any non-

zero vector ¢ can be expressed as c = :E:7iei with not all the

71 zero. From the property that the e, satigfies, it follows that

cT[H(tl), ﬁ(tz), . e e H(n-l)(tn)] #0

This completes the proof.

Corollary 5.1 Consider the linear system

% = A(t)x + B(t)u,

where A(t) 1s an n x n matrix of (P-Z elements, and B(t) is an

n x r matrix of Cn“1 elements. This sysatem is completely con-

trollable at to if and only 1f there exists n times tl’ . . .3 t

such that rank

[B(tl), da(tl, tz)FB(tz), . e s 4>(t1, tn)l‘n"lB(tn)] = n
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where I'= A(t) - D, and ¢ 18 the fundamental solution to the
homogeneous equation.

By means of the following lemma we can derive an even simpler
algebraic test for complete controllability.
Lemma 5.1 Let H(t) be an n x r matrix valued function. Suppose
rank [H(tl), O, H(tn)] < n for all sets {tl, Eos o oo tn}
with t, > t_. Then there exists a nontrivial constant vector c

such that c H(t) = 0 for all t >t

Proof. Let t; >t be chosen so that rank H(tl) is maximal, and

call this rank - Select t, so that rank [H(tl), H(tz)] is

maximal and call this rank r,. We contimue this process to the

choice of t _, such that rank [H(tl), « v .3 H(tnrl)] =r ;<nm

is maximal. Now either Ty=x for some j=1, 2, . . ., (n-1)

bz
orr 4= n~-1. In the first case, let j be the smallest integer

pal g

such that r, = r The columms of H(t), therefore, must lie

3 -+
in the T dimensional subspace spanned by the columms of H(tl),

. H(tj) for all t. Hence, if ¢ is a nontrivial vector oxtho-
gonal to this subspace then cTH(t) = 0 for all t > to' In the
second case, since by hypothesis we cannot increase the rank of
[H(tl), . . o) H(tnpl)] by adjoining H(t), the columms of H(t)

lie in the (n-1) dimensional subspace spanned by the columns of

H(tl), c e e H(tn_l) and a nontrivial vector c orthogonal to
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this subspace satisfies cTH(t) = 0 for all t > t . We are now

in a position to prove the following theorem.

Theorem 5.4 The system ¥ = H(t)u 1s completely controllable

at t if and only if there exists n times tis - o s £ >t

n [o]

such that rank [H(tl), “ oo H(tni] is n.

Proof. The system ¥ = H(t)u is completely controllable at £y
1f and only 1f c'H(t) = 0 for t > t_dimplies ¢ = 0. Suppose
the system is not completely controllable at ty Then there

T
exists a nontrivial vector ¢ such that ¢ H(t) = 0, t > ts which

T
implies ¢ [H(tl), e ey H(tn)] = 0 for all sets {tl, .o s tn}.
The contrapositive of this shows, 1f the rank [H(tl), .. ey H(tni]
is n for some sets {tl, e s tn} then the system 18 completely

controllable at ty

Next suppose that rank [H(tl), . e o H(tn)] < n for all
sets {tl, e s tn}. Then by lemma 5.1 there exists & non-
trivial vector c such that cTH(t) = 0 for all t > t, which shows
that the system is not completely controllable at £

The concepts of complete controllability, the integral
criterion for complete controllability and the linear independence
of functions relating to the controllability problem, date back
to the paper by LaSalle [7] on the time optimal problem for
linear systems. It was subsequently popularized by Kalman who

