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Introduction

In a recent paper (attachment No. _ 1), it was shoti-:r: that the

coupled dynamic response of thermally stressed plates depe=nd pri-

ma ri ly upon t^%, o factors:

a) the thermal buckling eigenvalues (critical thermal loading)

of the idealized perfect plate and,

b) the initial deformation of the m1_d-plane of the real plate.

The eigen values may be obtained analytice lly only after the

thermal stress distribution has been found. Attemps to determine

the critical temperatures experimentally have been unsuccessful

because real plates are not perfect plates. Coupling between

modes causes the Imperfections to affect the rate of change of

sti_ffncss thus causing extrapolation of experimental data to lead

to erroneous results.

The initial deformation may be measured; however, only quanti-

ta.tive experimental data on the effects of initial deformation

have been obtained to date. At she suggestion of the project

monitor, an experimental p rcgra.m is beinginitiated from which it

is expected that quantitative data. v, ill be obtained to substantiate

the theoretical results.

The effort reported herein is an investigation of various
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approximate solutions to the thermal st ress problcm with rn1 xed

boundary conditions. The usual procedure is to ignore the clt)mpcd

edge effect when investigating stresses ,,nd thus treat the problrM

as though the bounds ry cond it ions are uniform. For small aspect

ratios, ho,.-:ever, the influence of the root region may extend ,-)ver

the entire plate. For large -aspect ratios the longi tudi na]. stress

dominates while for sm:).1.1 aspect ratios the transverse= stress will

dominate. Thus, the complete stress distribution must be 'known

with sonic confidence as to its accuracy, if the eigen-values are

to be accurately determined.

A survey of the literature has revealed that very little work

has been reported on efforts to salve this mixed boundary value

problem. An exact solution does not appear possible. Thus, the

problem becomes that of either evaluating existing methods of approx-

imate solutions or developing new or modified methods to give suit-

able accuracy.	 I

A method of solution for the equivalent deflection problem
(1)^

is suggested by Timoshenko 	 , but the tabular results given are

from a finite difference solution for the equivalent of a constant

temperature. The only other solu t ion  found (p) given a

stress concentration at the clamped corner of approximately 10 Ec(To,

This is unrea.son^ibly large; also, the method is not readily adaptable

to variable planf orm and variable thickness . The lack of data in

this area raises two pertinent questions:

1) "What do the various approximate methods yield for the

stress distribution in a cantilever plate?"

( ) refers to references listed on Page 14
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2) "Which method will be best suited . for the project at h,;nd

_	 and why?"

An article published about plate deflections in the AIfiA

Journal, May, 1969, ^ 3) substiantiates many of the conclusions

reached in this investigation. However, several conclusions

breached herein go beyond the scope of that article.

The approximate methods of solution under investigation are:

a) Complementary energy,

--	 b) Complementary energy with constraints',

c) Collocation wAth constraints, and

d) Point matching.	 r=	 -

Data to which comparisons are made Caere obtained from existing

solutions by finite differences for a, uniform temperature increase)

a matrix finite element displacement solution for an experimentally

measured temperature distribution ,and stresses from measured strains

for the same experimental temperature distribution (5) . Also, where

applicable the results for the stresses in a free plate under a

parabolic temperature distribution (6) have been compared.

Because of different planform geometries and temperature

distributions used in the existing solutions, manpower and time

have not permitted all of the methods investigated to be compared

on a common basis. Huviever, it is felt that sufficient data have

been obtained to ,justify the conclusions reached.

k

Discussion

a) Complementary energy without constraints

In this, the classical method of complementary energy, a stress 
e

function that satisfies the stress boundary conditions is assumed.

I
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Also, in the

94 for a

of the boundary discontinuity at the clamped corner. 	 .

en tern solution using the available experimental temp-

ribution was obtained and is compared to the referenced

for a rectangular plate, and Fig. 2, for a triangular

n these comparisons, it is concluded that the Rayleigh-
ue applied to the complementary energy yields the

ional form of the longitudinal. stress distribution

ly close magnitudes of the stresses in the b-ody of

ular and tapered plates. Similar experimental data

on of the lateral` stress are not available. The result-

stress from the complementary energy is compared to

tical methods as they develop.

he finite element matrix displacement method in effect

neighborhood

A s ixt e

era,ture gist
data, Fig. 1
plate.

