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Flutter of Therinally Stressed

Plates at Hypersonic Speeds

Introduction

In a recent paper (attachment No. 1), it was shown that the

coupled dynamic response of thermally stressed plates depend pri-

marily upon two factors:

a) the thermal buckling eigenvalues (critical thermal loading)

‘of the idealized perfect plate and,

b) the initial deformation of the mid-plane of the real plate.

The eigen values may be obtained analytiéelly only after the

thermal stress distribution has been.found. Attemps to determine

the critical temperatures experimentally have been unsuccessful

becavse real plates are not perfect plates. Coupling between

modes causes the imperfections to affect the rate of change of

stiffness thus causing extrapolation of experimental data to lead

to erroneous results.

The initiel deformation may be measured; however, only juanti-

tative experimental data on the effects of initial deformation

have been obtained to date. At the suggestion of the project

monitor, an experimental program is being initiated from which it

1s expected that quantitative deta will be obtained to substantiate

the theoretical results.

The effort reported herein is an investigation of various
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approximat% solutions to the thermal stress problem with mixed

boundary conditions. The usual prpcedure is to ignore the clamped
edge effect when investigating stresses and thus treat the problem

as though the boundéry conditions are uniform. For small aspect

. ratios, however, the influence of the root reglon may extend over

the entire plate. For large aspect ratios the longitudinal stress
dominates while for small aépect ratios the transverse stress will
dominate. Thus, the complete stress distfibution must be knowp
with some confidence as to its accuracy, ifr fhe eigen-values are
to be accurately determined.

A survey of the literatg?e has revealed that very little work
has been reborted on efforts to solve this mixed boundary value
problem. An exact solution does not appea? pqssible. Thus, the
problem becomes that of either evaluating existing methods of approx-
imate solutions or developing new or modified methods to give suit-
able accuracy. >

A method of solution for the equivalent deflection problem
is suggested by Timoshenko(l)f but the tabular résults given are
from a finite difference solution for the équivaleht of a constant
2)

temperature. The only other solution found( gives a

~stress concentration at the clamped corner of approximately I10EXT,.

This is unreasonably large; also, the method is not readily adaptable
to variable planform and variable thickness. The lack of data in
this area raises two pertinent questions: .

1) "What do the various approximate methods yield for the

stress distribution in a cantilever plate?"

*( ) refers to references listed on Page 14

ST T —— L

v SRS ot i

i o

Il

AR A

o N ol

I ME N Sl

R e

=




BRGNS T 4.0

2) "Which method will be best sulted for the project at hand
and why?". .

An erticle published about plate deflections in the AIAA
Journal, May, 1969,(3) substiantiates many of the conclusions
reached in thLis investigation. However, several conclusions
reached herein go beyond the scope of that grticle.

The approximate methods of.solution under investigation are:

a) Complementary energy,

b) Complementary energy with constraints,

¢) Collocation with constraints, and

d) Point matching.

Data to which comparisons are made were obtained from existing
solutions by finite differeﬁces-ror a unifbrm temperature 1ncrease$4)
a matrix finite element éisplacement solution for an experimentally
meqsured temperature distribution,and stresses from measured strains
for the same experimental temperature d}stribution(S). Also, where

— applicable the results for the stresses in a free plate under a

(6)

parabolic temperature distribution have been compared.

Because of differeﬂ£ planform geometries and temperature
distributions used in the existing solutions, manpower and time
.have not permitted all of the methods investigated to be compared

on a common basis. However, it is felt that sufficient data have

been obtained to justify the conclusions reached.

Discussion

a) Caomplementary energy without constraints
In this, the classical method of complementary energy, a stress

-~ function thatsatisfies the stress boundary conditions is assumed.




(4)

© For a plate symmetrical about the § exis with all boundaries free, e

- 8uch a function is: ‘ |
- 112 N S Ppt
Fel-6)@nf 55 Gy €71

f?itb both p and q even integers. For the cantilever plate, such a

7,functien which satisfies the stress free conditions on only three

,%gﬁges is:

F=(i-5)* (: anZszﬁ ’1

ilehere P includs both even and ~odd integers ehile q is still restrfe;ﬂ |
k ted to even integers only. B |

if:e On applying the Rayleigh-Ritz teehnique to the eemplementary

~s'eeergy, the ﬁpq mey be determined for a given temperature distri-

,but}on._ The stresses areé§een given by.
c = I
£ an
2F .
6 = “5"‘5'- o N
Ton= "8

