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Abstract

Results of a detailed study of the two-dimensional, elliptic restricted three-
body problem are presented. The equations of motion and the variational
equations have been solved with recurrent power series. Several computer
programs have been prepared to use the recurrent power series for the generation
of families of periodic orbits. Some of these programs have been regularized
with the well-known Birkhoff regularization. A total of 15 families of periodic
orbits (1127 orbits) are described. The linear stability of several of these orbits
has been computed; that of periodic orbits has been studied theoretically for
the elliptic problem and for any nonintegrable, nonconservative, dynamical system
with two degrees of freedom, and it has been found that seven types of stability
or instability exist. Periodic orbits have been obtained for both the earth-moon
mass ratio and the StrSmgren mass ratio (equal masses). The whole range of
eccentricities ¢ from 0 to 1 (including 1) has also been studied, and it is shown
that some periodic orbits exist for all of these eccentricities. A family of periodic
collision orbits is also described.
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Periodic Orbits in the Elliptic Restricted
Three-Body Problem

{. Introduction

The elliptic restricted three-body problem is a particu-
lar case of the well-known three-body problem. “Re-
stricted” means that one of the three particles has a zero
mass; “elliptic” means that the two other particles move
in Keplerian elliptic orbits. The problem, then, is to study
the motion of the massless particle or satellite under the
influence of the two other massive bodies. In this report,
the problem is two-dimensional.

It can be seen in the literature that the particular case
of the three-body problem that has been the most ex-
tensively studied is the so-called “circular restricted
three-body problem,” and that most other special cases
have been investigated much less. For this reason, it
was considered useful to begin a numerical study of the
particular case of the three-body problem that comes
next to the circular problem—the elliptic problem. The
elliptic problem may be considered as a remarkably
simple dynamical system that is slightly more compli-
cated than the circular one. In fact, however, the elliptic
problem is considerably different from the circular
problem. This is because the elliptic problem is non-
conservative,
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The elliptic problem may be considered as the proto-
type of all nonconservative, nonintegrable dynamical
systems with two degrees of freedom. The elliptic three-
body problem is probably one of the simplest examples
of such a system, the circular problem being the typical
example of a conservative, nonintegrable system with
two degrees of freedom. It has been demonstrated that
the fact of being conservative or nonconservative is
extremely important, and that the absence of the energy
integral has far-reaching consequences.

Another reason for the interest in the elliptic problem
is that there are several situations in the solar system
for which this configuration is a better approximation
and a better model than the circular model. In the study
of the motion of the moon, for example, it is better to use
an elliptic orbit for the earth than a circular one. When
the motion of an artificial earth-moon spacecraft or of an
artificial lunar satellite is studied, it is also better to use
an elliptic orbit rather than a circular one for the motion
of the moon. The literature reveals that only a few
authors have studied the influence of nonzero eccen-
tricities for the motion of the primaries of a three-body
problem in astronautical applications; among these are



Colombo, Lautman, and Munford (Refs. 1 and 2),
Herring (Ref. 3), and Richards (Ref. 4). As for the natural
satellites and asteroids, such a study has also been made
by Hunter (Ref. 5).

The present report concentrates on the numerical gen-
eration of periodic orbits in the elliptic problem. In this
area, it must also be said, the circular problem has been
studied more extensively than the elliptic problem. In
fact, this work is a natural follow-up of the author’s
previous study of the circular problem (Ref. 6). This work
attempts to generalize several concepts and methods
that are well established for the circular problem. The
recurrent power-series solutions and the computation of
the characteristic exponents by the methods of Deprit
and Price (Ref. 7), in particular, have been adapted here
to the elliptic problem. To the author’s knowledge, this
has not been done before.

In contrast with the abundance of research on periodic
orbits in the circular problem, only a few papers have
been published that deal with the numerical computa-
tion of periodic orbits in the elliptic problem, e.g., that
of Schubart (Ref. 8). This is another reason to undertake
such a study.

A search of the literature on the elliptic restricted
three-body problem found that the only aspect studied
in some detail is the problem of the stability of motion
in the neighborhood of the triangular libration points.
This aspect of the problem has not been considered in
the present work, therefore, and the works of the fol-
lowing authors can be consulted: Bennett (Ref. 9),
Danby (Ref. 10), Grebenikov (Ref. 11), Lanzano (Ref. 12),
Moulton (Ref. 13), Rabe (Ref. 14), and Szebehely (Ref. 15).

As regards stability, some new theoretical and nu-
merical results concerning the stability of periodic orbits
are given herein. Probably the first discussion of the char-
acteristic exponents of a nonconservative dynamical sys-
tem with two-degrees-of-freedom is presented in this
report. It is shown that seven classes of orbits exist. Some
preliminary results were presented at the August 1968
meeting of the American Institute of Aeronautics and
Astronautics/American Astronautical Society (AIAA/AAS)
(Ref. 16). A short, related study of the characteristic
exponents of a dynamical system was also published by
Broucke and Lass (Ref. 17). Much numerical work has
also been accumulated to illustrate numerically the dif-
ferent properties of the characteristic exponents of the
orbits; in fact, periodic orbits have been found that
belong to all stability classes. These orbits have been

grouped in 15 families. Altogether, more than 1100 pe-
riodic orbits are described in the present report. To find
these periodic orbits, the circular restricted three-body
problem has generally been used as a starting point, and
the eccentricity has then been increased. For instance,
some starting orbits have been taken from Broucke’s re-
port (see Ref. 6) and from Bartlett’s publication (Ref. 18).

Another remarkable property of the elliptic three-body
problem, which has been the origin of several publica-
tions, has to do with the so-called Nechville transforma-
tion of the equations of motion. Nechville’s paper was
published in 1926 (Ref. 19), and his result has been dis-
cussed recently by Szebehely (Ref. 20), Kopal and
Lyttleton (Ref. 21), Herring (see Ref. 3), and Broucke
(Ref. 22). In the present report, an attempt is made to
remove the singularity ¢ = 1 from the Nechville trans-
formation.

The Nechville transformation has also originated work
on regularization of the elliptic problem, as can be seen
in the works of Szebehely and Broucke (see Refs. 20 and
22). Earlier work on regularization of the three-body
problem has been published by the present author in
Icarus (Refs. 23 and 24), where several regularizing
transformations are discussed; only the Birkhoff trans-
formation, however, has been used herein. Practically
no previous numerical work has apparently been done on
the elliptic three-body problem in regularized coordi-
nates. For this reason, an extensive study has been made
of the behavior of the integration of the regularized
equations of motion. A regularization of the elliptic
three-body problem that is independent of the Nechville
transformation has been published by Schubart (Ref. 25).
A review of the equations of motion and the regulariza-
tion of the elliptic restricted three-body problem is con-
tained in Szebehely’s work on the theory of orbits
(Ref. 26), which is probably the first description of a
family of periodic collision orbits in the elliptic problem
that has been published.

The present report is subdivided into five sections.
Section II describes the equations of motion relative to
different coordinate systems, including the regularized
equations. In the equations of motion, three differences
between the circular and elliptic three-body problems are
apparent, as follows:

(1) The elliptic problem contains two parameters rather
than one—the eccentricity e and the mass ratio p.

(2) The elliptic problem has no energy (or Jacobi)
integral.
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(3) The independent variable is explicitly present in
the equations of motion, even when rotating axes
are used.

Section III describes the solution of the equations of
motion and the variational equations with recurrent
power series, and the properties of periodic orbits. It is
shown that, in the elliptic problem, the period of a
periodic orbit is always a multiple of 2=. For this reason,
when e and u are kept fixed, only isolated periodic orbits
exist in the elliptic problem; however, families of pe-
riodic orbits may be generated with ¢ or u (or both) as
variable parameters. The present work is relative to
symmetric periodic orbits only, although nonsymmetric
periodic orbits may also exist. Another characteristic of
the elliptic problem is that periodicity can be obtained
in the inertial axes as well as in the rotating system
(whereas, in the circular problem, the orbits are generally
periodic only relative to the rotating coordinate system).
It is also shown in Section III that the linear stability
in the elliptic problem—and in any nonconservative,
nonintegrable dynamical system with two degrees of
freedom—depends upon two independent real numbers
rather than upon one, as in the circular problem. As a
consequence of the existence of the two independent real
stability coefficients, it is shown that seven types of sta-
bility or instability exist in the elliptic problem.

Sections IV and V contain descriptions of the families
of periodic orbits and the computer programs. The com-
puter programs that have been prepared are too long to
be described completely herein, but they can be obtained
from the author upon request.

. Equations of Motion
A. The Underlying Two-Body Problem

In this report, the results are given of a numerical
study of the two-dimensional, elliptic restricted three-
body problem.

A particle is supposedly moving under the effect of
the Newtonian attraction of two massive bodies called the
primaries. In the present study, the particle or satellite
and the two primaries (all three) move in the same plane.
The problem is called restricted because the two pri-
maries influence the satellite without themselves being
influenced by it. In other words, the satellite is small and
supposedly “massless” with respect to the primaries.
This allows the two primaries to move in Keplerian orbits
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relative to each other or relative to their center of mass.
These Keplerian orbits will always be elliptic, and no
restriction will be made on the eccentricity e. Thus, the
case with eccentricity e = 1 will be considered herein as
well as the other values of e from 0 to 1.

Basically, an inertial barycentric frame of reference
will be used, although several rotating systems of axes
will also be used. The convention is that, at the initial
value of the independent variable (at # = 0), the two
primaries are always located on the x-axis, and are at an
apse—either at minimum elongation (periapsis) or maxi-
mum elongation (apoapsis). On the other hand, a system
of canonical units will be used in such a way that the
semimajor axis ¢ and the mean motion n of the two-body
motion of the primaries are unity. It is then possible to
designate the two masses of the primaries (inchuding the
gravitation constant) by m, =1~ and m, = <%.
The distance 7 between the two primaries is then

Tz(l‘—@COSE):m?%E;E (1)

where E is the eccentric anomaly, v is the true anomaly,
and the semilatus rectum (1—e?) has been called p. With
respect to the barycentric inertial frame of reference,
the coordinates of m, and m, are taken to be

& = —prcosv = —pu(cos £ — g) (2a)
m = —prsinv = —u(l —e?)”sin E (2b)
&L=(1—pwrcosv = (1 — p)(cosE — ¢) (2c)

o

ne = (I —wirsinv =1 —p)(1 —e)*sinE (2d)

The eccentric anomaly E will be related to the time ¢
through Kepler’s equation

t+x=E—esinkE (3)

In the present study, the phase constant x is always taken
as equal to 0 or ». The case x = 0 corresponds to a mini-
mum elongation (periapsis) of the two primaries at ¢ = 0,
whereas the case x = = corresponds to mazimum elonga-
tion (apoapsis).