Based o
Ritz techniq
proper funct

and re s onab

bath recta.n;

for c ompa.ri s

ink; lateral

other theore

Since t

satisfies the displacement boundary conditions, it may be assumed 	 .

that that solution is reasonably close to the actual stresses in the

neighborhood of the root. Since at the paint, 9=.06

the complementary energy solution is reasonably close to the matrix

displacement solution, it would appear that the energy solution

may be reasonably close in the neighborhood of the root.

The stresses as obtained from the energy solution do not

satisfy the displacement boundary conditions, 	 = ? or

V 0 , at the root. A plot of '	 -at : 0 for the 16 -

term solution with experimental temperature is shorn in Fig.. 36

same f igure is shown a plat of the strain ratio,

parabolic temperature distribution, which is euiv-..

alent to free expansion in the q direction at-9, = 0



h} Complimentary Energy with Constraints

In an effort to more closely satisfy the displacement bound-

ary conditions, these conditions were written in terms of the

stresses and the resulting equations used as equations of constraint

by the hagra.ngian multiplier technique. Fig. 4 shows that the

desired results were very nearly achieved In so far as the displace-,,

gents are concerned. however, the solution did not converge with

4 terms in the stress, function, Experience with the collocation

method and with this method indicates that -the stress results are

inconclusive. Convergence may occur with the addition of higher

order terms ,,-provided numerical instability is not encountered in

the computational program before sufficient terms can be included.

c) Collocation with Constraints
An integrodifferential equation can .the shear stress was

derived as for a free plate in NACA TN D - 1182(6) . Again the

displacement boundary conditions were expressed in terns of the

stresses and these equations were then used to satisfy these

boundary conditions at points qn the fixed boundary. The me ro--

differential equation was satisfied at points can the free boundary

and at paints on the interior of the plate. Solutions were obtained

for both a uniform temperature and a parabolic temperature distri--

button.

The collocation re lts for the longitudinal stress in Fig. 5

may be compared t o the classical c omp limentary energy s olution for

a parabolic temperature in Fig. 6. dote that the. area. of disagree-

ment is in the root region, But note that even in this

region the general shape of the carves are this same except for ^:.^,



Fig. 7 and Pig. 8 shows the transverse stresses for the

ease of a parabolic temperature. - N.ite that the complementary

energy compares favorably with the collocation method. Fig. 9

shoes a cpe.rison of the strains as calculated from bath methods.

Note that the collocation method very nearly satisfies the displace-

went boundary condition.. V g .U, in the mean, while the energy

method does not. Fig. 10 ihows the transverse stress due to a

uniform temperature rise . in a rectangular plate. In this case,

the only stresses in the plate are those caused by the clamped

boundary. Note the clue agreement between the three solutions

shown.

d ) • Point Matching

This method was applied to , the mixed boundary condition pro-

blem for this project by Profei

birharmonic stress equation is

the plate. The shear boundary

the free edge while the normal

satisfied at selected points..
condition, ^_ , is satisfied

3sor Buford E. Ga.tewood. In it, the

satisfied exactly in the interior of

conditign is satisfied exactly can i
stress boundary condition is

O the fixed edge the displacement

exactly while the strain condition,

is satisfied at selected points.

Results have been obtained for 4k = 1 	 and a uniform temper-

* ature change. It compares favorably with an unpublished finite

difference solution 'except at the fixed corner of the plate

where the boundary discontinuity occurs. Since the solution

• Involves hyperbolic and trigonnetric functions .it does not appear

readily adabtable . to variable planforms and thicknesses. However,

further work may be of academic interest for the purpose of, cam-



but 1 ons .

pari.s on of the root region t-,ith other solutions.

