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le	 DESCRIPTION OF THE VTP PROGRAM

VIP (Vehicle Illumination Program) is a FORTRAN IV code for

determining incident and abso:.-bed radiant energy on the surface

of orbiting space vehicles. Starting with a three-dimensional

description of the spacecraft geometry, the code employs geometric

ray tracing techniques for following rays of energy from their

source of origin to a point of intersection on the spacecraft.

External energy sources treated are direct emission from both the

sun and an arbitrary planet and planetary reflection of sunlight.

Incident and absorbed energy is computed for these sources as a

function of location on the vehicle surface. In addition, the

code is capable of reflecting rays from the vehicle surface and

determining that component of the energy resulting from such

5:eflecti.ons. Instantaneous results at specified locations in

orbit as well as time integrated results over complete orbits may

be obtained.

The program has been written to provide the user with a wide

range of flexibility in the class of problems which can be solved.

These capabilities are described in the remainder of this section.

Section 2 discusses the basic concepts employed for three-dimensional

geometry description. Section 3 provides a user's guide to the

program, describing the details of preparing input, running a

problem, and interpretir7 the output. This is followed, in Section

4, by a somewhat qualitative description of each subroutine in the

code. The mathematical formulations of some of the more important

routines are then given in Appendices 1-6,
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1.1 Geometry Capabilities

The program employs a powerful technique for modeling three-

dimensional geometries and inputting the model into a computer.

This method, called the Combinatorial Geometry Technique, permits

the accurate representation of space vehicles of essentially any

degree of complexity. The details of tho method are discussed in

Section 3 but, in essence, it represents the vehicle and its com-

ponents as an array of volumes (or regions) of arbitrary size,

shape, and orientation. All results for energy deposition and

absorption are computed and edited as function of region, so that

a complete 'mapping' of energy vs. vehicle component is provided.

1.2 Surface Properties

The computation of energy absorption and reflection requires

a description of the reflection properties of each region. A

region may be designated as being either a specular reflector, a

diffuse reflector, or transparent. In the former case, a 'mirror'

reflection occurs at the surface with a single ray being emitted.

A diffuse reflection results in a number of rays being emitted in

predetermined directions. A transparent region acts like a vacuum,

transmitting 100% of the energy. Region properties are entered

in the form of one or more sets of reflection coefficients (frac-

tion of energy reflected) for each region. Each set is composed

of t-,o coefficients with first applicable to solar wavelengths

and second to planetary radiation. The source of the ray is uEed

to select the proper region coefficient and this, in turn, deter-

mines both the absorbed surface energy and the reflected ray
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energy. Up to five sets of coefficients can be used and the code

will provide separate energy vs. region results for each set.

Thus, it is possible to obtain parametric studies of vehicle sur-

face properties.

1.3 Energy Sources

A problem may be run to obtain results for various combinations

of the following four sources of energy:

a) Solar radiation,

b) Planet radiation,

C)	 Planet reflection of sunlight,

d)	 Vehicle reflection of the above sources.

The output will provide separate results for each energy

source. Solar radiation is treated as a set of paiailel rays

emitted from a plane having any desired orientation with respect

to a fixed spacial coordinate system. The solar constant (energy/

area-time) is supplied as input. Planet radiation consists of

non-parallel rays originating on that part of the planet surface

which is visible to the satellite. Since the radiating temperature

and radius of the planet are input quantities, the code has the

flexibility of handling any desired planet. Planet reflection

results are obtained merely by inputting the reflection coefficient

(albedo) of the planet surface for sunlight.

1.4 Allowed Orbits

one of the following orbit classifications may be selected

for a problem:

3
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a) Inertial (with no spin) - The vehicle maintains a

fixed orientation with res pect to the sun.

b) Spin Stabilized - Similar to the inertial orbit

except that the vehicle is rotating about a fixed

axis,

c) Gravity Gradient - The vehicle maintains a fixed

orientation with respect to the planet.

Any of the above orbits is specified by its period, the

vehicle altitudes at perigee and apogee, and the orientation of

the orbital plane. The calculation is performed in stepwise fashion

around the orbits That is, the vehicle is initially positioned at

a specified location and a set of rays are traced giving answers

at that location. The vehicle is then moved through a given angle

to its next position in orbit and another set of rays is traced.

This procedure is repeated until the desired number of locations

have been completed. The initial location, angular interval

between locations, and number of locations are all input parameters.

1,5 Calculation Procedure

The first step in the calculation is to read and process

input defining the vehicle geometry, region properties, orbit

parameters, etc. In general, all input which is independent of

the chosen energy sources is processed first. The actual computa-

tion is then split into two parts so that the solar and planetary

sources are done completely independently, with the solar source

done first. The following macroscopic flowchart indicates the

4
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major calculational steps performed by the program. It should be

noted that for inertial or spin stabilized orbits, solar rays are

traced at the initial location only and the results are applied

to all locations. Correction factors are applied for those loca-

tions where the vehicle is shaded by the planets

(Process vehicle 9eomefrt i^e ut" P rocess other wnpit

head npvt on ovb tat	 Yes	 —Solar source d95,
locations for solar calcination

Plo
Poslttop vehicle in orbit

trace rays frown sum or^d

reflect from veh1crf,('ifde fired

%ave desired orb%t
ocations been tveated ?

No Plaaet, sources desired ?
Yes

read 'nf^t on orbital iorat^ans

for plane$ calculat ion

Pas loon vehicle In orbit

trace rays from eta blet aad comPv'h
planet emxcsion avid refletttov%
results. Reflect rays fronk
veh^clt (,if deS i re d, .

Edit Res ut+s

have desired orbit
No locations Inen trea{ed

Yep

END o^ PLANEr CALCULAT► ®N

`	 LIEN OF PROBLEM

VIP Flowchart
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1,6 Edit Description

An edit of results is provided after each orbital location

is completed. This permits the user to restart a problem in the

middle with no loss of information. The edit provides the

following categories of data for each energy source and for each

region in the geometry:

a) incident energy/sec at the current location,

b) absorbed energy/sec at the current location,

C)

	

	 time integrated incident energy from initial to

current location,

d)

	

	 time integrated absorbed energy from initial to

current location.

This information is given in the following tabular form, where

a, b, c, d refer to the above data categories.

SOI.+AAR CALCULATION

solar emission	 vehicle reflection of sunlight*

Region # a b c d	 a b c d

Tables repeated for each location.

PLANET CALCULATION

vehicle reflection
of planet emitted

planet emission planet reflection and reflected rays*

Region # a b c d	 a b c d	 a	 b	 c	 d

Tables repeated for each location.

*	 These tables are blank if vehicle reflection is not desired.
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2, THE COMBINATORIAL GEOMETRY METHOD

Combinatorial Geometry is essentially a technique for repre-

senting, in a computer, a mathemati ,zal model of a three-dimensional

geometric configuration. Once in the computer, the configuration

can be analyzed in many different ways by ray tracing techniques.

For example, quantities such as volumes, surface areas, object

boundaries, line of sight distances, etc. are readily determined.

Regardless of the application, however, the basic concepts employed

are the same. A discussion of these concepts can logically be

broken down into two topics. That is, geometry description and

ray tracing, which are discussed separately below,

2,1 Description of the Geometry

In effect, the description of the geometry divides the problem

space into unique volumes, called regions. Each region is, in

turn, a combination of one or more standard geometric figures,

called bodies. The allowed bodies (two examples of which are

spheres and cylinders) and how they are described are discussed

later. For the present, it is sufficient to say that a body is

completely defined by its type, dimensions, and location in space

relative to an X,Y,Z,coordinate system.

Once all bodies have been described, each region may be

defined by a simple equation which combines these bodies in the

following way. Consider the equation

R = #Bl±B2±B3 ... ±Bi

7



Assume that a sphere (body 1)

and a cylinder (body 2) hive

been described such that the

cylinder penetrates the sphere.

Y

c

where R represents a particular region number and the B's repro•sent

body numbers. The + or - signs act as operators having the

following significance. A(+ B)means that all points within region

R lie inside of body B.. A (- B)means that region R is wholly out-

side of body B. In addition to the + or -, there is a t!:ird

allowed operator (written OR) which permits a region to be des-

cribed in terms of subregions. Ax. example might be

R = OR(+Bl)OR(B2-B3).

This defines region R as having two parts, one of which is wholly

contained within body Bl. The second part is wholly wichin B2

but completely outside of B3.

There is no limit to the number of bodies which may appear

in a region description equation as long as the following rule is

obeyed. Every spatial point in the geometry must be located in

one and only one region.

To illustrate the method, consider the following figures

showing several different regions which can be constructed by

combining a sphere and a cylinder.



-- J

i ice, 2
i

t

Region A (shaded) is defined as

A=+1-2. This means ghat all

points in region A lie inside

the sphere and outside the

cylinder.

B=+l Region B is the entire

sphere. Notice that body 2 is

not in the equation since the

cylinder is not needed to des-

cribe the region.

I	 I

	 C=+2-1	 Region C is that part

of the cylinder which lies out-

C

	
2

	 side of the sphere.

^	 I

I	 rE-' 2
I	 i

D=+1+2	 This says that all

points in region D are simul-

taneously within the sphere and

within the cylinder. The only

part of the geometry which obeys

this description is the shaded

area..

9
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E=OR(+1)OR(+2)
	

Part of E lies

comple •,__y within the entire

sphere and another part lies

in the entire cylinder. Note

that the use of the OR operators

in the above equation does not

require that the bodies inter-

sect. The sphere and cylinder

could have been widely separated

_giving a d iscontinuous region,

which is perfectly legal.

There is an important rule of construction which is illustrated

by the following example. Consider a cylinder (body 1) resting

on top of another cylinder (body 2). The rule states that when

describing a region, one must negate
f

(- operator) any body that has a

g	 buttressing (coplanar) surface with

the region. Thus, A=+1 -2 and B=+2-1.

Although the above examples dealt only with spheres and

cylinders, there are actually 9 body types available for modeling

the geometry. The parameters needed to describe each body are dis-

cussed below. The three letter symbol in parentheses is called

the 'body identifier' and, with the exception of the RPP is re-

quired input.

10
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1. Rectangular Parallelepiped (RPP)

These bodies are used for gross subdivisions of the geometry

and must have bounding surfaces parallel to the coordinate axes.

