General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

DESCRIPTION OF THE VIP PROGRAM
 FOR COMPUTING INCIDENT AND ABSORBED ENERGY AT THE SURFACE OF AN ORBITING SATELLITE

R. Goldstein
R. Nagel
March, 1969

Work Performed for
Goddard Space Flight Center
Greenbelt, Maryland
Contract No. NAS5-11702

180 South Broadway
White Plains, New York

TABLE OF CONTENTS

1. Description of the VIP Program 1
1.1 Geometry Capabilities 2
1.2 Surface Properties 2
1.3 Energy Sources 3
1.4 Allowed Orbits 3
1.5 Calculation Procedure 4
1.6 Edit Description 6
2. The Combinatorial Geometry Method 7
2.1 Description of the Geometry 7
2.2 Ray Tracing 14
3. VIP User's Guide 17
3.1 Units 17
-. 2 Card Input 17
3.3 Error Messages 31
3.4 Selecting the Number of kays 31
3.5 Output Edit 32
3.6 Estimated Running Times 33
4. Subroutine Descriptions 34
Appendix 1 - Rotation of Coordinates 60
Appendis 2 - Flight Time in Orbit 64
Appendix 3 - Deriving the Satellite-Sun-PlanetOrientations for Different Orbits... 67
Appendix 4 - Originating a Ray from the Sun 78
Appendix 5 - Originating a Ray from the Planet 81
Appendix 6 - Energy and Direction of Reflected Rays from the Satellite 89
5. DESCRIPTION OF THE VIP PROGRAM

VIP (Vehicle Illumination Program) is a FORTRAN IV code for determining incident and abssinbed radiant energy on the surface of orbiting space vehicles. Starting with a three-dimensional description of the spacecraft geometry, the code employs geometric ray tracing techniques for following rays of energy from their source of origin to a point of intersection on the spacecraft. External energy sources treated are direct emission from both the sun and an arbitrary planet and planetary reflection of sunlight. Incident and absorbed energy is computed for these sources as a function of location on the vehicle surface. In addition, the code is capable of reflecting rays from the vehicle surface and determining that component of the energy resulting from such ieflections. Instantaneous results at specified locations in orbit as well as time integrated results over complete orbits may be obtained.

The program has been written to provide the user with a wide range of flexibility in the class of problems which can be solved. These capabilities are descrıbed in the remainder of this section. Section 2 discusses the basic concepts employed for three-dimensional geometry description. Section 3 provides a user ${ }^{\text { }}$ s guide to the program. describing the details of preparing input, running a problem, and interpretirr the output. This is followed, in Section 4, by a somewhat qualitative description of each subroutine in the code. The mathematical formulations of some of the more important routines are then given in Appendices 1-6.

1.1 Geometry Capabilities

The program employs a powerful technique for modeling threedimensional geometries and inputting the model into a computer. This method, called the Combinatorial Geometry Technique, permits the accurate representation of space vehicles of essentially any degree of complexity. The details of the method are discussed in Section 3 but, in essence, it represents the vehicle and its components as an array of volumes (or regions) of arbitrary size, shape, and orientation. All results for energy deposition and absorption are computed and edited as function of region, so that a complete 'mapping' of energy vs. vehicle component is provided.

1.2 Surface Properties

The computation of energy absorption and reflection requires a description of the reflection properties of each region. A region may be designated as being either a specular reflector, a diffuse reflector, or transparent. In the former case, a 'mirror' reflection occurs at the surface with a single ray being emitted. A diffuse reflection results in a number of rays being emitted in predetermined directions. A transparent region acts like a vacuum, transmitting 100% of the energy. Region properties are entered in the form of one or more sets of reflection coefficients (fraction of energy reflected) for each region. Each set is composed of two coefficients with first applicable to solar wavelengths and second to planetary radiation. The source of the ray is used to select the proper region coefficient and this, in turn, determines both the absorbed surface energy and the reflected ray
energy. Up to five sets of coefficients can be used and the code will provide separate energy vs. region results for each set. Thus, it is possible to obtain parametric studies of vehicle surface properties.
1.3 Energy Sources

A problem may be run to obtain results for various combinations of the following four sources of energy:
a) Solar radiation,
b) Planet radiation,
c) Planet reflection of sunlight,
d) Vehicle reflection of the above sources.

The output will provide separate results for each energy source. Solar radiation is treated as a set of paradlel rays emitted from a plane having any desired orientation with respect to a fixed spacial coordinate system. The solar constant !energy/ area-time) is supplied as input. Planet radiation consists of non-parallel rays originating on that part of the planet surface which is visible to the satellite. Since the radiating temperature and radius of the planet are input quantities, the code has the flexibility of handling any desired planet. Planet reflection results are obtained merely by inputting the reflection coefficient (albedo) of the planet surface for sunlight.

1.4 Allowed Orbits

One of the following orbit classifications may be selected for a problem:
a) Inertial (with no spin) - The vehicle maintains a fixed orientation with respect to the sun.
b) Spin Stabilized - Similar to the inertial orbit except that the vehisle is rotating about a fixed axis.
c) Gravity Gradient - The vehicle maintains a fixed orientation with respect to the planet.

Any of the above orbits is specified by its period, the vehicle altitudes at jerigee and apogee, and the orientation of the orbital plane. The calculation is performed in stepwise fashion around the orbit. That is, the vehicle is initially positioned at a specified location and a set of rays are traced giving answers at that location. The vehicle is then moved through a given angle to its next position in orbit and another set of rays is traced. This procedure is repeated until the desired number of locations have been completed. The initial location, angular interval between locations, and number of locations are all input parameters.

1.5 Calculation Procedure

The first step in the calculation is to read and process input defining the vehicle geometry, region properties, orbit parameters, etc. In general, all input which is independent of the chosen energy sources is processed first. The actual computation is then split into two parts so that the solar and planetary sources are done completely independently, with the solar source done firsi. The following macroscopic flow
major calculational steps performed by the program. It should be noted that for inertial or spin stabilized orbits, solar rays are traced at the initial location only and the results are applied to all locations. Correction factors are applied for those locations where the vehicle is shaded by the planet.

1.6 Edit Description

An edit of results is provided after each orbital location is completed. This permits the user to restart a problem in the middle with no loss of information. The edit provides the following categories of data for each energy source and for each region in the geometry:
a) incident energy/sec at the current location,
b) absorbed energy/sec at the current location,
c) time integrated incident energy from initial to current location,
d) time integrated absorbed energy from initial to current location.

This information is given in the following tabular form, where a, b, c, d refer to the above data categories.

SOIAAR CALCULATION
solar emission vehicle reflection cf surilight*
Region \# a b c d a b c d
Tables repeated for each location.

PLANET CALCULATION
vehicle reflection of planet emitted planet emission planet reflection and reflected rays*
 Tables repeated for each location.

* These tables are blank if vehicle reflection is not desired.

Combinatorial Geometry is essentially a technique for representing, in a computer, a mathematical model of a three-dimensional geometric configuration. Once in the computer, the configuration can be analyzed in many different ways by ray tracing techniques. For example, quantities such as volumes, surface areas, object boundaries, line of sight distances, etc. are readily determined. Regardless of the application, however, the basic concepts employed are the same. A discussion of these concepts can logically be broken down into two topics. That is, geometry description and ray tracing, which are discussed separately below.

2.1 Description of the Geometry

In effect, the description of the geometry divides the problem space into unique volumes, called regions. Each region is, in turn, a combination of one or more standard geometric figures, called bodies. The allowed bodies (two examples of which are spheres and cylinders) and how they are described are discussed later. For the present, it is sufficient to say that a body is completely defined by its type, dimensions, and location in space relative to an X, Y, Z coordinate system.

Once all bodies have been described, each region may be defined by a simple equation which combines these bodies in the following way. Consider the equation

$$
R= \pm B_{1} \pm B_{2} \pm B_{3} \ldots \pm B_{i}
$$

where R represents a particular region number and the B^{\prime} s represent body numbers. The + or - signs act as operators having the following significance. $A(+B)$ means that all points within region R lie inside of body B. $A(-B)$ means that region R is wholly outside of body B. In addition to the + or - , there is a enird allowed operator (written OR) which permits a region to be described in terms of subregions. Ar. example might be

$$
R=O R\left(+B_{1}\right) O R\left(B_{2}-B_{3}\right)
$$

This defines region R as having two parts, one of which is wholly contained within body B_{1}. The second part is wholly wichin B_{2} but completely outside of B_{3}.

There is no limit to the number of bodies which may appear in a region description equation as long as the following rule is obeyed. Every spatial point in the geometry must be located in one and only one region.

To illustrate the method, consider the following figures showing several different regions which can be constructed by combining a sphere and a cylinder.

Assume that a sphere (body 1) and a cylinder (body 2) hive been described such that the cylinder penetrates the sphere.

Region A (shaded) is defined as $A=+1-2$. This means chat all points in region A lie inside the sphere and outside the cylinder.
$B=+1 \quad$ Region B is the entire sphere. Notice that body 2 is not in the equation since the cylinder is not needed to describe the region.
$C=+2-1 \quad$ Region C is that part of the cylinder which lies outside of the sphere.
$D=+1+2 \quad$ This says that all
points in region D are simultaneously within the sphere and within the cylindex. The only part of the geometry which obeys this äescription is the shaded area.

EsOR(+1)OR(+2) Part of E lies
complew within the entire
sphere and another part lies
in the entire cylinder. Note
that the use of the or operators
in the above equation does not
require that the bodies inter-
sect. The sphere and cylinder
could have been widely separated
giving a discontinuous region,
which is perfectly legal.

There is an important rule of construction which is illustrated by the following example. Consider a cylinder (body l) resting on top of another cylinder (body 2). The rule states that when
 describing a region, one must negate (- operator) any body that has a buttressing (coplanar) surface with the region. Thus, $A=+1-2$ and $B=+2-1$.

Although the above examples dealt only with spheres and cylinders, there are actually 9 body types available for modeling the geometry. The parameters needed to describe each body are discussed below. The three letter symbol in parentheses is called the 'body identifier' and, with the exception of the RPP is required input.

1. Rectangular Parallelepiped (RPP)

These bodies are used for gross subdivisions of the geometrv and must have bounding surfaces parallel to the cuordinate axes. The input consists of the minimum and maximum X, Y, Z coordinates of the 6 planes which bound the body. The entire geometry must be enclosed in an RPP。
2. BOX (BOX)

Specify the (X, Y, Z) coordinates , ff the vertex (V) at any one of the corners of the box. Also sperify the (X, Y, Z) components of a set of three mutually perpendicular vectors (L_{i}) representing the height, width and length of the box. These vectors need not be parallel to the coordinate axes.

3. Sphere (SPH)

Specify the coordinates of the center of the sphere (V) and length of the radius R. 4. Right Circular Cylinder (RCC)

Specify the courdinates of the vertex (V) at the center of either base, a height vector H in terms of its X, Y, Z components, and a scalar R denoting the base radius. Note that V is the origin of the vector H so that the components of H may be either positive or negative depending on the cylinder's orientation.

5. Right Elliptic Cylinder (REC)

Specify the coordinates of the center of the base ellipse, the components of the height vector H, and two vectors, L_{1} and L_{2}, defining the semi-major and semi-minor axes of the base ellipse.

6. Truncated Right Angle Cone (TRC)

Specify the coordinates of the vertex V at the center of the lower base, the components of the height vector H, and two scalars, R_{1} and R_{2}, giving the radii of the larger and smaller bases, respectively.

7. Ellipsoid (ELL)

Specify the coordinates of two vertices, denoting the locations of the foci of the ellipse and a scalar L giving the length of the major axis.

8. Right Angle Wedge (RAW)

Same input as for the $B O X$ with the restriction that I_{1} and L_{2} describe the two legs of the right triangle of the wedge.

9. Arbitrary Polyhedron (ARB)

The ARB is bounded by any 6 planes so long as the figure is convex (the angle between any two sides is less than 180°). Assign an integer number N to each of the 8 vertices ff the $A R B$. Give the coordinates of each vertex V_{N}. Then list the numbers of the 4 vertices at the corners of each side. The vertex numbers must be given either in clockwise or counterclockwise order.

In this example, the integer descriptions of each side are 1234, 1265, 3784, 1485, 5678, 2376.

2.2 Ray Tracing

In effect, ray tracing is a means of following a straight line through the various regions comprising the geometry. In the VIP program the rays simu:ate non-penetrating electro-magnetic radiation (as opposed t.c x-rays, for example) so that each ray is terminated at the surface of a non-transparent region.