L)

Several terms are required to give a 801etien that is suffi-
ciently converged in all three stresses. 1In fact, the solution
changes so drastically withrthe first few terme aB to give the
impression that the eelutien is diverggnt.' Heeeeer,'it~apeeere

to converge satisfactorily at every point except in the immediate




% rlate,

s A

o neighbcrhocé of the beundary discontinuity at the clamped corner,

A sixteen term solution using the available experimental temp— e

B, s
. erature distrihutiaéxgas obtained and is ecmpareé to the referencéd

- data, Fig. 1, for a rectangular plate, and Fig. 2, for a triangalar m

*

BaSed on these comparisons, 1t is concluded that the Rayleigh— ;

~ Ritz technique applied to the ccmplementary energy ylelds the
i prepeA functional form of the longitudinal stress distribution

and rgascnably close magnitudes of the stresses in the body of

both rectangular and tapered plates. Similar experimental data

~ for camparisén of the lateral stress are not available. The result-

ing lateral stress from the complementary energy is compared to

~ other theoretical methods as they develdp.

| Since the finite element matrix displacement method in effect
satisfies the displacement boundary conditions, 1t may be assumed

that that solution is reasonably close to the actual stresses in the

neighborhood of the root. Since at the point, £2.06 , N=.]1

the complementary energy solution is feascnably close to the matrix*
displacement solution, it would appear that the energy solution
may be reasonably close in'thé neighborhood of the root.

The stresses as obtained from the energy solution do not
3V’_'c> or

m
V=0 , at the root. A plot of Ay at =0 for the /4-

satisfy the displacement boundary conditions, 6}

term solution with experimental temperature is shown in Fig. 3.

Also, in the same figure is shown a plot of the strain ratio,

€441 » for e parabolic temperature distribution, which 1s equiv- -

alent to free expansion in the n direction at £ =0.
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'b) Complimentary Energy with Constraints

In an effort to more closely satisfy the displacement bound-

~ary conditions, thesé conditions were written in terms of the

stresses and the resulting equatlons used as equations of ccnstraiﬁé

by the Lagrangian multiplier technlque. Fig. 4 shcws that the

desired results were very nearly achieved in so far as the displace- .
ments are concerned. However, the solution did not converge with

2l terms in the Stress.function. Experience with the collocation

~method and with this method indicates that:the stress results are
~4nconclusive. Convergence may occur with the addition of higher
- order terms, .provided numerical instability 1s not encountered in

the computational program before sufficlent terms can be included.

¢) Collocation with Constraints

An inéegrodifferential equation on the shear stress was

~ derived as for a free plate in NACA TN D—1182(6). Again the

disélacement boundary coﬁditicns were expressed in terms of the
stresses and these equations were then used to satisf&»these
boundary ccnéitions at points on the fixed beundary The integro-
difrerential equation was satisfied at points on the free boundary
and at points on the interior of the plate. Solutions were obtained
for bcth a uniform temperature and a parabolic temperature distri—
bution. ' 9 |
The collocation regults for the longlitudinal stress in Fig. 5V;’
may be compared to the classical complimentary energy solution for
a parabolic temperature in Fig. 6. Note that the area of éisagree-
ment 1s in the root region, £ = .3 . But note that even in this

region the general shape of the curves are the.same except fur n-,? i




(7)

Plg; 7 and Fig. 8 shows the transverse stresses for the
case of a parabolic temperature. Note that the complementery
"eﬁergy compares ravorably with the-collaéaticn method. Fig. 9
shows a comparison of the strains as calculated from both methods.

" Note that the collocation method very nearly satisfies the displace-
ment boundary condltion, V =.O,'iﬁ the mean while the energy .
method does not. Fig. 10 shows the transverse stress due to a
uniform temperature rise .in a rectangul&r.plate. In this case,
the only stresses in the plate are those caused by théclamped‘
;Sgundary. Note the close agreement between the thrée solutions
~ shown. |
d)-Poiﬁt Matching '. .
This method was applied to the mixed boundary condition pro-
’blem for this project by Professor Buford E, ﬁatewcsd. In 1t, the
bi-harmonic stress equation is satisfiled exactly in the~interior of
the plaéz. The shear boundary conditign is satisfied exactly on
‘the free edge while the norﬁal stress boundary condition 1s
satisfied at selected points. On the fixed edge the displacement
ccndiﬁiqn,?ﬁﬁé;, is satisfied exactiy while the strain condition,
,%’, is satisfied:atselgctéd points.