The input consists of the minimum and maximum X,Y,Z coordinates

of the 6 planes which bound the body. The entire geometry must be

enclosed in an RPP.

2. Box (BOX)

Specify the (X,Y,Z) coordinatz,, .; ,f the vertex (V) at any one

of the corners of the box. Also specify the (X,Y,Z) components

of a set of three mutually perpendicular vectors (Li) representing

the height, width and length of the box. These vectors need not

be parallel to the coordinate axes.

3. Sphere (SPH)

Specify the coordinates of the center- of the sphere M and

length of the radius R.

4. Right Circular Cylinder (RCC)

Specify the coordinates of the vertex (V)at the center of

either base, a height vector H in terms of its X,Y,Z components,

and a scalar R denoting the base radius. Note that V is the origin

of the vector H so that the components of H may be either positive

or negative depending on the cylinder's orientation.

H
v	 ^
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5. Right Elliptic'Cylinder (REC)

Specify the coordinates of the center of the base ellipse,

the components of the height vector H. and two vectors, L l and L2,

defining the semi-maior and semi-minor axF:s of the base ellipse.

6. Truncated Right Angle Cone (TRC)

Specify the coordinates of the vertex V at the center of the

lower base, the components of the height vector H, and two scalars,

R1 and R.21 giving the radii of the larger and smaller bases,

respectively.

d
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7. Ellipsoid (ELL)

Specify the coordinates of two vertices, denoting the loca-

tions of the foci. of the ellipse and a scalar L giving the length

of the major axis.

L

8. Right Angle Wedge (RAW)

Same input as for the BOX with the restriction that Ll and LZ

describe the two legs of the right triangle of the wedge.

t

V
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9.	 Arbitrary Polyhedron (ARB)

The ARB is bounded by any 6 planes so lone as the figure is

convex (the angle between any two sides is less than 1800).

Assign an integer number N to each of the 8 vertices of the ARB.

Give the coordinates of each vertex VIA . Then list the numbers of

the 4 vertices at the corners of each side. The vertex numbers

must be given either in clockwise or counterclockwise order.

13



In this example, ':ha integer

descriptions of each side are

1234, 1265, 3784, 1485, 5678,

2376.

2

RPP IXc

G

2.2 Rav Traci

In effect, ray tracing is a means of following a straight

line through the various regions comprising the geometry. In the

VIP program the rays simu__ate non-penetrating electro-magnetic

radiation (as opposed to x-rays, for example) so that each ray is

terminated at the surface of a non-transparent region.

An explanation of the ray tracing technique is best accom-

plished ?)y following the code through a simple exam ple. Consider

two intersecting spheres enclosed in an RPP. The bodies are num-

bered 1-3 and the regions are lettered A-D. (Letters are used for

clarity only. Region are numbered in the code.)

S Pod 3

A

14
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The region descriptions for this geometry are:

A = +1-2-3

B = +2-3

C = +2+3

D = +3-2

Before proceeding with the discussion, let us list two tables

of information which are constructed by the code during input

processing. These are called 'entering' and 'leaving' tables

which define the possible regions a ray might be in if it enters

a given body and the regions a ray might be in if it leaves a

given body. These tables are derived from the region description

equations and would appear as follows for this problem.

Body	 Entering	 Leaving

1	 A	 escapes from geometry

2	 B or C
	

A or D

3	 C or D
	

A or B

For example, these tables tell the code that a ray which enters

body 2 must be entering either region B or C. A ray leaving body

3 must be entering A or B.

assume now that the ray originates at point Xo in region A

and that its direction of flight is known. The program must then

determine the next region in the ray's path and the point of inter-

section (X) with that region.

The cede first examineE all the bodies in the region descrip-

tion of A for intersections with the ray. The program contains a

separate routine for each body type for computing these inter-

sections. These routines compute two parameters called R.IN (the

15
r
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distance from X  to the entering point on the body) and ROUT (from

Xo to the leaving point on the body). If the ray passes through

the body both numbers will be positive. If X. is inside the body,

RIN will be negative. If the ray misses the body entirely both

RIN and ROUT are negative. After investigating bodies 1, 2 and 3

the code will have six numbers and will choose the smallest positive

number to determine what has actually happened to the ray. From

the picture of the geometry, it is obvious that RIN for body 2

must be chosen, so t;iat the ray must be entering body 2.

The entering table for body 2 now tells '..ie code that the ray

could be entering region B or C. The validity of the region equa-

tions for B and C are then tested via a series of logical rules.

Without going into detail on these rules it should be obvious that

the equation for C cannot be satisfied. The +3 in this equation

requires the ray to be in or on the surface of body 3 at point X.

But, since ROUT for body 3 is negative, the ray must have missed

the body entirely. Thus, it cannot be in region C. The B equa-

tion, however, is satisfied since the +2 is valid (the ray is

known to have hit body 2) and the -3 is also valid (the ray cannot

be in body 3). The ray is, thus, determined to be entering region

B. The intersection point X is determined from the vector equation

X = Xo+(RIN3.)w

where w represents the direction cosines of the ray. To transmit

the ray through region B, Xo is set equal to X and B becomes the

new region of origin. The above process is then repeated.

r

16
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3e	 VIP USER'S GUIDE

This section is provided mainly as a guide to preparing input

for a VIP calculation. It is assumed that the reader has read the

remainder of the report and has becon,e familiar with the meanings

and purposes of the input variables.

3,1 Units

The units for most input quantities are arbitrary but care

should be taken to use a consistent set of units throughout.

Dimensions of length, for example, may be in centimeters, inches,

feet, etc. Once chosen, however, the unit of length must remain

constant. Thus, if vehicle dimensions are in inches, the planet

radius and vehicle altitudes must also be in inches. Area units

will then be in square inches, such as energy/in 2 -sec. for the

solar constant. Time and energy units are also arbitrary. The

only required unit is that angles be given in degrees,

3>2 Card Input

Cards are described in the order in which they must appear

in the input deck. A sample input form is included at the end of

this section.

Card 1 - Title Card (Format 20A4)

This card may contain 80 columns of alphanumeric informations

It serves as a title card and will appear as the first line of

output,

17
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Card 2- - Geometry Descriptors (Format 4I10)

The following four integer quantities are required

Column	 Input

10 NRPP	 The number of rectangular parallelepipeds in

the geometry (enter a 1 in column 10)

11-20 NBODY	 The number of bodies in the geometry not

includina the RPP. The total number of bodies

is, thus, NBODY + 1.

21-30 NRMAX The number of regions in the geometry.

40 ITBL Used to obtain a printout of the geometry data

table. If ITBL=O, this table will be printed.

If ITBL=1, the table will not be printed. The

geometry input data are always printed but this

table contains the data after processing. Unless

one is familiar with the way this table is con-

structed, the printout probably won't be of much

use.

NOTE:	 Before beginning to fill out geometry input the user

should have at least a crude sketch of the satellite to refer to.

An X,Y,Z coordinate system should be established with the origin

at a convenient location near the geometric center of the vehicle.

All body locations will be relative to this origin. Also keep

in mind that if the vehicle is spinning, the Z axis will be assumed

to be the axis of rotation.

4
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Card 3 - RPP Input (Format 6E10,5)

This card gives the coordinates of the six bounding planes

of the rectangular parallelepiped which encloses all other geometry.

Each plane must be perpendicular to one of the coordinate axes and

is, therefore, specified by a single coordinate. The order in

which they are given are

Xminimumr Xmaximum , Ymin o Ymax o Zmin , Zmax°

These boundaries should be very large compared to the dimensions

of the satellite,

Card Set 4 - Body Input (Format 2X, A4, 4X, 6E10e5)

These cards describe the location and dimensions of each

body in the geometry. A total of NBODY bodies must be described.

The code will assign a number to each body which is determined by

the order in which the bodies are described, The RPP will be

body #1, the first body described here is body #2o the second is

body #3, anal so on. Each body description will require one or

more cards depending on the body type. The format of each card

is as follows.

Columns	 Input

1-2 The code ignores these columns but they may be used

to number the bodies in order to help keep the deck

in proper sequence.

	

3-6	 Column 3 is blank and is followed by a three letter

identifier giving the body type (required input only

on the first card used to describe a body).

19
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Columns	 Input

	

7-10	 The code ignores these columns.

	

11-70	 Divided into six fields of 10 columns each. Body

data are entered here.

The following table gives the required input for each body

type. Section 2.1 describes the meaning of each body variable.

Card Columns
body type 4-6 11-20 21-30 31-40 41-50 31-60 61-70 card #

box BOX Vx Vy Vz Llx Lly Llz 1 of 2
- L2x L2y L2z L3x Lay Liz 2 of 2

sphere SPH Vx Vy Vz R - - 1 of 1

circular RCC Vx V Vz Hx Hy Hz 1 of 2
cylinder - R - - - - - 2 of 2

elliptic REC Vx V Vz Hx Hy Hz 1 of 2
cylinder - Rlx Rly Rlz R2x R2y R2z 2 of 2

ellipse ELL Vlx Vly Viz V2x V2y V2z 1 of 2
- L - - - - - 2 of 2

truncated TRC Vx Vy Vz Hx Hy Hz 1 of 2
cone - Rl R2 - - - - 2 of 2

wedge RAW Vx Vy Vz Llx Lly Llz 1 of 2
- L2x L2y L2z L3x L3y Liz 2 of 2

arbitrary ARB Vix Vly Viz V2x V2y V2z ] of 5
poly- - V3x V3y V3z V4x V4y V4z 2 of 5
hedron - V5x V5y V5z V6x V6y V6z 3 of 5

V7x V7y V7z V8x Vgy V$z 4 of 5
enter the 4-digit face descriptions in 5 of 5
columns 1-30 using Format 6(1.4,1X)

20
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RPP(body 1)

SPH (body 2)

r-.
V
N

a

It should be pointed out that, in addition to the RPP, one

other body which is not part of satellite is required. That is a

large sphere, centered at (0,0,0), of very large radius compared

to the satellite dimensions. This sphere must, however, be

enclosed in the RPP. It is a good idea to describe this body

before any others, making it body #2. The geometry would then

look like ...

The radius R can be determined only after all bodies des-

cribing the satellite have been defined. Find that point on the

satellite which is furthest from origin and call its radial dis-

tance from the origin S. Then R'20S. The purpose of this large

sphere will become clear later on.