A few other formulas relating to the motion of the two
primaries will be needed. For instance, the first and



second time derivatives of 7, v, and E are

o = gsiny  esinkE = €C0SU _ p—r
<p>1/: 7 ? 1.2 7'3
/ 1/
(p)™ —2esinv
o = ,\? ?) , ‘D” — - (4)
7 e
1 esinv
E = — E = - =
7 ™ (p)

Using the above relations, the energy integral of the two-
body problem is easily verified:

1 2 22y 1
2(? + r20?) -

(5)

o) —

In the above equations, a prime is used for the deriva-
tives with respect to the time ¢, but later the true anomaly
v will be used as independent variable, and the deriva-
tives with respect to the true anomaly v will be indicated
by dots. The derivatives of r are then

_ er’sinv
p
(6)
=9l +r (1 - L)
1 4
Energy Eq. (5) may also be written as
» [ 1 1
7(7"”)“7:—7 g

Through the use of energy Eq. (7), # may be eliminated
from the second equation, Eq. (6), so that the following
differential equation for r is obtained:

-9

]

3
¢ —2— 8
m 8

Differential Eq. (8) will be used rather than the explicit
solution of Eq. (1) because this will facilitate the work
with recurrent power series. This equation is not valid
for p =0 or ¢ = 1. For this reason, in cases with high
values of e, Eq. (1) will be used rather than Eq. (8). In
this case, Kepler's equation, Eq. (8), has to be solved;
there is no difficulty in solving Eq. (3) numerically by
successive approximations, however, even for high eccen-
tricities, although some precautions may be necessary
when ¢ = 1. In what follows, frequent changes of the
independent variable from t to v will be made. For any
quantity F, the relations between the #-derivatives and
o-derivatives according to the equation for v’ in Eq. (4)
are

©)

se

— T
= p(rF : 27F)

P

In the sections that follow, a special set of coordinates
(£7) will be used. They will be called “reduced” or
pulsating coordinates, and will introduce a radial change
of scale in such a way that the elliptic motion of the
primaries in the system (&%) transforms in a circular

motion in the system (£7). The change of scale must thus
be proportional to r:

7 =17 (10)

The reduced coordinates of the primaries m;, and m, are
then

& = —ucosv,

» = (1—p)cosv

P

(11)
7: = —usin v, 7: = (L—p)sinv
and represent circular motion (with nonconstant angular
velocity). It is clear that the transformation of Eq. (10)
cannot be used when r = 0 or when e = 1.

B. Inertial Barycentric Equations of Motion
of the Satellite

In the present study of the elliptic restricted three-
body problem, it has been necessary to use different
coordinate systems. The equations of motion of the satel-
lite relative to these coordinate systems will now be
given, starting with the equations relative to the bary-
centric inertial system. Later, two other important bary-
centric systerns will be used; they are called the “rotating”
and “pulsating” systems. Finally, some other derived
coordinate systems must be used for special purposes,
such as regularization. In other cases, coordinate systems
centered at m, or at m, will be used. These systems will
be called “geocentric” (at the “earth” m,) or “seleno-
centric” (at the “moon” m.) because, in many computa-
tions, the earth-moon mass ratio has been used. Their
function is mainly to show the forms of the orbits with
respect to these masses (m, or m.).

In the inertial barycentric frame of reference, the
equations of motion of the satellite derive from the
Lagrangian equation

+
+
[
=
_J[_
[=
T
o
i

1,
L=+5(¢
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They are thus

"o §—¢ £E—&
g’ - —(1 - IU‘) S:i - i Sg
(13)
(A — V. R E
7 (1—p 7 s

The distances between the satellite and m, and m, are
obtained by

8

P =E & )
(n = n2)°
Lagrangian Eq. (12) is not conservative because it ex-

plicitly contains the independent variable through s;
and s..

(14)
s2=(6— &)+

If the true anomaly v were used as an independent
variable, the equations of motion would be derived from
the Lagrangian equation (see Ref. 22):

L - 1'21 L = <p)1/2 .2 n? 1,
(73) ¥ 92 (5 -+ Ui ) + (P) 7

If the “reduced” or “pulsating” coordinates (&7) are
used, according to Eq. (10), and

<§':1"’§+T§’, é:i'E+T§
=7+

Lagrangian Eqs. (12) and (15) may be transformed ac-
cordingly, to give two new Lagrangian equations:

T 12

L= (&5 477 + 1 (88 + 7)) + —2—(5—3 +7°)
+ i 1op & ) (17
7 4 75
L= )+ o T
(p)* i 1 o
P)” 7 a e r B
+ 2 /ro ( +77 )+ (p)l/z < 73 + ,’3)
where
F_zh , 53
m=E-Er G =g
(19)
- sj
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Dividing the Lagrangian L in Eq. (18) by (p)” and re-
placing # by its value taken from Eq. (6), the following
expression is obtained:

ersinv

Lz o
L=5(&+7)+ (& + 77)

e*r*sin® v r /m ms
4 + 4 e R 20
2p? (& ) v < 2 > (20)

This Lagrangian equation may finally be replaced by a
more simple one,

+ 52 _1_i_ &2 =2 4__?:_ ;%-Lin_‘f.
i)+ (5= 1) @ Fr S (T T

(21)

=1z
L=5(@+

which is obtained by subtracting from Egq. (20) the fol-

lowing exact differential:

The equations of motion of the satellite, in “inertial
barycentric pulsating” coordinates, with the true anomaly

v as independent variable, are thus

F_ ({1 : I é_él QE“'E;'

The forces present in the last equations of motion,
Eq. (23), contain three terms: an apparent radial force
that comes only from the radial scale change of the
coordinate system, and m, and m.,, which are, of course,
the Newtonian attraction potential from the two pri-
maries.

C. Equations of Motion With Rotating Coordinates

Rotating barycentric coordinates are now introduced.
The rotation angle is the true anomaly v. Except when
the eccentricity e is zero, the angular velocity of the axes
will thus be time-dependent. The equations of motion in
rotating axes will be written here in different forms—
with time and with the true anomaly as independent
variable, and with ordinary and reduced pulsating co-
ordinates. The most important set of equations of motion,
however, is the set wherein the true anomaly is the
independent variable and where pulsating coordinates
are used.




The ordinary rotating coordinates will be designated
by (%,7), which are related to the inertial coordinates

(én) by

£=1%Xcosv— ysinv
(24)
n = Xsinv + fcosv

The rotating coordinates introduce the advantage that
the two primaries m, and m, are now permanently on
the X-axis, their coordinates becoming

X = —ar, =0—-wr
(25)
0

3;'1:0, gz

but these coordinates are not constants; the two primaries
m, and m, are oscillating on the x-axis. Lagrangian
Eq. (12), under the effect of the rotation of Eq. (24),
transforms into

L= = (% + 7% + (& — &)v +

n (2’,”__ LM > (26)
St §»

The equations of motion corresponding to this Lagrangian
equation are

(xz + yz) 2

m[»—a
vo[

¥ = 20— G — Eot = — (1 p) x; = x; -
1 2
(27a)
7+ 2% + w7 — QU'E — _(IMM) _S% - 1 .S‘i/ (27b)
1 2

Equation (27) will practically never be used, but will
be transformed once more in order to use rotating-
pulsating coordinates (x,y). These coordinates are de-
fined in the same way as in Eq. (10):

X=rx, y=ry (28)

Lagrangian Eq. (26) then transforms in the new La-
grangian equation

= (2 F g+ ra gy) () () — )

17 .. P ) 1 /m ms
Tl - T o 2 o) o Ay 2
! f)<?ﬂ T‘>(x y) ’l"( _>

F4

and the corresponding equations of motion may be writ-
ten as

rx’ — 2y’ (p)* + 2’y — —1—x =

1 x—x X — Xy
— = m ===+ m, —=
T 3 7

(80a)
2477 ’ 1z Y ]' -
riy” -+ 2 (p)** + 2y’ — —r—y =
1 y Yy
-——r_<m1 r +m, 3 )
(30b)

The equations of motion take a more simple form if
the true anomaly v is used as an independent variable.
This change of variable is done with the use of the ex-
pression for v/, given in Eq. (4), in the same way as it was
used to obtain Lagrangian Eq. (15). If one also subtracts
the exact derivative, which is similar to Eq. (22),

4 [.; T+ yﬂ (31)

after division of the Lagrangian equation by (p)*, then
Eq. (29) finally transforms into

L=

L\'.)l)—‘

(& +y*) + (x — y2)

rll . 2 RN me
+pl:2(x +y?) + . + 7‘2:‘

(32)

The equations of motion derived from this Lagrangian
equation are

The above Lagrangian and equations of motion, Egs.
(32) and (33), have the remarkable property that they
differ only by the factor r/p = 1/(1 + ecosv) from the
Lagrangian and classical equations of motion of the
circular restricted three-body problem. For this reason,
the equations of motion, Eq. (33), with rotating—pulsating
coordinates and with the true anomaly have often been
used by different authors. They have also been used as
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the basic equations for the study of the orbits described
in this report.

It should also be noted that Lagrangian Eq. (32) can
be obtained directly from Lagrangian Eq. (21) by the
simple application of a rotation similar to Eq. (24). In
the different numerical integrations that have been done,
the differential equations, Eq. (83), have mostly been
treated with the recurrent power series method. For this
purpose, the second differential equation, Eq. (6), has
been joined to the system by Eq. (83). A system of the
sixth order is then obtained that does not explicitly
contain the independent variable. When this system is
solved, the time t can be obtained by a quadrature.
However, it is simpler to obtain the time ¢ by numerical
integration of the differential equation

r2
(n)*
simultaneously with the equations for «x, y, and r. The

computer programs to integrate numerically Egs. (33)
and (34) are described in Section V.

=

(34)

D. Equations of Motion for the Rectilinear Elliptic
Restricted Three-Body Problem

The equations of motion for the two primaries given in
Eq. (2) are still valid for e =1 when the eccentric
anomaly—and the equations of motion of the satellite
given in Eq. (13), which are relative to the inertial axes—
are also valid when the eccentricity e of the primaries is
one. The motion of the primaries being on a straight line
(on the x-axis), there is not much need for rotating axes
in this problem. On the other hand, the “reduced” or
“pulsating” coordinates, as used in Eq. (83), cannot be
applied when r =0; the rotation of the axes with the true
anomaly v as the rotation angle becomes senseless when
r =0. For these reasons, it has been necessary to make a
separate study of the elliptic problem with e = 1.

A different set of computer programs was needed to
study the rectilinear problem. It was still possible to
introduce a system of reduced coordinates that “fixes” the
position of the primaries at the coordinates +% and —%
on the x-axis. This has been necessary mainly for the
regularization of this problem with Birkhoff coordinates.
However, this transformation is not valid when r = 0, and
can thus only be used for those arcs of orbits for which
r is not too small. Therefore, it is not possible to use this
transformation to regularize the simultaneous collision of
the two primaries and the satellite (which would be a
case of triple collision).
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The motion of the satellite when ¢ = 1 is still derived
from the Lagrangian equation

L= (& 49+ Ly (35)
where
si= (6= &) o (362)
s3= (6= &) + o (36b)
&= —p(cosE—1) = +myr >0 (36¢)
&L =1~ (cosE—~1) = —myr <0 (36d)

As before, the masses of the two primaries are m, = 1—p
and m, = p.

