General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

× R.J. Lesriewski, F

the set the

A STATISTICS

- Sun

FINAL REPORT

Contract Number: NAS-5-21012

(THAU) CATEGORY

Prepared By:

Approved By:

11018

11 10 Robert Cook Project Engineer

Project Engineer Robert Coo

Robert Cook Project Manager

SOLID STATE SCIENTIFIC INC. MONTGOMEZPUILLE, PENNA.

TABLE OF CONTENTS

.

2

Pa	ge
INTRODUCTION	
Study Program 1	
C^2 processing	
PHASE I ELECTRICAL RESULTS 2	
РНАЅЕ П	
BI-DIRECTIONAL DRIVER PERFORMANCE 2	
C MOS versus C^2	
BUFFER CIRCUIT EVALUATION 3	
LOW VOLTAGE OPERATION	
C ² GEOMETRY CONSIDERATIONS4	
CHIP AREA TRADE-OFFS	
CONCLUSION	

the notion

なみの

「「「「「「「「」」」」

「「あい」を

認いていたまた

調査法

ないので、「「「「「「「」」」」

..

INTRODUCTION

This final report covers the accomplishments made during the performance of the investigation into the combination of Complementary MOS and Complementary Bipolar circuits on a monolithic silicon chip. The results of this effort clearly demonstrates feasibility. The data shows that enhanced electrical performance can be expected with this new technology.

Study Program

The development program was devided into two work phases. Phase I consisted of the design and fabrication of a special engineering photo-resist mask set and an investigation of the wafer processing techniques required to determine initial feasibility. Phase II consisted of the fabrication of read/write buffer circuits using a second set of masks. This new technology has been named "Complementary-squared" or simply "C²".

Complementary-squared (C^2) PROCESSING:

The diffusion development effort centered around the fabrication of a compatible high beta PNP. Both a "lateral" PNP and a "substrate" PNP approach were eliminated as candidates for C^2 . The final structure used is the familiar vertical planar PNP. Additional investigations to determine the minimum fabrication steps and the processing reproducibility were also completed during Phase I. Figure #1 shows a cross-sectional view of the C^2 structure. The process requires only two additional steps versus that of C MOS only. The bipolar transistor process was specially designed to achieve the high emitter-base reverse breakdown voltages required for the read/write buffer circuits. Typical electrical characteristics are shown in Figure #2 for both the bipolar and C MOS devices.

PHASE I ELECTRICAL RESULTS:

The mask set of Phase I was designated SD 5610. The first group of wafers completely processed using these masks clearly demonstrated the feasibility of C^2 . The dynamic performance showed that with a capacitive load of greater than 470 pico-farad, speeds in excess of one megahertz could be achieved. The static power consumption achieved with these circuits was typically much less than 100 nano-watts.

The successful completion of Phase I marked the beginning of an entirely new and exciting technology.

PHASE II

The circuits developed during phase II are shown in Figure #3 and #4. These devices are designated SD 5615-2 and SD 5615-3 respectively. A simple inverting output buffer was evaluated as shown in Figure #5 (SD 5615-1). Ten samples of each circuit have been furnished to NASA for further evaluation. The wiring diagrams are shown in Figure #6. Table I shows the data for the SD 5615-1 device.

BI-DIRECTIONAL DRIVER PERFORMANCE:

The data collected on circuits # SD 5615-2 and SD 5615-3 is represented in tables II and III. *The high leakage currents associated with these devices are a result of the low BVCEO of the PNP devices. The BVCEO values were a result of extremely narrow basewidths for these devices. It has already been shown in Phase I that these high leakage levels are not inherent in the C² process, and identical dynamic performance for low leakage devices (nano-amperes) would be experienced.

C MOS versus C^2

The evaluation of the dynamic characteristics clearly shows the advantages of C^2 over that of C MOS.

<u>C MOS versus C^2 (Cont'd)</u>

This is represented graphically in Figure #7. Here, the rise and fall times are plotted versus load capacitance for the case of $V_{dd} = \pm 10$ Volts (SD 5615-2). The C MOS inverter used for this graph has w/l ratio equal to 100 for both the N and the P channel devices. It is apparent from this data that a ten to one speed improvement can be realized by using the C² technology.