An explanation of the ray tracing technique is best accomplished hy following the code through a simple examrle. Consider two intersecting spheres enclosed in an RPP. The bodies are numbered 1-3 and the regions are lettered A-D. (Letters are used for clarity only. Reqion are numbered in the code.)

The region descriptions for this geometry are:

$$
\begin{aligned}
& A=+1-2-3 \\
& B=+2-3 \\
& C=+2+3 \\
& D=+3-2
\end{aligned}
$$

Before proceeding with the discussion, let us list two tables of information which are constructed by the code during input processing. These are called 'entering' and 'leaving' tables which define the possible regions a ray might be in if it enters a given body and the regions a ray might be in if it leaves a given body. These tables are derived from the region description equations and would appear as follows for this problem.

Body	Entering	Leaving
1	A	escapes from geometry
2	B or C	A or D
3	C or D	A or B

For example, these tables tell the code that a ray which enters body 2 must be entering either region B or C. A ray leaving body 3 must be entering A or B.
; ssume now that the ray originates at point X_{O} in region A and that its direction of flight is known. The program must then determine the next region in the ray's path and the point of intersection (X) with that region.

The ccule first examines all the bodies in the region description of A for intersections with the ray. The program contains a separate routine for each body type for computing these intersections. These routines compute two parameters called RIN (the
distance from X_{o} to the entering point on the body) and ROUT (from X_{O} to the leaving point on the body). If the ray passes through the body both numbers will be positive. If X_{O} is inside the body, RIN will be negative. If the ray misses the body entirely both RIN and ROUT are negative. After investigating bodies 1,2 and 3 the code will have six numbers and will choose the smallest positive number to determine what has actually happened to the ray. From the picture of the geometry, it is obvious that RIN for body 2 must be chosen, so tilat the ray must be entering body 2 .

The entering table for body 2 now tells are code that the ray could be entering region B or C. The validity oE the region equations for B and C are then tested via a series of logical rules. Without going into detail on these rules it should be obvious that the equation for C cannot be satisfied. The +3 in this equation requires the ray to be in or on the surface of body 3 at point X. But, since ROUT for body 3 is negative, the ray must have missed the body entirely. Thus, it cannot be in region C. The B equation, however, is satisfied since the +2 is valid (the ray is known to have hit body 2) and the -3 is also valid (the ray cannot be in body 3). The ray is, thus, determined to be entering region B. The intersection point X is determined from the vector equation

$$
\overline{\mathrm{x}}=\overline{\mathrm{X}}_{\mathrm{O}}+\left(\mathrm{RIN}_{3}\right) \overline{\mathrm{w}}
$$

where \bar{w} represents the direction cosines of the ray. To transmit the ray through region B, X_{O} is set equal to X and B becomes the new region of origin. The above process is then repeated.

This section is provided mainly as a guide to preparing input for a VIP calculation. It is assumed that the reader has read the remainder of the report and has becone familiar with the meanings and purposes of the input variables.

3.1 Units

The units for most input quantities are arbitrary but care should be taken to use a consistent set of units throughout. Dimensions of length, for example, may be in centimeters, inches, feet, etc. Once chosen, however, the unit of length must remain constant. Thus, if vehicle dimensions are in inches, the planet radius and vehicle altitudes must also be in inches. Area units will then be in square inches, such as energy/in ${ }^{2}$-sec. for the solar constant. Time and energy units are also arbitrary. The only required unit is that angles be given in degrees.

3.2 Card Input

Cards are described in the order in which they must appear in the input deck. A sample input form is included at the end of this section.

Card 1 - Title Carc (Format 20A4)
This card may contain 80 columns of alphanumeric information. It serves as a title card and will appear as the first line of output.

Card 2 - Geometry Descriptors (Format 4Il0)
The following four integer quantities are required

Column		Input
10 N	NRPP	The number of rectangular parallelepipeds in the geometry (enter a 1 in column 10)
11-20 NBODY		The number of bodies in the geometry not including the RPP. The total number of bodies
		is, thus, NBODY + 1.
21-30 NRMAX		The number of regions in the geometry.
40	ITRL	Used to obtain a printout of the geometry data
		table. If ITBL=0, this table will be printed.
		If $1 T B L=1$, the table will not be printed. The
		geometry input data are always printed but this
		table contains the data after processing. Unless one is familiar with the way this table is con-
		structed, the printout probably won't be of much
		use.

NOTE: Before beginning to fill out geometry input the user should have at least a crude sketch of the satellite to refer to. An X, Y, Z coordinate system should be established with the origin at a convenient location near the geometric center of the vehicle. All body locations will be relative to this origin. Also keep in mind that if the vehicle is spinning, the Z axis will be assumed to be the axis of rotation.

Card 3-RPP Input (Format 6E10.5)
This cald gives the coordinates of the six bounding planes of the rectangular parallelepiped which encloses all other geometry. Each plane must be perpendicular to one of the coordinate axes and is, therefore, specified by a single coordinate. The order in which they are given are
 These boundaries should be very large compared to the dimensions of the satellite.

Card Set 4 - Body Input (Format 2x, A4, 4X, 6E10.5)
These cards describe the location and dimensions of each body in the geometry. A total of NBODY bodies must be described. The code will assign a number to each body which is determined by the order in which the bodies are described. The RPP will be body \#1, the first body described here is body \#2, the second is body \#3, ard so on Each body description will require one or more cards depending on the body type. The format of each card is as follows.

Columns Input

1-2 The code ignores these columns but they may be used to number the bodies in order to help keep the deck in proper sequence.

3-6 Column 3 is blank and is followed by a three letter identifier giving the body type (required input only on the first card used to describe a body).

7-10 The code ignores these columns.
ll-70 Divided into six fields of 10 columns each. Body data are entered here.

The following table gives the required input for each body type. Section 2.1 describes the meaning of each body variable.

Card Columns								
body type	4-6	11-20	21-30	31-40	41-50	31-60	61-70	card \#
box	BOX	$\begin{aligned} & \mathrm{V}_{\mathrm{X}} \\ & \mathrm{~L}_{2 \mathrm{x}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{y}} \\ & \mathrm{~L}_{2 \mathrm{y}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Z}} \\ & \mathrm{~L}_{2 \mathrm{z}} \end{aligned}$	$\begin{aligned} & \mathrm{L}_{1 x} \\ & \mathrm{~L}_{3 x} \end{aligned}$	$\begin{aligned} & \mathrm{L}_{1} \mathrm{y} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L}_{1 z} \\ & \mathrm{~L}_{3} \end{aligned}$	$\begin{array}{lll}1 & \text { of } & 2 \\ 2 & \text { of } & 2\end{array}$
sphere	SPH	V_{x}	V_{Y}	V_{z}	R	-	-	1 of 1
circular cylinder	RCC	V_{R}	V_{y}	V_{2}	$\stackrel{\mathrm{H}_{-}}{\text {- }}$	${ }_{-}{ }_{Y}$	H_{2}	$\begin{array}{lll}1 & \text { of } 2 \\ 2 & \text { of } 2\end{array}$
elliptic cylinder	REC	$\begin{aligned} & \mathrm{V}_{\mathrm{x}} \\ & \mathrm{R}_{\mathrm{Ix}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Y}} \\ & \mathrm{R} \frac{\mathrm{Y}}{} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{z}} \\ & \mathrm{R}_{1 \mathrm{z}} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{X}} \\ & \mathrm{R}_{2 \mathrm{x}} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{Y}} \\ & \mathrm{R}_{2 \mathrm{y}} \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{z}} \\ & \mathrm{R}_{2 \mathrm{z}} \end{aligned}$	1 2 of 2
ellipse	ELL	$\mathrm{V}_{\mathrm{L}} \mathrm{lx}$	$\mathrm{V}_{1} \mathrm{y}$	V_{-12}	$\mathrm{V}_{2} \mathrm{x}$	$\mathrm{V}_{2} \mathrm{y}$	$\mathrm{V}_{2} \mathrm{z}$	1 2 of 2
truncated cone	TRC	$\begin{aligned} & \mathrm{V}_{\mathrm{X}} \\ & \mathrm{R}_{1} \end{aligned}$	V_{Y} R	V_{2}	${ }_{-}{ }_{\mathbf{x}}$	H_{Y}	${ }_{-} \mathrm{Z}_{2}$	$\begin{array}{lll}1 & \text { of } 2 \\ 2 & \text { of } 2\end{array}$
wedge	RAW	$\begin{aligned} & \mathrm{V}_{\mathrm{X}} \\ & \mathrm{~L}_{2 \mathrm{x}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Y}} \\ & \mathrm{~L} 2 \mathrm{y} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Z}} \\ & \mathrm{~L}_{2 \mathrm{z}} \end{aligned}$	$\begin{aligned} & \mathrm{L} \mathrm{~lx}_{x} \\ & \mathrm{~L}_{3 x} \end{aligned}$	$\begin{aligned} & L_{1} y \\ & L_{3 y} \end{aligned}$	$\begin{aligned} & L_{1 z} \\ & L_{3 z} \end{aligned}$	1 2 of 2
$\begin{aligned} & \text { arbitrary } \\ & \text { poly- } \\ & \text { hedron } \end{aligned}$	ARB -ent col	$\mathrm{V}_{1 \mathrm{x}}$ V3x V5x V7x r the mns 1		$\begin{aligned} & V_{1 z} \\ & V_{3} z \\ & V_{5 z} \\ & V_{7} \end{aligned}$ $\begin{aligned} & \text { Face d } \\ & \text { Forma } \end{aligned}$	V2x $V_{4 x}$ V6x V8x cript 6(ま4	$\mathrm{V}_{2} \mathrm{y}$ $\mathrm{V}_{4} y$ V_{6} V8y ns in	$\mathrm{V}_{2 \mathrm{z}}$ $V_{4 z}$ V6z V8z	$\begin{array}{lll} 1 & \text { of } & 5 \\ 2 & \text { of } & 5 \\ 3 & \text { of } & 5 \\ 4 & \text { of } & 5 \\ 5 & \text { of } & 5 \end{array}$

It should be pointed out that, in addition to the RPP, one other body which is not part of satellite is required. That is a 1.7rge sphere, centered at $(0,0,0)$, of very large radius compared to the satellite dimensions. This sphere must, however, be enclosed in the RPP. It is a good idea to describe this body before any others, making it body \#2. The geometry would then look like ...

The radius R can be determined only after all bodies describing the satellite have been defined. Find that point on the satellite which is furthest from origin and call its radial distance from the origin S. Then $R>20 \mathrm{~S}$. The purpose of this large sphere will become clear later on.

Card Set 5 - Region Descriptions (Format I5, 1X, 9 (A2,I5))
Each region must be numbered and described by the combination of bodies which make up that region. A total of NRMAX regions must be described. The input format is indicated below.

Columns Input
1-5 Region number (start with 1)

6
Blank
7-8 Insert the OR operator if needed. Otherwise leave blank.

9-13 Body number preceded by $\mathfrak{a}+$ or - operator
The + operator may be omitted since a blank is an inferred +.

14-69 Divided into eight fields of 7 columns, each being similar to columns 7-13. Thus, up to nine bodies can appear on one region description card.

Use as many of the above type as needed to describe a region but leave columns 1-6 blank on all continuation cards. Start each region on a new card.

The last card of set 5 should contain a -1 in columns 4 and 5. This instructs the code that all regions have been described.

In the program, regions 1 and 2 have special meanings. Reqion 1 is the volume between the RPP and the large sphere (body 2). Its description is, thus, l-2. Region 2 is the volume inside the sphere but outside the satellite bodies. Its description must start with a +2. All rays will originate in region 2 and be fired
toward the satellite. If, however, the ray misses the satellite, it will pass into region l. Any ray which enters region 1 is immediately terminated since it can no longer be of interest.

One might wonder, at this point, where the sun and planet come into the problem. The answer is, that as far as the geometry description is concerned, these two bodies do not exist. There is no requirement that regions 1 or 2 be large enough to include them.

Card 6 - Number of Reflection Coefficient Sets (Format Il0)
Enter in column 10 the quantity NSET, which equals the number of reflection coefficient sets to be used in the problem. NSET can be any integer from 1 through 5 .

Card Set 7 - Surface Proper+ies (Format 2I6, 10F6.4)
These cards give the reflection properties of each region. Use one card per region and a total of NRMAX cards. The input quantities are defined as follows.
Columns Input
I-6 IR Region number
11-12 IPROP Region type
For a transparent region enter -1
For a diffuse region enter 0
For a specular region enter 1
13-18 RC_{1} Reflection coefficient for solar radiation.
19-24 RC_{2} Reflection coefficient for planet radiation.