21
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Card Set 5 - Region Descriptions (Format I5, 1X, 9 (A2,I5))

Each region must be numbered and described by the combination

of bodies which make up that region. A total of NRMAX regions

must be described. The input format is indicated below.

Columns	 Input

	

1-5	 Region number (start with 1)

6	 Blank

	

7-8	 Insert the OR operator if needed. Otherwise

leave blank.

	

9-13	 Body number preceded by a + or - operator

The + operator may be omitted since a blank

is an inferred +.

	

14-69	 Divided into eight fields of 7 columns, each

being similar to columns 7-13. Thus, up to

nine bodies can appear on one region description

card.

Use as many of the above type as needed to describe a region

but leave columns 1-6 blank on all continuation cards. Start each

region on a new card.

The last card of Set 5 should contain a -1 in columns 4 and

5. This instructs the code that all regions have been described.

In the program, regions 1 and 2 have special meanings. Reqion

1 is the volume between the RPP and the large sphere (body 2). Its

description is, thus, 1-2. Region 2 is the volume inside the

sphere but outside the satellite bodies. Its description must

start with a +2. All rays will originate in region 2 and be fired

22
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toward the satellite. If, however, the ray misses the satellite,

it will pass into region 1. Any ray which enters region 1 is

immediately terminated since it can no longer be of interest.

One might wonder, at this point, where the sun and planet

come into the problem. The answer is, that as far as the geometry

description is concerned, these two bodies do not exist. There

is no requirement that regions 1 or 2 be large enough to include

them.

Card 6 - Number of Reflection Coefficient Sets (Format I10)

Enter in column 10 the quantity NSET, which equals the

number of reflection coefficient sets to be used in the problem.

NSET can be any integer from 1 through 5.

Card Set 7 - Surface Proper i-ies (Format 2I6, 1OF6.4)

These cards give the reflection properties of each region.

Use one card per region and a total of NRMAX cards.

quantities are defined as follows.

Columns	 Input

1-6 IR	 Region number

11-12 IPROP Region type

For a transparent region enter -1

For a diffuse region enter 0

For a specular region enter 1

The input

	

13-18 RC1	 Reflection coefficient for solar radiation.

	

19-24 RC2	 Reflection coefficient for planet radiation.

23
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a
Columns	 Input

25-72	 Divided into eight fields of 6 columns each and

used to enter additional reflection coefficient

sets. For example, enter RCl for set #2 in

columns 25-30 and RC 2 for set #2 in columns 31-36,

etc. The last column number used should equal

12+2x6xNSET.

Card 8 - Imaginary Vehicle Sphere (Format E10.3)

Enter SRAD in columns 1-10.

Pfter the vehicle geometry has been defined, determine the

smallest sphere, centered at (0,0,0), which can enclose the entire

vehicle. SRAD is the radius of this sphere. All rays will be

fired at this sphere so the smaller it is, the more chance a ray

will have of hitting the vehicle. On the other hand, if a vehicle

region extends beyond the sphere it may not be hit at all, depending

on the vehicle orientation. Note that this sphere is imaginary

in the sense that it is not actually described as part of the

Combinatorial. Geometry input.

Card 9 - Orbit Parameters (Format I10, 4E10.3)

Enter the following quantities on this card.

Column	 Input

1-10	 IORB Orbit Type. Enter 1 for inertial orbit,

2 for gravity gradient orbit, 3 for spin

stabilized orbits.
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Column	 Input

11-20	 RP	 Altitude from the planet surface to the perigee

point of the orbit.

21-30	 RA	 Altitude from the planet surface to the apogee

point.

31-40	 TAU	 Orbit period.

41-50 PLRAD	 Planet radius.

Card 10 - Solar Orientation (Format 3E10.3)

Determine the X,Y,Z components of a unit vector Which points

from the coordinate system origin to the sun. (i.e., enter the

direction cosines of the vehicle - sun line)

Column	 Input

1-10 WSx	X component

11-20 WS 	 Y component

21-30	 WSZ	 Z component

Note that WSX+WSy+WSZ = 1.0

Card 11 - Planet Orientation (Format 3E10.3)

The same as card 10 except that the unit vector points from

the vehicle to the planet center.

Column	 Input

1-10 WPx	X component

11-20 WP  Y component

21-30 WP Z Z component
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Card 12 - orbit Orientation (Format 3E10.3)

Enter the three direction cosines of the line which is

normal to the orbital plane.

Column input

1-10	 WNx X component

11-20	 WNy Y component

21-30	 WNZ Z component

The direction of WK should be such that the vector WP x WN

points toward an orbital angle of 90 degrees, as shown below.

WPxWN

t
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Card 13 - Source Information (Format 2E10, 4E10.3)

Enter the following six quantities.

Column	 Input

10	 ISGO	 Solar Option. Enter 1 if the solar source

is desired and 0 if it is not.

20	 IPGO	 Planet Option. Enter 1 if planet source is

desired and 0 if it is not.

21-30 SOLINT	 Solar Constant (energy/area-time)

31-40 ALBEDO Albedo of planet (fraction of sunlight reflected)

41-50 STEF	 Stefan-Boltzmann Constant (energy/area-time-degree)

51-6C TEMP	 Radiating temperature of planet (absolute)

If the planet option is not desired (IPGO=O), columns 31-60 may

be left blank.

Card 14 - Debug Printout Options (Format 6I3)

Certain subroutines in the program contain provisions for

obtaining intermediate printouts during the calculation. These

were inserted to aid in program debugging and were left in should

any unresolved bugs turn up. Normalcy, these printouts would not

be desired and Card 14 should be included in the input deck but

left blank. If they are desired, however, the input numbers go

into an IDBUG array defined as follows.

Column	 Input

1-3 IDBUG(1) Any positive integer will cause subroutine UMBRA

to print the minimum and maximum orbital angles

where the vehicle is shaded by the sun.
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Column	 Input

4-6 IDBUG(2) Causes TIMER to print the range of angles covered

by a location in orbit and the flight times from

perigee to these angles. The value of IDBUG(2)

is the number of locations where this is desired.

7-9 IDBUG(3) Causes EXPO to print certain variables. However,

these require a detailed knowledge of the coding

to interpret. EXPO is entered once per location

and the printout will appear IDBUG(3) times.

10-12 IDBUG(4) Causes STRAK and SATREF to print information des-

cribing the progress of an individual solar ray.

It is possible to follow a ray from its origin to

its termination, including any vehicle reflections.

The value of IDBUG(4) is the number of rays you

wish to follow at each location. A knowledge of

the coding would be required, however, to interpret

the printout.

13-15 IDBUG(5) Causes WMAKER to print the direction cosines of

the sun and planet at each orbital location. The

printout will occur IDBUG(5) times.

16-18 IDBUG(6) Same definition as IDBUG(4) but follows rays from

the planet.

Card 15 - Parameters for Solar Calculation (Format 4I10, 2E10.3)

These parameters describe how the solar calculation should

be run. If ISGO=O, omit card 15.
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Column	 Input

1-10 NLOC
	

The number of orbital locations to be treated

11-20 NRS
	

Number of rays to be traced from the sun at each

t

location (discussed in Section 3.4).

30	 IVRGO
	

Vehicle reflection option. Enter 1 if rays are

to be reflected from vehicle. Enter 0 if not.

31-40 NRDIFF Number of reflected rays to be emitted per diffuse

reflection. If IVRGO=O or if there are no diffuse

surfaces, enter any small positive integer (i.e.,

1) but don't leave blank.

41-50 ALPH1	 Initial orbital angle to be treated (need not be Q)

51-60 DALPH

	

	 Angular interval between locations (i.e., if

ALPH1=200 and DALPH=100 , the second location in

orbit will be at 300).

Card 16 - Vehicle Spin Parameters for Solar Calculation
(Format I10, 2E10.3)

These parameters control vehicle rotation for spin-stabilized

orbits. If ISGO=O, omit card 16.

Column	 Input

	1-10 NSPIN	 Number of spin orientations (about the Z axis)

to be treated at each orbital location. If
i

	

IORB=1 or 2 (no spin), enter a 1.

11-20 THET1

	

	 Initial spin angle (measured from X axis). If

IORB=1 or 2, enter 0.0.
s

21-30 DTHET	 Angular interval between spin orientations. If

IORB=1 or 2, enter 0.0.

r	 '^
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Note that the value of NSPIN does not affect the number of rays

to be fired at a given orbital location. At each location, NRS/

NSPIN rays are fired a total of NSPIN times,

Card 17 - Parameters for Planet Calculation (Format 4I10, 2E10.3)

This card is analogous to Card 15 for solar rays. The six

parameters may be entirely different for the planet calculation,

however. Note that NRS is called NRP by the program at this point

and equals the number of planet emitted rays per location. If

IPGO=O, omit card 17.

Card 18 - Vehicle Spin Parameters for Planet Calculation
(Format I10, 2E10,3)

Analogous to card 16 but different values may be used if

IORB=3, If IPGO=O, omit card 18.

SAMPLE INPUT FORM
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3,3 Error Messages

There are numerous places in the code where a printout will

occur upon detection of an input error. The job will terminate

but the source of the error will be indicated. There is one

possible error which does not terminate a job. It occurs while

tracing a ray in subroutine G1. In general, the cause of this

error is that a ray gets 'lost' at the boundary between two regions.

This is due to insufficient computing precision of the machines

If this occurs, some error printout will appear and the code will

abandon this ray and go on to the next one. As long as this is a

relatively rare event, the user need not be concerned with it.

Experience has shown that it might be expected once every few

thousand rays. If, however, it occurs much more often than this,

the cause is probably an undetected input geometry error. The

printout can usually provide clues to the exact source of the

error but lacking a detailed knowledge of the coding, the best

thing to do is to carefully go over the input. The error is

,likely either in a body dimension or a region description,

3.4 Selectinq the Number of Ra

The accuracy of the results is determined by the number of

rays fired (NRS from the sun, NRP from the planet). 	 To estimate

a reasonable value for NRS it is first necessary to select a

desired average density of rays (rays/projected area). Since NRS

rays will be fired at the imaginary vehicle sphere of radius BRAD,

the density, D, will be D = NRS/,q(SRAD) 2 or NRS = PS D(SRAD)2
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The value for D is a function of the surface area of the

important vehicle regions. If, for example, a region of interest

is only 1 in 2 in area, an average density of 1 ray/in 2 is inade-

quate, since there is a good chance that no rays will hit that

region. In test problems involving the RAE satellite, however,

a D of about 1 was adequate. The area of the solar paddles was

about 100 in2 so that, on average, 100 rays would strike a paddle

that was fully exposed to the sun. The number of 'hits' would

still be significant even for partial exposure. Since SRAD was

42 in. for that problem, the above equation (assuming D=1.0) would

give NRS = 5500. The actual number used in the calculation was

6000.

