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1. DESCRIPTION OF THE VTP PROGRAM

VIP (Vehicle Illumination Program) is a FORTRAN IV code for
determining incident and abscirbed radiant energy on the surface
of orbiting space vehicles. Starting with a three-dimensional
description of the spacecraft geometry, the code employs geometric
ray tracing techniques for following rays of energy from their
source of origin to a point of intersection on the spuacecraft.
External energy sources treated are direct emission from both the
sun and an arbitrary planet and planetary reflection of sunlight.
Incident and absorbed energy is computed for these sources as a
function of location on the vehicle surface. In addition, the
code is capable of reflecting rays from the vehicle surface and
de*ermining that component of the energy resulting from such
veflections. Instantaneous results at specified locations in
orbit as well as time integrated results over complete orbits may
be obtained.

The program has been written to provide the user with a wide
range of flexibility in the class of problems which can be solved.
These capabilities are described in the remainder of this section.
Section 2 discusses the basic concepts employed for three-dimensional
geometry description. Section 3 provides a user‘'s guide to the
progran, describing the details of preparing input, running a
problem, and interpretira the output. This is followed, in Section
4, by a somewhat qualitative description of each subroutine in the

code. The mathematical formulations of some of the more important

routines are then given in Appendices 1-6.




l.1 Geometry Capabilities

The program employs a powerful technique for modeling three-
dimensional geometries and inputting the model into a computer.
This method, called the Combinatorial Geometry Technigque, permits
the accurate representation of space vehicles of essentially any
degree of complexity. The details of the method are discussed in
Section 3 but, in essence, it represents the vehicle and its com-
ponents as an array of volumes (or regions) of arbitrary size,
shape, and orientation. All results for energy deposition and
absorption are computed and edited as function of region, so that

a complete 'mapping' of energy vs. vehicle coniponent is provided.

1.2 Surface Properties

The computation of energy absorption and reflection requires
a description of the reflection properties of each region. A
region may be designated as being either a specular reflector, a
diffuse reflector, or transparent. In the former case, a 'mirror'
reflection occurs at the surface with'a single ray being emitted.
A diffuse reflection results in a numbér of rays being emitted in
predetermined directions. A transparent region acts like a vacuum,
transmitting 100% of the energy. Region properties are entered
in the form of one or more sets of reflection coefficients (frac-
tion of energy reflected) for each region. FEach set is composed
of two coefficients with first applicable to solar wavelengths
and second to planetary radiation. The source of the ray is used
to select the proper region coefficient and this, in turn, deter-

mines both the absorbed surface energy and the reflected ray




energy. Up to five sets of coefficients can be used and the code
will provide separate energy vs. region results for each set.
Thus, it is possible to obtain parametric studies of vehicle sur-

face properties,

1.3 Energy Scurces

A problem may be run to obtain results for various combinations

of the following four sources of energy:

a) Solar radiation,

b) Planet radiation,

c) Planet reflection of sunlight,

d) Vehicle reflection of the above sources.

The output will provide separate results for each energy
source. Solar radiation is treated as a set of parailel rays
emitted from a plane having any desired orientation with respect
to a fixed spacial coordinate system. The solar constant (energy/
area-time) is supplied as input. Planet radiation consists of
non-parallel rays originating on that part of the planet surface
which is visible to the satellite. Since the radiating temperature
and radius of the planet are input quantities, the code has the
flexibility of handling any desired planet. Planet reflection
results are obtained merely by inputting the reflection coefficient

(albedo) of the planet surface for sﬁnlight°

1.4 Allowed Orbits

One of the following orbit classifications may be selected

for a problem:




a) Inertial (with no spin) = The vehicle maintains a

fixed orientation with respect to the sun.

b) Spin Stabilized - Similar to the inertial orbit

except that the vehicle is rotating about a fixed
axis.

c) Gravity Gradient - The vehicle maintains a fixed

orientation with respect to the planet.

Any of the above orbits is specified by its period, the
vehicle altitudes at perigee and apogee, and the orientation of
the orbital plane. The calculation is performed in stepwise fashion
around the orbit. That is, the vehicle is initially positioned at
a 5pecified location and a set of rays are traced giving answers
at that location. The vehicle is then moved through a given angle
to its next position in orbit and another set of rays is traced.
This procedure is repeated until the desired number of locations
have been completed. The initial location, angular interval

between locations, and number of locations are all input parameters.

1.5 Calculation Procedure

The first step in the calculation is to read and process
input defining the vehicle geometry, region properties, orbit
parameters, etc. In general, all input which is independent of
the chosen energy sources is processed first. The actual computa-
tion is then split into two parts so that the solar and planetary

sources are done completely independently, with the solar source

done firsi. The following macroscopic flowchart indicates the




major calculational steps performed by the program. It should be
noted that for inertial or spin stabilized orbits, solar rays are
traced at the initial location only and the results are applied

to all locations. Correction factors are applied for those loca-

tions where the wehicle is shaded by the planet.

]Pncess vehicle deometry mPuq-J,’-ProC.eSS other input
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1.6 Edit Description

An edit of results is provided after each orbital location
is completed. This permits the user to restart a problem in the
middle with no loss of information. The edit provides the
following categories of data for each energy source and for each

region in the geometry:

a) incident energy/sec at the current location,
b) absorbed energy/sec at the current location,
c) time integrated incident energy from initial to

current location,
d) time integrated absorbed energy from initial to
current location.
This information is given in the following tabular form, where

a, b, ¢, d refer to the ahove data categories.

SOLAR CALCULATION

solar emission vehicle reflection ¢f sunlight*
Region # a b c d a b ¢ d

Tables repeated for each location.

PLANET CALCULATION

vehicle reflection
of planet emitted
planet emission  planet reflection and reflected rays*
Region # a b ¢ d a b ¢ 4d a b c d

Tables repeated for each location.

* These tables are blank if vehicle reflection is not desired.




2, THE COMBINATORIAL GEOMETRY METHOD

Combinatorial Geometry is essentially a technique for repre-
senting, in a computer, a mathematical model of a three-dimensional
geometric configuration. Once in the computer, the configuration
can be analyzed in many different ways by ray tracing techniques.
For example, quantities such as volumes, surface areas, object
boundaries, line of sight distances, etc. are readily determined.
Regardless of the application, however, the basic concepts employed
are the same. A discussion of these concepts can logically be
broken down into two topics. That is, geometry description and

ray tracing, which are discussed separately below.

2.1 Description of the Geometry

In effect, the description of the geometry divides the problem
space into unique volumes, called regions. Each region is, in
turn, a combination of one or more standard geometric figures,
called bodies. The allowed bodies (two examples of which are
spheres and cylinders) and how they are described are discussed
later. For the present, it is sufficient to say that a body is
completely defined by its type, dimensions, and location in space
relative to an X,Y,Z coordinate system.

Once all bodies have been described, each region may be L
defined by a simple equation which combines these bodies in the

following way. Consider the equation

R = #Bj#ByB3...%Bj

T e s =y VT =W ST
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where R represents a particular region number and the B's reprasent
body numbers. The + or - signs act as operators having the
following significance. ALG-B)means that all points within region
R lie inside of body B. A (- B)means that region R is wholly out-
side of body B. 1In addition to the + or -, there is a tuird
allowed operator (written OR) which permits a region to be des-
cribed in terms of subregions. A example might be

R = OR(+B1)OR(Bz—B3) .
This defines region R as having two parts, one of which is wholly
contained within body Bj. The second part is wholly wichin Bj
but completely ocutside of Bj.

There is no limit to the number of bodies which may appear
in a regioﬂ“description equation as long as the following rule is
obeyed. Every spatial point in the geometry must be located in

one and only one region.

To illustrate the method, consider the following figures
showing several different regions which can be constructed by

combining a sphere and a cylinder.

{
Assume that a sphere (body 1)

and a cylinder (body 2) have

been described such that the

4\./2

cylinder penetrates the sphere.




Region A (shaded) is defined as
A=+1~2. This means chat all
points in region A lie inside
the sphere and outside the

cylinder.

B=+1 Region B is the entire
sphere. Notice that body 2 is
not in the equation since the

cylinder is not needed to des-

cribe the region.

- \lf—l
/ £ . .
; C=+2-1 Region C is that part
|
!
\ / of the cylinder which lies out-
' N
~ i
;722112 side of the sphere,
7
D=+1+2 This says that all
- T~
// \¢~,! points in region D are simul-
' ; taneously within the sphere and
\ >
~ Eiéi,/ within the cylinder. The only

part of the geometry which obeys

this dezcription is the shaded

area. .




E=0OR(+1)OR (+2) Part of E lies
complec. .y within the entire
sphere and another part lies

in the entire cylinder. Note

that the use of the OR operators
in the above equation does not
require that the bodies inter-
sect. The sphere and cylinder
could have been widely separated

giving a discontinuous region,

which is perfectly legal.
There is an important rule of construction which is illustrated
by the following example. Consider a cylinder (body 1) resting

on top of another cylinder (body 2). The rule states that when
§§/ describing a region, one must negate
e | | ,
///// (- operator) any body that has a
\\\;j§§§§\kéﬂz buttressing (coplaenar) surface with
\\\\ the region. Thus, A=+1-2 and B=+2-1.

Although the above examples dealt only with spheres and

I

cylinders, there are actually 9 body types available for modeling
the geometry. The parameters needed to describe each body are dis-
cussed below. The three letter symbol in parentheses is called

the.‘body identifier' and, with the exception of the RPP is re-

quired input.




1. Rectangular Parallelepiped (RPP)

These bodies are used for gross subdivisions of the geometré'
and must have bounding surfaces parallel to the couordinate axes.,
The input consists of the minimum and maximum X,Y,Z coordinates
of the 6 planes which bound the body. The entire geometry must be
enclosed in an RPP.