The time ¢ is related to the eccentric anomaly E by
Kepler's equation

t+x=E—sinE (37)
and the distance r between the two primaries is

r=1-—rcosE (38)

Lagrangian Eq. (35) will now be transformed by a
change of coordinates and a change of independent
variable. The time ¢ will be replaced by a new inde-
pendent variable s, which is defined by the differential
relation

dt = r2ds (39)

The derivatives with respect to s will here be desig-
nated by dots. With the variable s, the differential equa-
tion for r, corresponding to Eq. (6), becomes

o 2. 40
r=—ft=r (40)
whereas the energy integral of Eq. (5) becomes
2,
-~ 72— 4t = — 23 (41)

Using this energy integral, Eq. (40) may be written as

¥= —2" 4 3r (49)



A change of coordinates from (€ 4) to (x,y) will now
also be introduced by

(43)
=
y=-
where x, is defined by
1 1
Xy — ‘?":‘ (ml mg) = —é" (1 - 2,u,) (44)
Solving Eq. (43) for £ and » then gives
&§= r(x — x)
(45)

Using Eq. (36) and the definitions of Eq. (43), it can now
be seen that the coordinates of the primaries relative to
the new coordinate system are

%= — = (46)

Apolying the coordinate transformation of Eq. (45) and
the time transformation of Eq. (39) to Lagrangian Eq. (35)
gives the new Lagrangian equation

L=+ )+ [&—x)# +yj] sinE
‘ ve i . .eSID?E my m,
T [(AC - x\'))_ v y“] 2 + T T + -Z- <48)

Equation (48) can be greatly simplified by subtracting

from it the exact differential
",

sin E

)| = e )
(9

af
ds |

§

The Lagrangian equation then becomes

L=1

2

G + 99

+r{—é— [ = w) + 7] + T+ ’f} (50)

The equations of motion that correspond to this
Lagrangian equation are

. x—x X — X,
x:r[(x—x0)~m1 Til—*m2 7 ]
(51)
.. y y
=7 —my = — m,
Yy |:y 11.;; 7‘2]

Again, the first of the three terms on the right side gives
the artificial centrifugal force coming from the radial
change of scale of the coordinates, and the two last terms
are the ordinary Newtonian attraction terms.

Because of the straight-line motion of the two primaries,
the problem treated here presents some similarity with
the well-known two-fixed-center problem, of which the
present problem may be considered a generalization (the
two “fixed centers” now move on a straight line in accor-
dance with Keplerian laws of motion). Because of this fact,
this problem seems more interesting than the two-fixed-
center problem. The problem studied here is gravita-
tionally consistent, whereas the definition of the two-
fixed-center problem is somewhat arbitrary (the primaries
attract the satellite but do not attract each other!).
Among the similarities with the two-fixed-center problem,
one can also mention the absence of Coriolis force and
the characteristic loops in the orbits that are caused by
this force.

E. An Alternate Form of Equations of Motion for the
Elliptic Restricted Three-Body Problem

As aforementioned, the equations of motion, Eq. (33),
with rotating-pulsating coordinates and with the true
anomaly as independent variable are not valid when p = 0
and e = 1, nor when r = 0. Attempts have been made to
arrive at a corresponding system of equations of motion
that would be valid for all values of e (including e = 1)
and for all values of 7 (including r = 0). Such a set of
equations has not been found, but a set is derived below
wherein the singularities r = 0 and e =1 are removed.
However, this set is unsatisfactory because the situation
r = 0 is now an equilibrium solution of the new equations
of motion. Thus, these equations of motion are adequate
for all values of ¢; when ¢ = 1, however, those parts of
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the trajectory that are close to r = 0 must be avoided, and
have to be integrated in a different way, e.g., in ordinary
inertial coordinates. These equations of motion will now
be derived.

The rotating—pulsating coordinates are used as before,
but the independent variable will no longer be the true
anomaly. The new independent variable s will be related
to £ as in Eq. (39), but not in Eq. (34):

dt = r2ds (52)

The fact that the denominator (p)** is not present here
as in Eq. (34) will make the new time transformation of
Eq. (52) valid even when e =1 and p = 0.

Using the reduced inertial coordinates (£7) as before
(but with no rotation of axes), the following Lagrangian
equation corresponding to Eq. (21) is obtained:

1 = . — _
ENEEN R AR

m, M,

L=

The equations of motion derived from this Lagrangian
equation are

gz(r-—p)é—-—r<m1$—;él +m2§‘“3$g>

;7'=(r-p)1‘7—r(m1 ’7';3"]1 + m, 7 "'72)
The rotating coordinates (x,y) are now introduced by
E=xcosv—ysinov
(55)

g=xsinv-+ycosv

where v is the true anomaly, related to the new inde-
pendent variable s by the relation

B = (pye (56)
Lagrangian Eq. (53) now transforms into

L= @+ ) + ()" (& — vi)

19

1, . m, Mo
+TI:—2—(9C“+y“>+T+T} (57)
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which gives the associated equations of mation

. } — — i\
x—2(p)‘/2y=r<x—m1x e f"/}
re e
(38)

1 2

. e . Y ¢
y+2(p)/‘x:r<y_m17‘./?—mz";./{?\§
1 2/

The value of 7 in these equations of motion can be
obtained by simultaneous integration of a differential
equation similar to Eq. (6) or (40). If the independent
variable s defined in Eq. (52) is used, the second-order
differential for r may be written as

9
F= -——; + r(p — 7) (39)
If the energy integral

2t opr— 4= —2p (60)

is used to eliminate 7, the differential equation for #

becomes

F= —2% 43 — pr (B1)

As stated above, however, the differential equation for r
and the energy integral show that, when » = 0, then also
7 =7 = 0; thus, this becomes an equilibrium solution.

F. Some Formulas for Coordinate Changes

In the numerical study of periodic orbits, it will {re-
quently be necessary to make changes of coordinates
during the integration or for the input of initial conditions.
This is also necessary for the output of the orbits, either
in printed or in graphical form. The computer programs
that have been prepared are all greatly flexible as to
what concerns the different types of input and cutput.
Several subroutines have thus had to be prepared to
make the changes of coordinates. For this reason, some
of the formulas are recapitulated below.

1. Inertial coordinates (&y) to rotating coordinales
(%,9).

X = +£cosv + ysinw (62a)

= —é&sinv + ycosv (62b)
i e

¥ o= %—+ &cosv + o sino {62¢)

_ x(p)”* . o

7 =— —(f‘—’) — &sinv + 5 cosv (624)




2. Hotating coordinates (%,y) to inertial coordinates
(ém)
1657/

&= Fcosv — ysin v (63a)
n = Xsinv + Fcos v (63b)
57 i b Y2

&= (%’ — —-—«w‘“j(? > cos v — (y' + x(f_z) > sin v
(63c)
— 1 = a
7 = (%’ - ﬂ—?——) sinv -+ <y'+—’f(’:—2- cos v
(63d)

3. Rotating coordinates (Z,j) to pulsating coordinates
(x,4).

x = % (64a)
y = —lz— (64b)
. (% — %)

T (64

e
= (g — ')

Ok (64d)

The dots here indicate derivatives with respect to the true
anomaly v.

4. Pulsating coordinales (x,y) to rotating coordinates
(%)

= rx (65a)
j=1y (65b)
¥ = (pr);/- (r% + 7x) (65¢)
g =2 (g + iy (654)

5. Inertial baryceniric coordinates (&7) to inertial
geocentric coordinates (£, 7).

§, =&+ wrcosvo

(66)
n, = n T prsinov

6. Inertial barycentric coordinates (&) to inertial
selenocentric coordinates (¢, 1)

(=6~ (I—p)reoso
(67)
Mg =9 (1"‘/,(,)1‘ sin v

The geocentric coordinates are relative to the larger
mass m, = 1 — u, whereas the selenocentric coordinates
are relative to the smaller primary m, = p. The last two
transformations have been used only for graphical display
of the orbits; therefore, the corresponding velocity trans-
formations were not necessary, and are not reproduced
here.

G. The Five Equilibrium Points of the Elliptic Problem

It is well known that the five Lagrange points (or equi-
librium points) of the circular restricted three-body
problem still exist in the elliptic three-body problem.
At these five points, the satellite always remains in the
same position relative to the two primaries. It can be
shown in different ways that five such points exist. This
will be proven herein in two ways: (1) with the use of
rotating—pulsating coordinates (x,y) and (2) with inertial
coordinates (¢, 7).

In the system of rotating—pulsating coordinates, the five
equilibrium points are fixed. It can be seen by considera-
tion of the equations of motion, Eq. (33), that there are
five particular solutions with constant coordinates and
with¥ = {f = & = ¢ = 0. These constant coordinates must
thus be a solution to the equations obtained by setting
the right side of Eq. (33) equal to zero.

_ =X XX _ _l=p
x—m : " x<l = Ti)
1 1
+ (1= (rg - 55) =0 (65a)
2 1
l_
y'—ml%_mzézy(l_ Tiﬂ_%>=
(68b)

It has been presumed here that r is always different
from zero; the case ¢ = 1 of the rectilinear elliptic problem
is thus excluded in this study of the equilibrium points.
Equation (68) is identical to those equations obtained in
the treatment of the classical circular three-body problem.
The conclusions thus usually derived from Eq. (68) are
still valid for the elliptic problem. The two equilibrium
solutions that are the easiest to find correspond to
ri=r,=1, as can be seen from Eq. (68); they correspond
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to equilateral triangle configurations with the two pri-
maries m, and m.. These solutions are generally called
L, and L;, and their coordinates are

1 +(3)™

L4:x4:——2—(1—2ﬂ), y4:__(2)__
(69)

]_ — 3 Yz

L51x5: ?(1—2ﬂ)> ysz_____.(z)

The other three solutions of Eq. (68) are Ly, L., and L.
These are called the collinear equilibrium points because
they correspond to y = 0, and are thus on the syzygy-axis
(the line of the two primaries).

The abscissa x must thus be a root of the equation

X — % X~ Xo
fr=—x+(l=-p)—F FTp—F7 =0
| “ (70)
where now
75 =x—x % = x x| (71)

Equation (70) has one root in each of the three intervals
on both sides of m, and m, and between m, and m,. This
is a consequence of the fact that, in each interval, f(x) is
monotonously decreasing from + o to — oo, the deriva-
tive of f(x) being negative in each of the three intervals

dx [x—x, 2 7 Jx—x

(72)

The abscissae of L., L., and L, can be obtained by
numerically solving Eq. (70), which can be reduced to a
fifth-degree equation in x. These coordinates have been
tabulated by a large number of authors.

It is of great importance to study the neighborhood of
the equilibrium points, mainly to determine the stability
of these points. For this purpose, it is interesting to
linearize the equations of motion, Eq. (33), in the neigh-
borhood of the equilibrium points to obtain the so-called
first-order variational equations. To accomplish this,
Eq. (33) may be written in the form

r r

¥—2%— —x=—01U,
v p
(73)
. . T T
+ %= —y=—U
Y py p Y
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where the potential function U is defined by

v=1oe gk (74)

> 7y

The subscripts x and y are used to represent partial deriva-
tives of U.