Results have been obtained for R=| and a uniform temper-
ature change. It compares favorably with an unpublished finite

(4)

- difference solution except‘at the fixed ccrnér of the plate
where the boundary discontinuity occurs. Since the solution
‘involves hyperbolic and trigonpmetric functions .it daés not appear
readily adabtable to variable planforms and thicknesses. _Ha@evér,n

further work may be of academic interest for the purpose of com-
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parison of the root reglon with other solutions.

Conclusions

Thc advantages and disadvantages of the complementery energy

solution are:

a) The thermal loading term permits integration of the temper-

ature function. This is a very definite advantage when
consldering experimentally detgrmlned temperature distri-
butions.

Formel integration may be applied to eveluate the elements

of the complementary energy mefrix, thus cutting computer

timé by more than an 'order of magnitude when compared to

numerical_integratibm. ‘This factor is normaelly listed 2s
a disadvantage of the energy hethod because the formal
integration is extremely tedious.

Variable plenform geometry is agcounted for in the limits.
of integration and in the streég‘function. Thus, a broad
class of plates may be trecated for a prescriped boundary
condition and a.given class of geometrical shapes, e.g.,
the integrals for the class of Symmetrically tapered
cantilever plates of constant thickness have already been
evaluated.

Variable thickness may be accoqnted for by its inclusion
in the integrand. If it can be expressed as a polynomlal,
the integrals for constant thickness appear to be readlly
adaptable to yleld the.correct values without further
integration. However, computer time will be increased

accordingly.
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Regardless of how the stresses are found, the determin-
ation of the thermal buckling elgen values requires the
evaluation of an integral representing the energy due to

the stresses: ’
55{64%)1* "1( }"'2 q?{g; S‘J?JQ

On substituting the stress function (see page 4) with
known Cpq into this integral, the elements of the matrix |
representiag this energy mey be obtalned by formal integra-

gtich in terms of the expanents of the polynomial repre-

senting the deflection function, W. This integral is

most difficult to determine accurately and 18 very time
consuming if done by;ﬁumerieél integration. It is expected
thet formal integration will reduce the computer time by -
egain more than an order of ﬁgéhitﬁée vhen compared to
numerical integration with the necessary-double precision.
The primary éiséé?antage of the energy approach agpeérs te: "
be that it may not give a sufficiently clote approximation
to the stress 1n§thé immediate neighborhood of the plate |
re;t, However, comparison with other methods indicates |
that the general shape of the stress distribution in this
reéicﬂ must be about right except pessib}y in the‘ﬁeighﬁ . ,  ¥

~borhood of the boundary éisccatinuity, The éigea values

depend only on the fgngtigaal form or shage of the stress ;Z::/
distribution end not on its ggga;tgée; i%gs, the eigen

values as determined from the ggﬁ?liﬁﬁﬁt&f?’éﬁé?ﬁ? Sf?%ﬁﬁf%r‘
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ape expected to be sufficiently accurate.

* ! v
e 1 AU e

g) Normelly, a disadventage of the camplementarj energy
method would be théAlarge number of terms required. How-,

ever, formal integration has made possible the complete.

stress distribution (three stresses et 121 points) for

16 terms, double precision, in .3 minutes on an IBM 360,

Model 75 computer. A 24 term solution, double precision, =

requires thirty seconds.
th the collocation with constraints and the polnt metching

- techniques readily yield stresses for the rectangular plate of

constant thickness and one would expect, on the basis of more

1:;} closely satisfying the displacement boundary conditions, that the
~ stresses except in the neighborhood of the boundary discontinuity

will be very nearly correct. However, neithe: method is as readily
adaptable to variable planform and variable £hicknsss as is8 the
complementary energy. '

Both the finite element matrix displacement method and the

method of finite differences yleld accurate stress distributions

except at the boundary discontinuity. However, the use of numerical

stresses as produced by these methods requires numerical integration
of the élements of the mid-plane energy matrix, a time consumming
process for the computer.

