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I. INTRODUCTION 

I n  1961, R. Hermann i n  a remarkable  paper [l] , t h a t  i s  obscure 

and d i f f i cu l t   t o   r ead ,deve loped   a lgeb ra i c   t echn iques   t o   so lve   t he  

a c c e s s i b i l i t y   o r   c o n t r o l l a b i l i t y  problem  of cont ro l   theory ,   i . e .   the  

a b i l i t y   t o   t r a n s f e r   t h e   s t a t e  from some i n i t i a l   c o n d i t i o n s   t o  some 

f i n a l   c o n d i t i o n s  by s u i t a b l e   c h o i c e  of t h e   c o n t r o l   v e c t o r .  Hermann's 

method i s  based on the  work  of Chow [2] which ,   in   tu rn ,  i s  a gene ra l i za -  

t i o n   t o  a system  of   pfaff ians ,   of  a r e s u l t   p r o v e n   f i r s t  by Carath6odory 

[3J f o r  a s i n g l e   p f a f f i a n   d e s c r i b i n g  a thermodynamic  process. 

CarathGodory showed f o r  a s i n g l e   p f a f f i a n   t h a t   i f   t h e r e  

a r e  some p o i n t s  o r  states  t h a t   a r e   i n a c c e s s i b l e  by t r a j e c t o r i e s   s a t i s -  

fy ing   t he   p fa f f i an   t hen   t he   p fa f f i an  i s  i n t e g r a b l e ;   t h a t  i s ,  i t  can  be 

reduced t o  a p e r f e c t   d i f f e r e n t i a l  by a s u i t a b l e   i n t e g r a t i n g   f a c t o r .  

The c o n t r a p o s i t i v e   o f   t h i s   t h e o r e m   y i e l d s   t h e   r e s u l t   t h a t  i s  u s e f u l   t o  

t he   con t ro l l ab i l i t y   p rob lem;   name ly ,   i f   t he re   a r e  no in tegra l   mani fo lds  

to   t he   sys t em  then   a l l   po in t s   a r e   access ib l e .   In   f ac t ,  Hermann's  work 

i s  based on t h e   p r o p o s i t i o n   t h a t   a l l   p o i n t s   a r e   a c c e s s i b l e ,   t h a t   a r e  

not   obvious ly   inaccess ib le .  It i s  b e t t e r   t o   c o n s i d e r   t h e   i n t e g r a b i l i t y  

condi t ions   in   t e rms   of   the   dua l   formula t ion  of a d i s t r i b u t i o n  of 

vec to r   f i e lds   be ing   i nvo lu t ive ,   r a the r   t han   u se   t he   s t anda rd   F roben ius  

in tegra t ion   theorem [8,9] fo r   t he   p fa f f i an   sys t em.   Th i s  is a more 

na tu ra l   fo rmula t ion   o f  t h e  problem  s ince   the   vec tor   f ie lds   a re   s imply  

those   de f ined   by   t he   d i f f e ren t i a l   equa t ions   desc r ib ing   t he   con t ro l   sys t em,  

fu r the rmore ,   t he   i n t eg ra l   cu rves   o f   t he   vec to r   f i e lds   a r e ,   i n   f ac t ,  
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t h e   t r a j e c t o r i e s   o f   t h e   c o n t r o l   s y s t e m .   I f   t h e   s y s t e m   o r   d i s t r i b u t i o n  

of   vec tor   f ie lds   form  an   involu t ion ,   then  a l l  t h e   i n t e g r a l   c u r v e s  l i e  

on an   in tegra l   mani fo ld ;   and   for   the   cont ro l lab i l i ty   p roblem  th i s  i s  

e q u i v a l e n t   t o   t h e   e x i s t e n c e  of i n t e g r a l s   ( i . e .   i n t e g r a l   m a n i f o l d s )   t o  

the  control  system  independant of t h e   c h o i c e  of the   con t ro l s ,   wh ich  

i s  o b v i o u s l y   c o n t r a r y   t o   t h e   n o t i o n   o f   c o n t r o l l a b i l i t y .  

Demonstrating  that  a g i v e n   d i s t r i b u t i o n   o f   v e c t o r   f i e l d s  i s  

invo lu t ive  i s  a r e l a t ive ly   s imp le   a lgeb ra i c   p rob lem  invo lv ing   t he   L ie  

Bracket   o f   vec tor   f ie lds .  The L i e  Bracket of two v e c t o r   f i e l d s  i s  

a n o t h e r   v e c t o r   f i e l d  and geomet r i ca l ly  i t  i s  t h e   v e c t o r   f i e l d  formed 

by t r a v e r s i n g  a r e c t a n g l e   o f   i n t e g r a l   c u r v e s   t o   t h e  two v e c t o r   f i e l d s ,  

When t h e   d i s t r i b u t i o n  i s  n o t   i n v o l u t i v e   t h e n  a t  each   po in t   o f   the  

s t a t e   s p a c e   t h i s   p r o c e s s   g e n e r a t e s  new d i r e c t i o n s   o r   i n   o t h e r   w o r d s  

the   L ie   Bracket   genera tes   an   independent   vec tor   f ie ld .  

Using  these  techniques,  Hermann d e r i v e d   a n   a l g e b r a i c   c r i t e r i o n  

f o r   t h e   c o n t r o l l a b i l i t y  of l inear   t ime  varying  systems.   Subsequent  

t o  t h i s  Kalman e t .  a l .  [4] derived a l e s s   u s e f u l   i n t e g r a l   c r i t e r i o n  

f o r   t h e   c o m p l e t e   c o n t r o l l a b i l i t y   o f   l i n e a r  time varying  systems. How- 

e v e r ,  i t  was Kalman [5,6] who rea l ly   popular ized   the   concept   o f   cont ro l%-  

a b i l i t y  by  showing t h a t - i t   p r o v i d e d   t h e   r a t i o n a l e   f o r  many assumptions 

invoked  in   the  theory of c o n t r o l .  The equivalence  between  the two 

c r i t e r i a   c a n  be e s t a b l i s h e d  by the   l inear   dependence   of   the   input /  

ou tput   func t ions  on t h e   r e a l   l i n e ,  and the   var ious   degrees   o f   inde-  

pendence   has   genera ted   var ious   def in i t ions   o f   cont ro l lab i l i ty .  
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Demons t r a t ing   t ha t   t he re   ex i s t s   one   i n t e rva l  on  which  these  functions 

are l inear ly   independent  i s  e q u i v a l e n t   t o   K a l m a n ' s   i n t e g r a l   c r i t e r i o n  

f o r   c o m p l e t e   c o n t r o l l a b i l i t y  a t  to. I f   t h e   f u n c t i o n s   a r e   l i n e a r l y  

independent   on  every  interval   then  the  system i s  sa id   t o   be   comple t e ly  

c o n t r o l l a b l e   o r   t o t a l l y   c o n t r o l l a b l e ;   i f   t h e   f u n c t i o n s  are l i n e a r l y  

independent a t  every  point   (Hermann's   cr i ter ion)   then  the  system i s  

uniformly  control lable .   These  resul ts   were  antedated by t h e   e a r l i e r  

work  of  LaSalle [7] on the  t ime  optimal  problem  for  l inear  systems. 

LaSa l l e   no t   on ly   de r ived   t he   i n t eg ra l   c r i t e r ion   fo r   comple t e   con t ro l l -  

a b i l i t y ;  he a l s o  showed how the  l inear  independence  of  the  input/output 

f u n c t i o n s o n   t h e   r e a l   l i n e   y i e l d e d   n o n t r i v i a l   a p p l i c a t i o n s   o f   t h e  

maximum p r i n c i p l e .   T h i s  i s  a r e s u l t  of some s i g n i f i c a n c e ,  as po in ted  

out by  Hermes [ll] , when d e a l i n g   w i t h   l i n e a r i z e d   v e r s i o n s   o f  non- 

l inear   sys tems  about   the   to ta l ly   s ingular   a rc   where   the  maximum p r i n c i p l e  

does  not y i e l d  information  about  any  component  of  the  control. 

Hermann's d i f f e ren t i a l   geomet r i c   app roach   t o   con t ro l l ab i l i t y  

has   obvious  appl icat ion  to   nonl inear   control   system,  however ,  demon- 

s t r a t i n g   t h a t   t h e r e   a r e  no in t eg ra l   man i fo lds   t o   t he   con t ro l   sys t em 

does  not   imply  that  a l l  p o i n t s   o r   s t a t e s   a r e   a c c e s s i b l e .   T h e r e  i s  a 

f a l l a c y   i n  Hermann's p ropos i t i on ,  and t h i s   f a l l a c y  i s  man i fe s t   i n   t he  

f a c t   t h a t   t h e   c o o r d i n a t e s   a r e   n o t   e q u a l .   F o r  most physical   problems 

the   coord ina te   sys tem i s  endowed wi th  one s p e c i a l   c o o r d i n a t e ,  namely 

t ime ,   wh ich   has   t o   evo lve   o r   i f   pa rame t r i zed   has   t o   be   s t r i c t ly  

monotone increasing.   This   monotonici ty   inval idates   the  geometr ic  
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i n t e r p r e t a t i o n   o f   t h e  Lie  Bracket ,  w e  can   no   longer   run   t ra jec tor ies  

"backwards",  and i t  can  be  demonstrated  by means of obvious  counter-  

examples tha t   the   nonexis tence   o f   in tegra l   mani fo lds   does   no t   imply  

f u l l  ne ighborhoods   o f   a t t a inab le   po in t s   bu t   r a the r  i t  y i e l d s   o n l y  

"one-sided" sets o f   a t t a inab le   po in t s .  

A f t e r   t h e   i n t r o d u c t i o n   t h e   r e p o r t  i s  o rgan ized   i n to   f i ve   s ec t ions ;  

the  second  sect ion  develops  the  mathematical   concepts   of   the   geometry 

of   mani fo lds   requi red   for   the   d i f fe ren t ia l   geometr ic   approach   to   con-  

t r o l l a b i l i t y  as expounded i n   s e c t i o n   t h r e e .   S e c t i o n   f o u r   d e a l s   w i t h  

a spec ia l   c lass   o f   nonl inear   cont ro l   sys tems  where   the  time coord ina te  

i s  an   ignorable   coord ina te ;   and   g loba l   condi t ions   for   cont ro l lab i l i ty  

i n  terms  of  noninvolutive  systems are  der ived .   In   addi t ion , the   un i form 

approximation of  t r a j e c t o r i e s  by a g iven   con t ro l   sys t em  to   t he  t ra-  

jec tor ies   assoc ia ted   wi th   the   comple ted   cont ro l   sys tem formed  by 

augmen t ing   t he   con t ro l   vec to r s   t o   i nc lude   t he   vec to r   f i e lds   gene ra t ed  

by the   L ie   Bracket ,  i s  proven.   This   general izes  some r e c e n t  work  of 

KuEera. S e c t i o n   f i v e   d e a l s   w i t h   l i n e a r   s y s t e m s  and developes some 

new a lgebra ic   equiva lences   wi th   Kalman ' s   in tegra l   c r i te r ion .   S ince  

l inear   sys tems are b a s i c a l l y   i n v o l u t i v e ,  i . e . ,  time i s  no longer   an 

ignorable   coord ina te ,  i t  i s  shown t h a t   t h e  skew symmetry o f   t he   vec to r  

f i e lds   abou t   t he   o r ig in   imp l i e s   fu l l   ne ighborhoods  of a t t a i n a b l e   p o i n t s ,  

ra ther   than  one-sided sets  o f   a t t a i n a b l e   p o i n t s  and t h i s  i s  why the  

a lgeb ra i c  t e s t s  f o r   c o n t r o l l a b i l i t y ,   d e s p i t e   t h e   m o n o t o n i c i t y   o f   t h e  

time c o o r d i n a t e ,   a r e   v a l i d .  
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Sec t ion  six dea l s   w i th   i nvo lu t ive   non l inea r   sys t ems ,  and develops 

some meaningful   equivalences  between  the  control   actuator   vectors   de-  

f i n i n g   a n   i n v o l u t i v e   d i s t r i b u t i o n  and t h e   e x i s t e n c e   o f   t o t a l l y   s i n g u l a r  

vector   controls .   Since  t ime i s  no  longer   an  ignorable   coordinate   the 

phenomena of one-sided sets o f   a t t a i n a b i l i t y   c a n  no  longer  be  ruled 

out.  The s i n g u l a r   p a r a d o x ,   o r   t h e   i n t e g r a b i l i t y  of t h e   l i n e a r i z e d  

approximat ing   sys tem  about   the   to ta l ly   s ingular   a rc  i s  reviewed,to- 

ge the r   w i th   t he   need   t o   r e t a in   h ighe r   o rde r   app rox ima t ions   t o   e s . t ab l i sh  

c o n t r o l l a b i l i t y .   F i n a l l y  some nonautonomous ve r s ions  of the  techniques 

employed i n   s e c t i o n   f o u r   a r e   u s e d   t o   d e t e r m i n e   c o n t r o l l a b i l i t y   c r i t e r i a .  
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I1 MATHEMATICAL PRELIMINARIES AM) NOTATION 

We shall briefly  review some of the  concepts and  symbolism 

associated  with the geometry  of manifolds [g] that is per t inent  

to   the  geometr ic   different ia l  approach to   cont ro l lab i l i ty .  For 

convenience a l l  manifolds,  vector  fields, curves, maps, etc., w i l l  

be assumed to  be smooth, that is ,  d i f fe ren t iab le  as often as we 

please. Any except ion  to   this   rule  w i l l  be s ta ted   in   the  text. 