showed how the concept of complete controllability provided
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the rationale for many assumptions invoked in the general theory
of control systems. LaSalle defined the system (5.1) to be
proper if nIY(t) = 0 on each measurable interval implied w = O,
It should be noted that in LaSalle’s notation Y(t) = ¢(to, t)B(t)
so that effectively the system (5,1) has been transformed to
y = ¢(to, t)B(t)u under the nonsingular transformation ¢. Since
the vector Q(to, t)i% is the solution to the costate equations
b= -A?(t)p for the time optimal problem with initial conditions
p(to) = 5, then a proper system implies a nontrivial solution
to the maximum principle for the time optimal problem for some
components of the control vector, Those cases where the maximum
principle does not yleld any information regarding the choice
of the optimal control are referred to as singular. Therefore,
a proper control system cannot be totally singular, that is,
all components of the control vector are singular. One central
theorem of LaSalle paper was the following.
Theorem 5.5 A proper control system is completely controllable,
Ag will be seen in a later section, this is a result of some
significance to linear systems which are derived as approximations
to nonlinear systems about a totally singular time optimal tra-~
Jectory.

One might question why the algebraic method of determining

the linear independence of functions on the real line, which is
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basically equivalent to Hermann's method for linear systems,
overcomes the problem of monotonicity associlated with the
exceptional time coordinate, so that full neilghborhoods of
attainable points can be achieved. This question does not
arise in the case of the integral criterion for controllability
(Theorem 5.2) since the sufficiency part of the proof provides
a method whereby the control vector can be determined to achieve
any desired state. The following lemma resolves this question.
Lemma 5.2 Completely controllable linear systems are locally-
locally controllable at the origin.
Proof Since by assumption the linear system is completely
controllable there are no integral manifolds to the system.
If ¢(t) is a solution of x = A(t)x + B(t)u cerresponding to
some u(t), that starts from the origin, then -¢(t) corresponding
to a control ~u(t) is algo a solution that starts from the
origing hence, this skew-symmetry property eliminates one-
sided sets of attainable points and the origin is locally-
locally controllable.

In general, linear systems are locally-locally controllable
a: the origin and globally locally controllable elsewhere; the
only exception to this rule is the case where rank B(t) iz n
for all te[to, tl]. In this instance all points of E” are

locally-locally controllable which is an expected result since the
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vectors B(t) for fixed t form a noninvolutive distribution of
vector fields, and time would be an ignorable coordinate. For
the majority of cases, however, rank B(t) 1s strictly less than
n for all te[to, tl] and the vectors B(t) for fixed t form an
involutive distributien of vector fields as intimated in the
opening remarks,

Finally the notion of uniformly controllability or instanteous
transfer of state only makes physical sense when applied to nonin-
volutive systems, where time is an ignordable coordinate so that
the tranasfer can be achieved instantaneously. More important
however 1s that noninvolutive systems are locally-locally contrell-
able so that instantaneous transfers of the state can be achieved
by trajectories that are contained within compact regions of the

state space.
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VI TOTALLY SINGUIAR CONTROL SYSTEMS

In thisg section we shall be concerned with nonlinear control

systems in which the control appears linearly as defined by
% = a(x) + B(x)u 6.1

where a(x) is an n vector of smooth functionsj; B(x) = [bl(x), ey
br(x)] is an n x r matrix of smooth functions, and i{s assumed to be
regular for all x in some neighborhood N(xo) of a given point xoeM,
We shall refer to B as the digtribution of vector fields which are
generated by the columns of B(x); furthermore we shall assume that
the distribution is involutive and the elements bl(x) form a basis
for the distribution B, 1i.e. [bi(x), bj(xi] = 0 for all bi’ bjfB.
For a specified control system of the form (6.1) the dimension or
number of columm vectors in B(x) will not, in general, be equal to
the dimension of the distribution B, so that the augmentation pro-
cedure described in section 4., will have to be used to complete the
system, However, since B(x) now generates an involutive distribution
of vector fields, the results on the uniform approximation of tra-
jectories of the completed control system by trajectories of the
original control system do not necessarily apply.