2. Box (BOX)

Specify the (X,Y,Z) coordinatz. _f the vertex (V) at any one
of the corners of the box. Also specify the (X,Y,Z) components
of a set of three mutually perpendicular vectors (L;) representing
th2 height, width and length of the box. These vectors need not

be parallel to the coordinate axes.

/

]

L3 '

3. Sphere (SPH)

Specify the coordinates of the center of the sPhere(V) and
length of the radius R.

4, Right Circular Cylinder (RCC)

Specify the courdinates of the vertex (V) at the center of
either base, a height vector H in terms of its X,¥,Z components,
and a scalar R denoting the base radius. Note that V is the origin
of the vector H so that the components of H may be either positive

or negative depending on the cylinder's orientation.

I
A H !

v !




5. Right Elliptic Cylinder (REC)

Specify the coordinates of the center of *he base ellipse,
the components of the height vector H, and two vectors, Ly and L,,

defining the semi-major and semi-minor axes of the base ellipse.

6. Truncated Right Angle Cone (TRC)

Specify the coordinates of the vertex V at the center of the
lower base, the components of the height vector H, and two scalars,
R; and Rys giving the radii of the larger and smaller bases,

respectively,

T e e i
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7. Ellipsoid (ELL)

Specify the coordinates of two vertices, denoting the loca-

tions of the foci of the ellipse and a scalar L giving the lencgth

of the major axis.

< L >

8. Right Angle Wedge (RAW)

Same input as for the BOX with the restriction that L; and Lo

describe the two legs of the right triangle of the wedge.

9. Arbitrary Polyhedron (ARB)

The ARB is bounded by any 6 planes so long as the figure is
convex (the angle between any two sides is less than 180°),
Assign an integer number N to each of the 8 vertices f the ARB.
Give the coordinates of each vertex V. Then list the numbers of

the 4 vertices at the corners of each side. The vertex numbers

must ke given either in clockwise or counterclockwise order.




In this example, tha integer
descriptions of each side are
1234, 1265, 3784, 1485, 5678,

2376.

2.2 PRay Tracing

In effect, ray tracing is a means of following a straight
line through the varicus regions comprising the geometry. In the
VIP program the rays simu._ate non-penetrating electro-magnetic
radiation (as opposed to x-rays, for example) so that each ray is
terminated at the surface of a non-transparent region.

An explanation of the ray tracing technique is best accom-
plished by following the code through a simple examrle. Consider
two intersecting spheres enclosed in an RPP. The bodies are num-
bered 1-3 and the regions are lettered A-D. (Letters are used for

clarity only. Region are numbered in the code.)

L,RPP |
SPH3

Ao SPH 2




The region descriptions for this geometry are:

A = +1-2-3 ‘
B = +2=-3
C = +2+43
D = +3-2

Before proceeding with the discussion, let us list two tables
of information which are constructed by the code dﬁring input
processing. These are called '‘entering' and 'leaving' tables
which define the possible regions a ray might be in i1f it enters
a given body and the regions a ray might be in if it leaves a
given body. These tables are derived from the region description

equations and would appear as follows for this problem,

Body Entering Leaving
1 A escapes from geometry
2 Bor C Aor D
3 Cor D A or B

For example, these tables tell the code that a ray which enters
body 2 must be entering either region B or C. A ray leaving body
3 must be entering A or B.

; ssume now that the ray originates at point X, in region A
and that its direction of flight is known. The program must then
determine the next region in the ray's path and the point of inter-
section (X) with that region.

The ccde first examinec all the bodies in the region descrip-
tion of A for intersections with the ray. The program contains a

separate routine for each kody type for computing these inter-

sections. These routines compute two parameters called RIN {(the




distance from X, to the entering point on the body) and ROUT (from
Xo to the leaving point on the body). If the ray passes through

the body both numbers will be positive. If X, is inside the body,
RIN will be negative. If the ray misses the body entirely both

RIN and ROUT are negative. After investigating bodies 1, 2 and 3
the code will have six numbers and will choose the smallest positive
number to determine what has actually happened to the ray. From

the picture of the geometry, it is obvious that RIN for body 2

must be chosen, so that the ray must be entering body 2.

The entering tabie for body 2 now tells i.le code that the ray
could be enteging region B or C. The wvalidity of the region equa-
tions for B and C are then tested via a series of logical rules.
Without going into detail on these rules it should be obvious that
the equation for C cannot be satisfied. The +3 in this equation
requires the ray to be in or on the surface of body 3 at point X.
But, since ROUT for body 3 is negative, the ray must have missed
the body entirely. Thus, it cannot be in region C. The B equa-
tion, hcowever, is satisfied since the +2 is valid (the ray is
known tc¢ have hit body 2) and the -3 is also valid (the ray cannot
be in body 3). The ray is, thus, determined to be entering region
B. The intersection point X is determined from the vector equation

X = Xo+(RIN3)W
where w represents the direction cosines of the ray. To transmit

the ray through region B, X, is set equal to X and B becomes the

new region of origin. The above process is then repeated.




3, VIP USER'S GUIDE

This section is provided mainly as a guide to preparing input
for a VIP calculation. It is assumed that the reader has read the
remainder of the report and has becone familiar with the meanings

and purposes of the input variables.

3.1 Units

The units for most input quantities are arbitrary but care
should be taken to use a consistent set of units throughout.
Dimensions of length, for example, may be in centimeters, inches,
feet, etc. Once chosen, however, the unit of length must remain
constant. Thus, if vehicle dimensions are in inches, the planet
radius and vehicle altitudes must also be in inches. Area units
will then be in square inches, such as energy/inz-secc for the
solar constant. Time and energy units are also arbitrary. The

only required unit is that angles be given in degrees.

3.2 Card Input

Cards are described in the order in which they must appear
in the input deck. A sample input form is included at the end of

-

this section.

Card 1 - Title Carc (Format 20A4)
This card may contain 80 columns of alphanumeric information.

It serves as a title card and will appear as the first line of

output.




Card 2 - Geometry Descriptors (Format 4110)

The following four integer quantities are required

Column Input
10 NRPP The number of rectangular parallelepipeds in

the geometry (enter a 1 in column 10)
11-20 NBODY The number of bodies in the geometry not

including the RPP. The total number of bodies

is, thus, NBODY + 1.

21-30 NRMAX The number of regions in the geometry.

40 ITRL Used to obtain a printout of the geometryv data
table, If ITBL=0, this table will be printed.
If ITBL=1, the table will not be printed. The
geometry input data are always printed but this
table contains the data after processing. Unless
one is familiar with the way this table is con-
structed, the printout probably won't be of much

use.

NOTE: Before beginning to £ill out geometry input the user
should have at least a crude sketch of the satellite to refer to.
An X,Y,Z coordinate system should be established with the origin
at a convenient location near the geometric center of the vehicle.
All body locations will be relative to this origin. Also keep

in mind that if the vehicle is spinning, the Z axis will be assumed

to be the axis of rotation.




Card 3 - RPP Input (Format 6E10.5)

This card gives the coordinates of the six bounding planes
of the rectangular parallelepiped which encloses all other geometry.
Each plane must be perpendicular to one of the coordinate axes and
is, therefore, specified by a single coordinate. The order in
which they are given are

Xminimum: Xmaximum: Ymins Ymaxs %mins Zmax-
These boundaries should be very large compared to the dimensions

of the satellite.

Card Set 4 ~ Body Input (Format 2X, A4, 4X, 6El0.5)

These cards describe the location and dimensions of each
body in the geometry. A total of NBODY bodies must be described.
The code wil} assign a number to each body which is determined by
the order in which the bodies are described. The RPP will be
body #1, the first body described here is body #2, the second is
body #3, and so on. Each body description will require one or
more cards depending on the body type. The format of each card
is as follows.,

Columns Input
1-2 The code ignores these columns but they may be used
to number the bodies in order to help.keep the deck
in proper sequence.
3-6 Column 3 is blank and is followed by a three letter

identifier giving the body type (required input only

on the first card used to describe a body) .




Columns
7-10

11-70

The following table gives the required input for

Input

data are entered here,

The code ignores these columns.

Divided into six fields of 10 columns each. Body

each body

type. Section 2.1 describes the meaning of each body variable.

Card Columns

body type 4-6 | 11-20 21-30 31-40 41-50 51-60 61-70 card #
- L2x Loy L2z L3x L3y L3z 2 of 2
sphere SPH Vy Vy Vy R - - l of 1
circular RCC | Vg Y Vg H, Hy Hy, 1 of 2
cylinder - R Y - - - - 2 of 2
elliptic REC Vg Vy vV, Hy Hy H, 1l of 2
ellipse ELL Vix Viy Viz Vox Vay V2g 1 of 2
- L - - ~- - - 2 of 2
truncated TRC Vy Vy Vg Hy Hy H, l of 2
cone - Ry Ro - - - - 2 of 2
wedge RAW Vx Vy Vg Llx Lly Lilg 1 of 2
- La2x L2y L2z L3x L3y Liz 2 of 2
arbitrary ARB Vix Viy Viz Vox Vay Vaz 1 of 5
poly- - V3x V3y V3ig Vax Viy Viz 2 of 5
hedron - V5 V5y V5% Vex Vey V62 3 0of 5
- V7x V7y V7z Vgx Vg Vgz 4 of 5
enter the 4-digit face descriptions in 5 of 5
columns 1-30 using Format 6(14,1X)




It should be pointed out that, in addition to the RPP, one

other body which is not part of satellite is required. That is a

large sphere, centered at (0,0,0), of very large radius compared

to the satellite dimensions. This sphere must, however, be

enclosed in the RPP., It is a good idea to describe this body

before any others, making it body #2.

look like

The geometry would then

{0,0,0)

v
N

Z
I

k/RPP(bodl:j ))
’//spH(bcdgz)

A

(>2R)

v

The radius R can be determined only after all bodies des-

cribing the satellite have been defined. Find that point on the

satellite which is furthest from origin and call its radial dis-

tance from the origin S. Then R»20S.

sphere will become clear later on.