Columns
25-72

Input
Divided into eight fields of 6 columns each and used to enter additional reflection coefficient sets. For example, enter $R C_{1}$ for set \#2 in columns 25-30 and RC_{2} for set \#2 in columns 31-36, etc. The last column number used should equal $12+2 \times 6 \times N S E T$.

Card 8 - Imaginary Vehicle Sphere (Format El0.3)
Enter SRAD in columns 1-10.
After the vehicle geometry has been defined, determine the smallest sptere, centered at $(0,0,0)$, which can enclose the entire vehicle. SRAD is the radius of this sphere. All rays will be fired at this sphere so the smaller it is, the more chance a ray will have of hitting the vehicle. On the other hand, if a vehicle region extends beyond the sphere it may not be hit at all, depending on the vehicle orientation. Note that this sphere is imaginary in the sense that it is not actually described as part of the Combinatorial. Geometry input.

Card 9 - Orbit Parameters (Format Il0, 4El0.3)

Enter the following quantities on this card.

Column Input

1-10 IORB Orbit Type. Enter 1 for inertial orbit, 2 for gravity gradient orbit, 3 for spin stabilized orbits.

Card 12 - Orbit Orientation (Format 3E10.3)
Enter the three direction cosines of the line which is normal to the orbital plane.

Column		Input
$1-10$	WN_{X}	X component
$11-20$	WN_{Y}	Y component
$21-30$	WN_{Z}	Z component

The direction of $\overline{W N}$ should be such that the vector $\overline{W P} x \overline{W N}$ points toward an orbital angle of 90 degrees, as shown below.


```
Card 13 - Source Information (Format 2E10, 4E10.3)
    Enter the following six quantities.
```

Column
10 ISGO Solar Option. Enter lif the solar source is desired and 0 if it is not.

IPGO Planet Option. Enter 1 if planet source is desired and 0 if it is not.

21-30 SOLINT Solar Constant (energy/area-time)
31-40 ALBEDO Albedo of planet (fraction of sunlight reflected)
41-50 STEF Stefan-Boltzmann Constant (energy/area-time-degree)
5l-6C TEMP Radiating temperature of planet (absolute)

``` be left blank.
```

Card 14 - Debug Printout Options (Format 6I3)
Certain subroutines in the program contain provisions for obtaining intermediate printouts during the calculation. These were inserted to aid in program debugging and were left in should any unresulved bugs turn up. Normaliy, these printouts would not be desired and Card 14 should be included in the input deck but left blank. If they are desired, however, the input numbers go into an IDBUG array defined as follows.

Column Input
1-3 IDBUG(1) Any positive integer will cause subroutine UMBRA to print the minimum and maximum orbital angles where the vehicle is shaded by the sun.

Column		Input
1-10	NLOC	The number of orbital locations to be treated
11-20	NRS	Number of rays to be traced from the sun at each
		location (discussed in Section 3.4).
30	IVRGO	Vehicle reflection option. Enter 1 if rays are
		to be reflected from vehicle. Enter 0 if not.
31-40 NRDIFF		Number of reflected rays to be emitted per diffuse
		reflecion. If $\mathrm{IVRGO}=0$ or if there are no diffuse
		surfaces, enter any small positive integer (i.e..
		1) but don 't leave blank.
41-50 ALPH1		Initial orbital angle to be treated (need not be 0)
51-60	DALPH	Angular interval between locations (i.e., if
		ALPHI $=20^{\circ}$ and DALPH $=10^{\circ}$, the second location in
		orivit will be at 30°)
Card 16 - Vehicle Spin Parameters for Solar Calculation (Format Ilo, 2E10.3)		
These parameters control vehicle rotation for spin-stabilized		
orbits. If ISGO $=0$, omit card 16.		
Column		Input
1-10 NSPIN		Number of spin orientations (about the Z asis)
		to be treated at each orbital location. If
11-20 THET1		IORB=1 or 2 (no spin), enter a 1 .
		Initial spin angle (measured from X asis). If
		IORB=1 or 2 g enter 0.0.
21-30 DTHET		Angular interval between spin orientations. If
		IORB=1 or 2, enter 0.0.

Note that the value of NSPIN does not affect the number of rays to be fired at a given orbital location. At each location, NRS/ NSPIN rays are fired a total of NSPIN times.

Card 17 - Parameters for Planet Calculation (Format 4Il0, 2El0.3) This card is analogous to Card 15 for solar rays. The six parameters may be entircly different for the planet calculation however. Note that NRS is called NRP by the program at this point and equals the number of planet emitted rays per location. If IPGO $=0$, omit card 17 .

Card 18 - Vehicle Spin Parameters for Planet Calculation (Format Il0, 2El0.3)

Analogous to card 16 but different values may be used if
IORB=3. If $I P G O=0$, omit card 18.

SAMPLE INPUT FORM

3.3 Error Messages

There are numerous places in the code where a printout will occur upon detection of an input error. The job will terminate but the source of the error will be indicated. There is one possible error which does not terminate a job. It occurs while tracing a ray in subroutine G1. In general, the cause of this error is that a ray gets 'lost' at the boundary between two regions. This is due to insufficient computing precision of the machine. If this occurs, some error printout will appear and the code will abandon this ray and go on to the next one. As long as this is a relatively rare event, the user need not be concerned with it. Experience has shown that it might be expected once every few thousand rays. If, however, it occurs much more often than this, the cause is probably an undetected input geometry error. The printout can usually provide clues to the exact source of the error but lacking a detailed knowledge of the coding, the best thing to do is to carefully go over the input. The error is likely either in a body dimension or a region description.

3.4 Selecting the Number of Rays

The accuracy of the results is deiermined by the number of rays fired (NRS from the sun, NRP from the planet). To estimate a reasonable value for NRS it is first necessary to select a desired average density of rays (rays/projected area). Since NRS rays will be fired at the imaginary vehicle sphere of radius SRAD, the density, D, will be $D=N R S / \pi(S R A D)^{2}$ or NRS $=\pi D(S R A D)^{2}$ 。

The value for D is a function of the surface area of the important vehicle regions. If, for example, a region of interest is only $1 i^{2}$ in area, an average density of 1 ray/in ${ }^{2}$ is inadequate, since there is a good chance that no rays will hit that region. In test problems involving the $R A E$ satellite, however, a D of about 1 was adequate. The area of the solar paddles was about 100 in 2 so that, on average, 100 rays would strike a paddle that was fully exposed to the sun. The number of 'hits' would still be significant even for partial exposure. Since SRAD was 42 in. for that problem, the above equation (assuming $D=1.0$) would give NRS = 5500. The actual number used in the calculation was 6000 。

Before leaving this discussion, there is one procedure that is wise to follow when running a problem. That is, to first run a short test problem to insure that the input represents the problem that is actually desired and that the computed results are at least reasonable. Even though the results are inaccurate, one can usually spot order of magnitude type errors. This trial run might use 5-10\% of the number of rays selected for the final run.

3.5 Output Edit

The output format for the main results was described in Section l.6. Additional output not discussed there, as well as all input quantities, are clearly labelled in the edit and require no explanation.

3.6 Estimated Running Times

CPU time for a given problem depends largely on three items.
a) Source options selecter.
b) Number of rays to be fired,
c) Complexity of the geometry.

Since these depend on the particular problem, no general rule can be made for computing time.

However, one can get a fair idea from test problems run on Goddard's $360 / 91$ for the RAE satellite geometry. In these calculations, solar rays were traced at the rate of about 4500 rays/ minute. The same rate should apply to planet emitted rays. If vehicle reflection were included, computing speed would probably be cut roughly in half. Using these estimates ard the above ray tracing rate it is possible to write a crude equation for the computing time, T.
$T=(I S G O+I V R G O)(N L O C)_{S}(N R S / 4500)+(I P G O+I V R G O)(N L O C)_{P}(N R P / 4500)$.
where ISGO, IPGO, IVRGO are the source options desired (0 or I) and NLOC is the number of locations where rays will actually be traced (i.e., for inertial orbits (NLOC) $S=1$, regardless of the number of locations where answers are desired).

Estimates can also be made by scaling the running time of the trial problem, recommended earlier.

Remember, however, that a problem can be restarted in the midale so little is lost if it overruns the estimated time.

This section provides brief descriptions of each subroutine in the code. The r, utines are discussed in the following order.

MAIN	SHADOW
GENI	UMBRA
UN3	UMBRA 2
BODY ROUTINES	TIMER
RPP	EXPO
ARBLAD	WCHEK
CROSS	RANUM
DOT	CAAKER
DCOSP	WMAKER
XDIST	SUN
UNIT	STRAK
S	PLANET
RPP2	PTRAK
G]	SATREF
NORMAL	

MAIN
Function:
Initialize certain variables and start the calculation. Description:

After initializing variables the MAIN routine reads the problem title from cards, calls subroutine GENI to read and process geometry input and calls SHADOW to read the remaining input and begin the calculation.

GENI

Function:
Read, process, and store geometry input data.
Description:
GENI processes all input describing the geometry of the satellite vehicle. The routine also does some preliminary checking of the input for format, duplicate numbering, etc. The RPP input is read and processed first followed by the data for each body in the geometry. Region descriptions are then read in from which the entering and leaving tables described earlier are constructed. At the completion of GENI all geometry data are housed in the ASTER array and the code is ready to begin ray tracing.

Function:
Unpacks the packed data stored in the ASTER array.
Call Arguments:
KK $=$ location of a word in the ASTER array (input).
LKl, LK2, LK3 = the three unpacked components of word
KK (output).
Description:
UN3 contains the following three entry point routines for unpacking the ASTER array.
A. UNNWW unpacks a word originally packed under a 5-bit - 13 bit - 13 bit format.
B. UNWNW unpacks information in a 13 bit - 5 bit 13 bit word.
C. UNWWN unpacks information in a 13 bit - 13 bit 5 bit word.

Note that the last three letters in the entry point name describe the packed format, where W refers to 'wide' (13 bits) and N to 'narrow' (5 bits).

BODY ROUTINES

Function:
Computes the distance fr.... the origin of a ray to entering and leaving surfaces of a given body.

Call Arguments:
None

Description:
The code contains seven independent body routines, with each performing a similar calculation for a different body type. Given that a ray is initiaily at point $\overline{X B}$ and traveling in a direction $\overline{W B}$, each routine computes the distance RIN to the first (entering) intersection point with the body and the distance ROUT to the second (leaving) intersection point. The calculation for a given body may result in one of the following three possible combinations for RIN and ROUT.

1. RIN>0, ROUT>0 XB is outside the body and the ray intersects the body (2 intersections found)
2. $R I N \leq 0$, $\mathrm{RO}^{\top} .>0 \mathrm{XB}$ is inside the body (1 intersection found)
3. RIN ≤ 0, ROUTS0 the ray misses the body completely The following is a list of each routine and the body type it treats.

ELL - ellipsoid
RCC - right circular cylinder
REC - right elliptic cylinder
SPH - sphere
TRC - truncated cone
ARB - arbitrary polyhedron (al so handles the box and wedge which were converted to polyhedrons during input processing)

RPP (NBO)
Function:
Performs the function of a body routine for a rectangular parallelepiped.

Call Arguments:
NBO $=$ body number of the rectangular parallelepiped.

ARBLAD (X, NUMN, IWC)
Function:
Processes and stores arbitrary polyhedron (ARB) input and converts box (BOX) or wedge (RAW) input to ARB format.

Call Arguments:
$\mathrm{X}=$ body input numbers
NUMN $=$ size of the X array
IWC = informs ARBLAD which body type is being processed (1 if $A R B, 2$ if RAW, 3 if BOX).

Description:
The original implementation of Combinatorial Geometry treated the $A R B, B O X$, and RAW as separate and distinct body types with each having its own body (or ray tracing) routine. Subsequently, it was found that ray tracing for an $A R B$ was faster than for the other two bodies. At the same time, however, body input for the BOX anc. RAW was often simpler to specify. Thus, it was decided to maintain separate input formats but, once read into the machine, input for these two bodies would be converted to ARB format. The BOX and RAW ray tracing routines were thereby eliminated from the code. ARBLAD performs this body conversion and also processes ARB input.