For example, consider the control system (6.1) with
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E(X)T = (O’ 0, 0O, xi + xi)

and control actuator vectors

bl(x)T = (1, 0, 0, 0)
b ()T = (0, 1, x,, 0)
2 ’ s 1’

Since B(x) defines an involutive distribution of dimension 3, we can

augment the actuator matrix B(x) to B(x) by including

b, = [b;&), b,)]" = (0, 0, 1, 0).

By choosing the augmented control vector to be ET = (ul, u,, u3) =
(0, 0, 1) the state of the augmented control system is transferred
from (0, 0, 0, 0) to (0, O, 1, O) in the time interval 0 < t < 1.

If for the original control system we let |u1| < ¢, and |u2|.< €y
then it 1s easy to verify that the solution ¢ of the original control

system cannot be made to uniformly approximate the solution ¥ of the

completed control systems since

:

2 _ 2 2 2 2, 2.2
[@(e) = ¥(EN < €] + e + (1= € €)% + (ef +¢))

2
0<t<1

IA
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The minimum of the right hand side of the inequality is one,

therefore we cannot choose any ¢ such that
lp(t) .~ ¥(t)l<e

which 18 required for the uniform approximation of trajectories.

For the involutive control system we have the following
decomposition theorem.
Theorem 6.1 If the control actuator vectors B(x) define a basis
for an involutive distribution of vector fields of dimension r, then
there exists a coordinate transformation which decomposes the control

system (6.1) into
vy = £(y, 2)
=gy, z) +u 6.2

where y and f are (n - r) vectors and f(+) is smooth; and z and g
are r vectors and g(+) is smooth.

Procf The proof follows from the representation of involutive
distributions as given by a theorem of Frobenius Eﬂ which says
that for each point xeM we can find a coordinate system

(zl, e s zn) such that the vector fields (Dzl, . e Dz )
r
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generates the distribution B on the manifold M,

Let (yl, . - s yn‘r) and (zl, . e s zr), denoted by (y, z),
represent a partitioned coordinate system of M!, If ¢ is a mapping
of M' into M as given by x = ¢(y, z), then the tangent vectors

transform by
D = (0 éND 6.3
z z b4
The theorem of Frobenius states that

bi(¢) = th 6.4

The validity of this statement can be established by deriving the
integrability conditions for the system of n x r nonhomogeneous
partial differential equations (6.4),

Equating second partials yields

T _ T
Dzj(Dz£¢) = (Dzj¢ )Dxbi(¢) = bj(¢) Dxbi(¢)

= T T
Dzi(Dzde) = (Dziqo )Dxb J.(¢) = bi(¢) Dxb 3 @)

Hence D. (D_¢) =D (D_ ¢), the integrability conditions for the
2y 2y g %y
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system of nonhomogeneous partial differential equations (6.4) implies
b, (®)TD_b, (#) = b, (Db, @ =[b,b]=0
1 x 1 1 xj 3* P1 .

which is true by assumption.

Differentiating the transformation ¢ with respect to time yilelds

i = yTny¢ +&'D ¢ = a(¥) + B(Su.

By virtue of equation (6.4) this reduces to

T T,
v Dy¢ + (& - u) Dz¢ = a(p)

Since the Jacobian of the transformation ¢ is assumed to be different from
zero on the manifold M then the decomposition (6.2) follows. The

vectors f and g are determined by inverting the matrix equation

[0 @ehHT) (f >= 2(9).
g

One obvious significance of the decomposition theorem is that

it isolates out those transformed states that are locally-locally
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controllable, In fact there is no loss of generality if we choose

u=v- gy, 2).

so that the control system now assumes the form

vy = f£(y, %)

Ne
n
<

and the controllability problem viewed as determining the attain-
ability of the states y(t) for given inputs z(t).
It should be noted that the pfaffian system assoclated with

the control system (6.1) has been transformed to normal form.

dy - f(y, z)dt = 0

under the transformation @.