Before leaving this discussion, there is one procedure that

is wise to follow when running a problem. That is, to first run

a short test problem to insure that the input represents the

problem that is actually desired and that the computed results

are at least reasonable. Even though the results are inaccurate,

one can usually spot order of magnitude type errors. This trial

run might use 5-10% of the number of rays selected for the final

run.

3.5 Output Edit

The output format for the main results was described in

Section 1.6. Additional output not discussed there, as well as

all input quantities, are clearly labelled in the edit and require

no explanation.

r
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3.6 Estimated Runninq Times

CPU time for a given problem depends largely on three items.

a) Source options selectee?,

b) Number of rays to be fired,

c) Complexity of the geometry.

Since these depend on the particular problem, no general rulecan

be made for computing time.

However, one can get a fair idea from test problems run on

Goddard's 360/91 for the RAE satellite geometry. In these cal-

culations, solar rays were traced at the, rate of about 4500 rays/

minute. The same rate should apply to planet emitted rays. If

vehicle reflection were included, computing speed would probably

be cut roughly in half. Using these estimates and the above ray

tracing rate it is possible to write a crude equation for the

computing time, T.

T=(ISGO+IVRGO)(NLOC)S(NRS/4500)+(IPGO+IVRGO)(NLOC)p(NRP/4500).

where ISGO, IPGO, IVRGO are the source options desired (0 or 1)

and NLOC is the number of locationswhere rays will actually be

traced (i.e., for inertial orbits (NLOC) 5=1, regardless of the

number of locations where answers are desired).

Estimates can also be made by scaling the running time of

the trial problem, recommended earlier.

Remember, however, that a problem can be restarted in the

middle so little is lost if it overruns the estimated time.

k
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4,	 SUBROUTINE DESCRIPTIONS

This section provides brief descriptions of each subroutine

in the code. The r,utines are discussed in the following order.

MAIN	 SHADOW

GENI	 UMBRA

UN3	 UMBRA 2

BODY ROUTINES	 TIMER

RPP	 EXPO

ARBLAD	 WCHEK

CROSS	 RANUM

DOT	 CAAKER

DCOSP	 WMAKER

XDIST	 SUN

UNIT	 STRAK

S	 PLANET

RPP2	 PTRAK

G3	 SATREF

NORMAL

w
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MAIN

Function:

Initialize certain variables and start the calculation.

Description:

After initializing variables the MAIN routine reads the

problem title from cards, calls subroutine GENI to read and

process geometry input and calls SHADOW to read the remaining

input and begin the calculation.

GENI

Function:

Read, process, and store geometry input data.

Description:

GENI processes all input describing the geometry of the

satellite vehicle. The routine also does some preliminary check-

ing of the input for format, duplicate numbering, etc. The RPP

input is read and processed first followed by the data for each

body in the geometry. Region descriptions are then read in from

which the entering and leaving tables described earlier are con-

structed. At the completion of GENI all geometry data are housed

in the ASTER array and the code is ready to begin ray tracing.

t
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UN3 (KK, LK1, LK2, LK3

Function:

Unpacks the packed data stored in the ASTER array.

Call Arguments:

KK = location of a word in the ASTER array (input).

LK1, LK2, LK3 = the three unpacked components of word

KK (output).

Description:

UN3 contains the following three entry point routines for

unpacking the ASTER array.

A. UNNWW unpacks a word originally packed under a

5-bit - 13 bit - 13 bit format.

B. UNWNW unpacks information in a 13 bit - 5 bit -

13 bit word.

C. UNWWN unpacks information in a 13 bit - 13 bit -

5 bit word.

Note that the last three letters in the entry point name describe

the packed format, where W refers to 'wide' (13 bits) and N to

'narrow° (5 bits).

BODY ROUTINES

Function:

Computes the distance fr.. --, the origin of a ray to entering

and leaving surfaces of a given body.

Call Arguments:

None
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Description:

The code contains seven independent body routines, with each

performing a similar calculation for a Different body type. Given

that a ray is initially at point XB and traveling in a direction

WB, each routine computes the distance RIN to the first (entering)

intersection point with the body and the distance ROUT to the

second (leaving) intersection point. The calculation for a given

body may result in one of the following three possible combinations

for RIN and ROUT.

RIN>O, ROUT>O XB is outside the body and the ray

intersects the body (2 intersections

found)

2. RIN<0, ROt' >O XB is inside the body (1 intersection

found)

3. RIN<01 ROUTSO the ray misses the body completely

The following is a list of each routine and the body type it treats.

ELL - ellipsoid

RCC - right circular cylinder

REC - right elliptic cylinder

SPH - sphere

TRC - truncated cone

ARB - arbitrary polyhedron (al3o handles the box and wedge

which were converted to polyhedrons during input
0

processing)
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RPP (NBO)

Function:

Performs the function of a body routine for a rectangular

parallelepiped,

Call Arguments:

NBO = body number of the rectangular parallelepiped,

ARBLAD (X, NUMN, IWC

Function:

Processes and stores arbitrary polyhedron (ARB) input and

converts box (BOX) or wedge (RAW) input to ARB format,

Call Arguments:

X = body input numbers

NUMN = size of the X array

IWC = informs ARBLAD which body type is being processed

(1 if ARB, 2 if RAW, 3 if BOX).

Description:

h.e original implementation of Combinatorial Geometry treated

the ARB, BOX, and RAW as separate and distinct body types with

each having its own body (or ray tracing) routine. Subsequently,

it was found that ray tracing for an ARB was faster than for the

other two bodies. At the same time, however, body input for the

BOX anC RAW was often simpler to specify. Thus, it was decided

to maintain separate input formats but, once read into the machine,

input for these two bodies would be converted to ARB format. The

BOX and RAW ray tracing routines were thereby eliminated from the

code. ARBLAD performs this body conversion and also processes

ARB input,

38
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CROSS (ANSWER, FIRST, SECOND)

Function:

Computes the vector product of two vectors.

Call Arguments:

ANSWER = a vector giving the cross product

FIRST, SECOND = two input vectors.

Description:

ANSWER(1) = FIRST(2)*SECOND(3) - FIRST(3)*SECOND(2)

ANSWER(2) = FIRST(3)*SECOND(1) - FIRST(1)*SECOND(3)

ANSWER(3) = FIRST(1)*SECOND(2) - FIRST(2)*SECOND(1)

DOT (FIRST, SECOND)

Function:

Computes the scalar product of two vectors.

Call Arguments:

FIRST, SECOND = two input vectors.

Description:

3
DOT =	 FIRST i*SECONDi

i=1

DCOSP (XA, XB, WA)

Function:

Computes the direction cosines of a line between two points.

Call Arguments:

WA = 3 direction cosines from point XA to point XB

XA, XB = subscripted arrays giving the (x,y,z) coordinates

of XA and XB.
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Description:

WAi = (XBi-XAi)/DIS, where DIS is the distance between XA

acid XB.

XDIST (XA, XB)

Function:

Computes the distance between two points.

Call Arguments:

XA, XB = subscripted arrays giving the (x,y,z) coordinates

of points XA and XB.

a

Description:

XDIST =
3	 2''
g (XAi-XBi) 	

a

i=1

UNIT (VECTOR

Functions

Converts an arbitrary vector in space to a unit vector.

Call Arguments:

VECTOR = 3 components of any vector.

Description:

VECTORi = VECTORi/VECT, where

VECT = (VECTOR-VECTOR)

40
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S (I, N)

Function:

Retrieves the coordinate of any of the six sides of an RPP

from the ASTER arrays

Call Arguments:

I = number of the RPP

N = side (1 to 6) whose coordinat( is de^iredo

Description:

The routine uses the input values I and N to compute the

location (LL) of the desired coordinate in the ASTER array. Then

S = ASTER(LL)e

RPP2 (JSURF, XP, IRP)

Function:

Determines the number of the next region a ray will encounter

when it leaves one RPP (rectangular parallelepiped) and enters

another.

This routine was needed for other implementations of the

Combinatorial Geometry technique, where more than one RPP could

appear in the geometry. This version of the technique permits

only one RPP to be specified so that subroutine RPP2 is never

called. It has been left in the program, however, to facilitate

possible future modifications.

r
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G1 (S1, IRPRIM, XP

Function:

Computes the next region in the path of a ray and the point

of intersection with that region,

Call Arguments:

IRPRIM = next region which the ray will encounter after it

leaves the region it is currently in,

XP = x,y,z coordinates of intersection point with IRPRIM,

S1 = distance between the ray's current location and the

point XP (not used by the code),

Description:

The logic employed by G1 is described in the section that

discusses the Combinatorial Geometry technique (section 2 ),

NORMAL (XI, WN)

Function:

Computes the components of the normal to the surface of a

given body,

Call Arguments:

XI = point on the surface of a body at which the normal is

desired.

XN = direction cosines of the outward directed normal at

point XI,

r£
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Description:

Given a body number NBO, a surface number LSURF (both in

COMMON), and a point on the surface XI, subroutine NORMAL computes

the direction cosines of a vector normal to the required surface

at that point. The routine is made up of independent sections

each of which treats a different body type. It should be noted

that the nc'mals to the six sides of each arbitrary polyhedron

(including the box and wedge) are precomputed and stored in ASTER

during input processing and need only be retrieved by this rou-

tin^. The normal to a sphere is merely the direction cosines of

the line joining its center and the point XI. The remaining

bodies employ straightforward mathematics for determining the

orientation of a given surface with respect to a set of coordinate

axes. Since this routine is only called when reflecting a ray off

the surface of a body, it is important that the computed normal

be directed outward from the surface. This is assured by setting

the signs of WN such that the dot product WN^WB is negative, where

WB is the direction of the incident ray.

