General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

HAWAII INSTITUTE OF GEOPHYSICS UNIVERSITY OF HAWAII

NATIONAL GEODETIC SATELLITE PROGRAM (NGSP) STA TION SOLUTIONS

By
A. Mancini and L. Gambino
Research Associates Hawaii Institute of Geophysics
J. Reece and J. Richardson Geonautics, Incorporated

NATIONAL GEODETIC SATELLITE PROGRAM (NGSP)
STATION SOLUTIONS

Presented in this report are the results and analysis derived from a short-arc, orbital solution of the twelve stations, Phase I, PAGEOS network and the results of a geometric reduction combining the BC-4 and Baker-Nunn networks in a simultaneous adjustment.

Comparisons of the derived station solutions from the short-arc reductions are made with some of the published NWL doppler derived station coordinates and with some of the Ohio State University solutions. It is believed that a station accuracy of $\pm 15 \mathrm{~m}$. has been achieved. Only preliminary comparisons could be made with the geometric solution since the problem of equation instability prevented an adequate solution.

Tables showing the Root Mean Square (RMS) of the orbital solution indicates that there is no statistical contradiction with the results obtained from the orthogonal polynomial fitting process, which was done at an earlier date for the initial data screening prior to the geodetic station solutions. Other tables are presented which give the final position and velocity vectors for all orbits used in the 12 station, simultaneous, BC-4 orbital solution. A representative sample of the orbital correlation matrix is also presented in the report.

The simultaneous, BC-4 orbital solvtion involved a total of 426 parameters using approximately 24,000 observations. Since there were an insufficient number of common observations between the BC-4 and Baker-Nunn networks the two networks were tied together through local surveys by introducing four distance constraints. The results of the adjustment produced condition numbers from the normal equation matrix which were very large. The condition numbers indicate the degree of ill-conditioning inherent in the coefficient matrix of the normal equations. The lack of good results from this adjustment is attributed to weak geometry and excessively large weights used to hold some of the parameters.

The technique of correcting observations for parallactic refraction, phase angle, and satellite abberration are discussed. Chebyshev polynomials were utilized to produce a set of correction coefficients which could be used to interpolate for corrections at any time along the satellite trace.
Page
Title Page
Abstract iii
Table of Contents v

1. INTRODUCTION 1
2. PAGEOS SHOR T ARC SOLUTION 2
2.1 OBSERVATIONS 2
3. 2 METHOD OF REDUCTION 2
4. 3 RESULTS 4
5. 3. 1 Starting Coordinates 4
1. 3. 2 Initial Orbital Elements 5
1. 3. 3 Observation \& Station Sigmas 5
1. 3. 4 Preliminary Solutions 8
1. 3. 5 Final Adjustment by Short Arcs 11
2.3.6 Orbit Residuals 26
2.3.7 Correlation 26
1. 3.8 Comparison of Results 33
2. GEOMETRICAL SOLUTION 39
3.1 GENERAL 39
3.2 GENERATING SIMULTANEOUS OBSERVATIONS 39
3.3 INTERSTATION DIRECTIONS 41
3.4 TEST TRIANGLE SOLUTION 46
3. 5 COMBINED BC-4, BAKER NUNN SCLUTION 47
4. 5. 1 First Adjustment 47
3.5.2 Other Adjustments 49
REFERENCES 53
APPENDIX 55
Page
1. Local Coordinates of the BC-4 PAGEOS Sites 6
2. Starting Coordinates 7
3. Summary of BC-4 PALiEOS Data and Polynomial Fit 13-24
4. Corrections to Previsional Coordinates 25
5. Final Coordinates of Short Arc Orbital
Adjustment 27
6. Orbit Residuals 28-29
7. Orbit Residuals Grouped According to Stations 30
8. Finai Orbital Elements 31-32
9. Orbital Sigmas 36
10. Correlation Matrix: Orbit 2472 36
11. Correlation Matrix: Orbit 1235 37
12. Crbital Span 37
13. BC-4 Inter-Station Direction Solution Results 42
14. Residuals from Interstation Adjustment: Line 6007-6016 43-45
15. Geometric - Short Arc Comparison 46
FIGURES
16. Geometric Satellite Network (PAGEOS) 3
17. Networks Used in Individual Adjustments 10
18. Sequence of Computations for the Geometrical Solution 40
19. Combined SAO/BC-4 (Phase I) Networks 48

This report contains the esults of two different geodetic solutions from optical observations of PAGEOS and from simultaneous observations collected by the Baker-Nunn network of the Smithsonian Astrophysical Obser vatory. The first soluticn involved the simultaneous short arc adjustment of the PAGEOS traces and the second adjustment was generated from the inter station directions of the $B C-4$ sites and interstation directions between the Baker-Nunn stations. The sho $-t$ arc adjustment produced excellent results but the surface adjustment failed to converge.

Detailed information concerning the BC-4, PAGEOS data used in these investigations is contained in a previously published report, "Orthogonal Polynomial Representation of BC-4 Traces'", progress report Vol. 1, January 1969 [1]. Briefly, the results of that vork revealed the foilowing:

1) The majority of the PAGEOS traces were accurately represented by a 4th degree polynomial excent for high declination passes above 60 degrees,
2) The shorter traces, for either BC-4-300 or BC-4-450 cameras, required only a second degree polynomial,
3) The mean standard deviation of all polynomial representations was 1.7 arcsec in right ascension and 1.6 arc sec in declination,
4) The average sigmas for the BC-4-450 camera was 1.5 sec in right ascension and 1.4 sec in declination,
5) The average sigmas for the BC-4-300 camera was 2.0 sec in right ascension and 2.0 sec in declination and
6) The sigmas for both cameras correspond to an RMS of ± 3 microns at the scale of the photographic plate.

SECTION 2 PAGEOS SHOR T ARC SOLUTION ${ }^{\top}$

2.1 OBSERVATIONS

Observations used in this solution included all BC-4 camera data on the PAGEOS satellite available from the NASA Data Center. The observations were collected from the Phase I sites of the PAGEOS network, Figure 1, and were final reduced by the Coast and Geodetic Survey according to procedures given in Reference 2. The satellite directions are given for each image of the traces in terms of apparent right ascension and declination uncorrected for satellite parallax, phase angle, and aberration. The observational time is given in UT-1 system with corrections applied to refer the time to the adopted longitude of NAD relative to the Naval Observatory. The PAGEOS field work has progressed appreciably beyond the Phase I stage but the data from these other phases have not been deposited at the Data Center.

2.2 METHOD OF REDUCTION

The short arc solutions were obtained by using the NEO-EMBET (N Epoch Orbital Error Model Best Estimate of Trajectory) approach which was developed by DBA Systems, Inc. [3]. Unlike those data reduction methods where the orbit model is Keplerian or where it is represented by polynomials, the NEO-EMBET technique is carried out in a rectangular, inertial coordinate system resulting in three second order differential equations. The orbital integrator is that developed by Hartweil [4]. Hartwell deveioped the recursive analytic continuation technique wherein each coefficient of the power series is formed in terms of its predecessor. The series solution to the system of differential equations truncates the gravitational potential at $n=7$, excluding non-zonal terms. This technique of handling the orbital solution precludes singularities due to small orbital eccentricities and instability due to very short orbits.

NEO-EMBET uses two categories of parameters; namely, the inner loop parameters and the outer loop parameters. In general, the outer loop

Figure 1
GEOMETRIC SATELLITE NETWORK (PAGEOS)
parameters are those which are common over all satellite passes, and the inner loop parameters are those which change from pass to pass. The coordinates of the observing sites are the most common set of outer loop parameters and the six orbital elements are typical inner loop parameters. A large scale, simultaneous adjustment of inner and outer loop parameters becomes practical by taking advantage of the highly patterned system of normal equations. The inner loop parameters in the normal equation system are 6×6 block diagonal matrices. The patterning makes it feasible to solve virtually an unlimited number of orbits simultaneously with the station coordinates.

2. 3 RESULTS

2.3.1 Starting Coordinates

Since the BC-4 network was to be tied to the established Baker-Nunn net to produce a more extensive geodetic system, the local datum coordinates of the former were transformed to the SAO-C7 Geocentric System [5]. The quantities used to effect the datum shifts were the following:

$$
\begin{array}{ll}
\text { SAO-C7 }=\text { NAD }+ & {[X=-26 \mathrm{~m}, \mathrm{Y}=155 \mathrm{~m}, \mathrm{Z}=185 \mathrm{~m}]} \\
\text { SAO-C7 }=\text { ED }+ & {[X=-92 \mathrm{~m}, \mathrm{Y}=-132 \mathrm{~m}, Z=-143 \mathrm{~m}]} \\
\text { SAO-C7 }=\text { Old Haw. }+\quad & {[X=59 \mathrm{~m}, \mathrm{Y}=-263 \mathrm{~m}, Z=-203 \mathrm{~m}]} \tag{3}
\end{array}
$$

The stations receiving datum shift (1) were Beltsville (6002), Moses Lake (6003), and Shemya (6004); shift (2) was applied to stations Catania, Sicily (6016), Tromso, Norway (6006), and Mashhad, Iran (6015); and shift (3) was applied to station Maiui, Hawaii (6011). Stations Thule, Greenland (6001), Gigedo Islands, Mexico (6038), Lajes AFB, Azores (6007), and Wake Island (6012) were either astronomic or map-scaled positions and received no shift to C7. The last station, Hohenpeissenberg, W. Germany, was defined on the Old Bavarian Geodetic Datum and it was shifted by $\mathrm{X}=620 \mathrm{~m}, \mathrm{Y}=4 \mathrm{~m}$, and $Z=418 \mathrm{~m}$, to place it on the SAO-C7 system. The local datum positions and the SAO-C7 starting positions for these stations are given in Tables 1 and 2. The C7 system was further enforced through the following SAO earth constants:

$$
\begin{aligned}
& a_{e}=6378142 \mathrm{~m} \text {, tllipsoidal semi-major axis, } \\
& f^{-1}=298.255, \quad \text { ellipsoidal flattening, } \\
& \text { GM }=3.986009 \times 10^{14} \mathrm{~m}^{3} \mathrm{sec}^{-2} \text {, Constant of gravitation times } \\
& \text { the Earth's mass. } \\
& J_{2}=1082.639 \times 10^{-6} \\
& J_{3}=-2.565 \times 10^{-6} \\
& J_{4}=-1.608 \times 10^{-6} \quad \text { Zonal coefficients of the } \\
& J_{5}=-0.174 \times 10^{-6} \\
& J_{6}=0.542 \times 10^{-6} \\
& J_{7}=-0.419 \times 10^{-6} \\
& \text { Earth's gravitational field. }
\end{aligned}
$$

The approximate position and velocity vectors for each orbit was obtained by selecting three simultaneous observations from two stations and geometrically intersecting these points to obtain the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ space position of the satellite. One point was taken at the center of the satellite trace and the other two points were taken at the two ends of the shortest arc. The position of the mid-point was used as the position vector of the orbit and differences $\frac{\Delta X}{\Delta t}, \frac{\Delta Y}{\Delta t}, \frac{\Delta Z}{\Delta t}, \Delta t=$ time increment, were used as average velocities. The station coordinates used for triangulating the orbit were the local datum positions, astros, or map-scaled locations as given in the NASA Station Directory and as shown in Table 1. The approximate orbital elements obtained in this manner were sufficiently well determined as not to require more than two or three iterations before converging to a final set.