Concl.usl.ons

The advanta. cs a.nd disadvantages of the complementary energy

solution are:

rt) The thcrm r^l loading term permi.ts integration of the terriper-

a.ture function.	 This is n very def-I.nite adva.nt?gc c,)hcrr

consi.deri.r,g experiment~)lly ciet.erinined ternperaturc distri-

b) Formal integration may be applied to evaluate the elements

of the complementary energy m^.frix, thus cutting computer

time by more than an 'order of' mngnitude i•.hen compared to

numerical	 3ntegrat-ton. This factor is norm^lly l.i.sted	 Qs

a djsadvantarge	 of th? energy method because the formal

in',Egr.nt:i.on is extremely tedious.

c) Variable p1 p riform geometry is accounted for in the limits

of integration and 1'n the stress functI on. Thus, n. broad

class of plates may be treated for a prescriped boundary

condition and a given class of geometrical shapes; e.g.,

the integrals for the class of syrnmetrica.11y tapered

cantilever plates of constant thickness have already been

evaluated.

d) Variable thickness m=ay  be accounted for by its inclusion

In the integrald. If it can be expressed as a polynomial,

the integrals for constant thickness appear to be readily

adaptable to yield the correct values without further

inte= gration. However, computer time will be increased

accordingly.
M
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for this project. it is hid that time will permit a c omparis m
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Future Effort
The stress problem is a necessary by-product of the primary

investigation of this project. It is felt that the primary effort
gust he exerted in such a way as to lead to answers to the problem
of the flutter of plate lifting surfaces at hypersonic speeds.

Tard this end, the following efforts are under way:

Continuing investigation cif ztressea to include non-
1

symmetrical plates of variable thickness. This effort is

ultimately to lead to computer programs from which both

thermal buckling eigen values and vibration frequencies

may be obtained. This informationn is basic to the pre-

diction of flutter.

II. Experimental determination of the initial shape parameters,

• and Y* ,for a rectangular plate and comparison of the

experimental behavior of the plate to that predicted by the

non--linear theory when the measured shape parameters are

used. This will shit that the behavior of a particular

plate may indeed be quantitatively predicted.

III. Experimental investigation of the stress along the free

edge and in the neighborhood of the root of a. thermally

stressed cantilever plate. From the theory there appears

to be a gave in the magnitude of the longitudinal stress

along the edge. Th's wave dos not tppear in the free

plate and disappears by one tenth of the semi--chord from r

the edge in the cantilever plate. Is this stress wave

actually ,present or is it a pecu.lari.y of the stress

function? It is hoped that a few strategically placed

strain gages with sane thought given to producing the



a
correct boundary conditions will yield convincing results

as well as results can the transverse stress,

IV. Derivation of the equations for two-dimensional flutter

of a thermally stressed plate at hypersonic speed using

piston theory. On obtaining these equations, a parametric

study may be accomplished wherin it is hoped that the

relations between various parameters necessary for Insta-

bility will be revealed. Following _this study and the

completion of item 11 the flutter of specific lifting}
surfaces may be undertaken.
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M^t?AL, Cflt1F'^.ING I^t TH gF^:"^A^LY	 TItESSg^? F'I.ATgS^
^ '#+t^^.	 j

Cecil I^. Bailey	 ^
The Ghia State University t^

{

- Abstract	 ^ T Temperature distribution aver the
surface of the piste.

An apprc^xi^nate, but general, solution
tvr the Frequencies, thus the effective ^TB	 ^ Reference temperature at which, ^-

stiffnesses, in the first and second codes buckling in first made occurs, __
^_

t►f initially deformed, thermally stressed ^^
lilateS of any planfar;n shape and with any eT T Reference tem erature at which ^-

^.boundary condition is found in terns cf -bucklin	 in secand mode occurs.
quantities that may be obtained from the
application of linear theory, t Flate thickness ^	 ,

It fa Shawn that all plates exhibit ^, Y ^isplacer^ent in the x and Y
the same characteristic changes in ^__directians respectively on that ^

- Frequency,-thus stiffness, independent of part of the boundary where the ^	 ,

planfarr+ ► shape, baunda.ry conditions and ^ displacements are prescribed.
temperaturg distribution except $s these

affect the therr ►al buckling eigen^_lactars ^ Total displacement t^f elastic
surface from the x, y plane

-

..values {eT^critical}.

Coupling between the modes is shown ^i Initial d3.splacer..ent of elastic:..
^_t4 depend upon the ratio of the thermal surface from the x, y plane.

buckling eigenvalues, but, initial deflec-. Also called initial imperfection

t3.on in one mode will affect the other and/ar initial defarmatign.
made even in the case of artificial uncoup-
^^. WZ First mode frG;n linear solution.