BUFFER CIRCUIT EVALUATION

The two bi-directional driver circuits were compared dynamically in both the input and output modes of operation. In the output or driving mode the SD 5615-3 circuit exhibits extremely long fall times. This is due to the fact that the bases of the bipolar devices are not turned off thru MOS devices. Rather, the bipolar device that should be off (depending upon the input state), is left "floating" such that current can continue to flow until the device capacitances are discharged. The fact that only the fall time is affected indicates that the NPN charge storage time is much greater than that of the PNP. The SD 5615-2 circuit does not suffer from this problem due to the "push-pull" effect achieved by driving the bipolar bases from a common C MOS inverter. In the input or data acceptance mode the SD 5615-2 circuit has an undesireable property. This circuit loads down the output as expected due to the fact that the bipolar devices are not turned off as is the case with the SD 5615-3 device. The loading effects of both circuits were evaluated by using a C MOS inverter to drive into the bipolar output and then measuring transition times. These times were in turn translated into effective capacitances. The SD 5615-2 represented a load from 200 to 1000 pico-farads and the SD 5615-3 represented essentially zero load to the C MOS inverter.

BUFFER CIRCUIT EVALUATION - Cont'd:

The circuit comparisons show that an optimum design can be achieved by combining the best aspects of these two circuits. This optimum design is shown in Figure #8, and it will result in the fastest switching response and minimum output loading.

LOW VOLTAGE OPERATION

Circuit #SD 5615-2 was evaluated at a supply voltage equal to +5 volts. The results of these tests are extremely significant in that no degradation of dynamic performance was observed under high loading conditions in terms rise and fall times. Figure #9 shows a comparison of C MOS and C^2 in terms of switching response versus supply voltage.

The fact that the C^2 fall time increases at higher supply voltage indicates that the effective series collector resistance increases due to current saturation. However, the supply range from +5 to +10 volts is of prime importance. In this voltage range the speed advantage of C^2 versus C MOS varies from a factor of ten (at 10 volts) to a factor of approximately twenty-five (at 5 volts).

The fact that the switching speed of C MOS at low voltage is quite poor, has inhibited its usefulness as an interface with standard TTL logic. The new C^2 technology offers the user direct TTL interface at high speeds.

C² GEOMETRY CONSIDERATIONS

Three MOS inverter geometries (w/l ratios) and two bipolar geometries were evaluated in terms of dynamic performance.

The SD 5610 device contained three C MOS inverter sizes, which were; W/L = 100, W/L = 50, and W/L = 25. These devices were evaluated in terms of driving capability

for the bipolar outputs. The results of this investigation is shown in Figure 10. The plotted parameters are propagation delay plus transition time versus inverter size for both logic states. The conditions were $V_{DD} = \pm 10$ volts and $C_L = 120$ pico-farads.

The results show that the larger inverter sizes increase the maximum operating frequency as expected. Thus, the minimum inverter size required of any new circuit designs will be a function of the requirements in terms of dynamic performance.

The bipolar devices were evaluated similarly using a constant inverter size of W/L = 100. The two bipolar sizes (total area for both the NPN and the PNP) were 212 mil² and 408 mil². The results of this investigation is plotted (Figure #11) in terms of propagation delay plus transition time versus capacitive load for both buffer sizes, ($V_{DD} = \pm 10$ volts). The results show that there is very little difference in terms of maximum operating frequency. This suggests that perhaps even smaller bipolar sizes could be used in future designs.

CHIP AREA TRADE-OFFS

This study program shows that both a speed improvement and a chip size improvement can be achieved with the new C^2 technology.

The area consumed by a typical output C MOS inverter (W/L = 100) is 176 mil². The bipolar output buffer of the SD 5610 device is only 212 mil². The increase in area of the bipolar devices is very minimal considering the tremendous gain in dynamic response. This very small increase in area makes C² very attractive for use as output buffers and also internal buffers such as clock line drivers.

CONSLUSION

The successful completion of this study program has lead to the following conclusions:

1) Both high speed and low leakage can be obtained using C^2 .