CROSS (ANSWER, FIRST, SECOND)

Function:
Computes the vector product of two vectors.
Call Arguments:
ANSWER $=$ a vector giving the cross product
FIRST, SECOND = two input vectors.
Description:
ANSWER(1) $=$ FIRST(2)*SECO'ND (3) - FIRST(3)*SECOND (2)
$\operatorname{ANSWER}(2)=\operatorname{FIRST}(3) * \operatorname{SECOND}(1)-\operatorname{FIRST}(1) * \operatorname{SECOND}(3)$
ANSWER(3) $=$ FIRST(1)*SECOND(2) - FIRST(2)*SECOND(1)

DOT (FIRST, SECOND)
Function:
Computes the scalar product of two vectors.
Call Arguments:
FIRST, SECOND = two input vectors.
Description:
$\operatorname{DOT}=\sum_{i=1}^{3} \operatorname{FIRST}_{i}$ SECOND $_{i}$

DCOSP (XA, XB, WA)
Function:
Computes the direction cosines of a line between two points.
Call Argumients:
$W A=3$ direction cosines from point $X A$ to point $X B$
$X A, X B=$ subscripted arrays giving the (x, Y, z) coordinates
of $X A$ and $X B$.

Description:
$W_{i}=\left(X B_{i}-X A_{i}\right) / D I S$, where DIS is the distance between XA and $X B$.

XDIST (XA, XB)
Function:
Computes the distance between two points.
Call Arguments:
$X A, X B=$ subscripted arrays giving the (x, y, z) coordinates of points $X A$ and $X B$.

Description:
$\operatorname{XDIST}=\left[\sum_{i=1}^{3}\left(X A_{i}-X B_{i}\right)^{2}\right]^{\frac{3}{i}}$

UNIT (VECTOR)
Function:
Converts an arbitrary vector in space to a unit vector.
Call Arguments:
$\mathrm{VECTOR}=3$ components of any vector.
Description:
$\mathrm{VECTOR}_{\mathrm{i}}=\mathrm{VECTOR}_{\mathrm{i}} / \mathrm{VECT}$, where
$\mathrm{VECT}=(\mathrm{VECTOR} \cdot \mathrm{VECTOR})^{\frac{1}{2}}$
$\underline{S(I, N)}$
Function:
Retrieves the coordinate of any of the six sides of an RPP from the ASTER array.

Call Arguments:
$I=$ number of the RPP
$\mathrm{N}=$ side (l to 6) whose coordinat, is derired. Description:

The routine uses the input values I and N to compute the location (LL) of the desired coordinate in the ASTER array. Then $S=A S T E R(L L)$.

RPP2 (JSURF, XP, IRP)
Function:
Determines the number of the next region a ray will encounter when it leaves one RPP (rectangular parallelepiped) and enters another.

This routine was needed for other implementations of the Combinatorial Geometry technique, where more than one RPP could appear in the geometry. This version of the technique permits only one RPP to be specified so that subroutine RPP2 is never called. It has been left in the program, however, to facilitate possible future modifications.

Gl (Sl, IRPRIM, XP)

Function:

Computes the next region in the path of a ray and the point of intersection with that region.

Call Arguments:
IRPRIM = next region which the ray will encounter after it leaves the region it is currently in.
$X P=x, y, z$ coordinates of intersection point with IRPRIM.
$S l=$ distance between the ray's current location and the point XP (not used by the code).

Description:
The logic employed by Gl is described in the section that discusses the Combinatorial Geometry technique (section 2).

NORMAL (XI. WN)
Function:
Computes the components of the normal to the surface of a given body.

Call Arguments:
$X I=$ point on the surface of a body at which the normal is desired.
$X N=$ direction cosines of the outward directed normal at point XI。

Description:
Given a body number NBO, a surface number LSURF (both in COMMON), and a point on the surface $X I$, subroutine NORMAL computes the direction cosines of a vector normal to the required surface at that point. The routine is made up of independent sections each of which treats a different body type. It should be noted that the nc mals to the six sides of each arbitrary polyhedron (including the box and wedge) are precomputed and stored in ASTER during input processing and need only be retrieved by this routinn. The normal to a sphere is merely the direction cosines of the line joining its center and the point $X I$. The remaining bodies employ straightforward mathematics for determining the orientation of a given surface with respect to a set of coordinate axes. Since this routine is only called when reflecting a ray off the surface of a body, it is important that the computed normal be directed outward from the surface. This is assured by setting the signs of WN such that the dot product WN.WB is negative, where WB is the direction of the incident ray.

SHADOW

Function:
Read and process non-geometry input and directs the overall flow of the calculation.

Description:
SHADOW is the input processcy $\because:$ all problem dependent input (i.e.. that which is independent of the actual satellite geometry).

It reads, and in some cases checks for correctness, data on the reflection properties of region surfaces, input describing the orbit, source intensities, and the various calculation options available to the user. These options determine which sources are to be treated in the problem.

UMBRA
Function:
Computes the range of orbital angles in which the satellite is in the shadow of the planet.

Description:
This routine computes two angles, SHADl and SHAD2, which define the lower and upper limits of the planet's shadow. The angles are determined to the nearest degree and measured from the perigee line. UMBRA is the control routine for this calculation, while subroutine UMBRA2 performs the actual computations for a given angle.

UMBRA2 (ANG, ISEE)
Function:
Determines whether a given orbital angle is in the shadow of the planet.

Call Arguments:
ANG $=$ orbital angle in degrees (input).
ISEE = output flag indicating whether ANG is in shade.
If ISEE $=0$, ANG is shaded. If ISEE $=1$, ANG is exposed to sunlight。

Description:
UMBRA2 has the task of computing whether the given orbital angle (ANG) lies within the planet's shadow. This is done by computing the two angles θ_{p} and ϕ_{s} as defined by the following sketch.

The vehicle is shaded if $\theta_{\mathrm{p}}{ }^{1} \mathrm{~s}$ and ISEE is set to 0 。 If $\theta_{\mathrm{p}}<\phi_{\mathrm{s}}$ the vehicle is in sunlight and ISEE $=1$ 。

TIMER (ALPHA, DT)
Function:
Computes the vehicle flight time between two orbital angies.
Call Arguments:
ALPHA $=$ orbital location of the vehicle measured in degrees from perigee.
$D T=$ time spent at location ALPHA.
Description:
This routine computes the time spent in the angular interval between $(\alpha-\Delta \alpha / 2)$ and $(\alpha+\Delta \alpha / 2)$, where $\alpha=$ ALPHA and $\Delta \alpha$ is the angle between locations in orbit. The equations for computing DT are derived in Appendix 2.

EXPO (ALPHA, FEX)

Function:
Computes the fraction of time that che vehicle spends in sunlight at a given orbital location.

Call Arguments:
ALPHA $=$ orbital location of the vehicle measured in degrees from perigee.

FEX $=$ fraction of time exposed to sunlight.
Des,rription:
This routine calculater the fraction of time exposed to sunlight by comparing the angular interval for a given location with the angles SHADl and SHAD2 (see Subroutine UMBRA). FEX is computed from the degree of overlap of these two intervals. It should be
noted that EXPO is not an exact calculation since what is actually computed is the fraction of the angular interval in sunlight rather than the fraction of time. This is, however, an excellent approximation for relatively small angular intervals or low eccentricity orbits, since in either case the angular velocity is practically constant within the interval. In problems where a high degree of accuracy is desired, small angular intervals will be employed and any errors introduced by this approximation will be insignificant.

WCHEK (W, ICALL)
Function:
Checks and adjusts direction cosines.

Call Arguments:

$W=$ any set of 3 direction cosine?.
ICALL = a flag indicating which routine has called WCHEK. Description:

This routine tests that no gross errors have been made i^{r} an input or computed direction cosine set. It first tests whether $\sum_{i=1}^{3} W_{i}^{2}=1.0 \pm 0.02$. If this test is passed the W values are $i=1$
assumed to be correctly given and the divergence from 1.0 (less than .02) is due to round off errors. W is then normalized so that the sum of the squares is precisely l.0. If the above test fails, an error has occurred and the routine will print an error message containing W and ICALL and terminate the job with a STOP2.

RANUM (RN)

Function:
Generates random numbers from 0 to 1.
Call Arguments:
$\mathrm{RN}=$ random number.
Description:
This routine supplies random floating point numbers in the range 0.0 to 1.0 . It is essentially the IBM random number generator library subroutine which makes use of the machine overflow characteristics.

CMAKER (W, C)
Function:
Computes certain constants used by other routines.
Call Arguments:
$W=a$ set of 3 direction cosines supplied by the calling routine.
$C=a$ set of 8 constants computed from w. Description:

The constants generated by this routine are used by several other routines when a rotation of coordinate systems is required. The equations for these constants are derived in Appendix I for a generalized coordinate system rotation.

WMAKER (ALPHA, JCALL)
Function:
Computes the direction cosines of the vehicle-sun line or vehicle-planet line.

Call Arguments:
ALPHA = given orbital angle
JCALL $=$ flag informing WMAKER as to which direction cosines are to be computed.

Description:
This routine computes the variables WSA and/or WPA at a given orbital angle, where

WSA $=$ direction cosines from vehicie to solar plane,
WPA $=$ direction cosines from vehicle to planet center. The value of JCALL supplied by the calling routine determines both the variable to be computed and the orbit type as follows.

JCALL		Compute orbit		Calling Routine
1	WSA		gravity gradient	SUN
2	WSA,WPA	inertial	PLANET	
3	WSA,WPA	gravity gradient	PLANET	
4	WSA,WPA	spin stabilized	PLANET	

SUN

Function:

Controls the calculation for solar emission.

Description:
Subroutine SUN controls the solar emission calculation and is entered just once during a problem. It also converts the ray tracing results to the proper form and prints the answers. The logic flow depends primarily on the orbit type (IORB) specified for the problem. fiven that NRS rays are to be traced from the sun at each orbital location, the calculation proceeds as follows. IORB

1 (inertial) Trace NRS rays at one location and apply the results to all locations.

2 (gravity Trace NRS rays at each orbital location. gradieni;
j ispin Trace NRS rays at one location but divide them stabilized) equally over NSPIN spin orientations. Apply results to all locations.

Note that for IORB $=1$ or 3 rays are traced at only one location since the sun-vehicle orjentation is constant for these orbits. The following is a simplified flowchart of SUN with the following variable definitions.

Variable	Definition	Maximum Value
ISE ${ }^{\text {Tr }}$	spin orientation number	NSPIN*
ILOC	orbital location number	NLOC
ISET	reflection coefficient set number	NSET
IR	vehicle region number	NRMAX

[^0]```
WSA = direction cosines from vehicle to sun.
 DT = time spent by vehicle at location ILOC.
FEX = fraction of time exposed to sunlight at ILOC.
```



SUN Flowchart

STRAK ( ISPIN)
Function:
Performs the ray tracing from the sun.
Call Arguments:
ISPIN $=\operatorname{spin}$ orientation number.
Description:
STRAK traces rays from the sun and computes the incident and absorbed energy contributions for each ray. The routine is called by subroutine SUN once for each location and a total of NRS rays are traced. The starting position of each ray is piaked at random on the solar plane (a plane perpendicular to vehicle-sun line). The equations used for this purpose are derived in Appendix 4. The following flowchart illustrates the calculational procedure in STRAK, where the variable definitions are:

```
 SO}=\mathrm{ solar constant,
 SRAD = radius of imaginary sphere around vehicle.
 NSPIN = number of spin orientations to be treated,
 NR = ray number,
 IRP = next region in the ray's path.
```



SIRAK Flowchart

PLANET
Function:
Controls the calculation for planet emission and reflection. Description:

PLANET is the control and output routine for the planet emission and reflection calculation and is entered once during a problem. Its function is, therefore, analogous to that of subroutine SUN for solar emission and empioys similar logic. The computation is again controlled by the orbit type (IORB) as follows.

IORB
1 or 2 Trace NRD rays at each location.
3 Trace NRP rays at each location but divide them equally among NSPIN spin orientations.

Note that rays are traced at every location even for IORB $=2$ (gravity gradient) since planet reflection is location dependent for all orbit types.

## PTRAK (ALPHA, ISPIN)

Function:
Performs the ray tracing from the planet.
Call Arguments:
ALPHA = orbital angle at current location.
ISPIN $=$ spin orientation number.

## Description:

PTRAK is called once by subroutine PLANET for each orbital location to perform the ray tracing from the planet. The overall Iogic is similar to that found in subroutine STRAK but the computatiors are somewhat more complex due mainly to planet emitted rays not having a constant direction. The equations used in this routine are derived in Appendix 5. The flowchart which follows illustrates the procedure used in STRAK where
$N R=$ ray number,
$N R P=$ tutal number of rays to be traced, IRP $=$ next region in the path of a ray.

Some of the boxes in the flowchart deserve some additional comments and these have been identified by letters.

Box A: The area of the planet surface visible to the vehicle is determined and the oxigin of a ray is picked at random within this area.

Box B: The direction of a ray is computed by picking a random point to shoot at within the imaginary vehirle sphere. That point and the origin point of the ray determine the ray's direction cosines.

Box C: Both the planet emission and planet reflection energies are supplied to SATREF. The ray to be reflected from the vehicle is then treated as a single ray but having the above two energy components.


PTRAK Flowchart

## SATREF (IRP, XP, E, EREF)

## Function:

Performs ray tracing for vehicle reflected rays.
Call Arguments:
IRP $=$ reflecting region number.
$X P=$ reflection point on $I R$.
E,EREF = energy components of the incoming ray. If called from STRAK, $E=0$ and $E R E F=$ incident solar energy. If called from PTRAK, $E=$ energy from direct planet emission and EREF $=$ en rgy from planet reflection.

Description:
SATREF traces a primary ray through a series of vehicle reflections. It is called by either STRAK (solar rays) or PTRAK (planet rays) each time a ray is to be reflected. The routine is divided into two independent sections, the first of which tireats specular reflections while the second handles diffuse reflertion. The property of the primary reflecting surface (IRP) determines which section is entered.

Specular Reflection - The ray is reflected off the primary surface such that the angles of incidence and reflection are equal. Multiple reflections are permitted by continuing to track and reflect the ray until one of the following conditions occurs.
a) The ray 'escapes' from the vehicle.
b) The reflected ray strikes a diffusing surface.
c) The ray has undergone 5 specular reflections.

During the tracking, a list of successive regions hit by the ray is built up. After the ray is terminated, the routire steps through this list, computing incident, absorbed, and reflected energies for each region and reflection coefficient set. Diffuse Reflection - If the primary reflector (IRP) is a diffusing surface, the routine traces NRDIFF rays from the reflection point, where NRDIFFis given as input. During input processing (subroutine SHADOW) a set of NKDIFF angular bins was established relative to the surface normal and one ray is emitted in each of these bins. In addition, the fraction of refiected energy as a function of bin angle was computed by SHADOW. The energy of the reflected ray is then simply the product of (incident energy) $x$ (fraction emitted in bin) $X$ (reflection coefficient). This energy is actually the sum of the contributions from E and EREF.

The mathematical formulation of suoroutine SATREF is given in Appendix 6 . A flowchart is shown below with the following variable definitions.

IRP $=$ next region in ray's path (initial value is the primary reflecting region).
$N R E F=a$ counter on the number of specular reflections.
IRREF (NREF) $=$ region hit by the ray at the NREFth reflection,
IDIFF $=$ diffuse ray number.
NRDIFF $=$ total diffuse rays to be emitted.


SATREF Flowchart

## Appendix 1 - Rotation of Coordinates

The problem is to define a point in space $(x, y, z)$ as $a$ function of a given vector $\bar{W}$. The resulting equations for ( $x, y, z$ ) are required by several routines in the program. For example, STRAK uses the results to pick a point on the solar firing plane relative to the direction cosines of the line joining the vehicle and sun.

The required equations can be derived by rotating the original $X, Y, Z$ coordinate system into a primed system $X^{\prime}, Y^{\prime}, Z^{\prime}$ such that the $Z^{\prime}$ axis points along the vector $\bar{W}$. This is illustrated below in two dimentions.


The coordinates of the point $(x, y, z)$ in the unprimed can be obtained from the following set of relationships for a generalized rotation of coordinates.

$$
\begin{aligned}
& x=x^{\prime} \cos \alpha_{1}+y^{\prime} \cos \alpha_{2}+z^{\prime} \cos \alpha_{3} \\
& y=x^{\prime} \cos \beta_{1}+y^{\prime} \cos \beta_{2+z^{\prime}} \cos \beta_{3} \\
& z=x^{\prime} \cos \gamma_{1}+y^{\prime} \cos \gamma_{2}+z^{\prime} \cos \gamma_{3}
\end{aligned}
$$

where $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ are the coordinates of the point in the primed system and $\alpha, \gamma$ are the angles between the primed and unprimed
axes. These angles are defined as follows. Unprimed Axes


The problem, then, is to derive expressions for $\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}$.
The primed axes, normalized to unit vectors, can be written as

$$
x^{\prime}=\frac{x-w_{x} z^{\prime}}{\sqrt{1-w_{x}^{2}}} \quad y^{\prime}=\frac{\left[z^{\prime} x\right]}{\sqrt{1-w_{x}^{2}}} \quad z^{\prime}=z
$$

where $W_{X}$ is the $X$ component of $\bar{W}$.
Since $z^{\prime}$ has components $W_{X}, W_{Y}, W_{z}$, the vector product [ $z^{\prime} x$ ] can be evaluated as

$$
[z \cdot x]=\left|\begin{array}{ccc}
i & j & k \\
w_{x} & w_{y} & w_{z} \\
1 & 0 & 0
\end{array}\right|=0+w_{z} j-w_{y} k
$$

Now, letting $C_{1}=\sqrt{1-W_{X}}{ }^{2}$, the cosines of $\alpha, \beta, \gamma$ are given by the following expressions.

$$
\begin{aligned}
& \cos \alpha_{1}=x^{\prime} \cdot x=\frac{x \cdot x-w_{x} z^{\prime} \cdot x}{c_{1}}=\frac{1-w_{x} w_{x}}{c_{1}} \\
& \cos \beta_{1}=x^{\prime} \cdot y=\frac{x \cdot y-w_{x} z^{\prime} \cdot y}{c_{1}}=-\frac{w_{x} w_{y}}{c_{1}} \\
& \cos \gamma_{1}=x^{\prime} \cdot z=\frac{x \cdot z-w_{x} z^{\prime} \cdot z}{c_{1}}=-\frac{w_{x} w_{z}}{c_{1}} \\
& \cos \alpha_{2}=y^{\prime} \cdot x=\frac{w_{z} j \cdot x-w_{y} k \cdot x}{c_{1}}=0 \\
& \cos \beta_{2}=y^{\prime} \cdot y=\frac{w_{z} j \cdot y-w_{y} k \cdot y}{c_{1}}=\frac{w_{z}}{c_{1}} \\
& \cos \gamma_{2}=y^{\prime} \cdot z=\frac{w_{z} j \cdot z-w_{y} k \cdot z}{c_{1}}=-\frac{w_{y}}{c_{1}} \\
& \cos \alpha_{3}=z^{\prime} \cdot x=x w_{x} \\
& \cos \beta_{3}=z^{\prime} \cdot y=w_{y} \\
& \cos \gamma_{3}=z^{\prime} \cdot z=w_{z}
\end{aligned}
$$

The original equations for ( $x, y, z$ ) can now be written in terms of $\bar{W}$.

$$
\begin{aligned}
& x=x^{\prime} \sqrt{1-w_{x}^{2}}+z^{\prime} w_{x}=x^{\prime} C_{1}+z^{\prime} C_{2} \\
& y=x^{\prime}\left(-\frac{w_{x} w_{y}}{\sqrt{1-w_{x}^{\prime 2}}}\right)+y^{\prime}\left(\frac{w_{z}}{\sqrt{1-w_{x}^{2}}}\right)+z^{\prime} w_{y}=x^{\prime} C_{3}+y^{\prime} C_{4}+z^{\prime} C_{5} \\
& z=x^{\prime}\left(\frac{-w_{x} w_{z}}{\sqrt{1-w_{x}^{2}}}\right)+y^{\prime}\left(\frac{-w_{y}}{\sqrt{1-w_{x}^{2}}}\right)+z^{\prime} w_{z}=x^{\prime} C_{6}+y^{\prime} C_{7}+z^{\prime} C_{8}
\end{aligned}
$$

The 8 constants $C_{i}$ are computed by subroutine CMAKER for any given set $W_{X}, W_{Y}, W_{z}$.

The values of $x^{\prime}, y^{\prime}, z^{\prime}$ will depend on the particular application but, in general, are given by the standard equations for a point in spherical coordinates.

$$
\begin{aligned}
& x^{\prime}=S \sin \theta \cos \phi \\
& y^{\prime}=S \sin \theta \sin \phi \\
& z^{\prime}=R
\end{aligned}
$$

where the variables are defined by the following figure


## Appendix 2 - Flight Time in Orbit

The problem is to compute the vehicle flight time between perigee and any orbital angle $\alpha$. The variables used in the derivation are defined as follows.
$t=$ time at angle $\alpha$
$t_{0}=$ time at $\alpha=0$
$\mathrm{P}=$ period of orbit
$e=$ eccentricity of orbit
$L_{p}=a l t i t u d e$ at perigee (measured from center of planet)
$L_{a}=a l t i t u d e$ at apogee (measured from center of planet)
$A=$ altitude at angle $\alpha$ (measured from center of planet)
$a=$ semi-major $a x i s=\left(L_{a}+L_{p}\right) / 2$
$E=$ an angle referred to as the 'eccentric anomaly' and defined by the relationship

$$
\begin{equation*}
\cos E \equiv(a-A) / e a \tag{1}
\end{equation*}
$$

The following figure illustrates the geometry.


Using Kepler's equation for the orbital flight time, we have

$$
\begin{equation*}
\left(t-t_{0}\right)=\frac{p}{2} \frac{(E-e \sin E) .}{} \tag{2}
\end{equation*}
$$

All that is required is to convert the above equation to a function of $\boldsymbol{\alpha}$.

We, first, define the eccentricity as
$e=\left(L_{a}-L_{p}\right) /\left(L_{a}+L_{p}\right)$.
Then, substituting for a and $E$ into equation (1) we have
$\cos E=\left(L_{a}+J_{L_{2}},-2 A\right) /\left(L_{a}-L_{p p}\right)$
But, from the pola: equation of an ellipse

$$
\begin{equation*}
A=\frac{a\left(1+e^{2}\right)}{1-e \cos \alpha}=\frac{2 L_{a} L_{p}}{\left(L_{a}+L_{p}\right)+\left(L_{a-} L_{p}\right) \cos \alpha} \tag{4}
\end{equation*}
$$

Substituting for $A$ in equation (3) gives

$$