Both analytical and experimental data ^ -=Second made tram linear saiutic^n.

are presented to show that the secand made
stiffness far cantilever plates does not t - Sum of forces per unit area normal

-
always increase in the post buckled replan ta,the plane of the plate,

P{Its	 t^•ya ^ p
^

^s imp3^ed in the literature; but, de pend'

-
ink; upon the rant; of the - buckling eigen-
Y^iues and open the initial displacements, Pax, y} App33ed lead over plate surface. ^_

the second made will level oFf at sor^^A ^ 1Ksy also be a function of time. .
.s^inimum Frequency while the first made

_-.

•;	 ._- ^.	 _

-	 ^ Frequency increases,	 Conversely, when the
e...

Thermal coefficient of expansion.
^. second mode increases, the first made

levels off at same minimum. t^.^_ finer	 ,due ttt heatin8y .	 8s	 - ^,Qer...^ ^ .

List of Symbols ^ taT{eat + oyz }dxdy. -

^^	 ^IQrmal coordinate far the ^'g Yalue of Tat which the perfect,
_- first made	 ^ ., tutlaaded piste would buckle in

` the First made.
^	 Large deflection stress __-,._..s ^-_..^-a_..^..._.,.	 ^..^_.:	 .:^. _^_ _

function parameter P^ value of Tat which the perfect,
unleaded plate would buckle in

1?.	 Flate stiffness, Et^Il2{1-vx^ the second Vie.
f

R	 I^c>dulus of elasticity tx S^11 amplitude dynamic displace
_ ment aF first made.

F	 Large defiect^.on stress funs-
.	 tion	 ^	 tt

G	 Small deflection stress func-
tion	 ^

- .IX, ..., Y^	 Infinite integrals involving ^►
functions Wl, W^ and t^.	 `

.	 t

I	 i^ork done by the stress aver

Smell amplitude dynamic dispisce-
nt of, secand made.

`Aior^l coordinate For secanc2 made.

. _ .." -Foissan^s ratio, 	 --- -	 ---•— -

Time.	 ^.	 _	 -

10	 that part ^f the boundary bn	 #	 t^+̂ n-^di. nsi:crnalised nors^ai
which the displacements arc 	 ordinate far secand mode.
prescribed.

upparted in part by the Air Farce	 '^	 R€s^idimensi^aixed normal

Institute of Technology and by the 4Ff1ce	
taardinate fc^r first mode.

cf Aerospace Research, USAF.	 ^	 ,
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!	 Non-dirrensioflal large static
deflection, second erode .

T	 Non-dimensional lame static
deflection, first mc►de,

r	 Frequency of small amplitude
vibration about urge ar^glitude
static equilibrium position.

^^	 First mode, free vibration
frequency, at uniform temper-
ature ,

woT	
8ecand mode, free vibration
frequency, at uniform temper-
ature ,

^ntroduetion-	 :^
Heldenfels and Yostsen p shaved that

the torsidna.l frequency and stiffness of s
thermally stressed cantilever plate always
increases ; after reaching so^ee minimuz^,
The minimum stiffness is dependent upon
the initiaa deformation, The solution
obtained is shown in Figure 1, where the,

• curve parameter ^ is s measure of the -
initial twist in ^he plate.
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Fig. l.. Response of Uncoupled Modes

They tested a square cantilever
plate which had initial deformation in
both the sym-^AtTica? t?̂ ^ndi. na} mode and
^trttisymn^etrical torsion} mode, The
piste and its initial shape are shown in
Figure 2. Their plot of experimental data
which verified their analytical solution
is shown in Figure 3• ,

B er ^ v ified the results ofrein ,	 er
Keldentels and Vosteen and extended the 	 -
solution to plates of other aspect ratio. 	 Fib, ^. Frequency Response, NACA Report l^l

$siley,^ extended the analytical _	 codes are uncoupled. However, in conduct
+ resuit^ of Neldenfes and Vosteen and	 ing ah exp+sris^htai investigation of tapered
showed that their so^.utian for torsion is a plates in the pre buckled region, it sae

-	 s^lso the sc3utian for bending. when the iw^y noted that in these instances when the heat
-	 ^;

a	 1^F►
^.:, ;	 ^	

i

^	 y _{	 + •	 '
!	 -
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.^	 ^.o ^	 i.s	 arty
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^+^^ left ^:*^ longer tt^^n usual, the tor--
signal Frequency did not increase after

aching a minimum but leveled o"f, indcat-
ng that the stiffening effect aS recorded

by others was not present. The Fully
tapered plate was the only exception. ^

.typical curve off` the phencr^na as noised in
Reference ^ is shown in FiBurc ^. No
^ttet^pt was made to explain the cause of
this phenomena until more recent work was
accomplished. That work is reported herein.