Based upon the foregoing investigation, the complementary .
energy method will be used for.the thermél stress determination
for this project. It is hoped that time will permit a cémp&ﬂam

of the results for all the methods on the basis of common geometry

and a common temperature distribution. This, combined with sub-

stantiating experimental evidence of the stress%s in the root




 reglon and_along the plate edge should result in a worthwhile

 ;';5;5 paper of some §P&ética1 value.
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Future Effort

The stress probiem is a necessary by-product of the primary
investigation of this project. It 1s felt that the primary effort
o muet be exerted in such a way as to lead to answers to the problem
' of the flutter of plate 1lifting surfaces at hypersonic speeds,
| Toward this end, the following efforts aré under way: .
I. Continuing 1nv§stigatian of stresses to include non-
symmetrical plates of variable thickness, This effort is

ultimately to lead to computer programs from which both

thermal buckling eigen values and vibration freqﬁencies
may be obtained. This information is basic to the pre-
dlction of flutter. o |

IT. Experimental determination of the initial shape paremeters,

¢ and Y, for a rectangular plate and comparison of the

experimental behaviar of the. plate te that predicted by thei -

non-linear theory when the measured shape parameters are
used. This will show that the_ﬁehavier of a particular
. plate may indeed be quantitatively predicted.

III. Experimental investigation of the stress along the free
edge and in the neighborhood of thé root of a thermally
stressed cantilever plate. From the theory there appears
to be a wave in the mégnitade of the longitudinal stress
along the edge. This wave does not eppear in the free
plate and disappears by one tenth of the semi-chord frcm
the edge in the cantilever plate. 1Is this stress wave
actually present or is it a peculafity of the stress
function? It is hoped that a few strategiéally plaeeé
strain gages with some thought given té'preéucing the

»
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(13

correct boundary conditions willl yield convincing results
as well as results on the transverse stress. ‘
Derivation of the equations for two-dimensional flutter |
of & thermally stressed plate at hypersonic speed using
piston theory. én obtaining theseAequatians, a parametrie
Study may be accomplished wherin it is hoped that the
relations between various parameters necessary for insta-
bility wi;; be revealed. Following this study and the
completion of item I, the flutter of specific 1ifting

-

 surfaces may be undertaken.
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MODAL COUPLING IN THERMALLY STRESSED PLATESt

Cecil D, Bailey

The Ohio State Univergity

+ Abstract

An approximate, but general, solution
for the frequencies, thus the effective
stiffnesses, In the first and second rodes
of initially deformed, thermally stressed
plates of any planform shape and with any
boundary condition is found in terms of
quantities that may be obtained from the
application of linear theory.

It 1s shown that all plates exhibit

. the same characteristic changes in
frequency, thus stiffness, independent of
planform shape, boundary conditions and
temperature distribution except as these
factors affect the thermal buckling eigen-
values (AT!critical).

Coupling between the modes is shown
to depend upon the ratio of the thermal
buckling eigenvalues; but, initial deflec-.
" tion in one mode will affect the other

mode even in the case of artificial uncoup-
ling. i

Both analytical and experimental data
ere presented to show that the second mode
stiffness for cantilever plates does not
always increase in the post buckled reglon
2s implied in the literature; but, depend-
ing upon the ratic¢ of the buckling eigen-
values and upon the initial displacements,
the second mode will level off at some
-minimum frequency while the first mode
frequency increases, Conversely, when the
second mode increases, the first mode
levels off at some minimum.

List of Svmbols

B Normal coordinate for the
first mode
c : Large deflection stress
- function parameter .
D. Plate stiffness, Et3/12(1-v2)
Modulus of elasticity
F Large deflection stress func-
' ‘tion
G Small deflection stress func-
tion
11y eoey 19 Definite integrals involving

functions ¥W;, Wy and C. ,
Work done by the stress over
that parb.dr the boundary on
which the displacements are
prescribed,

" #Supported in part by the Air Force
Institute of Technology and by the Office
of Aerospace Research, USAF,
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t
U, v

?(x;.y)

- buekling in second mode occurs,

v -

- Energy due to heéting,

Attech, &/

Temperature distribution over the
surface of the plate,

Reference temperature at which,
buckling in first mode occurs,

Reference temperature at which

Plate.thickﬁéss

Displacement in the x and y
.. directions respectively on that
part of the bdundary where the

- displacements are prescribed,

Total displacement of elastic
surface from the x, y plane

Initial displacement of elastic
surface from the x, y plane,
Also called initial imperfection
and/or initial deformation.

First mode frem linear solutlon,

---Second mode from linear solution.

Sum of forces per unit area normal
to the plane of the plate,
?(!, S’)-pt. é

Applied load over plate surrace.
May also be a function of time,

. Thermal caefficient of expansian.