CONCLUSION - Cont'd

- Only two additional process steps are necessary for the fabrication of C² versus
 C MOS alene.
- Both types of bi-directional buffer circuits functioned electrically and pointed the way to a newer optimum design.
- 4) The SD 5615-3 represented nearly zero load in the input mode of operation.
- 5) C^2 offers a dynamic performance improvement from 10 to 25 times that of C MOS.
- 6) The observed high speed performance at +5 volts is compatible with conventional TTL circuits.
- 7) Chip area is not appreciatably increased by using C^2 .

TABLE #1

SCL 5615-1

STATIC CHARACTERISTICS: $V_{DD} = 10.0V$, $V_1 = 10.0V$, $V_0 = 0.0V$

- 16 a -	$I_{DD} @ V_1$	$I_{DD} \stackrel{(a)}{=} V_0$	VOH @ V0 Volts	$\operatorname{Vol}_{\operatorname{Volts}}^{\operatorname{(0)} \operatorname{V}_1}$
Serial #	μα			
1	0.0005	250	9.41	0.00
2	0.11	0.003	9.58	0.01
4	48	0.45 4.0	9.58 9.54	0.46
5 6	4.6	4.6	9.57	0.01 0.55
7 8	60 0.0005	0.0003	9.56	0.00
9	34 2.1	47 0.04	9.58 9.57	0.01
10	<i>4</i> • <i>1</i>			

DYNAMIC CHARACTERISTICS: $V_{DD} = 10.0V$, $V_1 = 0.0V$, $C_L = 92 \text{ pf}$

	Tr	Tf	Tp0	T _{p1}
Units	n Sec	n Sec	n Sec	n Sec
Serial #	ŧ			
1	54	188	44	56
- D	60	218	46	60
2	60	204	53	62
3	52	272	37 -	58
4	66	252	69	66
D C	60	182	55	62
6	64	196	48	64
7	64	146	38	62
8	50	358	94	60
9 10	68 68	218	47	62

4900.00

新学校の行う

3.

N. Cont

Sale and

「ないの」

の一般になっ

の言語に語れば言語に、

12

45

10

70

 $\mathbf{58}$

56

(1997-1929-M

TABLE II

SCL 5615-2						_	
STATIC CHARA	CTERIST	ICS: Vot	= 10.0 V	$V_1 = 10.$	$v_0 = v_0 $	0.00 V	
STATIC CHAIL	IDD		,		VOH	VOL	-
INDUT	TDD Vo	V1	Vo	V_1	V ₁	v _o	Data
CONDITIONS	V0 V0	Vo	V1	V_1	Vo	Vo	Write
COMDITIONS	•0	. 0			Volte	Volts	
Units	μA	μA	$\mu \mathbf{A}$	$\mu \kappa$	Volta	(ored	
Serial #							
1	6.7	2450	0.0008	0.003	8.53	0.01	
1	0.025	31.0	0.025	310	9.44	0.00	
2	1650	950	950	1000	9.58	0.07	
0	1 300	1700	0.0003	0.0003	9.34	0.18	
4	0.60	730	0.0005	0.0005	9.38	0.00	
5	470	950	1100	0.0012	9.32	0.01	
6	470	2000	0.0002	0.0002	9.35	0.00	
7	0.0005	670	21	0.0011	9.37	C. 00	
8	0.0005	150	0 19	0.20	9.44	0.40	
9	1.0	150	24	34	9,99	0.50	
10	30	270	04	04	0.00		
DYNIAMIC CHA	PACTER	ISTICS: ($V_{\rm DD} = 1$	0.0 V			
DINAMIC CHP	Tn	Tf	Tn0	T _{p1}	Ce0	Ce1	
	$\frac{1}{d}$	$\overline{\phi}$	Ø	Ø	Vo	$\overline{v_0}$	Data
C ON DIMION (C	φ	y V	Y V a	Vo	V ₁	V ₁	Write
CONDITIONS	V0	~ 0	* 0	$\rightarrow C_T = 1.4$	of Vor	VOH	Output
	CL=1.4	pt <		- L	UL -	D	
Units	n Sec	n Sec	n Sec	n Sec	pF	pr	
Serial #							
		40	16	25	150	870	
1	30	48	40	24	380	740	
2	29	56	00 40	25	290	700	
3	36	38	48	30	250	740	
4	30	48	54	38	200	800	
5	29	48	48	34	200	870	
6	23	40	44	35	200	400	
7	30	62	54	34	280	400 860	
8	33	46	52	46	360	770	
9	29	46	50	35	470	770	
10	35	42	50	45	1250	550	0
CONDITIONS	25pf	25 pf	25 pf	25 pf			$C\Gamma$
Units	n Sec	n Sec	n Sec	n Sec			
Serial #							
1	36	50	50	44			
2	36	80	56	43			
2	43	42	57	46			
0	37	54	58	47			
4	24	58	52	43		Continue	ed
5	40	46	48	45		Jonorna	
6	40	110	58	43			
7	30	59	56	56			
8	39	04	50	44			
9	34	60	50	44			