The purpose of this large

Bl o s el



Card Set 5 - Region Descriptions {Format I5, 1X, 9 (A2,I5))

Each region must be numbered and described by the combination
of bodies which make up that region. A total of NRMAX regions

must be described. The input format is indicated below.

Columns Input
1-5 Region number (start with 1)
6 Blank
7-8 Insert the OR operator if needed. Otherwise

leave blank.

9--13 Body number preceded by a + or -~ operator
The + operator may be omitted since a blank
is an inferred +.

14-69 Divided into eight fields of 7 columns, each
being similar to columns 7-13. Thus, up to
nine bodies can appear on one region description
card.

Use as many of the above type as needed to describe a region
but leave columns 1-6 blank on all coﬁtinuation cards. Start each
region on a new card.

The last card of Set 5 should contain a -1 in columns 4 and
5. This instructs the code that all regions have been described.

In the program, regions 1 and 2 have special meanings. Region
1 is the volume between the RPP and the large sphere (body 2). Its
description is, thus, 1-2. Region 2 is the volume inside the

sphere but outside the satellite bodies. Its description must

start with a +2. All rays will originate in region 2 and be fired




toward the satellite. 1If, however, the ray misses the satellite,
it will pass into region 1. Any ray which enters region 1 is
immediately terminated since it can no longer be of interest.

One might wonder, at this point, where the sun and planet
come into the problem. The answer is, that as far as the geometry
description is concerned, these two bodies do not exist. There
is no requirement that regions 1 or 2 be large enough to include

them,

Card 6 - Number of Reflection Coefficient Sets (Format Il0)
Enter in column 10 the quantity NSET, which eguals the
number of reflection coefficient sets to be used in the problem.

NSET can be any integer from 1 through 5.

Card Set 7 - Surface Properties (Format 2I6, 10F€.4)

These cards give the reflection properties of each region.
Use one card per region and a total of NRMAX cards. The input
guantities are defined as follows.
Columns Input
1-6 IR Region number
11-12 TIPROP Region type
For a transparent region enter -1
For a diffuse region enter 0
For a specular region enter 1

13-18 RCy Reflection coefficient for solar radiation.

19-24 RCy Reflection coefficient for planet radiation.




Columns Input

l25-72 Divided into eight fields of 6 columns each and
used to enter additional reflection coefficient
sets. For example, enter RC; for set #2 in
columns 25-30 and RC, for set #2 in columns 31-36,
etc. The last column number used should equal

12+2x6XNSET.

Card 8 - Imaginary Vehicle Sphere (Format E10.3)

Enter SRAD in columns 1-10.

After the vehicle geometry has keen defined, determine the
smallest splhere, centered at (0,0,0), which can enclose the entire
vehicle. SRAD is the radius of this sphere. All rays will be
fired at this sphere so the smaller it is, the more chance a ray
will have of hitting the vehicle. On the other hand, if a vehicle
region extends beyond the sphere it may not be hit at all, depending
on the vehicle orientation. Note that this sphere is imaginary
in the sense that it is not actually described as part of the

Combinatorial Geometry input.

Card 9 - Orbit Parameters (Format I10, 4E10.3)
Enter the following quantities on this card.

Column Input
1-10 IORB Orbit Type. Enter 1 for inertial orbit,

2 for gravity gradient orbit, 3 for spin

stabilized orbits.




Column Input

11-20 RP Altitude from the planet surf.ce to the perigee

point of the orkit.

21-30 RA Altitude from the planet surface to the apogee
point.
31~40 TAU Orbit period.

41~-50 PLRAD Planet radius.

Card 10 - Solar Orientation (Format 3E10.3)
Determine the X,Y,Z components of a unit vector which points

from the coordinate system origin to the sun. (i.e., enter the

direction cosines of the vehicle - sun line)
Column Input
1-10 WSy X component
11-20 wsy Y component
21-30 WS, Z component

Note that WSZ+WSZ+WsZ = 1.0

Card 11 - Planet Orientation (Format 3E10.3)
The same as card 10 except that the unit vecter points from

the vehicle to the planet center.

Column Input
1-10 WP, X component
11-20 WP Y component

y
21-30 WP, Z component




Card 12 - Orbit Orientation (Format 3E1l0.3)
Enter the three direction cosines of the line which is

normal to the orbital plane.

Column Input

1-10 WN, X component
11-20 WNy Y component
21-30 WN Z component

A

The direction of WN should be such that the vector WP x WN

points toward an orbital angle of 90 degrees, as shown below,.

———— —

P x W
A
¢§=90°
> d} — perigee
WN poiats we
out of pPage




Card 13 - Source Information (Format 2E10, 4E10.3)

Enter the following six quantities.

Column Input

10 ISGO Solar Option. Enter 1 if the solar source
is desired and 0 if it is not.

20 IPGO Planet Option. Enter 1 if planet source is
desired and 0 if it is not.

21-30 SOLINT Solar Constant (energy/area-time)

31-40 ALBEDO Albedo of planet (fraction of sunlight reflected)

41-50 STEF Stefan-Boltzmann Constant (energy/area-time-degree)

51-6C TEMP Radiating temperature of planet (absolute)

If the planet option is not desired (IPGO=0), columns 31~60 may

be left blank.

Card 14 - Debug Printout Options ({(Format 6I3)

Certain subroutines in the program contain provisions for
obtaining intermediate printouts during the calculation. These
were inserted to aid in program debugging and were left in should
any unrescvlved bugs turn up. Normaliy, these printouts would not
be desired and Card 14 should be included in the input deck but
left blank. If they are desired, however, the input numbers go
into an IDBUG array defined as follows.

Column Input
1-3 IDBUG(l) Any positive integer will cause subroutine UMBRA

to print the minimum and maximum orbital angles

where the wvehicle is shaded by the sun.




Column Input
4-6 IDBUG(2) Causes TIMER to print the range of angles covered
by a location in orbit and the flight times from
perigee to these angles. The value of IDBUG(2)
is the number of locations where this is desired.
7-9 1IDBUG(3) Causes EXPO to print certain variables. However,
these require a detailed knowledge of the coding
to interpret. EXPO is entered once per location
and the printout will appear IDBUG(3) times.
10-12 IDRUG(4) Causes STRAK and SATREF to print information des-
cribing the progress of an individual solar ray.
It is possible to follow a ray from its origin to
its termination, including any vehicle reflections.
The value of IDBUG(4) is the number of rays you

wish to follow at each location. A knowledge of

the coding would be required, however, to interpret
the printout.

13-15 IDBUG(5) Causes WMAKER to print the direction cosines of
the sun and planet at each orbital location. The
printout will occur IDBUG(5) times.

16-18 IDBUG(6) Same definition as IDBUG(4) but follows rays from

the planet.

Card 15 - Parameters for Solar Calculation (Format 4I10, 2E10.3)

These parameters describe how the solar calculation should

be run. If ISGO=0F omit card 15.




Column Input
1-10 NLOC The number of orbital locations to be treated

11-20 NRS Number of rays to be traced from the sun at each

location (discussed in Section 3.4).

30 IVRGO Vehicle reflection option. Znter 1 if rays are
to be reflected from vehicle. Enter 0 if not.

31-40 NRDIFF Number of reflected rays to be emitted per diffuse
refleccion. If IVRGO=0 or if there are no diffuse
surfaces, enter any small positive integer (i.e.,
1) but don't leave blank.

41-50 ALPH1 Initial orbital angle‘go be treated (need not be ()

51-60 DALPH Angular interval between locations (i.e., if
ALPH1=20° and DALPH=10°, the second location in
orbit will be at 30°9).

Card 16 - Vehicle Spin Parameters for Solar Calculation

(Format Il0, 2E10.3)
These parameters control vehicle rotation for spin-stabilized

orbits. TIf ISGO=0, omit card lé6.

Column Input
1-10 NSPIN Number of spin orientations (about the Z axis)
to be treated at each orbital location. If
IORB=1 or 2 {(no spin), enter a 1.
11-20 THETl Initial spin angle (measured from X axis). If
IORB=1 or 2, enter 0.0.

21-30 DTHET Angular interval between spin orientations. If

IORB=1 or 2, enter 0.0.




Note that the value of NSPIN does not affect the number of rays

At each location, NRS/

to be fired at a given orbital location.

NSPIN rays are fired a total of NSPIN times.

2E10.3)

Card 17 - Parameters for Planet Calculation (Format 4I10,

The six

This card is analogous to Card 15 for solar rays.

parameters may be entircely different for the planet calculation,

Note that NRS is called NRP by the program at this point

however.

If

and equals the number of planet emitted rays per location.

omit card 17.

IPGO=0,

pin Parameters for Planet Calculation

(Format I10, 2E10.3)

Card 18 - Vehicle S

Analogous to card 16 but different values may be used if

If IPGO=0, omit card 18.

IORB=3.

SAMPLE INPUT FORM
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3.3 Error Messages

There are numerous places in the code where a printout will
occur upon detection of an input error. The job will terminate
but the source of the error will be indicated. There is one
possible error which does not terminate a job. It occurs while
tracing a ray in subroutine Gl. In general, the cause of this
error is that a ray gets 'lost' at the boundary between two regions.
This is due to insufficient computing precision of the machine.
If this occurs, some error printout will appear and the code will
abandon this ray and go on to the next one. As long as this is a
relatively rare event, the user need not be concerned with it.
Experience has shown that it might be expected once every few
thousand rays. If, however, it occurs much more often than this,
the cause is probably an undetected input geometry error. The
printout can usually provide clues to the exact source of the
error but lacking a detailed knowledge of the coding, the best
thing to do is to carefully go over the input. The error is

likely either in a body dimension or a region description.