We shall now develop some equivalences between "involutive"
control systems and "totally singular" control system. In many
optimal control problems a singular problem can arise that is char-
acterized by the fact that the maximum principle fails to yield

any information regarding the choice of the optimal controls. To
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distinguish this condition, the controls and trajectories are termed
singular. The controllability problem is intimately connected with
the time optimal problem and this connection will be shown for the
nonlinear system (6.1)., The time optimal problem consists of find-
ing the optimal controls u(t) that transfer the state from some
specified initial condition X to some specified final condition
Xe in minimm time.

Following the Kalman-Carathéodory approach [17] » we define

the system Hamiltonilan as,
T T

H(t, x, p, u) = 1 + pTa(x) + p B(x)u,
where p is an n vector describing the costate., For each x and p,
the Hamiltonian 18 minimized with respect to the controls over the
set of admigsible controls . If, for example, the set of admissible
controls are constrained to an r-dimensional hypercube described by

Q= {u: Iuil <1,1=1,2, .. ., r}

the maximum principle yields

u = -sgn(BT(x)p) 6.5
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for the choice of the optimal controls.

Any solution of the nonlinear system (6.1) with controls (6.5)
that pass through the desired terminal points x, and Xes with the
costate satisfying

p = -Dxai(x)p - uTDxBT(x)p 6.6

would be regarded as a minimiging trajectory. However, singular
controls us(t) that are not necessarily bang-bang can exist so
that the corresponding solutions to (6.1) and (6.6) x = ¢ (t) and
p = ¥(t) make some or all of the r components of the vector BT(¢)¢
vanish over some measurable time interval. It ias immediately
obvious that this situation would invalidate the maximum principle
for the singular components of the control vector. The singular
components of the control vector, 1f they exist, are obtained by
repeatedly differentiating the appropriate components of the singu-
lar condition BT(¢)¢'= 0 with respect to time. The problem is
saild to be totally singular if all components of BT(¢)¢ vanish.

We shall now develop the equivalence between "invelutive"
and "totally singular". The first equivalence to be established
is trivial but ylelds some geometric insight into the nature of

totally singular arcs.
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Lemma 6.1 All trajectories on an integral manifold are totally

singular.
Proof If V(t, x) defines the integral manifold, which is a sub-

manifold of En; then V satisfies

(@, +a’ DIV, x) = 0 6.7
T
B(x) DxV(t, x) =0 6.8

Since by assumption an integral manifold to the system (6.1) exists,
then if we define the costate by p(t) = DxV(t, x(t)) where x(t)
satisfies (6.1) for some u(t)j then the totally singular conditiom
is automatically satisfied by (6.8). We now have to establish that
this choice for the costate does indeed satisfy the Euler-Lagrange
equations.

Formally differentiating p(t) yields

p(t) = DthV(t, x(t)) + {a(x) + B(x)u}TDxDxV(t, x(t)).

The following identities follow trivially from (6.7) and (6.8)
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p_{m, +a@ D )V(t, 0} = @,aG) "D _V(e, %) + (O, +aG) D ID_V(t, x) = 0

and for any choice of control u(t),

D_(BGx)u(t)) D, Ve, x) = (nxcn(x)u(t)%nxv&, x) + (BG)u(t)) DD V(E, x) = 0

From these two identities we obtain

B(t) = - aGHD_V(t, x - O BEu(E)HD V(t, %)
= -D_faGx(t)) + BG()u(e)} p(x)

which completes the proof.

The integral manifold is in fact generated by the totally
singular solutions. However, the existence of totally singular
controls does not necessarily imply the existence of an Integral
manifold. In fact, when an integral manifold does not exist,
then the totally singular arcs define points along which the
control system (6.1) appears to be integrable, i.e. has an in-
tegrable manifold. This phenomena results in the linearized
approximating systems about totally singular arcs being integrable,

and will be dealt with in detail later.
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Before we establish necessary conditions for the existence of
totally singular arcs we shall prove the following useful lemma
which helps to avoild some of the algebraic tedium.