A l l  sets, manifolds and spaces w i l l  be  denoted by upper case 

letters, and vectors by luwer case letters. To avoid  the cumbersome 

problem of suff ices ,  matrix notation w i l l  be  used  throughout and 

a l l  vectors  (including  vector  operators) w i l l  be  considered as 

column vectors.  The transpoae  of a vector or matrix ( * )  w i l l  be 

denoted by ( *  ) . T 

Composition of mappings w i l l  be  denoted e i t h e r  by $ '$4 when 

brevity of notation is required  or by the  obvious  notation $(+(a)). 

Throughout, we s h a l l  assume all manifolds M t o  be open sets of Euclidean 

n space E , having a fixed  coordinate structure (x1, x2, . . ., xn). 

I f  M i s  a manifold,  then a t  a point mtM we shall denote by F(M, m) 

n 

the  set  of smooth functions  with domain a neighborhood N(m) of m. 

Let Y ( u )  be a parametrized  curve i n  M, then the d i rec t iona l  

derivative  of a function fcF(M, m) a t  a given  point m in   the   d i rec t ion  

of the  given  curve 7 gives rise to  the  notion of a tangent  vector. 
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" 

"he curve Y (u) generates a tangent  vector Y*(u) which maps F(M, m) 

into  the reals E as follows; i f  fcF(M, m), m = y ( u )  then 
1 

which is the  directions1 derivative of f i n  the  direction Y at the 

point m. Therefore the notion of a tangent  vector is simply an 

association  of  Euclidean  vectors w i t h  direct ional   dif ferent ia t ions.  

I f  t = { tl, . . . , t 1 is a vector  defined at  a point mcM, then we 

may ident i fy  t with  the  operator 

T 
n 

which does the usual things to sums and products  of  functions as 

folluws.  If t i s  a tangent  vector  to M at  a point m, then for  any 

functions  f ,  gcF(M, m) and constants a, bcE we have 1 

i) t(af  + bg) = a t ( f )  + bt(g) 

I 

7 
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The totality of tangent  vectors  to M a t  a point m form a linear 

apace denoted by Mm and i s  called the tanp;ent space t o  M a t  the  point 

m. The dimension  of Mm is n, the dimension  of M; i n   f a c t ,   i f  

(x1, x2, . . ., xn) is a coordinate  system i n  a neighborhood N(m) 

of  a  point mcM, then (DX , DX , . . . , D ) is  a basis  for  the 

tangent space Mm, where D means partial differentiation  with  respect 

1 2  xn 

x, A 

to  the xi  courdinate.  Since we are dealing  with a fixed  coordinate 

system  throughout, we can assume tha t  (D , DX , . . . , D ) is the 

basis for  the  tangent  space Mm. Once the basis has been established 

the  tangent  vectors can be characterized by the  following. 

x1 2 X n 

Theorem 2.1 I f  (xl, x2, . . . , x ) is a coordinate system a t  mcM, 

t a tangent vector at m, then t = ti(x)D (m). The notation (m) 

n 

xi 
following a given  function  or  operator implies that  the arguments are 

evaluated a t  the  point m. U s i n g  matrix  notation  this  representation 

of the  tangent  vector can be writ ten as t = t (x) D,(m) where t (m) 

i s  the  vector  to M a t  the  point m and DX i s  the gradient  operator 

expressed as a column vector. Note, t(x) D i s  a scalar operator. 

T 

T 
X 

A vector   f ie ld ,  F, is a function  defined on a manifold M which 

a s s i g n s   a t  each point mcM an  elemnt  f  (m) of the  tangent  space M 

Let (x1, x ., x ) be the  coordinate system for  the  manifold 

M, then i f  F is a vector  field  defined on the manifold M we may 

m' 

2' - n 

wr i te  F = xfi(x)Dx = f (x)Dx, where a l l  the components fi(x) of T' 

i 
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the vector  function  f(x)  are real valued. Note once mre tha t  

f (x)D is  a scalar operator  defined  for a l l  points of the  manifold 

M; fo r  any smooth scalar function g defined on the  manifold M, 

X(g) is another smooth function  defined on the  manifold M. With 

each vector   f ie ld  we can a s e o c h t e  an in tegra l  curve ? ( u )  so that 

the  vector  f ield at each  point on the in tegra l  curve T(a) is equiva- 

lent to the  tangent  vector  generated by the  curve ?(a). In other 

word a 

T 
x 

so that   the   integral  curves are  solutions t o  the  system of ordinary 

equations 

i E k . 2  = f (?(a))  da 

which a re   the   charac te r i s t ic   equa t ions   to   the   par t ia l   d i f fe ren t ia l  

equation 

If  X and Y are  smooth vector  fields  then we can define a smooth 

9 



vector   f ie ld  [X, Y] cal led the Lie Bracket of X and Y. If x and y 

have the  representation 

X = f (x)Dx; Y = g (x)Dx T T 

From the above form i t  i s  evident that the L i e  Bracket is bi- 

l inear   with respect t o  real coeff ic ients  and is  also skew-symmetric; 

that i s  [X, X] = 0, or equivalently [X, Y] = ..CY, X]. 

L e t  Xi be system of p (p  dim(M)) vector  f ields  defined  on 

the manifold M and assume tha t  the system of vector   f ie lds  i s  of 

maximal rank p for  a l l  points  of  the  manifold Mi, i . e . ,  rank 

[ f l ( d ,  . . . fp(m)] = p for  a l l  mtM. This system of vector   f ie lds  

so defined,  can  be  regarded as a function 8 defined on M which 

ass igns   to  each mtM a p dimensional  linear  subspace 8(m) of the 

tangent space M The function 8 i s  referred to  as a dis t r ibu t ion ,  

and we say  that a vector   f ie ld  X belongs to  the  distribution  express- 

ed as Xt8 i f   f o r  every point m of the manifold M, X(m)c8(m). A 

m' 

d i s t r ibu t ion  8 is  involut ive  i f   for  a l l  vector   f ie lds  X, Y which 

10 

"" - . .. 



belong t o  8, the L i e  Bracket a l so  belongs  to  the  distribution 8, 

[x, Y] te. 
We define  the  differential   of a -0th function ftF(M, m) a t  

the  point mcM by df f: XDx f (m)dxi = (D f (Id>Tdx. Each d i f f e ren t i a l  

of a smooth function can be viewed I S  a linear  function which maps 

i X 

the tangent  space M i n t o  the reds as fol luus.   I f  t is any tangent 

vector from the  tangent space Mm and is defined by t = ti(x)D (m) = 

tT(x)Dx(m), then t ( f )  (m) = t (m)Dxf(m) is the inner product between 

the components of the  tangent  vector t and the components of the 

m 

xi 
T 

d i f f e ren t i a l  of the  function  f, and La a real number. ?berefore, 

the d i f f e ren t i a l  of  any smooth function f can be regarded a s  an 

element of the  cotangent  space Mg which i s  dual  to  the  tangent space 

Mm* 

I f  (xl, x2, . . . , x ) i s  a coordinate eystem for the manifold n 

M a t  m, then  the  dual  space M*, or  cotangent space, w i l l  have m 

(dxl,  dx2, . . ., dx ) as a basis which is  dual  to  the baais n 

(Dxlp Dx2, . . . , D for  the  tangent  space M 
xn m' 

A d i f f e ren t i a l  one form (or pfaffian) o a t  a point m t M  is  an 

expression  of  the form w(m) = xai(m)dxi ,= a (m)dx, and from the 

previous  discussion is  a linear function on the  tangent  space  into 

T 

the reals, and are  therefore  elements of the cotangent  space M*. 
m 
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It should be noted tha t  every d i f f e r e n t i a l  one form is not 

necessarily  the  differential   of a m o t h  function. 

In an  analogons manner t o  the  dis t r ibut ions of vector 

f ie lds ,  we can speak  of codis t r ibut ions of d i f f e ren t i a l  one forms. 

Let w (x) be a system  of  p (p < dimM) d i f f e r e n t i a l  one forms defined 

on the manifold M and assume that the  system of d i f f e ren t i a l  one 

forme has maximal rank p for  all points of the manifold 

M, i. e. , rank [a l (d ,  a ,(d , . . . , ap(m)] = p for  a l l  mcM. The 

codis t r ibut ion  of   dif ferent ia l  one f u m  on M can be regarded as 

i 

a function a defined on M which assigns t o  each mcM a p  dimensional 

linear subspace a(m) of the  cotangent  space M*. m 
For a given  codistribution a defined on the  manifold M, 

c e r t a in  elements of the linear subspace a(m) of the  cotangent 

space may be generated from d i f f e ren t i a l s  of smooth functions. In 

this case we can associate integral  manifolds with the  codistribution 

as follows. Let N be a submanifold  of M defined by f (x) = 0, 

(i = 1 . . . s - < p);  then N i s  an integral  manifold of the codis- 

t r ibu t ion  s i f  df c a. 

1 2  



111 DIFFJIRENTIAL GEOMETRIC APPROACH TO CONTROLIABILITY 

The basis of Hermann's [l] d i f f e ren t i a l  geometric  approach t o  

cont ro l lab i l i ty  is the use of Chaw's theorem [2] which relates the 

access ib i l i ty  of points to integral curves  of a pfaff ian system. 

C h d ~  theorem i n  turn, is  a generalization t o  a system of pfaff ians  

the important theorem due t o  Carath'eodory [3] for  a single  pfaffiaa.  

We cite the following  contrapositive form  of Carath'eodory's theorem 

since it appeals   direct ly   to  the physical  notion of cont ro l lab i l i ty .  

3.1 Theorem I f   t he   d i f f e ren t i a l  one form w(x) = xa i (x )dx i s  de- 

fined on the  manifold M with  coordinate  structure (x1, x2, . . . s xnls 

5. not integrable  then  there  exiets some neighborhood N(xo) of a 

given  point x0eM in which al l  points are accessible by integral  

curves Y ( U )  satisfying W ( Y )  = 0. 

This is a signif icant  r e s u l t  since there are w e l l  defined 

procedures  to  determine  whether  or  not a pfaff ian system is integrable: 

and as previously mentioned  theorem 3.1 was extended by  Chow to 

systems  of  pfaffians or d i f f e ren t i a l  one forms. In the  application 

of Chow's theorem to the cont ro l lab i l i ty  problem, Hermann's approach 

i s  based on the proposition  that  every  point is accessible that i s  

nut obviously  inaccessible. To prevent aome points in N(x ) from 

being  obvioualy  inacoessiblc it l a  evident  that  we mst negate the 

existence of  any in t eg ra l  manifolda to  the  system of d i f f e ren t i a l  

one forms. The existence of integral  manifolds can be  determined 

0 
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by using Frobenius'  integration  theorem [9]. Equivalently, the 

in tegrabi l i ty   condi t ions   has  a dual  formulation in terms of  dis- 

t r ibu t ion   of   vec tor   f ie lds   be ing   involu t ive ,  and this approach 

hasmore   d i r ec t   appea l   s ince   t he   vec to r   f i e lds   can   be   r e l a t ed  

d i r ec t ly   t o   t he   d i f f e ren t i a l   equa t ions   desc r ib ing  the con t ro l  

sy 9 tem. 

L e t  8 be a p-dimensional d i s t r i b u t i o n  of v e c t o r   f i e l d s  on a 

manifold M (p 5 dimM), then  the  following  theorem is standard 

for   the  exis tence of in tegra l   mani fo lds   for   involu t ive   d i s t r ibu t ion .  

3 . 2  Theorem An i nvo lu t ive   d i s t r ibu t ion  8 on M is in tegrable .  

Furthermore,  through  every mcM there  passes a unique maximal 

connected  integral  manifold  of 8 and every  other  connected  integral  

manifold  containing m is an open  submanifold  of t h i s  msxixual one. 

Hermann appl ied   these   resu l t s  t o  the c o n t r o l l a b i l i t y  problem 

as follows.  Consider the control  system 

x = f i ( t ,  x, u) i 

where the state x is a n  n vector ,   the   control  u is an  s vector  

(s - < n) and the  functions f are assumed t o  be smooth. In the 

(n + s + 1) dimensional  (t,  x, u) space we can assoc ia te   wi th  

the  control  system a codis t r ibu t ion   of  o m  forms  defined by 

14 



dxi - f i ( t ,  X, u)dt = 0 

The dual  space of vector f ie ld6 i.6 sp~nnnd by 

X = Dt + xfi(t, x, u)D 
xi 

P - D  
U 

It is now a routine matter to  demonstrate  whether  or  not this dis- 

t r ibu t ion  of vector  f ield6 is  involutive  under  the L i e  B r a c k e t  

operation and thus  determine the existence or nonexistence of an 

integral  manifold.  If an integral  manifold  does exist then it 

w i l l  cons t i tu te   an   in tegra l  to the  system  of  differential  equations 

independent  of the choice of the controls. "A is  obviously con- 

t rary  to   the  not ion of cont ro l lab i l i ty  since the only  accessible 

points w i l l  be those pointe on the integral  manifold. 