SCL 5615-2

And And

1 Ballin

あれっていたいのうちま

TABLE II - Cont'd

HALL POINT

N. S. THURSDAY, STR.

HERE'S PRIME

DYNAMIC CH	ARACTER	RISTICS: C	Cont'd		
CONDITIONS	92pf	92pf	92pf	92pf	CL
Serial #					ns ja
1	47	90	60	59	
2	52	140	72	59	
3	61	92	62	65	
4	48	100	68	62	
5	44	112	66	57	
6	52	78	56	62	
7	47	220	84	57	
8	55	94	68	72	
9	47	126	72	60	
10	72	156	78	35	
CONDITIONS	300pf	300pf	300pf	300pf	C _L
Serial #					
1	91	228	108	96	
2	88	. 50	154	92	
3	107	240	127	103	
4	87	240	127	95	
5	80	296	142	89	
6	93	200	96	97	
7	83	600	216	89	
8	99	235	128	113	
9	85	350	160	93	
10	132	430	192	122	

SCL 5615-3

Land Strength

考し

TABLE III

STATIC CHARACTERISTICS: $V_{DD} = 10.0V$, $V_1 = 10.0V$, $V_0 = 0.00V$

		I_{DD}				VOH	VOL
INPUT	V ₀	\mathbf{v}_1	V ₀	v_1	V ₁	V ₀	Data
CONDITIONS	v ₀	v_0	v ₁	V1	V ₀	V ₀	Write
Units	$\mu \mathbf{A}$	$\mu \mathbf{A}$	$\mu \mathbf{A}$	$\mu \mathbf{A}$	Volts	Volts	
Serial #							
1 1	0.0017	3500	500	500	9.30	C. 00	
2	0.020	900	200	200	9.36	0.00	
3	100	600	100	100	9.37	0.00	
4	0.001	2200	0.001	0.001	9.31	0.00	
5	0.0006	200	0.0055	0.0055	9.42	0.00	
6	6.0	650	6.0	6.0	9.40	0.00	
1 7	15	3500	600	600	9.33	0.00	
8	0.0011	4000	0.001	0.001	9.26	0.00	
9	4.0	300	110	110	9.40	0.00	
10	110	110	110	110	9.58	0.00	

DYNAMIC CHARACTERISTICS: @ V_{DD} = 10.0V

22

7

2700

850

34

1. A.								
CONDITIONS	$\mathbf{T}_{\mathbf{r}}$	T_{f}	$^{T}_{P}0$	\mathbf{O}^{T}	C _{e0} Vo	c _{e1} v	Data	
, o on part of the	Ŭ,	Vo	v	Vo	V.	V1	Write	
CT.	1.4pf	1.4pf	1.4pf	1.4pf	VOL	VOH	Output	
Units	n Sec	n Sec	n Sec	n Sec	pf	pf		
Serial#								
1	24	2000	630	34	0	0		
2	22	2400	720	32				
3	30	1100	80	34				
4	30	1200	90	34				
5	22	1500	70	34				
6	20	2600	590	28				
7	20	2600	870	30				
8	44	1300	270	36				
9	26	1800	350	34				
10	20	1600	70	30	1			
CONDITIONS	25pf	25pf	25pf	25pf			C_{L}	
<u>Units</u> Serial #	n Sec	n Sec	n Sec	n Sec			•	
1	28	2000	660	40				
2	24	2300	670	36				
3	32	1100	100	38				
4	32	1200	100	38				
5	24	1300	70	38				
6	22	2500	550	34				

SCL 5615-3

12

things also

H.