3.4 Selecting the Number of Rays

The accuracy of the results is detcrmined by the number of
rays fired (NRS from the sun, NRP from the planet). To estimate
a reasonable value for NRS it is first necessary to select a
desired average density of rays (rays/projected area). Since NRS

rays will be fired at the imaginary wvehicle sphere of radius SRAD,

the density, D, will be D = NRS/A7(SRAD)2 or NRS = 77 D(SRAD) 2,




The value for D is a function of the surface area of the
important vehicle regions. 1If, for example, a region of interest
is only 1 in2 in area, an average density of 1 ray/in2 is inade-
quate, since there is a good chance that no rays will hit that
region. In test problems involving the RAE satellite, however,

a D of about 1 was adequate. The area of the solar paddles was
about 100 in? so that, on average, 100 rays would strike a paddle
that was fully exposed to the sun. The number of 'hits' would
still be significant even for partial exposure. Since SRAD was

42 in. for that problem, the above equation (assuming D=1.0) would
give NRS = 5500. The actual number used in the calculation was
6000.

Before leaving this discussion, there is one procedure that
is wise to follow when running a p;:oblem° That is, to first run
a short test problem to insure that the input represents the
problem that is actually desired and that the computed results
are at least reasonable. Even though the results are inaccurate,
one can usually spot order of magnitude type errors. This trial
run might use 5-10% of the number of rays selected for the final

run.

3.5 Output Edit

The output format for the main results was described in
Section 1.6. Additional output not discussed there, as well as

all input quantities, are clearly labelled in the edit and require

no explanation.




3.6 Estimated Running Times

CPU time for a given problem depends largely on three items.

a) Source options selected,

b) Number of rays to be fired,

c) Complexity of the geometry.

Since these depend on the particular problem, no general rule can
be made for computing time.

However, one can get a fair idea from test problems run on
Goddard's 360/91 for the RAE satellite geometry. In these cal-
culations, solar rays were traced at the rate of about 4500 rays/
minute. The same rate should apply to planet emitted rays. If
vehicle reflection were included, computing speed would probably
be cut roughly in half, Using these estimates and the above ray
tracing rate it is possible to write a crude equation for the

computing time, T.
T=(ISGO+IVRGO} (NLOC) g (NRS/4500) + (IPGO+IVRGO) (NLOC) p (NRP/4500) .

where ISGO, IPGO, IVRGO are the source options desired (0 or 1)
and NLOC is the number of locations where rays will actually be
traced (i.e., for inertial orbits (NLOC)g=1l, regardless of the
number of locations where answers are desired).

Estimates can also be made by scaling the running time of
the trial problem, recommended earlier.

Remember, however, that a problem can be restarted in the

middle so little is lost if it overruns the estimated time.




4, SUBROUTINE DESCRIPTIONS

This section provides brief descriptions of each subroutine

in the code. The r ,utines are discussed in the following order.

MAIN SHADOW
GENI UMBRA
UN3 UMBRA 2
BODY ROUTINES TIMER
RPP EXPO
ARBLAD WCHEK
CROSS RANUM
DOT C.AAKER
DCOSP WMAKER
XDIST SUN
UNIT STRAK
S PLANET
RPP2 PTRAK
Gl SATREF

NORMAL




MATN

Function:

Initialize certain variables and start the calculation.
Description:

After initializing variables the MAIN routine reads the
problem title from cards, calls subroutine GENI to read and
process geometry input and calls SHADOW to read the remaining

input and begin the calculation.

GENT
Function:

Read, process, and store geometry input data.
‘Descriptions:

GENI processes all input describing the geometry of the
satellite vehicle. The routine also does some preliminary check-
ing of the input for format, duplicate numbering, etc. The RPP
input is read and processed first followed by the data for each
body in the geometry. Region descriptions are then read in from
which the entering and leaving tables described earlier are con-

structed. At the completion of GENI all geometry data are housed

in the ASTER array and the code is ready to begin ray tracing.




UN3 (KK, LK1, LK2, LK3)

Function:
Unpacks the packed data stored in the ASTER array.
Call Arguments:
KK = location of a word in the ASTER array (input).
LK1, LK2, LK3 = the three unpacked components of word
KK (output).
Description:
UN3 contains the following three entry point routines for
unpacking the ASTER array.
A, UNNWW unpacks a word originally packed under a
5-bit - 13 bit - 13 bit format.
B. UNWNW unpacks information in a 13 bit - 5 bit ~
13 bit word.
C. UNWWN unpacks information in a 13 bit - 13 bit -
5 bit word.
Note that the last three letters in the entry point name describe
the packed format, where W refers to 'wide' (13 bits) and N to

'narrow' (5 bits).

BODY ROUTINES

Function:
Computes the distance fr... the origin of a ray to entering
and leaving surfaces of a given body.

Call Arguments:

None




Description:

The code contains seven independent body routines, with each
performing a similar calculation for a different body type. Given -
that a ray is initially at point XB and traveling in a direction
WB, each routine computes the distance RIN to the first (entering)
intersection point with the body and the distance ROUT to the
second (leaving) intersection point. The calculation for a given
body may result in one of the following three possible combinations
for RIN and ROUT.

1, RIN>0, ROUT>0 XB is outside the body and the ray

intersects the body (2 intersections
found)

2, RIN:<O, ROU™>0 XB is inside the body (1 intersection

found)

3. RINz0, ROUTS0 the ray misses the body completely
The following is a list of each routine and the body type it treats.

ELL

ellipsoid

RCC - right circular cylinder

REC - right elliptic cylinder

SPH - sphere

TRC - truncated cone -
ARB - arbitrary polyhedron (also handles the box and wedge

which were converted to polyhedrons during input
@

processing)

g e
<. %ﬁ-—m.



RPP (NBO)

Function:

Performs the function of a body routine for a rectangular
parallelepiped.
Call Arguments:

NBO = body number of the rectangular parallelepiped.

ARBLAD (X, NUMN, IWC)

Function:

Processes and stores arbitrary polyvhedron (ARB) input and
converts box (BOX) or wedge (RAW) input to ARB format.
Call Arguments:

X = body input numbers

NUMN = size of the X array

IWC = informs ARBLAD which body type is being processed

(1 if ARB, 2 if RAW, 3 if BOX).
Description:

‘The original implementation of Combinatorial Geometry treated
the ARB, BOX, and RAW as separate and distinct body types with
each having its own body (or ray tracing) routine. Subsequently,
it was found that ray tracing for an ARB was faster than for the
nther two bodies. At the same time, however, body input for the
BOX and RAW was often simpler to specify. Thus, it was decided
to maintain separate input formats but, once read into the machine,
input for these two bodies would be converted to ARB format. The
BOX and RAW ray tracing routines were thereby eliminated from the

code. ARBLAD performs this body conversion and also processes

ARB input.




CROSS (ANSWER, FIRST, SECOND)

Function:

Computes the vector product of two vectors.
Call Arguments:

ANSWER = a vector giving the cross product

FIRST, SECOND = two input vectors.

Description:
ANSWER(1l) = FIRST(2)*SECOWD(3) ~ FIRST(3)*SECOND(2)
ANSWER(2) = FIRST(3)*SECOND(l) - FIRST(1l)*SECOND(3)
ANSWER(3) = FIRST(1l)*SECOND(2) ~ FIRST(2)*SECOND(1)

DOT (FIRST, SECOND)

Function:
Computes the scalar product of two vectors.
Call Arguments:
FIRST, SECOND = two input vectors.
Description:
3

DOT = 2 FIRST; *SECOND;
i=1

DCOSP (XA, XB, WA)

Function:

Computes the direction cosines of a line between two points.
Call Arguments:

WA = 3 direction cosines from point XA to point XB

XA, XB = subscripted arrays giving the (x,y,z) coordinates

of XA and XB.




Description:

WA ;

i = (XBi-XA;)/DIS, where DIS is the distance between XA

and XB.

XDIST (XA, XB)

Function:

Computes the distance between two points.
Call Arguments:

XA, XB = subscripted arrays giving the (x,y,z) coordinates
of points XA and XB.

Description:

3 P L
XDIST = | & (XA;-XBj)
i=1

UNIT (VECTOR)

Function:

Converts an arbitrary vector in space to a unit vector.
Call Arguments:

VECTOR = 3 components of any vector,
Description:

VECTOR{

VECTOR{/VECT, where

VECT = (VECTOR:VECTOR)?




S (I, N)
Function:

Retrieves the coordinate of any of the six sides of an RPP
from the ASTER array.
Call Arguments:

I = number of the RPP

N = side (1 to 6) whose coordinat:t is de-ired.
Description:

The routine uses the input values I and N to compute the
location (LL) of the desired coordinate in the ASTER array. Then

S = ASTER(LL).

RPP2 (JSURF, XP, IRP)

Functions

Determines the number of the next region a ray will encounter
when it leaves one RPP (rectangular parallelepiped) and enters
another.

This routine was needed for other implementations of the
Combinatorial Geometry technique, where more than one RPP coculd
appear in the geometry. This version of the technique permits
only one RPP to be specified so that subroutine RPP2 is never

called. It has been left in the program, however, to facilitate

possible future modifications.




Gl (sl, IRPRIM, XP)

Function:
Computes the next region in the path of a ray and the point
of intersection with that region.
Call Arguments:
IRPRIM = next region which the ray will encounter after it
leaves the region it is currently in.
XP = x,y,2 coordinates of intersection point with IRPRIM.
Sl = distance between the ray's current location and the
point XP (not used by the code).
Description:
The logic employed by Gl is described in the section that

discusses the Combinatorial Geometry technique (section 2 ).