The first-order variational equations corresponding to
Eq. (73) may then be written as

8% — 280 — —— 8x = —— (U, ox + U, 51
p ) ( ry .f}
(73)

57 -+ 284 — % Sy = 72— (Updx + U,,dy)

Equation (75) forms a system of linear differential equa-
tions with nonconstant periodic coefficients because of
the factor r, which depends upon the cosine of the true
anomaly. It is well known that, in the circular three-body
problem, a system with constant coefficients would be
obtained (r being constant). In this fact resides a prin-
cipal difference between the elliptic and the circular
restricted problems. In the elliptic problem, a more
difficult technique is necessary to study the variational
equations than in the circular problem. The Floquet
theory can be used, for instance, as has been shown by

several authors. The characteristic equation of the system
formed by Eq. (75) would be

)\4—1—)\2]:4——;;- @+ Un+U,)

1«2
p:Z

+ [(1 + Uxa;) (1 - UU?/) - U.iyl =0

(76)

but again the coeflicients of this equation are periodic
functions of the true anomaly o.

It is also possible to show the existence of the five
equilibrium points without using rotating coordinates.
This will be done herein with the use of inertial bary-
centric coordinates. This demonstration will be done
separately, again, for the two equilateral points L, and L;
and for the collinear points L., L., and L.

For the triangular points, it can be concluded that the
inertial equations of motion, Eq. (18), have the correspond-
ing two particular solutions by simple geometrical con-
siderations (¥Fig. 1). The two primaries are supposed to
be at points M; and M,, with the center of mass at the

11




M

Fig. 1. Configuration of masses M,, M, and
libration point L,

origin O of the coordinate system. Each side of the triangle
LM .M, has the length 7, as given by Eq. (1). The co-
ordinates of M, and M, are given in Eq. (2). The coordi-
nates of the midpoint M, of the segment M M, are then

£y = Er cOs v, 1y = &rsin v (77)
where & is the same as the quantity x, already defined
in Eq. (44): & = (1/2) — p = (1 — 2p)/2. The equilibrium
point I, then has the coordinates

Vo
L=6& -+ () rcos (90 deg + v)

2
= [éo Cos v — (32)% sin v:l (78a)
9y == 1y (3;% rsin (90 deg + v)
= ?”[ o sino + (3;% cos v] (78b)

the length of the segment M,L, being r(3/2)*. It is now
easy to verify that the point L, with the coordinates of
Eq. {78) describes a Keplerian ellipse that is a solution
of the equations of motion, Eq. (13), of the particle.
The second derivatives of Eq. (78) are

£a M4
LD e @ =
S 7T PERE Ty ] (79)

Substitution of the coordinates of Eq. (78) and the accel-
erations of Eq. (79) verifies Eq. (18), which thus proves

that Eq. (78) is a particular solution.

It is remarkable that the geometry of the triangle
LM, M., depends upon the eccentricity e through the

12

distance + only. In other words, the shape of the triangle
depends upon e only, whereas angular quantities in this
triangle depend upon the mass-ratio x only. For instance,

_ 2-—w

COS 0,y m (80a)
cos ay = —221—9%2/:2-)1—/; (80b)
sin g, = (32)% T (80c)
sin o, = (3;% a ile_MLg)vg (80d)

The length of the segment OL, is #(1 — p + u2)*. The
three forces that act on the point L, are the attractive
forces Fy; and F. from m; and m,, together with the
centrifugal force Fy:

e I s
rs r-
1_ _q__?.‘/z
F,= p( /;3 1) (81)

The resultant of the three forces is along the direction
OL, with magnitude

F=F,cosa+ Fycosa, + F,
(L—p+p5)” <ﬂ _ 1> _ el —p+ )™
r r?

Ccos v

(82)

rB

The existence of the collinear equilibrium solutions
can be shown in a way similar to the above demonstra-
tion for L, and L;. The coordinates of any point that is
collinear with m, and m, may be expressed as

¢=(1—a)é + a& = (¢« — w)rcosv
(83)
p=(1—a)p + ap. = (0 — wrsinv

The constant parameter o is between 0 and 1 for points
that are between m, and m,, and outside of these two
limits for points that are outside m, and m.. Substitution
in the inertial equations of motion, Eq. (13), shows that
Eq. (83) is a particular solution for the values of o that
satisfy the condition

(l-foc) o
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For each of the three intervals, inside and outside the
limits 0 and +1, Eq. (84) becomes a fifth-degree equa-
tion in a, and each time has one single real root. In this
way, the three collinear points L,, L,, and L, are thus
obtained. In fact, the fifth-degree equation obtained from
Eq. (84) is fundamentally equivalent to Lagrange’s well-
known fifth-degree equation in the masses for the col-
linear solutions of the general three-body problem.

H. The Energy Equation of the Elliptic Restricted
Three-Body Problem

The classical energy or Jacobi integral of the circular
restricted three-body problem has no analog in the
elliptic problem. This is a well-known result and, because
of this fact, the elliptic problem is fundamentally different
from the circular problem. Even when rotating or pulsat-
ing axes are used, the independent variable (e.g., time
or true anomaly) is still present in the Lagrangian equa-
tions and in the equations of motion; in the circular
problem, the independent variable disappears by a simple
rotation of axes. For this reason, the elliptic problem
must be considered nonconservative as opposed to the
circular problem, which is conservative.

Although there is no known energy integral in the
elliptic restricted three-body problem, it is still possible
and even useful to define a quantity that can be called
energy. This energy, however, will not be constant along
any given trajectory. In this case, it will be possible to
establish the differential equation for the variation of the
energy.

There are different ways of defining the energy and
its differential equation, but the classical definition—
with the Lagrangian or Hamiltonian equations—will
probably be the most useful. If canonical variables and
canonical equations of motion are used, the Hamiltonian
H may be considered as the energy of the satellite; if
Lagrangian equations of motion are used, the energy E
is the difference between the second- and zero-degree
terms in the velocity components of the Lagrangian
equation, E = L, — L,. In both cases, the derivative of
the energy has a very simple expression:

dH__ oH_
dt ot
(85)
dE _ _ oL
dtr ot
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Similar expressions for the derivative may be written
when some other independent variable is used. F; !
ing in this way, the different coordinate systems that
have been introduced above could all be used. The most
elegant way of introducing the energy is probably to use
the rotating coordinates and the true anomaly, as in
Eqgs. (32) and (33):

ceed-

_ 1 ., N o T
E—-2—(x +y)—ﬁ[2(x +y>4--?‘
1 . . r o
=g @) - U (86)

where U represents the negative of the quantity in
brackets in the first expression. The derivative of F with
respect to the time ¢ or the true anomaly © can be ob-
tained by using the expressions for the derivatives given
in Egs. (4) and (6) for the variable r:

- dE _ v . esinv
di P U= (p*) "=
(87)
dE _ _ ipe . grshg
dv P P

It will be seen in the following sections that the
“energy-differential equation,” Eq. (87), plays an im-
portant role in the regularization of the eguations of
motion. These differential equations have also been used
for controlling the precision of the numerical integration
of the equations of motion. One of the equations, Eq. (87,
is integrated along with the equations of motion, and the
result of the integration is continucusly compared with
the value of E computed directly with Eq. (86).

. Regularization With Birkhoff Coordinates

For the computation of close approaches and collision
trajectories, it has been necessary to use a system of
regularized equations of motion. Only the Birkhoff co-
ordinates have been used herein for the elliptic restricted
three-body problem. The Birkhofl coordinates are known
to regularize simultaneously both singularities of the
problem; they also lead to relatively simple equations
in both the Lagrangian and Hamiltonian forms.

The Birkhoff coordinates will be introduced in relation
with the rotating-pulsating coordinates (xy) defined in
Eq. (28). They will be called &7. No confusion with the
inertial coordinates (£,5) used in Section II-B will result
because these inertial coordinates will not be used from
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this point on. In fact, a coordinate system (X,Y) will also
be used that is intermediate between the rotating coordi-
nates (x,y) and the Birkhoff coordinates (¢5). The co-
ordinates (X,Y) are obtained from the coordinates (x,y)
by a simple translation along the x-axis, which is made
in such a way that the new origin becomes the midpoint
of the two primaries m, and m,:

x=X+x
(88)
y=Y

where x, is the quantity

[\')l)—a

1-20)  (89)

— — 1 —m
m— 2 2

N)!»mt

X =

which has already been used in Eq. (44). The coordinates
(X,Y) will be called median coordinates. The coordinates
of the primaries m, and m, are now

(90)

and the distances from the satellite to the primaries are

obtained by
2 l 2 a9

Zi

1\ o,
:<X“—9—>+Y“

]

(91)

Wk

The Birkhoff coordinates ¢ = ¢ + iy are related to the
median coordinates Z = X + 1Y by

z:—}l—<g+—§—> (92)

The function Z of ¢ is thus analytic everywhere except at
(=0 and { = c0.

Separating in Eqg. (92) the real and imaginary parts
gives for X and Y the expressions

(93)
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where the following abbreviation S is used:
S=&+ (94)

Solving Eq. (92) for ¢ gives

g:2[2i< 2—%)1/2] (95)

and this shows that Eq. (92) is a one-to-two mapping
between the Z-plane and the {-plane except at the two
branch points Z = +£1/2. These two branch points thus
correspond with the two singularities of the problem,
i.e., with the location of the two primaries m, and m..
The derivative Z’ of Eq. (92) is

d _ ., -1
T AT

(96)

and the value of Z’ is thus zero at the two critical points
¢ = +1 and ¢ = —1, which are also the branch points
Z = +1/2 and Z = — 1/2 described above. Except at
these two points, Eq. (92) defines a conformed mapping
between the Z-plane and the ¢-plane. The absolute value
of 7’ in Eq. (96) is given by

(X, Y)

=I=5e

’dzz

_ LT 2 ge
e = (S+1) 45}

165 |
(97)

The symbol ] is used here to represent the Jacobian or
the functional determinant of X,Y with respect to &.

In what follows, it will be necessary to express 7,1,
and r7, with the Birkhoff coordinates. This can be done
with the use of Egs. (91) and (93):

r1=wl)%—[(5+l)+2§]
r= g[8+ 1) — 2¢] (98)

_ 1 2 g
1'11'2—-'1—65—[<S+1) 45]

Comparing the last relation of Eq. (98) with the expres-
sion of Eq. (97) for the Jacobian determinant gives the
new formula

r7a

S

dz|> _ , _
’-a-z =J= (99)
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This last expression will be used to define a new inde-
pendent variable s, which will be used instead of the true
anomaly v. In what follows, dots are used to designate
derivatives with respect to the true anomaly v (the “old”
independent variable) and the symbol ° for derivatives
with respect to s (the “new” independent variable). Thus,
s will be related to v by

dv = .
s T UTIT S

(100)

From the transformation in Eq. (93) of the coordinates,
the corresponding transformation of the velocity compo-
nents is obtained by

T\ e o
(101)

.1 /3Y s, oY -

Y‘T(%g*%">

(102)
X__ o _ g
on 0é PAR
and where D is the difference
D=g—y (103)

To Eq. (101) corresponds the inverse transformation
of the derivatives (velocity components):

(104)
o 9y &, oX

The coordinates (&) themselves are easily derived from
X and Y by taking the real and imaginary parts of
Eq. (95).