SHADOW

Functions

Read and process non-geometry input and directs the overall

flow of the calculation.

Description:

SHADOW is the input proce_sci • Lc 7- all problem dependent input

(i.e., that which is independent of the actual satellite geometry).

c

43



t

It reads, and in some cases checks for correctness, data on the

reflection properties of region surfaces, input describing the

orbit, source intensities, and the various calculation options

available to the user.. These options determine which sources are

to be treated in the problem.

limpua

Function:

Computes the range of orbital angles in which the satellite

is in the shadow of the planet.

Descriptions

This routine computes two angles, SHAD1 and SHAD2, which

define the lower and upper limits of the planet's shadow. The

angles are determined to the nearest degree and measured from

the perigee line. UMBRA is the control routine for this calcula-

tion, while subroutine UMBRA2 performs the actual computations

for a given angle.

U_MBRA2 (ANG. ISEE

Functions

Determines whether a given orbital angle is in the shadow

of the planet.

Call Arguments:

ANG = orbital angle in degrl°es (input).

ISEE = output flag indicating whether ANG is in shade.

If ISEE = 0, ANG is shaded. If ISEE = 1, ANG is exposed to sun-

light.

44

qua ^• .ro	 „-^--,^-̀^„



Sc

sate 11 +e

1Pt
i

k

Description:

UMBRA2 has the task of computing whether the given orbital

angle (ANG) lies within the planet's shadow. This is done by

computing the two angles e  and ¢ s as defined by the following

sketch.

RNG

I

The vehicle is shaded if e p >_' s and ISEE is set to 0. If ep<^S

the vehicle is in sunlight and ISEE = 1.



TIMER (ALPHA, DT)

Function:

Computes the vehicle flight time between two orbital angles.

Call Arguments:

ALPHA = orbital location of the vehicle measured in degrees

from perigee.

DT = time spent at location ALPHA.

Description:

This routine computes the time spent in the angular interval

between (d-,&Oe12) and (0(+ A°(/2) , where ®( = ALPHA and 0 c^ is the angle

between locations in orbit. The equations for computing DT are

derived in Appendix 2.

EXPO (ALPHA, FEX)

Function:

Computes the fraction of time that the vehicle spends in

sunlight at a given orbital location.

Call Arguments:

ALPHA = orbital location of the vehicle measured in degrees

from perigee.

FEX = fraction of time exposed to sunlight.

DeS.jription:

This routine calculates the fraction of time exposed to sun-

light by comparing the angular interval for a given location with

the angles SHAD1 and SHAD2 (see Subroutine UMBRA). FEX is computed

front the degree of overlap of these two intervals, It should be

k
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noted that EXPO is not an exact calculation since what is actually

computed is the fraction of the angular interval in sunlight rather

than the fraction of time. This is, however, an excellent approx-

imation for relatively small angular intervals or low eccentricity

orbits, since in either case the angular velocity is practically

constant within the interval. In problems where a high degree of

accuracy is desired, small angular intervals will be employed and

any errors introduced by this approximation will be insignificant.

WCHEK (W, ICALL

Function:

Checks and adjusts direction cosines.

Call Arguments:

W = any set of 3 direction cosine-

ICALL = a flag indicating which routine has called WCHEK.

Description:

This routine tests that no gross errors have been made i-

an input or computed direction cosine set. It first tests whether

Wi = 1.0±0,02. If this test is passed the W values are
i=1

assumed to be correctly given and the divergence from 1.0 (less

than .02) is due to round off errors. W is then normalized so

that the sum of the squares is precisely 1.0. If the above test

fails, an error has occurred and the routine will print an error

message containing W and ICALL and terminate the job with a STOP2.
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RANUM (RN)

Function:

Generates random numbers from 0 to 1.

Call Arguments:

RN = random number.

Description:

This routine supplies random float4ng point numbers in the

range 0.0 to 1.0. It is essentially the IBM random number gener-

ator library subroutine which makes use of the machine overflow

characteristics.

CMAKER (W,C)

Function:

Computes certain constants used by other routines.

Call Arguments:

W = a set of 3 direction cosines supplied by the calling

routine.

C = a set of 8 constants computed from W.

Description:

The constants generated by this routine are used by several

other routines when a rotation of coordinate systems is required.

The equations for these constants are derived in Appendix I for

a generalized coordinate system rotation.

r
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WMAKER (ALPHA, JCALL)

Function:

Computes the direction cosines of the vehicle-sun line or

vehicle-planet line.

Call Arguments:

ALPHA = given orbital angle

JCALL = flag informing WMAKER as to which direction cosines

are to be computed.

Description:

This routine computes the variables WSA and/or WPA at a given

orbital angle, where

WSA = direction cosines from vehicle to solar plane,

WPA = direction cosines from vehicle to planet center.

The value of JCALL supplied by the calling routine determines

both the variable to be computed and the orbit type as follows.

JCALL	 Compute	 Orbit	 Calling Routine

1	 WSA gravity gradient SUN

2	 WSA,WPA inertial PLANET

3	 WSA,WPA gravity gradient PLANET

4	 WWSA,WPA spin stabilized PLANET

The equations for WSA and WPA are derived in Appendix 3

SUN

Function:

Controls the calculation for solar emission.

6
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Description:

Subroutine SUN controls the solar emission calculation and

is entered just once during a p-oblem. It also converts the ray

tracing results to the proper form and prints the answers. The

logic flow depends primarily on the orbit type (IORB) specified

for the problem, given that NRS rays are to be traced from the

sun at each orbital location, the calculation proceeds as follows.

IORB

1 (inertial)	 Trace NRS rays at one location and apply the

results to all locations,

2 (gravity	 Trace NRS rays at each orbital location.
gradient)

;apin	 Trace NRS rays at one location but divide them
stabilized)

equally over NSPIN spin orientations. Apply

results to all locations.

Note that for IORB = 1 or 3 rays are traced at only one location

since the sun-vehicle orientation is constant for these orbits.

The following is a simplified flowchart of SUN with the following

variable definitions,

Variable

ISP'' T

ILOC

ISET

IR

Definition

spin orientation number

orbital location number

reflection coefficient set
number

vehicle region number

Maximum Value

NSPIN*

NLOC

NSET

NRMAX

*NSPIN = 1 for IORB = 1 or 2,
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WSA = direction cosines from vehicle to sun.

DT = time spent by vehicle at location ILOC.

FEX = fraction of time exposed to sunlight at ILOC.

SUN Flowchart

r'
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STRAK ( ISPIN)

Function:

Performs the ray tracing from the sun..

Call Arguments:

ISPIN = spin orientation number.

Description:

STRAK traces rays from the sun and computes the incident and

absorbed energy contributions for each ray. The routine is called

by subroutine SUN once for each location and a total of NRS rays

are traced. The starting position of each ray is pi--ked at random

on the solar plane (a plane perpendicular to vehicle-sun line).

The equations used for this purpose are derived in Appendix 4.

The following flowchart illustrates the calculational procedure

in STRAK, where the variable definitions are:

So = solar constant,

SRAD = radius of imaginary sphere around vehicle,

NSPIN = number of spin orientations to be treated,

NR = ray number,

IRP = next region in the ray's path.

c
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IISPIN=t ?

Iinitiallge answer CtrraySI

qet ConS^1'-a,055CC (CALL CMAKE

Itwnpet— to ram encYgy

1NR=1

p icK sTartm^ location On Solar plane

fracera tone.xt ve ton IRf• (CALLGI)

fdoes ray h;f vehiele ?I
Ye s

IS IRp 1 ra n5p4rent ?
 —Yes
No

Score mudent eoevgy
for region ZRf	 I

r rcaect rave from SRP^<ALL SATRf p^10 y) 7 I 

^No

NR= Nq+r

p-• NRDNR5

Yt5

Compote absurbeq ev,

for each reg ion ar,d

Nreilect^on coeFfic^ent Set

IEND I

STRAK Flowchart
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PLANET

Function:

Controls the calculation for planet emission and reflection.

Description:

PLANET is the control and output routine for the planet

emission and reflection calculation and is entered once during a

problem. Its function is, therefore, analogous to that of sub-

routine SUN for solar emission and empioyo similar logic. The

computation is again controlled by the orbit type (IORB) as follows.

IORB

1 or 2	 Trace NRP rays at each location.

3	 Trace NRP rays at each location but divide them

equally among NSPIN spin orientations.

Note that rays are traced at every location even for IORB = 2

(gravity gradient) since planet reflection is location dependent

for all orbit types.

PTRAK (ALPHA, ISPIN)

Functions

Performs the ray tracing from the planet.

Call Arguments:

ALPHA = orbital angle at current location.

ISPIN = spin orientation number.

e



Description:

PTRAK is called once by subroutine PLANET for each orbital

location to perform the ray tracing from the planet. The overall

logic is similar to that found in subroutine STRAK but the compu-

tations are somewhat more complex due mainly to planet emitted

ra,-s not having a constant direction. The equations used in this

routine are derived in Appendix 5. The flowchart which follows

illustrates the procedure used in STRAK where

NR = ray number,

NRP = total number of rays to be traced,

TRP = next region in the path of a ray„

Some of the boxes in the flowchart deserve some additional comments

and these have been identified by letters.

Box Ao	 The area of the planet surface visible to the vehicle

is determined and the origin of a ray is picked at

random within this area.

Box B.	 The direction of a ray is computed by picking a random

point to shoot at within the imaginary vehi^le sphere.

That point and the origin point of the ray determine

the ray's direction cosines.

Box Co	 Both the planet emission and planet reflection energies

are supplied to SATREF. The ray to be reflected from

the vehicle is then treated as a single ray but having

the above two energy components.

6
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IN =I

-T --e$
answer

'omp.JC other c on SMOS uSCB

in enenv,lm Po$ i +ion equn,ion5

NR=1

omputC STa,-trig Point on ?0 - —t]

COmp^fO direction	 V"1 J B
CO - ener gy,3y oY YY1H

y
^tr4ce Y4 to next regionIRP^CALL GI)aL

does ml W+ vehKlf ?