NORMAL (XI, WN)

Function:

Computes the components of the normal to the surface of a
given body.
Call Arguments:

XI = point on the surface of a body at which the normal is
desired.

XN = direction cosines of the outward directed normal at

point XI.




Description:

Given a body number NBO, a surface number LSURF (both in
COMMON) , and a point on the surface XI, subroutine NORMAL computes
the direction cosines of a vector normal to the required surface
at that point. The routine is made up of independent sections
each of which treats a different body type. It should be noted
that the nc mals to the six sides of each arbitrary polyhedron
(including the box and wedge) are precomputed and stored in ASTER
during input processing and need only be retrieved by this rou-
tin~. The normal to a sphere is merely the direction cosines of
the line joining its center and the point XI. The remaining
bodies employ straightforward mathematics for determining the
orientation of a given surface with respect to a set of coordinate
axes. Since this routine is only called when reflecting a ray off
the surface of a body, it is important that the computed normal
be directed outward from the surface. This is assured by setting
the signs of WN such that the dot product WN-WB is negative, where

WB is the direction of the incident ray.

SHADOW
Function:
Read and process non~-geometry input and directs the overall
flow of the calculation.
Description:

SHADOW is the input processc) (= all problem dependent input

(i.e., that which is independent of the actual satellite geometry).




It reads, and in some cases checks for correctness, data on the
reflection properties of region surfaces, input describing the
orbit, source intensities, and the various calculation options
available to the user. Theée options determine which sources are

to be treated in the problem,

UMBRA

Function:

Computes the range of orbital angles in which the satellite
is in the shadow of the planet.
Description:

This routine computes two angles, SHAD1 and SHADZ2, which
define the lower and upper limits of the planet's shadow. The
angles are determined to the nearest degree and measured from
the perigee line. UMBRA is the control routine for this calcula-
tion, while subroutine UMBRA2 performs the actual computations

for a given angle.

UMBRA2 (ANG, ISEE)

Function:

Determines whether a given orbital angle is in the shadow
of the planet.
Call Arguments:

ANG = orbital angle in degrees (input).

ISEE = output flag indicating whether ANG is in shade.

If ISEE = 0, ANG is shaded. If ISEE = 1, ANG is exposed to sun-

light.

L —



Description:
UMBRAZ2 has the task of computing whether the given orbital
angle (ANG) lies within the planet's shadow. This is done by

computing the two angles bp and ¢g as defined by the following

sketch,
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the vehicle is in sunlight and ISEE = 1.




TIMER (ALPHA, DT)

Function:

Computes the vehicle flight time between two orbital angles.
Call Arguments:

ALPHA = orbital location of the vehicle measured in degrees
from perigee.

DT = time spent at location ALPHA.
Description:

This routine computes the time spent in the angular interval
between -8%/2) and (Of+A°(/2) , where & = ALPHA and A® is the angle
between locations in orbit. The equations for computing DT are

derived in Appendix 2.

EXPO (ALPHA, FEX)

Function:

Ccmputes the fraction of time that che vehicle spends in
sunlight at a given orbital location.
Call Arguments:

ALPHA = orbital location of the vehicle measured in degrees
" from perigee.

FEX = fraction of time exposed to sunlight.
Description:

This routine calculates the fraction of time exposed to sun-
light by corparing the angular interval for a given location with
the angles SHAD1 and SHADZ2 (see Subroutine UMBRA). FEX is computed

from the degree of overlap of these two intervals., It should be



noted that EXPO is not an exact calculation since what is actually
computed is the fraction of the angular interval in sunlight rather
than the fraction of time. This is, however, an excellent approx-
imation for relatively small angular intervals or low eccentricity
orbits, since in either case the angular velocity is practically
constant within the interval. 1In problems where a high degree of
accuracy is desired, small angular intervals will be employed and

any errors introduced by this approximation will be insignificant.

WCHEK (W, ICALL)

Function:
Checks and adjusts direction cosines,
Call Arguments:

W

any set of 3 direction cosine-.

ICALL = a flag indicating which routine has called WCHEK.
Description:

This routine tests that no gross errors have been made in

an input or computed direction cosine set. It first tests whether
:% W% = 1.0£0.02. If this test is passed the W values are
i=1

assumed to be correctly given and the divergence from 1.0 (less
than .02) is due to round off errors. W is then normalized so
that the sum of the squares is precisely 1.0. If the above test

fails, an error has occurred and the routine will print an error

message containing W and ICALL and terminate the job with a STOP2.




RANUM (RN}

Function:

Generates random numbers from 0 to 1.
Call Arguments:

RN = random number.
Description:

This routine supplies random floating point numbers in the
range 0.0 to 1.0. It is essentially the IBM random number gener-
ator library subroutine which makes use of the machine overflow

characteristics.

CMAKER (W,C)

Function:

Computes certain constants used by other routines.
Call Arguments:

W = a set of 3 direction cosines supplied by the calling
routine.

C = a set of 8 constants computed from W.
Descriptions

The constants generated hy this routine are used by several
other routines when a rotation of coordinate systems is required.

The equations for these constants are derived in Appendix I for

a generalized coordinate system rotation.




WMAKER (ALPHA, JCALL)

Function:

Computes the direction cosines of the vehicle-sun line or
vehicle-planet line.
Call Arguments:

ALPHA = given orbital angle

JCALL = flag informing WMAKER as to which direction cosines
are to be computed.
Description:

This routine computes the variables WSA and/or WPA at a given
orbital angle, where

WSA = direction cosines from vehicle to solar plane,

WPA = direction cosines from vehicle to planet center.
The value of JCALL supplied by the calling routine determines

both the variable to be computed and the orbit type as follows.

JCALL Compute Orbit Calling Routine
1 WSA gravity gradient SUN

2 WSA ,WPA inertial PLANET

3 WSA,WPA gravity gradient PLANET

4 WSA ,WPA spin stabilized PLANET

The equations for WSA and WPA are derived in Appendix 3 .

SUN

Function:

Controls the calculation for solar emission.




Description:

Subroutine SUN controls the solar emission calculation and
is entered just once during a p:-oblem. It also converts the ray
tracing results to the proper form and prints the answers. The
logic flow depends primarily on the orbit type (IORB) specified
for the problem. Jiven that NRS rays are to be traced from the

sun at each orbital location, the calculation proceeds as follows.

IORB
1 (inertial) Trace NRS rays at one location and apply the
results to all locations.,
2 (gravity Trace NRS rays at each orbital location.
gradiepi;)
3 (spin Trace NRS rays at one location but divide them
stabilized)

equally over NSPIN spin orientations. Apply
results to all locations.
Note that for IORB = 1 or 3 rays are traced at only one location
since the sun-vehicle orientation is constant for these orbits.
The following is a simplified flowchart of SUN with the following

variable definitions.

Variable Definition Maximum Value
ISP™™ spin orientation number NSPIN¥*
ILOC orbital location number NLOC
ISET reflection coefficient set
number NSET
IR vehicle region number NRMAX

*NSPIN = 1 for IORB = 1 or 2.
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STRAK ( ISPIN)

Function:

Performs the ray tracing from the sun.
Call Arguments:

ISPIN = spin orientation number.
Description:

STRAK traces rays from the sun and computes the incident and
absorbed energy contributions for each ray. The routine is called
by subroutine SUN once for each location and a total of NRS rays
are traced. The starting position of each ray is picked at random
on the solar plane (a plane perpendicular to vehicle-sun line).
The equations used for this purpose are derived in Appendix 4,

The following flowchart illustrates the calculational procedure
in STRAK, where the variable definitions are:
So = solar constant,
SRAD = radius of imaginary sphere around vehicle,

NSPIN number of spin orientations to be treated,

li

NR = ray number,

IRP = next region in the ray's path.
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PLANET
Function:

Controls the calculation for planet emission and reflection.
Description:

PLANET is the control and output routine for the planet
emission and reflection calculation and is entered once during a
problem. Its function is, therefore, analogous to that of sub-
routine SUN for solar emission and employs similar logic. The

computation is again controlled by the orbit type (IORB) as follows.

IORB
i1or 2 Trace NRP rays at each location.
3 Trace NRP rays at each location but divide them

equally among NSPIN spin orientations.

2

]

Note that rays are traced at every leccation even for IORB

(gravity gradient) since planet reflection is location dependent

for all orbit types.,

PTRAK (ALPHA, ISPIN)

Function:

Performs the ray tracing from the planet,
Call Arguments:

ALPHA = orbital angle at current location.

ISPIN

spin orientation number.




Description:

PTRAK is called once by subroutine PLANET for each orbital
location to perform the ray tracing from the planet. The overall
logic is similar to that found in subroutine STRAK but the compu-
tations are somewhat more complex due mainly to planet emitted
raxvs not having a constant direction. The equations used in this
routine are derived in Appendix 5. The flowchart which follows
illustrates the procedure used in STRAK where

NR = ray number,

NRP tetal number of rays to be traced,
IRP = next region in the path of a ray.
Some of the boxes in the flowchart deserve some additional comments

and these have been identified by letters.

Box A: The area of the planet surface visible to the vehicle
is determined and the origin of a ray is picked at

random within this area.

Box B: The direction of a ray is computed by picking a random
point to shoot at within the imaginary vehirle sphere.
That point and the origin point of the ray deteimine

the ray's direction cosines.

Nox C: Both the planet emission and planet reflection energies
are supplied to SATREF. The ray to be reflected from

the vehicle is then treated as a single ray but having

the above two enexrgy components.
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SATREF (IRP, XP, E, EREF)

Function:

Performs ray tracing for vehirle reflected rays.
Call Arguments:

IRP = reflecting region number.