2.3.3 Observation and Station Sigmas

The results of our orthogonal polynomial work [1] and results from other sources indicate that the RMS of the satellite traces should be 1.5 arc sec in the right ascension and declination for the BC-4 450 mm and 2.0 arc

TABLE 1
LOCAL COORDINATES OF THE BC-4 PAGEOS SITES
(PHASE 1 STATIONS)

Sta. No.	Sta. Name	Latitude (N)			Longitude			$h *(m)$	Datum
6001	Thule, Greenl and	76°	30^{\prime}	00'.000	291°	27^{\prime}	30.000E	215/	Astro
6002	Beitsville, Maryland	39	011	39.003	283	10	26.942E	44/45	NAD-27
6003	Moses Lake, Wash.	47	11	07"132	240	39	48.118 E	369/358	NAD-27
6004	Shemya, Alaska	52	42	54.:894	174	07	37.870E	35/-9	NAD-27
6006	Tromso, Norway	69	39	44.336	18	56	31.920E	106/	ED
6007	Azores	38	45	36.725	27	05	38.936W	52/-32	Local, Internat
6011	Hawaii; Maui	20	42	38.'561	203	44	28.529E	3048/	01d Hawaii
6012	Wake Is.	19	17	23.227	166	36	39.780E	2/	Local Astro, Int.
6015	Mashhad, Iran	36	14	29:527	59	37	42.729E	989/953	$\begin{aligned} & \text { ED 1950, } \\ & \text { Int. } \end{aligned}$
6016	Catania, Italy	37	26	42."628	15	02	47.308E	8/46	ED, Int.
6038	Socorro, Mex.		43	44.93		57	20.72E	21/-13	Astro.
6065	Peisen, W. Germany		48	07.139		01	29.507E	943/	01d Bavarian

* $\mathrm{h}(\mathrm{m})$: elevations in meters above mean sea level and above the ellipsoid, respectively.

TABLE 2
STARTING COORDINATES

Station	Latitude (N)			Longitude			Alt.itude (m)
$\begin{aligned} & 6001 \\ & \text { Thule, Greenland } \end{aligned}$	76°		00.00"	$291{ }^{\circ}$	27 '	30.00"	215
6002* Beltsville, Md.			39.33		10	27.36	10.4
6003* Moses Lake, Wash.			06.43	240	39	43.43	347
6004* Shemya, Alaska	52	42	50.02	174	07	29.80	78.4
$\begin{aligned} & \text { 6006* } \\ & \text { Tromso, Norway } \end{aligned}$			44.77	18	56	23.14	97.5
$\begin{aligned} & 6007 \\ & \text { Azores } \end{aligned}$	38		36.72	332	54	21.06	103.3
6011*	20		26.70	203	44	37.66	3059
6012			26.70			37.66	3059
Wake Island	19	17	23.23	166	36	39.78	23
$\begin{aligned} & 6015^{*} \\ & \text { Mashhad, Iran } \end{aligned}$	36	14	26.00	59	37	43.45	996
$\begin{aligned} & \text { 6016* } \\ & \text { Catania, Sicily } \end{aligned}$	37	26	38.54	15	02	43.10	17
6038 Gigedo, Mex.			44.93		02	39.28	-8
6065* Hohenpeissenberg W. Germany		48	03.76	11		24.01	954

* On the C7 System
sec for the BC-4-300mm system. In view of this and due to the fact that only every other image of the satellite trace was being used in the short-arc adjustment, a mean standard deviation of one second of arc was adopted for the observations of both cameras.

The starting C7 coordinates of the BC-4 sites were constrained by modest amounts as compared to the actual estimates of station accuracy published by SAO. A priori sigmas of 300 meters in geodetic latitude and longitude and 100 meters in ellipsoidal height were applied to astronomic stations Thule, Azores, Wake Island and Gigedo; 80 m in latitude, longitude and height were applied to stations Shemya, Tromso, Maui, Sicily, Mashhad, and Hohenpeissenberg; and 8 meters in the three position components was applied to Moses Lake. Station Beltsville (6002) served as the origin of the network and its coordinates were held fixed at the C7 values. The small sigmas of 8 m for Moses Lake were chosen so that they would correspond to a scale of approximately one part in 400,000 between it and the Beltsville station. This scale is compatible with the scale of the orbit provided by GM $=398601$ $\pm 1 \mathrm{~km}^{3} \mathrm{sec}^{-2}$.

The results of the adjustment proved that the above positional constraints were realistic. Only in two cases did the station corrections exceed one half of the value of the constraint. The exceptions were the astro station Gigedo which moved 399 meters northward and Mashhad which changed by 88 m and 83 m in geodetic latitude and longitude, respectively.

2. 3.4 Preliminary Solutions

All PAGEOS orbits qualified through the orthogonal polynomial fitting process were used in a single adjustment of the $12 \mathrm{BC}-4$ stations. A total of 609 parameters were carried in this solution; 576 for the 96 orbits and 33 parameters for the eleven stations. The solution required approximately 3 hours of CDC - 3800 computer time; including the on-line tabulations for two complete iterations. Approximately 250 observations per orbit were used for a total of 24,000 observations in the overall, preliminary adjustment.

The results of this adjustment revealed other problems with the data that were not uncovered by the polynomial fit. The fact that most stations in the network were being displaced by as much as one kilometer indicated that bad orbits were distributed through the net and the problem was not an isolated case. In order to systematically search out the bad data, it was decided to divide the network into three schemes and adjust each net individually. The first net included all NAD stations, Beltsville, Moses Lake, Thule, Hawaii, Wake Island and Shemya and the second network contained the ED sites, including station Azores (Figure 2). The solution of the North American Net resulted in removal of the following orbits:

The criteria for rejecting these orbits was based on expected residuals consistent with present estimates of the station positions and camera performance. For example, the orbit residuals on the first iteration for station 6011, Hawaii on orbit 2666 above were consistently 100 arc sec or more while the residuals for other orbits for the sarne station averaged 1 or 2 seconds. Not all of the excluded orbits exhibited such high residuals; the average bad residual was more on the order of 10 seconds of arc.

A similar solution for the European Net and the use of the same rejection criteria resulted in the exclusion of the following orbits:
 Figure 2
NETWORKS USED IN INDIVIDUAL ADJUSTMENTS

Orbit	Stations
2579	6007,6016
3252	6006,6015
3524	6016,6065
3800	6006,6007
3840	6006,6065
3941	6006,6065
3947	6006,6065
2897	$6006,6015,6016$
4241	$6007,6016,6065$

After these two adjustments were completed, a North AmericanEuropean tie was executed using stations Beltsville (6002) and Thule (6001) on the NA side with stations Tromso (6006), Azores (6007), Catania (6016) and Hohenpeissenberg (6065) on the European side (dotted lines Figure 2). Out of eleven orbtis available for this tie, three orbits had to be rejected:

Orbit	$\underline{\text { Stations }}$
3250	6001,6006
3446	6001,6006
3949	6001,6007

Orbit 3250 showed consistently high residuals of 14 seconds in right ascension for station Thule; orbit 3446 was off in both right ascension and declinations for both stations 6001 and 6006, and orbit 3949 showed right ascension discrepancies for both stations.

The elimination of the above orbits through these individual solutions left a total of 65 orbits for the final adjustment.

2.3.5 Final Adjustment by Short Arcs

The final short arc adjustment was generated with essentially no constraint on the orbital elements. The standard deviations of the position and velocity vector of the orbits were set at 10^{8} meters in all six components so that the orbit would adjust freely. As was done in the preliminary adjustment,
only every other data point was used in the solution and each observation was assigned a one arc second standard deviation. The solution involved 423 anknowns; 390 orbital elements and 33 station parameters, using approximately 16,250 observations. Table 3 shows the orbits (events) and other information pertinent to the data used.

The running time on the CDC-3800 for 3 full iterations amounted to 153 minutes. Iteration 3 produced a solution vector identical to the second iteration and iteration two changed the parameters by only 15% of iteration one.

The results of the station correction relcive to the starting C7 coordinates are shown in Table 4 i: terms of geodetic latitude, longitude, and height. Aside frum the initial astro stations, most of the station movements look fairly good in view of the amount of data available. The standard deviations are a bit smaller than expected but they certainly should not be larger than twice their listed values. One of the more surprising aspects of the results was the uniformity and the relative low sigma values in station height. It had been expected, based on previous geometric solutions and various simulation studies of geometric networks, that these sigmas would be 1.5 to 2 times higher than the sigmas in the latitude and longitude components. As it turned out, the magnitude of σ_{h} was the same as σ_{φ} and σ_{λ} - a fact probably attributable to the uniform scale provided by GM over the whole network.