Lemma 6.2 If pTC(x) = 0 along any time optimal extremals then
this implies that pT[ka(x) + B(x)u), C(x)] = 0 along the time

optimal extremal,

Proof Since the costate p satisfies the Euler-Lagrange equations

b= ..Dx(a(x) + B(x)u)Tp; then formally differentiating the expression

pTC(x) = 0 yields

- (@, (a(x) + B P ) +p a®) + Bx)D L) = 0

Rearranging terms and recalling the definition of the Lie Bracket

gives the desired result, It is standard terminology to refer to

the Lie Bracket [X, Y] as the Lie derivative of Y with respect to X,
We now come to the main result concerning the equivalence between

the totally singular controls and involutive systems, which is a

generalization of the result first proven for (n - 1) contrel com~

ponents [18] .

Lemma 6.3 A necessary condition for the existence of a totally

gingular vector control is that the control actuator vectors be

involutive.
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Proof We shall prove the contrapositive form of this theorem,
B(x) not involutive implies no totally singular vector control.
If the totally singular vector control exists then pTB(x) =0
along the totally singular arc. Differentiating this expression
along the singular arc yilelds pT[Ka(x) + B(x)u), B(x)] = 0, and
subsequent differentiations gives: pT[(a(x) + B(x)u), B(x)] +
pr[(aGx) +BGOW, [ax) + BGx)u), B(x)]] = 0, etc. Continuing
in this fashion we can generate n linearly independent vectors
orthogonal to the costate vector for all x and hence for all x(t),
which implies that the totally singular vector control does not
exist.

An equivalent proof follows from the fact that if B(x) is not
an involutive system; then by the results of section 4 all states
can be transferred instantaneously so that any bang-bang control
would be better than the totally singular control and hence the
totally singular arcs would not be extremals.

The geometric equivalence between "involutive" and "totally

singular" control systems can be established as follows. For
simplicity we shall consider the decomposed control system.

y=1fly, z); &2=v 6.9

It is evident from the pfaffian system dy - f(y, z)dt, that the
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integral manifolds y associated with the reduced pfaffian system
stratify M, and motion on these integrals y(x) = constant, can be
achieved instantaneously. In other words the minimum time required
to transfer from one state to some other state will depend strictly
on the vector y. Let us denote this cost by t(y). The rate of

change of the cost along the solution path 1s given by.

dt(y)
dt

= fT(y, z)Dyt(y) 6.10
Geometrically, the optimization problem consists of finding those
points z(y) on the stratification which extremizes the cost deriva-
tive (6,10). Assuming that the extreme points of the cost derivate
occur at interior points of the manifold M, then these points are

determined by

T
=0
sz (v, z)Dyt(y) 6.11

If DzszT(y, z)Dyt(y) is nonsingular, then (6.11) can be inverted
by the implicit function theorem to yield z(y) so that (6.9) can be
integrated with appropriate initial conditions to yield y = @ (i),
Along each integral curve ¢, we require the cost t{(®#(t)) = t to be

equivalent to the time so that (6.10) becomes
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£1(o, 2@ID @) = 1

Differentiating this Identity with respect to time yields

£ (o, z(¢>)nyfT<¢, 2 (D () + £ (o, z<¢>>ny<nyt<¢>>Tf<¢, 2(#)) =0 6.12

If we define the costate in the usual fashion by p(t) = Dyt(¢(t));
then equation (6,11) becomes the condition for the control vector to
be totally singular szT(¢(t), z(#(t)))p(t) = 0; furthermore (6.12)

is satisfied by the costate equations since it reduces to

£(9, 2(8) {D £ @, 2(@))p +} =0

With involutive systems, controllability cannot be established
on the basis of the control actuator vectors alonei in fact, if
a(x) = 0 then by theorem 4.1 all solutions would lie on an integral
manifold. Therefore, controllability can only be established with a
nontrivial a(x). Following Hermann, to preclude an integral mani-
fold to the system (6.1) we require that the set of vectors
(a(x), bl(x), . e ey br(x)) do not generate an involutive distri-
bution, However, this does not circumvent the problem of one-sided
sets of attainability caused by the monotonicity of the time