XPp = reflection point on IRP,

il

E, EREF energy components of the incoming ray. If called
from STRAK, E = 0 and EREF = incident solar energy. If called
from PTRAK, E = energy from direct planet emission and EREF =
en_rgy from planet reflection.

Description:

SATREF traces a primary ray through a series of vehicle
reflections. It is called by either STRAK (solar rays) or PTRAK
(planet rays) each time a ray is to be reflected. The routine is
divided into two independent sections, the first of which treats
specular reflections while the second handles diffuse reflection.
The property of the primary reflecting surface (IRP) determines

which section is entered.

Specular Reflection - The ray is reflected off the primary surface

such that the angles of incidence and reflection are equal. Mul-
tiple reflections are permitted by continuing to track and reflect
the ray until one of the following conditions occurs.,

a) The fay 'escapes' from the vehicle.

b} The reflected ray strikes a diffusing surface.

c) The ray has undergone 5 specular reflections..




During the tracking, a list of successive regions hit by the ray
is built up. After the ray is terminated, the routine steps
through this list, computing incident, absorbed, and reflected
energies for each region and reflection coefficient set.

Diffuse Reflection - If the primary reflector (IRP) is a diffusing

surface, the routine traces NRDIFF rays from the reflection point,
where NRDIFF is given as input. During input processing (sub-
routine SHADOW) a set of NRDIFF angula: bhins was established
relative to the surface normal and one ray is emitted in each of
these bins. In addition, the fraction of refiected energy as a
function of bin angle was computed by SHADOW. The energy of the
reflected ray is then simply the product of (incident energy) X
(fraction emitted in bin) X (reflection coefficient). This energy
is actually the sum of the contributions from E and EREF.

The mathematical formulation of suoroutine SATREF is given
in Aprendix 6 . A flowchart is shown below with the following

variable definitions.

IRP = next region in ray's path (initial value is the
primary reflecting region).
NREF = a counter on the number of specular reflections.

IRREF (NREF) = region hit by the ray at the NREFth reflection.

IDIFF = diffuse ray number.

NRDIFF = total diffuse rays to be emitted.
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Appendix 1 - Rotation of Coordinates

The problem is to define a point in space (x,y,Z) as &
function of a given vector W. The resulting equations for (x,y,2)
are required by several routines in the program. For example,
STRAK uses the results to pick a point on the solar firing plane
relative to the direction cosines of the line joining the vehicle
and sun.

The required equations can be derived by rotating the origi-
nal X,Y,Z coordinate system into a primed system X',Y',Z' such
that the %' axis points along the vector W. This is illustrated

below in two dimentions.

The coordinates of the point (x,y,z) in the unprimed can be
obtained from the following set of relationships for a generalized
rotation of coordinates.

x = x'cos ;+y'cosd 2+z'cos°(3

y = x'cos ﬁl+y'cos £32+z'cosﬂ3

z = x'cos¥ 1+y'cos ¥ +z'cos ¥ 3

where (x',y',2') are the coordinates of the point in the primed

system and ¢ “ ,¥ are the angles between the primed and unprimed




axes, These angles are defired as follows.

Unprimed Axes

X Y z
X' X, B v,
v *a2 B2 Y,
z' | A3 B3 ¥;

The problem, then, is to derive expressions forot,ﬁ A
The primed axes, norinalized to unit vectors, can be written

as
g xowezl L [2'x] .

Ji-we f-wg

where Wy is the X component of W.
Since Z' has components Wx, Wy, W,,the vector product [h'i]

can be evaluated as

L} A .
[z'x] = |Wx Wy Wz| = 0+w-i}-w,;k
I O ©

Now, letting C; = J l-sz , the cosines of CK,f3,'U are given by

the following expressions,
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The original eguations for (x,y,z) can now be written in

terms of W.

n

X = x‘ |'Nxz + }'Wx Cy ¢t )lC‘Z

= X G+ y' Cat 3'Cs

4= X (- ZE) Y

W ‘ , \ . .
ye < oy () e = Ky G vy G

The 8 constants C; are computed by subroutine CMAKER for any
given set Wy, Wy, Wy.

The values of x',y',2z' will depend on the particular appli-
cation but, in general, are given by the standard equations for
a point in spherical coordinates.

x' =8 sin® cos §

y' = S sin® sin¢

z' = R

where the variables are defined by the following figure

: /ﬁr(x:":f)




The

Appendix 2 - Flight Time in Orbit

problem is to compute the vehicle flight time between

perigee and any orbital angle X , The variables used in the

derivation are defined as follows.

t =

=
> D o w
il i ! | L

4]
H

The

time at angle o

time at of = o

period of orbit

eccentricity of orbit

altitude at perigee (measured from center of planet)
altitude at apogee (measured from center of planet)
altitude at angle & (measured from center of planet)
semi-major axis = {La+Lp)/2

an angle referred to as the 'eccentric anomaly' and

defined by the relationship
cos E = (a~-A)/ea. (1)

following figure illustrates the geometry.

\
ce of radius &
\ L




Using Kepler's equation for the orbital flight time, we have

(t-to) = B (E-e sin E). (2)
27

All that is required is to convert the above equation to a function
of £ .
We, first, define the eccentricity as
e = (La=Lp)/(Lat+Lp) .
Then, substituting for a and E into egquation (1) we have
cos E = (La+Ly,-2A)/(La-Lp) (3)

But, from the polar equation of an ellipse

A= a(te€) 2LaLe
| - e cose (Lotblp)+ (La-Lp) Cosx

(4)

Substituting for A in equation (3) gives

_ ' . - 4 Ld. LP
CosE = (—_Lq-Lp)'[(LM Le) (La+Lp)-+(La-L|>)c°so(]

Then, since
E = cos™? (cos E) and
sin E = (l“coszE)qr

Kepler's equation can be put in terms of & and the three input

constants P, Ly and Lp.




In subroutine TIMER, the quantity dt is computed, where dt
is the flight time from % ; to X ,. This is done simply by

evaluating Kepler's equation at the two angles and taking the

difference.




Appendix 3 - Deriving the Satellite-Sun-Planet Orientations
for Different Orbits

A. Find the Direction Cosines of the Satellite-Planet Line
for an Inertial Orbit

Consider the following figure, where the satellite is at

point X with an orbital angle o .

The main problem is to derive the coordinates at X as a
function of & , given

a) the direction cosines of the major axis = w

b) altitude at perigee (from planet center) = Lp

c) altitude at apogee (from planet center) = L,

d) direction cosines of normal to orbital plane = n
The point X in vector notation is given by

X =P+ &B + (-w) (c+d), (1)
where € = w x n.
From the above figure, it is obvious that

a = (La+Lp)/2

B =

D = A cosok

A sindo




Also the point P at the center of the ellipse is equal to
wa = %(La"'Lp) .

Substituting for P, C, B, D in equation (1) gives

- = —fjrta_L La

X = € (A sin«) -w[(z '"iB "’A“’S"‘)"( z +‘li—r)‘, .
After combining terms

X =€ (A sin«) +§7'(Lp-A cos ). (2)
The definition of € gives

_ ijk

€ =W Xn=|wgWyWg| = (wynz-wzny)1+(wznx~wxnz)3+(wxny—wynx)k

nxnynz

The components of equation (2) are now obtained by substituting

the i, j, k components of €. Thus,

X = (wyny—wzny) (A sine )+wy (L,-A cos )
Y = (Wpng-wyen,) (A sine }+wy (Ly=A cos &)
z = (wxny-wynx) (A sine ) +w, (Lp-A cosX) . (3)

Having defined the point X, it is now a simple matter to
derive the direction cosines WPA of the line from point X to
point F. F¥irst, define the point F as

F = X +(WPA)A .

Then
WPR = (F-X) /A.

But F can also be written as

o

= LPW.

M|




Thus,

WPA = (Lpw-x)/A.
Finally, substituting for X from eguation (3) we get for the
three components of WPA

WPAy = Wy COS &K + (Wzhy-Wynz) sin &

WPAy = Wy COSX + (WyNg-w.ly) sSin

WPA; = wy; CcOSX + (wynx-wxny) sinX .

X
H
%

i
i




B. Find the Direction Cosines of the Satellite-Sun Line for
a Gravity Gradieat Orkit

Consider the following figure which defines the variables

in the derivation.

tcordinate ax1s
ot angje o

For clarity, only the 2 and Z' axes are shown in the above figure
and the details of the derivation will be given for the Z «ompo-
nents of the direction cosines.

The problem is to determine the direction cosines of the
satellite-sun line at location & with respect to the 2' axis.
Let this quantity bg S,.

The following quantities are given:

a) direction cosines of the major axis = w

b) direction cosines of sun at perigee (A =0) = §

c) direction cosines of earth at & =W

|
=

d) direction cosines of normal to orbital plane




In general, the angle ¢ between two vectors V and V' is

given by

cos ¢ = va;(+VyV§,+Vzvé where
V¢ = direction cosines of V with respect to the x axis, etc.

Then, the cosine of the angle between S and the 2' axis is

Sy = SxZx+SyZy +SzZz where (1)

T s Z&, Z, = direction cosines of 2' with respect to the original
X, Y, 2 axes,
Since Sy, Sy, Sz are given, the problem is to find 2z, Zy, 2g.
In order to solve for the three components of the Z' axis, the
following three equations are required.

1. We first make -is= of the fact that for a gravity

gradient orbit the relationship between w and 2

is the same as between W and Z'. Thus, the

cosine of the angle between W and %' = w,. Then

Wy = Wy +WyZi+W;, 28 (2)
2. Also note that the orientation of the normal (N)

is invariant. Thus, N, = cosine of the angle
between N and Z'.