S et e - ——

IItaT(c;z + a,’)dxdy.

Value of T at which the perfect,
unloaded plate would buckle in
the first mode.

144

. .Poisson's ratio,

T S RS A W I ey V%

Value of r aﬁ.which the perfect,
unloaded plate would buckle 1n
the second mode,

Small amplitude dynamic displace~
ment of first mode,

Small amplitude dynamic displace-
ment of second mode,

‘Normal coordinate for second mode.

i a L aE R e -
. .
!1’“& . .

Non-dimensionalized normal
coordinate for second mode,

Ban?ﬁimensieﬁaiized normal
coordinate for first mode,




¢ Non-dimensional large static
deflection, second mode,

| Non-dimenslonal large statle
deflection, first mode.

» Frequency of small amplitude
vibration about large amplitude
static equilibrium position,

Yoy Pirst mode, free vibration
frequency, at uniform temper-
ature.

v Second mode, free vibration
T frequency, at uniform temper-
ature,

. Introduction

¢ R N

Heldenfels and Vosteen? showed that
the torsional frequency and stiffness of a
thermally stressed cantilever plate always
increases [after reaching some minimum,
The minimum stiffness is dependent upon
- the initlal 4deformation. The solution
obtained 1: shown in Figure 1, where the,
eurve parameter ¢, 1s a measure of the -
initial twist in the plate.
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Fig. 1. Response of Uncoupled Modes

They tested a square cantilever
plate which had initial deformation in
both the symmetrical (bending) mode and
antisymmetrical (torsion) mode., The
plate and its initial shape are shown in
FPigure 2, Their plot of experimental data
which verified their analytical solution
is shown in Figure 3. .

areuer,“ verified the results of
Heldenfels and Vosteen and extended the
solution to plates of other aspect ratio,

. l‘Bailey,s extended the analytical
results of Heldenfels and Vosteen and

showed that their solution for torsion is -

also the solution for bending when the two

INITIAL PLATE SHAPE
\
\
\
\

-© -5 4] - 10

D
Fig. 2. inétial Plate Shape, NASA Reporg
361"
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Fig. 3. Frequency Response, NACA ﬁeport 1351

modes are uncoupled, However, in conduct-
ing an experimental investigation of tapered
plates in the pre-buckled region, it was
noted that in those instances when the heat

SR 48




TV PR

" was left cn longer than usual, the tor-

sional frequency did not increase after
reaching a minimum but leveled off, indicat-
ing that the stiffening effect 2s recorded
by others was not present. The fully
tapered plate was the only exception. A

typical curve of the phenomena as noted in

Reference 4 1s shown in Figure 4, No
attempt was made to explain the cause of
this phenomena until more recent work was
accomplished. That work 1s reported hereln.

1.0 ‘
EXPERIMENTAL
3jFer VISUALDEFLECTION BEGAN ™
o \ MAXIMUM DEFLECTION
s oF1{' REACHED i
g © ‘\,;\- HEAT
OF F
5 — 1 \
z 4 — =
i
=
o
& .2
'8
)

L] © 20 30 40 50 60
HEATING TIME, SECONOS

Fig. 4. Prequency Response, Reference 3;

+ Statement of the Problem and Basie
Equations

Given an initially éeformeﬁ'plate of
any planform shape, boundary ‘condition,
and thickness distribution (provided the

" . .thickness distribution permits the assump-~

tion of thin plate theory), find the
frequency, thus the effective stiffness,
when the plate is subjected to thermal
stress and large deflectlions.

Since there 318 no exact solution to

the differential equations of this prodblem,

an approximate solution is obtained by
using Reissner's Variational Principle1
for large deflectlons:

D 3z(w"éi) 2
[t e o

az(w-wi) :I(w-wi)
x? ay?

2(W-wy) ,
"ot ]

# 2v

32 (W-¥y)

+ 20— 1%)

t 2P W 2 Wy 2
+ g(;;f[(;;) - (ay’??]