^ ? tg ^^5^ ^W ^^ ^W^^^

ix8y $x ^^	 ^^ ^y

t	 ?^F ^	 ^^F ^	 ^^^' ^^

y

^{1-v} ^x^ 
}
^^ '^ to T(x,y,t}

Y

^^fi

#.^?

^^ .^
Q

^ ^

t^s ^

.2

^0	 x^	 2U	 3U	 ^Q	 sr3 60 '
I^A71NG Tti*tE,'^CC7PID5

gig. ^. Frequency Response, Reference 3.

• State^^ent of the Problem and Basic
^uat ons

r

given an initially cieformed'glate of
.any planform shape, boundary 'condition,
and thickness distribution {provided the
thickness distribution permits the assu;np-
tion of than plate theory}, find the
frequency, thus the effective stiffness,
xhen the plate is subJected to thermal
stress Arid large deflections.

Since there is no exact solution to
the differential equations of this problem,
an approximate solution is obtained by
using Reissner ' S Variational Principlel
for. large deflections.

2	 sxx	 ^y^

as ^i^^Wi } ^^ {W-Wi}
^. 2v

^xz 3y^

}^^}+ 2^I--v}t^2ix^w
i

Y

+ t^^^F^{3W }2

^ izx 	3y
i {ice}2^

iy^.

# i^F^{sW}^
{^^i

}2^
tyz	 ^x ^x

{^

2	 2
^^ # ^^ }^dxdy ^ ^la'dxdy

C

•	 In the appl3.catian cif this minimal
principle the generality of the solution
obtained is a result of the Functions
chosen for the assumed solution, Two fund
Lions must be assumed; {1} the deflection
function, W, and {^} the stress function,
F.	 '

EXP^IM^NTAL

1fltlA^,`I^CTlC1 t+2 B^^N

MAXIMUM C^^^I^G^^t+t

UF' REAC^t^^3
l^AT

F^

The deflection function is assumed to
bey	 '

^{xsY,t} ^ g { t } Wl { X s3► ^ + 8{x}W^{x,y}
where, ^1{xsy} and W (x,y} are the first and
second buckling or Ybration &'►goes, as
determined from the linear Solution oi' what-
ever plate groble^n happens to be prescribed.
Thus, these functions are orthogonal and -.
satisfy the plate displacement boundary
conditions. Band ^ are undetermined pars--
meters, in this case normal coordinates for
the modes ^l and ^^. 1^i, the initial
displacement, is taken to be the same funs-
tional form as the large deflection made

^itX,y }	 Bi ill {x sY }"+ ^i W^ txsy}

Si and 6i are the measured amplitudes that
define the magnitude of the initial imper- ,
faction.

The stress function for large deflec-
Lions is assumed to be

F	 Ct:} Q ^x,y}

xhere, t3{x,p} is the stress function 	 '
e^btained from a linear solution of the
stress distribution; th^t^ ^ i t satisf des

the stress br^ux^dary conditions fir whatever
planParm sh^.pe the plate may have. ^, B,
and s are undetermined parameters that mush
be found from the application of Reissner's
variational principle,

Substitution of the s,ssumed t'unCtions
rtta the varietc^nal , equation yields three
equations i.n the three unknowns.

.	 ,.

# ^g ^ B ^,Si} #^5^^	
^l}Il•	 Il



	

1.^,_,.^..^^^	 -

	

r	 "-•
s

buckling parameter for
the prescribed temper=
afore distribution.

= 80 , the second mode deflec
Y6	 tion under the applied

steady state load
normal to the plate
surface .	 .

Now.div#de equations { ^► ^ and {^^ by l2fl^
and I fI respectfvely, make the ft^regc^n^
subst^tuions folo^.^ed by the fcllow3ng
coordinate transformations:

n

9	 9	 9	 9	 ,..

where,	 .