Yes

Is IRP trek ,SPAYenT? Yes
No

Score. i tMMO T ene_ r r_5y
P	

rI `j

Wnet em^igen fnr region SRY

l
Can orl5mal Point or\ Q^anet yes cam Pete enen L)	 $CwC
rei lrci 5unlIyht to vC'nidf ?	 of reflected rat	 planes

emmti fvom
A for rfgIOK IRP

SAT FFf)

No

NR ° NK+_	 '— —'—

NR> NRP

Yes

jCompute 4hsorbed energy +or 1

eacfi c mbmation of region
and wvlectlon coe4fcient Set

END

PTRAK Flowchart
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SATREF (IRP, XP, E, EREF)

Function:

Performs ray tracing for vehicle reflected rays.

Call Arguments:

IRP = reflecting region number.

XP = reflection point on IRP.

E,EREF = energy components of the incoming ray. If called

from STRAK, E = 0 and EREF = incident solar energy. If called

from PTRAK, E = energy from direct planet emission and EREF =

energy from planet reflection.

Description:

SATREF traces a primary ray through a series of vehicle

reflections. It is called by either STRAK (solar rays) or PTRAK

(planet rays) each time a ray is to be reflected. The routine is

divided into two independent sections, the first of which greats

specular reflections while the second handles diffuse reflection.

The property of the primary reflecting surface (IRP) determines

which section is entered.

Specular Reflection - The ray is reflected off the primary surface

such that the angles of incidence and reflection are equal. Mul-

tiple reflections are permitted by continuing to track and reflect

the ray until one of the following conditions occurs.

a) The ray 'escapes' from the vehicle.

b) The reflected ray strikes a diffusing surface.

c) The ray has undergone 5 specular reflections.

E
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During the tracking, a list of successive regions hit by the ray

is built up. After the ray is terminated, the routine steps

through this list, computing incident, absorbed, and reflected

energies for each region and reflection coefficient set.

Diffuse Reflection - If the primary reflector (IRP) is a diffusinc;

surface, the routine traces NRDIFF rays from the reflection point,

where NRDIFF is given as input. During input processing (sub-

routine SHADOW) a set of NRDIFF angular bins was established

relative to the surface normal and one ray is emitted in each of

these bins. In addition, the fraction of reflected energy as a

function of bin angle was computed by SHADOW. The energy of the

reflected ray is then simply the product of (incident energy) X

(fraction emitted in bin) X (reflection coefficient). This energy

is actually the sum of the contributions from E and EREF.

The mathematical formulation of suAroutine SATREF is given

in Appendix 6 . A flowchart is shown below with the following

variable definitions.

IRP = next region in ray's path (initial value is the

primary reflecting region).

NREF = a counter on the number of specular reflections.

IRREF(NREF) = region hit by the ray at the NREFth reflection.

IDIFF = diffuse ray number.

NRDIFF = total diffuse rays to be emitted.
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Yes	 Yes y

tornputt en2r9; far each reflection
Coeffiaent set for each valv+_ of

IRREF{NREF^^ Starting w its	 if
NREF =2

TEND I

SATREF Flowchart
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Appendix 1 - Rotation of Coordinates

The problem is to define a point in space (x,y,z) as a

function of a given vector W. The resulting equations for (x,y,z)

are required by several routines in the program. For example,

STRAK uses the results to pick a point on the solar firing plane

relative to the direction cosines of the line joining the vehicle

and sun.

The required equations can be derived by rotating the origi-

nal X,Y,Z coordinate system into a primed system X',Y',Z' such

that the Z' axis points along the vector W. This is illustrated

below in two dimentions.

a

The coordinates of the point (x,y,z) in the unprimed can be

obtained from the following set of relationships for a generalized

rotation of coordinates.

x= x' cos d l+y' coso( 2 +z' cos C^ 3

y= x' cos P 1+y' cos !a 2+z' cos 9 3
z = x'cos *yl+y'cosX2+z'cosY3

where (x',y',z') are the coordinates of the point in the primed

system and v' f, J are the angles between the primed and unprimed

60



axes. These angles are defined as follows.

Unprimed Axes

X	 Y	 Z

X' d i 0+
Y,

Y I of 2 02 Y2

Z 1 C-2(3 03 Y3

The problem, then, is to derive expressions ford ,P ,V .

The primed axes, normalized to unit vectors, can be written

as

X= x - WxP-'	
Y , [71K]

F- Wx 	 4 1-WZ	
^^=

x

where Wx is the X component of W.

Since Z' has components Wx, Wy , Wz) the vector product CZ'X,

can be evaluated as

[Z' X] = Wx Wy W - o + W	 - Wyk
o 0

Now, letting C1 =	 1-Wx 2 , the cosines of o(, 	 are given by

the following exp.°essions.

E
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i

Co5o( i = x • X =
X. )( -   

W^ 
• x =	 --	

x
C,	 C

'	 R	 ► y	 x•Y- wx^^ y	 _ V Wy

C,	 C,

Cos	 x	 x•? - WK^^'	 - wx We
C,	 Co

W,, y • X ^-wyk•X
Cos o( 2 - Y 

I
. X = 

C,

CoS(112	 Y• Y = w 	 y - wy-k	 = wa
C,	 c,

COS Y,
 Y'• ^ _	 ^' - wy k .	 _ _ wy

C,	 C,

cos	 Wx

Cos ^3 - a ' Y -	 W y

cos Y3 = i. Z- = W7-
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The original equations for (x,y,z) can now be written in

terms of W.

X ' X' I-WX +	 W x
	

x141 + )' Cz

^ =	 WWY \ +yOf W 
w

%^+ 'Wr = X'c3 + C4 } 3 1 CS'
TI

- x wxW	 + `^ " 
WW ^l + WE _ 	 C6 +  C7 + 

3 C8

X	 x /

The 8 constants C i are computed by subroutine CMAKER for any
given set Wx, Wy, Wz.

The values of x',y',z' will depend on the particular appli-

cation but, in general, are given by the standard equations for

a point in spherical coordinates.

x' = S sin a cos

y' = S sine sin 4)

z' = R

where the variables are defined by the following figure

( X"^ ' V

^^ s

_I^^	 e
w	 _
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AEpendix 2 - Flight Time in Orbit

The problem is to compute the vehicle flight time between

perigee and any orbital angle of . The variables used in the

derivation are defined as follows.

t = time at angle d

to = time at of = o

P = period of orbit

e = eccentricity of orbit

Lp = altitude at perigee (measured from center of planet)

La = altitude at apogee (measured from center of planet)

A = altitude at angle d (measured from center of planet)

a = semi-major axis = (La+Lp)/2

E = an angle referred to as the 'eccentric anomaly' and

defined by the relationship

cos E _ (a-A)/ea.	 (1)

The following figure illustrates the geometry.

n circle of rradtus Q.
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(3)

(4)

6

7

using Kepler's equation for the orbital flight time, we have

(t-to) = 2TT (E-e sin E).
	 (2)

All that is required is to convert the above equation to a function
of d .

We, first, define the eccentricity as

e = (La-Lp)/(La+Lp).

Then, substituting for a and E into equation (1) we have

cos E = (La +L1.1- 2A) /(La-Lp)
But, from the polar^ equation of an ellipse

A = a'(i + e2 ) -	 2 La Lp

1 - e coso(	 (La+ Lp) + ( La-Lp) US

Substituting for A in equation (3) gives

Cos E =	 I (LA+ Lp)-	 4 La LPw
(La - Lp)	 (La+Lp) +(LA - Lp) cos d

Than, since

E _ cos-1 (cos E)	 and

sin E = (1-cos 2E)' ,

Kepler's equation can be put in terms of d and the three input

constants P, La and Lp.
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Iii subroutine TIMER, the quantity dt is computed, where dt

is the flight time from 0 C 1 to a 1 . This is done simply by

evaluating Kepler's equation at the two angles and taking the

difference.
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A.	 Find the Direction Cos
Tor an mart a1 orbit

s of the Satellite-Planet Line

(m)o)

x 3 - Deri
	

the Satellite-Sun-Planet Orientations
Different Or is

Consider the following figure, where the satt]lite is at

point x with an orbital angle al.

The main problem is to derive the coordinates at x as a

function of 0( , given
a) the direction cosines of the major axis = w

b) altitude at perigee (from planet center) = Lp

c) altitude at apogee (from planet center) = La

d) direction cosines of normal to orbital plane = n

The point x in vector notation is given by

X = P + EB + (-w) (c+d)
	

(1)

where E = w x n.

From the above figure, it is obvious that

a = (La+Lp)/2

C = ( La-Lp ) /2
B = A sin a(

D = A boso(
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Also the point P at the center of the ellipse is equal to

wa =	 W(La+Lp).

Substituting for P, C, B, D in equation (1) gives

X = E (A sins ) -w
1

( 2 " z tAtosoc 	 - 24 + 2P^1

After combining terms

X = E (A sin« ) +w(Lp-A cos d ) .	 (2)

The definition of E gives

_	 i j k
E = w x n = wxwywz = (wynz-wzny)i+(wznx-wxnz)j+(wxriy-wynx)k

nxnynz

The components of equation (2) are now obtained by substituting

the i, j, k components of E. Thus,,

X = (wynz-wzny) (A

y = (w nx-wxnz ) (A

Z = (wxny-wynx) (A

Having defined the

derive the direction co;

point F. First, define

F X +(WPA)A .

sin oc) +wx (Lp-A

sins)+wy(Lp-A

sinCK )+Wz (Lp-A

point X, it is

nines WPA of tho

the point F as

cos PC )

cos of )

cos (c)	 (3)

now a simple matter to

line from point X to

Then

WPA = (F-X)/A.

But F can also be written as

F = Lpw.

68



Thus,

WPA = (Lpw-x);A.

Finally, substituting for x from equation (3) we get for the

three components of WPA

I

WPAX = wX cos c<

WPAy = W  cos of

WPAz = wz cos of

• (wzny-wvnz) sin o<

• (wXnz-v. 7 11x j sin of

• (wynx-wXny ) sin oC

69
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B.	 Find the D
	

s of the Satellite-Sun .Line for
as Gravity

Consider the following figure which defines the variables

in the derivation.

CcwAinaie aRl6
atw"Sit at

For clarity, only the Z and Z' axes are shown in the above figure

and the details of the derivation will be given for the Z compo-

nents of the direction cosines.

The problem is to determine the direction cosines of the

satellite-sun line at location cK with respect to the Z' axis.

Let this quantity be SZ.