The re la t ion   o f  Hermann's proposition  regarding the avoidance 

of  obviously  inaccessible  points as w e l l  as the Chaw-Carathedory 

theorems on in tegrabi l i ty  and inrccesaible points to  the  converse 

problem  of accessible  points  follows from the geometrical  inter- 

pretat ion  of  the L i e  Bracket of   vector   f ie lds .  The tangent vectors 

associated  with the in tegra l  curves of the vector   f ie lds  do  not span 

the tangent  apace M However, i f  the d is t r ibu t ion  is  not  inmolutive m' 



then  the  tangent vector8 associated  with the derived  system of vector 

f i e lds  under the Lie Bracket operation do span the tangent space 

Mm . I f   the  tangent vectors span Mm’ then a l l  po in t s   i n  s o m  

neighborhood N(xo) can be at ta ined by integral   curves of the 

vector  fields,  provided we can ident i fy  the integral  curves with 

those  vector  field8 that are generated by the Lie Bracket. The 

follcwing theorem resolves this problem [ 91. 

3 . 3  Theorem Let X and Y be amooth vector  fields  both  defined 

a t  meM. I f  Y(Q) denotes  the  f inal   point obtained by traversing 

i n  sequence the  integral  curves to the vector   f ie lds  X, P, -X, 

and -Y for a i  fixed psranrter Q and an i n i t i a l   p o i n t  m, then Y has 

[X, Y] (4 as the limit of i ts  tangents. 

Figure 3.1 
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- Proof Let the vector  fieldrr X and P have  the  representations 

curves to  the  vector  f ields X and Y respectively so that @,(a) = x(@(a)) s 

and $*(u) = P ($ (u ) ) ,  then @ and $ satisfy  the  differential   equations 

As we traverse a rectangle of integral  curves (Figure 3.1) we obtain 

the following relat ions 

Since we shall compare the  point m4 to  the  point m for small u, 

we have on expanding the  integral   cunes i n  a Taylor's  series  in u 

1 

1 . "  ....."_.._... .. .. ..I 
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2 

Expanding these terms about the point m and only retaining terms 

i n  u or lower, yields 2 

Therefore the curve generated by the rectangle of integral curves of 

the vector  fields X and Y i s ,  for small u, given by 

18 
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The r e l a t ion  between the integral   curve 7 and the  Lie  Bracket is 

obvious  since 

The L i e  Bracket creates a second order  tangent rather than a f i r s t  

order  tangent  since 

Therefore  for any function h we have 

This geomtr ica l   fn te rpre ta t ion  of the  Lie  Bracket  gives 

insight  into the local a t t a inab i l i t y  of points.  Traveraing a one 

parameter family of rectangles whoae s ides  are tangent  to a dis- 

t r ibu t ion  might yield  locally a curve whose tangent i s  not in the 

d is t r ibu t ion .  When the  dis t r ibut ion is not  involutive, we can 

generate  an  independent set of tangent  vectors which span the mani- 

fold and implies loca l   a t t a inab i l i t y  of points by integral  curves 

t o  the dist r ibut ion.  
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It would appear at t h i s   s t a g e  that the c o n t r o l l a b i l i t y  problem 

i s  completely  solved;  however,  there is a f a l l a c y   i n  Hermann' s 

proposi t ion  that  a l l  po in t s  are access ib l e  that are not  obviously 

inaccessible.  Consider  the  following example, 

2 
1 2  .ir = x  

ic = u  2 

The d i s t r i b u t i o n  of v e c t o r   f i e l d s  are given by 

X =  Dt  +x% +uD 
x1 x2 

P = D  
U 

Application  of  the L i e  Bracket  yields 

[X, P] = -DX 
2 

Therefore  provided x f 0, these  four  tangent  vectors span the  
2 
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(t, xl, x2, u)  space. Hence, there are no integral   manifolds   to  

t he   con t ro l  system,  and t h i s  would ind ica t e  that a l l  poin ts  are 

access ib le .   Despi te   th i s   fac t ,  it is  apparent   that   the   control  

system is not control lable   s ince  the  solut ion  x , ( t )   for   any  control  

u has t o  be monotone increasing, This example i l l u s t r a t e s   t h e  

fa l lacy ,  which is t h a t  we deal with a coordinate   s t ructure  that is  

endowed with one special   coordinate ,  namely time, which has to evolve 

o r  if parametrized i t  mst be monotone increasing. In   the  above 

example i f  the  time  could  be  reversed  then the control  system 

would be controllable.   Therefore,  due t o  the  monotonicity  of 

time we can  only  speak of "one-aide" sets of a t t a i n a b l e   p o i n t s  

i n  state space rather than f u l l  neighborhoods  of a t ta inable   po in ts .  

Obviously, the use of the Chaw-Carath6odory theorem is necessary 

t o  the c o n t r o l l a b i l l t y  problem to  es tabl ish  the  nonexis tence of 

integral   manifolds,  so that the  dimension  of  the  "one-sided" 

a t t a i n a b l e  sets is equal   to   the   dbens ion  of the state space. 

There is a class of  control  systems however  where time is 

an ignorable  coord-inate  and the Char-Carathgodory Theorem can 

be appl ied   to   y ie ld   g loba l   condi t ions   for   cont ro l lab i l i ty .  
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IV, NONINVOLUTIVE CONTROL SYSTEMs 

I n   t h i s   s e c t i o n  we sha l l   cons ide r   con t ro l   sys t ems  of t h e  form 

4.1 

where x i s  an n vec tor  and  B(x) an n x r matrix  with  columns  denoted 

by bl(x) ,. . . , br(x) .  We s h a l l  assume t h a t   t h e  components  of B ( - )  

a r e  smooth func t ions .  The con t ro l   vec to r  u w i l l  always  be assumed 

Lebesgue  measurable; of p a r t i c u l a r   i n t e r e s t  w i l l  be  the  case  where i t s  

v a l u e s   l i e   i n  a bounded s e t  of  Euclidean r dimension  space E . Follow- r 

ing Chow, we sha l l   say   the   sys tem (4.1) has   rank r a t  m i f   t h e   m a t r i x  

B has  rank r in  every  neighborhood  of  the  point m. A poin t  m i s  re- 

pular   for   the   sys tem (4 .1 ) ,  i f   the   sys tem  has   rank  r a t  m and rank 

B(m) r. 

We now a d j o i n   t o  B any l inear ly   independent   vec tors  formed  by 

apply ing   the   L ie   Bracket   opera t ion   to   the  column vec to r s  of B. Con- 

t inu ing   th i s   p rocedure  we obtain  the  derived  or  completed  system - 
B assoc ia ted   wi th  B. The columns of % w i l l  also be  denoted by b l (x) ,  

. . . , b (x)  where the   rank ,  s ,  of the  completed  system a t  the   po in t  

m s a t i s f i e s  r _< s 5 n i f  r is the  rank of  B a t  x. The i n t e g e r  s - r 

i s  called  the  index  of B. 

S 

With % we assoc ia te   the   comple ted   sys tem  of   d i f fe ren t ia l   equa t ions  

" 
x = B(x)u 4.2 
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where ‘2J i s  now an s dimens iona l   cont ro l   vec tor .   For   th i s   sys tem Chow’s 

r e s u l t s   g i v e   s u f f i c i e n t   c o n d i t i o n s   t h a t   t h e  set  o f   p o i n t s   a t t a i n a b l e  

by so lu t ions   o f  (4.2), s t a r t i n g  from i n i t i a l   d a t a   x ( 0 )  = xo, form 

an s dimensional  manifold.  It a l s o   f o l l o w s   t h a t  a l l  po in t s  on t h i s  

mani fo ld   can   be   a t ta ined   by   so lu t ions  of (4.1), e t a r t i n g  a t  x. and 

having   cont ro ls   wi th   va lues  a t  time t i n   t h e  set  of t h e   f i r s t  r co- 

o rd ina te   vec to r s .   Th i s   gene ra l i zes  some recent  wotk  of Kuxera [lo]. 
The s y s t e m   o f   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   a s s o c i a t e d   w i t h   t h e  

vec to r   f i e lds   desc r ibed  by B are B (x)D f = 0;  the i& equat ion  has  

the  form  bi(x)Dxf = 0, wi th  x = b (x) as i t s  cha rac t e r i s t i c   equa t ion .  i 

One should   no te   tha t   the  i& charac te r i s t i c   equa t ion   o f  B (x)D f = 0 

may be  obtained  from  the  control  system (4.1)  by p lac ing   the  i& compo- 

nent   of   the   control   vector  u e q u a l   t o  1 and a l l  o the r  components equal  

T 
X 

T 

T 
X 

t o   z e r o .  

Now t h e   r e s u l t s  of Chow [ 2 ]  p e r t a i n   t o   p o i n t s   a t t a i n a b l e  by 

“p iec ing   t oge the r”   t he   cha rac t e r i s t i c   so lu t ions   o r   i n t eg ra l   cu rves  

of t h e   v e c t o r   f i e l d s   a s   e l u c i d a t e d   i n  Theorem 3 . 3  fo r   t he   geomet r i ca l  

i n t e r p r e t a t i o n  of t h e  L i e  Bracket. It i s  of  fundamental  importance 

t o   n o t e   t h a t   t h e  Chow formulat ion allows t h e   s o l u t i o n s   t o   t h e   c h a r a c -  

t e r i s t i c   e q u a t i o n s   t o   b e   c o n s i d e r e d   w i t h   d e c r e a s i n g  time, as w e l l  as in -  

creasing  t ime. Thus i f  9 is  a p i ec ing   t oge the r   o f   cha rac t e r i s t i c  

s o l u t i o n s   s u c h   t h a t   i n  some time i n t e r v a l  I 9 is a s o l u t i o n  of t he  i’ 

ie charac te r i s t i c   equa t ion ,  w e  only know t h a t  &(t)  - f. bi(  9 (t)) ,  

ttIi. However, t h i s   p r e s e n t s  no  problem fo r   t he   con t ro l   sys t em (4.1), 
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s ince   t he  minus s ign  may be  obtained by  merely  taking a con t ro l   w i th  -1 

as i ts  i& component  and a l l  o t h e r  components  zero. 

For 1 Si,< r , l e t  e i c  E (real r dimensional  Euclidean  space)  have 
r 

a one i n  i t s  i& component  and a l l  other  components  zero.  Define 

and U p { u measurable; u ( T ) E V ,  7 2 0  

Then a s o l u t i o n  (b of the   cont ro l   sys tem (4.1) cor responding   to  a con- 

t r o l  UCU i s  a p i ec ing   t oge the r   o f   cha rac t e r i s t i c   so lu t ions   i n   t he  

sense  of Chow. With the  above i n  mind, we  may combine  theorems B 

and C of Chuu 1 2 1  (See also HermanCl]) as follows. 

Theorem 4.1 Let x be a regular   po in t   for   the   cont ro l   sys tem (4 .1 )  

and i t s  completed  system ( 4 . 2 ) ,  and  assume tha t   t he   r ank   o f  B i s  r 

and the  rank  of i s  s a t  x0. Then t h e r e   e x i s t s   a n  s dimensional 

manifold M through x such  that  a l l  po in t s  on th i s   mani fo ld  are 

a t t a i n a b l e  by so lu t ions   o f  ( 4 . 1 )  w i t h   i n i t i a l   d a t a   x ( 0 )  = x and 

c o n t r o l  UCU. Furthermore,  given a s u f f i c i e n t l y  small neighborhood of 

x the   on ly   po in t s   a t t a inab le  by  such s o l u t i o n  of (4.1), which  remain 

in   the   ne ighborhood,   a re   po in ts  of M . 

0 

S 

0 

0 

0’ 
S 

The following example i l l u s t r a t e s   t h e  need fo r   bo th   con t ro l  

sys tems  to   be   regular  a t  t h e   p o i n t  x . 
0 
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Example 4.1 Consider  the  three  dimensional  system x = B(x)u  where 
e 

The po in t  x (O,O,O) i s  regular   for   the   sys tem (4.1) s ince   rank  

B(xo) = 2.  However, the  completed  system (4.2) i s  

T 
0 

(:) , %(x) =(i 1 :) 0 

Cbl ,b23= 
X 3 0 x x  x 1 3  3 

and we see  that   the  completed  system  has  rank  three a t  x o ,   ( i . e e ,  

B(x) has  rank  three  in  every  neighborhood  of x ) but  x i s  not   regular  

for  the  completed  system  since  rank :(xo) = 2. As a r e s u l t ,  a l l  solu-  

t ion  of  the  completed  system x = %(x); s t a r t i n g  from x cannot  leave 

the  plane x = 0; i n   o t h e r  words  the  manifold  of  at tainabili ty  from 

x has  dimension two. 

