
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

https://ntrs.nasa.gov/search.jsp?R=19700004177 2020-03-12T01:39:18+00:00Z

1	 __

1

1	 ^^'IR56

1

	 UNIVERSITY OF MARYLAND

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

(ACCrSSlCi4 NUm [RI	 (THRU)

0

'lp	 Es)	 (CODE)

u

(14ASA CR OR T:AX OR AD NUMULRI	 4CATEGORY'

Technical Report 69-99	 December 1969
NGR 21-002-197

ANALYSIS OF DATA PROCESSING SYSTEMS

by

Jack Minker
Sarah Crooke
James Yeh

This research was supported by NASA Grant NGR 21-002-197 to

the Computer Science Center of the University of Maryland.

TABLE OF CONTENTS

Chapter Page

1.	 INTRODUCTION	 1

1.1 Organization of Report 1

1.2 Summary of Results	 2

1.2.1	 Simulation Results 2

1.3 Software Monitoring Results .. 4

1.4 Analyt?cal Modeling 6

1.5 Bibliographic Research Results 6

2.	 AN OVERVIEW OF COMPUTER SYSTEM EVAL-
UATION APPROACHES	 7

2.1 Development of Computer Eval-
uation Techniques	 8

	

2.2 System Measurement Tools 	 12

	

2.2.1 Analytical Modeling 	 12

	

2.2.2 Simulation 	 13

2.2.3	 Software Monitoring 15

2.2.4	 Hardware Monitoring 17

2.3	 The Use of Multiple Measure-
ments	 19

2.4	 Specific Applications 19

2.5	 Conclusion	 21
1 ^

3.	 ANALYSIS OF DYNAMIC ALLOCATION STRA-
TEGIES 23

3.1	 Scope of Initial Study 24

3.1.1	 Function Parameters 25

3.1.2	 Pooled Versus Private Buf-
fers	 26

3.2	 Buffer Allocation Algorithms .. 28

3.3	 Simulation Language 29

3.4	 Basic Buffer Allocation Algo-
rithms	 31

3.4.1	 Simulation Models Developed 34

3.4.2	 Buffer Allocation (First-
Fit)	 35

3.4.3	 Buffer Release (First-Fit) 38

3.4.4	 Buddy System Allocation ... 38

3.5	 Inputs to the Simulation Models 41

3.6	 Outputs from the Simulation ... 43

3.7	 First-Fit Model Modifications . 49

3.7.1	 Modification 1. Maintain
Available Buffers by Size . 49

3.7.2	 Modification 2. Reduce Con-
trol Overhead	 51

3.7.3	 Modification 3. Permit Vari-
able Request Sizes 53

3.8	 Consideration of an Adaptive
Approach	 56

3.8.1	 Provisions of a Self-Adap-
tive System	 56

3.8.2	 Proposed Extension to the
Current Study 59

4.	 REVIEW OF SOME EXISTING HARDWARE AND
SOF'T'WARE MONITOR TECHNIQUES

4.1	 Hardware Measurement Techniques

4.1.1	 IBM 7090 Hardware Measure-
ment Technique	

4.1.2	 IBM System/360 Hardware
Measurement Technique

`z
(TS/SPAR)	

4.1.3	 UNIVAC 1108 Hardware
u Measurement Technique
S ij

4.2	 Software Measurement Techniques

4.2.1	 GE GECOS II, GECOS III Soft-
_	

1

ware Measurement Techniques

4.2.2	 CDC 6600 CHIPPEWA Software
_ Measurement Technique

t

r- 4.2.3	 IBM TSS/360 Software Mea-
surement Technique (SIPE)

rFA 4.2.4	 IBM OS/360 Software Mea-
surement Technique (SMS/360)

^ 5.	 SYSTEM FUNCTION ANALYSIS USING SOFT'WARE
MONITOR TECHNIQUES	

5 .1	 TRACE	

5.2	 ITFVA (Instructional Trace and
Functional Value Analysis) 	

5.3	 OPSDE (EXEC 8) Operating System
Performance Data Extractor

5.4	 Other Techniques Under Consi-
deration	

5.5	 Performance Evaluation Analysis
_ of	 EXPOOL......................

61

61

61

63

66

68

69

70

70

72

74

74

76

80

82

83

5.5.1	 The Buffer Pool	 83

5.5.2	 Request and Release Buffers
from EXPOOL	 85

5.6	 Preliminary Results of an Analy-
sis of EXPOOL	00.00... 86

6. ANALYTIC STUDIES SUMMARY 97

6.1	 Storage Requirements for In-
formation Handling Centers
(Abstract)	 97

6.2	 A Stochastic Model of an In-
formation Center (Abstract)	 ... 98

7. TECHNICAL REPORTS AND PUBLICATIONS ... 99

8. QUARTERLY REPORTS	 100

BIBLIOGRAPHY......... 101

1. Introduction

The work described in this technical report represents

the final report on the work performed under NASA Grant

NGR21-002-197 entitled, 'Analysis of Data Processing Systems'.

Two major tasks were to be undertaken during the study. These

were in the areas of problem definition and model development.

The major function of problem definition was to characterize

multiprogramming, multiprocessing computer systems in terms

of hardware, software, personnel, and operating environment so

that such systems or portions of them could be evaluated using

analytic and simulation techniques. In the process, considera-

tion was given to tools that could be developed and used to

gather statistical data so as to permit practical measurement

of the research results. In the area of model development, a

portion or function of a multi-computer system was to be de-

fined and analyzed.

1.1. organization of Report

In this section, the results from the major tasks undertaken

in this study are summarized. In Section 2, an overview is

provided of the work performed and reported in the field of

computer evaluation. The evaluation techniques included cover

the topics of simulation, mathematical modeling, software

monitoring, and hardware monitoring. In Section 3, work per-

formed under this grant to analyze several alternative dynamic

allocation strategies which may be implemented in an operating

system is described in detail. The analysis focuses on a

specific computer system so that the initial studies can be

j	 validated using realistic data. A simulation model has been

2

developed which permits the use of a particular allocation

scheme implemented in the Univac 1108 to be compared with

other strategies. In Section 4, some of the existing hardware

and software monitoring techniques that have been reported upon

in the computer literature are reviewed in greater detail than

was done in Section 2, and hence supplement aspects of the

work reported on in that section. In Section 5, specific

techniques are described which have been developed under this

grant to permit the monitoring of software code. The general

principles of the techniques which have specific implementation

on the Univac 1108 are described. Section 6 summarizes the

basic results obtained in the investigation of analytical

models of portions of computer systems. The details of the

work are presented in reports referenced in Section 7 which

contains publications and reports issued under this grant.

Finally, a bibliography of documents referenced directly in

this report is provided.

1.2. Summary of Results

The work performed under this grant falls into four cate-

gories. These include simulation modeling, software monitoring,

analytical modeling and bibliographic research.

1.2.1 Simulation Results

The simulation studies involved modeling a basic function

of an operating system. In particular, the dynamic allocation

of buffer storage was selected for study. The 'buddy' method

(described in detail in Section 3.4.4), the strategy implemented

in the Univac 1108 executive system, was modeled first. Sub-

3

sequently, other allocation schemes were modeled for comparison

and evaluation purposes. Details of the work performed and

the models developed are given in Section 3 of this report.

The basic results of this aspect of the work are summarized

here.

. Simulation Effectiveness	 Simulation was found to be

an effective tool for varying the input data, for testing

*	 alternative design strategies, and for defining under what

operating conditions one strategy would be expected to be

preferable to others. (See Section 3.)

. Buddy Method vs. First-Fit Method . Outputs from the

models indicated that the buddy method of dynamic allocation

of buffers was more efficient than the first-fit method in terms

of time and space for the type of buffer requests characteristic

of the University of Maryland Univac 1108 operating system.

(See Section 3.6.) The first-fit method is another strategy

that may be used to dynamically allocate buffer space. The

first-fit method is described in Section 3.4.1.

. Frequency of Memory Consolidation . It was found in

the buddy system that the mean number of times that a released

buffer could be combined with its b+eddy was .012. This indi-

cates that a decrease in operating system overhead may be

obtained by merely returning a buffer of 2k words to the

available storage list without attempting to recombine it with

its buddy of 2k words, or by limiting the attempts to recombine

buddies to one per release. (See Section 3.6.)

. Improvement of First-Fit Method . Given the distribution

of request sizes found in the Univac 1108 system, the basic

first-fit model may be improved by maintaining available lists

by size. The problem of fragmentation of the buffer space is

minimal, and is essentially the same as that found as a result

t

4

E

of allocation using the buddy system. (See Section 3.7.1.)

Conditions Under Which First-Fit Might be Preferrable 	 -

The first-fit method compares favorably with the buddy system

when requests for arbitrary space sizes are considered and when

relatively large buffers are required. When the average

request for buffer space is greater than 25 words, the over-

head in the first-fit method becomes minimal, but the

fragmentation of core increases; however, the loss of space

introduced by the buddy system under these conditions may

well be unacceptable. (See Section 3.7.3.) 	 =g

1.3. Software Monitoring Results

The objectives of the software monitoring were (1) to

provide a means of obtaining statistics characterizing an

actual operating environment, and (2) to provide a tool for

analyzing and evaluating the performance of system elements

as a function of their implementation. Descriptions and

details of the software monitoring tools which were developed

are presented in Section 5. The results of general interest

are summarized below.

. .Buffer Request Distribution of Univac 1108 EXEC VIII

System	 The request distribution for buffers, obtained from

the construction of memory maps taken at specified intervals

of time show that 95% of the buffers requested lie between

2 2 and 2 5 words. The average request size is between 2 4 and

2 5 wo-rds. (See Section 3.5.)	 i

Fragmentation Resultingfrom Use of Buddy Method

Fragmentation of memory is not significant in the Univac 1108

executive system, which uses the buddy method of dynamic al-

location. That is, the available memory is not fragmented to

1

5

the extent that requests for space cannot be honored when the

total available space exceeds the size of the requested buffer.

(See Section 3.6.)

Software Monitoring for Detecting Inefficient Code
The benefits of the best design approach may be negated by a

poor implementation. After implementation, software monitoring

may be used to detect potential areas of inefficient code.

(See Section 5.6.) The value of software monitoring has become

clear in this study through the use of an analysis routine,

TRACE.	 This routine provided the means for monitoring the use

frequency of code in the 1108 allocation routine. 	 In the

process, the effect of inefficient code was assessed.

Inefficiencies in EXPOOL Implementation in EXEC 8 .

Software monitoring of the Univac 1108 allocation routine de-

tected inefficient code which, if modified, would reduce the

number of operations from 103 to 74, the time to allocate a

buffer from .180 msec to .130 msec.	 If the frequency with

which this function is initiated is at least once per 25 msec,

then by increasing the efficiency of the code, a saving of 28%

in the overhead introduced by this function could be realized.

The net result is that, in general, .016 hours per 8-hour shift

of computer time now being wasted in overhead could be made

available for useful work.	 The potential improvement in system

efficiency applies to all Univac 1108 installations operating

under the control of the EXEC 8 supervisory system. 	 (See

Section 5.6.)

. Development of a Function Performance Evaluation Tool

An analysis routine called TRACE has been developed which

permits one to monitor the use frequency of code in a program.

Specifically, the program to be monitored is not restricted by

size, function, or special features required by the TRACE

routine. (See Section 5.1.)

I,

6

1.4.	 Analytical Modeling

Two mathematical models of a portion of a multi-computer

problem were formulated and solved. 	 The basic elements con-

sidered are a primary store, a secondary store, and a retirement

policy whereby entries in the primary store are retired to j

the secondary store.	 In the first model the primary store

was assumed to be infinite.	 In the second model this re-
striction was eliminated, a bounded store was assumed, and

the model was solved.	 A paper presenting the results of the

first model entitled, 	 "Storage Requirements for Information

inHandling Centers" by H. M. Gurk and J. Minker will appear

the Journal of the ACM in January, 1970. 	 A final report on

the second model is contained in a University of Maryland

Technical Report 69-90 entitled, "A Stochastic Model of an

Information Center" by J. Minker and was delivered under the

grant to NASA in July, 1969.

1.5. Bibliographic Research Results 	 -

A bibliography on the literature pertinent to the monitoring

and analysis of computer operating systems has been accumulated. 	 w`

A KWIC (Key Word In Context) index has been developed and a 	 =

technical report is being issued on this subject. The

bibliography contains approximately 300 entries at this time.

As new documents become available, updated versions of this 	 =_

bibliography may be obtained by submitting changes in subsequent

computer runs. A preliminary KWIC index was included with the

third quarterly report under this grant. The bibliography now

being submitted updates the preliminary issue. The preliminary

issue is available from the Clearinghouse for Federal Scientific

and Technical Information, Report No. N69-30816.

7

2. An Overview of Computer System Evaluation Approaches

The need for evaluation arises initially when the need for

a computer system is determined. The need for evaluation is

never satisfied completely thereafter. The original plans for

implementing a computer facility involve the following basic

question: 'What configuration of hardware, software, and person-

nel is required to perform the anticipated data processing tasks

and generate useful outputs within a required response time?'.

It is clear that many different system configurations could

satisfy the user requirements. The objective then, is to

determine which configuration is 'optimal'. The optimal con-

figuration must be considered relative to user requirements.

`	 This is the only context in which the term optimal as applied

to computer systems has meaning. The situation is particularly

difficult because user requirements may change with time. The

system which is finally implemented may not be optimal, but

rather a result of compromises made to best satisfy user re-

quirements. In order to make meaningful decisions during the

system design phase, standard measures of system capabilities

must be employed. This leads directly to a consideration of the

measures to be used in the evaluation of system performance.

One is also led to a consideration of the techniques to be used

for analyzing the system and assigning values to these measures.

The measure:: used in evaluating the system are a function

of user requirements. Some of the measures related to user

requirements are turn-around-time, throughput, cost, system

reliability, and combinations of these factors. Assume for the

moment that the user is able to estimate his applications

workload and to specify his requirements on the system. The

problem then becomes one of adopting a technique or methodology

I

1

8

for evaluating possible system configurations in terms of his

requirements. A possible configuration here may be a standard

off-the-shelf hardware/software system, or a configuration

resulting from some suitable combination of available hardware/

software components which can be integrated to handle the ap-

plications workload, or the design of a new system. Although

it is difficult to evaluate the effect of the personnel within

a system, an attempt must be made to take into consideration

such factors as personnel experience level and expected compe-

tence. The capabilities provided for in a system design may be

realized to a large extent or may be degraded significantly as

a result of the personnel interacting 1 -ith the total system.

2.1. Development of Computer Evaluation Techniques

A review of the brief existence of general-purpose computer

systems may put into perspective the current concern for the

need for system evaluation measures and techniques. As late as

1960, the problem of system configuration presented no serious

selection problems. There were few equipments and few manu-

facturers. If a large scale processor were required and funds

were available, a computer system could be installed necessita-

ting relatively few decisions on the part of the user. The

application determined whether a scientific or commercial

computer, i.e. binary or decimal, was needed. Standard soft-

ware packages including O/S, compilers, and assemblers were

furnished with the hardware. Having decided on a vendor, the

hardware configurations were fairly standard. A few options

could be exercised, e.g. the number of physical tape drives to

be installed.

During the next few years, experience was gained in the use

t

9

of the second generation computers. 	 Among computer users,

there was growing concern due to the lack of well-defined

evaluation and selection techniques. 	 By 1964, the year IBM

announced their third generation computer, the IBM 360, it is

significant that one full session of the AFIFS Spring Joint

Computer Conference was devoted to computer system evaluation.

The government, the largest customer of the computer industry,

was finding it more difficult to justify, in terms of value

for cost, the purchase of one system as opposed to others. 	 The

number of vendors, the line of computers and options, the

number of programming languages, and operating systems had all

increased.	 The decisions regarding what computer system to

select had increased accordingly.	 At this point several approaches

were taken to get a handle on the .seemingly unsurmountable task

of computer selection.

In an effort to standardize computer system selection for

a government project requiring the purchase of 150 computers,

a method was proposed which involved assigning weights, that is,

numerical values, to all items in a proposed system. 	 This

weighted factors selection method 	 recognized the need for

evaluating 'extras' as well as standard items. 	 The inherent

weakness of the method lay in the use of absolute weights to

score too many factors and to score details within each factor

in different ways.	 The result was that a given item, e.g.

speed, might be weighted for many different reasons so that its

true worth and influence in the final selection could not be

determined accurately. 	 A further objection to this selection

method was that the decisions underlying the system evaluation

were largely a matter of subjective opinion and were based on

the	 Evaluators	 biased by theirevaluators'past experience.	 are

background, e.g. financial or engineering, and in the case of

10

new systems, past experience may not be reliable as a basis

for computer selection decisions. The value of this method

was that it attempted to standardize the selection of computer

systems so that particular vendor proposals could be treated

impartially.

The cost-value selection technique resulted as an out-

growth or extension of the weighted factors selection method.

Only two categories of factors, costs and extras, were recognized.