RN

2
y )
ey x X

1P

oW AW, W
-2 {— Wy My }
Ixay ax 3y ix 3y
t 3.2 2r. 2 22F 3?F
- o—={ (=) ¢ (——=)° - anl Lo
26 Gaxt (332) 2V %2 gy

2
+ 2095 © ke Tix,y, 0
axay

32F . ?F '
Lyt ’yz)ldxdy [] ZWdxdy

32F ?F 7
+ I tayf U+ vy Vias) = 0

In the application of this minimal
principle the generality of the solution
obtained is a result of the functions
chosen for the assumed solution, Two fune-
tions must be assumed: (1) the deflection
function, W, and (2) the stress function,
F. :

The deflcction function is assumed to
be, )

W(x,¥,0) = B{xWy (x,y) + 8(e)¥a(x,y)

where, Wi(x,y) and Wa(x,y) are the first and
second buckling or vibration modcs, as
determined from the linear solution of what-
ever plate problem happens to be prescribed.
Thus, these functions are orthogonal and -
satisfy the plate displacement boundary
conditions, B and ¢ are undetermined para-
meters, in this case normal coordinates for
the modes W3 and Wp. Wi, the initial
displacement, is taken to be the same fune-
tional form as the large deflection mode

Wi(x,y) = By Wylx,y) '+ o5 Wy(x,y)

By and 91 are the measured amplitudes that
define the magnitude of the initial imper-
fection. :

The stress function for large deflec-~
tions 1s assumed to be"

F = C(t) ¢ (x,y)

where, G(x,y) is the stress function
obtained from a linear solution of the
stress distribution; thus, 1t satisfies

the stress boundary conditions for whatever
planform shape the plate may have, C, B,
and 6 are undetermined parameters that must
be found from the application of Relssner's
variational principle, cot

Substitution of the assumed functions .
into the variational equation ylelds three
equations in the three unknowns:

-

J. ) 4 ST,
B+s2(B-By) +C 3B w gt 1)
f; i 11. N (1)
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where,

I is the thermal loading term.
I, i=1,...,9, are definite" 1ntegrals
of the assumed functions and are
pure numbers, Ijo is the work done

by the stresses over that part of
the boundary where the displace-
ments are prescribed, These
integrals are given in Appendix I.

Substitution of the third equation -:
"4nto the first two ylelds two equations _
from which B and ¢ may be determined.

From these equations it may be noted that .
no coupling exists unless large deflections
are present; but, if there are finite
imperfections then there 1s a coupling
effect even when elastic deflections in &
particular mode are artificlally prevented.

I I I » 1.1
~2 - 2_g?
s L s S RS 7 AL U
I.1 12 I ) § » i
s Al e R 2 Y (1)
5 Iplg I11g In, I %+ ]
15 1619 1519 1519
11 12 13- I '
__5_1.QJ+__LQ3._§*_6..3 (5)

As a result of the choice or assumed
runctions, an examination of the linear .
equations will show that: -~ Ties

.....

=5 = wol2 , the first mode, free

. I vibration frequency.
23 . r the first mode
I3 . "B eritical ’ uncoupled, unloaded,
perfect plate thermal
buckling parameter
for the prescribed
temperature distribu-
tion,
Iy
—— = By , the first mode deflec~
2 - tion under any applied
steady state load
normal to the plate
: surface
L h d mode, f
I wop » the second mode, {ree
. , 5 vibration frequency.
1519 , :
1. " Tp , the second mode,
7 eritical = uncoupled, unloaded,

perfect piate thermal

”buekliné'parameter for
the prescribed temper-
ature distribution,

I

L. 6o » the second mode deflec~

I5 tion under the applied
steady state load:
normal to the plate
surface,

Now divide equations (4) and (5) by Ip/I,
and Ig/ls respectively, make the foregaing
substitutions followed by the following
coordinate transformations:

-_3._32
“GgrB

’2-:—:1——52

b me SemaBas Rt s s P < ﬂoTrT e eeAeg

The resultiné eqdations are:

r 1
"';— + *[1 - —— ﬁ‘i + £(¢2-¢2)_._-__ 210 )
oa s - . 519
N + *’ = *o + ‘i o= -t P O et (6)
[ r
v 0{1 - — - 4]+ -<¢2_¢§) - 3
Op Ty Tp
ety o T3

When the displacements over that part
of the boundary where the displacements are
prescribed are zero, the integral I,4 = 0.
Otherwise, 1t 1s seen that prescriblng
boundary displacements will cause the same
trend of stiffening as prescribed r, Vg, OF
4.

It i1s possible that Ig, Iy, and I;g as
well as T may, any one or 311 be func%g
of time, in which ‘case the problem would be
& large amplitude vibration problem under,
at most, four different forcing functions.