Iv 

0 0 

0 

3 

0 

The second  example we s h a l l   c o n s i d e r   i l l u s t r a t e s   t h a t  i f  one does 

n o t   r e s t r i c t   t h e   s o l u t i o n s   t o   l i e  in a small neighborhood  of x the  

las t  s ta tement  of  theorem 4.1 need not  be va l id .  

0’ 

Example 4.2 Once aga in  we sha l l   cons ide r  a three  dimensional 

system x = B(x)u  where B(x) i s  a 3 x 2 matrix  with  elements 



I..- . ._ .. . , -. , . _ _  . "_ "_ " __ - _" .__. .. . " - 

where 1.1 denotes  the  Euclidean  length  of a vec to r .  A l l  po in t s  x a r e  

r egu la r   fo r   t he   con t ro l   sys t em  s ince   r ank  B(x) = 2. I f  

if Ixl>l and X # 0 then x is regular   for   the  completed  control   system. 

Consider x (0) # 0 and IxoI < 1, then :(x) = B(x) and x i s  r egu la r  

2 

2 0 

fo r   bo th   con t ro l   sys t ems .   In   t h i s   ca se   t he   i n t eg ra l   man i fo ld ,  M , of 
2 

theorem 4.1 i s  t h e   i n t e r s e c t i o n  o f   t he   un i t   ba l l   ( o r ig in   cen te red )   w i th  

the  plane x = xl(0) .   I f  we choose a neighborhood  of x conta ined   in  

t h e   u n i t   b a l l ,   t h e   o n l y   p o i n t s   a t t a i n a b l e  by t r a j e c t o r i e s   o f   t h e  

1 0) 

original   system  which  remain  in   this   neighborhood,   are   points  on t h i s  

plane.  However, w i t h o u t   t h i s   r e s t r i c t i o n ,  a l l  p o i n t s   i n  some neighbor- 

hood of x may be a t t a i n e d  by t r a j ec to r i e s   o f   t he   sys t em  wi th   con t ro l s  

ucU. This   occurs   even  though  the  uni t   bal l  i s  f o l i a t e d  by  leaves 

{ x:xl = cons tan t}   s ince  we  may e x i t   t h e   b a l l  on t h e   l e a f  x1 = xl (0) ,  

then move on an   a rb i t r a ry   pa th   i n   t he   ha l f   space  x > O  and r e -en te r  

t h e   b a l l  on a d i f f e ren t   l ea f   t o   r each   po in t   nea r  x . 

0 

2 

0 

Motivated by t h i s  example, we introduce  another  concept  of  con- 

t r o l l a b i l i t y   f o r  a genera l   cont ro l   sys tem 

26 
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Defin i t ion   4 .1  The system ( 4 . 3 )  i s  - l o c a l l y - l o c a l l y  . . . . c o n t r o l l a b l e  a t  

x i f   g i v e n  any e > O  t h e r e  exists a 6>0 such   tha t  a l l  po in t s  of  the 

6 neighborhood of x a r e   a c c e s s i b l e  by t r a j ec to r i e s   emana t ing  from x 

which  do not   l eave   the  t neighborhood.  Obviously 6st. 

0 - 
0 0 

D e f i n i t i o n  4.2 The system  (4.3) i s  - g loba l ly - loca l ly  ~ . . ~  . . c o n t r o l l a b l e  

a t  x i f  a l l  p o i n t s   i n  some neighborhood  of x. are access ib l e  by 

t r a j ec to r i e s   emana t ing  from xo. 

v 

In   t e rms   of   these   def in i t ions  we n o t e   t h a t   i f   i n  example 4.2,  

I x j < &   t h e   s y s t e m  i s  n o t   l o c a l l y - l o c a l l y   c o n t r o l l a b l e  a t  xo. However, 

with  Ixol<l and x2(0)  # 0,  the  system i s  g l o b a l l y   l o c a l l y   c o n t r o l l a b l e  

a t  x . It i s  i n t e r e s t i n g   t o  compare these  two no t ions   w i th   t ha t  of 

comple t e   con t ro l l ab i l i t y ,   i . e . ,  any two poin ts   can  be jo ined  by a 

solution.  For  example,   the "Bushaw problem" 

0 

a 

x1 = x2 

e 

x = -x1 + u 
2 

i s  comple t e ly   con t ro l l ab le ,   bu t   i f  x. # 0 then  the  system i s  no t  

l o c a l l y - l o c a l l y   c o n t r o l l a b l e  at xo. On the  other  hand,  complete  con- 

t r o l l a b i l i t y   c e r t a i n l y   i m p l i e s   g l o b a l - l o c a l   c o n t r o l l a b i l i t y .  

Suppose tha t   t he   sys t em (4.1)  has  rank r a t  xo, and the  completed 

system  (4.2)  has  rank s a t  x and fur thermore,  x i s  regular   for   bo th  
0 0 
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systems. Then i t  i s  a consequence of theorem 4.1 t h a t  a necessary  

condi t ion   for   the   sys tem (4.1) t o  be l o c a l l y - l a c a l l y   c o n t r o l l a b l e  at 

x i s  t h a t  s = n. To  show t h a t  i t  i s  a s u f f i c i e n t   c o n d i t i o n   a l s o ,  

r e q u i r e s   t h a t  w e  can   approximate   the   t ra jec tor ies  of the  completed 

system (4.2) by t r a j e c t o r i e s  of the   o r ig ina l   sys tem (4.1). 

0 

To prove t h i s   r e s u l t  w e  s h a l l  assume the  rank and r e g u l a r i t y  

condition  hold  throughout.  The tangent   space   to   the   mani fo ld  MS 

of   points   accessible   f rom x i s  spanned  by b (x), . . . , bs(x) 

f o r  a l l  x i n  a neighborhood  of  xo.  Thus i f  $' i s  a smooth func t ion  

s a t i s f y i n g  # (0) = x $(t)t  span  {bl($'( t)) ,  . . . , bs  ($'(t))l f o r  

a l l  t 2 0,  then $'(t) desc r ibes  a curve on M . Let  

0 1 

0' 

S 

N N 

U = { u  measurable:   u(t)cES, I T ( t )  15 1, t 2 0  1 . N 

Then c l e a r l y  a s o l u t i o n  of  the  completed  control  system  (4.2),  with 

c o n t r o l  ucU and i n i t i a l   c o n d i t i o n s   x ( 0 )  = x desc r ibes  a curve on 

M . We now have t o  show that   such a s o l u t i o n  may be  uniformly  approxi- 

N N  

0' 

S 

mated  (on a compact  t ime  interval)  by a s o l u t i o n  of t h e   o r i g i n a l   c o n t r o l  

system  (4.1), however the   magni tude   o f   the   cont ro l   requi red   to   do  

t h i s  may be  very  large.  

Theorem 4.1  shows t h a t  a l l  po in t s  on MS a r e   a t t a i n a b l e  by 

so lu t ion  of  the  system  (4.1)  even  with  controls ucU. Therefore ,  i t  

i s  na tu ra l   t o   a t t empt   t o   app rox ima te  a solut ion  $ 'of   the   completed 

system (4 .2 )  on a compact i n t e r v a l  [O,T] by f ind ing  a solut ionq5of  
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t!he system (4.1) which  agrees  with $' a t  many po in t s ,  i .e.,  say  

$'(kT/m) = +(kT/m) f o r  m a l a rge   i n t ege r  and k = 0, 1, . . . , m. 
The major d i f f i c u l t y   t h a t   o c c u r s   i n   d o i n g   t h i s  i s  t o  show t h a t  

the  t ime i t  t a k e s   t o   r e a c h   a n   a r b i t r a r y   p o i n t  on M near  x by a 

s o l u t i o n  of (4.1) t ends   t o   ze ro  as the   dis tance  of   the  point  from x 

t ends   t o   ze ro .   Th i s  w i l l  be the   purpose  of   the  next   three lemmas. 

S 
0 

0 

Lemma 4.1 I f   t h e   i n d e x  of B i s  q ,   the   h ighes t  number, p ,  of   bracket  

operations  needed  to  obtain  any  vector  of  the  completed  system B i s  
N 

the  qth term of  the  sequence, ao, al, . . . , where a = 0, al = 1, 
0 

a k = 1 + % - 1 + % - 2 '  

Proof I f   t h e   i n d e x  i s  ze ro ,   t hen   c l ea r ly  p = 0. If the  index i s  

one then p = 1. If   the   index i s  two, then p = 2. For  an  index of 

t h r e e ,  we may, i n   t h e   w o r s t   c a s e ,   h a v e   t o  form the  bracket   of   the  

element  in  the  complete  system  of  rank r + 2 involving two bracke ts  

with  the  element  of  the  incomplete  system  of  rank r + 1 involving 

one bracke t .  From t h i s  i t  fo l lows   tha t   for   index  3 ,  p = 2 + 1 f 1 = 4 ;  

and induct ive ly   the  k G  t e r m  of the  sequence a a 

a - a  + a  + 1. 

0' 1' - * 
, i s  

k k - 1  k - 2  

Lemma 4.2 Let < ( 0 )  denote a s o l u t i o n  of x = bi (x) ,  x ( 0 )  = x. 

where b i s  obtained  from b 

Then t h e r e   e x i s t s  a c o n t r o l  ueU such   tha t   the   cor responding   so lu t ion  

i 

i 1'"' r , b by p bracke t   opera t ions .  
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$(-, u)  of  the  system (4.1) s a t i s f i e s  

Proof I f   b .  i s  one of t h e   s e t  b 
1 1’ 

merely s ta tes  t h a t   t h e r e  e x i s t s  a ut 
0 

. . . ,  br then p = 0 and (i) 

:U ( i n   t h i s   c a s e  u = e . )   such   t ha t  
1 

$ ( T ,  ei)  - x. = Tb.  (x ) $. 0 ( T ~ )  as T - W  which i s  obvious. Also (ii) 1 0  

merely  reduces  to  $(e, e . )  = ci(*) .  The proof  proceeds by induct ion ,  

however,  the  general  step i s  similar t o   t h e   c a s e  p = 1 t hus   fo r  

c l a r i t y  of  p re sen ta t ion  and s impl i c i ty   o f   no ta t ion  we w i l l  p r e sen t  

o n l y   t h i s  argument. 

1 

Suppose b i s  obtained by the  use of one bracke t   opera t ion ,  i .e . ,  
i 

bi = [’j, bk] . Let   T . ( t )y   deno te   t he   so lu t ion  a t  time t ,  of J 
ic = B(x)ej  = b . (x )   w i th  x(0) = y,  and l l j l r .  From the  geometric  in- 

t e r p r e t a t i o n  of  the  Lie  bracket (Theorem 3 . 3 ) ,  
1 

Let u be defined by 

3 0  



I -  

Then 9 ( 4 t ;  u) = Tk(-t)Tj(-t)Tk(t)Tj(t)xo. Let C i ( * )  denote   the 

s o l u t i o n  of $ = bi(x) , x(0) = x then ci(t) - x. = t [b (x,) bk(xo)] + 
0' 

O ( t  2 ). Since #(4t; u) - x = t2[bj.(xo),  bk(xo)] -t O ( t  ) as t-0, 

equa t ion   ( i )  and (ii) f o l l o w   e a s i l y   f o r   t h e   c a s e  p = 1. The r e s u l t s  

3 
0 

f o r   a r b i t r a r y  p ,  follow i n   t h i s  manner  by induct ion.  

Lemma 4.3  Let $(a) be a so lu t ion   of   (4 .2)   cor responding   to  a c o n t r o l  

utU and i n i t i a l   d a t a   x ( 0 )  = x Then t h e r e   e x i s t s  a s o l u t i o n  $(my u) 

of (4.1) wi th   con t ro l  U C U  and a T =  f(to) such   tha t  @ ( T '  u) = $(to) and 

T(to)-O as t -0. 

Proof  Let T .  ( - )y   deno te  a s o l u t i o n  of x = bi (x) ,  x(0) = y, 15 i ,< s.  

Since b (x ), . . . , b (x ) span   the   t angent   space   to   the   a t ta inable  

manifold M a t  x we  may view  the  curves T (')x as de f in ing  

loca l   coo rd ina te s  on MS i n  a neighborhood of x . 

" 

6. 

0 

1 

1 0  s o  
S 

0' i 0 

0 

Since x i s  a regular  point  for  both  systems  (4.1)  and  (4.2)  then 
0 

x i s  a l so   r egu la r   fo r   bo th   sys t ems   i f  x is i n  a s u f f i c i e n t l y  small 

neighborhood  of x . L e t  t b e   s u f f i c i e n t l y  small so  t h a t  $(to) i s  

i n   t h i s  neighborhood. Then we  may w r i t e  

0 0 
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and  each ti-0 as t -0 .  
0 

From lemma 4 .2 ,  f o r   e a c h  l j i ss  w e  may f i n d  a con t ro l   u . tU   and  1 

a time r ( t  ) s u c h   t h a t   t h e   c o r r e s p o n d i n g   s o l u t i o n  $(e, ui)   through 

a n   i n i t i a l   p o i n t  y s a t i s f i e s  q5(T(ti) , ut )  - Ti( t i )y  O ( t i  P+~’P+‘) as t i - o .  