The costs included those associated with securing and maintaining

the computer system equipment and the support necessary to

satisfy the applications requirements. The 'extras', later

cranslated to dollar cost, included items of value which were

inherent in the costs of one system but not to all systems under

consideration. Ideally, each item, i.e. each system attribute

of value, was considered only once in the evaluation, either as

a direct cost, an indirect cost via increased running time, or

by its value as an 'extra'. The reduction of all items to a

dollar cost produced a common denominator which was then used

as a measure for all systems under consideration. The basic

advantage of this technique over the weighted factors technique

lay in the common denominator concept which allowed all item

costs to be treated independently. The cost-values derived for

the various systems were applied as credits to offset the cost

of the system and services. The system providing the most value

for cost was then the system selected.	 s

Obviously, this method does not solve all the problems

involved in the selection of a computer system. Its primary

shortcomings include its failure to consider interaction of

personnel with system hardware and software, the system design

integrity, and validation of proposed system characteristics.

Further in neither of these methods is there any attempt to

t

11

utilize computers to automate the complex procedure of system

evaluation and selection.

In view of the number of details involved in hardware and
m	

software description, it was clear that a library must be esta-

blished and updated as new designs became available. Further,
r

this library would be effective if it could be referenced

automatically. The need for a complete library of EDP 3 in-

formation was not new. Auerbach Corporation very early in 1962

realized the need for standardized reports and information

which could be readily accessed by computer users. The reports

and information made available were and are valuable as a

library resource; however, their role in system evaluation is

limited to the extent that manual system evaluation itself is

limited.

Perhaps, the first significant technical development is

reflected in the initial efforts to automate system performance

evaluation. This approach included the use of a tape library

which could be accessed automatically in conjunction with an

attempt to model and simulate the performance of proposed systems.

The computer system developed, SCERT 	 stems and Computers

Evaluation and Review Technique), 4,5 was designed to assist in

making initial computer selection decisions, to aid in deter-

mining the adequacy of a given system, to evaluate modifications

made to increase system capabilities, and to determine the

effects of automating new applications and software. The

development of this evaluation technique was well under way by

1964 and was reported at that time.

Since 1964, the original version of SCERT has undergone

modifications and has been enlarged to permit evaluation of

large complex systems as well as small special purpose con-

34figurations. More recently, CASE, a simulator comparable to

f:

12

SCERT has been developed by Software Products Corporation. Of

some interest is the fact that both SCERT and CASE are maintained

by the developers on a proprietary basis. Of more importance

is the fact that the value of simulation in computer system

performance evaluation is being recognized and that simulation

techniques are being utilized. 	 of

2.2. System Measurement Tools

At the present time, the methods for computer system

evaluation are still somewhere between an art and a science.6

The scientific method involving observation, hypothesis,

experimentat4on, and modification is difficult to apply to
r

computer systems. This may be true because it is not possible

to conduct controlled experiments on a complex and variable

system or because to modify the physical system to perform ex-

periments would be too costly and would require excessive time

and effort. The problem of system evaluation has been attacked

on several levels - analytical modeling, simulation, internal

softwar- monitoring, and hardware monitoring. The applicability

of any one of these techniques may be limited and the confidence

to be placed in the final evaluation is a function of the level

of understanding of the user.

2.2.1 Analytical Modeling

As evidenced in the recent literature, much work has been

performed in the area of analytical or mathematical modeling.

It is significant that the scope of the modeling studies has been

limited to st,bsystems of the total system. Attempts to describe

a total system mathematically result in complex unsolvable

-	 models or even if solvable, the models are not sufficiently

13

flexible to permit modification and further analysis. Although

the use of mathematical analysis has been restricted to logical

subsystems of the total system, the results produced in many

instances are directly applicable in making decisions during

system design and later in formulating algorithms for system

operational control.

Typical studies in mathematical modeling involve the

analysis of I/O buffering requirements 7 , paging characteristics$,

the phenomenon of thrashing associated with excessive paging 9,

time-slicing algorithms for multiprogramming 10 , queueing dis-

ciplines as applied to job scheduling ll , and dynamic allocation

of system resources 12 . The models provide a means of thoroughly

understanding specific critical aspects of a computer system.

As indicated earlier, mathematical modeling is not a practical

solution to the problem of total system evaluation. Its ap-

plicability should be viewed as local as opposed to global.

2.2.2 Simulation

A partial attack on the global problem is through simulation.

The phrase 'partial attack' is used because to make the most

effective use of simulation, it should be used in conjunction
with other techniques such as analytical models, software

monitoring and even hardware monitoring. A simulation model

properly designed and implemented for a sizable system is ex-

pensive, but may be one of the best tools for accurately

predicting and analyzing system performance. The proper use of

simulation is not easy. If the level of simulation is too gross,

not enough details are simulated and the resulting information

content is low. If the level of simulation is too fine, the

cost of performing the simulation due to gun time maybe

14

prohibitive.	 Further, the results produced through simulation

are no better than the assumptions underlying the construction

of the model.	 The assumptions concerning the behavior of

variables within the real system are perhaps most critical.

In many cases the behavior	 of these variables can be represented

only through random sampling of variables assuming a particular

distribution.	 The results are then valid to the extent that

the assumed behavior of the variables in the simulation approach

the actual behavior of the variables in the system simulated.

To facilitate the expression of the components and logic

of complex systems special purpose simulation languages have

been developed.	 The primary objective of such special purpose

languages is to permit the user to concentrate more on the y
details of the system Simulated than on the mechanics of the

language in which the system is expressed. 	 This is not to say

that much simulation work has not been done in the past using

available general purpose compilers such as FORTRAN, ALGOL, and

PL/1.	 There is an advantage in using general purpose languages

since communication of programs is facilitated due to widespread

use of these languages. 	 A disadvantage of the use of these

?.anguages is that in order to simulate timing, interrupts,

queues, and control functions accurately, more attention must

be given to details of using the language than to details

relevant to the simulation.	 The nature of the simulation

languages developed varies from general purpose system simula-

tors, e.g. GPSS 13 and SIMSCRIPT 14 , to computer system simulators, AV=
e.g. CSS 15 and S3 16, to hardware simulators, e.g. Computer De-

sign Language
17
 and HARGOLI$.	 Further, some of the languages

were developed as independent assembly based languages and some

as extensions of existing languages.

In deciding what language to use, certain factors may be

15

critical - availability of the language for general use, i.e.

proprietary or unrestricted, flexibility of the language, and

prior experience with the use of the language. The simulation

language, to a large extent, determines the scope of the

simulation possible. objectively, the language should be

selected or developed to provi.de ease in representing the

system to be simulated, to permit either general or detailed

descriptions of system components as a function of the level of
simulation required, and to make possible the use of mathematical

models for characterizing alternative modes of system behavior.

The outputs from a simulation study are equally important, i.e.

the measures of system performance produced by the simulation

which provide statistics relating to turn-around-time, throughput,

hardware/software utilization and queueing processes. To be

useful, the outputs should be a function of user need for de-

tailed or general information at any desired frequency throughout

the simulation run.

2.2.3 Software Monitorin

Internal software monitoring of an actual computer system
is another means of attacking the problem of assessing system

effectiveness. System analysis, using this technique has been

undertaken at the University of Michigan
19

and is also being

t
used to monitor the MULTICS timesharing system at M.I.T.20

Clearly, this technique is useful only in conjunction with an

operational system. The monitoring discussed here is not
necessarily connected with the collection of accounting type

information. The function of the monitor is to gather statis-

tics on actual system resource utilization, queue formation,

job frequency, etc. The outputs then form the basis for

identifying excessive queues, if they exist, which in turn reflect

16

bottlenecks in the system and need for improvement. The

monitoring mechanism must appear to be operating in parallel

with the normal operating system, causing essentially no

interference which would alter the results of the standard :node

of operation. Particular care must be taken in using this

technique in that the monitoring is not actually performed in

parallel, and the user must be assured that the interference,

if any, is insignificant with respect to the parameters of

interest.

Limited use has been made of this technique since the

implementation of the monitoring mechanism is special purpose.

Each computer installation invariably has its own unique

operating system which means each new system monitored requires

new routines and reprogramming to permit evaluation of system

performance.	 Further, comparison of systems monitored may be ,e

difficult due to differences it system configuration and

general operating procedures.	 It is our contention that each

operating system must build in a monitoring capability of its

own.	 This is true for any large system.

Very recent efforts in the area of software monitoring in-

^Aude the development of monitors by Boole and Babbage 28,29 and

a software measurement technique, SIPE,	 (System Internal Per-

formance Evaluation) developed by IBM 26 .	 Both of these

monitoring devices have been designed for the IBM system/360

Time Sharing System.	 The use of either of these monitors -

results in some system degradation during the data collection

and recording mode.	 The loss of system efficiency incurred is

justified in that analysis of the operation of a large-scale

complex operating system requires data that can be obtained

only from 'inside' the system as it is operating. 	 The basic _>

feature of internal monitors is that they have access to, and

3-

`	 17

can selectively record, system data. Subsequent analysis of

C'
	 the data recorded allows for locating the low efficiency

portions (i.e. bottlenecks) of a configuration and permits

determination and improvement of inefficient software.

Although the actual implementation of an internal moni-

toring device is special purpose, the results obtainable

fulfill very general needs. Every operating system should

have the capability of self-monitoring, particularly in areas

where performance evaluation is critical and in cases where

the workload characteristics and system utilization may vary

over time. A logical extension to the self-monitoring concept

is system self-modification, i.e. under certain conditions

adjusting parameters within the system which govern system

performance. Clearly this step can not be taken until per-

formance under manual control of parameter modification can

be evaluated and understood fully.

2.2.4 Hardware Monitoring-

The design and implementation of special hardware moni-

toring devices has been limited due to cost of implementation

primarily. The need for such devices has been realized as

experience has been gained in the use of large multiprocessing

and multiprogramming systems. In most cases, the system

capabilities are unknown and means must be devised to determine

system operating characteristics such as I/O wait times, overlap

of activities, resource utilization and idle or unproductive

times. Hardware monitoring is especially attractive since,if

properly designed, many signals can be monitored simultaneously,

causing essentially no interference with the system monitored.

One of the earliest uses of hardware monitoring was the

f

18

direct couple system implemented by IBM which permitted an IBM

7044 to monitor the IBM 7094 operating in stand alone fashion. 21

The 7044 acted as a big counter to obtain statistics on in-

structions processed in the 7094. This techniques is currently

being used by Univac to debug and evaluate the 1108 EXEC VIII

operating system.
27

In this case, two 1108's are set up as a

multiprocessing system, however, the only function of one

processor is to gather information on the operations of the

other processor. The cost of such monitoring precludes their

general use by individual users attempting to improve system

performance.

In 1967 the design of the SNUPER computer was reported. 22

The objective of the design project was to develop a monitoring

device which would interface with a computer system, produce a

record of significant events, and between significant events,

provide for generation and maintenance of on-line displays.
The ultimate goal of this study was to determine the class of

instrumentation which could give significant measures of system
performance using a small, low cost SNUPER computer. If these

objectives could be met, the compute then could be used at

more than one computer installation. The most recent report on

this project was given at the AFIPS 1969 SJCC23 . The emphasis

in this report was more on the class of parameters which could

be monitored than on the hardware features required to handle

the monitoring.
At the same time, IBM was working on a recording device, the

Time-Sharing System Performance Activity Recorder (TS/SPAR) to

be used in monitoring the class of TSS/360 computers.
24

Input

to this device was via a specially engineered interface through

which the internal states of the Model 67 system and I/O devices

could be monitored. The report was non-committal as to the

1

19

i
f

actual success realized through the use of the recorder. It was

viewed more in terms of its potential for the future in the

areas of multiprocessing, multi-tasking, data set organization

f in virtual and real storage, and I/O monitoring. A long range

objective was to provide feedback capabilities and make the

recorder a system monitor rather than merely a logger of in-

formation.

At the present time, any extensive hardware monitoring is

special purpose, expensive and rather inflexible. As a conse-

quence, hardware monitoring devices, developed and used, by

computer system designers, have had limited use by the general

user.

2.3. The Use of Multiple Measurements

In the preceding discussion, the major methods available

for use in system evaluation have included mathematical modeling,

simulation, internal software monitoring and hardware monitoring.

Each of these methods has its advantages and also its limitations.

In the evaluation of system performance for a large scale multi-

processing or multiprogramming system, any one technique may

not be a practical or satisfactory solution. Limiting factors

may include cost, complexity of system, level of confidence in

unavoidable assumptions made, inflexibility, or interference

caused by the monitoring device. A more practical solution to

system evaluation appears to be through the use of more than one

technique.

2.4. Specific Applications

`

	

	 Perhaps the best example of the use of multiple measurement

tools is found in the research now being conducted on the MULTICS

t

20

time-sharing system.
25

At system design time certain hardware

features were provided to enhance software measurement. These

included a central read-only system clock which produces a

count per µsec, a time match interrupt, and a CPU memory cycle

counter. When the system became operational, software modules

were developed to use the hardware monitor features and to

provide information on frequency and timing of missing page

faults, missing segment faults, linkage faults, wall-crossing

faults, and interrupts. By taking advantage of the built-in

hardware features, the software required was not elaborate.

For example, segment usage metering was performed through the

use of the clock and the time matching interrupt. Every 10

Aaec an interrupt occurred, at which time the core location was

noted and recorded. Reduction of the data provided a histogram

of segment usage and indicated most popular segments. The results

permit localizing where time was being spent and further which 	 W,

procedures should be made more efficient.

In order to conduct scientific type experiments, i.e. re-

producible experiments as far as possible, bench marks were

established for the MULTICS system. The bench marks took the

form of script input which is essentially an established list of

commands representing console users. During test periods, the

system configuration is standardized and the use of the system
is restricted, i.e. no other users are allowed to distort the

experiment. One of two modes of operation then is possible -

internal or external. In the internal mode, the script is read

into the main computer. A simulation program is used to interpret

the commands and to trigger the system functions just as if n

consoles were driving the system. When the external mode is

used, the script is interpreted by a PDP-8 computer and inter-

rupts are produced at the main computer exactly as they would 	 I
t

21

appear if produced directly from console users. A logical con-

sequence of using bench marks for system evaluation is that op-

timization of system performance is in terms of the inputs used.

The MULTICS project group considered this in setting up the script.

The commands to the system included in the script were selected

primarily from typical requests requiring extensive file mainte-

nance and management. Optimization of the system in terms of

these requests results in general system improvement since in a

time-sharing system much time is spent in paging and file mani-

pulation.

In summary, measurement tools being used in the MULTICS

system include hardware monitoring (provided in system design),

software monitoring, bench marks, and simulation. Evaluation

of the data obtained through the use of these measurement tools

is providing insight into the operation of time-sharing systems

and making system improvement possible through the analysis of

effects produced by system modification.

2.5. Conclusion

Not all system analysts are fortunate enough to have in-

tegrated hardware instrumentation; however, extensive use of

all available evaluation techniques should be considered. One

attractive approach is through simulation, validated by actual

system performance as determined using internal software

monitoring. Further the simulation process may be reduced

through the use of results derived from mathematical modeling of

subsystem behavior. The technique or combination of techniques

to be selected and implemented for any given system will depend

upon many factors including available hardware instrumentation,

the scope of the evaluation, and the stage of system development.

In any case, system evaluation must be a continuing effort - in

22

the system design in order to meet user requirements and later

in system operation to determine whether system capabilities

have been exceeded,or the system is being used inefficiently,

or simply to improve or to maintain system performance as user

and application characteristics change with time.

i
23

3. Analysis of Dynamic Allocation Strategies

The basic objective of this phase of the study is to obtain

a better understanding of the analysis techniques of simulation

and internal software monitoring that might be applied to opera-
ting systems. Starting with the most elementary functions,

analyses could be pursued to the more complex aspects of system

design. As a case study, a basic system function, dynamic al-

location of buffer storage, which allows for alternative

strategies and implementation was selected. It was hoped that

using the analysis techniques, it would be possible to determine

under what operating conditions one strategy could be considered

superior to another. Further, given an actual system with one

of the alternative schemes implemented, decide, using charac-

teristics of the environment in which the system is operating,

whether another scheme would be more efficient and if so in what

measurable respect. There are definite benefits derived by

analyses even if it is found that an algorithm currently imple-

mented in an operating system is best in terms of the environment

in which it is functioning. This would indicate that this

system function should remain unchanged unless it were found

that the operating environment had changed significantly. Further,

the analysis would provide a basis for determining which schemes

should be considered seriously to provide a more effective

system as a function of the nature of an environmental change.

This whole discussion and consideration of system or func-

tion evaluation leads back to the underlying objective which

is to be able to attach values or apply measures to aspects of

system design. Ultivitely, the objective is to be able to make

decisions concerning system design and modifications where the

t

24

decisions are based on something more concrete and extensive

than intuition and past experience. The latter may be in-

valuable in the creative stages of system design where ideas

and alternative methods must be available for evaluation and

consideration. However, the decision to implement a particular

strategy should be a function of the system environment, the

actual operating characteristics, and the interaction of

system parameters.