J. Equations of Motion With Birkhoff Coordinates

Lagrangian Eq. (32) in rotating-pulsating coordinates
(x,y) will now be transformed to the Birkhoff coordinates
(&) and to the new independent variable s, and the
corresponding equations of motion will be derived. If

JPL TECHNICAL REPORT 32-1360

the median coordinates (X,Y) are used instead of (xy),
Lagrangian Eq. (32) becomes

L= —2-(X°+Y)+(XY~YX)
rf1 N ) ;o My m,
+-77|:*§(X +Y)+x0)<.“i T -+ ?A:}
=%()’<2+1’7?)+(XY—YX>+%U (105)

The different terms of this Lagrangian equation trans-
form in the following way:

O e G (106a)
o 1 ., ]
XY — YX 2][ af(x +9 - il (xe +”})]
(106b)
iyee L(s3 1) 2D ,/
XY= o ]:<S+S>+ g] (106¢)

The second of the three preceding expressions may be
written as

XY - YX = ] (Agé + A, 7) (107)
where Ag and Ay are defined by
13 ., N )
A= ) a7]()( +Y?) ;\?77 Yav[
—_— " 2 2
=~ 1657 (82 —4&—1) (108a)
1 9 oY
A=+ g (XY= +X «Y—%E
_¢& .
= + sy (57 + 47 — 1) (108b)

To account for the change of independent variable
from v to s according to Eq. (100), Lagrangian Eq. (105)
must be multiplied by J. The following new Lagrangian
equation is thus obtained:

=S @+ HAd AN+ IU (109)
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The eguations of motion derived from this Lagrangian
equation take the simple form

r 0 of

£ _u]n:?E(]U)+Em 3¢
(110)

o 0 oJ

)+ 20k = 2 (U) + En g

The last term in these equations, proportional to the
energy £,, is due to the change of independent variable
(see Ref. 22).

To be able to apply the above equations of motion to
a numerical integration on a digital computer, all of the
explicit expressions for the partial derivatives must be
developed. These are given below. The four partials of
Ag, Ay are

2L &
= T @D+ ) (111a)
/(\,‘A-,j L @?7; o

=t @D (111b)
;\‘Ag . ME_ 5 __ — &2 2 2,2

ST e (8 S 4Se 4y 4 166

(111c)

oAy L oy 2L AE — 16822

T T Teg (80 S48y + 4 — 16¢%)

(111d)

It can thus be seen that these partial derivatives satisfy
the relations that have been used to simplify the equa-
tions of motion, Eq. (110):

0Ay _ QA _, ]
ok n
(112)
& + oy =0
The partial derivatives of ], 7y, 1., and 77, are
of & o — ¢ _
= A BP =S
(113a)
o 1y _
Pl (2D + S —1)

or, 1 - N
?{‘W[(S 1)€ + 27
(113b)
ory 7 o
on “WKS 1) — 2¢]
or, __—_1_ B .
¢ 4(S%" [(S—1)¢ — 2¢2]
(113¢)
o1, " ~
”é;"_z“(sa—)v;[(S 1) + 2¢]
M:%(Sg“%?"‘l)
a§ 882
(113d)
B s
5 = e (ST

The above expressions will now be applied to obtain the
partial derivatives of (JU), which are present in the equa-
tions of motion, Eq. (110), the expression for (JU) being

It

JU —%— {mlr1 + Mty + 1170 [é (X2 + Y% + xOX}}

(114)

The expression E,, for the energy used in the equations
of motion, Eq. (110), is the “median” energy in opposi-
tion to the barycentric energy E defined in Eq. (86). The
difference between the two values is given by

x2 (115)

This difference comes from the fact that the exact differ-
ential rx2/p has been neglected in deriving Lagrangian
Eq. (105) from Lagrangian Eq. (32).

For practical computations, it is important to note that
the expressions of Eq. (86) or (115) for energy should not
be used in the equations of motion, Eq. (110), for the
numerical integrations because the benefit of the regu-
larization would then be lost; the denominators r, and 7,
are both present in the expression of Eq. (86) for the
energy E. Instead of this formula for the energy, the sec-
ond differential equation, Eq. (87), should be regularized
and integrated numerically, together with the equations
of motion, Eq. (110):

. 2 i xi
o dE _ _ er*sinv <rlr_J ) (116)

ds p? S
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To obtain the true anomaly v and the time ¢ as a func-
tion of the independent variable s, the following differ-
ential equations must be integrated simultaneously with
Egs. (110) and (116):

p=dv _
ds S
(117)
;= dt _ Tt
ds  (p)*S

Equations (110), (116), and (117) thus form a seventh-
order system. It is this system that has been used ex-
tensively for the integration of orbits. The computer
programs are described in Section V.

It is just as easy to obtain a system of Hamiltonian
rather than Lagrangian equations of motion; however,
most of the numerical work herein has been done with
the Lagrangian equations. With the use of rotating-
pulsating coordinates (xy), the Hamiltonian equation
of the problem is

1 2 a9
H=—(p: +prj)+ (yp. — 2py)
_r _1__(2+ 2)+ m +ﬁ2_
p 2 * y 7‘1 T:Z
(118)
whereas, with the median coordinates,
1, . r
H—"Q_(PE+P%)+(YPX—XPY)“TU
(119)

With the Birkhoff coordinates (£,5), the Hamiltonian
equation is

171 ., ) T
(120)

This Hamiltonian equation must be multiplied by the
function J to take account of the change of independent
variable from v to s:

1

H=—(pi +p;) — (Appe + Agpy) — — (JU)

(121)

r
p
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The momenta (pépy) are related to the velocity com-
ponents (¢7) by

(122)

Py =n+ Aq

The Hamiltonian equations of motion that are derived
from Eq. (121) are

E=pe — A (123a)
1= Py~ Ay (123b)
° Ae aAn 7 5] ITTT ?F
(123¢)
o 0A¢ DA r o0 of
— + ! +—_— j + En e
Pn Pe an Pn 87] P 877 ( > oy
(123d)

The differential equations for E, v, and ¢ should again
be joined to Eq. (123) so that a seventh-order system is
again obtained. On the other hand, if the value of ¢ is not
wanted, the differential equation for this variable may
be neglected, ¢ not being present in the other equations.
The value of the energy used in Eq. (123) is again the
“median” value because, in deriving Hamiltonian Eq.
(119) from Hamiltonian Eq. (118), a term 7x2/p has been
suppressed. The value of r was obtained by the known
two-body formula of Eq. (1) instead of by integrating
the differential equation for r (the differential equation
for r has been integrated by recurrent power series in
another nonregularized program).

K. Initial Conditions for Ejection Orbits

If regularized variables and equations of motion are
used, it is possible to compute orbits that go through the
singularities at m, (r, = 0,6 = —1, 5y =0) oratm, (. =0,
¢= 41, »=0). It is also possible toc compute orbits that
initially start from one of the primaries, and these orbits
may then be called ejection orbits. It is well known that,
in the study of periodic orbits in the three-body prob-
lem, collision orbits and ejection orbits play an impor-
tant role.
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It is shown herein how the initial conditions of the
equations of motion, Eq. (110), can be determined for
the case of ejection orbits. Ejection orbits have the re-
markable property of depending upon only two variable
parameters: the energy E and the angle of ejection 4.

S ety T L ovs i ye
1. E = —2—(5' +9?) — 7{1‘1@ [? (X2 +Y?) + X +

Equation (124) has been written in such a form that it
is still valid when v, =0 or r, = 0. The case of r, =0
will be considered first. This corresponds to a collision
with (or ejection from) the larger primary m, (earth),
upon which the following special values hold:

ro= 0, 7= +1, £=—1, n=0
= +1, D=+1
(125)
Energy Eq. (124) then gives
1 oo %y m,r _
- (& +7°) — e 0 (126)

and, according to this equation, ¢ and 77 may be related
to the collision angle ¢ (in the Birkhoff plane) by

. 2m.r\ "

¢= ( L cos 8
P

o omur\ " .

n = ( 2 > sin §
P

The ejection orbits from m,; may thus be integrated with
the initial values for (£ 4, £, 77) given by Egs. (125) and
(127), £ and # being two arbitrary parameters that
determine the particular ejection orbits. The collision
with the smaller primary m, (moon) must be treated in
the same way. This corresponds with

(127)

=1 r=0 &é=+1, =0 S=+1, D=+1
(128)

Energy Eq. (124) becomes here
Loy 129
9 (g + ) - P - (129)
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The regularized velocity components (é,:y) will then
depend upon the angle 4, but not upon the value
of E. In other words, the magnitude of the regularized
velocity does not depend upon the energy E, as will be
shown below. The energy equation may be written as

2
xO

5 ] + [mur, + mm]} (124)
and the velocity components may be expressed by
Ya
= <2m27> cos
P
(130)

lll. Computation of Periodic Orbits

A. Integration of the Equations of Motion With
Recurrent Power Series

The well-known technique for integration with recur-
rent power series has been used to integrate the equations
of motion, Eq. (33), in rotating-pulsating coordinates.
This method is usually referred to .as the Steffensen
method, and it has been extensively used by the present
author for the circular problem. The ideas of A. Deprit
(see Ref. 7) have also been closely followed in the prep-
aration of the recurrence relations. Both two- and three-
dimensional programs have been prepared; however,
only the two-dimensional case will be described herein.
For the two-dimensional case, the system of simultaneous
differential equations is of order seven. It contains the
two second-order differential equations for x and y given
in Eq. (88), the first-order equation for ¢ given in Eq. (34),
and the second-order equation for r given in Eq. (6)
(second equation).

To make this system suitable for the recurrent power
series approach, a few transformations have to be made.
The recurrence relations will be simplified if some
auxiliary variables are introduced. Redundant variables
are generally introduced to enable the writing of the
transformed system of equations in such a way that no
more than two variables (two power series) ever have to
be multiplied together. The system then obtained is
sometimes called second degree.
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In the present problem, 18 variables (parameters) P,
have been introduced for the three-dimensional case. For
the two-dimensional case, three parameters (P,, Ps, and
P.;) are set equal to zero. For the first 13 parameters,
there are 13 “first-order/second-degree” differential equa-
tions. For the last five parameters (P, to Ps5), there are
five second-degree equations that relate them directly to
the preceding 13 parameters without using more differ-
ential equations. The 18 parameters P; are given in
Table 1, together with their defining equations.

Next, power series must be written for each of the
18 variables, with the true anomaly v as the independent
variable. These power series should be of the following
form:

(131)
+ P;(4)v® + -+ Pi(18)0™

wherei=1,2,---,18.

By substitution of these expressions in Table 1, 18 recur-
rent relations are obtained for the different coefficients
Pi(n) of the power series. The zero-order terms P;(1) are
determined by means of the initial conditions. The recur-
rent relations then allow one to obtain all of the coeflicients
Pi(n+1) of order n as a function of the coeflicients
P,(1) to Pi(n) of lower orders. The different recurrence
relations are collected in Table 2.