To s i m p l i f y   n o t a t i o n  we s h a l l   d e n o t e  d ( r ( t i ) ,  ui)  by  Si(ri)y. 

i 

Using lemma 4.2 s u c c e s s i v e l y  s times we may “ f o l l o w   t h e   c o o r d i n a t e  

r e c t a n g l e ”   t o  +(t ) a r b i t r a r i l y   c l o s e l y  by t r a j e c t o r i e s   o f   s y s t e m  
0 

(4.1),  i .e .  

ss (Ts)ss- l (  ‘s-1 . . . S1 (71)x0 - Ts (ts)Ts,l (ts-l) . Tl(tl)xo * 

S s ( ~ s ) .  . S (t )x - +(to) = O ( t o )  as to -0 where 1 1 0  

each T = r i ( t i ) , ~ i ( t i )  - t = O ( t . )  and t -0 as t -0. 
i i 1 i 0 

Cons ide r   t he  map h:E A M  defined  by  h(T 
S S 

1’ * ’ T s )  = 

S s ( f s > .  . . S ( T  )x Since   the   comple te   sys tem of v e c t o r s  fi(0) = 

bi(xo) i = 1, 2,  . . . , s s p a n   t h e   t a n g e n t   s p a c e   t o  M. a t  x u s i n g  

(ii) of lemma 4.2 ,  i t  f o l l o w s   t h a t   t h e   J a c o b i a n  of t h e  map i s  non- 

s ingular .   Thus ,  h i s  l o c a l l y   o n t o  and t h e   i m p l i c i t   f u n c t i o n   t h e o r e m  

a p p l i e s   t o  show t h a t   b y   s l i g h t l y   v a r y i n g   t h e  times 7 

1 1 0’ 
S 

0’ 

1’ t o  
S 
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1 I I I 
t imes T 1, . . . , T one may assume t h a t  S (+ ). . . S ( T  )x = +(to). 

S 8 s  1 1 0  
I 

Also, each T -0 as to-O. We may  now "piece  together" a con t ro l  

ueU in   the   obvious  way such  that  i t s  corresponding  solut ion  through 

i 

as required.  

Theorem 4.2 (Uniform  approximation  of a so lu t ion   of  (4.2) by a 

so lu t ion   of  (4.1)) Let  #be  any  solution  of  the  completed  control 

system (4.2) w i t h   i n i t i a l   d a t a   x ( 0 )  = x and ucu, on a n   i n t e r v a l  

[O,T] . Then given  any c > O  t h e r e   e x i s t s  a so lu t ion   of  (4.1) cor re s -  

ponding t o   i n i t i a l   d a t a   x ( 0 )  = x. and Some bounded measurable  control 

u ,   such  that  max I @(t)  - J l ( t ) l < c .  

" 

0 

O l t l T  

V e r i f i c a t i o n  We f i r s t   n o t e   t h a t   i f  @ ( * , u )  denotes a so lu t ion  of 

a l l  t. 

Let  N ( c  ,$) denote a compact e neighborhood of ($(t): O l t  S T 1  

and l e t  @ =  max { (bi(x) I rxcN(c ,$)I. Note t h a t  w i t h  IuI 5 1, i f  
1 sis s 

+ ( e y  u) i s  a s o l u t i o n  of  system (4.1) then I @ ( t ,  u) - + ( t ) l j c  on 

[O,P]if 2crP<e. The f a c t o r  two i s  needed s i n c e  $ and i may have 

oppos i t e   d i r ec t ions .  

For  any  integer  k,   consider  +(T/k),  By the  previous lemma there  

i s  a c o n t r o l  ucU and a 7 such   tha t   the   cor responding   so lu t ion  41 of 1 
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the  system (4.1) s a t i s f i e s  @ ( T  u)  = #(T/k)  and we  may choose k l a r g e  

enough so  t h a t  7 < ~  (i.e. here  w e  need 7 -0  as T/k-0). Then 

t h e r e   e x i s t s   a n  a > O  such  that   aT/k = t hence 4(t l ,  u)  =I #(T/k) = 

@(aT/k,  u) = @(T/k, a u ) .   S i n c e   t l < p ,  19 (t, a u )  - # ( t ) l < c  

f o r   O I t _ < T / k .  Now t h e   s o l u t i o n s  4, # a g r e e  a t  T/k; we may repea t   the  

1' 

1 1 

1' 

procedure  with x replaced by  #(T/k) and o b t a i n   t h e   r e s u l t   f o r  [O,ZT/k] , 
0 

e t c .  The approximation  procedure i s  b e s t   i l l u s t r a t e d  by the  fol lowing 

example;  however, we must f i r s t  c i t e  one important  consequence of 

theorem  (4.2). 

Coro l la ry  4.1 I f   each   po in t  xcEn 5s regular   for   bo th   sys tems 

( i . e ,  (4.1) and (4.2))and  rank :(x) = n,  then  the  system (4.1) i s  

comple te ly   cont ro l lab le  and l o c a l l y - l o c a l l y   c o n t r o l l a b l e  a t  every   po in t .  

Fur thermore ,   i f  $ i s  any   con t inuous ly   d i f f e ren t i ab le  map, $: [O,l]+En 

and c >0 ,  t h e r e   e x i s t s  a bounded measurable   control  u such  that   the  

cor responding   so lu t ion  @(=, u)  of (4.1) s a t i s f i e s  max I # ( t )  - @ ( t ) l < c .  
O l t l l  

Proof Clear ly  i t  su f f i ces   t o   p rove   t he  l a s t  s ta tement .   Let  # be a 

con t inuous ly   d i f f e ren t i ab le  map $: [ O ,  1J-E . Since  rank  B(x) = n 

f o r  a l l  x ,   d e f i n e   v ( t )  = B ($( t ) )  #( t ) .  Then $(t) s a t i s f i e s  

n N 

"1 * 

& ( t )  = g ( $ ( t ) ) v ( t )  and the   des i r ed   r e su l t   fo l lows  as in  theorem 4.2. 

It should  be  noted  that  rank  %(x) = n impl i e s   t ha t   t he   e l emen t s  

of   B(x)   do   no t   genera te   an   involu t ive   d i s t r ibu t ion   of   vec tor   f ie lds ,  

and s ince   i n   t h i s   ca se   sys t ems  of  the  form (4.1) a r e   g l o b a l l y   c o n t r o l l -  

a b l e ,  we have appropr i a t e ly   ca l l ed  them noninvolut ive  control   systems.  
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The fol lowing example i l l u s t r a t e s   t he   un i fo rm  approx ima t ion  of a 

t r a j e c t o r y  of the  completed  system (4.2)  by a t r a j e c t o r y  of t h e   o r i g i n a l  

system (4.1). 

Example 4.3 Let  B(x) be a 3 x 2 matrix  with  columns  bl(x)  and  b2(x) 

def ined  by 

The completed  system  has  an  additional  vector b (x)  generated by the  

Lie   Bracket  as 

3 

The s o l u t i o n  $' of  the  completed  system  which w e  w i l l  approximate 

w i l l  b e   f o r  zT = (0, 0 ,  -1) and i n i t i a l   c o n d i t i o n s  x. = (0,  0,  0) 

thus $'(t)T = ( 0 ,  0, t / 2 ) .   I f  T ( t )y   deno tes   t he   so lu t ion   o f  = bi(x),  

x(0) = y, i = 1, 2; we know f rom  the   in te rpre ta t ion  of the L i e  Bracket 

T 

i 

t h a t  w e  should  expect  to  approximate $'(t) by T (- t )T1(- t )T (t)Tl(t)xo. 2 2 
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X 
2 

F igure   4 .1  

One may n o t e   t h a t  by va ry ing   t he   magn i tude   o f   t he   con t ro l   vec to r  

u ,  we  may vary   the   speed  of t r a v e r s i n g  a s o l u t i o n  of x = bi(x). L e t  

ul(a)T = (CY, 0) and u (a)T = (0,a) and d e f i n e  2 

ul (a)  i f  O j t l Y  

u2(a)  i f  Y< t j 2 Y  

-ul (a)  i f  2Y< t l 3 Y  u ( t )  = 

f o r  CY,’Y>O. Let  $ ( e , ~ )  d e n o t e   t h e   s o l u t i o n  of x = B(x)u f o r  t he   cho ice  

of u ( t )  and i n i t i a l   d a t a  x = ( 0 ,  0 , 0) .  No te   t ha t  $ (7, u) = T1 ( a y ) ~  
T 
0 0 

@(2Y,  u) = T2(aY)T ( a r ) x  $(3Y,  u) = T1(-aY)T2(aY)T ( C Y Y ) ~  and 

$(4Y, u) = T2(-CYY)Tl( -~)T2(aY)T1(aY)xo.  

1 0’ 1 0 

36 



Calcu la t ing   t he   ac tua l   so lu t ion   y i e lds  

as i l l u s t r a t e d  on f i g u r e  4.1. Now suppose we wish  an t > O  uniform 

3 3 

1 
approximation  to  $(e) where we take   for  ycE , I lyll = lyil and 

O < C  < 1. Our ob jec t  is t o  choose a and Y so t h a t  @ ( 4 k Y ,  u) = $'(4k?) 

f o r  k = 0 ,  1, . . . and i I@ (t ,  u)  - $(t)ll-<t f o r  a l l  t. 

Let  a Y  = e .  Then l @ l ( t l  u) - &l(t)ll ,!@2(t,' u) - !k2(t)l-<t 
n 

f o r  0s t 1 4 Y  , and I J g ( 4 Y )  - @3(4Y,  u)l = 127- t'(2 +t) 1 
I 4 + 4 t  + 2 t  2 -  

t 2  1 2  +tJ 

8 + a t  + 4 t  
Choose Y = 2 so t h a t  1g3(4y)  - @3 ( 4 Y ,  u) I = 0 and 

obviously I $ 3 ( t )  - @3(t, u ) I< t   fo r   Os t14Y.   Th i s   cho ice   o f   Yg ives  

2 
Y =  + 8t  4 r  ; s ince  a determines  the  "speed"  with  which we move 

' 1 2  +'] 
a long   the   so lu t ion  &, we see t h a t   f o r  small t , Y is small (many switches)  
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and a i s  l a rge .  

The above choices  of a and Y ,  t h e r e f o r e ,   y i e l d  +(4ky)  - t$(4ka;u)=0, 

k = 0, 1, 2,  . . . and l l $ ( t )  - @(t; u )II-<e f o r  a l l  t. 
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v LINEAR SPS!E.Ms 

The previous  section has sham  that  global  controllabil i ty 

condittons can be  derived  for  nonlinear systems w i t h  the control 

appearing  linearly,  provided &at the control  actuator  vectors do 

not form an  involutive  distribution of vector  fields.  Therefore 

in the remaining sections of th i s   repor t  we shall confine  our 

attention  to  those cases where the control  actuator vectors when 

viewed as vector  f ields are involutive and the  exceptional "timen 

coordinate is 110 longer an ignorable  coordinate. The most obvious 

case which we shall treat f i r s t  &re l inear  systems which can be 

characterized as being imrolutive and for  which a large body of 

theory exists. 

As an example of the  differential  geometric approach to con- 

t ro l l ab i l i t y ,  Hermann derived  the  following  algebraic test for  

the  controllabil i ty of the linear ayatem. 

Theorem 5.1 If the  rank of B(t),  [B(t), . . . , r"B (t)]  , 
where I" = A(t) - Dt, i s  n for  each t then  every  point of the x-space 

is accessible from the origin on paths that are solutions of the 

l inear  system (5.1) for  some choice of the  control  u(t) .  
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The proof  of t h i s  theorem is f a i r ly  t r iv ia l  and proceeds as 

f~llows. With the  vector  fields  defined by 

X = Dt + (A(t)x + B(t)u) DX 
T 

Y = D  
U 

successive  application of the  Lie  Bracket yields 

The dis t r ibut ion i s  not  involutive i f  rank  [B(t),  rB(t), . . . , 
p- 1 B(t)] is n, which completes the  proof. 

Subsequent t o   t h i s   r e su l t ,  K a h n  e t .  al. [4J, derived  the 

following integral  test for  controllabil i ty.  

Theorem 5 . 2  The l inear  system (5.1) is completely controllable 

a t  to i f  and only i f   there   exis ts  a t > t such that W(to, tl) 1 0  
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ia nonrringular,  where W ( t o ,  tl> i a  the n x n matrix defined by 

and #(t, t ) is the fundamental solution to the homogeneous 

differential   equation. 