3.1. Scope of Initial Study

The analysis undertaken in this study makes use of

simulation models and internal software monitoring of actual

system performance. The scope of the simulation was restricted

to analyzing the characteristics of dynamic allocation of

buffer storage for temporary, unpredictable, and small storage

requests. The Univac 1108 supervisory system, EXEC 8, alloca-

tion scheme was the subject of analysis. This system was

selected because of its availability at the University of

Maryland Computer Science Center for observation through soft-

ware monitoring. The dynamic allocation schemes for buffer

storage became the subject of analysis because this function

is central to the allocation scheme implemented in the

executive system and is a critical factor in system performance.

From time to time the allocation scheme implemented in the EXEC

8 has come under close scrutiny of the system analysts. At

these times attention has been directed more toward determining

why system performance has become degraded or nonexistent than

toward evaluating the merits of the implemented allocation

scheme as compared with others which might be more effective

under certain operating conditions.

t

25

It shoald be noted that the choice of buffer allocation

schemes as the subject of study was made in view of the fact

that the allocation of small buffers is relatively self-contained

as compared with dynamic allocation of user programs in a multi-

programming environment. In general, allocation of memory to

user programs cannot be considered independent of a particular

system design philosophy including scheduling procedures,

priority schemes, and hardware restrictions. Further, allocation

of memory to user programs may be extremely complex involving

many variables and parameters which in themselves are not

clearly understood. The interaction of these parameters is
then another order of analysis. The unavoidable complexity and

the magnitude of such a study dictate that experience should be

gained in the use of the analysis techniques in understanding

the basic elements of a system as a first step. The potential

use of these techniques can then be realized in more extensive

studies which should be undertaken.

3.1.1 Function Parameters

In the allocation of buffer storage, two factors, time

and space, are important. In any given system one may be more

critical than the other. If such is the case, time-space

tradeoffs may be unavoidable. Ideally, the strategies implemented

would be selected only after an analysis of potential schemes

had been performed,which would indicate the strategy incurring

the least penalty and best satisfying the critical space or

time requirement. The two factors of interest in the dynamic

allocation of buffer storage may be restated as the 'time to

allocate and release buffers' and memory utilization or the

percent of total reserved memory which is effectively used'.

26

The allocation time may be increased or decreased depending

upon the allocation strategy adopted and the sophistication and

complexity involved in the programming.	 The program complexity

and possibly the running time may be increased if a premium is

set on the memory use.	 In any case, there is always some over-

head time assocated with the search and maintenance of available

buffer storage lists.	 Conbributing to memory loss are system

overhead requirements and waste, so that the memory utilization

factor is always less than 100%. 	 Included in the system over-

head is the amount of storage required for linkage, block sizes,

and use tags.	 Contributing to the waste are two sources of

unusable memory: fragmentation of memory and fixed :request size

which requires that the request be equal to some specified

buffer size.	 Whenever	 it is necessary to request a buffer

greater than the buffer actually needed, some memory loss is

incurred.	 The memory loss incurred by fixed request requirements

may be acceptable and even desirable if space is not the prime

consideration and the implementation is facilitated and/or the

allocation time is reduced.

3.1.2	 Pooled versus Private Buffers
L

Buffer storage allocation is a function common to most

operating system executive routines. 	 There are two ways to

assign buffers:	 either buffers are acquired dynamically as

needed from a pooled buffer, or each process requiring storage

has its own private buffer which is sufficiently large to make

the probability of overflow less than some number. 	 The use of

pooled buffers by an executive routine servicing many users

through reentrant routines which require temporary buffers is

essential if memory utilization is to be high. This is clear

1

27

since otherwise for each routine the memory loss caused by each

user is equal to the difference between the expected maximum

buffer needed and the average buffer usage. A conclusion based

on analysis reported by Denning
31

is that 'pooled buffers are

far superior to private buffers, especially when the number of

users is large'.

Another advantage of the pooled buffer lies in the fact

that allocation of additional space for buffers regardless of

which routines are temporarily active need be made only when the

total memory allocated to the pool is near depletion. The term

'near depletion' describes the situation where a request is made

for a buffer of size n and this request cannot be honored, how-

ever, the difference between the total memory reserved and the

total memory allocated is greater than n. Restated, this means

that if the used buffers were placed contiguously in the memory

pool, n consecutive memory locations would be available to

satisfy the buffer request. It is highly improbable that all

available space will be used before apparent overflow occurs

due to some degree of fragmentation introduced in the allocation

process. It is in the interest of maximum memory usage to im-

plement an allocation scheme which keeps fragmentation at a

minimum or to provide for memory consolidation periodically.

Because of the asynchronous nature of the executive functions

and the many users operating concurrently in the computer system,

buffer consolidation through memory rearrangement and relinkage

would be unfeasible. The objective then is to evaluate alloca-

tion schemes in relation to the operating environment and decide

upon one which keeps memory loss caused by fragmentation at a

minimum.

l

28
3.2. Buffer Allocation Algorithms

Basic schemes for dynamic allocation along with algorithms g

for implementation have been well defined in the computer science

literature. 32	Some comparisons of the methods have been made -_

on the basis of assumed operating environments. 	 The schemes

receiving most widespread usage are the first-fit method, the

best-fit method, and the buddy method. 	 In the first-fit and

best-fit allocation, a list of available storage is maintained.

When buffers are released, they are returned to the list of

available storage either separately or combined if the released

block is contiguous with a block of available storage. 	 The dif-

ference in the two methods is found in the allocation. 	 In the

first-fit method, a request for a buffer of size n is filled

from the first block of available storage encountered on the list

which is greater than or equal to n. 	 In the best-fit method, if

no block of size n exists, a search of the entire available storage

list is made to find the block of storage which makes the

available storage block minus n a minimum. 	 In general, the best-

fit method is implemented less often than the first-fit method

because of the time factor involved in the available storage

list search for each allocation made.	 It has further been

found that the best fit method does not necessarily reduce the

problem of fragmentation. 32

The buddy system which is implemented in the EXEC 8 requires

that the size of requested buffers be a power of 2. 	 It should

be noted here that this requirement for standard request sizes

may be an important factor in memory loss if the user must

request buffers which are larger than actually needed. If no

buffer of size 2k is available, the smallest 'dock 2 3 which is

greater than 2k is split into block 2k,...,2j-1 words each.

Upon release of a buffer, halved blocks, called buddies are recombined

if both are available. More complete descriptions of the first-

_=

i
29

f

£F
1

fit and buddy algorithms will be given later since these are

the two basic schemes, with some modifications, which are

evaluated in this study.

As indicated earlier the analysis techniques used included

simulation and some software monitoring of the EXEC 8 operating

system. The simulation permitted an evaluation of the allocation

schemes in terms of time and memory utilization. The data

obtained using internal software monitoring of the executive

system provided request-release distributions representative

of those seen by an actual operating system. Simulation taken

alone is valid to the extent that the assumptions made about

the actual behavior of the system parameters are valid. Soft-

ware monitoring provides data representative only of the parti-

cular system monitored since,incorporating alternative schemes

into an existing operating system for experimentation purposes

is difficult,and in general. is not encouraged by system

analysts responsible for maintaining an 'operating' system.

Validation of the simulation models and increased confidence in

the outputs from the evaluation process resulted through the

combined use of the two techniques.

3.3. Simulation Language

The schemes for dynamic allocation of buffer storage were

modeled using GPSS-II and processed using the Univac 1108 at

the University of Maryland Computer Science Center. GPSS-II is

a general purpose system simulator designed to permit the study

of any system or process which can be reduced to a series of

operations performed on units of traffic. The structure of the

system simulated is described as a series of blocks, each block

U;	 describing some step in the action of the system. A number of

f

30

block types are provided,each corresponding to some basic

actions or conditions that may occur in a system. In the

simulation process, units of traffic, or transactions, are

created and processed through the system by the simulator.

The user of GPSS-II may control the volume of traffic,

the action time in any block, transaction priorities, condi-

tional entry or exit from blocks, and specify the outputs

desired. The outputs may include information on the number

of transactions, i.e. volume of traffic through portions of

the systa.n, the distributions of transit times for transactions

between selected points in the system, the average utilization

of system elements such as facilities and storage, and informa-

tion on queue formation at selected points in the system. The

outstanding features of the simulator include the facility

with which continuous or discrete functions may be defined and

used in the simulation process, the control the user has over

the routing of transactions through the system, and the ease

with which statistical data may be collected at critical points

in the system.

The models developed to represent the dynamic allocation

of buffer storage for this study assumed the following correspon-

dence between system components and the elements of the block

diagram. Requests for buffer storage are treated as trans-

actions,and the size of the buffer pool corresponds to storage

capacity. The arrival of requests for buffer storage generated

per unit time has a Poisson distribution. The requests are

serviced according to the allocation scheme modeled.

One of the more difficult aspects of the modeling involved

controlling the locations in memory which were allocated for a

given transaction. The GPSS-II language provides for defining storage

capacity and the simulator retains a record of usea and unused

storage, but does not record which specific transactions occupy

31

the storage. In order to realistically simulate the allocation

process and determine the extent of fragmentation of memory

characteristic of each allocation scheme used, it was necessary

to maintain the memory map in the models. Total buffer pool

overflow was then determined as a function of whether n conse-

cutive locations were available regardless of the total number

of unused memory locations. In the buddy allocation model, the

memory map of buffer storage was maintained using GPSS block

types ander the assumption that the available storage list would

remain short, whereas in the first-fit model, the memory map

was maintained using a Fortran subroutine which is permitted as

a special GPSS block type. The provision for such routines is

to permit the user to perform certain arithmetic and special

operations in Fortran which cannot be performed conveniently

by a combination of ordinary GPSS block types.

3.4. Basic Buffer Allocation Algorithms

In an executive system designed for multi-programming,two

types of dynamic allocation are required. The first is for the

allocation of user programs. In this case, the portion of

available memory not required by the resident supervisor is

available for user task programs. The size of user programs is

variable and the need for large blocks of contiguous memory is

quite common. As pointed out earlier, the problem of parti-

tioning and allocating available memory among several users is

not scrictly a question of available space. Other complicating

factors such as priorities and job scheduling strategies are

involved.

The second type of allocation which is the subject of this

initial study is internal to the executive routine itself. In

MENEM

32

order to perform many utility functions within the system, e.g.

input-output, and to maintain control over system operations,

information must be maintained which reflects the current state

of the system operations. Because of their frequent and

asynchronous use, many system routines are coded to be reentrant.

This,in turn,requires that each time a reentrant routine is

executed, a buffer must be established to identify the source

of the caller and to preserve any parameters modified by a call

to the routine. In general, the size of buffers needed for

maintaining system control are small, i.e. on the order of 2 2 to

2 8 words and the use time of a buffer is relatively short.

These two factors, size of buffers and use duration are important

in evaluating alternative allocation schemes.

In either type of allocation, a method must be adopted for

allocating and releasing variable size blocks of memory, main-

taining a list of available or unused blocks, and in the case

of buffer allocation, extending the buffer pool when it nears

depletion. In developing or selecting a suitable allocation

scheme, decisions are necessarily made, either explicitly or

implicitly, with respect to factors which could affect the ef-

ficiency of the allocation process. In adopting an algorithm,

one, at the same time,adopts decisions such as whether to maintain

one list of all available blocks or to maintain several lists;

whether the blocks on the list should be ordered or unordered, and

if ordered whether they should be in increasing or decreasing

order of size, or in order of memory address; and, whether

requests for buffers must be a fixed size, one of several

specified sizes, or a variable size. The execution time per

allocation, the allocation routine complexity, and the amount of

unusable space per allocated block are ultimately a function of

the allocation process implemented. Through the use of simulation

x

f

33

models, algorithms which are based on alternative approaches

can be evaluated in terms of execution time and memory space

tradeoffs. Initially, two basic allocation schemes were modeled,

the first-fit and the buddy allocation method.

In the first-fit method, one list, essentially unordered,

of available storage blocks is maintained; the buffer request

size is variable; the list is doubly linked so that, upon

release of a buffer, adjacent available buffers in either the

forward or backward direction may be combined with the buffer

being released; and two words in every allocated block are

reserved for allocation control. Each time a buffer of size

n is requested, the routine is entered. The list of available

storage blocks is searched until the first block of at least n+2 words

is found. The block from which the allocation is made is reduced

by n+2 and the remainder, if greater than zero, is returned to

the list of available storage. The address of the reserved

buffer is then returned to the user.

The other basic algorithm selected for study is the buddy

method. The buddy allocation scheme makes use of (m-1) locations

which serve respectively as heads of the lists of available

storage of sizes 4, 8....2m. Circular lists, singly linked, are

used for storing available blocks of storage. Before any

storage has been allocated, list pointers are established so

that AVAIL(i)=i, i=2,..., m-1 indicating these lists are ini-

tially empty and AVAIL(m) points to the location of the first

available block of size 2m. One word of overhead in each al-

located block is used for allocation control. Implicit in the

list definition is the fact that the maximum request size is

2m-1 and the minimum request size is theoretically 1, although

in the EXEC 8 implementation of the buddy method,the minimum is

arbitrarily set at 3. Regardless of the exact buffer size

t

34

requested, if it is between 1 and 2 m-1, a buffer of size 2k is

allocated, where k is the least power of 2 which is greater than

the buffer size requested. It should be noted that although

a request may be made for any size buffer within the specified

range, the size of buffer allocated is always a power of two,

representing essentially a restricted number of distinct buffer

request sizes. As a consequence, the lists of available storage

are maintained by size.

3.4.1 Simulation Models Developed

The basic request and release algorithms for the first-fit

allocation schemes are taken from Knuth's The Art of Computer

Programming , Volume I, entitled Fundamental Algorithms .32

Certain modifications were made to the algorithms as given,in

order to facilitate the implementation and reduce the simulation

running time. For example, in the first-fit algorithm, the

packing of the size, use tag, and link into-one computer word

was not actually performed in the simulation model. This reduces

the number of operations to be performed in the simulation process

which in turn reduces the simulation running time. As a result,

two additional words in each allocated block are used for

simulation control. Because it is a simulation, and no practi-

cal use is being made of the n-2 words in an allocated block,

this modification does not logically change the basic algorithm.

The only consequence of this change is that for the simulation

model of this algorithm to function properly, the minimum buffer

request must be 2 words, which is not an unreasonable restriction in 	 e

view of the EXEC 8 requirement which may be viewed as typical

of operating systems. The minimum buffer request size,plus the

standard two words required for linkage and control guarantees

11

35

that the four words of control used in the simulation are

available. Minor changes,such as the reversal of the plus

and minus boundary or use tags are a matter of programmer

preference and in no way impose any additional restrictions

on the allocation process.

The simulation models of the first-fit allocation and

release algorithms are as follows.

3.4.2 Buffer Allocation (First-Fit)

Let U point to the first available block of storage, and

 suppose that each available block with address P contains the

following information: SIZE(P), the number of words in the

block maintained in the second and last word of each block;

LINK(P), a pointer to the next available block on the list;

LINKB(P), a pointer to the preceding available block on the

(
list; and TAG(P), a sign on the size word which is used to

1	 control the release process. TAG(P) _ '+' indicates a free

block; TAG(P) _ '-' indicates that the block is reserved. A

'roving' pointer, ROVER, is used so that the search for an

available block begins in different parts of the available

list, which avoids initiating the search with the first available

block on the list for each buffer request. F is used in

conjunction with ROVER to determine when all entries on the

available list have been search. Upon entry to the routine, F

is set to zero. When U, the head of the list, is encountered,

F is set to 1. If F=1, the head of the list is encountered

again, this means that the entire list has been searched without

finding an available block of adequate size. Since ROVER may be

positioned to any block in the list initially, some portions of

the list may be searched twice. Note that if the search always

begins at the first available block on the list at each request,

36

there is a strong tendency for blocks of small size to build

up at the front of the list, so that in general it may be

necessary to search through many entries in the list before

finding a block which will satisfy a buffer request.

Al	 First entry only, initialize]	 Set U and ROVER = address

of first cell of buffer pool. 	 Store size of buffer pool in the

second and last word of block. 	 Set LINKB(P)=0 and LINK(P)=

Loc (U) .

A2:	 (Initialize search.	 Set P=ROVER, F=O.

A3: [Test end of search]	 If P=Loc(U) and Fy0, no allocation

is possible.	 Otherwise,if P=Loc(U),	 set F=1, P=U.

A4:	 [Search list.]	 If SIZE(P) =N, go to A5; otherwise set P=

LINK(P) and go to A3.

A5: [Reserve N locations starting at L] 	 Set K=SIZE(P)-N.	 If

K=O, set LINK (LINKB (P)) =ROVER, set LINKB (ROVER) =LINKB (P) .	 (This

removes an empty block from the available list and sets L to --

the beginning of reserved block.) 	 If K=O, set SIZE(P)=K.	 In
'f

either case, set TAG(P)='-' to indicate it is reserved and set -

L=P+K. ==

The algorithm terminates successfully, having reserved N loca-

tions beginning at P+K.	 The function of the allocation algorithm

for the simulation process is to reserve buffers as requested

and to insure that each block in the buffer pool have the form given in =

Diagram 3-1.	 Note here that since this allocation scheme is

being used in a simulation process only, no attempt is made to

reduce memory overhead, e.g. LINK, TAG, and SIZE will fit
a3

conveniently into one computer word if time is taken to pack

them.	 In general, then, two words of control are sufficient to

maintain control of this data structure. 	 When buffers are

returned to the buffer pool, the release algorithm assumes that
p

i	 .