.

-1

TABLE III Cont'd

Netres No.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CONDITIONS						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Cont'd	$25 \mathrm{pf}$	25 pf	25 pf	25 pf		
8 33 1300 260 41 9 30 1800 340 40 10 22 1600 90 36 CONDITIONS 92pf 92pf 92pf 9 32 2300 590 45 3 40 1100 130 48 4 44 1200 130 48 5 34 1000 100 48 6 32 2500 410 42 7 30 2700 750 42 8 48 1000 250 52 9 40 1800 290 50 10 32 1700 130 44 CONDITIONS 300pf 300pf 10 32 1700 130 44 1 60 2100 240 72 2 56 2500 230 66 3 66 1200 210 70 4 6	<u>Units</u> Serial #	n Sec	n Sec	n Sec	n Sec		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	38	1300	200	41		
10 22 1600 90 36 CONDITIONS 92pf 92pf 92pf Serial # 1 38 2000 1000 48 2 32 2300 590 45 3 40 1100 130 48 4 44 1200 130 48 5 34 1300 100 48 6 32 2500 410 42 7 30 2700 750 42 8 48 1300 250 52 9 40 1800 290 50 10 32 1700 130 44 CONDITIONS 300pf 300pf 300pf 10 32 1700 130 44 10 56 2500 230 66 3 66 1200 210 70 4 68 1300 230 72 5 58 1700 200 70	9	30	1800	340	40		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	22	1600	90	36		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Serial # 1 38 2000 1000 48 2 32 2300 590 45 3 40 1100 130 48 4 44 1200 130 48 5 34 1300 100 48 6 32 2500 410 42 7 30 2700 750 42 8 48 1300 250 52 9 40 1800 290 50 10 32 1700 130 44	CONDITIONS	92pf	92pf	92pf	92 pf		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Serial #						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	38	2000	1000	48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	32	2300	590	45		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	40	1100	130	48		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	44	1200	130	48		
	5	34	1300	100	48		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	32	2500	410	42		
	7	30	2700	750	42		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	48	1300	250	52		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 - 10 -	40	1800	290	50		
CONDITIONS $300pf$ $300pf$ $300pf$ Serial #160 2100 240 72 256 2500 230 66 366 1200 210 70 468 1300 230 72 558 1700 200 70 654 2800 480 62 750 3200 770 62 8 72 1400 300 76 966 1900 310 74 1056 2100 290 66	10	32	1700	130	44		
CONDITIONS $300pf$ $300pf$ $300pf$ $300pf$ Serial # 1 60 2100 240 72 2 56 2500 230 66 3 66 1200 210 70 4 68 1300 230 72 5 58 1700 200 70 6 54 2800 480 62 7 50 3200 770 62 8 72 1400 300 76 9 66 1900 310 74 10 56 2100 290 66							
Serial #1 60 2100 240 72 2 56 2500 230 66 3 66 1200 210 70 4 68 1300 230 72 5 58 1700 200 70 6 54 2800 480 62 7 50 3200 770 62 8 72 1400 300 76 9 66 1900 310 74 10 56 2100 290 66	CONDITIONS	300pf	300nf	300nf	300mf		
Serial #1 60 2100 240 72 2 56 2500 230 66 3 66 1200 210 70 4 68 1300 230 72 5 58 1700 200 70 6 54 2800 480 62 7 50 3200 770 62 8 72 1400 300 76 9 66 1900 310 74 10 56 2100 290 66	Control #	ocopi	Joopt	Soobr	Soobt		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Serial #	<u>.</u>	01.00		-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	60	2100	240	72		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	56	2500	230	66		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	66	1200	210	70		
	4	08	1300	230	72		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	50	1700	200	70		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	54	2800	480	62		
3 12 1400 300 76 9 66 1900 310 74 10 56 2100 290 66	0	50	3200	200	62		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	66	1000	300	76		
10 50 2100 290 66	10	56	2100	310	74		
	10	50	2100	290	00		
	1.2						