Ny = NyZg+Ny2y+Ny2} (3)

3. Finally, let M, be the cosine of the angle

between w and Z'. Then

Mg = WylyxtwyZytwyZyz (4)




To find Mg let

cos B = cosine of the angle between W and 2' = Wy,
cos ¥ = cosine of the angle between N and 2' = Ny
cos X = cosine of the angle between w and W.
Using solid trigenometry we get

M, = cosX cosp + sinX sinf cos (4+90)
where cos¢ = cos ¥ /sinf and cos ($+90) = - sind .
Thus

2
cosl ¢ = Nz
fowd

sing= (I- c.osz¢)'/2= ( - WF - N{')'/z

|- wi

Snpsinp= (1-wy- N;) .

Substitution in the above equation for My gives

My = w, coseX - sin of (1-w§-N§)

Solving equations (2), (3), and (4) simultaneously gives the

following set of equations for Z;, Z&, Z;.

Z; = AlMZ+BlNZ+Cle o Sy

(5)

Alwx+Ble+C1Wk




. - (6)
y Asz+BzNy+C2WY
] A3Mg+B3Ng+C3wy
A3WZ+B3NZ+C3WZ

L)

Z
equation (1). The constants in these equations are defined as

The desired qguantity S, is obtained by substitution into

follows:

Al = (WyNy,-W,Ny)

Bl (WYWZ-WzWY)

o]
[\ &)
]

(WyNg=WyN,)

w
[ 8]
|

(Wpwy-W,wg)

ko
w
|

(WyNy, =Wy, Ny, )

=
w
]

C 3 = (Wny -WXNY )

The x, y components of s' are obtained from

! a i
= SyXy+SyX +SgXy

1 | /
= SyYy+Sy¥y+Sz¥z.
‘The equations analogous to (5), (6), (7) for X' and ¥' are

; obtained from the same sort of analysis as above for Z'. The

constants A, B, C are identical and the general form of the

equations are




X' _ AiMx+BiNx+ciwx
i Ajwi;+B{N{+C;W;
Y, _ AiMy+BiNy+Ciw2
i- W B Ne+C: We
Ajwi+B{N;+CiWy

where the subscripts i = 1, 2, 3 refer to the x, y, z components,

respectively,

:
¢
i
i




C. Find Direction Cosines of Satellite-Sun Line for a Spin
Stabilized Orbit

A spin stabilized orbit is merely an inertial orbit with the
satellite rotating about the % axis. Thus, after rotating through
an angle & , the original x, y, z coordinate axes will have rotated

, . ‘ ‘ ! . .
into a new set of coordinates x , vy , 2 . This is shown below.

Given that the original direction cosines of the sun (at©=0) are

Sxs Sys Sz (the unit vector §5), the problem is to find the direc-

tion cosines with respect to x’, y', z! . Let these be called Sé,

Sé, S; and let
X; = X component of the x' axis
Xé = Y component of the x' axis
x; = 2 component of the X' axis

with similar definitions for the Y? and Z! axes.

Then

= ! 4 /
Sx = cosine of angle between § and X' axis = SyXytSyXy+SzXz

7 /

S; = cosine of angle between § and Y' axis = SxY;+syYy+SzYz
S; = cosine of angle between § and 2" axis = SxZ§+SyZ§+SzZé




From the above figure it is obvious that

Xy = cos@ Y, =-sinb Zy = 0
Xy = sin® Y; = cosB Zy = 0
Xz = 0 Y, = 0 z, = 1
Thus
S;{ = 8§, cos® + Sy sin®
S§ = =Sy sin@ + Sy cosb
S, = S




D. Find Direction Cosines of Satellite-Planet Line for Spin
Stabilized Orbit

I.et the direction cosines of the planet at a rotation angle 8
’ . . .
be WPA,, WPA;, WPA;. The same analysis as given in part C results

in the following set of equations.

/
WPA,

WPAy cos© + WPAy sin®

wpA! = -WPA, 8in® + WPA, COs®

b 4
/
WPA, = WPA,
where WPAx'y g are the direction ccsines of the planet at é =90,
r

These are derived in part A as a function of orbital angle X .




ggggndix 4 - Originating a Ray From the Sun

. e —" i —

A. Picking a Point of Origin

The Solar source is considered to be a set of plane
parallel rays originating from a plane which is perpendicular
to the satellite-sun line. Let the direction cosines of this
line (WSA) be WSAx, WSAy, WSAz. The solar plane will be estab-
lished at a distance SRAD from the origin of coordinates, where
SRAD is the radius of the imaginary sphere enclosing the satel-
lite. We first rotate the (X,Y,2) coordinate system into a
new system (X', Y', %' ) such that the 7! axis points along the

vector WSA. This is shown in the following figure.

ey

The problem is to find the coordinates of the point P
relative to the original (X,Y,2Z) system. To do this we apply
the equations for a coordinate rotation derived in Appendix 1.
Thus, |

x =x'c, +12'c,

- ' '
Y =x'c, +v'c, +132'c

_ oyl ', / ~
Z=XC +YC, + 2 Cg




Where the C's fve functions of WPAy, WPAy, WPAy and are de-

fined in Appendix 1. The parameters X', Y', z' are defined
P

as follows

X' = 8 sin@ cos¢
Y = S sin® sin¢
z' = SRAD

We riow pick a random point per unit area on the solar
plane as follows.
l. Pick a value of R between O and SRAD
R,=«ﬁ§ SRAD, where §, is a random number between 0 and 1.
But, from the above figqure R = S sin@® . Thus,
(s sin® ) = {§, sraD |
2. Pick an azimuthal angle ¢ at random

¢>==2w§2 , where §, is a second random number,.

Thus

X'= (I3, SRAD) cos (2T §,)
v'= (I5 srap) sin(2m§s)

2'= SRAD .

Substitution of these value into the equations for X,Y,2

then gives the required coordinates of the point P,




B. Finding the Direction of the Ray

The ray is simply fired back toward the satellite with

direction cosines - WSAx, -WSAy, -WSA; -

C. Computing the Energy of the Ray

The energy of each ray is given by

So SRADZ
N

m

54 Solar constant (energy/area)
N = number of rays to be fired from the sun.
The numerator, of course, is the total enerygy fired from

the solar plane within the imaginary satellite sphere. Divid-

ing by N merely divides this energy equally among all rays.




Appendix 5 - Originating a Ray From the Planet

A, Picking the Point of Origin and Direction for a Ray

The geometry of the problem is shown in the following

figure.
PLANET
imaginary Sateiflite
'/Sphere of radivs r
/
t-1‘.t‘-ur\32r\‘i’ point

X = point to be picked on the planet

H = altitude above planet surface at orbit angle &

R = radius of planet

S = distance from satellite to X

The point X will be computed such that the angle ¥ < Ymax .

The altitude H can be defined immediately from equation

(4) of Appendix 2. Thus,

= 2 La_ LP . - y
H (La+Lp) +(La-Lp)osX R Q)

a’ Lp = altitudes (from the planet center) at apogee and

perigee, respectively.




é.

i
4
i
¢
ki

The value of ¥ max is also easily obtained, siince

€05 Bmay = R/(R+H) (2)

and

2 &
cos ]{m“:- Cos(40~¢m,) 2 SINP e, = ("’C"S d)max)

Thus 3/ (3)
€05 ¥max = (H2+ 2RH) 2/(R+H)

We next compute & from the law of sines.

R/sinY = (R-fH)/sme

'/2
'/ - s
A = (' A )2' (R (RfH) ‘" Y

. |/
¢os6 = _{\i [szCRJrH)z(l— c,os"xv)] * (4)

We are now in a position to define the initial conditions
for a ray. First rotate the coordinate system into a primed
system such that the Z' axis points toward the planet center.
Then, using the results of Appendix l,lthe point X on the
planet is defined as

X = X'Cy + 2'Cy

Y = X'Cy + Y'Cyqg + 2’75 (5)

Z =X'Cg + Y'Cy + Z'Cg
where the C's are functions of the direction cosines of the
Satellite—planet line. The X', Y¥Y', 2' values aré defined as

X' =8 sin¥ cos P

Y' =8 sin¥ sinf

Z' = S cos ¥

where P is the azimuthal angle around the Z' axis.
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It is nuw necessary to determine S, ¥ and F .

The angle F is chosen at random such that
@:::zn<§

where S is a random number from 0 to 1.

Using the law of cosines

%= R%+ (R+n) - 2R(R+H)cosd .

Rearranging terms gives

S= [H + 2R(R+¥H)(\- cosda)] ©)

From the law of sines

sinY = %smcb (7)
Thus, once 4) is determined, S can be computed from equation (6)
and ¥ is obtained from equation (7).

The angle & is chosen such that cos¢! is random between

cos ¢ max (equation (2)) and 1. Thus,

cosh= COSPmyx + f (- C°'$¢max)
where § is a new random number.

The point on the planet (X,Y,Z) can then be computed and the

direction cosines along the line S are given by

WS1 = X/s
WSy, = Y/S
WS3 = 2/8

In theory, the ray could now be fired from (X,¥,Z) in the
direction -WS, There are two things wrong with.this, however.
Due to the finite precision capabilities of the computer,

it is unwise to fire a ray at a relatively small object (of radius r)




. from a very large distance (S). The origin of the ray must,
therefore, be moved closer to the satellite. To accomplish this,
a disc is established perpendicular to S, a distance r from the
satellite center. Secondly, the ray should not be fired from the
center of this disc since it would always be aimed at the center
of the satellite. 1Instead, the starting position of the ray on
the disc should be picked randomly with area. This is done by
rotating the coordinate system into a double primed system with
Z" axis directed along S. A random starting point on the disc
is then picked in the new system as follows.