37

Reserved Buffer Format

UNUSED

TAG='-'
	

E^iL— L SIZE
UNUSED

SIZE - 4 Words

TAG='-'
	

TAG	 SIZE
_j

TAG= '+'

TAG='+'

Free Buffer Format

Pointer to next available
buffer on list

Pointer to preceding
available $,uffer on
list

^ SIZE - 4 Words

Diagram 3-1. Buffer Formats Used in the First-Fit
Simulation Model.

36

the blocks are in the form maintained by the allocation process.

3.4.3 Buffer Release First-Fit

This algorithm puts a block of N locations starting at

address L onto the available list. Whenever an upper adjacent'

block of locations is found to be available, it is deleted

from the available list and collapsed into the block currently

being released. If a lower adjacent block is found to be

available, the block being released is combined with the block

already on the list. If neither adjacent block is free, the

block currently being released is simply added to the front

of the available list.

R1: [Check upper adjacent block] Set P=L+N. If TAG(P)'^ 0, go

to R3.	 -

R2: [Check lower adjacent block] If TAG(L-1)) 0, go to R4.

Otherwise, set Pl=U, P2=Loc(U), and go to R5.

R3: [Set up for deletion of upper adjacent block.] Set N=N+

SIZE (P) , P1=LINK(P) , P2 =LINIQB (P) , if P=ROVER, set ROVER=Loc (U) ,

P=P+SIZE(P). If TAG(L-1)>O, go to R5, otherwise,set LINK(P1)=P2

and LINKB (P2)=P1.

R4:[Collapse current block with lower adjacent block] Set N--N+	
F

SIZE(L-1), set L=L-SIZE(L-1), and go to R6.

R5: Relink available list.] Set LINK(L) =P1, LINKB(L)=P2,

LINKB(P1)=L, LINK(P2)=L.

R6: [Store size of block returned] Set SIZE(L)=N, SIZE(L+N-1)=N, 	 '{

and return.

3.4.4 Buddy System Allocation

The second method of dynamic allocation is commonly referred 	 =

39

to as the 'buddy system'. This method is implemented in the

Univac 1108 executive system, EXEC 8. Again, the simulation

model is based on the allocation and release algorithms pre-

sented in Knuth.2

This method requires one word for control in each block
and requires that the size of all blocks be a power of 2. This

method keeps separate lists of available blocks of each size
2k where 21kt5m, and 2m is the largest permissible buffer size.

When a buffer of 2k words is requested, and no block of this
size is available, then a larger available block* is split

into two equal parts; at some point a block of the requested
size is available. When one block is split into two equal

blocks, these two blocks are called 'buddies'. If at a later
time, both buddies are available, they may be collapsed into a

single block.

The usefulness and practicality of this method lies in the

fact that if the address and the size of a block are given, the
buddy to this block is easily found. Let-buddy k (x) equal the

address of the buddy of a block of size 2k whose address is x.
Then it is found that:

x+2k if x mod 2k+1l0
buddyk (x) =

x-2k if x mod 2k+1;2k.

This function is easily computed with an 'exclusive or' in-

struction usually found in binary computer instruction repertoires.

When a block is reserved, only one word is needed to main-

tain control. This one word contains a 'use' tag and the block

size. If the block is reserved, TAG(P)=0 and if the block is

free or available then TAG(P)=1. When blocks are free, one link

field may be used for maintaining a singly linked list,or two

* Note: If no block is available, no allocation is possible
for block sizes 2k and larger.

af

40

links may be used if doubly linked lists are desired. In the

simulation model, singly linked lists are used. The buddy

system algorithms are as follows.

Buffer Allocation (Buddy Method)

Assume a request for a buffer of size 2k.

Al: LInitialize, first entry only] Set AVAIL(i)-i, i=2,...,

m-1 and set AVAIL(m)=location of first buffer of size 2m. Link

all buffers of size 2m and set link of last buffer on 2 m list

= m, and set all sizes = m.

A2: FSearch lists for first list with block sized k which is

non-empty] Search AVAIL(i), where kli <_m such that AVAIL(i)^i.

If none, no allocation is possible for block of size 2k.

A3: [Remove first block from list with available block] Set

L=AVAIL (i) and AVAIL (i)=LINK (L) where 2 1 is first available block.

A4: [Test for i=k
I

If i=k, return location L to user as

starting address of reserved block.	 F
t

.A5: [Split 2 1 block and put a block on 2] Set i=i-1,

P=L+2 1 , UINK(P) =i, SIZE(P)=i, AVAIL(i)=P, and go to A4.

Buffer Release (Buddy Method)

Assume a bufArer of size 2k starting at] cation L is to be

released.

R1: C Calculate buddy address using function given earlier] Set

P=Loc (buddy). If k=m or block at buddy address is not available

or has size <2
k
 , go to R3.

R2: [Remove from list and combine with buddy] Set AVAIL(k)=LINK(P),

k=k+1. If P(L, set L=P and go to R1.

R3: [Place block on list k.] Set LINK (L)=AVh IL (k), AVAIL(k)=L,

SIZE(L)=k, and return.

7

41

t
t

3.5. Inputs to the Simulation Models

The confidence to be placed in the outputs from a simu-

lation model is a function of the extent to which the model

represents the system function being simulated. Of equal
importance are the assumptions necessarily made concerning

the behavior of the parameters in the actual system. To test

the models, statistics were needed on the behavior of the

transactions in the model, where the transactions correspond

to requests for buffer allocation and release in the executive

system. In particular, statistics were needed on the request

size distribution and on the rate of buffer request and re-

leases. In order to test the models with realistic inputs,

efforts were made to gather data characteristic of the EXEC 8

in an actual operating environment.

In order to approximate a request distribution, memory maps

were constructed from printouts of the buffer pool, EXPOOL.

From the memory maps, it was possible to tabulate the number of

allocations of each valid request size at the time the printout

was produced. The distributions of buffer allocations by

request size obtained from these memory maps are shown in Figure

3-1. At this point, insufficient data are available to de-

r,	 finitely correlate variations found in request distributions

with particular system operating modes, e.g. batch or on-line.

It could be significant.. 'n the evaluation of particular allocation

schemes if such correlations are found to exist.

The buffer request and release rates are not available at this

time. A parallel effort to the simulation in this study is the

modification of the EXEC 8 allocation routine which will permit

monitoring the allocation process. Included in the data to be

obtained are the time of a request or release, the size of buffer,

42

200 Allocations
468 Allocations
343 Allocations
380 Allocations

43

the location, and when possible some indication of the buffer

use. Analysis of these data will provide a rate and also

another check on the distribution of requests and releases in

the actual system. Actual rates will be used in the simulation

process when they become available. At the present time, buf-

fer requests and releases are being generated assuming a Poisson

arrival distribution and an exponential hold time. Under these

assumptions, Figure 3-2 then presents the distribution used as

input to the simulation process and also the distribution con-

structed from a memory map at the end of the simulation run.

Confidence was gained in the validity of the model since the

distribution is not significantly altered as a result of the

e= simulation process.

3.6. Outputs from the Simulation

Throughout this study performance is being measured in

loss	 time	 for theterms of memory	 and execution	 required	 al-

location process.	 Ultimately, the decision to implement a

in	 is	 isparticular strategy	 a particular system	 one which

made by the system designer or analyst. 	 Usua11,% the decision

is dependent on the premium set on time or space. 	 In order to

determine allocation times and space requirements, data must

be analyzed either from an actual operating system or from a

simulation model. 	 In this phase of the study, data were obtained

through the simulation process.

In order to estimate relative execution times, data were

collected on the time-consuming operations within the allocation

processes.	 The following operations were tabulated for both

' the first-fit and buddy allocation models:	 the number of searches

of the available storage list(s), the number of memory collapses,

Distribution of Buffer Requests
Input to Simulation

x Distribution of Allocated Buffers
at End of Simulation Process

44

50
b
a^

a^

40

a

w

w 30

M
r4

H 20

w
0

dP

10

0

2	 3	 4	 5	 6	 7	 8
2	 2	 2	 2	 2	 2	 2

Size of Buffers Requested

Figure 3-2. Comparison of Buffer Request Distributions
Input To and Output From the Simulation Model.

45

fi

the number of searches required for releasing a buffer, and

the number of splits required to obtain a buffer of requested

size. In order to estimate memory loss, data were obtained on

the memory loss per allocation. This type of memory loss

represents memory used for control and is tabulated in Table 3-•1.

Also contributing to memory loss is memory fragmentation, a '

relatively long term effect which is best seen through the use

of memory maps. See Figures 3-3 to 3-6. The effect of this

factor may be quite significant and contribute to the alloca-

tion time through an increase in the number of searches required

to obtain a requested buffer. An estimate of the severity of

this problem can be obtained both from a memory map obtained

after the allocation process has been in progress for a period

.;	 of time, and the number of search operations.

Both models, the first-fit and the buddy model, were

executed using identical buffer request rate, size, and hold

times. The total buffer pool was set at 13312 words of memory.

Table 3-1 gives a comparison of the operating characteristics

of the two schemes.

In view of the above results, it seems clear that for the

given distribution of requests, the buddy system is superior to

the first-fit method if the prime consideration is either time

or space. This is further substantiated by constructing and

comparing the memory maps at the end of the simulation process.

Figures 3-3 and 3-4 are indicative of the memory fragmentation

introduced by the buddy method and the first-fit method re-

3

	 spectively. In the first-fit process the problem is so severe

that although there is sufficient space to satisfy the buffer

requests, this space is fragmented so there is insufficient

contiguous space. As a result the requests must be queued and

satisfied as releases make memory available,or the total buffer

x

46

BUDDY
	

FIRST-FIT

Mean Memory Loss Per
Allocation

Total Memory Allocated

Mean Number of Collapses

Mean Number of Searches

12200	 12200

(no queue)	 (requests queued for
buffers of size 25
and greater)

.012	

1	
.195

1.554	

1	
8.410

1
	

2

Ta-)le 3-1. Comparison of Buddy and First-Fit Allocation
Characteristics.

47

W - Available Buffers
t
t

3	 13000

12500

	

12000	 -	 -	 - --	 --

11500

	

11000	 _	 - ----- ---

	

10500	 - -	 - -	 -

10000

	

9500	 -- - -	 --- -	 ----	 -	 --

	

9000	 ---	 ---	 -	 -

U
	8500	 — -- —	 - - -

	

8000	 --	 —

p

	

b 7500	 -

	

03 7000	 -	 ---	 -

o 6500 -	 -	 --
v

	6000	 -	 -----	 -	 -

	

•,1 5500	 AU-	 - -L
ro0 5000 —	 --
a

	

4500	 -	 -
s

	

0 4000	 -
v

'

	

500	 - - -	 - -	 ---- --

3000 --	 -	 - -

	

2500	 -

`	 2000

	

1500	 -	 --

	

1000	 --

	

500	 ------ -	 - -

(0
f	 0	 100	 200	 300	 400	 500

Memory Location

Figure 3-3. Butfer Pool Memory Map Resulting from Simulation of

Buddy Allocation Scheme. (Map cunstructed after 926

allocations and 400 releases.)

rq

x
U0.4

v$40
3
0
0
Ln

G
0

v
0.a

0
N

0 - Available Buffers

13000	 -	 - - -1—	 1 ---

12500 j n 	 ----	 -11 - - --- --	 lw

12000	 J _Zl-	 II --J AU.--
11500 ---	 -- -- --1-	 -^ n

11000 l__	 _- I	 1_l_
10500	 1 -- --1-	 -- ---	 -
10000 -1--- -- 1 --- 1 -------
9500	 1 n 1	 __ _^	 _

9000 —L n n --	 -

8500	 a l^	 1 n _-L	 _

8000

7500 1 IW _l - 1---- -- ---

7000 -^-- -- ^- ---- -^ - -^

6500 - —	 ---^-

60;!0	 1 1	 _ — -

5500--

5000

4500--

4000	 -----	 -- -	 -

3500

3000--- - -^ - --^-	 -- -

2500 --	 -	 ----	 -

2000-

1500	 -- -

1000

500

0
0	 100	 200	 300	 400	 500

Memory Location

Figure 3-4. Buffer Pool Memory Map Resulting from Simulation of
First-Fit Allocation. Scheme. (Map constructed after

934 allocations and 400 releases.)

48

j ,

}f

t
49

pool is extended.

Thu4 the buddy method is found to be superior in this en-

vironment. The questions then are: 'Under what conditions

could the first-fit method be comparable or superior to the

buddy method?' and 'What modifications could be made to the

basic first-fit algorithm to permit more efficient operation?'.

3.7. First-Fit Model Modifications

In the original version of the first-fit model, the fol-

lowing statements characterize the allocation process:

a) the available blocks are maintained on one list.

b) the request sizes are identical to those used in

the buddy method, i.e. request sizes are powers of

two and it is assumed that no waste is incurred

due to restricted request sizes.

c) two words of overhead in each block are used for

control.

d) upon request for release of a block, an attempt is

made to collapse this block with adjacent blocks

in both the forward and backward direction.

3.7.1 Modification 1. Maintain Available Buffers by Size

The first modificatic,n to this algorithm provided for the

same number of lists as used in the buddy method, i.e. one for

each acceptable power of two. Since only a limited number of

request sizes are made, the available blocks are maintained on

lists by size. In Figure 3-5, it can be seen from the resulting

memory map, that the problem of fragmentation has been reduced

to the point that it is comparable to the buddy method. The

50

Mod-1 m

Mod-2 V22 - Available Buffers

13000 7	 _	 —	 -

12500 —

12000	 --	 ---- -

11500	 -

11000	 —	 -----

10500	 -	 - -	 -- -

10000	 —BIEL	 —

9500	 ---- - — -	 - —

9000	 - - -	 —

8500	 -	 --	 -
u
,° 8000	 - —	 ---

"0 7500	 - ----	 - -- --	 -- ---

3 7000 ----- ---

°0 6500	 -
Ln

6000
r.	

05500	 -	 -	 FA
L
M 5000 — —	 -
0

4500 --	 -

4000 -- -	 - -
F

3500	 - ---

3000 — —	 ---	 l
2500

2000

1500 — —	 -- ----- --

1000-	 -- ---	 -	 -
>Ti77TTT7 - 	rrn mT.

500	 -
: Ti 7-TTTT^^ i i ::	 : ^ :

0
0	 l00	 200	 300	 400	 500

Memory Location

Figure 3-5. Buffer Pool Memory Maps Resulting from Sitaulacion of

First- Fit Allocation Schemes - Mod-1 and Mod-2. (Map
constructed after 926 allocations and 400 releases.)

e

51

results in Table 3-2 indicate that in the first-fit method,

the memory overhead per allocated block is still twice that

found in the buddy method; and, if execution time is important,

the mean number of searches to find an available block is still

significantly greater than that found in the buddy system.

3.7.2 Modification 2. Reduce Control Overhead

It was noted in both the buddy method and the first-fit

method that the mean number of collapses per release is small.

In the first-fit method this represents collapses in two di-

rections, forward and backward. By making a modification to

the algorithm which permitted collapses in the forward

direction only, several consequences were foreseen. First,

the number of collapses would be reduced by a factor of two.

Next, if collapses were attempted in only one direction, one

word of overh^.-.ad would be adequate for control since the last

word in each block would not be used in the allocation process.

This would make the two methods comparable with respect to

memory overhead. Finally, a possibility of increased frag-

mentation would be introduced due to the fact that adjacent

blocks might be available and unusable because they were not

coelesced into one block. From the memory map given in Figure

!	 3-5, it can be seen that no appreciable increase in fragmentation

resulted. The results in Table 3-2 indicate an improvement in

the overhead required and a reduction in the number of collapse

operations. The mean number of search operations is essentially

unchanged.

c

,..^

o
o
N

an
r4
a r♦

P4
N

E
H
(sa N

a0
H
W

N
a
N
C4
r-1

Ln
Ma

•

M
rl
fl-

N

m m
FA m

.40 ro
Id

u tocn r4

o
w
0

wP o 4) d

x O ?.
r♦ r-1

t0 +^ 4-) t0 ^d

^y°',' i	 E E i

H
H
W H

a0
H

RP

rt
a '

r-4 o N Ln

In

N
N O rt

H
W fh m

Ln
a

N
t0

N p N
Ln
in cn

a0
H
w

52

U
-r)

0
m

.r4

a^

U
b

U

q
O

41
rt
U
O
r4
,..I

oc
b
O
41
b
P4

.V4
N

W
O
a

14

a

0
<<

N
1

M

m
r-1
AH

f-
53

3.7.3 Modification 3. Permit Variable Request Sizes

In each of the foregoing tests, it was assumed that the

number of words requested was the exact number of words needed

by the requestor. Suppose this were not the case. Then the

buddy method, as well as the first-fit method, have introduced

memory waste which has not been apparent or considered in the

preceding comparisons.	 In the case of the buddy system, it

is impossible to eliminate this kind of memory loss, if it

exists, since the block sizes are essential to the formulation

of the buddy method.	 However, the first-fit algorithm imposes

no restriction on the buffer size requested. 	 The first-fit

simulation model was then modified to generate exact buffer

requests.	 The original distribution of request sizes was used

to determine the range of a generated request size. 	 A con-

tinuous function was used to obtain the exact number of words

needed.	 For example, if a block of size 32,(2 5), were requested

in previous runs, the block size generated in this test was

some number between 2 4 and 25.

further	 to the firstA	 modification was made 	 -fit algorithm

to handle a condition_ which had not been present up to this

buffer	 bepoint.	 Since the	 sizes were now permitted to 	 any

size, a block returned to the available list could be so small

that it would be virtually useless in satisfying future requests.