The assumption is now made that Iy, I
and Iy 2 are not functions of time and that
the rate of change of the displacements as
a result of the rate of change of I with
time is sufficiently slow that the deflec-
tions caused by temperature may be treated
as a statics problem., Thus, under heat
input in the plane of the plaee and load
normal to the plane, the plate may undergo
large static deflections about which small
amplitude dynamic oscillations may occur,
The square of the frequency of thesé oscil-
lations is a direct measure of the effec-
tive stiffness in the mode and at the
displacement under investigation.,

. To find the frequency of the small’ ’
amplitude osci;latians, let,

Foap
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_quantities,

where

ty and ¢, are the small amplitude
dynanic displacements, while

Y and ¢ define the larée amplitude
static equilibrium position
of the respective modes.

Substitution of these definitions
into equations (6) and (7) produces (see
Appendix II) two equations for the
frequencies,

8 .2, I 2 _ 2
(uo)B 1. s +3 v -4
' Y,
+ L(e2-9]) - 2L (8)
| v I
B B 9
w2 r
)=l -7 4302 g2
.D T rT i
r 1
¢ Biyzogd) - 1 (9
T OT 9

Since vy, 94, T, and I 5 are specified
it is only necessary to find ¢ .
and Y in order to calculate the frequencies,
Setting the inertial terms equal to zero in
equations (6) and (7) ylelds the statlic
deflection equations,

r r
4yl Z(e2-43)
s s

JJlw0, ., + c 0).
.§319] *o Vi | (1 )

r r
3 - e o &2 + -B(y2.y42
¥+ ip 4 + ry(' Vi)

1 : |
- ;gig;: RN Q1)

Therefore, the problem reduces to that
of finding ¢ and Y from the above two equa-
tions and then substituting these results
into equations (8) and (9) to get the
effects on stiffness. A parametric study
has been made of equations (10) and (11)
for values of /Tqp from 0 to 2.0 and for

' "wvarious combinations of the parameters ¥y,

AT ,
44, and rf/rB E IEE’ (see Appendix III1).
, . ’ B

Results

First, the experimental data recorded

at the Air Force Institute of Technology

are shown in Figures 5, 6, 8, and 9. ¢

and ¢, are not known, but the ratlo 5TB>5TT
for tée rectangular plate, Fig. 5, was
calculated as 1,029, Note that the first
mode frequency increases while the second
mode frequency levels off, Fig, 6 shows the
same phenomena for a slightly tapered plate,
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) b Figure 7 shows the predicted response
N for the coupled first and second modes tor
2 plate ror which, :

0Ty
I§§ =.1.,0, ¢; = 0.02, ¥ = 0.1 EXPERIMENTAL
, 1.0

“T'a

Yo " 4o "I 0

The first mode frequency increases after
buckling while the second mode levels off,
just as in the experiment.
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Fig. 8. Frequency Response With Coupling

FREQUENCY RATIO
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| FPigure 8 and Figure 9 show the exper- 28 1 Jr
: imental results for highly tapered plates ’ \\ TORSION
of the same aspect ratio and thickness as '
the previous plates, For these plates,
\@
50 :
25

: the second mode frequency increases in the
; conventional manner while the first mode

- levels off. Again, ¥4 and ¢4 are not

: known for the plates %ut a ratio of
ATp/ATp = 1.072 has been calculated from
linear theory.

FREQUENCY RATIO

Figure 10 shows that for Ip/Ip = 1.1 . L3

the analytical response has the same trend . BENDING
as the experimental data, Since the slope ,

: :fitgelrgsponse curves is argectedTb§ the
nitial imperfection for a given ATR/AT (] _J
extrapolation of experimental data Lo 0 5 10 At ¥ 20
obtain 4Tg and ATy is likely to lead to THERMAL LOADING 7=
erroneous results, : ¥

A comparison of théoretical to éxper— : SRR .
imental results from Reference 2 is shown S ’ : et
in Figure 3. The theoregizai gugve goes
not contain any effect of initial deforma- pi,, 9, cAUBNE! " ey
tion in the bending mode, 2lthough the . 9. Frequency Sgsppnse With Coupling
1nitih1 plate shape, Figure 2, indicates :
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quite large bending and camber,

3TBIAT

4

1 data,

Thus, the

‘effect of finite ¢ cculd not be eliminated
from the experimen%a

Pigure 11 shows two curves for

= 1.1,

The first curve is for
41 = 0, %06 (about the correct value), and

= 0, vhich would be representative of

e analytical curve in Figure 3.