It is important to note that these relations are really
recurrent only if they are used in the proper order (1 to 18)
because it can be seen, e.g., that to obtain the coefficient
P.{n+1), the coefficients P,,(n+1) and P,,(n--1) of the
same order are needed. In the recurrence relations given
in Table 2, a capital P is used for the semilatus rectum
(instead of the usual lower-case p), and a capital Q is
used for the square root of the semilatus rectum. Three
different kinds of summation symbols = have also been
used to designate sums with different limits in the indices
p and g. These have the following meaning:

(p=12,-,n
sy =sumfor |g=nn—1,---,1 {132a)
| ptg=1+n
_p:2’87".7n a1
S, =sumfor |[g=n—1,n—92, -1
| p+2=n+1
(132b)
p=12 - n+1
s;=sumfor | g=n+1Ln, -1 (132¢)

prtg=n+2

These equations have been programmed for the two-
and three-dimensional problems in two separate programs,
but no research has been done on the three-dimensional
case.

Table 1. Orbit variables and defining equations

Parameter Equation Parameter Equation
dx - g _ 1,
P = x —g;-:x Py =t depl/“r
dx
dy _ . _ dx . o | e
=y il Py = x1 x g xx + yy + zz + mex
dxs
dz . ——— . — . o ° -
Py = =z =i Py = x2 x = xx + yy + ozz — max
L3 da'1 C;X;
dx . 1 = = x? —_ = —3g,
Py = % T = Y P = 0= x; X7y -y
. do dx;
dy . 1 Pz = 0",::X2_:f Xz d = —30: p
Ps=y E;Z—Zx—l—?r(yA) v v
. Pu=™ A =1 mor ™ mo:
iy #_ 1
Po=z dv — % + p r(zA) Pis = xA + B = xA -+ mme o — o)
_ dr Pig = yA = yA
Pz prial
Py = zA = zA
, P B
Pps=r rg;‘ZZr“-Fr‘*';rr" P = r* = rr
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Table 2. Recurrence relations for coefficients of power series

Coefficient Recurrence relation Coefficient Recurrence relation
nPiin+1) Pi(n) nPof1) Profn +1) — 32 qPuolp) Polg+ 1) + muPyfn)
aPuln+1) Poin) + Z:[pilp) Pilq) + Pulp) Pelq)
APy 1) Puln) o Plp) Pea)!
: aPa(1) Puln+1) 22 qPulp) Pulg 1) — miPin)
nPiln+1) +2 Py(n) + “p 21 Palp) Pulg) -+ 21 [Pi(p) Pslg) + Plp) Pslq)
1 + Pulp) Polq)]
rhede TRPA) T 2 Plp) Pule) nPsl1) Pal+1) —: qPulp) Pulq+ 1) — 324 qPulp) Pulq+1)
APl 1) —Pyfn) + —:;- 21 Polp) Puelq) nPu(1) Puin+1) —Z: qPulp) Pulg+1) — 321 gPulp) Pulg+1)
Prin 1) Puin) Puln+1) —miPufn +1) — mePusln+1)
nPd1) Pstn 1 — SqPp) Pilg-H1) + Pst) Pusfa+1) ZPslp) Paslq) + mems [Prfn +1) — Pasln -+ 1)]
+ 2,12 Pd) Pd) — 5 Plp) Pula] Puln 1| ZPApl )
Puln 1) Z3Ps(p) Pulq)
nPs(n +1) “é‘ Pasln) Piln+1) ZePilp) Pila)

The notation used herein for the coefficients P;(n) of
the power series expansions for the parameters P; was
derived from the FORTRAN 4 programming language.
Also, because of some characteristics of FORTRAN 4, the
indices n of the coeflicients P;(n) start at one rather than
at zero. Although these notations are somewhat unusual,
they greatly facilitate programming of the equations for
the computer.

The main disadvantage of the recurrent power series
method is that it requires a complete transformation of
the differential equations and the introduction of many
auxiliary variables. On the other hand, the redundancy
of the variables can be used for checking the precision;
in fact, each auxiliary variable may be used for a check
in the same way as a first integral of the system. In the
numerical calculations, e.g., the variables Py, Pyy, Pys, and
P, have been used for checking purposes. This is done
in the following way: Using P, and P., the values of r,
and 7, are computed:

Ty = [(Pl - x1>2 + (Pz)g]]/z
(133)
v = [(Py — m)* + (P2)]*

The following four absolute values give a measure of
the local integration error:

]?10 - 7'1}: I*pn - 7'2!, |P12 - 1'23 ‘; ]P13 - 7';3[

H

(134)
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In the computer programs, the four quantities of Eq. (134)
are computed at each integration step; the average of
all four is then printed out.

B. Integration of the Variational Equations With
Recurrent Power Series

The variational equations play an important role in the
study of periodic orbits because, by their solution, the
partial derivatives of the variables (x, y, %, §) with respect
to the initial conditions (%o, Yo, %o, o) are obtained. These
partial derivatives are needed for two important reasons:
(1) for the differential correction process to find the
periodic orbits and (2) for the construction of the funda-
mental matrix (by examination of the eigenvalues of this
matrix, information on the stability of the orbits is
obtained).

The 16 partial derivatives are obtained by numerically
integrating the variational equations four times. These
four independent solutions can be considered as the four
columns of a four-by-four matrix, which is called the
fundamental matrix. In the most frequent applications,
the initial conditions form a unit matrix. The particular
fundamental matrix, which is the unit matrix at ¢ = 0, will
here be called the principal fundamental matrix.

The equations of motion may be written in the following
form:

dx

—E-’E =X (1358)
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— =7 (135b)
dx . . U

—C-l—z- = f,(x,y,y) = +2 + é———a—f (135¢)
dy . . U

= = fifayd) = — 2+ %-87 (135d)

The potential function U was defined previously in Eq.
(86). The equations of motion are the same as Eq. (33),
but are written here in the form of first-order equations.
The variational equations corresponding to Eq. (135) are

déx .
_él—l)_ = 8x (1363.)
ddy _
7o = 8y (136b)
A8t  of, Of ot
o o dx + 2y sy + 28y
T 0:U 0*U .
=5 <_~—8xax 3x + oy 8y> + 28y
(186¢)
da() — af?/ afﬂ DX
do " oy 3x + 2y 3y + 28x
r [ 22U o*U .
= — -2
D <8yax 8x -+ 3oy 8y 3x
(136d)

The second partial derivatives of U have the value

U . (x—x,)? (x~—x,)?
o =1 V:‘+3|:ml——r§ + m, ——-————rg ]
(137a)
orU (x—x,) (x—x,)
s —Sy[ m e m, £ (137b)
2U o o 1 1
T 1—-V,—3y [ml = + m, ng} (187¢)
where V; is the auxiliary expression
_omy m,
V,= v + s (138)
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To obtain the four independent solutions of the varia-
tional equations, Eq. (136), to form the fundamental
matrix, different computer programs have been prepared.
In one program, the numerical integration is performed
by a classical predictor-corrector method by which 21
first-order differential equations must be solved simul-
taneously. Of these, the first to fourth equations are the
equations of motion, Eq. (185), and give the values of
%,Y,%,, whereas the fifth to twentieth equations give the
matrix with four solutions of the variational equations,
Eq. (1386). Finally, the last equation gives the time ¢ as a
function of the true anomaly v.

However, the best results have been obtained by solving
the variational equations, Eq. (186), with the recurrent
power series method, together with the equations of
motion, Eq. (185). The formulation described in the pre-
ceding section has been maintained to solve the equations
of motion; besides the 18 parameters P; used in the
preceding section, however, 32 new parameters P;(i = 19
to 50) have been introduced. The 16 parameters P, to P,
give the four required solutions of the variational equa-
tions, and the last 16 parameters P, to P, are auxiliary
quantities that are used to obtain simple recurrence
relations for the coeflicients of the series.

With the use of a large number of auxiliary variables,
the chain of computations can be set up in such & way
that more than two power series never have to be multi-
plied together. Very simple recurrence relations for the
coefficients are then obtained. The formulation that has
been used here is certainly not unique; in fact, a formu-
lation with fewer auxiliary variables is possible.

All 32 new parameters Py, to Py, are represented by a
power series in the true anomaly v, with coefficients
[Pi(n)(n=12,---)]. For parameters P, to P.,, the cor-
responding differential equations are used, but no auxiliary
differential equations are introduced for the other 16
parameters P,; to Py, For the variational equations, these
last 16 auxiliary quantities play the same role as the
variables P,, to P.; play for the equations of motion.
The definitions of the variables P.; to P, are given in the
following:

P, =% (139a)
7
Py, = 222 (139b)
p, =L (139¢)
71
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Pos = % (139d)
Py= —1 +3<";‘x1>“ (139€)
Po= —1 +3<x;x2>’ (139f)
Po= —1+3 <l> (139g)
7y
Po= —1+3 <7{L> (139h)
p,, =34 x=%) (1394)
7y 71
Yy [(x—x, .
%—Sﬁ(rg) (139)
Pis = 1 + my PuPyy + my PiyPy (139k)
Poo=m; PPy + myPsPyy (1391)
Pio =1+ my PPy + my P3Py, (13911'1)
7
Pi=— Py (139n)
1Y
7
Py = — Py (139%)
14
7
Psy = _}0— P4s (139p)

The last two of the four differential equations, Eqs.
(136¢) and (136d), may then be written as

djg =P, 8x + Py sy + 287
. (140)
6?5:498x+P508y'—28£

The recurrence relations for the coefficients of the
quantities P, to Ps, are given in the following:
n Pio(n+1) = Py(n) (141a)

7 Pyo(n+1) = Pyy(n) (141b)

22

nPy(n+ 1) = +2 P,s(n)
-+ El[Pets(P)Pw(g) + P49(P)on(9)]
(141c)

1 Pyp(n+1) = —2 Pyy(n)

+ 31[Psa(p)P1s(9) + Pso(p)P2o(9)]

3
[

(141d)
Pu(l)Pys(nt1) = Pa(n+1) — S, Po(p)Pus(9)  (141e)
Pr(L)Py(n+1) = Py(n+1) — S, Pu(p)Pus(9)  (141)
Po(1)Pur(n+1) = Po(n+1) — 5, Po(p)Per(®)  (141g)
Pu(L)Pss(n+1) = Po(nt1) — %, Pr(p)Pss(9)  (141h)

Poo(n+1) = 83, Pyy(p)Pos(9) (141i)
Puo(n+1) = 33, Pyo(p)Pso(9) (141j)
Pou(n+1) = 85, Pyr(p)Pur(9) (141K)
Poa(n+1) = 33, Pyu(p)Pus(9) (1411)
Pos(n+1) = 53, Por(p)Pss(9) (141m)
Pou(n+1) = 83, Poo(p)Psol9) (141n)
Pys(n+1) = S5[m, Pro(p)Pso(9)

+ my Pay(p)Pao(9)] (1410)
Pyg(n—+1) = S3[my P1o(p)Pas(9)

+ Mg Pyy(p)Pso(9)] (141p)
Por(n+1) = So[m, Poa(p)Pus(9)

P op)P )] (141)
Pu(n1) = ZLltlPuld) (141x)
Poan+1) = 2LPPus(8) 1271@:})6(9) (141s)
Poo(n+1) = =L@)la®) 1271@;4)7(9) (141t)

The recurrence equations for the coefficients of Py, to
P, are not reproduced because they are identical to those
of Py to Ps,. The meaning of the different summation
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signs is the same as is indicated in Eq. (132), except that
the following new symbol is used:

p=2,n+l
3, =sumfor [ g=n, 1 (142)
p+q=n+2

As aforesaid, the recurrence relations are recurrent only
if they are used in the same order as they are given here
(from P, to P;,). More precisely, they should be used in
seven consecutive groups in the following order: (P, to Py;),
(PM to Pls), (Pm to P34), (Pas to Pas), (P39 to P44), (P45 to P47),
and (P to Py).