From a broad inspection of Table 4 we can make the following general remarks regarding the adjustment: 1) the rather large movement of station Thule was to be expected in view of its initial map-scaled position, 2) Moses Lake, assigned a $\sigma_{\varphi}, \sigma_{\lambda}, \sigma_{h}$ of 8 meters, has changed consistent with the NAD positional accuracy relative to Beltsville, 3) Shemya's position on NAD has never been considered more accurate than 50 meters in its horizontal position, consequently a shift $\Delta \varphi=-57 \mathrm{~m}, \Delta \lambda=-68 \mathrm{~m}$, and $\Delta \mathrm{h}=-38$ should be expected, 4) the shift to Tromso are essentially within the estimated accuracy of the SAO-C7 system, 5) Azores is an astro and its geodetic shift is difficult to estimate but the values listed are acceptable, 6) Hawaii is definitely within the C 7 uncertainties, 7) Wake is an astro and its corrections look valid, 8) Mashhad's corrections appear large based on our present knowledge of the
TABLE 3

SUMMARY OF BC-4 PAGEOS DATA AND POLYNOMIAL FIT (Continued)											
Station	EVENT	PLATE	images TOTAL IMAGES	SIGMA (SEC. of ARC)		POLY DEG.		INITIALDEC. (DEG.)	$\begin{aligned} & \text { DELTA } \\ & \text { DECC } \end{aligned}$	TIME SPAN SECS.	CAMERA BC-4
				R.A. $\cos \mathbf{\delta}$	DEC.	R.A.	DEC.				
6011	2666	V157	473	1.9	2.1	4	3	22	20	444	300
6011	2587	V142	320	1.5	1.9	5	2	56	19	1492	300
6011	2640	V153	272	1.5	1.6	4	4	31	19	1252	300
6011	2672	$\checkmark 158$	372	1.5	1.7	4	3	16	16	349	300
6011	2894	V187	384	3.8	2.4	8	7	76	5	374	300
6011	3488	v218	321	1.7	1.7	4	4	52	-22	298	300
6011	2661	V156	490	2.6	2.4	7	5	61	18	466	300
6011	4618	4499	215	1.5	1.8	3	3	-1	20	202	300
6011	4618	v278	262	1.8	1.8	3	4	-5	19	242	300
6011	4398	V244	214	$2 \cdot 2$	2.7	4	3	57	-17	258	300
6011	4406	v246	313	$1 \cdot 3$	1.4	4	3	51	-21	298	300
6011	2703	V164	424	1.9	2.2	4	3	29	17	397	300
6011	2678	v160	400	1.8	1.8	4	3	21	20	374	300
6011	4212	v236	372	1.2	1.3	4	4	47	-19	350	300
6011	2736	V166	422	2.0	2.4	5	3	47	20	397	300
6011	2679	V161	347	1.8	1.7	3	3	16	18	324	300
6011	4245	v239	373	2.8	2.8	4	3	51	-23	348	300
6011	4605	v276	210	1.0	1.3	3	4	-2	19	195	300
6011	2609	V147	336	1.7	1.8	4	3	27	20	1596	300

TABLE 3

TABLE 3

SUMMARY OF BC-4 PAGEOS DATA AND POLYNOMIAL FIT (Continued)											
STATION	EVENT	PLATE	TOTAL IMAGES	SIGMA (SEC of ARC)		POLY DEG.		INITIAL DEC. (DEG.)	$\begin{aligned} & \text { DELTA } \\ & \text { DEC } \end{aligned}$	$\begin{aligned} & \text { TIME SPAN } \\ & \text { SECS. } \end{aligned}$	CAMERA BC-4
				R.A. $\cos \delta$	DEC.	R.A.	DEC.				
6015	3252	Y082	316	$2 \cdot 3$	$2 \cdot 1$	6	4	74	-17	298	300
6015	3535	Y 108	354	-	$3 \cdot 2$	1	5	67	5	350	300
6015	2897	YO61	435	1.8	1.6	4	4	36	20	420	300
* 6015	2646	Y034	370	$2 \cdot 3$	2.0	5	4	53	12	404	300
6015	3145	Y080	434	-	40 -	1	10	69	19	490	300
6015	2890	Y060	317	$3 \cdot 3$	2.9	5	4	62	11	305	300
* 6015	2611	Y027	208	1.4	1.5	3	3	12	13	211	300
* 6015	3545	Y 110	316	1.5	1.5	4	4	47	-22	298	300
* 6015	2626	YO30	175	1.4	2.0	3	3	10	10	175	300
6015	2494	Y004	403	1.9	1.8	3	3	15	17	2000	300
6015	2499	Y005	431	$2 \cdot 3$	2.4	4	3	29	19	2600	300
* 6015	4233	F144	223	$1 \cdot 3$	1.6	6	5	77	-10	203	450
6015	3939	Y 127	279	4.2	4.6	9	6	68	18	323	300
6015	3947	Y 128	328	2.9	$3 \cdot 3$	9	7	68	16	319	300

TABLE 3

TABLE 3

SUMMARY OF BC-4 PAGEOS DATA AND POLYNOMIAL FIT (Continued)											
STATION	EVENT	PLATE	TOTAL	SIGMA (SEC of ARC)		POLY DEG.		INITIAL DEC. (DEG)	$\begin{aligned} & \text { DELTA } \\ & \text { DEEC } \end{aligned}$	TIME SPAN SECS.	CAMERA BC-4
				R.A. $\cos \boldsymbol{\delta}$	DEC.	R.A.	DEC.				
* 6038	4267	0423	322	1.2	1.2	5	4	67	-18	298	300
* 6038	4244	4417	321	$2 \cdot 1$	2.0	4	3	52	-18	298	300
6038	4292	4427	396	9.1*	2.4	10	10	84	-12	374	300
6038	4398	V447	394	2.6	2.5	4	4	47	-18	374	300
* 6038	4406	4449	445	1.4	1.4	4	4	40	-21	423	300
* 6038	4251	4419	375	1.8	1.3	5	5	73	-12	350	300
* 6038	4276	4425	275	2.7	2.2	7	5	79	-17	349	300
* 6038	4259	4421	298	2.0	1.8	4	3	45	-19	275	300
* 6038	4182	4406	197	1.9	1.8	5	5	82	-11	181	300
* 6038	4245	4418	386	2.0	2.0	4	4	50	-23	374	300
* 6038	4212	4411	350	3.0	2.9	4	4	62	-22	324	300
* 6038	4196	4408	300	2.6	2.0	5	4	72	-19	287	300
6038	4236	4416	223	1.9	1.6	3	3	31	-15	$2<7$	300

TABLE 3

TABLE 4
CORRECTIONS TO PROVISIONAL COORDINATES

Station No.	Name	Correction (m)	Sigmas (m)
6001	Thule, Greenl and	$\begin{aligned} & \Delta \phi(m)=141.8 \\ & \Delta \lambda(m)=176.1 \\ & \Delta h(m)=-26.4 \end{aligned}$	$\begin{aligned} & \pm 8 \\ & \pm 2 \\ & \pm 4 \end{aligned}$
6003	Moses Lake, Wash.	$\begin{aligned} & \Delta \phi(m)=5.1 \\ & \Delta \lambda(m)=-14.8 \\ & \Delta h(m)=-12.4 \end{aligned}$	$\begin{aligned} & \pm 1 \\ & \pm 7 \\ & \pm 3 \end{aligned}$
6004	Shemya, Alaska	$\begin{aligned} & \Delta \phi(m)=-57.4 \\ & \Delta \lambda(m)=-68.4 \\ & \Delta h(m)=-38.4 \end{aligned}$	$\begin{aligned} & \pm 8 \\ & \pm 10 \\ & \pm 9 \end{aligned}$
6006	Tromso, Norway	$\Delta \phi(m)=16.2$ $\Delta \lambda(m)=26.7$ $\Delta h(m)=19.5$	$\begin{aligned} & \pm 5 \\ & \pm 10 \\ & \pm 7 \end{aligned}$
6007	Azores	$\begin{aligned} & \Delta \phi(m)=-37.8 \\ & \Delta \lambda(m)=58.8 \\ & \Delta h(m)=16.3 \end{aligned}$	$\begin{aligned} & \pm 4 \\ & \pm 9 \\ & \pm 5 \end{aligned}$
6011	Hawaii	$\begin{aligned} & \Delta \phi(\mathrm{m})=1.1 \\ & \Delta \lambda(\mathrm{~m})=0.5 \\ & \Delta h(\mathrm{~m})=24.0 \end{aligned}$	$\begin{aligned} & \pm 7 \\ & \pm 10 \\ & \pm 9 \end{aligned}$
6012	Wake Island	$\begin{aligned} & \Delta \phi(m)=152.6 \\ & \Delta \lambda(m)=1.2 \\ & \Delta h(m)=-4.6 \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 9 \\ & \pm 15 \end{aligned}$
6015	Mashhad	$\begin{aligned} & \Delta \phi(m)=-83.3 \\ & \Delta \lambda(m)=88.1 \\ & \Delta h(m)=5.0 \end{aligned}$	$\begin{aligned} & \pm 12 \\ & \pm 9 \\ & \pm 15 \end{aligned}$
6016	Catania, Sicily	$\begin{aligned} & \Delta \phi(m)=-19.5 \\ & \Delta \lambda(m)=0.2 \\ & \Delta h(m)=24.9 \end{aligned}$	$\begin{aligned} & \pm 8 \\ & \pm 10 \\ & \pm 10 \end{aligned}$
6038	Gigedo	$\begin{aligned} & \Delta \phi(\mathrm{m})=399.2 \\ & \Delta \lambda(\mathrm{~m})=49.6 \\ & \Delta h(\mathrm{~m})=12.3 \end{aligned}$	± 5 ± 5 ± 4
6065	Peisen, Germany	$\begin{aligned} & \Delta \phi(\mathrm{m})=-26.0 \\ & \Delta \lambda(\mathrm{~m})=-8.1 \\ & \Delta h(\mathrm{~m})=-4.3 \end{aligned}$	± 7 ± 10 ± 8

ED extension to that area, 9) station movements for Catania and Hohenpeis senberg are of the order expected, and 10) Gigedo is an astro and could well receive a shift of $\Delta \varphi=399 \mathrm{~m}, \Delta \lambda=50 \mathrm{~m}$ and $\Delta \mathrm{h}=12 \mathrm{~m}$.