The

secand curve in Figure 11 occurs when

¥

= 0,2 and would be representative of the
experimental curve in PFigure 3 which may
explain in part the disagreement between
experiment and theory in Beference 2.

1.0
. '
'
-
3 3 1 SN \‘P=~2
. 075 = B
Y

0 :::\“~ ,'?
< .
«

S50 -
5 ‘.‘3&..:1.1
g oy
g ¢} =.06
W .2
"y

% 5 a1 10
IN
) THERMAL LOADING —— AT,
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bagy

Both experimental and analytical data
1ndieates strong coupling between the first
two modes of plates with in-plane stresses,
The onset of significant coupling varies
with the initlal imperfections and with the
ratio of in-plane buckling parameters,

The post buckling behavior of plates
for which aTg/aTp ¥ 1, is determined by the
ratio ATB/AT . Tr aTp/aTp 1s sufficlently
less than 1 the second mode frequency will
alvays level off and the first mode f{re-
quently will increase, whereas for ATg/aTyp
sufficlently greater than 1, the first mode
will level off and the second mode will
increase, For ATp/aATp sufficiently close
.£o 1, the relative magnitudes of the
initial imperfections will determine which
mode levels off and which mode inc¢reases,

The smal) amplitude vibration frequency
about the large amplitude static equilibrium
position is ‘independent of planform shape,
boundary conditions, thickness distribution
and temperature distribution except as these
factors affect the thermal buckling para-
meters,

Appendix 1

The 14 are nine integrals of known
functions over the plate surface and are
known quantitles from. the linear solutlon,

Iy = ”pt’wldxdy A 5
2 2 2
. ? w; 2 ? Hl 3 Wl °Wy
12 [!D{(axa ) + ( ) 3 2 ayz

¢ 200-v) (2212 gz
¥xay y

=

' 920 v 220 W
- 142, 27142
I3 [It{;;;{ay ) y’(ix )

_ 3G Wy Wy,
T oy ax 35-}6363

Iy = Irz Wy dxdy

gt |
I; = I otwg dxdy

1

' W, %W
Ig = I D((-“fz)z + (;;zz) + v ;;fa

,3392 2
K 2(1-:)(33 31" axdy

150

W

A

e Ll L




, 325 w2 W20 Wy 2
Iy = ”::;—;(,’ ) -,-;z-t-——)

326, W, awz} axd
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Ig = I! Z ¥ dxdy

t ,9%G,2 226,2 32g 320
19 - II E((ﬁa‘;{) + (5‘;{) - 2v T ;“y—g
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Appendix II .

The equations of motion are:

..

r
-3—-+ SRR R -1<¢’-0

e Jo
- egh=] ® o, + 0
Yy viplgt 0
'y r - T
i M ¢ SRS B By2-e2)

-l ey, 4

Assume 3
"t*“‘

‘ = G, 'l'»’
Substitute: "..—1

Lid

' 5 r
;;; + (egtn)® ¢ (e 4v]02 - - ¢;

r 1
+ ;§((=,4e)’ - *i) - ;;lggi - ‘o'f s

» . -

T r
:é; + (:‘+0)"+ [e‘%i][l - ;; - 0{
g 150
. * ;;((¢‘+7)! - '1) - ' IQJ = ¢ + .1

neglect all 2nd and higher order terms ia
¢ and neglect 2¢,/v and 2c¢,/¢ compared to
unity, Sahtragt away the gtatic deflec~
tion equation in each case to obtain:

*

 Thus:

¢ ) r
;g-s- ‘- 3v2 - #1 + —”"(t’-vl)

Assume that the small amplitude vibration
will be simple harmonic (experimental
evidence supports this assumpticn). The
equations from which the frequency may be
obtained resuit-
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Appendix III
The therma) loading term, ', océurs as:
‘= I‘at?(x;:,z)(ex*c’)ﬂxdy
Assume that the surface temperature function

T¢x,y,t) may be written relative to some
reference value A?r,r or:

PR S

™Mx,y,t) = 3!@,:(1) f(x,y)
Thus: - :a ‘
re aT},fIIsi f(:,y)(:;;c,)d:dy

and

-

*

Feritical ™ 8Tpes eritieglfl‘ﬁ

£0x,y) (0,40, )axdy

T her

: ?ﬁri*&ig:a *‘fnﬂgsggn}
. Also: .
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':E,- Q?rgr(eritisal)rirst node ATy

1.

3.

Ty 8Tpef(oritical)second mode 4Tp
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