P is the thek^mal loading term.	 -

Ii, i=1,..., g , are definite integrals
cf the assurr^ed functions and are
pure numbers . Il{^ is the work done
by the stresses over that part of

• the boundary where the dfsplace-
ments are prescribed. These
integrals are given in Appendix 1.

Substitution of the third equation--=
into the. first twg yields two equati©ns_
from which B and a may be determined.
From these equations it may be noted than:
no coupling exists unless lame deflections
are present; but, if there are finite
imperfections then there is a coupling
effect even when elastic deflections in a
particular made are artificially prevented.

^l	 1^^9	 ^^^	 ^^^^	 ^ -

2	 ^!

I^Ig	 ilz9	 Yl	 ^l -	 _
.	 --

I^	 Ibxg	 xbI^	 I^Ig

zb^^	 ^^^^	 ^^ ^^

^, t = Ike ^^	 .
^^$ ^$

The resulting equations are:

og	 B	 B	 o$ ^

oT	 T	 T	 °^ 9

then the displacements aver that part
Qf the boundary where the displacements are
prescribed are sera, the Integral I ^ = 0.
otherwise, it is seen - that prescribing
boundary displacements will. cause the saint
trend of sti#'f ening as prescribed l', Vii , dr
ft*

It is possible that lg, I^, and 2 as
xell as r may, any one or all, be func^ot^s
of time, in which 'case the problem would b
a largg^e amplitude vibration problem under,
at most, four different forcing functians,

Rye assumption is now made that I^, ^
and Il are not functions of time and that..
the rae cT change of the displacer^nts as
a result of the rate of change of r with
time is sufficiently slow that the deflec^-	 r .
ticns caused by temperature maybe treated....:.
as a statics problem. Thus, under hest
input in the plane of the plate .and lead
normal ts^ the plane, the plate may undergo
large static deflections about which a^iall
amplitude dynamic oscillations may occur.
Thy square ^f the frequency of these osoi
latit^ns is a direct measure of the effec=

	

^^	 five stiffness in .the mods and. at the
^ = wok , the second mode, :ree displacernt under investigation.

	

5	 vibration frequency,	 _.

^.	 ^	 To find the fre uenc+^ of the smell= r	 the second mode	 q	 ^	 _ __,_-..

l7	 T arttical ' uncoupled unloaded,	 amplitude oscillations, let,.=perfect paste thermal	 '.

^-=;

As a result of the choice of assumed
functions, an examination of the linear 	 ^,
equations will show that: ;^ 	 -.-,.

I	 ^__
_ ^o^ ,the first mode, free

I1	 B vibration frequency.
I2I9
I .= rg critical f the First mode,
3

	

	 uncoupled, unloaded,
perfect plate thermal
buckling parameter
for the prescribed
temperature distribu-:
Lion..	 ^^

I2 Bo ,the first mode deflec^
tion under any applied
steady state load

•^	 normal to the plate
Sttr1'ace



•	 +s^^ eSUlts

t

Since ^ : ^i: T, and I li} are specified
quantities, ^t is only necessary to find ^ .
^d T in order to calculate the Frequencies.

tong•the inertial terms equal to sera in
^quatians {6} and {7} yields the static

. d^flectian equations, 	 _.

First, the eXperir .̂ental data rer^r^Ied
at the Air Fare Institute t^f '̂echnalt^^:;
era Shaun in F'i^ures 5, 6, $, and ^. ^
and ^ are not kna:̂ n, but the rat#,a b^g^
Par to rectangular }late, ^`i^. ^, was
calculated a^ ^..^^^. Plate that the first
made Frequency increases while the second
mode frequency levels off. Fif,. ^ sha^^s the
same phenomena for a slightly tapered plat,

t

}	 TI^RM^,^ LC?Ag1^tG

T

Fig.. ^, _ Frequency Respanse^VPith Coupling

}	 c^ +^

trhere

t^ and c^ are the $mall amplitude
dynanic displacements, while

t and ^ deFine the large amplitude
static equilibrium ppsition
of the re spective wades.

3ubstitutian of these deFinitions
into equations { ^} and {7} produces {see
^,ppendiX II} two equations For the
Pragttencias, ^ 1.{}

^.,,-• .^ s

B ag ^

{w}T"l^r #^^^^^i

r

4 T
we:

^^ oT ^

G ^At^^1l
PI.Afi^

^X^R1M€NTA^

NC^JG

' ^t^t5tQ^

o	 .5 ^.v i.5	 2.