The following quantities are given:

a) direction cosines of the major axis = w

b) direction cosines of sun at perigee (d =o) = S

c) direction cosines of earth at d = W

d) direction cosines of normal to orbital plane = N
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In general, the angle ^ between two vectors V and V' is

given by

cos ^ = VxVX+VyVy+VZVZ where

Vx = direction cosines of V with respect to the x axis, etc.

Then, the cosine of the angle between S and the Z' axis is

SZ = SxZX+SyZy +SzZZ where 	 (1)

ZX, Zy, ZZ = direction cosines of Z' with respect to the original

x, y, z axes.

Since Sx, Sy, Sz are given, the problem is to find Zg, `Ly, Zz.

In order to solve for the three components of the Z' axis, the

following three equations are required.

1. We first make -is of the fact that for a gravity

gradient orbit the relationship between w and Z

is the same as between W and V. Thus, the

cosine of the angle between W and Z' = wz. Then

WZ = WXZX+WyZy+W Z Zz	 (2)

2. Also note that the orientation of the normal (N)

is invariant. Thus, N Z = cosine of the angle

between N and Z'

NZ = NXZX+NyZy+NZ Zz	 (3)

3. Finally, let M Z be the cosine of the angle

between w and Z'. Then

MZ = wxZX+wyZy+WZ Zz	 (4)
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To find MZ let

cos	 = cosine of the angle between W and Z' = w 

cos	 cosine of the angle between N and Z' = NZ

cost( = cosine of the angle between w and W.

Using solid trigonometry we get

MZ = cos of cosA + sino( sine cos 0+90)

where cos o = cos X /sin	 and cos (0+90) _ - sin i:^

Thus

2
cos2 4 = N2

I - W2

'/t _	 - iL - N IL  ^^12
sin ca = (I-  Cos 

2	 w_J^ I 
w^

Str► lin _	 I - k► - N' .

Substitution in the above equation for MZ gives

MZ = wZ cos c( - sin of (1-w2_NZ)

Solving equations (2), (3), and (4) simultaneously gives the

following set of equations for ZX, Zy, ZZ.

Z^ __ AlMZ+B1NZ+ClWZ
x

Alwx+B1NX+CIWX	 (5)
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ZI - 
A2MZ+B2NZ+C2wZ

y

	

	 (6)
A2wy+B2Ny+C2Wy

I	 A3MZ+B3NZ+C3wZ

ZZ	 A3wZ+B3NZ+C3WZ	
(7)

The desired quantity SZ is obtained by substitution into

equation (1). The constants in these equations are defined as

follows:

Al = (WZNy-WyNZ)

Bl = (WywZ-WZwy)

Cl = (WyNZ-WZNy)

A2 = (WXNZ-WZNx)

B2 = (WZWX-WxWZ)

C2 = (WZNx-WXNZ)

A3 = (WXNy-WyNX)

B3 = Mywx-Wxwy)

C3 = (WyNX -WXNy)

The x, y components of S' are obtained from

SX = SXXX+SyXy+SZXz

Sy = SxYX+SyYyfSZYZ.

The equations analogous to (5), (6), (7) for X' and Y' are

obtained from the same sort of analysis as above for Z'. The

constants A, B, C are identical and the general form of the

equations are



6

r

	 AiMx+BiNx+Ciwx
X.	

Aiwi+BiNi+CiWi

Yr_ Aimy+BiNy+Ciw.^,

1	 Aiwi+BiNi+CiWi

where the subscripts i = 1, 2, 3 refer to the x, y, z components,

respectively.
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C.	 Find Direction Cosines of Satellite-Sun Line for a Spin
Stabilized Or it

A spin stabilized orbit is merely an inertial orbit with the

satellite rotating about the Z axis. Thus, after rotating through

an angle 8 , the original x, y, z coordinate axes will have rotated

into a new set of coordinates x', y^, z^	 This is shown below.

)1,*,

Given that the original direction cosines of the sun (at 8 =0) are

SX , Sy, Sz (the unit vector S), the problem is to find the direc-

tion cosines with respect to x', y 0 , z Let these be called SX,

Sy, SZ and let

XX = X component of the X I axis

Xy = Y component of the X I axis

XZ = Z component of the X I axis

with similar definitions for the Y 1 and Z 	 axes.

Then
L

Sx = cosine of angle
,

between S and X	 axis =
t	 !	 r

SXXx+SyXy+SZXZ

Sy = cosine of angle between S and Y , axis = SXYX+SyYI+SZYZ

SZ = cosine of angle between S and Z' axis = SxZX+SyZy+SZZZ
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•

From the above figure it is obvious that

XX = COs
	

yX =-sin e
	

ZX = 0

X^ = sin e
	

Yy = Cosa
	

Zy = 0

XZ = 0
	

yZ = 0
	

ZX = 1

7

SX = SX Cos 6 + Sy sin ,9

Sy = -SX sin 8 + Sy Cos 6

SZ = S 
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D.	 Find Direction Cosines of Satellite-Planet Line for Spin

Iet the direction cosines of the planet at a rotation angle B

be WPAX, WPAy, WPAy. The same analysis as given in part C results

in the following set of equations.

WPAX = WPAX cos() + WPAy sin()

WPA I = -WPAX sin d) + WPAy cos e

WPAZ = WPAZ

where WPAXFYFZ are the direction cosines of the planet at () = 0.

These are derived in part A as a function of orbital angle O( .



I 

•

Appendix 4inating aRay From the Sun

A.	 Picking a Point of Origin

The Solar source is considered to be a set of plane

parallel rays originating from a plane which i,s perpendicular

to the satellite-sun line. Let the direction cosines of this

line (WSA) be WSAx, WSAy, WSA* . The solar plane will be estab-

lished at a distance SRAD from the origin of coordinates, where

SRAD is the radius of the imaginary sphere enclosing the satel-

lite. We first rotate the (X,Y,Z) coordinate system into a

new system (X', Y', Z') such that the Z' axis points along the

vector WSA. This is shown in the following figure.

The problem is to find the coordinates of the point P

relative to the original (X,Y,Z) system. To do this we apply

the equations for a coordinate rotation derived in Appendix 1.

Thus,

X = X'C 1 + Z'CZ

Y = X^C 3 + Y'C 4 + ZIC5

Z = X^C 6 + Y'C 7 + Z'C8
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Where the C's ,ire functions of WPAx, WPAy, WPA M and are de-

fined in Appendix 1. The parameters X', Y', Z' are defined

as follows

X' = S sine cos 4

Y' = S sine sin o

Z' = 5RAD

We now pick a random point per unit area on the solar

plane as follows.

1. Pick a value of R between O and SRAD

R =,r SRAD, where 5, is a random number between 0 and 1.

But, from the above figure R = S sin e . Thus,

(S sine ) _ Ts-, SRAD

2. Pick an azimuthal angle 4 at random

= Vr^z , where ^2 is a second random number.

Thus
X'=	 SRA5) Cos (21T f2l

y'. (,rF, SRAD) SIN (2TT f %)

Z^ = 5RAD

Substitution of these value into the equations for X,Y,Z

then gives the required coordinates of the point P.
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B. Finding the Direction of the Ray

The ray is simply fired back toward the satellite with

direction cosines	 - WSAx, -WSAy, -WSA.2

C. Computing the Energy of the Ray

The energy of each ray is given by

E = So Ir SRAD2
N

So = Solar constant (energy/area)

N = number of rays to be fired from the sun.

The numerator, of course, is the total energy fired from

the solar plane within the imaginary satellite sphere. Divid-

ing by N merely divides this energy equally among all rays.

c
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Appendix 5 - Originating a Ray From the Planet

A.	 Picking the Point of Origin and Direction for a Ray

The geometry of the problem is shown in the following

figure.

X = point to be picked on the planet

H = altitude above planet surface at orbit angle Ok

R = radius of planet

S = distance from satellite to X

The point X will be computed such that the angle l :!^ 'Vmax.

The altitude H can be defined immediately from equation

(4) of Appendix 2. Thus,

H=	 2L4LP	 - R
(La + Lp) + (La- Lp)ccsa

La , Lp = altitudes (from the planet center) at apogee and

perigee, respectively.

(1)
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The value of Y max is also easily obtained, since

Cos Amax = R AR+H)	 (Z)

and
1/2.

Cos ^, X - Cos(90 -4„4x) : Si n Omax - (1-Co52i:^n14xl

Thus

max -COS Y	 (H'+ 2 RH) )
 
"/(R+ H)	

(3)

We next compute 6 from the law of sines.

R/SInY = (R+-H)/6In6

CosA = 1- S^nZg^	 R/:- ( 
R? (R+H)^'S'n'' Y) 1/2

=	 J
f 

Cos() = ^-- I RZ^- (R+H)2(I- f05'.Y) 1 	 4)
R L	 J

We are now in a position to define the initial conditions

for a ray. First rotate the coordinate system into a primed

system such that the Z' axis points toward the planet center.

Then, using the results of Appendix 1, the point X on the

planet is defined as

X = X'C l + Z'C2

Y = X'C3 + Y'C4 + Z`^5
	

(5)

Z = X'C 6 + Y'C7 + Z'C8

where the C's are functions of the direction cosines of the

satellite-planet line. The V. Y', Z' values are defined as

X' = S sin "if cos

Y' = S sin I sin

Z' = S cos W

where f is the azimuthal angle around the Z' axis.
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It is nuw necessary to determine S, I and ^.

The angle	 is chosen at random such that

P= 271

where S is a random number from 0 to 1.

Using the law of cosines

52= R 2+ (R+N)2 - 2R(R+H)cos4 .
Rearranging terms gives

[14
	

Y

5 =	 24 2R(R+H)(1- CC6 )g .
2
	 (6)

From the law of sines

Si n I = R SIV16	 (^ )
5

Thus, once 4^ is determined, S can be computed from equation (6)

and I is obtained from equation (7).

The angle 4$ is chosen such that cos o is random between

cos 0 max (equation ( 2)) and 1. Thus,

cosi$= GOS^max 4- ^ ( ( - COS- (^mAx)

where S is a new random number.

The point on the planet ( X,Y,Z) can then be computed and the

direction cosines along the line S are given by

WSJ = X/S

WS2 = Y/S

WS3 = Z/S

In theory, the ray could now be fired from (X,Y,Z) in the

direction -WS. There are two things wrong with this, however.