For example, suppose a request size of n is allocated from a

block of either n+l or n+2 words.	 Then using the existing al-

gorithm, a block of either one or two words is returned to the

available list.	 Since request sizes were from the outset of

this study assumed to be l 2, it would be impossible to use

available blocks of <4 words if 2 words of overhead are assumed,

or <3 words if 1 word of overhead is assumed. In the interest

of returning only useful buffers to the available; lists, a

t ;	 constant was introduced. If the difference between the buffer

54

size requested and the available buffer from which the allocation

was made were less than Lome constant, the whole block was

allocated. In the simulation model this constant was set at 4

with the result that no block <4 is placed on the available

lists.

The results obtained using this model were viewed with

mixed feelings. On the one hand, the total amount of memory

actually allocated was considerably less than in any previous

model and the memory loss per allocation was small. On the

other hand, the fragmentation problem is again significant as

can be seen in Figure 3-6. Also in Table 3-2, it should be

noted that the number of searches to find an available block

has increased.

Using the buddy method and fixed request sizes and as-

suming the same actual utilization of buffers requested, the

mean memory loss per allocation was found to be between 16 and

17 words per allocation. It is clear from the size of this

number that the memory loss is quite severe.' If the buffers

needed are large, there is no guarantee that the size actually

needed is close to but less than some exact power of two. There

is the same probability that it will be close to but greater

than a power of two, in which case approximately one half of

the allocated buffer is unused.

There is the possibility that the requester is careful to

make his requests in segments if significant memory loss is

incurred by a single request. For example, if a buffer of 70

words is needed, a buffer of size 2 7 may be requested resulting

in 57 unused locations. The alternative procedure is to make

two requests, one for a buffer of 2 6 and one for a buffer of 23

which results in no memory wasted. If this procedure is

followed, it is always possible to keep the memory waste small.

W - Available Buffers

13000 IN	 n

	

12500	 __ W_ 	 M —i-_	 ___---

	

12000	 1..-

	

11500	 n -	 —	 -

	

1100;;	 --- --	 --L---	 L--

	

10500	 -----	 r

	10000	 -

	

9500	 n 	 i	 ^-

9000 -

	

8500	 n 	 -

8000

	

7500	 ----- -

7000

	

6500	 - -

6000

	

5500	 j	 ----

5000

	

4500	 —

4000

3500

3000

2500

2000

1500

1000

500

`	 0
t	 0	 100	 200	 300	 400	 500

Memory Location

Figure 3-6. Buffer Pool Memory Map Resulting from Simulation of
First-Fit Allocation Scheme - Mod-3. (Map constructed

after 926 allocations and 400 releases.)

55

x
U
O

b
03
GG
u,

a0

CO
U
0.a

0G
a^

3

Y

_Zli`

11-9-

3-1-E

Of[

ri

0

0

56
	

a^

It should be noted, however, that this is a very clear case

of a space-time tradeoff, since in order to reduce memory

loss, it may be necessary to break one request into two or more

requests. As a result the number of buffers allocated and re-

leased is increased and the total allocation time is incremented

accordingly.

3.8. Consideration of an Adaptive Approach

In the foregoing discussion, if the buddy system were

implemented, the.requestor, i.e. the user of the system, was

left implicitly with the responsibility of making efficient use

of the buffer pool or of keeping the execution time at a mini-

mum. It is possible that more direct control of system ef-

ficiency should be maintained from within the system itself.

In other words, it might be advisable to have the user make

requests for the exact size of buffer needed in every call to

the allocation routine. The extent of memory loss which is a

function of the mean request size would then determine whether

a particular strategy should be used in the allocation process.

As noted earlier, it could be that, if significant variation

in request sizes is noted during different modes of system

operation, different allocation schemes should be available and

interchangeable by the system as warranted by the request

distribution.

3.8.1 Provision for a Self-Adaptive System

In order to recognize the need for system modification,

software monitors should be available which can be used to

gather statistics which indicate what environmental changes

0

i
57

3	 ..
t

occur. For example, the data collected may indicate that queues

are forming at some point in the system, excessive time is being

spent in performing certain functions, a distribution of re-

quests for a certain function has changed, or memory available

for program or buffer storage is frequently exceeded. If the

information gathered on the system indicates that the changes

which have occurred over a period of time are becoming sta-

bilized,but different from the original operating characteristics,

and if the operating efficiency is being impaired as a result,

a system revision is warranted. A study should then be made

`

	

	 to find alternative strategies which permit more efficient

operation in view of the changes.

The above discussion describes the situation where the

changes are uni-directional over a relatively long period of

time. If this is the case, at some point strategies for

handling certain functions may be replaced by more efficient

ones. There is the possibility, however, that over relatively

short periods of time, significant changes may occur in the
operating system characteristics. This could very well happen

in a system which is batch oriented but is capable of operating

in an on-line environment. In this situation it would not be

feasible to terminate operations and load an alternative system

which is designed to handle either an on-line or batch workload

efficiently. Alternative approaches to this problem are to

design a system which favors one or the other of these environ-

ments and accept a reduction in system efficiency when operating

in the other mode,or design the system so that it is not really

efficient for either one,but is not seriously impaired in either

environment.

It is fairly clear that operating characteristics,and as a

consequence operating strategies„ may vary significantly for

58

batch processing and on-line operation. It may not be quite

so clear when the functions to be performed are common to

most systems and the basic algorithms are already implemented

in the system to handle them. At system design time, if con-

sideration for system performance were a factor, the algorithms

would be developed and implemented to permit optimum performance

in terms of the expected operating environment. For example,

a buffer allocation scheme might be implemented which performed

best if the frequency of requests for small buffers were large.

The algorithm would also handle large buffer requests so that

even if the distribution of request sizes changed, the algo-

rithm would still handle the allocation but perhaps not so

efficiently. In order to evaluate the performance of basic

algorithms within any operating system, it is first necessary

to gather statistics which define the actual system operating

characteristics. Then some experimental work must be performed,

either through simulation or through actual system modification,

to determine what improvement in handling the function, if any,

=	 can be produced by alternative strategies.

If it is found that alternative algorithms produce more

j	 efficient operation for particular distributions, and that the

distributions vary from one type to another fairly consistently,

then one might consider providing for the implementation of

alternative algorithms for handling the function. If a dis-

tribution drifts over time or with modes of operation, then it

might be advantageous to implement a system monitor which deter-

mines the distribution during operation. Then, when a threshold

established as a result of measurement and analysis is crossed,

a signal for phasing out one algorithm and initiating an al-

ternative strategy would be produced. The mechanics for phasing

one algorithm out and the other in must guarantee that the

i
i

S

Y

t-
!i

i

:r

59

changeover be automatic and that the system operation be unin-

terrupted. The notion of implementing a system with self-

monitoring, self-analysis, and self-adaptive features is very

attractive, however more experience must be gained in the

analysis of data obtained from system monitoring and more

experimentation and analysis must be performed to define the'

relation between algorithm performance and the conditions under

which a particular algorithm is most efficient.

3.8.2 Proposed Extension to the Current Study

As a first step in exploring the feasibility of such a

self-adaptive system, the algorithms for the allocation of buffer

storage which were analyzed individually are being considered

for this proposed study. The objective is to implement two

algorithms and then define and simulate the mechanics required

for passing from one allocation strategy to the other.

In order to implement the adaptive system, it was decided

that in all cases, requests should be made for the exact size

of buffer actually needed. This permits the system to determine,

based on the distribution of requests and memory loss, which

algorithm should be used to allocate buffers. In the system a

record must be kept of the frequency of requests by size so

that periodically the memory loss can be estimated. when the

percent of memory loss exceeds a preset cutoff, the alternative

allocation strategy will be initiated as requests continue to

be made. Taken alone, the implementation of the alternative

modes of buffer allocation are relatively straightforward.

Further, if planned for at the time of system design, the im-

plementation of ivftware monitoring devices for gathering

statistics is not a major undertaking and the periodic computation

of the significant parameters should not be time consuming.

60

The more difficult aspects of the processing techniques

being proposed here, lie in the design of compatible modes of

allocation and insuring a smooth transition from one to the

other. The result of attempting to make the allocation modes

compatible is that probably neither strategy is implemented in

its basic form. It would be remarkable if the restrictions and

modifications made to the buddy system and the first-fit alloca-

tion method to make them compatible actually result in either

taken alone, being more efficient. Hopefully the disadvantages

will be more than offset by the advantages realized. only a

careful analysis of a given set of conditions can determine the

net result.

1-11

61

4. Review of Some Existing_ Hardware and Software Monitor

Techniques

In previous sections, we have described the role of

analytical techniques and simulation to aid in the process of

computer system evaluation. In this section, we shall consider

both hardware and software monitoring of a computer system. A

summary of some of the significant attributes of the monitoring

techniques discussed in this section are given in Table 4.1.

4.1. Hardware Measurement Techniques

Within the normal standard hardware features of a digital

computer, such functions as address stop switches, trap transfer

modes, and normal error-faulting procedures are important for

measurement purposes. In addition, some special hardware devices

have also been developed and added to systems so as to perform

hardware monitoring of a computer's performance. Devices can

be attached to a central processor so as to passively examine

each instruction as it is executed. Hardware monitor devices

have built-in counters and self-contained output devices to

record the occurrence of any given data pattern. it will be

useful to review several approaches to perform hardware measure-

ment of a computer.

4.1.1 IBM 7090 Hardware Measurement Technique 33

This device is designed to record information from the CPU

while the CPO is processing data. The recorded data is then

used to analyze the basic nature of the program and to measure

the performance of the hardware. The hardware measurement

device consists of a control unit, a control panel, and an

11i

t

cr

O

$4

fill.

3
,9
9
li
7
7

7
1

62

V4

P-4	 101%
44

FA

10IWI

64

63

IBM 729 VI tape drive. There are three internal sections of

the control unit: (1) An input unit, which contains 40 lines

from the monitored CPU, six 24-bit data buffers, and one com-

parison unit. Of the 40 lines, there are 24 data lines which

are used to transfer 20 bits of the contents of the instruction

' counter,and 4 bits specifying the channel in-use to one of the

data buffers; 15 selector lines which transfer the 15-bit

op-code to the comparison unit; and 1 stroke line which contains

the status of the input lines. The comparison unit compares

the 15 selector input lines with each of five sets of switches

manually set by the operator from the control panel. Data are

recorded if there is a math between the 15 selector lines and

one of the five sets of switches. (2) An encodi.nq unit and

assembly register, which encodes the 24-bits of data to a

variable length string, packs the string into 6-bit groups, and

transfers the string to the output buffer one group at a time.

(3) An output unit, which contains eight 6-bit output buffers

and one tape controller. A block diagram'of the operation of

the device is shown in Figure 4-1.

4.1.2 IBM System/360 Hardware Measurement Technique (TS/S	 24

TS/SPAR (Time-Sharing Syste,a Performance Activity Re-

corder) is a hardware-measuring device used to collect performance

data for measuring the dynamic operations of an information

handling system. It can be used to measure the external effects

of internal software and hardware operations, and to measure

the internal operationa' characteristics of software or hardware

units. It can also be used to count the frequency of an event,

to clock its duration, and to record the gross time. A block

diagram of TS/SPAR is shown in Figure 4-2. Electronic counters

64

IBM 7090
CPU

Comparison	 {
Unit	 {

1
i

i
{	 Encoding Unit	 {
{	 Assembly Register

Ii{	 Output Unit

IBM
729 VI

Deblock

Decode

Data Reduction

Output

L_^^

l

1
a
7
7
J

8
J

8
i^

ii

n
it
ii
9

B

Recording Machine

Compare the 15 Selector Lines
with the 5 Sets of Switches.

. Encodes the 24-bits of Data into
a Variable-Length String and then
Packs the String into 6-bit Words.

Writes Inter-record Gaps between
each Logical Record .

. Decodes the Variable-Length String
to 24 bits of data and Adds Time
Information.

. Produces a Trace-like Printout or
Generates CRT Graphical Display.

Figure 4-1. Functional. Diagram of the IBM 7090 Hardware
Monitor Device.

9

65

Shared	 Shared?

Memory	
'

 Memory !

Ef.f

Time-	 Input- Time-
Sharing	 Output	 Sharing

Processor	 System

e

Processor

m	 r+^ 00 0
wm -H

is a	
A c°3

Plugboard

Sequencer	 Comparators	 Electronic	 Mechanical	 Logical
Counters	 Counters	 Circuitry

_	 Computer

	

Bead-out	 Operators

	

Controls	 Console

Tape
_	 Adaptor

IBM	 IBM
729 VI	 729 VI
Tape	 Tape
Unit	 Unit

Figure 4-2. Functional Diagram of TS/SPAS

f

X

66

within the device provide accumulative storage for up to 48

measurable parameters of 3 decimal digita length. Mechanical

counters are activated when overflow occurs from the electronic

counters. Comparators are used to dynamically monitor data

paths in the interface and to compare them with fixed values

indicated by switch settings. These switches are used to in-

dicate to the monitor a unique address, an operation code, or

some contiguous memory locations. The sequencer can be used

to detect any three-event sequence. An event may be a reference

to a real or virtual memory address, an instruction counter, an

op-code, a control signal, etc. The time interval between the

occurrence of events is not considered, only the event sequence

is of interest. The plugboard receives the interface signals

and transfers the data and control to the various functional

areas in the recorder. The logical circuitry is accessible

from the plugboard to logically combine interface signals so

as to form complex events or to generate control signals.

Input to TS/SPAR is through a specially"engineered inter-

face which can handle 256 predetermined signals and strokes.

These interface signals reflect certain key states (internal or

external) of the system to the recorder.

4.1.3 trNIVAC 1108 Hardware Measurement Technique 27

A Univac 1108 is used to measure the performance of another

1108 system. The hardware measurement system uses a special

hardware device interface as a recording processor to gather

live data. (See Figure 4-3) It contains a hardware monitor,

data collection software, and data reduction software. The

monitor creates and records data each time a jump instruction

is executed in the mon iltored processor. The collected data is

1	 1

k 7rr7
f 2

Monitor Device

Recording Inter-
face Control

Monitor Control

Monitored System

9

Memory

	

1	 ^

1

	

1	 ,

	

I	
Line Drivers

A

P Address, Processor State

UNIVAC
1108

EXEC VIII
Programs

Memory I	 I Memory

-c - - - control
E

data

E	 Figure 4-3. Block Diagram of the UNIVAC 1108

E	 Hardware Monitor Device

68

transferred to a drum via two large core storage buffer areas.

when the drum is filled, the data are transferred to tape. A

special data reduction software package reduces the data into

either graphic or statistical form to provide a perspective of

the performance analysis of the monitored equipment.

4.2. Software Measurement Techniques

Software measurement techniques can generally be divided

into three classes:

(1) Tracing. and Sampling of System Operations.

To analyze the performance of individual programs,

tracing,or high density sampling methods may be

used to obtain the distribution of the CPU and

I/O time for the program.

(2) Software Recording.

{	 A software recording mechanism that operates

__.	 within the operating system to collect important

events and decisions made within the system.

Such a mechanism can reveal the exact sequences

and paths of events that occurred during execution.

(3) Analysis of Recorded Data.

The recorded internal performance data and/or the

standard system accounting data may be used to

provide a long period performance analysis. The

output of the analysis could lead to information

that could help to maintain a system at top

efficiency.

There have been several developments in the field of apply-

ing software techniques to nvanitor systems. Four of these

developments are described below.

69

4.2.1 GE GECOS II, GECOS III Software Measurement Technique 34,35

The overall performance of a computer system depends on

the efficiency of both the hardware/software environment and

the programs which operate in that environment. The software

monitoring device used in GECOS II is designed to permit analysis

of the system performance and also of individual programs.

The system analysis includes user program accounting analysis,

overhead analysis, and trace analysis. To provide for individual .

program analysis, i.e. functional value analysis, high density

sampling is used. By frequently interrupting the system at

random or periodic times, the fraction of the total time spent

in a particular instruction sequence is found to be proportional

to the number of samples taken while in that sequence. The

results of the periodic sampling are used as the basis of I/O

and program execution time profiles. Several software measure-

ment techniques were applied during the development of GECOS III.