coordinate.
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One approach to this problem is to replace the nonlinear
control system by a linear approximating system about some preferred
nominal trajectory so that the complete theory of linear systems
can be used to establish controllability. It would appear therefore
that we can generate an infinity of algebralc criteria for con-
trollability, each one depending on the particular choice of the
nominal trajectory defining the linear approximating system. This
raises the question of what nominal trajectory should be chosen.
Does there exist, for example, a nominal trajectory defining a
linear approximating system whose algebraic controllability criteria
immediately determines the complete controllability of the original
nonlinear control system, This question leads to a paradox that
was first observed by Hermes [11], however the result was essentially
contained in LaSalle's Theorem, and is summarized in the following.
Theorem 6.2 The linear approximating system describing motions
in some neighborhood of the totally singular trajectories for the
time optimal problem is not completely controllable.

Proof Let ¢(t) and ¥(t) describe the singular state and costate
regpectively, corresponding to a totally singular control us(t).
The linearized approximating system is obtained by the first order
expansion of (6.1) under the substitution x=—e ¢+ x, u—eu® +u

and 1s
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k= (0_(a(®) + B(@®)u®)T) % + B(H)u 6.12

Since by assumption the control is totally singular this implies
that ¢IB(¢) = 0, along the singular arc. The pfaffian system

associlated with the linear system (6,12) is

vE(eyax - ¥ ) (0 _(a(@) + B(#)u®) ) x dt = 0

which is integrable since by hypothesis ¥ satisfies the Euler-

Lagrange equations

b= -0 (a(@® +3B@uHy

and ¢Ix defines the integral manifolds to the system,

Corollary 6.1 The distribution of linearized vector fields about

the totally singular trajectories associated with the time optimal
problem is involutive.

A remarkable facet of theorem 6.2 is that the result is in-
dependent of the optimality of the totally singular vector control.
If the singular arc is truly a minimizing arc, one would expect it
to persist as a natural boundary to the set .of reachable points,

since by definition it would be better than any bang-bang contrel
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irrespective of the magnitude of the control bounds. On the other
hand, if the control system is completely controllable, one would
expect all motions to completely fill Euclidean n-space by virtue
of the system being linear in the control vector,

Therefore, one is tempted to conjecture that 1f the totally
singular arc for the time optimal problem 18 not & minimizing arc,
then the control system is completeiy controllable. However, the
conjecture is not true as shown by the following counterexample
which possesses & non-optimal singular arc for the time optimal

problem. Consider the system [11]

*1

»
[}
=
+
M
"
=

then it is trivial to verify by the Green's Theorem approach

that the non-optimal singular arc for the time optimal problem

is described by xl(t) = 0, Contrary to the proposed conjecture,

the lack of controllability for the above system can be demonstrated
by the following transformation which is nonsingular for all finite

regions of Euclidean two space., With the transformation

68



=X

| O

1T ™I YT R e

vl

the control system becomes

The lack of global controllability is evident since &2 > 0 irrespective

of the choice of the control,

Hence, the method of using linear approximating system to a non-
linear control system to determine controllability is a perfectly
valid technique provided the nominal trajectory is not a totally singu-
lar time optimal arc. In this case the higher order approximations
are crucial to the establishment of controllability criteria, and
cannot be neglected.