\cos E=\frac{1}{\left(L_{a}-L_{p}\right)} \cdot\left[\left(L_{a}+L_{p}\right)-\frac{4 L_{a} L_{p}}{\left(L_{a}+L_{p}\right)+\left(L_{a}-L_{p}\right) \cos \alpha}\right]
$$

Then, since
$E:=\cos ^{-1}(\cos E)$ and
$\sin E=\left(1 \cdots \cos ^{2} E\right)^{\frac{1}{2}}$,
Kepler's equation can be put in terms of $\alpha$ and the three input constants $P, L_{a}$ and $L_{p}$.

In subroutine TIMER, the quantity dt is computed, where dt is the flight time from $\alpha_{1}$ to $\alpha_{2}$. This is done simply by evaluating Kepler's equation at the two angles and taking the differen~e.

## Appendix 3 - Deriving the Satellite-Sun-Planet Orientations

 for Different OrbitsA. Find the Direction Cosines of the Satellite-planet Line for an Inertial Orbit

Consider the following Eigure, where the satellite is at point $\bar{x}$ with an orbital angle $\boldsymbol{\alpha}$.


The main problem is to derive the coordinates at $\bar{x}$ as a function of $\alpha$, given
a) the direction cosines of the major axis $=\bar{W}$
b) altitude at perigee (from planet center) $=L_{p}$
c) ajtitude at apogee (from planet center) $=L_{a}$
d) direction cosines of normal to orbital plane $=\bar{n}$

The point $\bar{x}$ in vector notation is given by

$$
\begin{equation*}
\overline{\mathbf{x}}=\overline{\mathrm{p}}+\bar{\epsilon} \mathrm{B}+(-\overline{\mathrm{w}}) \quad(c+d) \tag{1}
\end{equation*}
$$

where $\overline{\boldsymbol{E}}=\overline{\mathrm{W}} \mathbf{x} \overline{\mathrm{n}}$.
From the above figure, it is obvious that
$a=\left(L_{a}+L_{p}\right) / 2$
$c=\left(L_{\mathrm{a}}-\mathrm{L}_{\mathrm{p}}\right) / 2$
$B=A \sin \alpha$
$D=A \cos \alpha$

Also the point $\overline{\mathrm{P}}$ at the center of the ellipse is equal to

$$
\bar{w} a=\quad \bar{w}\left(L_{a}+L_{p}\right)
$$

Substituting for $\bar{P}, C, B, D$ in equation (1) gives

$$
\bar{X}=\bar{\epsilon}(A \sin \alpha)-\bar{w}\left[\left(\frac{L a}{2}-\frac{L p}{2}+A \cos \alpha\right)-\left(\frac{L a}{2}+\frac{L p}{2}\right)\right] .
$$

## After combining terms

$$
\begin{equation*}
\bar{X}=\bar{\epsilon}(A \sin \alpha)+\bar{w}\left(L_{p}-A \cos \alpha\right) . \tag{2}
\end{equation*}
$$

The definition of $\bar{\epsilon}$ gives

$$
\bar{\epsilon}=\bar{w} \times \bar{n}=\left|\begin{array}{lll}
i & j & k \\
w_{X} & w_{y} & w_{z} \\
n_{X} n_{y} n_{z}
\end{array}\right|=\left(w_{Y} n_{z}-w_{z} n_{Y}\right) i+\left(w_{z} n_{X}-w_{X} n_{z}\right) j+\left(w_{X} r_{y}-w_{Y} n_{X}\right) k
$$

The components of equation (2) are now obtained by substituting the $i, j, k$ components of $\bar{\epsilon}$. Thus,

$$
\begin{align*}
& x=\left(w_{y} n_{z}-w_{z} n_{y}\right) \quad(A \sin \alpha)+w_{x}\left(L_{p}-A \cos \alpha\right) \\
& y=\left(w_{r} n_{x}-w_{x} n_{z}\right) \quad(A \sin \alpha)+w_{y}\left(L_{p}-A \cos \alpha\right) \\
& z=\left(w_{x} n_{y}-w_{y} n_{x}\right) \quad(A \sin \alpha)+w_{z}\left(L_{p}-A \cos \alpha\right) . \tag{3}
\end{align*}
$$

Having defined the point $\bar{X}$, it is now a simple matter to derive the direction cosines $\overline{\mathrm{WPA}}$ of the line from point $\overline{\mathrm{X}}$ to point $\bar{F}$. First, define the point $\overline{\mathrm{F}}$ as

$$
\overline{\mathrm{F}}=\overline{\mathrm{X}}+(\overline{\mathrm{WPA}}) \mathrm{A} .
$$

Then

$$
\overline{\mathrm{WPA}}=(\bar{F}-\bar{X}) / A .
$$

But $\overline{\mathrm{F}}$ can also be written as

$$
\overline{\mathrm{F}}=\mathrm{L}_{\mathrm{p}} \overline{\mathrm{w}} .
$$

Thus,

$$
\overline{W P A}=\left(L_{p} \bar{w}-\bar{x}\right) / A
$$

Finally, substituting for $\bar{x}$ from equation (3) we get for the three components of $\overline{W P A}$

$$
\begin{aligned}
& W P A_{X}=w_{x} \cos \alpha+\left(w_{z} n_{Y}-w_{y} n_{z}\right) \sin \alpha \\
& W P A_{Y}=w_{y} \cos \alpha+\left(w_{x} n_{z}-w_{i} n_{x}\right) \sin \alpha \\
& W P A_{z}=w_{z} \cos \alpha+\left(w_{Y} n_{X}-w_{x} n_{y}\right) \sin \alpha
\end{aligned}
$$

## B. Find the Direction Cosines of the Satellite-Sun Line for

 a Gravity Gradie.it OrbitConsider the following figure which defines the variables in the derivation.


For clarity, only the $Z$ and $Z^{\prime}$ axes are shown in the above figure and the details of the derivation will be given for the $Z$ components of the direction cosines.

The problem is to determine the direction cosines of the satellite-sun line at location $\alpha$ with respect to the $Z^{\prime}$ axis. Let this quantity be $S_{z}^{\prime}$.

The following quantities are given:
a) direction cosines of the major axis $=\bar{w}$
b) direction cosines of sun at perigee $(\alpha=0)=\bar{s}$
c) direction cosines of earth at $\alpha=\bar{W}$
d) direction cosines of normal to orbital plane $=\bar{N}$

In general, the angle $\phi$ between two vectoris $\overline{\mathrm{V}}$ and $\overline{\mathrm{V}}^{\prime}$ is given by
$\cos \phi=v_{x} v_{x}^{\prime}+v_{y} v_{y}^{\prime}+v_{z} v_{z}^{\prime} \quad$ where $\mathrm{V}_{\mathrm{x}}=$ direction cosines of $\overline{\mathrm{V}}$ with respect to the x axis, etc.

Then, the cosine of the angle between $\bar{S}$ and the $Z^{\prime}$ axis is

$$
\begin{equation*}
s_{z}^{\prime}=s_{x} z_{x}^{\prime}+S_{y} z_{y}^{\prime}+s_{z} z_{z}^{\prime} \quad \text { where } \tag{1}
\end{equation*}
$$

$z_{x}^{\prime}, z_{y}^{\prime}, z_{z}^{\prime}=$ direction cosines of $z^{\prime}$ with respect to the original $x, y, z$ axes.

Since $S_{x}, S_{y}, S_{z}$ are given, the problem is to find $z_{\dot{x}}, z_{\dot{y}}, z_{\dot{z}}$. In order to solve for the three components of the $z^{\prime}$ axis, the following three equations are required.

1. We first make 1 se of the fact that for a gravity gradient orbit the relationship between $\bar{w}$ and $z$ is the same as between $\bar{W}$ and $z^{\prime}$. Thus, the cosine of the angle between $\bar{W}$ and $z^{\prime}=w_{z}$. Then

2. Also note that the orientation of the normal ( $\overline{\mathrm{N}}$ ) is invariant. Thus, $N_{Z}=$ cosine of the angle between $\overline{\mathrm{N}}$ and $\overline{\mathrm{Z}}$ '.
$N_{z}=N_{x} Z_{\mathbf{x}}+N_{y} Z_{\dot{y}}+N_{z} Z_{\mathbf{z}}^{\prime}$
3. Finally, let $M_{Z}$ be the cosine of the angle between $\overline{\mathrm{w}}$ and $\mathrm{z}^{\prime}$. Then $M_{Z}=w_{X} Z_{X} \dot{x}^{+} w_{y} Z_{\dot{y}}^{\prime}+w_{z} z_{z}^{\prime}$

To find $M_{Z}$ let
$\cos \beta=$ cosine of the angle between $\bar{W}$ and $z^{\prime}=w_{z}$
$\cos \gamma=$ cosine of the angle between $\bar{N}$ and $Z^{\prime}=N_{Z}$
$\cos \alpha=$ cosine of the angle between $\bar{w}$ and $\bar{W}$.
Using solid trigonometry we get
$M_{Z}=\cos \alpha \cos \beta+\sin \alpha \sin \beta \cos (\phi+90)$
where $\cos \phi=\cos \gamma / \sin \beta$ and $\cos (\phi+90)=-\sin \phi$.
Thus

$$
\begin{aligned}
& \cos ^{2} \phi=\frac{N_{z}^{2}}{1-\omega_{z}^{2}} \\
& \sin \phi=\left(1-\cos ^{2} \phi\right)^{1 / 2}=\left(\frac{1-\omega_{z}^{2}-N_{z}^{2}}{1-\omega_{z}^{2}}\right)^{1 / 2}
\end{aligned}
$$

$$
\sin \phi \sin \beta=\left(1-\omega_{z}^{2}-N_{z}^{2}\right)
$$

Substitution in the above equation for $M_{Z}$ gives

$$
M_{Z}=w_{z} \cos \alpha-\sin \alpha\left(1-w_{z}^{2}-N_{z}^{2}\right)
$$

Solving equations (2), (3), and (4) simultaneously gives the following set of equations for $z_{x}^{\prime}, z_{y}^{\prime}, z_{z}^{\prime}$.

$$
\begin{equation*}
z_{x}^{\prime}=\frac{A_{1} M_{Z}+B_{1} N_{z}+C_{1} w_{z}}{A_{1} w_{x}+B_{1} N_{x}+C_{1} w_{x}} \tag{5}
\end{equation*}
$$

$$
\begin{align*}
& z_{y}^{\prime}=\frac{A_{2} M_{z}+B_{2} N_{z}+C_{2} w_{z}}{A_{2} w_{y}+B_{2} N_{y}+C_{2} W_{y}}  \tag{6}\\
& z_{z}^{\prime}=\frac{A_{3} M_{z}+B_{3} N_{z}+C_{3} w_{z}}{A_{3} w_{z}+B_{3} N_{z}+C_{3} w_{z}} \tag{7}
\end{align*}
$$

The desired quantity $S_{Z}^{\prime}$ is obtained by substitution into equation (1). The constants in these equations are defined as follows:

$$
\begin{aligned}
& A_{l}=\left(W_{z} N_{y}-W_{y} N_{Z}\right) \\
& B_{1}=\left(W_{y} W_{z}-W_{z} W_{Y}\right) \\
& c_{1}=\left(w_{y} N_{z}-w_{z} N_{y}\right) \\
& A_{2}=\left(W_{x} N_{z}-W_{Z} N_{x}\right) \\
& B_{2}=\left(W_{z} W_{x}-W_{x} W_{z}\right) \\
& c_{2}=\left(w_{Z} N_{x}-w_{x} N_{Z}\right) \\
& A_{3}=\left(W_{x} N_{y}-W_{Y} N_{x}\right) \\
& \mathrm{B}_{3}=\left(\mathrm{W}_{\mathrm{y}} \mathrm{w}_{\mathrm{x}}-\mathrm{W}_{\mathrm{x}} \mathrm{w}_{\mathrm{y}}\right) \\
& C_{3}=\left(w_{y} N_{x}-w_{x} N_{Y}\right)
\end{aligned}
$$

The $x, y$ components of $s^{\prime}$ are obtained from

$$
\begin{aligned}
& s_{x}^{\prime}=s_{x} x_{x}^{\prime}+s_{y} x_{y}^{\prime}+s_{z} x_{z}^{\prime} \\
& s_{y}^{\prime}=s_{x} y_{x}^{\prime}+s_{y} y_{y}^{\prime}+s_{z} y_{z}^{\prime} .
\end{aligned}
$$

The equations analogous to (5), (6), (7) for $\bar{X}$ ' and $\bar{Y}$ ' are obtained from the same sort of analysis as above for $\bar{z}$ '. The constants A, B, C are identical and the general form of the equations are

$$
\begin{aligned}
& x_{i}^{\prime}=\frac{A_{i} M_{x}+B_{i} N_{x}+C_{i} w_{x}}{A_{i} w_{i}+B_{i} N_{i}+C_{i} W_{i}} \\
& y_{i}^{\prime}=\frac{A_{i} M_{y}+B_{i} N_{y}+C_{i} w_{y}}{A_{i} w_{i}+B_{i} N_{i}+C_{i} w_{i}}
\end{aligned}
$$

where the subscripts $i=1,2,3$ refer to the $x, y, z$ components, respectively.

## C. Find Direction Cosines of Satellite-Sun Line for a Spin

 Stabilized OrbitA spin stabilized orbit is merely an inertial orbit with the satellite rotating about the $Z$ axis. Thus, after rotating through an angle $\theta$, the original $x, y, z$ coordinate axes will have rotated into a new set of coordinates $x^{\prime}, y^{\prime}, z^{\prime}$. This is shown below.


Given that the original direction cosines of the $\operatorname{sun}(a t \theta=0)$ are $S_{X}, S_{y}, S_{z}$ (the unit vector $\bar{S}$ ), the problem is to find the direction cosines with respect to $x^{\prime}, Y^{\prime}, z^{\prime}$. Let these be called $S_{x}^{\prime}$, $S_{y}^{\prime}, S_{z}^{\prime}$ and let
$X_{x}^{\prime}=X$ component of the $X^{\prime}$ axis
$X_{Y}^{\prime}=Y$ component of the $X^{\prime}$ axis
$X_{z}^{\prime}=Z$ component of the $X^{\prime}$ axis
with similar definitions for the $Y^{\prime \prime}$ and $Z^{\prime}$ axes.
Then
$S_{X}^{\prime}=$ cosine of angle between $\bar{s}$ and $X^{\prime}$ axis $=S_{X} X_{X}^{\prime}+S_{Y} X_{Y}^{\prime}+S_{z} X_{z}^{\prime}$
$S_{Y}^{\prime}=$ cosine of angle between $\bar{S}$ and $Y^{\prime}$ axis $=S_{X} Y_{X}^{\prime}+S_{y} Y_{Y}^{\prime}+S_{Z} Y_{z}^{\prime}$
$S_{z}^{\prime}=$ cosine of angle between $\bar{S}$ and $z^{\prime}$ axis $=S_{x} z_{x}^{\prime}+S_{y} z_{y}^{\prime}+S_{z} z_{z}^{\prime}$