X'z rJg, cos (27s.)

Y= r{f: Sin (27s,)

2'=r
The starting point in the unprimed system (xo,Yo,Zo) is then

computed from equations similar to equation (5) (i.e., X,=X"C1+4Z"Cz,etc.)

The C's are a new set of constants computed from WS.




B. Computing the Energy of Ray Emitted by the Planet

Referring to the figure below,we first compute the energy
emitted by an element of area on the planet dA at an angle &

in the interval dé.

do

dA ”’ » hormal to dA
The energqy emitted in +he Shaded ving IS

AIQ = Ba dA Cose

Alg = energy/solid angle in © direction = GLEGAIL
Be = energy/area in O direction.
From Lambert's Law
ATg = aTn 050  where
ATn = energy/solid angle in normal direction (e=o°).
Thus,
Be= 2Tn/4A = constant.

The energy is therefore

AXn :
dEg = aTodfL = BgdAcosed) = (-aT)dAcOsed.n_ .

But the solid angle subtended by the shaded ring is

,ﬁ dn= 2w sin6dé
- Thus, AT
dEg = d;)o\A:n'rwse sIn6 46
The total energy, Esor is thén -
. Eror aIn v aly N
Eior = odEe = 2% ( H—A_)AA os® SinOde = 2T (d'A “‘A'z
o

ETOT= ™aln .




Therefore, &1lp is equal to E""”'/'rl'

Lambert's Law now becomes

aTg = Eror (056
T

or

AEQ: E%“cose 40 3 Wwhere dLL s now +he

solid angle subtended by the imaginary satellite sphere of
2,2
radius . Since this is equal to TF /5 , the energy incident

on the satellite sphere is 2

‘
aEe = Eqor 058 ("_5') -
Now let Eqor = @A where

Q
A

energy radiated/surface area = 0"T4'

area of planet surface visible to the satellite
Q" = Stefan - Boltzmann constant

The total energy emitted at the satellite is then

AEp = (d'T‘)Ac.ose(r/s)z (8)

The energy of each ray is merely oty divided by the number of
rays to be fired from the planet. The value of cos © is computed
from equation (4) derived earlier, so that only A is still to be
computed. Referring to the figure at the beginning of this
appendix, we see that the visible area can be written in terms

of R and¢*. Thus,

dA=z 2TR*sinddd
A= AA = QﬂRzgoSCfl:!b = 2T\'-Rz(\"(-°5¢’mau).

mox max

But from equation (2), cos ®max = R/ (R+H) so that

A= 2TI'R2H/(R+.|-\) )




C. Determine if a Point on the Planet Can Reflect Sunlight

Once a ray has been fired from the planet, it is necessary
to determine if the point where the ray originated from on the
planet can reflect sunlight to the satellite. The variables
for this calculation are defined by the following figure.

satellite

N=normal to planet at x,y,z

ont

S=direction of satellite-sun line
W=direction of satellite~planet line

N,S,W are unit vectors whose
components are direction cosines

»
(Xe Ye,Ze)

The angle @, between N and S is given by

CoSBsy= NSy + NySy + NzSz  where

R R R

and

R RRT R
REn SR

Ko = (R+H)Wy Yo = (R+H)Wy Z¢ = (R+H)W,

Now, by inspection one can see that a point on the planet can

\.i !
5
'1

&

5
R
: R v N

B

I

s
£
%;,.
I
_;T
LA

A

A

o

only reflect sunlight to the satellite if cos Osn >0 .
This test is made in the code and if cos Gsy is positive, the

energy of the reflected ray is computed.




D. Computing the Energy of a Planet-Reflected Ray

The energy of planet reflected rays is analogous to
equation (8) for planet radiation energy except for the follow-
ing changes.

(1) A new source term is needed. This is equal to S¢Xp
where So is the solar constant and Xp is the reflection
coefficient (albedo) of the planet.

(2) A CoSEkN factor must be inserted to account for the

projected visible area on the planet surface.

Thus, the reflected energy Eyof is

Eref = —lh-f (Sodr)A c0sO cos S, (/S)

Where N is the total number of rays emitted from the planet and

A is the total area of the planet visible to the satellite.

We can show that A¢er /Nyoy is the correct factor to use, even
for planet reflection, in the following way. The correct factor
should actually be

reflecting area = ARef
number of reflected rays Npef

But AVe'f - ATOT ( NVC'F

Thus,

At - per () () = Awer
Nﬂf Nror / \ Nyef

Nter




Appendix 6 -~ Energy and Direction of Reflected

Rays From the Satellite

A. Specular Reflection

The problem is to derive expressions for the direction
cosines of a ray reflected from the surface of the satellite.

The geometry is defined by the following figures.
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= direction of incident ray

direction of reflected ray

reflection point on satellite surface

3 ™ 3 8

]

direction of normal to surface at point P

@ = angle of incidence

<
[

angle of reflection

Pi angle between the x' axis and the projection of the
incident ray on the surface

angle between the x! axis and the projection of the

T
1
il

reflected ray on the surface
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The coordinate axes have been rotated into a primed system
(x',y',2') such that the z' axis points along the normal WN. In
addition, the origin of coordinates has been translated to the
reflection point P. The equaticns of rotation, derived in
Appendix 1, are then

(X=-Py) = X'C1+2'Cy
(Y-Py) = X'C3+Y'C,+2'Cg
(2-P;) = X'Cg+¥'Cy+Z'Cy (1)

where (X,Y,2,) are the coordinates of any point on the reflected
ray. The c¢'s, also defined in Appendix 1, are functions of the
direction cosines of the normal (WN,, WNy, WN;). If (X,Y,2) is
assumed to be a unit distance from P, the equations for (X',Y',Z')
become

X' = sin § cosfr

Y' = sind sin fr

z2' = cos¢v (2)
Thus, if X',¥',Z' are known, they can be substituted into equation
set (1) to compute (X-Py), etc. But, since (X,Y,Z) is a unit
distance from P, the left sides of equations (1) are merely the
direction cousines of the reflected ray. Thus,
WRy = (X-Py) WR, = (Y-Py) WR, = (2-P,).
The problem then is to derive expressions for 4: and Pr . Subject

to the constraints that the angle of incidence equals the angle

of reflection and that WB, WN, and WR all lie in a plane.



To compute ¢> . we first define the cosine of the angle
between WB and WN, Since the incident ray points away from the
normal, this angle is actually (180-8 ). Thus

cos (180-8) = -cos@® = WB-WN
and, sinced =6,
cos @ = -WB-WN = - (WB,WN,+WB, WN, +WB,WN,,)
sind = (l-cos?¢ )

To define ﬁr , we establish a point on the incident ray a unit
distance from P. Then a set of equations for the incident ray
analogous to (1) and (2) can be established, where (X,Y,2) lie
on the incident ray and © and B; replace ¢ and Pr . Using the

first equation of set (1)
(X-P,) = -WBy = C)(sin® cosf; ) + Cy cos®

But, since WB, WN, WR lie in the same plane, ﬁy— = 180+ @i .
Thus, cos Fg = =COS Fr . Substituting for cos ﬁ; in the above
equation, setting © = ¢ and solving for cos (3'- gives

wWBx t C_Iz_ cosd
C| Slnd) *

CO&@.— =

Using the second equation of set (1) and applying a similar

analysis gives
WBy - C35ind osBr + Cs cosd
Cq. sin¢g

SinfBr=

91

o ek g e .
B IR AT R




Thus, having solved for cos ¢ ' sind: , COs ﬁ',. , Sin @i. , the
direction cosines of the reflected ray can be computed from
equation set (1).

The energy of the reflected ray is simply the product of the

incident energy and the raflection coefficient of the surface.




B. Diffuse Reflection

The direction, WR, of a diffuse ray also involves defining
the angles ¢ and ﬁr . In this case, however, Pr is chosen at
random. Thus, ?.- = 2T§ , where j is a random number between 0
and 1. The reflection angle 4) is chosen from a predetermined set
of angular 'bins'. Once ¢ and Pr are defined, the components of
WR are computed in the same manner as for specular reflection.

In the program, ¢> is computed in the following way. A set
of angular bins of equal width are established,with the number
of bins equal to the number of rays to be emitted per diffuse
reflection (an input quantity). These bins extend from 0 to 90°
with respect to the surface normal, One ray is emitted in each
bin with the angle ¢ within the bin being chosen at random. Thus,
if n rays are to be emitted, the width of each bin is T /2n. The

angle 4);_ for the ith ray is then

d);:g'rﬁ(i-")*'g%g

where § is a random number.

Although the number of rays are uniformlv distributed with
angle, the energy of each ray is computed so as to give the correct
energy distribution. The energy equation is derived as follows.

Let dEy be the energy reflected at an angle ¢ . Then

dEg¢ = (sﬁe_n_;‘;e) (50“4 angle) = ATgpdlL.




Using Lambert's Law this becomes

dEy = (AI, cosd )dN where sIn is the energy per unit
solid angle along ﬁhe normal.
In Appendix 5, Part B, it was shown that & I, = ETOT/“-
where EroT is the total reflected energy.

Since dfL = 2 sing d¢ ,

( ET?"" oS b) (2T('Sm¢ dcb) :

dE¢>

Therefore, the energy reflected in the angular bin ¢l to ¢2 is

¢2 ¢3— .
jdfdg = 2Fpr [ Cospsing dg = Eror 5'”24); - S|n2¢:] .
2 ¢ -

This equation is used to determine the energy of each diffuse ray,
where Enﬂ-= incident energy x surface reflection coefficient. To
save needless computing,the size of the angular bins and the

Asin2¢> factor for each bin are calculated in subroutine SHADOW

and stored for later use by subroutine SATREF.
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