Let us return to Theorem 5.3 and give a geometric proof thereof,
since it has obvious applications to nonlinear system. We recall that
the theorem stated, "The system y = H(t)u is completely controllable at

t if and only 1f there exist n times t . o5 > to such that rank

1’
[H(tl)’ H(tz), e o o H(tn)] is n".
The conclusion of the theorem follows from the integrability of the

reduced pfaffian system and provides a technique for generating condi-

tions for the local local controllability of nonlinear systems. For
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the linear system ¥ = H(t)u we can associate the hyperplanes Wx(t)y
where V(t) 18 an n x n-r matrix of vectors orthogonal to H(t)., Since
the instantaneous motions are confined to these hyperplanes the con-
trollability of the linear system can be defined in terms of the
hyperplanes admitting a8 coordinate structure in M, That is to say,
the hyperplanes span M by suitable choice of the essential constants
(time) of the hyperplanes by z = ¢t(t)y, then the hyperplanes will
gspan M 1f the normal vectors ¢F(t) form a basis, or equivalently 1f
the tangent vectors H(t) form a basis. This requires that rank
[H(tl), H(tz), . e H(tni] is n. Alternatively this condition can
be derived by considering a sequence of n delta functions having
measures & at the points E1> €y - . s B The rank condition
defines a one to one mapping between the state y and the measures §£.
This theorem has obvious generalizations to nonlinear systems
of the form y = H(t, y)u, and the control system (6.1) %X = a(x) + B(x)u
can be put into this form by the following transformation. Let ¢(t, y)
denote the solution to %X = a(x) then by a variation of parameters we

obtain

y = [, DO s, vy = 1t yu 6.13

This form of the control system is similar to the system described by
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equation (4.1); however, for fixed t, the column vectors of
H(t, y) describe an involutive system, because the involution of
B(x) is invariant under the map ¢(t, y). The geometric proof of
theorem 5.3 yields the following theorem for the nonlinear system
(6.13).
Theorem 6.3 A necessary condition for the system y = H(t, y)u to
be completely controllable at £, in some neighborhood N of Yo is that
there exist n times tis o o ep B 20E] such that rank
[H(tl’ ¥), H(tz, ¥)s o o s H(tn, y)] 1is n for almost all yeN,
Proof Let C(t, y) define (n~r) vectors orthogonal to H(t, y). H(t, y)
is an involutive system of order r, then it follows that the pfaffian
system CT(t, y)dy 1is integrable for fixed t. If we now assume that
the rank [H(tl, ¥)s « < s H(tn, y)] 18 less than n for all sets
{tl, .« e e tn} and all yeN then this implies that there exists a non-
trivial vector c(y) such that cT(y)H(t, y) = 0, Since the pfaffian
system CT(t, y)dy 1is integrable for fixed t it follows that cT(y)dy
is integrable so that an integral manifold exists. Hence, the control
system is not completely controllable. The contrapositive of this
yields the result of the theorem.

There is a unique relation between the singular arc and the points
of measure zero where [H(tl, ¥)s . . . H(tn, yi] vanishes and is

summarized in the following theorem.
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Theorem 6.4 On totally singular arcs y(t), Rank [H(tl, y(t)),

H(tz, vy, . . . H(tn’ y(t))] is less than n for all sets

{tps tys - o st}

Proof Since ra.nk[H(tl, vy, . . ., H(tn’ y(t))]is less than n

for all sets {tl, ce s b } then there exists a nontrivial vector

¥(t) such that
vE)ur, y)) £ 7 0 6. 14

Since this is an identity In t and 7 then differentiating with

respect to t yilelds

vE@H(T, y(£)) +wt<t>DyH<f, y(E)HCE, y(E)u(t) = 0

The r columns of H(t, y), for fixed t, define a complete set of

tangent vectors of order r. Therefore, since the Lie Bracket does
not generate new tangent vectors, the order of differentiation with
respect to y Iin the above equation can be changed, on substituting

T = t, to glve

[ (o) +‘I’t(t)DyH(t, y()u(e)] H(e, y(£)) = 0O

The result 18 now obvious since ¥(t) can be identified with the co-

state, and equation (6,14) 1s the singular condition.
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