Due to the finite precision capabilities of the computer,

it is unwise to fire a ray at a relatively small object (of radius r)
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from a very large distance ( S). The origin of the ray must,

therefore, be moved closer to the satellite. To accomplish this,

a disc is established perpendicular to S, a distance r from the

satellite center. Secondly, the ray should not be fired from the

center of this disc since it would always be aimed at the center

of the satellite. Instead, the starting position of the ray on

the disc should be picked randomly with area. This is done by

rotating the coordinate system into a double primed system with

Z" axis directed along S. A random starting point on the disc

is then picked in the new system as follows.

X" c r 4-T, co 5 (2-Tr ^,, )

Y to _ rr 91n (zw ^' j
a" = r

The starting point in the unprimed system (Xo ,Yo ,Zo ) is then

computed from equations similar to equation (5) (i.e., Xo=X"Cl+Z"C2,etc.)

The C's are a new set of constants computed from WS.
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B.	 Computing the Energy of Ray Emitted by the Planet

Referring to the figure below .,we first compute the energy

emitted by an element of area on the planet AA at an angle 6

in the interval de.

O _Mdre2I I I";-1	 3-P normal to dA

The energy emAtee &n +he shade& ring is

o=e = Be &A Cos()

4I9 = energy/solid angle in 6 direction= dE6/a_CL

Be = energy/area in e direction•

From Lambert's Law

are = AT, COSG where

OZn = energy/solid angle in normal direction (6 = O) .

Thus,

Be = o=n/JA = Const"t .

The energy is therefore
AICn

dEe= a=e d11 = BB dArose dlt :	 dA dACosaAc-

But the solid angle subtended by the shaded ring is

ajj = 2-IT stn6 d®

Thus,	 LlZn
dEe = AA ^dA = cosh 51n6 d8

The total energy, E7or is then
TOT	

QIn	
V012.	 ern

-T OT _ ^o dEe = 2-W()d A j cosh S ► n 6 d® 2^ (d A )dA 
2

0

ETOT
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Therefore, &I n is equal to ETo'rl--m .

Lambert's Law now becomes

Ale = ETor tosA
IT

or

AEG = ETOT cosh A-a
Ir

where AXL %% now +6e-

solid angle subtended by the imaginary satellite sphere of

2 2radius r. Since this is equal to '7Tr/S, the energy incident

on the satellite sphere is 	 2r
A. E s= ETcT cos 8 s

Now let E 7or = Q A w6tre
Q = energy radiated/surface area = T T'4

A = area of planet surface visible to the satellite

= Stefan - Boltzmann constant

The total energv emitted at the satellite is then
2

oEe ^a-T4)Acos6^^s^

The energy of each ray is merely A E* divided by the number of

rays to be fired from the planet. The value of cos 9 is computed

from equation (4) derived earlier, so that only A is still to be

computed. Referring to the figure at the beginning of this

appendix, we see that the visible area can be written in terms

of R and 4 . Thus,

J, k: 2H RZ Sin OP A$
o

411q = (d A = 21t R z COS 41
max	 ^mnx

21TR 
z (1 Cos Cmax .

But from equation (2), cos 4 )mox = R/(R+H) so that
A 2TrR2 H`(R+14)	 .
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C.	 Determine if a Point on the planet Can Reflect Sunlight

Once a ray has been fired from the planet, it is necessary

to determine if the point where the ray originated from on the

planet can reflect sunlight to the satellite. The variables

for this calculation are defined by the following figure.

Satellite
N

N=normal to planet at x,y,z

	

H	 S=direction of satellite-sun line

	

W	 W=direction of satellite-planet line

N,S,W are unit vectors whose

	

R R	 components are direction cosines

The angle Oss between N and S is given by

cos 65H = NxSy + N, 5y + N L, Sa where

5

Nx = X-Xe
R

Xe = (R+H)Wx

N  = Y-Ye
R

Ye = ( R+H) WY

NZ = Z-Ze

R

Ze = ( R+H)Wz

and

Now, by inspection one can see that a point on the planet can

only reflect sunlight to the satellite if cos Gsm > 0

This test is made in the code and if cos GS" is positive, the

energy of the reflected ray is computed.
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D.	 Computing the Enemy of a Planet-Reflected Ray

The energy of planet reflected rays is analogous to

equation (8) for planet radiation energy except for the follow-

ing changes.

(1) A new source term is needed. This is equal to Sc ap

where So is the solar constant and o(p is the reflection

coefficient (albedo) of the planet.

(2) A Co58s n factor must be inserted to account for the

projected visible area on the planet surface.

Thus, the reflected energy Eref is
\\
2

E ref = L • (so ar)A CoSG cos45N C BSIN
Where N is the total number of rays emitted from the planet and

A is the total area of the planet visible to the satellite.

We can show that ArOT /NTOT is the correct factor to use, even

for planet reflection, in the following way. The correct factor

should actually be

reflecting area	 = ARef
number of reflected rays 	 NRef .

But	
A ref = ATOT	

ref ).

Thus,
Aref

— 
AA	 /l/ 

N ref	 1	 _ AToT
Nref	

TcT 
` N Tor (^ Nlef^ NToT
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Appendix 6 - Energy and Direction of Reflected

Rays From the Satellite

A.	 Specular Reflection

The problem is to derive expressions for the direction

cosines of a ray reflected from the surface of the satellite.

The geometry is defined by the following figures.

Wd 	 sI

projection of WR

WB = direction of incident ray

WR = direction of reflected ray

P	 = reflection point on satellite surface

WN = direction of normal to surface at point P

6 = angle of incidence

4 = angle of reflection

^i = angle between the X  axis and the projection of the

incident ray on the surface

Pr = angle between the X I axis and the projection of the

reflected ray on the surface
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The coordinate axes have been rotated into a primed system

(x',y',z') such that the z' axis points along the normal WN. In

addition, the origin of coordinates has been translated to the

reflection point P. The equations of rotation, derived in
Appendix 1, are then

(X-Px ) = X'C1+Z'C2

(Y-Py) = X'C3+Y'C4+Z'CS

(Z-Pz) = X'C6+Y'C 7 +Z'C8	(1)

where (X,Y,Z,) are the coordinates of any point on the reflected

ray. The c's, also defined in Appendix 1, are functions of the

direction cosines of the normal (WNx , WNy, WN Z). If (X,Y,Z) is

assumed to be a unit distance from P, the equations for (X',Y',Z')

become

X' = sin	 cos Pr
Y' = sin	 sin Pi-
Z' = cos o
	

(2)

Thus, if X',Y',Z' are known, they can be substituted into equation

set (1) to compute , (X-Px), etc. But, since (X,Y,Z) is a unit

distance from P, the left sides of equations (1) are merely the

direction cosines of the reflected ray. Thus,

WRx = (X-Px)	 WRy r (Y-Py )	 WRZ = (Z-Pz).

The problem then is to derive expressions for + and pr, subject

to the constraints that the angle of incidence equals the angle

of reflection and that WB. WN, and WR all lie in a plane.
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To compute 4),  we first define the cosine of the angle

between WB and W. Since the incident ray points away from the

normal, this angle is actually (180-e ). Thus

cos (180-6 ) = -cose = WB•WN

and, since 4) = 9 ,

cos _ -WB • WN = -(WBXWNX+WByWNy+WBZWNZ)

sin4 _ (1-cos 2 o )

To define Pr , we establish a poin"L on the incident ray a unit

distance from P. Then a set of equations for the incident ray

analogous to (1) and (2) can be established, where (X,Y,Z) lie

on the incident ray andfj and Pz replace 4 and 01-  Using the

first equation of set (1)

(X-PX ) = -WBX = Cl (sin E) cos ^i ) + C2 cos e

But, since WB, WN, WR lie in the same plane, Or = 180+0Z .

Thus, cos P; = -cos Pr. Substituting for cos PZ in the above
equation, setting 6 =4b and solving for cos Pr gives

Cos^r = W6x + C2. 005 4
C, Sin4s

Using the second equation of set (1) and applying a similar

analysis gives

sinpr= WBy - Cs SM4C401-+CScos d
Cw S1n 95
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Thus, having solved for cos 0 , sin (^ , cos 11f , sin Pi. , the

direction cosines of the reflected ray can be computed from

equation set (1).

The energy of the reflected ray is simply the product of the

incident energy and the reflection coefficient of the surface.

r
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B.	 Diffuse Reflection

The direction, WR, of a diffuse ray also involves defining

the angles 4 and Pr . In this case, however, Pr is chosen at

random. Thus, ^r = 21T^ , where S is a random number between 0

and 1. The reflection angle 0 is chosen from a predetermined set
of angular 'bins'. Once 0 and Pr are defined, the components of
WR are computed in the same manner as for specular reflection.

In the program, 4> is computed in the following way. A set

of angular bins of equal width are established,wi.th the number

of bins equal to the number of rays to be emitted per diffuse

reflection (an input quantity). These bins extend from 0 to 900

with respect to the surface normal. One ray is emitted in each

b

bin with the angle 4 within the bin being chosen at random.

if n rays are to be emitted, the width of each bin is 7r/2n.

angle 4)L for the ith ray is then

k - n (Z- i ^ i- ?r2n

Thus,

The

where % is a random number.

Although the number of rays are uniformly distributed with

angle, the energy of each ray is computed so as to give the correct

energy distribution. The energy equation is derived as follows.

Let dE4, be the energy reflected at an angle 4;^ . Then

A f 4,= ^soi d angle) CSolid a„yle) = &T P Ck	 .
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Using Lambert's Law this becomes

dE jo = (AIn cos ^ )d.fL where o In is the energy per unit

solid angle along the normal.

In Appendix 5, Part B ,, it was shown that A In = FTOT/Tr

where EToT is the total reflected energy.

Since dA = 2 T sino d(^

dE o = C E- O COS 0 (2Tt' O a(b)

Therefore, the energy reflected in the angular bin C to 4 2 is

0:	 02.

Jd^^ = 2 GOT cosq6srno dO = EToT	 2C- Sin 20 I .

This equation is used to determine the energy of each diffuse ray,

where ET,,T = incident energy x surface reflection coefficient. To

save needless computing the size of the angular bins and the

A sin 2 o factor for each bin are calculated in subroutine SHADOW

and stored for later use by subroutine SATREF.

4
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