The final positions of the solution are listed in Table 5.

2.3.6 Orbit Residuals

Table 6 shows the root mean square (RMS), about the mean of the residuals for each orbit in the adjustment. The average RMS from all entries in this Table is 1.7 arc sec in right ascension and 1.8 arc sec in declinations. These values are almost identical to the average RMS of the orthogonal polynomial fit; $1.7^{\prime \prime}$ and $1.6^{\prime \prime}$ respectively. The slight RMS difference in declination, ($1.8^{\prime \prime}-1.6^{\prime \prime}=0.2^{\prime \prime}$), between the orbit residuals and the polynomial fit is probably due to the larger number of orbits used in obtaining the mean from the polynomial results. In any case, one should expect these values to agree with each other unless the adjustment had distorted the spatial network due to additional bad data left in the solution. Apparently, this was not the case since the RMS for most orbits matched the polynomial RMS very closely.

Table 7 shows the residuals of Table 6 grouped according to observing stations and camera systems; the 300 mm FL and 450 mm FL camera. Notable in this table are the slightly larger mean RMS for the BC-4-300 system. The average RMS for each camera compute to,

$$
\begin{aligned}
& \mathrm{BC}-4-450: \mathrm{R} \cdot \mathrm{~A} \cdot \cos \delta=1 \cdot 6^{\prime \prime}, \quad \mathrm{Dec}=1 \cdot 6^{\prime \prime} \\
& \mathrm{BC}-4-300: \text { R. } \cdot \cos \delta=2 \cdot 0^{\prime \prime}, \quad \mathrm{Dec}=2 \cdot 1^{\prime \prime}
\end{aligned}
$$

These RMS' are within 0.1 arc seconds of the corresponding mean from the Orthogonal Polynomial fit.

2.3.7 Correlation

The final orbital elements from the adjustment are given in Table 8. The position and velocity vectors are in earth fixed coordinates (referred to the Greenwich meridian) defined on the C7 system.

TABLE 5
FINAL COORDINATES OF SHORT ARC ORBITAL ADJUSTMENT

Station	$\varphi(\mathrm{N}) / \mathrm{X}(\mathrm{m})$			$\lambda(E) / Y(m)$			$\mathrm{h}(\mathrm{m}) / \mathrm{Z}$ (m)
6001	76°	$\begin{gathered} 30^{\prime} \\ 546 \end{gathered}$	$\begin{aligned} & 04.73^{\prime \prime} \\ & 554 \mathrm{~m} \end{aligned}$	$\begin{gathered} 291^{\circ} \\ -1 \end{gathered}$	$\begin{gathered} 27^{\prime} \\ 389 \end{gathered}$	$\begin{aligned} & 54.43 " \\ & 990 \mathrm{~m} \end{aligned}$	$\begin{array}{cc} & 188.6 \\ 6 & 180 \\ 202 \mathrm{~m} \end{array}$
6002*	39 1	$\begin{array}{r} 01 \\ 130 \end{array}$	$\begin{aligned} & 39.33 \\ & 773 \end{aligned}$	$\begin{array}{r} 283 \\ -4 \end{array}$	$\begin{array}{r} 10 \\ 830 \end{array}$	$\begin{aligned} & 27.36 \\ & 833 \end{aligned}$	$\begin{array}{r} 10.4 \\ 3994 \quad 706 \end{array}$
6003	$\begin{aligned} & 47 \\ & -2 \end{aligned}$	$\begin{array}{r} 11 \\ 127 \end{array}$	$\begin{aligned} & 06.60 \\ & 831 \end{aligned}$	$\begin{array}{r} 240 \\ -3 \end{array}$	$\begin{array}{r} 39 \\ 785 \end{array}$	$\begin{aligned} & 42.70 \\ & 842 \end{aligned}$	$\begin{array}{r} 334.6 \\ 4656029 \end{array}$
6004	$\begin{aligned} & 52 \\ & -3 \end{aligned}$	$\begin{array}{r} 42 \\ 851 \end{array}$	$\begin{gathered} 48.11 \\ 788 \end{gathered}$	174	$\begin{array}{r} 07 \\ 396 \end{array}$	$\begin{aligned} & 26.04 \\ & 420 \end{aligned}$	$\begin{array}{r} 40.0 \\ 5 \quad 051 \quad 319 \end{array}$
6006	$\begin{array}{r} 69 \\ 2 \end{array}$	$\begin{array}{r} 39 \\ 102 \end{array}$	$\begin{aligned} & 45.31 \\ & 913 \end{aligned}$	18	$\begin{array}{r} 56 \\ 721 \end{array}$	$\begin{aligned} & 25.69 \\ & 648 \end{aligned}$	$\begin{array}{r} 78.0 \\ 5958 \quad 139 \end{array}$
6007	$\begin{array}{r} 38 \\ 4 \end{array}$	$\begin{array}{r} 45 \\ 433 \end{array}$	$\begin{aligned} & 35.46 \\ & 660 \end{aligned}$	$\begin{array}{r} 332 \\ -2 \end{array}$	$\begin{array}{r} 54 \\ 268 \end{array}$	179.57	$\begin{array}{r} 119.6 \\ 3971641 \end{array}$
6011	$\begin{aligned} & 20 \\ & -5 \end{aligned}$	$\begin{array}{r} 42 \\ 465 \end{array}$	988	$\begin{array}{r} 203 \\ -2 \end{array}$	$\begin{array}{r} 44 \\ 404 \end{array}$	$\begin{gathered} 37.69 \\ 386 \end{gathered}$	$\begin{array}{r} 3035.0 \\ 2 \quad 242 \quad 199 \end{array}$
6012	$\begin{aligned} & 19 \\ & -5 \end{aligned}$	$\begin{array}{r} 17 \\ 858 \end{array}$	$\begin{array}{r} 28 \quad 32 \\ 557 \end{array}$	$\begin{array}{r} 166 \\ 1 \end{array}$	$\begin{array}{r} 36 \\ 394 \end{array}$	$\begin{aligned} & 39.79 \\ & 511 \end{aligned}$	$\begin{array}{r} 18.4 \\ 2 \quad 093 \quad 808 \end{array}$
6015	$\begin{array}{r} 36 \\ 2 \end{array}$	$\begin{array}{r} 14 \\ 604 \end{array}$	$\begin{gathered} 23.22 \\ 337 \end{gathered}$	$\begin{array}{r} 59 \\ 4 \end{array}$	$\begin{array}{r} 37 \\ 444 \end{array}$	$\begin{aligned} & 47.09 \\ & 269 \end{aligned}$	$\begin{array}{r} 1001.0 \\ 3750 \quad 279 \end{array}$
6016	$\begin{array}{r} 37 \\ 4 \end{array}$	$\begin{array}{r} 26 \\ 896 \end{array}$	$\begin{gathered} 37.89 \\ 430 \end{gathered}$	$\begin{array}{r} 15 \\ 1 \end{array}$	$\begin{array}{r} 02 \\ 316 \end{array}$	143.10	$\begin{array}{r} 41.9 \\ 3856647 \end{array}$
6038	$\begin{aligned} & 18 \\ & -2 \end{aligned}$	$\begin{array}{r} 43 \\ 160 \end{array}$	$\begin{aligned} & 58.24 \\ & 983 \end{aligned}$	$\begin{array}{r} 249 \\ -5 \end{array}$	$\begin{array}{r} 02 \\ 642 \end{array}$	$\begin{gathered} 41.02 \\ 717 \end{gathered}$	$\begin{array}{r} 4.3 \\ 2035 \quad 369 \end{array}$
6065	$\begin{array}{r} 47 \\ 4 \end{array}$	$\begin{array}{r} 48 \\ 213 \end{array}$	$\begin{gathered} 02.89 \\ 588 \end{gathered}$	11	$\begin{array}{r} 01 \\ 820 \end{array}$	$\begin{aligned} & 24.01 \\ & 820 \end{aligned}$	$\begin{array}{r} 949.7 \\ 4702735 \end{array}$

* 6002 Beltsville, was held fixed on the SAO, C7 System; the shifts applied for North American Datum to C7 system were:

$$
\begin{aligned}
& X(C 7)=X(N A D)-26 m \\
& Y(C 7)=Y(N A D)+155 m \\
& Z(C 7)=Z(N A D)+185 m
\end{aligned}
$$

TABLE 6
ORBIT RESIDUAL

Orbit	Station	Residuals (RMS) Sec of Arc		Orbit	Station	Residuals (RMS) Sec of Arc	
		RA $\cos \delta$	Dec			$\mathrm{RA} \cos \delta$	Dec
2472	6007	1.6	1.8	2891	6006	1.6	2.4
	6016	1.6	2.2		6016	1.9	2.2
2497	6002	0.9	0.8	2893	6001	1.1	1.8
	6003	1.1	1.2		6002	1.2	1.4
2505	6007	1.8	1.4	2894	6001	1.3	1.8
	6016	1.2	1.4		6011	3.0	2.4
2520	6007	2.0	2.4	2909	6002	1.6	1.6
	6016	1.4	1.8		6007	2.2	2.6
2523	6002	1.1	1.0	2958	6006	1.7	2.4
	6003	1.0	1.4		6016	2.2	2.2
2531	6002	1.6	1.2	3173	6001	1.7	1.8
	6007	1.8	1.8		6003	1.0	1.0
2542	6002	0.8	0.8	3185	6001	1.0	1.6
	6003	1.2	1.2		6003	2.0	1.2
2611	6015	1.6	1.4	3352	6016	1.5	1.6
	6016	1.6	1.8		6065	1.7	1.8
2626	6006	1.6	2.2	3409	6004	2.0	2.6
	6016	1.4	1.8		6012	1.4	1.8
2646	6.106	1.3	1.8	3429	6006	1.6	2.4
	6015	2.7	1.8		6065	1.3	1.2
2661	6003	1.2	1.2	3436	6001	1.6	1.4
	6011	2.1	2.2		6006	2.9	2.8
	6012	1.4	1.6	3447	6016	1.4	2.2
2672	6003	1.0	1.2		6065	1.7	1.8
	6011	1.5	1.6	3448	6001	2.2	1.4
2675	6007	1.8	2.2		6006	1.6	2.0
	6016	1.4	1.8	3481	6001	4.2	1.4
2678	6003	1.0	1.8		6006	2.1	2.0
	6011	1.6	2.0	3483	6001	3.5	1.6
2679	6011	1.7	1.8		6004	1.9	2.2
	6012	1.6	1.8		6006	2.2	2.8
2694	6002	1.2	1.2	3488	6004	1.7	1.8
	6007	1.4	1.2		6011	1.9	1.8
2703	6011	2.1	2.2	3535	6001	1.2	1.4
	6012	2.8	3.2		6016	3.1	3.2
2736	6011	2.1	2.4	3538	6001	1.2	1.4
	6012	1.7	2.0		6002	1.2	1.4
2818	6006	1.2	1.4	3539	6002	1.0	0.8
	6016	3.0	2.8		6003	1.0	1.0
2866	6004	1.5	2.0	3545	6015	1.5	1.6
	6012	1.9	1.8	3560	6016	1.8	1.6
2883	6007	2.5	2.2	3560	6002	1.2	1.4