.. F^	 B	 B.:..

-_^	 aB 9-^__
^^

^^*
.^

s

.^d

^^

T^► PERED

EXPERIMENTAI.	
RLATE

^N^H^

Tt#P^I^N

.^ L^ ^^ ^

°T ^

•	 There Fare, the problem reduces ttt that
t^P Pincting 4 a.id ^ frcm the shove two equa-
tians and then Substituting these results
into equations {$} and {^} to get the
effects an Stiffne $s. A parametric study
has been made aF equations {l.p} and {11}
far values aF rfT^ from Q to 2 . 0 and Por	 '

' ^^riauS eambl.natians cP the parat8 rs Vii,

• fi, and P^IP^ e^f {See ^ppendia ^Il}.
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The first mode frequency increases after
buckling while the second mode levels off,
dust as in the experiment.	 -
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Fig. ^', Frequency Response With Coupling

Figure $and Figure 9 shox the exper-
imental results for highly £ tap^ered plates
of the same aspect ratio and thickness as
the previous plates. For these plates,
the second mode frequency ^.ncreases^n the
conventional manner while the first mode
levels off. Again, ^ -and 03 are not
known for the plates ut a ratio of
em$IeTT = 1,472 has been calculated from
linear theory.

Figure l^ shows that far IRlIT ^ 1.1
the analytical response has the same trend
as the experimental data. Since the slope
of the response curves is affected by the
initial imperfection for a given ^'^gl1^T^s

extrapolation of experimental data to
obtain ^Tg and ^^ is likely bo lead to
erroneous results.	 .

A comparlsQn ^^' theoretical to expsr^
imental results t'rom Reference 2 is showtl 	 •,	 ^:
iii Figure 3. The theoretical curve db^s 	 -	 i
not contain any effect ^f initial deo- .Fig-. ^. Fque^►^y ]spdnse fifth Ct^upl^
Lion in the bending mode, although the
initial plate shape, Figure 2^ indicates	 _	 -,	 _	 ._
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Fig. 10. Frequency Response Stith
Coupling	 .

quite large bendl.ng and =;. amber. Thus, the
`ef^`eat of finite ^i could not be eliminated
trtun the experimental data.

Figure 11 shows two n^trves for
^IafiT ^ l.l. fine first curve is for
^i ^ 0 .06 (about the correct value}, and
i ^ ^, which would be representative of
tie analytical carve in Figure 3. The
aecc^d curve in Figure ll occurs when
ii ' 4,2 and would be representative of the
+experimental curve in Figure 3 which ^y
explain in part the disagreement between
experiment and theorf in Reference 2.

^fl
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.S4

Uz

'+^ g

O

T#RMAl. lC?At? tt^tG

Fig. ^.2. Frequency Response Stith
Coupling

C^t^C^usion

Soth experimental and analytS.cal data
indicates strcn^; coupling bets} €^t^ the first
t^to modes of plates with in^plane stresses.
ThE {^tlSet oi` s^^tl^.^`^G^ilt cGidp11t3g it^I^^.^^
with the initial irnperfecLic^ns and with the
ratio oP in -plane buckling parameters,
eT$/^fiT.

The pt^st buckling behave or ^!` pletes
Por which afiglbT ^ 1, is dcternined by the
ratio t+Tgl^TT. ^f ^TRleTT is su^`ficiently
less than 1, the second mode frequency will
always leti•el o^'f and the first mode fre-
t^uently t,*ill increase, whereas for dT^l^T
sufficiently greater than 1, the first m$e_
gill level ofi` and the sect^nd mode gill
increase. For aTg1'^T+^ sui`ficiently clt^se =
.to ^., the relative magnitudes of the`
initial imperfections will determine which
mode level $ off and which mode increas$s.

The small amplitude vibration frequency
about the lame-amplitude static equilibrium
position is independent of planform shape,
boundary conditions, thickness distribution
and tempersture distribution except as these.
factors affect the thermal buckling pare
meters .

Jl^,^endix _T

The . li are nine integrals of known
functit^ns over the plate sur*ace • and are
known quantities trat^ - the linear soluti^sn.

•^.
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