Software measurement of processes internal to the system were

developed. Event counters were included in all functions of the

system so that they could be analyzed and studied separately.

Internal system auditing was provided to check on new entries

in each of the system queues, to checksum critical tables each

time they are referenced, and to checksum all system files as

they are loaded into core for execution. Event tracing is used

to detect the occurrence of important events. Decisions made

within the system are monitored and made available for subse-

quent analysis by recording, in a circular list, each intermodule

transfer. The total data collected on function usage, queue

formation, table and file manipulation, and event occurrences

is sufficient to summarize system operation and performance.

The total analysis uses as input, standard system accounting

70

data, the recorded trace entries, and other parameters made

available from the system.

4.2.2 CDC 6600 CHIPPEWA Software Measurement Technique 25

The Lawrence Radiation Laboratory uses a PPU (Peripheral

Processor Unit) as a programmable hardware monitor to record

and to analyze the activity in the CDC 6600 central processor

and other peripheral processors. Two monitoring routines, MR

SEE and MR EYE, are used. MR EYE gathers information on CPU

activity, central memory utilization, channel activity, PPU

activity and control disposition. MR SEE furnishes data on

the disk utilization and the job profiles.

4.2.3 IBM TSS/360 Software Measurement Technique SIPE 26

SIPE is an on-line software recording technique used to

collect the data necessary to measure and to-evaluate the per-

formance of the IBM System/360 Time Sharing System (TSS/360).

SIPE is a selective, event-driven recording mechanism that

operates within TSS/360. The activating mechanism of SIPE is

called a'hook'. (See Figure 4-4) Hooks have been implemented

at various points throughout the resident supervisor code.

Each hook includes an identifier code. Based on this code, SIPE

collects the applicable data. The degradation of the operating

system with the SIPE monitor is proportional to the number of

times SIPE hooks are activated. It is also affected to some

degree by the volume of the output data. To compromise between

resolution and degradation, a selective option function (delta-

data-set) has been implemented. The delta-data-set is input to

SIPE as a parameter at the start of a run. The given delta-

a

- -r

71

A
SVC

Figure 4-4. The "Hook" Structure of SIPE

dl

Svc + r ^ G 1^

p t 1

src +

SWE

^ 1	 1

i

t	 Figure 4-5. Functional Diagram of Interface
ir between TSS/360 and SIPE

F-

72

data-set instructs SIPE to 'turn-off' any hook or group of

hooks for that run. In order to derive meaningful information

from the data collected by SIPE, a library of data reduction

programs has been developed. These programs convert the SIPE

data to a simple or elaborate form for use in performance

evaluation, system analysis and debugging as requested by the

analyst. A functional diagram of the interface between TSS/360

and SIPE is shown in Figure 4-5.

4.2.4 IBM OS/360 Software Measurement Technique (SMS,/360)28,29

SMS/360 is a system measurement software package developed

by Boole and Babbage, Inc. Two components of the SMS/360 are

described below. These are the PPE-2 and the CUE-1 components.

The PPE-2 (Problem Program Efficiency) component is con-

cerned with the efficiency of the user's problem program. The

output of the PPE provides the distribution of CPU and I/O time

spent by the user's program. The PPE consists of two elements;

the Extractor program and the Analyzer program. The Extractor

program randomly samples the problem program during its execu-

tion and collects statistics for later analysis. Each time the

Extractor records a sample, one of two events has taken place,

either the instruction address falls within sample bounds, or

a Svc (supervisor call) has been invoked from within the sample

bounds. The Analyzer uses the collected data to generate re-

ports which indicate where and how the program spends its time

and how the program is balanced between being compute bound

and being input/output bound. The reports generated include

a number of tabular displays and one graphic display called the

Histogram.

The CUE-1 (Configuration Utilization Efficiency) component

is used to aid in maximizing system throughput by determining

73

the configuration utilization and by showing specific hardware,

software relationships which contribute to configuration uti-

lization. CUE is also divided into two programs, the Extractor

and the Analyzer. The Extractor collects data on hardware

usage, disk head movement, data cells, and transient supervisor

call routine usage. The Analyzer generates a configuration

report, an equipment usage sub-report, a head movement sub-

report, and a SVC sub-report. The quantitative information

given in these reports can assist in locating bottlenecks in

a configuration which might otherwise be overlooked.

74

S. System Function Analysis Using Software Monitor Techniques

The objective of the software monitoring efforts conducted

under this grant was to develop techniques to permit the col-

lection of data from the operating system as it was running.

A quantitative study of an operating system using data on the

behavior of that system is an effective approach to permit one

to locate and to examine defects that may exist in the structure

and utilization of the operating system. In the design of a

system monitor technique, the following capabilities were

desired: (1) To provide a technique that would permit one to

study the logic and behavior of programs so as to define and

locate significant events that occur within a program; (2) To

provide a technique which would permit analysis and evaluation

of the implementation of a program, so that local performance

errors could be detected and possibly avoided; (3) To provide a

technique to collect the applicable data of the total operating

system in order that the interaction of system functions can be

analyzed and evaluated; and (4) To provide a technique to con-

tinuously report the performance summary on a display or on

an on-line printer at specified periods of time. To meet some

of these objectives, several programs were designed and

implemented on the 1108. These programs are described below.

5.1. TRACE

TRACE is a special simulation tool which has the ability

to simulate itself. It is written and developed for the purposes

of studying the logic and behavior of a program. It is some-

times very difficult to obtain documentation and descriptions

'.'.	 of system routines. This has been found to be the case with

I

t

f

75

the 1108 Executive routine.	 TRACE can provide useful informa-

tion concerning the operation of a program, such as the

location of the instruction, the data in the operands of the

instruction itself, and the contents of all registers used by

the instruction.	 The TRACE routine records data at every in-

struction, or at selected instructions, and then prints out a
t-

step-by-step account of the behavior of the program.	 From the

printout developed by TRACE, the programming technique of the

traced program can be observed and evaluated.	 The scheme is

} particularly useful since the 1108 has a complicated set of

registers.	 Some of the registers are altered yy certain

operations while others are not. 	 This is also true for memory

words used by the program. 	 When programmers perform coding,

redundant operations such as those used to load a register or

to store a memory cell are generally prevalent in the code. 	 By

applying the trace technique to a program, these wasteful in-

structions can be detected and, at times, avoided.

In the TRACE program we contrive to let the machine

execute most of the instructions as the instruction appears in

the program.	 The exception is that TRACE modifies jump or

conditional jump instructions before execution so as to insure

that	 will	 to the TRACE	 after the jumpcontrol	 return	 routine

has taken place.	 Inside the TRACE routine a memory word is

j maintained to simulate the hardware instruction counter which

points to the current instruction to be traced.	 TRACE copies

the traced instruction into its own work area.	 Before execution

of the instruction, a subfunction is called to analyze the op-

code so as to identify whether this is an unconditional or

conditional jump instruction. 	 If the instruction is not a jump

type instruction, the simulated instruction counter is increased

by one and the traced instruction is executed. 	 However, if the

E-1

76

instruction is a jump type instruction, the address field of

the jump instruction is saved first and then replaced by a

specified address. If a jump occurs, i.e., the condition of

the jump is satisfies, the control then goes to the specified

location instead of to the successor instruction. In this

fixed location, the simulated instruction counter is replaced

by the saved address field. In this way the exact program

instruction sequences can be traced. A general flow chart of

the TRACE program is shown in Figure 5-1. An output from the

TRACE program is also given in Figure 5-2.

5.2. ITFVA (Instruction Trace and Functional Value Analysis)

The purpose of a functional value analysis is to try to

improve the efficiency of a program. In analyzing a program

to achieve this improvement, the payoff between the time spent

in analysis, debugging, and the total possible machine time

gained should be considered. A technique is' described that will

indicate to the user the most frequently executed code within

his program. Since it is executed frequently there is a higher

payoff if this portion of the code is improved.

Either in a high level language or in a machine language

program, a jump instruction represents the end of a sequence

of operations. Those contiguous sequential operations can be

considered as a single macro-instruction. In this way, a

program can be divided into several macros, each terminated by

a jump instruction. By 'Kirchhoff's Current Law', the number

of times the control flows out of a macro-instruction must

equal the number of times control is transferred to the macro-

instruction. Hence, if we record the information when a transfer

is made to a special instruction (location), then we can get

77

TRACE

Initiali-
zation

Inst. Code
Analysis

Print
Inst. Type
	 Trace Data

Analysis

Modify Jump
Instructio ump Inst

No

Execution

Instruction
Execution
Analysis

No

Last
Irst

Print CPU
Time Distri

butio

Sequence
Control

ITFVA

No

IYes

Figure 5-1. Functional Diagram of ITFVA and TRACE.

xit

O C O O Q O
_r00 _'00
.•i0 c .4C0

:J•0 :V N:r3N
7 •-t O O -^ ."1

No LI) N	 IC) J1 N,nvn nNn

;nno .nno
141 -') M	 r) M f M

00
-t o
-i Q

^ OO O
N f00

1! ^

n^
-4 .4M MY

b ^41 • O wU • r- Om n r^ r~
43 C- ^ ^ O

P r` JJ •.•t
•gin

4J PPr- 4) UPAn x O
A 4!rrr-rr^n 0)
N r n w O 0)

°^ n 0 (U w
h 4) '

4).Q Rdtrr. t` ro 0 a r.•^ 000 OU.0 O	 b +► J-►
m 4)	 14 0 U-•-^ °0

O 0
	 ^ •H

°-4	 4) U	 ro4)$4	 O o
41 +f ^O	 -4 -H
U	

v̂ ^ r
0	 -A	 • H m 4) b to
.0	 4) 0 of 4) U rim	 14+3 b 0 w rt id
-d	 r-4 -rl U	 to 43O to O .-r^y

id 00G4w0m
Nm	 kw0 tr0 O4-) 44 O t3' 4)4)	 O 54 4) to b	 - b
^0mx^mx10V-COr-

A	 . m4J 0 s4n$4n-O
w a -r4 xb 0n 0r`
044-) M4)owr`wP,

$4	 rO °M 4) V 4) ^
0 04 -x1 4).^A.0n4rP.

b ow 0 u.rwwPwr-
0^000000 owW
4)4J14 0 mmmOmO
4J UOUV O4J 0 4)
0 0 ^r 0 r~ r~ r~ 0 4) r~ 4)
O +) 0 4J 4J 4) 0 0M m ••a m r. r~ V. O U r~ U

«Ot0 -rl 0 00Urt U(3-ri4) Q) 0 4) 0 4) 4)
EE PE-+E^EE H

0

r-4 N M qr rn do n co

iraV%O$ra
WU9
H

W

43

O
$1w
4J
0

0O
0

Rf
rn

Nr>n
4)ra
ON
w

R-1

1

Il

^NPP
PFPPA P
N ^P n

nPM1 PFAPA n P M1rAPA APr•w AP FPPr AP P rAP n P A n r'nAA PM1AAAP A n PPAP P P Pnt^ n nnAAAn PAnPPP APP

M1FFF F FFPPFFF F F P M1 P P P P M1 PP P P F P P F F M1 P nAFFF F FFP n FM1F F F P F M1 P P M1 F PP F A F M1 F F F M1 M1 P oAPFM1 F PFAnFPP F A P P P F F F P AM1M1AP A PFPtPnA A P M1 P P A A A P M1P P P P M1 A P P A P n
M1 F A n A P A A n A P

nn A PAA nP nn PA n M1GnooP
A!^n Ann PA PPP n M1 n oPOOPnnr nnn nn AFPP n n oM1OO Pr_An nM1P nP PPM1A P M1onoMPOr-n P Ann An M1F n P M1 P O P a MA nnnti nnA nP AnAn A nonoo Pnnr^ PAn nn PPPM1 P P anoo n
r` nn Ann nA nM1M1P A AoPOOn^r-n r-t`n ra n AAnP n nonocAP n n P A P P n n n P A n A O P o N A

n A A A P I,.- n P n O A O N Pnr-n ntin nti M1AnA n Po n ooP

NAA •-+AA
-+ P P -4 r-

oil- rl- OnAinn IDAnConn oAn
^
r- OA nnn onnoAP onn^nA oPn

cAt` cA r^r r crrncnr cA rC+An on n0nti on P-C nr orr

C: nr onrrrr cnnonn onn

* 0 0 A A A A n P M1 Ao.,.4r- A nPM1P nrr
o a o P n P A n n P nO P P A P A n P n M1 AonLnr- A P nn PnA
O o 0 A n P A A n n M18^a0n n AnPPAn
oMMn A f- f-
0 Ln0r- n Pnnnnno.404A A AnPAPn0.4.4n n nnPnnPanon n PnPnnA

roc r n Acc n.or
rcon r fl- 10isrcrrc -rr- A Arr.rr..AV:APo n•-ir+ PM n
no.^ n A r- -4 1'--4 nQWeer n Pc0r-zrPoor A 1,,-0Gnu3 AAcon r no O nn Anoo n n fl- ocno nn--4 0n n A oonorn Q o r n n c Q A.1 r-0 0 n n P o onon

oP.-1 A
0 nO n0n
oronon
O Aono P

c r
0 rcnoncn
Qran
^r
or
aA

P, „-- non P(-- *0Z) n +l- :r4tzrco rr-+rn -4-+n -+ n oc- ► n A 00000n
C O r O c n O n O O O r n O o 0 0 0 Acc.r CD n 0A 0 CAn P 00oc0n
cc+ n oo n o n oo+nn n 00000A^^cn 0 cA 000n n en000cA^'cC. n cc n oA 0o 0 n n 0000cn
ccn ccr+ on 000P n 00000n
o0A 0 Cn cn 0coA n c00c0Il-e Cl ?I- CD n o n 0 0 c P n oaoo0n=,cn 0on on 000P n o000OAcon oot- on oocP A 000oon
x ax a xaa	 X4< X< O

PG -4 rcV4 i-N DOOM to 0O.4.-1-I Zr00.-4 oc-4 0" coo.4 N on0nnN
o If) 70-o *I M M o on Fn .0 M3 o N3M M
0^ ^ o^ ^* ^o G3 ^ o*ca*^

CG ZP Gc)G cc 0coc o oc 0 coo
000c: o ooc?ooa

41 "M0 0 000000
-•1-4.40 G 000 OO O N
1^^0 M *oo .n.^O
.-4 0 0 0 04 .-1 0 0 -4 0 0

0 04 -4 O .-4 W4 -4 .-1 0 0 O
n00zr .7 430MA?3Aj-4	 N LnI-

N7jtto O 4tLP)P^4NM
N.VN-N M MhM ?*•-r -4 .i 04 V4 N N N N cV N ^r
MM11)M M MMMMMM
S 41	*??**

79

t

f:.

L

the exact number of times that the macro-instruction has been

executed.

This functional value analysis program is formed by

modifying the TRACE routine described above by adding a sorted,

linked list to record the transfer information. (See Figure

5-1) After the recording is complete, another analysis routine

is called to print the distribution of CPU time for each macro-

instruction. An analysis of EXPOOL on the Univac 1108 that

resulted from the use of ITFVA is presented in Section 5.5 as

a case example.

Another technique most frequently used for functional

value analysis is the high density sampling method which was

described in Section 4.2. The advantages of using the TRACE

routine are: (1) The TRACE routine is easily modified to permit

recording information of every instruction traced or to record

the trace data only when a jump occurs; (2) It provides a high

level of information detail since the recorded data contains

the exact number of instructions executed * in each macro, and if

desired, provides the exact sequence of each macro-instruction

performed.

The disadvantage of using TRACE is that it will greatly

slow down the execution of a system. Hence, TRACE is best

suited for the analysis of short input-data independent programs.

An analysis of the ITFVA routine indicates that the time re-

quired by using ITFVA within a system results in the need for

an increase of 18 times the normal execution for a non-jump

type of instruction, and an increase of 60 times for a jump

instruction.

The above disadvantage can be avoided to a certain extent

by using the TRACE technique in conjunction witlx event counters.

That is, set a counter in every basic system function which is-

3

l

q

80

to be monitored. it is relatively simple and straight-forward

to implement. According to the contents of these counters,

the most frequently executed function can be detected. The

procedure then is to analyze only frequently executed functions

with the TRACE technique. This provides a very simple and

useful tool to improve the implementation and efficiency of

either a system routine or a user program.

5.3. OPSDE (EXEC 8) Operating System Performance Data

Extractor

The purpose of evaluating an operating system is to determine

and to substantiate the capabilities and the limitations of that

system. The problem is to find out what is going on inside

the system and where the CPU spends the majority of its time.

To solve this problem requires that data be obtained 'inside'

the system as it is running. OSPDE is developed so as to provide

a software recording technique to extract internal system per-

formance data. Such data provides the exact sequence and

patterns of events that occurred during execution. It can be

used as an input to 'a simulation model to provide a realistic

calibration and feedback to the system designer. This provides

a good, quantitative measure of the existing system which perm.;.ts

pinpointing 'performance bugs' - the results of errors in pro-

grammer evaluation and judgment on performance optimization.