0 

Central   to  the proof of this theorem is the  demonstration 

that  there exists one in te rva l  [to, tl] on which the  functions 

@(to, t)B(t) are linearly  independent. The reason  for  this i s  

obvious. If the  functions  +(to,  t)B(t) are not  independent on 

any interval,   then  this implies the  existence of a constant 

vector  c euch that 

for  a l l  t. This, in  turn,  implies t h  .at the  control system 

derived from (5.1) by the  nonsingular  transformation d is not 

controllable  since  the  integral  manifolds would be  given by c y. T 
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The equivalence  between Hermann’s a lgeb ra i c  test and 

Kalman’s i n t e g r a l  test follows from the demonstration of t h e  

l i n e a r  independence  of  the  functions $(to, t)B(t) .  If we assume 

tha t  A(t)sCn-’  and B(t)eCn-’, then by formally  different ia t ing 

the  expression c @(t t )B( t ) (n  - 1) times, we ob ta in   Hemnn’s  

a lgebra ic  test on negating  the  existence  of  the  constant  vector 

x 
0’ 

c .  In   f ac t ,   t he re  i s  an  equivalence  between this method and the  

d i f fe ren t ia l   geometr ic  method of showing that t h e   d i s t r i b u t i o n  

is not  involutive. However, the a lgeb ra i c  test implies that the  

functions @(t t )B( t )  are linearly  independent  for a l l  po in t s  

o f   t he   i n t e rva l  [totl]. Kalman’s i n t e g r a l  test on the   o the r  hand 

r equ i r e s   t ha t  we f i nd   i n t e rva l  where this i s  t r u e   f o r   t h e  

l inear  system  to be  completely  controllable a t  t Having  found 

one  such i n t e r v a l  [to, tl] on which the functions are l i n e a r l y  

independent ,   there   can  exis t   subintervals   of   this   interval   on 

which the  functions are not  independent and integral   manifolds 

exis t .   Since  the  integral   manifolds  are d i f f e r e n t  on each sub- 

interval,   otherwise  the  functions would not  be  independent, it 

follows tha t  the integral   manifolds must span  the  manifold M 

for   p:>ints   to   be  accessible   over   the  interval  [t t13. The 

a lgebra ic  tes t ,  therefore ,   cons t i tu tes   on ly  a s u f f i c i e n t  condi- 

t i on   fo r  complete c o n t r o l l a b i l i t y  of linear  systems. The various 

ways i n  which the   l i nea r  dependence  of real functions on spec i f ied  

0’ 

0-  

42 



intervals can be defined  has  generated a whole hierarchy of con- 

t rol labi l i ty   def ini t ions.  To cite a few of the mre pertinent 

definit ions,  we have  following  Silverman and Meadows [15]. I f  

Q(t) = [B(t) , rB(t), . . . , rn-'B(t)], then  the system (5.1) is 

totally  controllable on the  interval [to, tl] i f   Q ( t )   h a s  rank n 

on every  subinterval of [to, tl]. This is equivalent  to 

plete control labi l i ty .  The system (5.1) i s  said to  be uniformly 

controllable on the  interval [t tl] i f  Q(t) has rank n for a l l  
0' 

ts[to, tl]. Some equivalences are possible;  for example, Chang 

[16] has proven that  the  algebraic test for cqmplete control labi l i ty  

a t  to i s  fully  equivalent  to  the  integral   cri terion provided  the 

matrices  A(t) and B(t)  are  analytic. The equivalence i s  established 
_cI 

in   this   case by shawing that  we cannot  piece  together  integral 

manifolds  to  span  the  manifold  since i f  any row or combination of 

rows of the  matrix  functions #(to, t)B(t)  are zero on some interval,  

then  they a re  zero everywhere by the  analyticity  condition. 

The following  algebraic tests are  fully  equivalent  to Kahn's  

integral   tes t   for   control labi l i ty .  

Theorem 5.3 Consider  the l inear  system j ,  = H(t)u where H(t) is 

an n x r matrix composed of cn" elements. This system i s  com- 

pletely  control lable   a t  to i f  and only i f  there   exis ts  n tines 

tl, . . . , tn 2 to such that  

4 3  



..... .... .. ..- .. .. . -. 

Proof. To show suf  ficicncy we prove  the  contrapositive. If the 

linear system is not  completely  controllable a t  to, this  implies 

for any set t 1, . . ., tn 2 to. In   fact ,  i f  the  linear system i s  

not  completely  controllable a t  to, t h i s  implies there  exists a non- 

zero vector c such that c  H(t) = 0 far a l l  t > to. This in   tu rn  

implies that 

T - 

are also zero  for a l l  t 2 to. Hence, for  any set t 1 s  - 3  tn-> 0 

For neceseity we shall assume that  the  linear system i s  

completely  controllable a t  t and demonstrate  the  existence of a 
0 

is n. 

This is equivalent  to showing that   for  any nonzero vector c the nr 

dimensional  vector 
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I 

Let e be any nonzero vector. Since the system is assumed t o  be 

controllable and H ( t )  is continuma  then  there exists a tl 2 to 

1 

such that elH(tl) f 0. If rank H ( t  ) is n then the proof is T 
1 

finiahed. If not, there ex ie t s  a nonzero  vector e2 such that  

e2H( t l )  = 0, so that e and e are linearly  independent. Now 

there exists a t2 2 to such t ha t  e 2 H ( t  ) f 0, if   not,   then 

e 2 H ( t )  = 0 for all t 2 to. This implies 

T 
2 1 

T' 
2 

T' 

J 

f o r  a l l  t 2 t and contradicts the assumption that the  system i s  

completely  controllable. N e x t  consider  [H(tl), H( t2) ]  i f   the  

0 

rank  of t h i s  matrix i a  n the  proof i s  

there exists a nonzero vector e such 3 

finished.  If  not,  then 

that 

t > t such that  e 3 H ( t 3 )  # 0. .I' 

3 0  

Clearly el, e and e are linearly  independent.  Continuing  inductively, 

either for some 
2 3 
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, , 

I 

or   e lse  we generate n l inearly independent vectors e 1, * * ,  e 

such that  

n 

In the f i r s t  instance, we are  finished. In the second,  any non- 

zero  vector  c can be expressed as c = xYie i  with  not a l l  the 

Y zero. From the  property  that  the ei s a t i s f i e s ,  i t  follows  that i 

This completes  the  proof. 

Corollary 5.1 Consider  the l inear system 

x = A(t)x + B(t)u, 

where A(t) i s  an n x n matrix of elements, and B(t) i s  an 

n x r matrix of C elements.  This  system is completely con- 

t rol lable  a t  to i f  and only i f   there   exis ts  n times t 1’ * * ‘ 8  tn 2 to 

such that rank 

n- 1 
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where = A ( t )  - D t  and 0 i s  the  fundamental  solution  to the  

homogeneous equation. 

By means of the  following lemma we can derive  an even simpler 

algebraic test for complete controllabil i ty.  

Lemma 5.1 Let H ( t )  be an n x r matrix  valued  function. Suppose 

rank  [H(tl), . . . , H(tn)] < n for  a l l  se ta  (tl, t2, . . . , t 1 
with ti 2 to. Then there exists a nontrivial  constant  vector  c 

such that  c H(t) = 0 for  all  t 2 to. 

n 

T 

Proof.  Let tl > - t be chosen so that  rank H(t ) is maximsl, and 

c a l l   t h i s  rank rl. Select t2 so that  rank  [H(tl),  H(t2)] is  

maximal and call this rank r2. We continue  thia  procesa  to the 

choice of tnel such that rank  [H(tl), . . . , H(tn-l)] = rn-l < n 

is maximal. Now e i ther  r = rj+l for  some j = 1, 2 ,  . . . , (n-1) 

or r = n-1. In the f i r s t  case, le t  j be the smallest integer 

such that r = rj+l. The columns of H(t),  therefore, mst l ie 

in  the r dimensional  subspace spanned by the columns of H(tl), 

0 1 

j 

n- 1 

j 

1 
. . ., H(t ) for a l l  t. H e n c e ,  i f  c is  a nontrivial  vector  ortho- 

gonal t o   t h i s  subspace  then  c%I(t) = 0 for all t 2 to. In the 

second case ,  since by hypothesis we cannot  increase the rank of 

j 

[H(tl), . . . , H(tn L ,I] by adjoining  H(t),  the columns of  H(t) 

l i e   i n  the (n-1) dimensional  subspace spanned by the columns of 

H(tl), . . . , H(tn 1) and a nontrivial  vector c orthogonal  to - 
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t h i s  subspace s a t i s f i e s  c H ( t )  = 0 for  a l l  t > to. We are now 

in a position  to  prove  the  following theorem. 

T - 

Theorem 5.4 The system j ,  = H(t)u i s  completely  controllable 

a t  to i f  and only i f   t h e r e  exists n tines tla . . . $  tn 2 to 

such that  rank [H(tl) ,  . . . , H(t )] i s  n. n 

Prmf .  The system j ,  = H(t)u is completely  controllable a t  to 

i f  and only i f  c%(t) = 0 fo r  t 2 to implies c = 0. Suppose 

the  system is not  completely  controllable a t  to. Then there 

ex i s t s  a nontrivial   vector c such tha t  c H ( t )  = 0, t 2 to, which 

implies c [H(tl), . . . H(tn)] = 0 for  a l l  sets {tl, . . . , tn}. 

The contrapositive  of  this shows, if the rank  [H(tl), . . . , H(tn)] 
i s  n fo r  some sets itl, . . . , t 1 then the system is completely n 

controllable a t  to. 

T 

T 

N e x t  suppose that rank  [H(tl), . . . , H(tn)] < n fo r  a l l  

s e t s  {tl, . . . , tn) . Then  by lemma 5.1  there   ex is t s  a non- 

t r i v i a l   vec to r  c such that c H(t) e 0 fo r  a l l  t > to which shows 

that the system is not  completely  controllable a t  to. 

T 
- 

The concepts  of  complete  controllability, the integral  

c r i t e r ion   fo r  complete cont ro l lab i l i ty  and the  l inear  independence 

of funct ions  re la t ing  to   the  control labi l i ty  problem, date back 

to  the paper by LaSalle [7) on the time optimal  problem for  

linear  systems. It was subsequently  popularized by K a h n  who 

showed  how the  concept of complete controllability  provided 

48 



t h e   r a t i o n a l e   f o r  many assumptions  invoked in   the  general   theory 

of  control  systema.  LaSalle  defined the system (5.1) to   be  

proper i f  Y ( t )  = 0 on each measurable interval implied 9 = 0, T 

It should  be  noted that in LaSalle's nota t ion  Y ( t )  = @(tos t ) B ( t )  

so that   effect ively  the  system (5.1)  haa  been  transformed t o  

.j, = +(to,  t)B(t)u  under  the  nonsingular  transformation 9. Since 

the  vector @(to, t) 1) is the so lu t ion   t o   t he   cos t a t e   equa t ions  

fi = -A ( t ) p   f o r  the time optimal  problem  with in i t i a l   cond i t ions  

T 

T 

p( to)  = 7, then a proper  system  implies a non t r iv i a l   so lu t ion  

to   the  maximum pr inc ip le   for   the  t i m e  optimal  problem  for some 

components of the   cont ro l   vec tor .  Those cases where the maxinnun 

pr inc ip le   does   no t   y ie ld  any  information  regarding  the  choice 

of  the  optimal  control are r e f e r r e d   t o  as singular.   Therefore,  

a proper  control  system  cannot  be  totally  singular,   that  iss 

a l l  components of   the  control   vector  are s ingular .  One cen t r a l  

theorem of LaSalle paper was the following. 

Theorem 5 .5  A proper  control  system is completely  controllable. 

As w i l l  be  seen i n  a later sec t ion ,   th i s  is a r e s u l t  of some 

s igni f icance  t o  l i n e a r  systems  which are derived as approximations 

to  nonlinear  systems  about a to t a l ly   s ingu la r  time optimal tra- 

jec tory .  

One might  queation why the   a lgeb ra i c  method of  determining 

the   l i nea r  independence  of  functions on the real l i n e ,  which i s  
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basically  equivalent t o  Hermann's method for  linear  systems, 

overcomes the problem  of  monotonicity  associated  with the 

exceptional time coordinate, so that full neighborhoods  of 

a t ta inable   points  can be achieved. ThLs question  does  not 

a r i s e   i n   t he  case of t he   i n t eg ra l   c r i t e r ion   fo r   con t ro l l ab i l i t y  

(Theorem 5 . 2 )  since the  sufficiency part of the proof  provides 

a method whereby the  control  vector can be  determined to  achieve 

any desired state. The following lemma resolves this question. 

Lemma 5.2 Completely controllable linear systems are locally- 

local ly   control lable  a t  the  origin.  

Proof  Since by assumption  the linear system is completely 

controllable  there are no integral  manifolds t o  the system. 

I f  @(t )  i s  a solution of x = A(t)x + B(t)u  corresponding t o  

some u ( t )  , tha t  starts from the origin,  then -$(t) corresponding 

to a control -u(t)  i s  also a solut ion that starts from the 

origin;  hence,  this  skew-spmetry  property eliminates one- 

sided sets of a t ta inable   points  and the  or igin is  locally- 

locally  controllable.  