		4		
		REVISI	ONS	
	ZONE LTR.	DESCRIPTION		DATE APPROVED
P channel MOS		MOS NPN D E B		
	P-		P-	
N" Silicon (100)				
Simura #1)	A capr cor	cross-section view of one fab proach of complementary MC uplementary bipolar on the s	rication S and ame substrate.	
		Notice and the second		
UNLESS OTHERWISE PECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ON FIONS DECIMALS ANGLES	DRAWN	DATE SOLIT) STATE SCIEN Itgomervville, penns	TIFIC CORP. VLVANIA 16036
UNLESS OTHERWISE PECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ON TION3 DECIMALS ANGLES	DRAWN CHECKED APPROVED	DATE SOLM NO) STATE SCIEN NIGOMERVVILLE, PENNS 2 ² - CROSS SECTIO	TIFIC CORP. VILVANIA 10036
UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ON STIONS DECIMALS ANGLES ERIAL	DRAWN CHECKED APPROVED APPROVED	DATE SOLN MO	D STATE SCIEN NIGOMERVVILLE, PENNS 2 ² - CROSS SECTIO	TIFIC CORP. AVI.VANIA 10036

COMPLEMENTARY-SQUARED

たいしていたいで、それでいるないないないです。

14

.

ELECTRICAL CHARACTERISTICS

DEVICE	^{ΒV} CBO @ 10 μA	^{BV} EBO @ 10 μA	^{BV} _{CES} @ 10 μA	V_{CE} $I_{C} = 1 \text{ mA}$ $I_{B} = 0.1 \text{ mA}$	BETA IC = 10 mA	
PNP	60V	30V	60V	0.5V	150	
NPN	80V	50V	80V	0.15V	50	
DEVICE	V _T @ 10 μA	^{BV} DSS @ 10 μΑ	MOS devi ^I DSS @ 10 V	ces		
P Channel	2.3V	50V	1 nA			
N Channel	1.9V	30V	1 nA			

BIPOLAR devices

FIGURE #2

and the second

19

174 111

のあるというないというないないないので

「小市市

資源に

1

以東部になない。

and the second

医学生の意思

No. of Street, Street,

Nº P

DE L

的公共公司的代

ite i p

Alline Tree

W.S.A.

時代の

The same it

和"法""法"

完善教授 (我的主任)

19 star

PIN#

1

23

4 5

6

78

BOTTOM VIEW

SCL 5615-1	SCL 5615-2	SCL 5615-3
INPUT	+V	+V
+V		
	OUTPUT	DATA
OUTPUT		
	WRITE	WRITE
	DATA	-V
-V		
	V	OUTDUT

FIGURE #6

Start Stratt Ŵ REVISIONS ZONE LTR. APPROVED DESCRIPTION DATE v P P Data Ρ Input N P N -P Write Output Command N P N -IN P P N 121 N N 1 -V FIGURE #8 UNLESS OTHERWISE SPECIFIED DIMENSIONS ARE IN INCHES TOLERANCES ON FRACTIONS DECIMALS ANGLES DRAWIN DATE SOLID STATE SCIENTIFIC CORP. 10/20/69 Loul 55 CHECKED MONTGOMERYVILLE, PENNSYLVANIA 10936 11/2/18.9 APPROVED. 1/29/69 IMPROVED READ/WRITE OUTPUT BUFFER MATERIAL NC WITH PULL-UPS APPROVED SIZE CODE IDENT NO. A APPROVED WEIGHT SHEET SCALE

1

FIGURE #9

加加加加加加加

AL SOM

1. The man was a series

FIGURE #10

A THE PARTY AND A PARTY OF

Section 4.18

N. S. AN

CL (pico farads)

FIGURE # 11

DELAY (nano seconds)

「「「「「「「「」」」」」

「「「「「「「「「「「「「「」」」」

1.00

1.0

even igen for in the second second

mer.

a start

17.5%

网络奥尔尔语

the second

FIGURE #12