TABLE 6
ORBIT RESIDUAL

Orbit	Station	Residuals (RMS) Sec of Arc		Orbit	Station	$\begin{aligned} & \text { Residuals } \\ & \text { (RMS) } \\ & \text { Sec of Arc } \\ & \hline \end{aligned}$	
		RA $\cos \delta$	Dec			RA $\cos \delta$	Dec
3772	6001	1.5	1.6	4259	6002	1.4	1.4
	6065	1.2	1.0		6038	2.4	2.2
3775	6001	1.2	1.4	4267	6002	2.0	1.8
	6004	1.8	1.8		6003	1.0	1.6
3787	6001	1.8	1.6		6038	1.6	1.4
	6002	1.8	1.6	4276	6003	1.5	1.2
3795	6001	1.5	1.6		6038	3.2	2.8
	6003	2.1	1.2	4406	6011	1.4	1.8
3837	6001	1.3	1.6		6038	1.8	1.4
	6003	1.9	1.6				
3939	6006	1.5	1.8				
	6065	1.8	1.4		Average	$=1.7$	$=1.8$
3978	6003	1.8	1.6				
	6004	2.1	1.4				
4020	6006	1.7	2.0				
	6065	1.2	0.8				
4061	6001	1.7	2.0				
	6003	1.6	1.8				
4083	6006	1.4	1.8				
	6007	4.2 1.9	2.8				
4182	6002	1.9	1.2 1.4				
	6038	1.5	2.6				
4196	6003	1.3	1.8				
	6038	2.1	2.2				
4210	6007	2.3	2.2				
	6065	1.3	1.2				
4212	6003	1.0	1.8				
	6011	1.3	2.0				
	6038	2.9	3.2				
4233	6015 6016	1.7 3.0	2.0				
	6065	1.1	0.8				
4236	6002	1.1	1.6				
	6003	1.2	2.6				
4244	6002	1.2	1.4				
	6038	2.4	2.0				
4245	6011	2.8	3.2				
	6038	2.4	2.2				
4251	6001	1.2	1.4				
	6002	1.0	1.2				
	6038	1.9	1.6				

TABLE 7
ORBIT RESIDUALS GROUPED ACCORDING TO STATIONS

Total Orbits Observed	Station	$\begin{gathered} (\text { Sec. }) \\ R A \times \cos \delta \end{gathered}$	$\begin{aligned} & \text { (Sec.) } \\ & \text { Dec } \end{aligned}$	Camera F.L.
18	6001	1.7	1.6	450
17	6002	1.3	1.3	450
19	6003	1.4	1.5	450
6	6004	1.8	2.0	450
14	6006	1.7	2.1	450
10	6007	2.2	2.1	300
11	6011	2.0	2.1	300
6	6012	1.8	2.0	300
4	6015	1.9	1.7	300
14	6016	1.9	2.1	300
10	6038	2.2	2.2	300
7	6065	1.4	1.3	450

TABLE 8
FINAL ORBITAL ELEMENTS

(Earth Fixed Coordinates)						
ORBIT	$X(m)$	$Y(m)$	Z (m)	$\dot{\mathrm{X}}(\mathrm{m} / \mathrm{sec})$	$\dot{\gamma}(\mathrm{m} / \mathrm{sec})$	$\stackrel{\rightharpoonup}{\mathrm{Z}}(\mathrm{m} / \mathrm{sec})$
2472	7049830	1385083	8392169	-4385.734	- 901.5624	3783.485
2497	- 755255	-8 141022	7487072	196.4129	3954.058	4303.619
2505	9229907	-1 883133	5861268	-3055.597	300.0903	4983.593
2520	6484564	-2 871367	8555988	-4142.655	1806.400	3674.581
2523	-3 547537	-7 773697	7123650	1353.257	3483.310	4473.550
2531	6128857	-3766 086	8490429	-3831.831	2307.642	3718.460
2542	873300	-8741952	6871239	- 598.2044	3532.913	4579.614
2611	6452184	7490912	53329312	-1475.861	-2280.298	5104.675
2626	7817650	6148849	5257734	-1844.473	-1930.438	5118.146
2646	5255651	2180922	9665249	-4727.477	-1753.039	2781.916
2661	-7 484341	-1763 222	8251398	4113.155	1083.556	3849.456
2672	-6 182 757	-8 117276	4844949	1131.770	2155.302	5208.548
2675	9948376	912211	5289274	-2593.627	- 622.5420	5085.857
2678	-6 538 610	-7 476576	5403410	1493.815	2280.654	5051.920
2679	-10264 350	- 662075	4678597	2277.630	562.3783	5247.430
2694	6589994	-8 054496	4430754	-1705.834	1409.471	5299.772
2703	-9 036251	1855531	6581496	3320.789	- 376.7105	4642.528
2736	-8 542980	-2 384375	7083636	3390.755	1212.529	4426.660
2818	6187434	2586192	9116192	-4350.763	-1783.559	3236.094
2866	-6 842283	6163251	6709750	2713.012	-2054.484	4554.675
2883	6879000	- 744584	8961563	-4603.137	504.0284	3335.032
2891	7113161	-1 225638	8736361	-4448.991	729.4020	3492.216
2893	-1 015521	-5 526 119	9758717	1135.115	4960.135	2639.105
2894	-5 274844	-3 54645 U	92336894	4073.267	2626.408	3033.457
2909	4986533	-9 026973	4871374	-1523.646	1913.945	5137.307
2958	6637326	1222363	9056250	-4642.259	- 817.727	3239.968
3173	-4 071854	-1 898596	10059818	5156.306	1862.533	2066.957
3185	-1 586864	-3 800649	10183643	2682.619	4883.831	1864.558
3352	7461357	-3 443719	7442686	-3787.398	1590.149	4154.319
3409	-7 781089	2146982	6002112	-3520.974	1097.969	-5279.234
3429	5061389	- 353846	9525244	-5386.904	752.1126	2505.002
3436	4247966	-2 014653	9078624	5127.514	-1921.596	-3155.473
3447	7017427	2219516	6893543	4050.815	1257.478	-4818.565

FINAL ORBITAL ELEMENT

$\begin{aligned} & \tilde{U} \\ & \stackrel{\sim}{\sim} \\ & \text { E } \\ & \cdot> \end{aligned}$	 ત્సN
$\begin{gathered} \text { U } \\ \text { u } \\ \text { E } \\ \cdot \times \end{gathered}$	 స్స几 గ్గ几
$\underset{N}{E}$	
$\begin{aligned} & \text { 巨 } \\ & \text { > } \end{aligned}$	
$\begin{aligned} & \overline{\mathrm{E}} \\ & \times \end{aligned}$	
$\begin{aligned} & \text { 上 } \\ & \stackrel{\sim}{\circ} \end{aligned}$	

Statistics on each orbit resulting from the short arc solution are too voluminous to include in the report; however, the overall results can be adequately illustrated by two orbits (Tables 9, 10 and 11).

Orbit 4236 in these tables shows appreciably larger sigmas and a higher degree of correlation than orbit 2472. If we also look at Table 12 we note that orbit 2472 represents a fairly strong geometric situation. Both satellite traces are fairly long, both traces are about the same length, and the excursion in elevation angle is also good from both observing stations.

It can also be seen from Table 12 that orbit 4236 has a less amount of observational overlap and shorter range in elevation angles. These conditions lead to higher correlation among certain orbital parameters than we had for orbit 2472 . Orbit 4236 represents the more extreme case of correlation rather than a representative case. The correlation matrices for most of the orbits are very similar to the results of orbit 2472 , Table 10.

There is no evidence in the results which might suggest a problem of ill-conditioning. The degree of correlation would have undoubtedly been higher if the data spans had been restricted to only the overlap portion of the traces. In such instances, 30% of the orbit co-observed by the two camera systems would have been lost due to the smaller field of view of the BC-4-450 camera.

2.3.8 Cumparison of Results

Since the final positions of the short-arc solution should represent geocentric coordinates, it is desirable to check its yalues with another set also derived by the dynamic method. The two stations to be cumpared below are two nearby stations of the TRANET and PAGEOS net; the TRANET station coordinates having been solved for by SAO and NWL in two independent solutions. The local survey information tying the stations is available from the NASA Station Directory so that the position of the PAGEOS site can be reconstructed from the TRANET station.