C. Periodic Orbits in the Elliptic Restricted
Three-Body Problem

The elliptic restricted three-body problem has some
fundamental differences from the circular problem, the
most important of which is that the elliptic problem has
no Jacobi integral or energy integral, as does the circular
problem. The equations of motion, even in rotating or
rotating-pulsating axes, explicitly contain the indepen-
dent variable, e.g., the time, or the true or eccentric
anomalies (cos v and sin v or cos E and sin E). This
problem is thus essentially nonconservative (nonautono-
mous according to another terminology).

A consequence of this fact is that any periodic solution
must have a period that is an integer multiple of the
period of the periodic functions cos v and sin v. In other
words, the period of any periodic orbit in the elliptic
restricted three-body problem must be 2» or a multiple
of this number. The period of rotation of the rotating
axes being also 2, a periodic orbit of the elliptic problem
will be periodic with respect to the inertial axes as well
as the rotating axes. Except for some details related,
e.g., to the convenience of numerical integration, it is
thus not essential to use rotating axes in this problem.

Periodic orbits can also be studied with respect to the
inertial axes. Because of the fixed value of the periods of
periodic orbits in the elliptic problem, there are no
families of periodic orbits similar to the families with
continuously varying periods that exist in the circular
problem. Only isolated periodic orbits can exist in the
elliptic problem, with period 2k» (k=1,2,---). These
periodic orbits are thus all “commensurable” or “syn-
chronous” or “in resonance” with the primaries.

The question of symmetric orbits with respect to the
rotating x-axis (or syzygy-axis), which is so important in
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the circular problem, retains all of its value in the elliptic
problem. Symmetric periodic orbits still exist in the
elliptic problem, but the criteria or sufficient conditions
for symmetric periodic orbits in the elliptic problem are
slightly different, these criteria being more strict in the
elliptic problem. In the circular problem, what may be
called a “weak periodicity criterion” exists, unlike the
elliptic problem, where there is a “strong periodicity
criterion.” In the circular problem, the wesk criterion for
symmetry could be stated as follows:

If the satellite crosses the syzygy-axis perpendicularly,
its motion is symmetric with respect to this axis.

In the elliptic problem, the corresponding strong cri-
terion for symmetry could be stated in the form given by
Moulton (see Ref. 13):

If the satellite crosses the syzygy-axis perpendicularly,
at a time when the primaries are at an apse, its motion
is symmetrical with this axis.

The time of perpendicular crossing is important, there-
fore, in the elliptic problem. The crossing must be at the
moment of an apse (maximum or minimum elongation
of the primaries). In the circular problem, the time of
perpendicular crossing of the syzygy-axis is irrelevant.

The weak criterion for symmetric periodic orbits in
the circular problem can be stated as follows:

If an orbit has two perpendicular crossings with the
syzygy-axis, it is periodic.

It is because the times of crossing are unimportant
that families of periodic orbits with continucusly vary-
ing periods exist. In the elliptic problem, the perpendicu-
lar crossings must be such that they assure a period
2kx; the strong criterion for symmetric periodic orbits
may then be expressed in the following form:

An orbit is periodic if it has two perpendicular cross-
ings with the syzygy-axis, and if the crossings are at
moments when the primaries are at an apse.

The time between the two apses of the primaries in
Keplerian motion being a multiple of = (say, k), the
period will then be 2kxr. The above periodicity criterion
gives a sufficient but not necessary condition for pe-
riodicity, of course, as nonsymmetric periodic orbits may
also exist. In the present study of the elliptic restricted
three-body problem, some cases corresponding to the
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integers k = 1,2 3,4, 5 have been investigated. Only sym-
metric periodic orbits have been studied.

U. Families of Periodic Orbits in the Elliptic Restricted
Three-Body Problem

As was stated in the preceding section, in the sense of
what is generally done in the circular restricted three-
body problem, no tamilies of periodic orbits exist. How-

ever, the elliptic three-body problem has another
important characteristic that will make possible the
generation of continuous families of periodic orbits.

This problem contains two parameters—ithe eccen-
tricity ¢ and the mass-ratio p of the primaries—in con-
with the single parameter . of the circular problem.
extra parameter e, in fact, adds one degree of
1 to the problem of finding periodic orbits. When
are fixed, only isolated symmetric periodic orbits
1y exist in the elliptic problem. However, if such
a periodic orbit has been found, and if e and p are

e to vary, this periodic orbit may be prolongated
louble infinity of periodic orbits; in other words, in
v depending upon the two parameters e and u.
-ical experiments have disclosed that several such
actually exist, It has even been found that some
vs exist for all values of ¢ and p: 0 <e <1 and

< <C 1. Most of the families described below have
one parameter that has been fixed () and the other
parameter variable (e). The computer programs are
capable of generating periodic orbits by perturbing and
then differentially correcting both e and p.

Most of the numerical integrations have been done
with constant x and increasing e, starting from the cir-
cular problem, at ¢ = 0. However, it can be seen that, for
every symmetric periodic orbit with e = 0, there are two
ways of prolongating it to the elliptic problem. This is
because the symmetric orbits have two perpendicular
intersections with the syzygy-axis, and each intersection
can be used as a starting point for the integration.

If one point is used, it is considered that at ¢ = 0, then
i, at £ = 0 the two primaries are at periapsis
imum elongation). Taking the other intersection
point is equivalent to taking v = = when ¢ = 0, and it is
then supposed that the two primaries are at apoapsis at
the moment of the first crossing of the syzygy-axis. When
¢ = 0, the forms of the orbits are identical, but there is a
phase delay of a half revolution between the two pri-
maries and the satellite. When the eccentricity is in-
creased to nonzero values, the forms of the orbits are
different, and different families are thus generated. These
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two families join at ¢ = 0. Several illustrations of this
situation have been found numerically.

In all of the computations, two types of initial condi-
tions have thus been used. The orbits that start with
t =0, v =0 are called periapsis orbits, and will be desig-
nated with the letter P. The orbits that start with ¢ = 0,
v = = are called apoapsis orbits, and will be designated
with the letter A joined to the family number.

To use the circular restricted three-body problem as a
first approximation to the elliptic problem, the procedure
described below has been followed.

In a previous work on the circular problem, some 4000
periodic orbits have been classified, all corresponding to
the earth-moon mass ratio. The initial conditions of the
periodic orbits published by Bartlett (see Ref. 18) and
Henon (Ref. 27) have also been collected, and these all
correspond to p = 1/2 (equal masses). The initial con-
ditions for these periodic orbits have been punched on
cards. Out of this large collection of orbits, the isolated
periodic orbits with period 2kr (k=1,2,3,4,5) have
then been extracted by automatic interpolation with the
use of a computer program. In this way, a total of 150
resonant periodic orbits have thus been found.

Some of these orbits have then been used for a starting
point by an analytical continuation along increasing
eccentricities ¢ (and constant period) implemented in
different programs. In a few other cases, the eccentricity
has been kept constant and the mass-ratio has been varied.

The computer programs are capable of varying any of
the initial parameters of the problem and generating a
family in this parameter. More precisely, only symmetric
orbits have been studied, and periodic orbits have then
been obtained by differential correction of two of the
initial parameters. The symmetric periodic orbits are
defined by two end conditions (y = 0, £ = 0); two initial
conditions are thus necessary to meet the requirements
at the end of a half orbit. Altogether, three parameters
are thus continuously varied by the computer programs.
The first two parameters are varied by differential cor-
rections to satisfy the orthogonal crossing condition
y =% =0 at the end; the third parameter is varied to
generate the family of orbits. For the ordinary symmetric
periodic orbits, the first two initial parameters have
always been (%, 7o) and the third parameter e or p. For
periodic symmetric collision orbits, the two initial condi-
tions have been taken as the energy E and the eccentricity
e, the final conditions remaining y = % = 0; the family
parameter has been taken as p.
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It is noteworthy that, in the case of periodic symmetric
collision orbits, only one-parameter families of periodic
orbits exist. These orbits are determined by only two
initial conditions—the energy E and the collision angle 4.
To fulfill the symmetry conditions, § must be kept con-
stant and only E can be varied. Thus, for ¢ and u
constants, there will generally be no periodic symmetric
collision orbits. If E and e are varied simultaneously by
differential corrections, periodic orbits may then be
found; these orbits form a one-parameter family in p.

E. Differential Corrections for Periodic Orbits

To find periodic orbits in general, for the planar re-
stricted problem, differential corrections must be made in
four variables; for symmetric periodic orbits, differential
corrections in only two variables are necessary. Computer
programs have been written to handle both cases.

In the general case, the vector with the four initial
conditions (%,,Yo,%0,0) Of an orbit may be designated
by x,, and the orbit with these initial conditions is desig-
nated by x(£,x,). At the end of this orbit, at ¢t = T = 2k,
the values of the coordinates are thus x(T,x,). If the
initial conditions of this orbit must be corrected by Ax,
in such a way as to make the orbit periodic, the initial
coordinates of the new orbit must match its final co-
ordinates:

%o + A%y = x(T, % + Ax,) (143)
If the correction Ax, is assumed to be small, the right

side of Eq. (143) may be expanded in a Taylor series
truncated at the first-order terms:

X+ Axy = x(T, %) + %%i—x—o)— A%, (144)
0
or
[M — 14:] Axy = %, — x (T, x,) (145)
0%,

The corrections Ax, are thus obtained by solving the
linear system of Eq. (145), whereas the partial derivatives
are obtained by solving the variational equations. This
system is the basis of the differential corrections to ob-
tain periodic orbits. Because the problem is now linear
and Eq. (145) has been made linear by making a trunca-
tion of the Taylor series, the corrections of Eq. (145)
must be computed and applied in an iterative way. If a
suficiently good approximation is known, the differential
corrections converge in about four to five iterations.
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In the present work on the elliptic problem, it has
always been possible to begin with the fairly good initial
conditions given by the circular problem. On the other
hand, in the generation of families of periodic orbits,
good initial approximations have always been obtained
by extrapolation from the previously computed orbits in
the family. For the purpose of extrapolations, the pro-
grams save the last 10 orbits or so in the memory of the
computer. Using this available information has allowed
considerable savings of iterations and computer time.