From the above figure it is obvious that

$$
\begin{array}{lll}
x_{x}^{\prime}=\cos \theta & y_{x}^{\prime}=-\sin \theta & z_{x}^{\prime}=0 \\
x_{v}^{\prime}=\sin \theta & y_{y}^{\prime}=\cos \theta & z_{y}^{\prime}=0 \\
x_{z}^{\prime}=0 & y_{z}^{\prime}=0 & z_{x}^{\prime}=1
\end{array}
$$

Thus

$$
\begin{aligned}
& s_{x}^{\prime}=s_{x} \cos \theta+s_{y} \sin \theta \\
& s_{y}^{\prime}=-s_{x} \sin \theta+s_{y} \cos \theta \\
& s_{z}^{\prime}=s_{z}
\end{aligned}
$$

## D. Find Direction Cosines of Satellite-Planet Line for Spin

 Stabilized OrbitIet the direction cosines of the planet at a rotation angle $\theta$ be $W P A_{x}^{\prime}, W P A_{Y}^{\prime}, W P A_{z}^{\prime}$. The same analysis as given in part $C$ results in the following set of equations.

$$
\begin{aligned}
& W P A_{x}^{\prime}=W P A_{x} \cos \theta+W P A_{y} \sin \theta \\
& W P A_{y}^{\prime}=-W P A_{x} \sin \theta+W P A_{y} \cos \theta \\
& W P A_{z}^{\prime}=W P A_{z}
\end{aligned}
$$

where WPA $x, y, z$ are the direction cosines of the planet at $\theta=0$. These are derived in part $A$ as a function of orbital angle $\alpha$.

## Appendix 4 - Originating a Ray From the Sun

## A. Picking a Point of Origin

The Solar source is considered to be a set of plane parallel rays originating from a plane which is perpendicular to the satellite-sun line. Let the direction cosines of this line ( $\overline{W S A}$ ) be WSAX, WSAy, WSAz. The solar plane will be established at a distance SRAD from the origin of csordinates, where SRAD is the radius of the imaginary sphere enclosing the satellite. We first rotate the ( $X, Y, Z$ ) coordinate system into a new system ( $X^{\prime}, Y^{\prime}, Z^{\prime}$ ) such that the $Z^{\prime}$ axis points along the vector $\overline{W S A}$. This is shown in the following figure.


The problem is to find the coordinates of the point $P$ relative to the original ( $\mathrm{X}, \mathrm{y}, \mathrm{z}$ ) system. To do this we apply the equations for a coordinate rotation derived in Appendix 1. Thus,

$$
\begin{aligned}
& x=x^{\prime} c_{1}+z^{\prime} c_{2} \\
& y=x^{\prime} c_{3}+y^{\prime} c_{4}+z^{\prime} c_{5} \\
& z=x^{\prime} c_{6}+y^{\prime} c_{7}+z^{\prime} c_{8}
\end{aligned}
$$

Where the C's cre functions of WPA ${ }_{x}$, WPAY, WPA $A_{z}$ and are defired in Appendix J. The parameters $X^{\prime}, Y^{\prime}, Z^{\prime}$ are defined as follows

$$
\begin{aligned}
& X^{\prime}=S \sin \theta \cos \phi \\
& Y^{\prime}=s \sin \theta \sin \phi \\
& Z^{\prime}=S R A D
\end{aligned}
$$

We row pick a random point per unit area on the solar plane as follows.

1. Pick a value of $R$ between $O$ and SRAD
$R=\sqrt{\xi_{1}} S R A D$, where $\xi_{1}$ is a random number between 0 and 1 . But, from the above figure $R=S \sin \theta$. Thus, $(S \sin \theta)=\sqrt{\xi_{1}} \operatorname{SRAD}$
2. Pick an azimuthal angle $\phi$ at random
$\phi=2 \pi \xi_{2}$, where $\xi_{2}$ is a second random number.

Thus

$$
\begin{aligned}
& x^{\prime}=\left(\sqrt{\xi_{1}} \text { SRAD }\right) \cos \left(2 \pi \xi_{2}\right) \\
& y^{\prime}=\left(\sqrt{\xi_{1}} \text { SRAD }\right) \sin \left(2 \pi \xi_{2}\right) \\
& z^{\prime}=\text { SRAD } .
\end{aligned}
$$

Substitution of these value into the equations for $X, Y, Z$ then gives the required coordinates of the point $P$.
B. Finding the Direction of the Ray

The ray is simply fired back toward the satellite with direction cosines - WSAx, -WSAy, -WSAz
C. Computing the Energy of the Ray

The energy of each ray is given by
$E=\frac{\text { So } \pi S R A D^{2}}{N}$
$S_{O}=$ Solar constant (energy/area)
$N=$ number of rays to be fired from the sun.
The numerator, of course, is the total energy fired from the solar plane within the imaginary satellite sphere. Dividing by $N$ merely divides this energy equally among all rays.

## Appendix 5 - Originating a Ray From the Planet

A. Pjcking the Point of Origin and Direction for a Ray

The geometry of the problem is shown in the following figure.

$\overline{\mathrm{X}}=$ point to be picked on the planet
$H=$ altitude above planet surface at orbit angle $\alpha$
$R=$ radius of planet
$S=$ distance from satellite to $\bar{X}$
The point $\bar{X}$ will be computed such that the angle $\gamma \leq \gamma_{\max }$.

The altitude $H$ can be defined immediately from equation
(4) of Appendix 2. Thus,

$$
\begin{align*}
H= & \frac{2 L_{a} L_{p}}{\left(L_{a}+L_{p}\right)+\left(L_{a}-L_{p}\right) \cos \alpha}-R  \tag{1}\\
L_{a}, I_{p}= & \text { altitudes (from the planet center) at apogee and } \\
& \text { perigee, respectively. }
\end{align*}
$$

The value of $\gamma_{\text {max }}$ is also easily obtained, since

$$
\begin{equation*}
\cos \phi_{\max }=R /(R+H) \tag{2}
\end{equation*}
$$

and

$$
\cos \gamma_{\max }=\cos \left(90-\phi_{\max }\right)=\sin \phi_{\max }=\left(1-\cos ^{2} \phi_{\max }\right)^{1 / 2}
$$

Thus

$$
\begin{equation*}
\cos \gamma_{\max }=\left(H^{2}+2 R H\right)^{1 / 2} /(R+H) \tag{3}
\end{equation*}
$$

We next compute $\theta$ from the law of sines.

$$
\begin{align*}
& R / \sin \gamma=(R+H) / \sin \theta \\
& \cos \theta=\left(1-\sin ^{2} \theta\right)^{1 / 2}=\left(\frac{R^{2}-(R+H)^{2} \sin ^{2} \gamma}{R^{2}}\right)^{1 / 2} \\
& \cos \theta=\frac{1}{R}\left[R^{2}-(R+H)^{2}\left(1-\cos ^{2} \gamma\right)\right]^{1 / 2} \tag{4}
\end{align*}
$$

We are now in a position to define the initial conditions for a ray. First rotate the coordinate system into a primed system such that the $Z^{\prime}$ axis points toward the planet center. Then, using the results of Appendix 1 , the point $\bar{X}$ on the planet is defined as

$$
\begin{align*}
& x=x^{\prime} C_{1}+Z^{\prime} C_{2} \\
& Y=X^{\prime} C_{3}+y^{\prime} C_{4}+Z^{\prime} C_{5}  \tag{5}\\
& Z=x^{\prime} C_{6}+y^{\prime} C_{7}+Z^{\prime} C_{8}
\end{align*}
$$

where the C's are functions of the direction cosines of the satellite-planet ine. The $\mathrm{X}^{\prime}, \mathrm{Y} ', \mathrm{Z}$ ' values are defined as

$$
\begin{aligned}
& X^{\prime}=s \sin \gamma \cos \beta \\
& Y^{\prime}=s \sin \gamma \sin \beta \\
& Z^{\prime}=s \cos \gamma
\end{aligned}
$$

where $\beta$ is the azimuthal angle around the $Z^{\prime}$ axis.

It is n $\sim$ w necessary to determine $s, \gamma$ and $\beta$. The angle $\beta$ is chosen at random such that

$$
\beta=2 \pi \xi
$$

where $\xi$ is a random number from 0 to 1.
Using the law of cosines

$$
s^{2}=R^{2}+(R+H)^{2}-2 R(R+H) \cos \phi .
$$

$$
\begin{align*}
& \text { Rearranging terms gives } \\
& \qquad S=\left[H^{2}+2 R(R+H)(1-\cos \phi)\right]^{1 / 2} \tag{6}
\end{align*}
$$

From the law of sines

$$
\begin{equation*}
\sin \gamma=\frac{R}{5} \sin \phi \tag{7}
\end{equation*}
$$

Thus, once $\phi$ is determined, $s$ can be computed from equation (6)
and $\gamma$ is obtained from equation (7).
The angle $\phi$ is chosen such that $\cos \phi$ is random between $\cos \phi_{\max }$ (equation (2)) and 1. Thus,

$$
\cos \phi=\cos \phi_{\max }+\xi\left(1-\cos \phi_{\max }\right)
$$

where $\}$ is a new random number.
The point on the planet $(X, Y, Z)$ can then be computed and the direction cosines along the line $S$ are given by

$$
\begin{aligned}
W S_{1} & =\mathrm{X} / \mathrm{S} \\
W S_{2} & =\mathrm{Y} / \mathrm{S} \\
\mathrm{WS}_{3} & =\mathrm{z} / \mathrm{S}
\end{aligned}
$$

In theory, the ray could now be fired from ( $\mathrm{X}, \mathrm{y}, \mathrm{z}$ ) in the direction - $\overline{\mathrm{WS}}$. There are two things wrong with this, however. Due to the finite precision capabilities of the computer, it is unwise to fire a ray at a relatively small object (of radius r)
from a very large distance (S). The origin of the ray must, therefore, be moved closer to the satellite. To accomplish this, a disc is established perpendicular to $S$, a distance $r$ from the satellite center. Secondly, the ray should not be fired from the center of this disc since it would always be aimed at the center of the satellite. Instead, the starting position of the ray on the disc should be picked randomly with area. This is done by rotating the coordinate system into a double primed system with $Z^{\prime \prime}$ axis directed along $S$. A random starting point on the disc is then picked in the new system as follows.

$$
\begin{aligned}
& x^{\prime \prime}=r \sqrt{\xi_{1}} \cos \left(2 \pi \xi_{2}\right) \\
& y^{\prime \prime}=r \sqrt{\xi_{1}} \sin \left(2 \pi \xi_{2}\right) \\
& z^{\prime \prime}=r
\end{aligned}
$$

The starting point in the unprimed system $\left(X_{O}, Y_{O}, Z_{O}\right)$ is then computed from equations similar to equation (5) (i.e., $X_{o}=X^{\prime \prime} C_{1}+Z^{\prime \prime} C_{2}$,etc.) The C's are a new set of constants computed from $\bar{W}$.
B. Computing the Energy of Ray Emitted by the Planet

Referring to the figure below, we first compute the energy emitted by an element of area on the planet $d A$ at an angle $\theta$ in the interval $d \theta$.

$\Delta I_{\theta}=$ energy/solid angle in $\theta$ direction $=d E_{\theta} / d \Omega$ $B_{\theta}=$ energy/area in $\theta$ direction.

From Lambert's Law

$$
\Delta I_{\theta}=\Delta I_{n} \cos \theta \quad \text { where }
$$

$\Delta I_{n}=$ energy/solid angle in normal direction $\left(\Theta=0^{\circ}\right)$.
Thus,

$$
B_{\theta}=\Delta I_{n} / d A=\text { constant. }
$$

The energy is therefore
$d E_{\theta}=\Delta I_{\theta} d \Omega=B_{\theta} d A \cos \theta d \Omega=\left(\frac{\Delta I_{n}}{d A}\right) d A \cos \theta d \Omega$. But the solid angle subtended by the shaded ring is

$$
d \Omega=2 \pi \sin \theta d \theta
$$

Thus,

$$
d E_{\theta}=\left(\frac{\Delta I_{n}}{d A}\right) d A 2 \pi \cos \theta \sin \theta d \theta .
$$

The total energy, $E_{\text {tot }}$ is then

$$
\begin{gathered}
E_{\text {Tot }}=\int_{0}^{E_{\text {Tot }}} d E_{\theta}=2 \pi\left(\frac{\Delta I_{n}}{d A}\right) d A \int_{0}^{\pi / 2} \cos \theta \sin \theta d \theta=2 \pi\left(\frac{\Delta I_{n}}{d A}\right) d A \cdot \frac{1}{2} \\
E_{T O T}=\pi \Delta I_{n} .
\end{gathered}
$$

Therefore, $\Delta I_{n}$ is equal to $E_{\text {rot }} / \pi$.
Lambert's Law now becomes

$$
\Delta I_{\theta}=\frac{E_{\text {Tor }}}{\pi} \cos \theta
$$

or
$\Delta E_{\theta}=\frac{E_{\text {Tot }}}{\pi} \cos \theta d \Omega$, where $d \Omega$ is now the
solid angle subtended by the imaginary satellite sphere of radius $r$. Since this is equal to $\pi r^{2} / s^{2}$, the energy incident on the satellite sphere is