The comparison for stations Hawaii (6011) and Shemya (6004), with respect to the NWL [6] and SAO results are as follows:
6011. Hawaii. (NWL \& BC-4 Comparison)

	Latitude (N)		Longitude (E)			Height
NWL Position (7100), C7	$21^{\circ} 31{ }^{\prime}$	15.49"	$202{ }^{\circ}$		09.04	405
Local Survey	- 48	48.30			27.92	--
Position of 6011	2042	27.19	203		36.96	--
Short Arc Solution		26.71			37.69	3035
Difference		0.48"			-0.73"	--
Difference (m)		12m			-20m	--

6004, Shemya, (NWL \& BC-4 Comparison)

NWL Position (7739), C7 Local Survey	Latitude (N)			Longitude (E)			Hejght
	52	42	55.37	174	06	38.46	46
			-6.63			46.44	-4
Position of 6004	52	42	48.74	174	07	24.90	42
Short Arc Solution			48.11			26.04	40
Difference			0.63			-1.14"	2 m
Difference (m)			18m			-17m	2 m

6011, Hawaii, (SAO \& BC-4 Comparison)

SAO Position (Sta. 7100), C7	Latitude (N)			Longitude (E)			($\begin{aligned} & \text { Hejght } \\ & (\mathrm{m})\end{aligned}$
	21	311	14.37"	202	00	08.19	428m
Survey		48^{\prime}	48.30"	1	44	27.92	--
Position of 6011	20	42	26.07	203	44	36.11	
Short Arc Solution		42	26.71	203	44	27.69	
Difference			-0.64"			-1.58"	
Difference (m)			-19m			44 m	

6004, Shemya, (SAO \& BC-4 Comparison)

SAO Position (Sta. 7739), C7	Latitude (N)			Longitude (E)			(mejght
	52	42	55.88"	174	06	38.04"	114
Survey			-6.63			46.44	-9
Position of 6004	52	42	49.25	174	07	24.48	105
Short Arc Solution	52	42	48.11	174	07	26.04	40
Difference			$1.14{ }^{\prime \prime}$			-1.56	60m
Difference (m)			34 m			29m	60m

TABLE 9

(Meters and Meters/Sec.)												
Orbit Elements	X	Y	Z	\dot{x}	¢	\dot{z}	${ }^{\sigma_{x}}$	σ^{\prime}	σ_{z}	$\sigma_{\dot{x}}$	$\sigma_{\dot{y}}$	σ_{z}
2472	498	43850	8392169	-4386	- 902	3783	2	1	4	. 02	. 01	. 04
4236	305782	-9707C89	4194090	- 213	-3065	-5310	20	113	8	. 17	. 94	. 08

> TABLE 10
> CORRELATION MATRIX: ORBIT 2472

TABLE 11
CORRELATION MATRIX: ORBIT 4236
Stations 6002, 6003

	X	Y	Z	\dot{x}	$\dot{\gamma}$	\dot{z}
X	1	-. 96	-. 72	. 97	. 94	-. 41
Y		1	-. 75	. 90	. 99	-. 44
Z			1	-. 68	-. 74	-. 80
\dot{x}				1	. 87	-. 38
$\dot{\gamma}$					1	-. 46
z						1

TABLE 12
ORBITAL SPAN

Orbit	Station	Time (Sec.)			Elevation Angles (Deg.)		
		Start	End	Span	Start	End	Span
2472	6007	290	685	394	34	53	19
	6016	332	652	320	53	74	21
	6002	12875	13004	129	9	1	8
	6003	12842	12891	49	2	0	2

The agreement with the NWL solution is quite good inasmuch as the NWL estimated accuracy for Hawaii and Shemya are 15 m and 25 m , respectively. The larger differences between SAO and this solution is probably due to the fact that the SAO coordinates for 7100 and 7739 are only a provisional set [7, p. 42].

A more direct and perhaps a more valid comparison can be made with respect to an OSU solution,[8], which also employed the short-arc method in the adjustment and also used BC-4 PAGEOS data. The OSU solution held the Beltsville station as the origin of its triangulation and solved for the coordinates of three other stations $(6003,6001,6038)$ on the $C 5$ system.

After converting the OSU C5 coordinates to the C7a $e_{e}=6378142$ and f (inverse) $=298.255$, the agreement for station Gigedo (6038) is as follows:

OSU	18°	43^{\prime}	$58.43^{\prime \prime}$	249°	02^{\prime}	$41.38^{\prime \prime}$
Short-Arc	18	43	58.24	249	02	41.02
Difference			0.19			0.36
Difference (m)			6 m			
D				10 m	15 m	

In view of the fact that the scale of the OS'J solution was provided by the chord distance between 6002 and 6003 as derived from their NAD coordinates, the agreement is as good as can be expected.

As a final test, the twelve BC-4 station coordinates were also used in a least squares solution to compute the ellipsoidal scmi-major axis, a_{e}, and the semi-minor axis, b_{e}. This was accomplished by computing the total geocentric radius for each station, subiracting the mean sea-level height from it, and fitting the resulting $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ coordinates at mean sea-level to the standard ellipsoidal expression. As expected, the results for both a_{e} and b_{e} were not very good, the flattening computing to $1 / 297.60$ with a correlation between a_{e} and b_{e} of 0.7. However, when the flattening was inforced to 1/298.255, the resulting semi-major axis was a $=6378141$ meters.

A value of $a_{e}=6378141.5 \mathrm{~m}$ was achieved when the Baker-Nunn stations on page 87 of Reference 7 were added to the solution with the BC-4 positions.

SECTION
 GEOMETRICAL SOLUTION

3.1 GENERAL

BC-4 Camera data for the geometrical solution were derived from the Orthogonal Polynomial constants. An efficient method for correcting PAGEOS data for parallactic refraction, phase of the satellite, and planetary aberration is to utilize Chebyshev polynomials. A series of computer programs were written for the purpose of preparing BC-4 data for input into a geometrical triangulation adjustment with the Baker-Nunn Network. Figure 3 illustrates the computational process for the adjustment. The treatment of $B N$ data has been previously described [9].

3.2 GENERATING SIMULTANEOUS OBSERVATIONS

The first step is the fitting of orthogonal polynomials in right ascension and declination. This procedure was described in [1]. After these results were screened and some events eliminated, corrections for phase angle, parallactic refraction, and planetary aberration were generated in the following manner. Six synthetic simultaneous observations (uncorrected) were generated for each simultaneously observed arc at certain key values of time from each station. From the six simultaneous pairs of observations, the range from each station to the six synthetic points and the sum of the parallactic refraction correction and the phase angle corrections were computed. Fifth degree Chebyshev polynomials with time as the independent variable was then fitted to the six ranges and combined corrections. The six polynomials were used at a later stage to correct the synthetic simultaneous observations. The ranges and sum of corrections were fitted well by the polynomials; in fact, they were fitted to a higher accuracy than required by the circumstances of the problem.

The correction polynomials generated can be utilized to apply corrections to the original data for any data included within the time of overlap of the satellite traces. The use of interpolation polynomials to effect these corrections is efficient, requiring a minimum of computer time.

The punched cards containing the Chebyshev polynomial coefficients were merged with the punched cards containing the Orthogonal least squares polynomials in right ascension and declination for input to a small program which computes corrected synthet.c simultaneous observations for arbitrary times. As cutput the program produces cards in SAO format for use in an interstation direction adjustment program and a plotting program. For the geometrical adjustments, synthetic simultaneous observations were produced every 30 seconds. Plots for 24 of the 30 BC-4 lines are shown in the Appendix.

Besides giving a graphical picture of the observational geometry, the plotting program is also useful as a screening device to check events which are patently in error. The principal means of judging poor events was the "skew" distance discussed in [9]. All events whose skew distances exceeded reasonable values were eliminated. Comparison of these events and those eliminated from the short arc solution showed that in every case those eliminated by the excess skew distance criteria were also eliminated from the short arc solution. However, 9 orbits eliminated from the short arc solution passed the skew distance test. These were border-line cases which were eliminated from the short arc solution to avoid costly repetitious computer runs.

3.3 INTERSTATION DIRECTIONS

After the data was qualified, the interstation direction solution, [10], was made from corrected simultaneous observations. This program produces cards punched in the format required for input to an already existing surface triangulation program. The interstation directions so produced appeared to be in excellent agreement with those obtained from the short arc solution with the exception of two lines whose geometrical circumstances were poor. These two lines had a spread in reference angle of less than 5°, [11]. (See an error analysis of interstation direction solutions by Lambeck [12]). The result was that the computed values of the two lines were in error by many times their standard deviations. In all other cases, the solutions and variances appear to be reasonable. Table 13 shows a summary of the direction cosines obtained for the 30 lines in the solution.

TABLE 13
BC-4 INTER-STATION DIRECTION SOLUTION RESULTS

Station No.		Direction Cosines			Number of Events	Number of Points
6001	6002	. 14187538	-. 83558373	-. 53072706	6	36
6001	6003	-. 68561413	-. 61420744	-. 39074606	5	31
6001	6004	-. 90136438	. 36608980	-. 23134502	2	16
6001	6006	. 59118707	. 80211212	-. 08434448	6	47
6001	6007	. 85321222	-. 19276914	-. 48463282	1	5
6001	6011	-. 82835639	-. 13976770	-. 54248565	1	11
6001	6016	. 77327358	. 48108098	-. 41304848	2	18
6001	6038	-. 41484947	-. 65159520	-. 63507764	2	14
6001	6065	. 80957320	. 48807676	-. 32614769	3	21
6002	6003	-. 93493604	. 29982055	. 18974255	9	63
6002	6007	. 79005866	61300633	-. 00552785	3	29
6002	6038	-. 84062580	-. 20733223	-. 50036148	5	33
6003	6004	-. 37965516	. 92102763	. 08700616	1	7
6003	6011	-. 76829682	. 31794381	-. 55554633	4	36
6003	6012	-. 54234983	. 75307795	-. 37246512	1	11
6003	6038	-. 0103180 ?	-. 57809871	-. 81590160	5	33
6004	6006	. 98717427	. 05392274	. 15026407	1	9
6004	6011	-. 37689758	-. 65398844	-. 65593242	1	9
6004	6012	-. 54079299	. 26896497	-. 79700163	2	22
6006	6007	. 54463998	-. 69857080	-. 46407558	2	16
6006	6015	. 11504939	. 85436106	-. 50678479	2	18
6006	6016	. 78781355	. 16765820	-. 59265549	4	38
6006	6065	. 85875781	. 04034678	-. 51079073	6	32
6007	6016	. 12797870	. 99126692	-. 03180167	8	92
6007	6065	-. 06918905	. 97079994	. 22969622	2	14
$\begin{aligned} & 6011 \\ & 6011 \end{aligned}$	$\begin{aligned} & 6012 \\ & 6038 \end{aligned}$	-.10270412 .71356594	$\begin{array}{r} .99395368 \\ -.69916366 \end{array}$	$\begin{aligned} & -.03883228 \\ & -.04465235 \end{aligned}$	5 3	$\begin{aligned} & 55 \\ & 35 \end{aligned}$
6015	6016	. 59083551	-. 80632596	. 02742000	5	39
6015	6065	. 39466066	-. 88864262	. 23357496	1	7
6016	6065	-. 57150665	-. 41459393	. 70816102	6	42