In  general, l inear  systems are locally-locally  controllable 

a:-  the  origin and globally locally controllable  elsewherei the 

only  exception  to  this rule i s  the case where rank  B(t) is n 

for  a l l  tt[to, tl]. In  this   instance a l l  points  of En are 

locally-locally  controllable which is  an  expected result since  the 
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vectors B ( t )  for  f ixed t form a noninvolutive  distribution of 

vector   f ie lds ,  and time would be an  ignorable  coordinate. For 

the  majority of cases, however, rank B ( t )  is s t r i c t l y  less thdn 

n for a l l  tt[to, tr] and the vectors B ( t )  for fixed t form an 

involut ive  dis t r ibut ion of vector   f ie lds  as intimated in the 

opening  remarks. 

Finally the notion of uniformly  controllability or inatantems 

transfer  of state only makes physical sense when appl ied  to  nonin- 

volutive  systems, where time is an ignorable coordinate so that 

the  transfer can be  achieved  instantaneously. More important 

however is  that noninvolutive syatems are locally-locally  controll- 

able  so that   ins tantaneous  t ransfers  of the atate   can be achieved 

by t r a j ec to r i e s  that are contained within compact regions  of  the 

state space. 
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VI TOTALLY SINGULAR CONTROL SYSTEMS 

In this sec t ion  we shall be  concerned  with  nonlinear  control 

systems i n  which the control   appears   l inear ly  as defined by 

where a(x) i s  an n vector of smooth functions; B(x) = [bl(x), . . . , 
br(x)] is an n x r matrix  of smooth functions, and is  assumed t o  be 

regular   for  a l l  x i n  some neighborhood N(xo) of a given  point x t M. 

We s h a l l   r e f e r   t o  B as the d i s t r ibu t ion   o f   vec to r   f i e lds  which are 

generated by the columns of B(x)i  furthermore we shall assume t h a t  

t h e   d i s t r i b u t i o n  is involutive  and  the  elements  bl(x) form a bas i s  

fo r   t he   d i s t r ibu t ion  B, i.e. [bi(x), b,  (x)] = 0 f o r  a l l  bi, b,tB. 

For a specified  control  system of the  form  (6.1)  the  dimension  or 

number of column vec tors  in B(x) w i l l  no t ,   in   genera l ,  be  equal  to 

the dimension  of  the  distribution B ,  so that the  augmentation pro- 

cedure  described i n   s e c t i o n  4, w i l l  have t o  be  used t o  complete  the 

system. However, s ince  B(x) now genera tes   an   involu t ive   d i s t t ibu t fon  

of vec to r   f i e lds ,  the r e s u l t s  on the  uniform  approximation of tra- 

j ec to r f e s  of the  completed  control  syetem by t r a j e c t o r i e s  of  the 

or iginal   control   system do not  necessarily  apply. 

0 

3 

For example, consider  the  control  system (6.1) with 
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and con t ro l   ac tua to r   vec to r s  

S i n c e  B ( x )  def ines  an invo lu t ive   d i s t r ibu t ion   o f  dimension 3, we can 

augment the ac tua to r  matrix B(x) to %(x) by including 

By choosing the augmented con t ro l   vec to r  to  be u = (ul,  u2, u3) = 

(0, 0 ,  1) the state of  the augmented control  system i s  t ransfer red  

-T 

from ( 0 ,  0, 0, 0) to  (0 ,  0, 1, 0 )  i n  the time i n t e r v a l  0 I t I 1. 

I f   f o r   t h e   o r i g i n a l   c o n t r o l   s y s t e m  we l e t  lull < and Iu,I < c 2, 

then i t  is  easy t o  v e r i f y  that the   so lu t ion  $ of the   o r ig ina l   con t ro l  

1 

system cannot be made to uniformly  approximate the so lu t ion  $ of the  

completed con t ro l  eyateme s ince  
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The m i n i n u m  of the  right hand side of the  inequality is one, 

therefore we cannot choose any c such that 

which i e  required  for  the  uniform  approximation of trajectories.  

For the  involutive  control system we have the  following 

decompos i t i on  theorem. 

Theorem 6 . 1  I f  the  control  actuator  vectors B(x)  define a basis 

for an involutive  distribution of vector  fields of  dimension r, then 

there exists a coordinate  transformation which decomposes the  control 

system (6.1) into 

where y and f are  (n - r) vectors and f (* )  is smoothi and z and g 

are r vectors and g(*)  is  smooth. 

- Proof The .proof follows from the representation of involutive 

distributions  as  given by a theorem of Frobenius [8] which s r y s  

that   for each point xcM we can find a coordinate  system 

(zlL . . . , zn) such that  the  vector  fields (Dt , . . . , D ) 
1 2r 
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generates  the distribution B on the manifold M. 

Let (Y19 - 9 Yn*, ) and (z19 . . . er), denoted by (ys e), 

represent a partitioned  coordinate  system of M'. If 9 is a  mapping 

of M' into M as given by x = @ (y e), then the  tangent  vectors 

transform by 

The theorem of Frobeniua  states that 

6.3 

6.4 

The validity of  thiE  statement can be  established by deriving  the 

integrability  conditions  for  the  system of n x r nonhomogeneous 

partial  differential  equations (6.4). 

Equating  second  partials  yields 

Hence D (D 4)  = D (D @)9 the  integrability  conditions for  the 
=-J =i =i =j 
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system of nonhomogeneous  partial  differential  equations (6.4) implies 

which is true  by  assumption. 

Differentiating  the  transformation 4 with  respect  to  time  yields 

By  virtue  of  equation (6.4) this reduces  to 

Since the Jacobian of the  transformation $ is  assumed  to  be  different  from 

zero on the  manifold M then  the  decomposition (6.2) follows.  The 

vectors f and g are  determined  by  inverting  the  matrix  equation 

One obvious  significance  of  the  decomposition  theorem  is  that 

it isolates out  those  transformed  states that are  locally-locally 
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controllable. In fact there 1s no loss of genera l i ty   i f  we choose 

u = v - g(y, 2). 

so that the control  system now assumes the form 

9 = f (Y ,  d 

L = V  

and the cont ro l lab i l i ty  problem viewed as determining  the  attain- 

a b i l i t y  of  the sta tes  y(t)   for  given  inputs  z(t) .  

It should  be  noted that  the pfaffian  system  associated  with 

the  control system (6.1) has  been  transformed t o  normal form. 

under  the  transformation @. 
We shall ncm develop some equivalences between "involutive" 

control  systems and "totally  singular"  control system. In many 

optimal control problems a singular problem  can arise that  i s  char- 

acter ized by the f ac t  that the maximum pr inc ip l e   f a i l s   t o  y i e l d  

any  information  regarding  the  choice  of  the  optimal  controls. To 
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dist inguish this condition, the controls  and t r a j ec to r i e s  are termed 

singular. The cont ro l lab i l i ty  problem is  intimately  connected  with 

the time  optimal  problem  and this  connection w i l l  be shown for  the 

nonlinear system (6.1). The time optimal problem consis ts  of find- 

ing the optimal  controls  u(t)   that   transfer the state from some 

spec i f ied   in i t ia l   condi t ion  x. to some specif ied  f inal   condi t ion 

Xf i n  mini- time. 

Following the KaLman-Carath&odory approach [17], we define 

the  system  Hamiltonian as, 

where p i s  an n vector  describing the costate. For each x and p, 

the  Hamiltonian is minimized with  respect  to the controls  over the 

set of admissible  controls R .  If, for  example, the set of admissible 

controls are constrained  to an r-dimensional  hypercube  described by 

the Axaximum principle  yields 

u = -sgn(B (x)p) T 
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for the choice of the optimal  controls. 

Any solut ion of the  nonlinear  system  (6.1)  with  controls (6.5) 

that   pass through  the  desired terminal points x. and xf, with  the 

costate  satisfying 

6.6 

would be 

controls 

that  the 

p = +(t) 

regarded a8 a minimieing t ra jectory.  However, s ingu la r  

u (t) tha t  are not  necessarily bang-bang can exist so 

corresponding  solutions  to  (6.1) and  (6.6) x = @ (t) and 

make some or a l l  of  the r components of the  vector  B ($)$ 

s 

T 

vanish  over some measurable time interval. It is immediately 

obvious that th i s   s i t ua t ion  would invalidate  the maxinun principle  

for  the singular components of the  control  vector. The singular  

components of  the  control  vector,  if  they exist, are obtained by 

repeatedly  differentiating  the  appropriate components of the  singu- 

lar condition B ('$)$= 0 with respect   to  time. The problem is 

said t o  be total ly   e ingular   i f  a l l  components of B (@)$ vanish. 

T 

T 

We s h a l l  now develop the equivalence  between '' involutive" 

and " total ly   s ingular" .  The f i r s t  equivalence to be  established 

is t r iv i a l   bu t   y i e lds  some geometric ins ight   in to  the nature of 

total ly   s ingular  arcs. 
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Lemma 6.1  All trajectories on dn in tegra l  manifold Qre to t a l ly  

singular. 

- Proof I f   V(t ,  x) defines  the  integral  manifold, which i s  a sub- 

manifold of En; then V s a t i s f i e s  

B(x)TDxV(t, x) 0 

6.7 

6.8 

Since by assumption an in tegra l  manifold to the system  (6.1) ex is t s ,  

then i f  we define  the custate by p(t)  = DxV(t, x ( t ) )  where x ( t )  

s a t i s f i e s  (6.1) for same u ( t )  I then  the  totally  singular  condition 

is automatically  satiafied by (6.8). We now have to   es tabl ish  that  

this choice  for  the  costate  does  indeed  satisfy  the Euler-Lagrange 

equations. 

Formally different ia t ing  p( t )   y ie lds  

The fdlowtng  ident i t ies   fol low  t r ivial ly  from  (6.7) and (6.8) 
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From these two i d e n t i t i e s  we obta in  

p ( t )  = -(Dxa(x) T )DxV(t, x) - (Dx(B(x)u(t))T)DxV(t, x) 

= -D,{a(x(t)) + B(x(t))u(t)}Tp(t) 

which completes  the  proof. 

The integral   manifold i s  in fact   generated by the   t o t a l ly  

s ingular   so lu t ions .  However, the  exis tence  of   total ly   s ingular  

controls  does  not  necessarily imply the existence of an i n t eg ra l  

manifold. In f a c t ,  when an  integral  manifold  does  not exist, 

then the total ly   s ingular   arcs   def ine  points   a long which the 

control  system (6.1) appears to be in tegrable ,  i .e.  has an  in- 

tegrable  manifold. This phenomena r e s u l t s  in the   l inear ized  

approximating  systems  about  totally  singular arcs being  integrable, 

and w i l l  be deal t   wi th  in d e t a i l  later. 
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Before we establish  necessary  conditions  for the existence  of 

total ly   s ingular  arcs we shall prove  the  follcrwing useful lemma 

which helps to avoid some of the  algebraic tedium. 

Le- 6 . 2  I f  p C(x) = 0 along any time optimal extremals then T 

optimal extremal. 

- Proof  Since the  costate  p s a t i s f i e s  the Euler-Lagrange  equations 

fi = -D,(a(x) + B ( ~ ) u ) ~ p j  then  formally  differentiating the expression 

pTC(x) = 0 y ie lds  

Rearranging terms and recal l ing the def in i t ion  of the L i e  Bracket 

gives the desired result. It is 8tandard  terminology  to  refer  to 

the L i e  Bracket [X, Y] as the L i e  derivative  of Y with  respect to X. 

We now  come to  the main r e su l t  concerning the equivalence between 

the total ly   s ingular   controls  and involutive  systems, which is a 

generalization of t h e   r e s u l t   f i r s t  proven fo r  (n - 1) control com- 

ponents [18]. 

Lemma 6.3 A necessary  condition  for the existence of a to t a l ly  

singular  vector  control is tha t  the control   actuator   vectors  be 

invo l u  t ive . 
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- Proof We sha l l   p rove   t he   con t r apos i t i ve   fo rm  o f  this theorem, 

B(x) not   involu t ive   impl ies  no t o t a l l y   s i n g u l a r   v e c t o r   c o n t r o l .  

I f   t h e   t o t a l l y   s i n g u l a r   v e c t o r   c o n t r o l  exists then p B(x) = 0 
T 

which i m p l i e s   t h a t   t h e   t o t a l l y   s i n g u l a r   v e c t o r   c o n t r o l   d o e s   n o t  

e x i s  t .  

An equiva len t   p roof   fo l lows   f rom  the   fac t   tha t   i f   B(x)  i s  not  

an   involu t ive   sys tem;   then  by t h e   r e s u l t s  of s e c t i o n  4 a l l  states 

can  be  t ransferred  instantaneously so t h a t  any  bang-bang c o n t r o l  

would  be be t te r   than   the   to ta l ly   s i .ngular   cont ro l   and   hence   the  

t o t a l l y   s i n g u l a r   a r c s  would not   be  extremals .  