Under this grant, the program OSPDE has been designed, but has

not yet been implemented. The structure of the data item and

the data block of OSPDE is shown in Figure 5-3. The major

objectives of the design were: (1) To minimize the system de-

gradation by providing a selective option, which permits the

user to be selective in the system events to be monitored at any

t

81

Data Item

Data Block

I # OF ITEMS LOST IN PREVIOUS BLOCK I# OF WORDS IN PREVIOUS BLOC14

DATA ITEMS

Figure 5-3. A Data Item and Data Block of OSPDE.

s

It.,

i^

:q

i

1

0

82

given time; (2) To share a tape path with the system, use a

variable data length structure and a unique data collection

macro-instruction to get additional generality and flexibility;

and (3) To use the mechanism of a double output buffer, i.e.

while one buffer is transferring data to tape, the other buffer

is being filled with data. The CPU is forced to wait when the'

second buffer is full and the first buffer has not yet trans-

ferred data to tape. With this arrangement the loss of data

is possible.

5.4. Other Techniques Under Consideration

If the OSPDE recording rate is approximately one milli-

second, there will be sixty thousand data items recorded every

minute, and 3.6 million data items recorded every hour. It

is obvious, from these huge volumes of data, that a process to

reduce data must be done on a computer to give meaningful

information to the user. Hence, a data-reduction and reporting

routine is needed. This routine should have the capability to

receive parameters from the user, to select any combination of

events of the recorded data, and to output the analysis results

in tables or graphs.

The standard system accounting routine provides data con-

cerning the resources and the elapsed time used by a program.

The accounting data can be used to measure gross performance,

and can be combined with OSPDE recorded data to summarize the

overall system performance during long periods of computation

time. As described above, such a technique is required to

provide continuous measurement analysis to the user.

11,

'r
'r
„D

f;

F

t

r
r
i

83

5.5. Performance Evaluation Analysis of EXPOOL

EXPOOL is a core resident element within the EXEC 8 op-

erating system that contains a buffer pool and two routines to

maintain this pool. EXPOOL is one of the most active elements

in the EXEC 8 supervisor. All system tables, queues, and control

words are located in the EXPOOL buffer pool. Because of its'cen-

tral role, the frequency of use within the system, it was chosen

for detailed analysis using the techniques developed during this

study.

5.5.1 The Buffer Pool

The common buffer pool within EXPOOL is maintained in order

to provide a maximum number of buffers with a minimum amount

of overhead. The 'buddy' system storage allocation technique

is used here with permissible buffers of 2 n-1 words, where

25 n t 9. The buddy system has been described in Section 3.

The structure of a buffer is shown in Figure 5-4.

The EXPOOL buffer pool initially contains 27 blocks of

2 9 words each as implemented in the University of Maryland

EXEC 8 Operating System. Of the 27 blocks, 10 bloeks are gen-

erated at assembly time and 17 blocks are given to the EXPOOL

buffer pool by linking 17 blocks of no-longer-needed core to the

end of the available chain upon termination of system initiali-

zation. When all space within EXPOOL has been allocated, the

buffer pool may be expanded by calling CROED to get a block

of 2 9 words from system D-bank. The borrowed core space will

be released for user program use as soon as it is no longer

needed in the buffer pool. When the total unused space is less

than 4000 memory words, the buffer pool is set to a tight mode.

In the tight made, only critical requests, i.e, those with the

flag set, can be allocated space. All other requests are linked

zxternal Buffer Address
Internal Buffer Address

84

A = 0 if the buffer is used.

B if the buffer is free.

B = the internal size index.

C =,the link to the next buffer if the buffer is free.

'the function ID if the buffer is used by a function.
5

the switch ID if the buffer is not used by a function.

the return point if the buffer is used by the EXEC
main interlock code.

B
Figure 5-4. Structure of a one Block Buffer of Size 2 .

85

n z

r

to the EXPOOL request chain and the requestor is deactivated

by EXPOOL.

5.5.2 Request for and Releaseseof a Buffer from EXPOOL

To request a buffer storage area from EXPOOL, the following

calling sequence is used:

LXI,U	 X111P

LMJ	 Xll,EXPOOL

on exit from the request, the program leaves the external buffer

address in the AO register, the return address in index II

(XII), and the address of the word that contains the user

specified parameters, P, in the Al register. The information

indicating the exact nature of the buffer request is made

available to EXPOOL in the following format:

67

Ps	 SIZE	 NF C	 ADDRESS -1
Eli'

where: SIZE = number of words in the buffer desired.

N=0	 needs a buffer when it becomes available
1	 must receive the buffer immediately to continue

processing.

F=0	 add to the end of chain
1 : add to the front of chain

C=0	 no chaining
1 : chain as specified in F

ADDRESS - a pointer to the control word if C-1; or
the address of the buffer to be assigned
if C=O.

To release a buffer storage area from EXPOOL, the routine

EXREL is initiated by providing the following calling sequences

L	 A0, P

LNJ	 X11, EXREL

where, P has the following format:

86

P..	 SIZE	 ADDRESS	 j

5.6. Preliminary Results of an Analysis of EXPOOL

The efficiency of a function or program depends both on

the algorithm used, and the effectiveness of the code used to

implement the algorithm. In evaluating EXPOOL both the algorithm

and the implementation have been analyzed. As described in

Section 3, a simulation model of the buddy system storage al-

location technique, as well as several other allocation schemes

have been constructed and run on the Univac 1108.

Several core memory dumps of the EXPOOL buffer pool have

been taken. The distribution of used buffer size was calculated

according to the results obtained from the memory dumps, and

has been used as the input a-urce to ITFVA (Instruction Trace

and Functional Value Analysis) described in Section 5.2. The

time interval between a buffer being allocated and released is

assumed to be an exponential distribution. tinder ITFVA

requests and releases are called. Figures 5-5 & 5-6 show the analysis

result of the original EXPOOL program. We see 23.? percent of

of the allocation time has been spent in looking through the

table, TAB2, to convert the external request size into the

internal buffer size index. It is interesting to note that

within EXPOOL, the table TAB2 is ordered randomly as shown in

Figure 5-7. That is, there is no rationale for the sequence of

entries in the table. It is of interest to calculate the

average time required to search for an entry in the table. if

we let E be the average search time to find a matching entry

in TAB2, N(i) be the number of instructions needed to access

the ith entry in the table, and P(i) be the probability that

f

^I

If

'I

87

FnnFE IFCOTION FREDUENCY FOP rACIJ T+vTER`jAL

i APLF RFLATIVE LnCATTV FI TOTAL	 TNS T , PEFCF"IT	 OF

STAFT END EXE_CUTFO RUN	 TTMF

EXP!tni ant% 003n 3141 16•A7
FXP2 01131 1037 5nU 2.69

FXPE XT (11)40 L1070 1 30CI 6.98

INLK On71 0142 1300 6098

RE9UF 9; 01++3 0154 976 S924
a! nMT% RF 01SS (1171 1441 7.74

PE029 0172 n20a& 630 3.39

"CORE 07n5 0277 3 .G2

FXREL R3nO 0316 3341 17.94
ER22 01317 0330 et10 4.34

EXREXT 0331 U343 5f1Q 2969

FR73A 0344 0356 0 •1!0

RELEAS 0357 0363 1680 9*02

REL1.1 030 01#13 1376 7.40

PEL1.2 041 4 0434 p11 4936

PEL2 0435 0442 90(1 4983
WEL3 0443 0446 0 +n0

PELS6 0447 (}473 0 000
OTHER 0n0e Conn 2 oni

TOTAL 18619 T"STRUCTtn^- = FTECUTED nURtu6 TWIS ANALYSIS*

1 2 Q 4Q 0

I=

{

Figure 5-5. Code Execution Frequency for Bach Labeled Block
of the Accessing Routines (ri(POOL/EXREL) as Implemented
in EXEC; 8.

1. The block symbolic name, i.e. label.
2. The relative location of the label to the start of the routine.
3. The relative location of the instruction preceding the next

label.

4. The total number of executed instructions within each labeled
block of the routine.

5. The percentage of total run time spent in each labeled block
of the routine.

88
If

.1

111

I THE Mn%T FRFQUENTLY EXECUTFn. INTERVALS

IARLF	 i	 FIRFL ! STARTIVG LOCATION 03nO	 TOTAL 33'11	 INSTRUCTION EXECUTFn.

MACRn	 ImST.	 LOCATION MACRO	 INST. FXECUTION TOTAL	 INST. PLRCFt,T

START FNn FREQUENCY EXECUTFn
n3On n311 9 100 9n0 26.44
0312 n31a 2 100 200 5099
n312 131S 3 747 2241 47.00

tARLF	 t	 FXPOOL 1 STARTI ►•+G	 LOCATION OnI5	 TOTAL 3141	 INSTRUCTION EXECUTFn.

MACRO	 ImST.	 LOCATION MACRO	 INST• FXECUTION TOTAL	 INST. PERCENT
START E !4n Lf-NGT 1? FREQUENCY EXEC UTED

nn15 0023 7 tell 700 22.29
002 +1 nO2F+ 2 1 UO 2110 6.37
n024 0027 3 747 2241 71.35

LARLF	 I	 RFIFAS ! STARTING LOCATION 0357	 TOTAL 1680	 INSTRUCTInN EXECUTFD.

PACPn	 INST.	 LOCATION "ACRD INST. EXECI+T10%, TOTAL	 IMST. PERCENT
START ENn iEt<GTN FREQUENCY EXECOTEO

n3S7 0403 16 60 960 57.14

0357 0408 IA 40 720 429A6

0 0 0 o a o
Figure 5-6. Analysis of Iriost Frequently Executed Labeled Blocks

of the Accessing Routines (EXPOOL/EXREL) as Implemented
in EXEC 8.

=i

=1

ltl,

i

s^

1. The relative location of the first word of each macro-instruction
to the start of the routine.

2. The relative location of the last word of each macro-instruction
to the start of the routine.

3. The number of instructions in each macro-instruction.
4. The number of times the macro-instruction was executed.
5. Total instructions executed in each macro-instruction.
6. The percentage of labeled block execution time spent in the

macro-instruct"on.

3_1z

TAB2 as Implemented in the EXEC 8

. Table of External and Internal Buffer Sizes

+ External Size, Internal Size Index

TAB2.
+	 3,2
+	 6,3
+	 28,5
+	 56,6
+	 224,8
+	 127,7
+	 15,4
+	 7,3
+	 31,5
+	 63,6
+	 255,8
+	 511,9

TAB2 Reordered to Optimize Table Lookup Process

. Table of External and Internal Buffer Sizes

+ External Size, Internal Size Index

TAB2.
+	 511,9
+	 127,7
+	 224,8
+	 255,8
+	 56,6
+	 63,6
+	 6,3
+	 7,3
+	 15,4
+	 28,5
+	 31,5
+	 3,2

Figure 5-7. Structure of TAB2 as Used in EXEC 8 and
Structure of Reordered TAB2.

89

90

the ith entry in the table is requested, then

12
E = j^JN(i)*P(i).

If N(i) = n*i, where n is a constant, the value of E is mini-

mized if P(i)i P(j) for all j2i. That is, a minimum search time

can be obtained if the table entry is given in decreasing order

according to its probability of occurrence. In Figures 5-8 &

5-9, the result of reordering the table, TAB2, according to the

size usage distribution obtained in Section 3 is shown. The per-

centage of CPU time spent in this table lookup is still high,

but an average of 15.5 percent of allocation time has already

been saved.

An additional saving in time may be obtained by recalling

that the buddy system storage allocation technique is so defined

because each buffer request made for a block of size n, where

2k6 n42
k+1

, is allocated a block of exactly
2k+1

words providing

2k+1 is less than or equal to the maximum block size permitted.

In most allocation schemes, to convert an external request length

to the internal size index, a table lookup is used. Actually,

the feature of the buddy system provides a very easy way to

handle the conversion. The simple formula is that the internal

buffer size index k equals the number of bits in the machine

word minus the number of bits with leading zeros. For this, a

single shift and count instruction can get the size index im-

mediately. Now the average search time E is decreased sub-

stantially. For, in this case, N(i) becomes a constant, c, the

time to perform the shift and count instruction. Hence E = c.

Figure 5-10 shows the result of the above change in the time

required to access the appropriate word. An average of 29.1

percent saving for each request (or release) is gained over the

code currently implemented in EXEC 8.

M F

e^

a

i

91

CnUF* F XFCUT I ON FRE-,vUFNCY FMP FAC14 T "+TEQVAL

1	 Aal_F RFLATIVF I,nCATIM I„ TOTAL	 I'J ST• PFRCENT	 OF
START FNU FXECUTFC R11'a	 TIMF

FXP001 nn15 (1030 14A5 9.7n
FXP7 n031 0037 500 3027

FXPFXT [1n40 0117n 1301, 8.49

1 NL Y, 0n71 L1142 1 300 A * 49

RFG I)F q 01 u 3 0154 971, A-• 3A
NmmnpF O 1 S5 0171 1 441 9.41

RFQ74 0172 020µ 63n 4.12

MCORF n22i5 0277 3 .02
FXRFI 03nn 031ti 1685 11.(11

ER22 0317 0330 A a 0 5.23

EXRFXT 0331 0343 Son 3927

ER23A 0344 4354 n •OU

RFLEAS 035 7 0363 1680 1()09A

PEL1 •t 0344 13413 1378 9+Q0

REL1.2 0414 0434 811 So30

RFL2 0435 0442 91)n S*AA

REL3 0443 0446 n .n0

R E L 5 6 0447 0473 0 0010

OTHER or)on (100n 4 003

TOTAL 153(17	 IMSTPUCTI0- F)(ECUTE0	 nt1RI "aG THTS	 ANALYSIS.

0 0 0 0 0
Figure 5-8. Code Execution Frequency for'Each Labeled Block

of the Accessing Routines (EXPOOL/EXREL) after Re-
ordering the Table, TAB2.

1. The block symbolic name, i.e. label.
2. The relative location of the label to the start of the routine.
3. The relative location of the instruction preceding the next

label.
4. The total number of executed instructions within each labeled

block of the routine.
5. The percentage of total run time spent in each labeled block

of the routine.

92

T 14F a15T FRFOOENTLY FXEC.t1 T Fr% INTERVALS

I. A NI_F	 (EXREL	 1 STARTI I,! G	 IOC A TIOtit 03nU	 TOTAL IAAS	 I I,! STkUCTI'iN	 LXFCOTFD.

MACRn	 P.'ST.	 LOCAT IO 0+ '•ACRO	 INST. EXECUTION TOTAL	 NST• PLoLE.iT

START ENn 1 ENCT=a F^tEtJtaENtY EXECUTF_n

n3nn ''► 311 Y ion 000 53.41
0312 0313 2 100 2017 11'.^+7
0312 n31S 3 199 SRS 34.72

L ARLF	 (RFLEAS	 1 STARTIkiG	 L.00ATTOta 0357	 TOTAL 1480	 It"STkUCTION E0*CUTFD.

hACRn	 INST.	 LOCATION ^,ACRO	 INST. EXECUTION TOTAL	 INST. PE.KCENT
START FND i EmrT.4 FREQUENCY EXECUTED
n357 0403 16 60 96n 57.14
0357 n4nS 18 40 720 42.N6

LARLF	 (FXPOOL) STARTIrsG	 LOCATION Oni5	 TOTAL 14 8 5	 P'ST R UCTION EXECUTFD.

MACRO	 ItJ ST. LOCATION -•ACRD	 INST. FXEC(1TInN TOTAL	 11-IST. PERCENT
START ENF) i_ErjCT 4 FREQUENCY EXECUTEn
Only On23 7 100 700 47019
nn?4 0025 2 104 2nn 13.147
nn24 0027 3 19S 585 39.39

T 0 O ® l'J O

Figure 5-9. Analysis of Most Frequently Executed Labeled Blocks
of the Accessing Routines (EXPOOL/EXREL) after Re-
ordering the Table, TAB2.

1. The relative location of the first word of each macro-instruction
to the start of the routine.

2. The relative location of the last word of each macro-instruction
to the start of the routiTS.

3. The number of instructions in each macro-instruction.
4. The number of times the macro-instruction was executed.
5. Total instructions executed in each macro-instruction.
6. The percentage of labeled block execution time spent in the

macro-instruction.

i
is

93

CnnE F XFCVT V)N FRE ,, LIENCY FOR E ACH riTEKVAL

1 AR LF RFLAT1VF	 i_OCATM! TOTAL,	 1NST9 PERCU 'T	 OF
START E. FXECL'TFq RON	 T1MF

f xP,'!ni nnnn 0004 900 7.12
FXPT OnnS '1013 100 979
EXPFXT On I4 0044 1100 10.29
1 N L K (3045 0112 900 7912
RFQ(iFS [1113 (1124 976 7972
NMMORF 0125 0141 1441 119µq
PF02P 0142 0154 630 4999
MCQRF 0155 0247 3 a02
F_XREL 02K0 0254 400 A933
FP22 0255 0266 Ann 4975
FXREXT 0267 0302 300 2937
FR23A 03n3 0311 n 9n0

RELEAS 0312 0316 1680 13929
REL 19 l 031'l 0347 137A 10090
P EL192 n35n 0367 All 6942
REL2 0370 0375 9nn 7912
REL 3 (1376 n401 n 9n0
REL56 0402 0426 n 9Q0
0THFR Onn(1 000n 6 905

TOTAL 1263 7 itAURUCTM I FXECUTEO	 nt1Kt"IG T141S	 ANALYSIS*

0 0 0 0 0
Figure 5-10. Code Execution Frequency for Each Labeled Block

of the Accessing Routines after Eliminating the
Table, TAB2.