RESIDUALS FROM INTER-STATION ADJ USTMENT LINE 6007-6016

$\begin{aligned} & \text { EVENT } \\ & \text { (ARC) } \\ & \text { NO. } \end{aligned}$	STATION 6007		STATION 6016	
	VI (sec)	V2 (sec)	V3 (sec)	V4 (sec)
2466	$\begin{array}{r} .2721 \\ 1.1596 \\ 1.090 ? \\ .5515 \\ =.2207 \\ =.9956 \\ -1.5941 \\ -1.8583 \\ -1.6829 \\ -1.0074 \\ -.07261 \end{array}$	$\begin{array}{r} .1773 \\ .8220 \\ .4740 \\ .2622 \\ =.1151 \\ =.5718 \\ -1.0129 \\ -1.3136 \\ -1.3321 \\ -.9002 \\ =.7399 \end{array}$	$\begin{array}{r} -.3842 \\ -1.0172 \\ -1.1715 \\ -.5717 \\ .2198 \\ .9487 \\ 1.4456 \\ 1.5937 \\ 1.3550 \\ 1.3417 \\ 1.3909 \end{array}$	$\begin{aligned} & =.0914 \\ & =.1806 \\ & =.3982 \\ & -.0525 \\ & .0219 \\ & .1027 \\ & .1712 \\ & .2079 \\ & .7844 \\ & .4893 \\ & .8279 \end{aligned}$
2472	.1786 . 4610 - 6057 .4676 .3173 .2236 . 2416 -3791 . 5722 - 5236 .3940	.0548 - 1536 .2197 .1850 .1373 .1061 - 1262 .2190 .3673 - 3758 .3184	$\begin{array}{r} =.8993 \\ =1.5721 \\ -1.2859 \\ =.9630 \\ =.631 R \\ =.4288 \\ =.4444 \\ =.6654 \\ =.9530 \\ =1.2839 \\ -1.3001 \end{array}$	$\begin{aligned} & =00724 \\ & =00839 \\ & =01109 \\ & =00856 \\ & =00144 \\ & =00100 \\ & =00105 \\ & =00630 \\ & =00889 \\ & =00735 \\ & -01062 \end{aligned}$
2505	$\begin{aligned} & =.5256 \\ & =.0810 \\ & =.1454 \\ & =.3158 \\ & =.4853 \\ & =.5823 \\ & =.5833 \\ & =.4929 \\ & =.3583 \\ & =.2428 \\ & =.2312 \\ & =.4084 \\ & -1.7703 \end{aligned}$	$\begin{aligned} & =.0358 \\ & =00661 \\ & =00119 \\ & =00283 \\ & =00475 \\ & =00620 \\ & =00674 \\ & =00619 \\ & =00488 \\ & =00359 \\ & =00371 \\ & =00712 \\ & -.3358 \end{aligned}$.0640 . 0491 .1604 .3494 .5390 . 6492 .6530 .5541 .4047 .2755 .2637 .4683 . 2269	$\begin{aligned} & =.0036 \\ & -.0065 \\ & -00145 \\ & -00380 \\ & -.0691 \\ & -00965 \\ & -01114 \\ & -01074 \\ & -00885 \\ & =00676 \\ & -00723 \\ & =.1428 \\ & -00767 \end{aligned}$
2520	$\begin{array}{r} 3.2632 \\ .4451 \\ =.4497 \\ =.8986 \\ -1.0381 \\ -1.0691 \end{array}$	$\begin{array}{r} -.0951 \\ -.0086 \\ .0180 \\ .0382 \\ .0467 \\ .0126 \end{array}$	$\begin{array}{r} =.1869 \\ =.0645 \\ .1313 \\ .0676 \\ .0807 \\ .0861 \end{array}$	$\begin{array}{r} .0511 \\ .0193 \\ =00428 \\ =00965 \\ -.1263 \\ -01481 \end{array}$

TABLE 14
(continued)

$\begin{aligned} & \text { EVENT } \\ & \text { (ARC) } \\ & \text { NO. } \end{aligned}$	STATION 6007		STATION 6016	
	VI (sec)	V2 (sec)	V3 (sec)	V4 (sec)
2520	$\begin{array}{r} =.8568 \\ =.6845 \\ -.3550 \\ .4143 \\ 1.2163 \\ 1.9493 \\ -.0216 \end{array}$	$\begin{array}{r} .0106 \\ .0088 \\ .0186 \\ -00217 \\ -.0621 \\ -.0467 \\ .0007 \end{array}$	$\begin{array}{r} .2872 \\ .2398 \\ .0327 \\ -.0403 \\ -.5031 \\ -.4413 \\ .0021 \end{array}$	$\begin{array}{r} -1361 \\ -1257 \\ -0760 \\ .1045 \\ .3664 \\ -7633 \\ -0020 \end{array}$
2579	$\begin{array}{r} -1.3783 \\ .3451 \\ .4552 \\ .1325 \\ =.2863 \\ =.5276 \\ =.5400 \\ -.3121 \\ .1332 \\ .4526 \\ .6490 \\ .4361 \\ -.6020 \end{array}$	$\begin{array}{r} -.0049 \\ .0004 \\ -.0006 \\ -.0005 \\ .0017 \\ .0011 \\ .0013 \\ .0009 \\ -0017 \\ -00062 \\ -00091 \\ -.0060 \\ .0075 \end{array}$	$\begin{array}{r} .4509 \\ -.4550 \\ -.6049 \\ =.1776 \\ .3871 \\ .7201 \\ .7445 \\ .4350 \\ -.0470 \\ -.6461 \\ -.9389 \\ -.6400 \\ .5046 \end{array}$	$\begin{array}{r} \because .1080 \\ .1224 \\ .1816 \\ .0148 \\ =.1357 \\ =.2922 \\ -.3318 \\ =.7124 \\ .0251 \\ .3769 \\ .5975 \\ .4440 \\ -.3815 \end{array}$
2622	$\begin{array}{r} .3932 \\ -.5392 \\ -.2754 \\ -.3437 \\ .1313 \\ .5764 \\ .8721 \\ .9782 \\ .4147 \\ .4151 \\ 1.3053 \end{array}$	$\begin{array}{r} .0296 \\ -.0439 \\ -.0970 \\ -.1309 \\ .0541 \\ .2570 \\ .4212 \\ .5123 \\ .2355 \\ .2566 \\ .2197 \end{array}$	$\begin{array}{r} =.3698 \\ .5070 \\ 1.0356 \\ .3230 \\ -.1233 \\ -.5417 \\ =.8183 \\ -.9173 \\ -1.5524 \\ -1.5541 \\ -1.2204 \end{array}$	$\begin{array}{r} .0580 \\ -.0225 \\ -.0517 \\ -0725 \\ .0310 \\ .1521 \\ .7569 \\ .3214 \\ .1517 \\ .1694 \\ .5937 \end{array}$
2675	$\begin{array}{r} .9296 \\ .9467 \\ .8109 \\ .5637 \\ .2633 \\ . .0284 \\ . .2662 \\ . .4193 \\ . .4908 \\ . .4630 \\ . .3643 \end{array}$	$\begin{array}{r} .0970 \\ .1113 \\ .1109 \\ .0882 \\ .0465 \\ -.0056 \\ -.0585 \\ -.1017 \\ -.1280 \\ -.1347 \\ -.4619 \end{array}$	$\begin{array}{r} =.7491 \\ -.7613 \\ -.6507 \\ -.4512 \\ -.2102 \\ .0226 \\ .2113 \\ .3317 \\ .3790 \\ .3636 \\ .2848 \end{array}$	$\begin{array}{r} -.1214 \\ -0320 \\ -0282 \\ -0200 \\ -0095 \\ .0010 \\ .0097 \\ .0151 \\ .0170 \\ .0635 \\ .0479 \end{array}$

TABLE 14
(continued)

$\begin{aligned} & \text { EVENT } \\ & \text { (ARC) } \end{aligned}$NO.	STATION 6007		STATION 6016	
	VI (sec)	V2 (sec)	$\checkmark 3$ (sec)	V4 (sec)
4241	$\begin{array}{r} .5093 \\ .0883 \\ .1967 \\ .1642 \\ -.2093 \\ -.1718 \\ -.0615 \\ -.2703 \\ .1611 \end{array}$	$\begin{array}{r} 1.4257 \\ .1676 \\ .1233 \\ .0806 \\ -.0832 \\ -.0566 \\ -.0171 \\ -.2564 \\ .0742 \end{array}$	$\begin{array}{r} -2.1982 \\ -.1535 \\ =.4494 \\ =.3806 \\ .3438 \\ .4164 \\ .1062 \\ .9383 \\ -.9481 \end{array}$	$\begin{array}{r} 1.7712 \\ .0887 \\ 00627 \\ .0393 \\ -00389 \\ -00254 \\ -00074 \\ -01060 \\ -00662 \end{array}$

An examination of the residuals resulting from the interstation direction solutions to the corrected synthetic simultaneous observation for the BC-4's reveal a definite tendency to serial correlation. An inspection of the residuals for the more heavily observed lines show long strings of residuals as being either all positive or all negative. In addition to serial correlation from point to point, the pattern of the residuals strongly suggests the presence of small systematic errors in the data as analyzed. Table 14 is a printout of the residuals in right ascension and declination for line 6007-6016.