$$
\begin{aligned}
& \text { ellice sphere is } \\
& \Delta E_{\theta}=E_{\text {TOT }} \cos \theta\left(\frac{r}{s}\right)^{2} .
\end{aligned}
$$

Now let $E_{\text {tot }}=Q A$ where
$Q=$ energy radiated/surface area $=\sigma T^{4}$
$\mathrm{A}=$ area of planet surface visible to the satellite
$\sigma=$ Stefan - Boltzmann constant
The total energy emitted at the satellite is then

$$
\begin{equation*}
\Delta E_{\theta}=\left(\sigma T^{4}\right) A \cos \theta(r / s)^{2} \tag{8}
\end{equation*}
$$

The energy of each ray is merely $\Delta \mathrm{E}_{\boldsymbol{\theta}}$ divided by the number of rays to be fired from the planet. The value of $\cos \theta$ is computed from equation (4) derived earlier, so that only A is still to be computed. Referring to the figure at the beginning of this appendix, we see that the visible area can be written in terms of $R$ and $\phi$. Thus,

$$
d A=2 \pi R^{2} \sin \phi d \phi
$$

$$
\left.A=\int_{\phi_{\max }}^{0} d A=2 \pi R^{2} \cos \phi\right]_{\phi_{\max }}^{0}=2 \pi R^{2}\left(1-\cos \phi_{\max }\right) .
$$

But from equation (2), $\cos \phi_{\text {max }}=R /(R+H)$ so that

$$
A=2 \pi R^{2} H /(R+H)
$$

## C. Determine if a Point on the planet Can Reflect Sunlight

Once a ray has been fired from the planet, it is necessary to determine if the point where the ray originated from on the planet can reflect sunlight to the satellite. The variables for this calculation are defined by the following figure.

$\bar{N}=$ normal to planet at $x, y, z$
$\bar{S}=$ direction of satellite-sun line
$\bar{W}=$ direction of satellite-planet line
$\bar{N}, \bar{S}, \bar{W}$ are unit vectors whose
components are direction cosines

The angle $\Theta_{S N}$ between $\bar{N}$ and $\bar{S}$ is given by

$$
\cos \Theta_{S M}=N_{x} S_{x}+N_{y} S_{y}+N_{z} S_{z} \quad \text { where }
$$

$$
N_{x}=\frac{X-X_{e}}{R} \quad N_{Y}=\frac{Y-Y_{e}}{R} \quad N_{z}=\frac{Z-Z_{e}}{R}
$$

and

$$
X_{e}=(R+H) W_{X} \quad Y_{e}=(R+H) W_{Y} \quad Z_{e}=(R+H) W_{Z}
$$

Now, by inspection one can see that a point on the planet can only reflect sunlight to the satellite if $\cos \theta_{s N}>0$. This test is made in the code and if $\cos \Theta_{S N}$ is positive, the energy of the reflected ray is computed.
D. Computing the Energy of a Planet-Reflected Ray

The energy of planet reflected rays is analogous to equation (8) for planet radiation energy except for the following changes.
(1) A new source term is needed. This is equal to $S_{0} \alpha_{p}$ where $S_{0}$ is the solar constant and $\alpha_{p}$ is the reflection coefficient (albedo) of the planet.
(2) $A \cos \theta_{S N}$ factor must be inserted to account for the projected visible area on the planet surface.

Thus, the reflected energy $E_{r e f}$ is

$$
E_{\text {ref }}=\frac{1}{N} \cdot\left(s_{0} \alpha_{p}\right) A \cos \theta \cos \theta_{S N}(r / s)^{2}
$$

Where $N$ is the total number of rays emitted from the planet and
$A$ is the total area of the planet visible to the satellite.
We can show that $A_{\text {for }} / N_{\text {tor }}$ is the correct factor to use, even for planet reflection, in the following way. The correct factor should actually be

$$
\frac{\text { reflecting area }}{\text { number of reflected rays }}=\frac{A_{\text {Ref }}}{N_{\text {Ref }}} .
$$

But $\quad A_{\text {ref }}=A_{\text {tot }}\left(\frac{N_{\text {ref }}}{N_{\text {tot }}}\right)$.
Thus,

$$
\frac{A_{\text {ref }}}{N_{\text {ref }}}=A_{\text {Tot }}\left(\frac{N_{\text {ref }}}{N_{\text {TOT }}}\right)\left(\frac{1}{N_{\text {ref }}}\right)=\frac{A_{\text {ToT }}}{N_{\text {TOT }}} .
$$

## Appendix 6 - Energy and Direction of Reflected

## Rays From the Satellite

## A. Specular Reflection

The problem is to derive expressions for the direction cosines of a ray reflected from the surface of the satellite. The geometry is defined by the following figures.

$\overline{W B} \quad=$ direction of incident ray
$\overline{W R} \quad=$ direction of reflected ray
$\overline{\mathrm{P}} \quad=$ reflection point on satellite surface
$\overline{W N} \quad=$ direction of normal to surface at point $\bar{P}$
$\theta=$ angle of incidence
$\phi=$ angle of reflection
$\beta_{i}=$ angle between the $x^{\prime}$ axis and the projection of the incident ray on the surface
$\beta_{r}=$ angle between the $x^{\prime}$ axis and the projection of the reflected ray on the surface

The coordinate axes have been rotated into a primed system ( $x^{\prime}, y^{\prime}, z^{\prime}$ ) such that the $z^{\prime}$ axis points along the normal $\overline{W N}$. In addition, the origin of coordinates has been translated to the reflection point $\overline{\mathrm{P}}$. The equatichs of rotation, derived in Appendix 1 , are then

$$
\begin{align*}
& \left(X-P_{X}\right)=X^{\prime} C_{1}+Z^{\prime} C_{2} \\
& \left(Y-P_{Y}\right)=X^{\prime} C_{3}+Y^{\prime} C_{4}+Z^{\prime} C_{5} \\
& \left(Z-P_{Z}\right)=X^{\prime} C_{6}+Y^{\prime} C_{7}+Z^{\prime} C_{8} \tag{1}
\end{align*}
$$

where $(X, Y, Z$,$) are the coordinates of any point on the reflected$ ray. The c's, also defined in Appondix 1, are functions of the direction cosines of the normal $\left(W N_{X}, W N_{Y}, W N_{Z}\right)$. If $(X, Y, Z)$ is assumed to be a unit distance from $\bar{P}$, the equations for ( $X^{\prime}, Y^{\prime}, Z^{\prime}$ ) become

$$
\begin{align*}
& X^{\prime}=\sin \phi \cos \beta_{r} \\
& Y^{\prime}=\sin \phi \sin \beta_{r} \\
& Z^{\prime}=\cos \phi \tag{2}
\end{align*}
$$

Thus, if $X^{\prime}, Y^{\prime}, Z^{\prime}$ are known, they can be substituted into equation set (1) to compute $\left(X-P_{X}\right)$, etc. But, since $(X, Y, Z)$ is a unit distance from $\bar{P}$, the left sides of equations (l) are merely the direction cosines of the reflected ray. Thus, $W R_{X}=\left(X-P_{X}\right) \quad W R_{Y}=\left(Y-P_{Y}\right) \quad W R_{Z}=\left(Z-P_{Z}\right)$.
The problem then is to derive expressions for $\phi$ and $\beta_{r}$, subject to the constraints that the angle of incidence equals the angle of reflection and that $\overline{W B}, \overline{W N}$, and $\bar{W}$ all lie in a plane.

To compute $\phi$, we first define the cosine of the angle between $\overline{W E}$ and $\overline{W N}$. Since the incident ray points away from the normal, this angle is actually (180-0). Thus
$\cos (180-\theta)=-\cos \theta=\overline{W B} \cdot \overline{W N}$
and, since $\phi=\theta$,
$\cos \phi=-\overline{W B} \cdot \overline{W N}=-\left(W B_{x} W N_{x}+W B_{y} W_{y}+W B_{z} W N_{z}\right)$
$\sin \phi=\left(1-\cos ^{2} \phi\right)^{\frac{1}{2}}$.

To define $\beta_{r}$, we establish a point on the incident ray a unit distance from $\bar{P}$. Then a set of equations for the incident ray analogous to (1) and (2) can be established, where ( $X, Y, Z$ ) lie on the incident ray and $\theta$ and $\beta_{i}$ replace $\phi$ and $\beta_{r}$. Using the first equation of set (1)

$$
\left(X-P_{x}\right)=-W B_{x}=C_{1}\left(\sin \theta \cos \beta_{i}\right)+C_{2} \cos \theta
$$

But, since $\overline{W B}, \overline{W N}, \overline{W R}$ lie in the same plane, $\beta_{r}=180+\beta_{i}$. Thus, $\cos \beta_{i}=-\cos \beta_{r}$. Substituting for $\cos \beta_{i}$ in the above equation, setting $\theta=\phi$ and solving for cos $\beta_{r}$ gives

$$
\cos \beta_{r}=\frac{W B_{x}+C_{2} \cos \phi}{C_{1} \sin \phi} .
$$

Using the second equation of set (1) and applying a similar analysis gives

$$
\sin \beta_{r}=\frac{W B_{y}-C_{3} \sin \phi \cos \beta_{r}+C_{5} \cos \phi}{C_{4} \sin \phi}
$$

Thus, having solved for $\cos \phi, \sin \phi, \cos \beta_{r}, \sin \beta_{r}$, the direction cosines of the reflected ray can be computed from equation set (1).

The energy of the reflected ray is simply the product of the incident energy and the reflection coefficient of the surface.

The direction, $\overline{W R}$, of a diffuse ray also involves defining the angles $\phi$ and $\beta_{r}$. In this case, however, $\beta_{r}$ is chosen at random. Thus, $\beta_{r}=2 \pi \xi$, where $\xi$ is a random number between 0 and 1. The reflection angle $\phi$ is chosen from a predetermined set of angular 'bins'. Once $\phi$ and $\beta_{r}$ are defined, the components of $\overline{W R}$ are computed in the same manner as for specular reflection.

In the program, $\phi$ is computed in the following way. A set of angular bins of equal width are established, with the number of bins equal to the number of rays to be emitted per diffuse reflection (an input quantity). These bins extend from 0 to $90^{\circ}$ with respect to the surface normal. One ray is emitted in each bin with the angle $\phi$ within the bin being chosen at random. Thus, if $n$ rays are to be emitted, the width of each bin is $\pi / 2 n$. The angle $\phi_{i}$ for the ith ray is then

$$
\phi_{i}=\frac{\pi}{2 n}(i-1)+\frac{\pi}{2 n} \xi
$$

where $\xi$ is a random number.
Although the number of rays are uniformly distributed with angle, the energy of each ray is computed so as to give the correct energy distribution. The energy equation is derived as follows. Let $\mathrm{dE}_{\phi}$ be the energy reflected at an angle $\boldsymbol{\phi}$. Then

$$
d E_{\phi}=\left(\frac{\text { energy }}{\text { solid angle }}\right)(\text { solid angle })=\Delta I_{\phi} d \Omega .
$$

## Using Lambert's Law this becomes

$\mathrm{dE}_{\phi}=\left(\Delta I_{n} \cos \phi\right) \mathrm{d} \Omega$ where $\Delta I_{n}$ is the energy per unit solid angle along the normal.

In Appendix 5, Part $B$, it was shown that $\Delta I_{n}=E_{\text {rot }} / \pi$ where $E_{\text {rot }}$ is the total reflected energy. since $d \Omega=2 \pi \sin \phi d \phi$,

$$
d E_{\phi}=\left(\frac{E_{T O T}}{\pi} \cos \phi\right)(2 \pi \sin \phi d \phi)
$$

Therefore, the energy reflected in the angular bin $\phi_{1}$ to $\phi_{2}$ is

$$
\int_{\phi_{1}}^{\phi_{2}} d E_{\phi}=2 E_{\text {TOT }} \int_{\phi_{1}}^{\phi_{2}} \cos \phi \sin \phi d \phi=E_{\text {тот }}\left[\sin ^{2} \phi_{2}-\sin ^{2} \phi_{1}\right]
$$

This equation is used to determine the energy of each diffuse ray, where $E_{\text {tot }}=$ incident energy $x$ surface reflection coefficient. To save needless computing, the size of the angular bins and the $\Delta \sin ^{2} \phi$ factor for each bin are calculated in subroutine SHADOW and stored for later use by subroutine SATREF.


[^0]:    *NSPIN $=1$ for IORB $=1$ or 2.