1. The block symbolic name, i.e. label.
2. The relative location of the label to the start of the routine.
3. The relative location of the instruction preceding the next

label.
4. The total number of executed instructions within each labeled

block of the routine.
5. The percentage of total run time spent in each labeled block

of the routine.

94

In the 1108 executive system there will be essentially the

same number of releases as requests for buffer storage after

the system stabilizes, so that, in the following discussion, no

attempt is made to distinguish the type of action requested in

the allocation process. In the EXEC 8 version of the allocation

routine, by using the TRACE routine it was found that the average

number of instructions required for an allocation was 103. In

the 1108, the average time per instruction is 1.75 /ttsec. There-

fore, the time spent in one allocation process is 1.75fcsec

times 103 instructions or .180 msec.

By reordering the table, TAB2, so that the order of the

entries in TAB2 are given in decreasing order according to their

probability of occurrence, the average number of instructions

required for an allocation was found to be 87. The time spent

in the allocation process is then .152 msec, a reduction of

.028 msec per allocation. By introducing a shift and count

instruction to replace the table lookup process, the average

number of instructions was reduced to 74. The time spent in the

allocation process is then .130 msec. This represents a reduction

of .050 msec over the EXEC 8 version or a reduction of .022

over the version with a reordered TAB2.

The significance of this reduction in the number of in-

structions executed per allocation can be seen only in relation

to the frequency with which this routine is executed. If the

routine is executed infrequently, this reduction in instructions

executed is of little consequence. If, however, it is found

that a buffer request occurs every k milliseconds for a particu-

lar installation, the percent of total running time and the

actual time spent in performing this function may be significant

and can be calculated directly. A table has been prepared in-

dicating the reduction in total running time per 8 hour shift

95

which can be realized as a function of the execution frequency

of the allocation routine. The results are given in Figure 5-11.

The frequency with which this routine is executed is a

function of the installation operating environment and the exe-

cutive system activities, in particular input and output

activities. It has been estimated by the systems staff at the

University of Maryland that the allocation process is executed

at least every 25 msec. Assuming an operating expense of $500/

hour, the consequence of the implementation is a loss of between

$5000 and $10,000 per year for the University of Maryland Compu-

ting Center on a three shift basis. As indicated above, the

loss experienced will vary from installation to installation.

An internal software monitor could be used at each particular

installation to determine the exact frequency with which the

allocation routine is executed. The loss could then be assessed.

The results obtained would then determine the expected improve-

ment in system performance through the modification of this

routine.

It may be that-the results found by monitoring the execu-

tion frequency of the allocation routine would not warrant

system modification if this were the only installation with this

'performance bug'. Considering the fact that this is not a

special purpose operating system, but rather one which is

utilized at many computing centers throughout the country, the

composite loss appears to be such that system modification and

improvement in system performance is imperative.

V.

tyl
a

•rl m
m r-i
rA iv

a41
^ H

44 d1
4a O

Am
m

^. d
a U

U
m

W ^
c0

L4 54
m

144
O

s~
•ra O
4J •ri

m 41

V 44
r4am
oto

0 O
•rl ^ U^.O

U H 4

r-1
1

0

ON
-A
w

.,4

d

> © © O m d'
in O W
t

^C
of

O
m

O
v

v^
r4

m
O

st
O

N
O

O
O

O
O

g^	 g r-i O O O O Cj O a d

O
F3

^ O
•ri -A

•

O 41

$4 0

lu

to 1`1

m •A 0 O N sb M t` ^ ^ rr4 O O d
r. a

•+4 r
t 0)

9
m
d

M
O

P4
d

o
O

a
d

o
O

0
O

0
O

0
O

O
aJ O
r- E-4

-A -A
aJ

U r4
OD d'

0 m© v m a :° o a
N

N
0

M N eO-t O o 0 a0 O O
41 U
44 a` -A •rl
•ri aJ

to %0 M

O
m Va M in N f-I O d O

tr1

In N
O
C

7

m 0 $4 N trt
tC
01

Ln
V

P'1
N

N
ra

'd'
O

rte)

O
.rq
m

t 0
4l	 D

r
O

cn
0

N
O

0
O

O
0

O
O

O
a

O
O

O
0

to a O
d -A •rl

U aJ
U

(D

N &
m !• 1 ri

0 OD m r4 OD

U
^
H
p

9^
O

d^
d'
N

N
r4

d'
0

C4
0

ri

o
O
d

d
d

O
o

Qi	 4)

O
•rFi

•^

v
to N O d U)

In
M

in
+"^0 r4 O to 0 cn r-t O O 0

x m M

V

m
m d'

to CD O m er n GOD dam' ^ N P4

C?	 ^!U \
C

OJ
d'

co
N

d'
ra

to
O

N
O

r4
O

0
O

o
O

O
Oa

a •A •a

m
Û

o +o m
N
t`

1L?
r:

m
ra

Ot
O

nn
O

r"1
0

W ^ m cn ^+

r{

C "4	 •

M In
0.4 N in r-4 N tIn rO4

U G ^.'

97

6. Analytic Studies Summary

Two mathematical models were developed in an effort to

characterize information handling centers. In both cases, the

information center was assumed to be a two level store with a

primary and a secondary store. The difference in the models

lies in the assumptions made about the stores. In the first

model, the primary store is assumed to be infinite. In the

second model, this restriction is removed and the model is

solved for a bounded primary store.

Abstracts of the two reports are given here. The complete

reports have been submitted to NASA as independent documents.

6.1. Stcrage Requirements for Information Handling Centers

By H. M. Gurk and J. Minker

In this paper the authors investigate a stochastic model

relevant to certain kinds of information handling centers, best

typified by computer utilities and document storage and retrieval.

The growth characteristics of an information center are evaluated

for a retirement policy that governs when items are retired

from a two level auxiliary store (disc or drum in the case of

the computer utility and document files in the case of the

document center) to a less accessible store. A retired docu-

ment, or segment in a utility environment, may be reactivated

and brought back into the primary store provided that a sufficient

number of requests have been made for it.

For a given retirement and reactivation policy, an integral

equation is derived for the expected number of items in the

primary store. This equation depends upon the arrival distribu-

tion for documents, the request distribution, and the parameters

96

associated with the retirement policy. No particular limiting

assumptions have been made with respect to the form of the

distributions. Explicit solutions to the integral equation

are derived for document arrivals that follow a Poisson distri-

bution to determine the expected steady-state size of the primary

store, and the standard deviation of the size.

6.2. A Stochastic Model of an Information Center

by J. Minker

In the earlier paper, the author investigated a stochastic

model relevant to information handling centers best typified by

computer utilities and document storage and retrieval centers.

The growth characteristics of information centers were evaluated

for retirement policies that govern when items are retired from

a primary store to a less accessihie store. The results obtained

assumed that the primary store was of unbounded capacity. In

this paper we remove this restrict'Lon and consider the case

where the primary stare has a finite capacity.

A set of integral equations is derived for the expected

nam..)er of items in the primary store. The integral equations

depend only upon the arrival distribution for documents, the

request distribution, and the parameters associated with the

retirement policy. No particular limiting assumptions have

been made with respect to the form of the distributions.

The set of integral equations are solved for document ar-

rivals that follow a Poisson distribution. The expected value

of the size of the store approaches the result given in the

first paper as M, the size of the primary store, becomes un-

bounded.

99

7.	 Technical Reports and Publications

A

Documents resulting from work performed under this grant

are as follows:

(1)	 Minker, J., 'A Stochastic Model of An Information

Center', University of Maryland Technical Report

69-90, July 1569.

(2)	 Gurk, H.M., Minker, J.,	 'Storage Requirements for

Information Handling Centers'. 	 To be published in

Journal of the ACM, January 1970.

(3)	 Crooke, S., Minker, J., 'Key Word In Context Index

and Bibliography on Computer System Evaluation',

University of Maryland Technical Report

December 1969.

if
if

100

8. Quarterly Reports

Brief reports that describe the direction of research have
i

been issued on a quarterly basis. The following quarterly

reports have been submitted to NASA under this grant.

(1) First Quarterly Report (October 1, 1968 — December

31, 1968) NASA Grant NGR21-002-197.

(2) Second Quarterly Report (January 1, 1969 - March

31, 1969) NASA Grant NGR21-002-197.

(3) Third Quarterly Report (April 1, 1969 - June 30,

1969) NASA Grant NGR21-002-197.

(4) Fourth Quarterly Report (July 1, 1969 - September

30, 1969) NASA Grant NGR21-002-197.

i
1

z^

101

Bibliography

1. Rosenthal, S., 'Analytical Technique -or Automatic Data
Processing Acquisition', Proc. AFIPS 1964 SJCC, 359-366.

2. Joslin, E.O., "Cost-Value Technique for Evaluation of
Computer System Proposals", Proc. AFIPS 1964 SJCC, 367-3$1.

3. Auerbach Standard EDP Reports, Auerbach Info., Inc.,
Philadelphia, Pa.

4. Herman, D.J., Ihrer, F.C., "The Use of a Computer to
Evaluate Computers", Proc. AFIPS 1964 SJCC, 383-395.

5. Ihrer, F.C., "Computer Performance Projected Through
Simulation", Comput. Autom., 17,4 (April 1967), 22-27.

6. Calingaert, P., "System Performance Evaluation: Survey
and Appraisal", CACM 10,1 (January 1967), 12-18.

__ 7. Shemer, J.E., "A Mathematical Analysis of Input/Output
Interference in a Time-Sharing Information Processing
System", Technical Information Series R63CD13, GE Co.,
Phoenix, Arizona, Nov. 1963.

:,8. Shemer, J.E., Shippey, G.A., "Statistical Analysis of
Paged and Segmented Computer Systems", IEEE Trans. EC I5

_ (December 1966), 855-863.

9. Denning, P.J., "Thrashing: Its Causes and Its Prevention",
Proc. AFIPS 1968 FJCC, 915-922.

10. Coffman, E.G., "Analysis of Two Time-Sharing Algorithms
Designed for Limited Swapping", J.ACM 15,3 (July 1968),
341-353.

11. Coffman, E.G., Kleinrock, L., "Feedback Queueing Models for
Time-Shared Systems", J.ACM 15,4 (October 1968), 549-576.

12. Denning, P.J., "Resource Allocation in Multiprocess Computer
` Systems",	 (Ph.D. Dissertation), Tech. Rpt. MAC-TR-50, MIT,

Cambridge, Mass., 1968.

13. General Purpose S stem Simulator II	 GPSS-II . "Reference
Manual", Univac Manual No. UP-4129.

^3

4
S

102

14. Markowitz, H.M., Hausner, B., Karr, H.W., Simscript: A
Simulation Programming Lang_ uage, Prentice Hall, Inc.,
Englewood Cliffs, N.J., 1963.

15. Computer System Simulator/360 Program Description and
Operations Manual, (IBM Confidential), IBM Form No. Y20-0130.

16. Cohen, L.J., Associates, System and Software Simulator:
S3, Technical Manual, (AD679-269 - AD679-272).

17, Chu, Y., 'An Algol Like Computer Design Language', CACM 8,
10 October 1965), 607-615.

18. Grice, A., Hargol - A Hardware Oriented Algol Language, In-
ternal Report No. VAS, August 1966, A/S Regnecentralen,
Copenhagen, Denmark.

19. Pinkerton, T.B., Program Behavior and Control in Virtual
Storage Computer Systems, (Ph.D. Dissertation), Technical
Report 4, University of Mich., Ann Arbor, Mich., 1968.

20. Saltzer, J.H., "The Instrumentation of Multics", ACM 2nd
Symposium on Q/S Principles, October 1969, 167-174.

21. Conti, C., "System Aspects: System/360 Model 92", Proc.
AFIPS 1964 FJCC, 81-95.

22. Estrin, G., Hopkins, D., Coggan, B., Crocker, S.D., "SNUPER
Computer - A Computer in Instrumentation Automation", Proc.
AFIPS 1967 SJCC, 645-656.

23. Russell, E.C., Estrin, G., "Measurement Based Automatic
Analysis of Fortran Programs", Proc. AFIPS 1969 SJCC, vol.
34, 723-732.

24. Schulman, F.D., "Hardware Measurement Device for IBM System/
360 Time-Sharing Evaluation", Proc. ACM 22nd National Conf.,
103-109.

25. Stevens, D.F., 'System Evaluation on the Control Data 6600",
IFIP International Conference 1968, pp.C34-38.

26. Deniston, W.R., "SIPE: A TSS/360 Software Measurement
Technique", Proc. of ACM 24th National Conf.,229-245.

_I

F

-41

7

103

27. Roek, D.J., Emerson, W.D., "A Hardware Instrumentation
Approach to Evaluation of a Large Scale System", Proc.
of ACM 24th National Conf., 351-367.

28. Systems Measurement Software (SMS/360), User's Guide for
CUE-1, Boole and Babbage, Report No. 135, February 1969.

29. Systems Measurement Software (SMS/360), User's Guide for
PPE, Boole and Babbage, Report No. 41, May 1969.

30. News Briefs in Datamation, March 1969, p.109.

31. Denning, P.J., "A Statistical Model for Console Behavior
in Multiuser Computers", CACM 11,9 (September 1965), 605-
612.

32. Knuth, D.E., The Art of Computer Programming, Vol. 1,
Fundamental Algorithms, Addison - Wesley, Menlo Park, Cal.,
1968

33. Apple, C.T., "The Program Monitor - A Device for Program
Performance Measurement". ACM 20th National Conf. 1965,
pp.66-75.

34. Cantrell, H.N., Ellison, A.L., "Multiprogramming System
Performance Measurement and Analysis". AFIPS SJCC 1968,

It	 pp.213-221.

35. Campbell, D.J., Hefener, W.J., "Measurement and Analysis of
Large Operating Systems during System Development". AFIPS
FJCC 1968, pp:903-914.

	GeneralDisclaimer.pdf
	0018B03.pdf
	0018B04.pdf
	0018B05.pdf
	0018B06.pdf
	0018B07.pdf
	0018B08.pdf
	0018B09.pdf
	0018B10.pdf
	0018B11.pdf
	0018B12.pdf
	0018C01.pdf
	0018C02.pdf
	0018C03.pdf
	0018C04.pdf
	0018C05.pdf
	0018C06.pdf
	0018C07.pdf
	0018C08.pdf
	0018C09.pdf
	0018C10.pdf
	0018C11.pdf
	0018C12.pdf
	0018D01.pdf
	0018D02.pdf
	0018D03.pdf
	0018D04.pdf
	0018D05.pdf
	0018D06.pdf
	0018D07.pdf
	0018D08.pdf
	0018D09.pdf
	0018D10.pdf
	0018D11.pdf
	0018D12.pdf
	0018E01.pdf
	0018E02.pdf
	0018E03.pdf
	0018E04.pdf
	0018E05.pdf
	0018E06.pdf
	0018E07.pdf
	0018E08.pdf
	0018E09.pdf
	0018E10.pdf
	0018E11.pdf
	0018E12.pdf
	0018F01.pdf
	0018F02.pdf
	0018F03.pdf
	0018F04.pdf
	0018F05.pdf
	0018F06.pdf
	0018F07.pdf
	0018F08.pdf
	0018F09.pdf
	0018F10.pdf
	0018F11.pdf
	0018F12.pdf
	0019A03.pdf
	0019A04.pdf
	0019A05.pdf
	0019A06.pdf
	0019A07.pdf
	0019A08.pdf
	0019A09.pdf
	0019A10.pdf
	0019A11.pdf
	0019A12.pdf
	0019B01.pdf
	0019B02.pdf
	0019B03.pdf
	0019B04.pdf
	0019B05.pdf
	0019B06.pdf
	0019B07.pdf
	0019B08.pdf
	0019B09.pdf
	0019B10.pdf
	0019B11.pdf
	0019B12.pdf
	0019C01.pdf
	0019C02.pdf
	0019C03.pdf
	0019C04.pdf
	0019C05.pdf
	0019C06.pdf
	0019C07.pdf
	0019C08.pdf
	0019C09.pdf
	0019C10.pdf
	0019C11.pdf
	0019C12.pdf
	0019D01.pdf
	0019D02.pdf
	0019D03.pdf
	0019D04.pdf
	0019D05.pdf
	0019D06.pdf
	0019D07.pdf
	0019D08.pdf
	0019D09.pdf
	0019D10.pdf
	0019D11.pdf
	0019D12.pdf
	0019E01.pdf
	0019E02.pdf
	0019E03.pdf
	0019E04.pdf
	0019E05.pdf