The geometric  equivalence  between ‘I involut ive”  and  total ly  

s ingular”   cont ro l   sys tems  can   be   es tab l i shed  as follows.  For 

s impl i c i ty  we  sha l l   cons ider   the  decomposed control   system. 

y = f ( y ,  2 ) ;  i = v 6 .9  

It i s  evident  from the   p faf f ian   sys tem dy - f (y ,   z )d t ,   t ha t   t he  
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i n t eg ra l   man i fo lds  y assoc ia ted   wi th   the   reduced   pfaf f ian   sys tem 

s t r a t i f y  M, and  motion on t h e s e   i n t e g r a l s  y(x) = cons tan t ,   can  be 

achieved  instantaneously.   In   other   words  the minimum time requi red  

t o  t r a n s f e r  from  one state t o  some o t h e r  state w i l l  depend s t r i c t l y  

on t h e   v e c t o r   y .  L e t  u s   deno te   t h i s   cos t  by t ( y ) .  The rate of 

change  of   the  cost  along the   so lu t ion   pa th  i s  given  by. 

6 .10 

Geometrically,   the  optimization  problem  consists  of  f inding  those 

p o i n t s  z ( y )  on t h e   s t r a t i f i c a t i o n  which extremizes   the  cost   der iva-  

t i v e  (6.10).  Assuming tha t   the   ex t reme  po in ts  of  t he   cos t   de r iva t e  

occur  a t  i n t e r i o r   p o i n t s  of the  manifold PI, t hen   t hese   po in t s   a r e  

de t e m i n e d  by 

6 .11  

If D D f (y,  z)D t ( y )  i s  nonsingular ,   then (6.11) can  be  inverted 

by the   impl ic i t   func t ion   theorem  to   y ie ld   z (y)  so t h a t  (6 .9)  can  be 

i n t e g r a t e d   w i t h   a p p r o p r i a t e   i n i t i a l   c o n d i t i o n s  t o  y i e l d  y = d ( ~ ) .  

Along each in tegra l   curve  d ,  we r e q u i r e   t h e   c o s t   t ( d ( t ) )  t t o  be 

equiva len t   to   the  time so t h a t  (6 .10 )  becomes 

T 
z z  Y 
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Differentiating this ident i ty   with  respect  to time y i e l d s  

I f  we def ine  the c o s t a t e   i n  the usual fashion by p ( t )  = D t ( @ ( t ) ) ;  

then  equation (6.11) becomes the condition  for the cont ro l   vec tor   to  

be   t o t a l ly   s ingu la r  Dzf (@(t), z (@( t )> )p ( t )  = 0; furthermore (6.12) 

is s a t i s f i e d  by the costate   equat ions  s ince i t  reduces  to 

Y 

T 

m m 

With involutive  systems,  controllabil i ty  cannot  be  established 

on the   bas i s  of t he   con t ro l   ac tua to r   vec to r s   a lone ;   i n   f ac t ,   i f  

a(x) = 0 then by theorem 4.1 a l l  so lu t ions  would l i e  on an   i n t eg ra l  

manifold.   Therefore,   controllabil i ty  can  only  be  established  with a 

non t r iv i a l  a(x). Following Hermann,  to   preclude  an  integral  mani- 

fo ld   to   the   sys tem (6.1) we requi re  that the  set of  vectors 

(a(x), bl(x), . . . , b (x))  do  not  generate an Fnvolutive  dietri-  

bution. However, t h i s  does not circumvent  the  problem  of  one-sided 

sets o f   a t t a i n a b i l i t y  caused by the  monotonicity  of  the time 

coordinate. 

r 
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One approach t o   t h i s  problem is  to   rep lace   the   nonl inear  

control  system by a linear approximating  system  about some prefer red  

nominal t r a j e c t o r y  so that the  complete  theory  of linear systems 

can   be   used   to   es tab l i sh   cont ro l lab i l i ty .  It would appear  therefore 

t h a t  we can  generate   an  inf ini ty   of   a lgebraic  cri teria f o r  con- 

t r o l l a b i l i t y ,  each  one  depending  on the par t icular   choice  of  the 

nominal t r a j ec to ry   de f in ing  the linear  approximating  system. This 

raises the  question  of  what  nominal  trajectory  should  be  chosen. 

Does there  exist, f o r  example, a nominal t r a j ec to ry   de f in ing  a 

linear  approximating  system whose a l g e b r a i c   c o n t r o l l a b i l i t y  criteria 

immediately determines  the  complete   control labi l i ty  of t h e   o r i g i n a l  

nonlinear  control  system.  This  question  leads to a paradox that 

was f i r s t  observed by Hermes [ll], however the r e s u l t  w a s  e s s e n t i a l l y  

contained  in LaSalle' s Theorem, and i s  summarized i n  the  following. 

Theorem 6 . 2  The linear approximating  system  describing motions 

i n  some neighborhood  of the t o t a l l y   s i n g u l a r   t r a j e c t o r i e s   f o r  the 

time optimal  problem i s  not  completely  controllable.  

- Proof Let @ ( t )  and $(t) descr ibe  the  s ingular  state and c o s t a t e  

respectively,   corresponding  to a t o t a l l y   s i n g u l a r   c o n t r o l  u ( t ) .  

The linearized  approxknating  system is obtained by the f i r s t   o r d e r  

expansion of (6.1) under   the   subs t i tu t ion  x- 9 + x, u -u + u 

and i s  

S 
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6.12 

Since by assumption  the  control is  totally singular this implies 

that +T~(d) = 0, along the singular arc. me pfaff- system 

aasociated w i t h  the linear  system (6.12) is 

'I'T(t)dx - 'I'T(x)(Dx(a(b) + B(@)u s T T  ) ) x d t  * 0 

which is integrable since by hypothesis J. sat isf ies   the  Euler-  

Lagrange equations 

and $' x defines  the  integral  manifolds to the syatem. 

Corollary 6 . 1  The dis t r ibu t ion  of l inearized vector f ie lds   about  

the totally singular  trajectories  associated with the time optimal 

problem is involutive. 

T 

A remarkable facet  of theorem 6 . 2  is that the   r e su l t  is in- 

dependent  of the optimality  of  the  totally  singular vector control.  

If the  singular arc is  t ru ly  a minimizing arc, one would expect it 

t o  persist as a natura l  boundary t o  the set .of reachable  points, 

since by def in i t ion  i t  would be  better  than any bang-bang control  
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i r respect ive of the magnitude  of the  control bounds. On the  other 

hand, i f  the  control system is completely  controllable, one would 

expect a l l  motions to  completely f i l l  Euclidean  n-space by v i r tue  

of  the  system  being  linear  in  the  control  vector. 

Therefore, one is tempted to  conjecture that i f   t h e   t o t a l l y  

singular arc for   the time optimal problem is not a minimizing arc ,  

then  the  control  system is completely  controllable. However, the 

conjecture i s  not  true aB shown by the f o l l w i n g  counterexample 

which possesses a non-optimal singular arc for   the time optimal 

problem. Consider  the  system [ll] 

x1 = u 

x = l + x x u  2 
2 2 1  

then i t  is t r i v i a l   t o   v e r i f y  by the  Green's Theorem approach 

that   the  non-optimal singular arc for  the time optimal  problem 

is  described by x,(t) = 0. Contrary t o  the proposed conjecture, 

the  lack  of  controllabil i ty  for  the above  system can be demonstrated 

by the following  transformation which is nonsingular  for a l l  f i n i t e  

regions of  Euclidean two space. With the  transformation 
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The lack  of global c o n t r o l l a b i l i t y  is  evident   s ince 9 ,  > 0 i r r e spec t ive  

of the choice  of the control .  

Hence, the method of using linear approximating  system  to a non- 

linear control   system  to   determine  control labi l i ty  i s  a pe r fec t ly  

vulid technique  provided the nominal t r a j e c t o r y  is not a t o t a l l y  s ingu-  

lar time optimal arc. In t h i s  case the  higher  order  approximations 

are c r u c i a l  to the es tab l i shment   o f   cont ro l lab i l i ty  criteria, and 

cannot  be  neglected. 

Let u s   r e t u r n   t o  Theorem 5.3 and  give a geometric  proof  thereof, 

since i t  has obvious  applications  to  nonlinear  system. We r e c a l l  that 

the theorem s t a t ed ,  "The system j ,  = H(t)u is completely  controllable a t  

t i f  and only i f   t h e r e  exist n times t . . , tn 2 t such tha t   r ank  

[H(tl) ,  H ( t 2 ) ,  H ( t  )] i s  n". 

0 1' * 0 

The conclusion  of the theorem follows from t h e   i n t e g r a b i l i t y  of the 

reduced  pfaffisn  system and provides a technLque for  generating  condi- 

t i o n s   f o r  the local local control labi l i ty   of   nonl inear   systems.  For 
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the linear  system j ,  = H(t)u we can  associate  the  hyperplanes 9 ( t ) y  

where e ( t )  is a n  n x n-r matrix of   vectors   or thogonal   to  H ( t ) .  Since 

the  instantaneous  motions are confined  to  these  hyperplanes  the con- 

t r o l l a b i l i t y  of the  l inear  system can be  defined i n  terms of t he  

hyperplanes  admitting a coordinate   s t ructure  in M. That i s  to   say ,  

the  hyperplanes  span M by sui table   choice of the es sen t i a l   cons t an t s  

(time)  of  the  hyperplanes by z = Q (t)y,   then the hyperplanes w i l l  t 

span M i f   t h e  normal vec tors  @ (t) form a baafs, or equ iva len t ly   i f  

the  tangent  vectors H ( t )  form a bas i s .  This requi res  that rank 

[H(tl),  H(tZ), . . . , H(tn)] is n. Alterna t ive ly   th i s   condi t ion  can 

be  derived by considering a sequence  of n d e l t a  functions  having 

t 

t 

measures [ a t  the  points tlS t2, . . . , tn. The rank  condition 

defines a one t o  one mapping between the s t a t e  y and the measures E. 
This theorem has   obvious   genera l iza t ions   to   nonl inear   sys tem 

of the form j ,  = H ( t ,  y)u, and the  control  system (6.1) i = a(x) + B(x)u 

can   be   pu t   in to   th i s  form by the  following  transformation.  Let $(t, y) 

denote   the  solut ion  to  it = a(x) then by a v a r i a t i o n  of  parameters we 

obtain 

This form of the  control   system Fa similar to  the  system  described by 
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equation (4.1); however, for  fixed t, the column vectors of 

H ( t ,  y)  describe  an  involutive  system,  because  the  involution of 

B(x)  is  invariant under  the map d~ (t, y). The geomt r i c  proof  of 

theorem 5.3 yie lds  the following  theorem  for  the  nonlinear  syatem 

(6.13) . 
Theorem 6.3 A necessary  condition  for  the  system j ,  = H ( t ,  y)u to  

be completely  controllable a t  to in some neighborhood N of  yo is that 

there   ex is t  n times tl, . . . , tn > - to such that rank 

[H(tl, y ) ,  H ( t 2 ,  y), . . . , H(tn, y)] is  n for  almost a l l  ycN. 

- Proof L e t  C ( t ,  y)  define  (n-r)  vectors  orthogonal  to  H(t,  y). H ( t ,  y )  

i s  an involutive  system of order r, then it follows that the pfaf f ian  

system C (t, y)dy is integrable  for  f ixed t. I f  we now aasuue tha t  

the  rank [H( t l ,  y ) ,  . . . , H ( t n ,  y ) ]  is  less than n for  all  sets 

{tl, . . . , t 1 and a l l  ycN then  this  implies  that   there exists a non- 

t r iv ia l   vec tor   c (y)  such that c (y)H(t, y )  = 0. S i n c e  the pfaff ian 

system C (t, y)dy is  integrable  for  fixed t it follows that c (y)dy 

T 

n 
T 

T T 

is  integrable so that an  integral  manifold exists. Hence, the  control 

system i s  not  completely  controllable. The contrapositive of t h i s  

yields   the resul t  of the theorem. 

There is  a unique r e l a t ion  between the singular arc and the  points 

of  measure zero where [H(tl, y) ,  . . . , H ( t n ,  y)] vanishes and i s  

summarized i n  the following theorem. 
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Theorem 6 .4  On to t a l ly   s ingu la r  arcs y ( t ) ,  Rank [H(tl, y ( t ) ) ,  

H(t2,   y( t ) ) ,  . . . , H(tn ,  y(t))] i a  less than n f o r  a l l  sets 

{tp t 2 9  * * 9 tn}. 

- Proof Since  rank [ H ( t l ,  y ( t ) ) ,  . . . , H(tn ,  y ( t ) )  ] is less than n 

f o r  a l l  sets { tl, . . . , tn } then  there  exists a nont r iv ia l   vec tor  

*( t) such that 

'kt(t)H(T,  y(t))  6s7 0 6.14 

Since this is a n   i d e n t i t y   i n  t and 7 t hen   d i f f e ren t i a t ing  w i t h  

r e s p e c t   t o  t y i e l d s  

The r columns of H(t, y ) ,  for   f ixed t, def ine  a complete set of 

tangent  vectors  of  order r. Therefore,  since  the L i e  Bracket  does 

not  generate new tangent   vectors ,   the   order   of   di f ferent ia t ion  with 

respect t o  y i n   t h e  above  equation can be  changed,  on subs t i t u t ing  

= t, to   g ive  

The r e s u l t  i s  1l0w obvious  since  q(t)   can be ident i f ied   wi th   the  co- 

state, and equation (6.14) is the  singular  condition. 
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