3.4 TEST TRIANGLE

As a test prior to the combined solution, the triangle Beltsville, Moses Lake, Gigedo was adjusted. This triangle was also adjusted with NEO-EMBET and by Ohio State University which used a lesser number of observations [8]. The synthetic simultaneous observations for this triangle comprise approximately 25% of the total for the whole BC-4 network. The coordinates of Beltsville were ffectively fixed by preassigning small variances to them. The chord distance from Beltsville to Moses Lake which was obtained from geodimeter traverses was given a weight of $1 / 1,000,000$ of the distance. The weight on the distance is pessimistic with respect to the internal accuracy of the geodimeter traverse but may be optimistic considering possible systematic errors.

The following table (Table 15) is a comparison of the coordinates of Gigedo. As can be seen, the results agree quite well.

TABLE 15

Geometric

Latitude:
Longitude:
Height:

18-43-58.84 N
249-02-41.61E
$-6.3 \mathrm{~m}$

Short Arc

$$
18-43-58.24 \mathrm{~N}
$$

$$
249-02-41.02 \mathrm{Z}
$$ 4.3 m

3.5 COMBINED BC-4, BN GEOMETRIC SOLUTION

Attempts to combine the interstation directions of the BC-4 net and the interstation directions of the Baker-Nunn cameras to obtain a geometrical worldwide solution failed because of ill-conditioning. The ill-conditioning is due in large part to the geometrical configuration of the triangulation net work, Figure 4. However, part of the difficulty was due to the triangulation program which has no provision for fixing or constraining the coordinates of a station other than by assigning to them small variances. Modification of the program to either fix station coordinates (removing them from the solution) or to constrain them by the matrix bordering techniques of Stearn [13], was impossible in the time available.

The best index for judging the extent of the ill conditioning in a particular problem is the condition number of the matrix; that is, the ratio of the largest to smallest eigenvalue in the normal equations or inverse matrix. For large matrices, the eigenvalues are difficult to obtain; however, the application of the Gerschgorin disc theorem [14] enabled us to determine crude but effective estimates of the condition number of the matrices for various adjustments.

3.5.1 First Adjustment

In one solution where the system would not converge, the conditions of the adjustment were as follows:

1) The coordinates of Beltsville were fixed to 0.03 m , in latitude and longitude and 0.001 m in height by assigning variances of 1×10^{-6} $\left(\right.$ seconds) ${ }^{2}$ in latitude and longitude and 1×10^{-6} (meters) 2 in height.
2) Chord distance between Jupiter-Beltsville, Beltsville-Moses Lake, Jupiter-Moses Lake, obtained from USC\&GS geodimeter traverse were given variances corresponding to ($(1 / 1,000,000) \mathrm{x}$ chord distance) ${ }^{2}$.

Figure 4
COMBINED SAO/BC-4 (Phase I) NETWORKS
3) Chord distances from conventional triangulation between Moses Lake-Cold Lake, and Tromso-Olso were given variances of $((1 / 100,000) \times \text { chord distance })^{2}$.
4) The chord distance from Mashhad to Shiraz was given a variance of ((1/10,000) x chord distance $)^{2}$.
5) The survey distance of 130 meters between the Hawaii BN and BC-4 cameras was given a variance of (l meter) ${ }^{2}$.
6) Large variances were assigned to other station coordinates.

The preliminary coordinates used for the stations were the C7 coordinates for the BN cameras and the final coordinates of the BC-4 cameras from the short arc orbital solution. The system diverged. The condition number of the matrix was on the order of $2,000,000$.

A study of the normal equations of the solution which diverged indicated the following circumstances.

1) The variances applied to the coordinates of Beltsville caused the condition number to increase two orders of magnitude over that which would have occurred without the coorcinates of Beltsville in the solution.
2) The eigenvalues corresponding to the unknowns for the $B N$ stations were typically an order of magnitude or more below those of the BC-4 network.

3.5.2 Other Adjustments

Accordingly, the input variances of the coordinates of Beltsville were given variances of $((.01) \mathrm{sec})^{2}$ in latitude and lo. rit: le and $(.1 \text { meter })^{2}$ in height. The input variances of Baker-Nunn camera in the geometrically worst situation (e.g., Tokyo) was given variances of (1 sec$)^{2}$ in latitude and longitude and a variance of $(5 \text { meters })^{2}$ in height and the height of Villa Dolores was given a variance of (10 meters). ${ }^{2}$ The solution converged but gave absurdly distorted results due to ill-conditioning.

A number of other similar adjustments gave results of the same type. The only solution that produced results reasonably in accord with common sense was one in which small variances were assigned to the input station positions (e.g., in effect the station positions were known in advance). More time is required to study the geometrical solution in order to produce more good results.

SECTION 4

SUMMARY AND CONCLUSIONS

The coordinates of the BC-4 (Phase I) sites from the short arc solution are determined to an average standard deviation of ± 8 meters in each positional component based on the assumption that each satellite direction was good to 1 sec of arc and by using every other data point of each trace. If a mean observational sigma of 1.7 sec in both right ascension and declinatior. had been used (as suggested by the RMS of the station residuals) the resulting sigma in position would have been about ± 12 meters. The 12 m also appears to be a more realistic value from comparisons with Doppler at stations Hawaii and Shemya which show an agreement of 14 meters in each coordirate, and the comparison with OSU for Gigedo is also within the 12 meter value. Based on these comparisons and for reasons given below, it is felt than an accuracy of ± 15 meters is a valid estimate for the final coordinates. Future large-scale determinations incorporating more PAGEOS stations and more data should improve this accuracy by a factor of two.

A careful review of all orbit residuals revealed that there is still a residual bias in the data, probably amounting to about one or two tenths of a second. Part of this bias is attributed to the fact that the orbit was made to absorb the satellite corrections but part of it is in the observations themselves, as revealed in the inter-station direction adjustment where these corrections were applied. A comprehensive residual analysis was not made at this time. It was felt that such an analysis would prove more productive if it were made on readjusted observational data of Phase I (to be provided by USC\&GS) and on data from subsequent phases when all cameras had been converted to a common 450 mm FL system.

The station corrections resulting from the short arcs (Table 4) are all realistic except for stations Shemya, 6004 and Mashhad, 6015. Since the comparison of Shemya with the Doppler solution is in good agreement, the magnitude of the corrections must be due to a weak geodetic connection of that area relative to NAD and hence to C7. The large corrections for Mashhad,
however, cannot be attributed to a similar cause. The fact that this station is at the edge of the triangulation network tends to suggest this as a possible cause but the results for other outlying stations do not confirm it.

The final coordinates of the BC-4 stations (Table 5), including those for Mashhad, were used to compute an equatorial radius by removing the mean sea level heights from each geocentric radii and enforcing a meridional flattening of $1 / 298.255$. The results of that computation produced an earth radius of 6378 l 41 m . A similar solution using the C7 coordinates of the Baker-Nunn sites with the BC-4 stations produced a radius of 6378142 m . As expected, a computation of both axєs, equatorial and polar, produced inferior results due to the small number and distribution of these stations.

The combined surface, three dimensional adjustment of BC-4 and BakerNunn stations did not produce good results. Several solutions were attempted, but in each instance it resulted in ill-conditioned normal equation matrices with excessively large ratios in eigenvalues. Further work is required to establish the exact causes producing instability. In particular, it is suggested that the two networks be first adjusted individually and if similar results are obtained with the PAGEOS network, this net should be split in three subnets and readjusted independently like the short arc solutions. Concurrently, a spatial triangulation solution should also be generated using the same data. The latter solution should be relatively inexpensive since several operating computer programs are available for use.

1. Mancini, et al
2. Butler, L.M.
3. Brown, D.C.
4. Hartwell, J. G.
5. Veis, G.
6. Anderle, R.J. and Smith, S. J.
7. Gaposchkin, E. M.
8. Schwarz, C.R.
9. Mancini, et al
10. Vaisala, Y.
11. Lambeck, K.

Orthogonal Polynomial Representation of BC-4 Traces, Hawaii Institute of Geophysics \& Geonautics, January 1969.

Computer Program for Single Camera Orientation, B. R.L. Report No. 1268, December 1964.

Advances Techniques for the Reduction of Geodetic SECOR Observations, D. Brown Associates, Inc., July 29, 1966.

A Power Series Solution for the Motion of an Artifisial Satellite and its Concomitant Variational Equations, D. Brown Associates, Inc., April 16, 1968.

The Determination of the Radius of the Earth and Other Geodetic Parameters as Derived from Optical Satellite Data published in Geodetic Satellite Results During 1967, SAO Special Report 264, Ed. by C. A. Lundquist, December 1967.

NWL-8 Geodetic Parameters Based on Doppler Satellite Observations, NWL Report No. 2106, July, 1967.

Dynamical Determination of Station Locations Using GEOS-I Data published in Geodetic Satellite Results During 1967, SAO Special Report 264 Ed. by C. A. Lundquist, December 1967.

The Use of Short Arc Orbital Constraints in the Adjustment of Geodetic Satellite Data, OSU Department of Geodetic Scierce: Report No. 118, 1969.

Preparation of Baker-Nunn Optical Observations for an Interim Global Geometric Solution, Hawaii Institute of Geophysics and Ceonautics, January, 1969.

An Astronomical Method of Triangulation, Sitz. Finn. AK. Wiss., pp. 99-107, 1946.

Position Determination from Simultaneous Observations of Artificial Satellites: An Optimization of Parameters, Bulletin Geodesique No. 92, 1969.

REFERENCES (CONTINUED;

12. Lambeck, K.	Optimum Station-Satellite Configurations for Simultaneous Observations to Satellites, SAO Special Report No. 231, 1966.
13. Stearn, J. L. and	Adjustment of Conditions with Parameters and Richardson, H.
	Error Analysis, Sulletin Geodesique. No. 64, 1962.

14. Wilkinson, J.H.

The Algebraic Eigenvalue Problem, Oxford Univer sity Press, 1965.

APPENDIX

The following graphs show the observational geometry of the simultaneous points generated for the geornetrical adjustment. The time interval between each point is 30 seconds.

The leading figures of the station numbers have been omitted in the graphs. Station 1 is actually station 6001, etc.

11
1