It is known that, in the circular restricted problem, the
matrix of Eq. (145) becomes singular because of the
presence of an eigenvalue +1 (of multiplicity two) of
the fundamental matrix. This difficulty can easily be
avoided in the circular problem by keeping cone of the
four variables constant and allowing no variation Ax, for
it. In the elliptic problem, however, this difficulty does
not occur because of the nonexistence of the unit eigen-
value. In many cases, the matrix has been found to be
nearly singular for other reasons, mainly because of the
existence of several solutions. It has thus been necessary
to treat the near-singular case in a special way, This
has been done with some programs provided by Dr. C,
Lawson. In cases where the matrix of the system is nearly
singular, a least-squares approach is adopted for the
solution of the system, Eq. (145). In this case, a correc-
tion Ax, with minimum length is used. This type of
solution for the near-singular situation has given highly
satisfactory results for the differential corrections.

In most cases, the differential correction process de-
scribed above can be slightly simplified in the case of
symmetric periodic orbits. There are only two wvariables
and, instead of a fourth-order matrix, only a second-
order matrix must be inverted. Here the initial conditions
x, must be corrected by Ax, in such a way as to ebtain a
given preassigned final value x, for the state vector. The
equations of the periodicity conditions are thus

x(T,x, + Axg) = x, (148)

Again making a Taylor series expansion limited to the
first-order terms gives

0x(T, x,)

2T, x,) + o

Axy = X {(147)

or, finally, the following linear system in Ax,:

0x(T, %)

s At = x, — 1 (T,%) (148)
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In the case of only two variables (x,, ,) to be cor-
rected, this system (Eq. 148) may be written explicitly as
follows:

oy R .
o Ax, -+ 50 Atfo y(%o, Yo, T)

(149)
ﬁ« AXy + ox AYy = —% (0, o, T)

0%, G

The sclution of this system is

1 ]: of
AKO:"“"‘

. Yy ., .
3 ~aT.loy(xo,yo,T) -l-a—é/;x(xo,yo,T)}

0% . oy . .
M-C—;f: y (xOJ yo: T) axo X (x0> yO; T)]

D=y o ox oy (150)

0%y a@,.v'o 0%, ago

It has been seen that, even with the simple system of
Eq. (149), difficulties may occur because of indetermina-
tion of the solution, and that the matrix may be nearly
of rank one. In this case, the least-squares approach has
again been adopted. For the problem of finding periodic
collision orbits, the differential corrections have been
made in the energy E and the eccentricity e by the fol-
lowing system, which is the analog of Eq. (149):

~
g

4 AE — —a—y—Ae = —y(E,eT)

ok oe

(151)
f:f AE + -aiAe = —%(E, e, T)
o oe

As was stated above, the periodic collision orbits ob-
tained in this way form a one-parameter family, with u
as the variable parameter. For the collision orbits, the
problem has been integrated with regularized Birkhoff
coordinates. Because no program has yet been written to
solve the variational equations in Birkhoff coordinates,
the partial derivatives in this case have been obtained
by numerical differencing of perturbed solutions.

F. Properties of the Eigenvalues of the
Fundamental Matrix

In what follows, the stability of periodic orbits in the
elliptic restricted three-body problem will be examined.
Ouly frst-order or linear stability will be considered
here. This stability will depend exclusively upon the
behavior of the eigenvalues of the principal fundamental
matrix R. As aforesaid, the principal fundamental matrix
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(matrix of partial derivatives) is obtained by solving the
variational equations. Before the stability itself is dis-
cussed, some important properties of the fundamental

.matrix R will be described herein.

The variational equations, Eq. (136), may be written
in a matrix form,

d 8x = A 8x
dv

(152)

where A is the fourth-order square matrix of Eq. (136).
Matrix A may be written in the form

0 I

a 2J (158)

where 1 is the second-order unit matrix and a is the
second-order symmetric nonconstant matrix of the second-
order partial derivatives of U given in Eq. (136), and

(154)

A new fourth-order constant matrix § will now be
defined as

S = (155)

0 +I
—~I 2]

It can be verified directly that matrix A of the varia-
tional equations given in Eq. (153) satisfies the following

property:

SATS = —A (156)
The superscript T indicates the transpose operation.
Matrices A that satisfy this relation (Eq. 156) will be
called skew-symplectic relative to the matrix S. The
important relation of Eq. (156) will be needed to estab-
lish a similar important relation for the principal funda-
mental matrix R. In fact, a very simple expression will
be obtained for the inverse R of matrix R. Matrix R
satisfies differential Eq. (152):

dR

T = AR

(157)

and the inverse R of R is a solution of the adjoining
system
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dR*
pra R*A

(158)

Using the property (Eq. 156) of matrix A, it can now
be verified that inverse matrix R-*, which is a solution of
Eq. (138), is obtained by

SR™St =R (159)

Matrices R that satisfy a relation of the form of
Eq. (159) may be called symplectic with respect to the
given matrix $. An important consequence of the relation
of Eq. (159) is that matrices R, R?, and R all have the
same eigenvalues. Thus, whenever X is an eigenvalue of
R, 1/x is also an eigenvalue. Zero eigenvalues are ex-
cluded, of course, because the determinant of both
matrices R and R* is +1. The four eigenvalues of R
may thus be written in the form

NS
?A’IU",U.

(160)
This property is true for all values of the independent
variable and for all solutions, periodic and nonperiodic,
as has been shown in more detail in Ref. 17. However,
the different properties of the eigenvalues are mostly
used for periodic orbits, and only for the value 2kxr = T
of the independent variable v. The characteristic ex-
ponents related to the above eigenvalues may be desig-
nated by (o, —a, 8, —8), and are defined by the relations

A= e,

= b (161)

They are defined, of course, only for modulo 2xi/T.

G. Solution of the Characteristic Equation of the
Elliptic Problem

As a consequence of the form of the roots of Eq. (160),
the characteristic equation of matrix R may be written
in the following form:

stt+astt+astas+1=0 (162)

The two coeflicients of s* and s° (+1), as well as the
two coeflicients of s* and s, are thus equal. These two
simple relations between the coefficients of the char-
acteristic equation are used for checking the precision of
the numerical computations. In most cases, a precision

of at least 10-1° has been obtained for these two relations.
It will be seen that the stability of the orbits depends
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only upon the roots of the characteristic equation; there-
fore, upon two numbers: (A,u) or (@1,a.). In other words,
two stability numbers correspond te each periodic orbit.
The real numbers (a,,a,) may be considered as the coordi-
nates of a point in the (a,,a,) plane, and each pericdic
orbit is thus a point in this plane. The real guantities
(as,a,) will be called stability coeflicients of the orbit.
Two other numbers (k; and k), called stability indices,
will also be used in the following:

1 3
homats, k=g
A i

(163)

One is reminded here that, in the circular problem,
there is only a single nontrivial stability index k because
of the presence of two unit eigenvalues, the eigenvalues
being of the form (A, 1/A, 1, 1) because of the existence
of the energy integral. In the circular problem, stability
is discussed on the real k-axis (k= -+ 1/)); in the
elliptic problem, stability is discussed in the real {a,,a,)
plane.

The characteristic equation, Eq. (162), may be written
in the following form:

(s—)x)(s—%)(s——#)G"—é)}:@

and this form gives a relation between the stability coeffi-
cients {a4,a.) and the stability indices (ky,k.):

(164)

(11:———<)\+‘1—+,M+l):_‘<zﬁ4ﬁkl)
A ©

a2=2+<x+-1—><,b+i>:2+klkz
A “

This shows that k, and k. are the roots of the second-
degree equation

(165)

X2+a, X+ (a,—2) =20 (166)

The expressions for k; and k, may thus be written as

k, = (a‘;’ —4a, + 8)‘/3 (167)
k\ 2 )

When k; and k, have been found, the roots & and
can be found again by solving second-degree equations.
The solution of

¥ —kyx+1=0 (168)
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will give A and 1/x by

A _ k1 -+ (ki - 4)1/2 (169>
1/x 2
whereas the solution of
¥ —lkyt+1=0 (170)
gives u and 1/x by
A‘ . 2 Yo
M _kx(-4* (171)
1/ 2
The problem of finding the four roots of the charac-
teristic equation (i.e., the four eigenvalues of the funda-

mental matrix B) is thus reduced to solving three
second-degree equations. Coefficients ¢, and a, of the
characteristic equation are obtained directly from the
fundamental matrix B, which is obtained by numerical
integration of the variational equations. If the four col-
umns of the matrix R are designated by x;, y;, %;, and ¢;
(i=1,2,3,4), then coefficients ¢, and a, are obtained by

—a, =% Yy + X+ Y (172a)
lx, X1 X Xy X4
@, = -+ +
Y Yo Xy T Yz Ys

(172b)

The characteristics of the roots—and, of course, the
stability of the orbits—will depend upon the discriminants
of these three second-degree equations. Equation (166)
has a zero discriminant when

a2:_1_+2

(173)

and this locus is a parabola in the (a,,4,) plane. For the
other +two second-degree equations, the discriminants
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are zero when k; or k., takes on the value =2, In the
(a1,8.) plane, this gives the two straight lines

a, = +2a, — 2

(174)
a, = —2611 - 2
These two lines are tangents of the parabola of Eq. (173)
at the points (a, = *4, a, = 6).

H. The Seven Types of Stability Characteristics

The stability of periodic orbits will be discussed in
the (ay,a,) plane. This stability thus depends upon sta-
bility coefficients (a,,a,) or stability indices (kk,), or on
eigenvalues (A,u) and the corresponding characteristic
exponents.

A periodic orbit is said to be stable if the solutions of
the associated variational equations have no terms with
exponentially increasing terms. This happens if (and only
if) the characteristic exponents have no positive real
parts. However, as was seen above, the eigenvalues of
the fundamental matrix R occur in reciprocal pairs, and
the characteristic exponents occur in oppositive pairs.
Therefore, there is stability if (and only if) the character-
istic exponents of the orbit are all purely imaginary.

If the characteristic exponents a and B8 given by
Eq. (161) are purely imaginary, the corresponding eigen-
values A and u thus must be on the unit circle. In other
words, stability exists only when all four eigenvalues
A I/M, p, 1/p are on the unit circle.

The location of the four eigenvalues with respect to
the unit circle is discussed below. This can easily be done
in the (a,,a.) plane. Considering the parabola of Eq. (173)
and its two tangents (Eq. 174), the plane will be sub-
divided into seven distinct regions, in each of which will
be different types of stability properties. The properties
of the roots in all seven regions are examined below.

There are six unstable regions and one stable region;
names are proposed for the six types of instability. The
seven regions are shown in Fig. 2, and the corresponding
configurations of roots are shown in Fig. 8. It can also
be noted on the stability diagram (Fig. 2) that the circular
restricted three-body problem—which has two roots +1,
and thus —k, = +2 or k, = +2—corresponds to the line
a, = —2a, — 2. '

The properties of the roots in each region are described
in Table 3.
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Table 3. Properties of the seven stability regions

Properties of roots
Froperties
Region Properties of roofs i
2 2 2 _ of orbits
af — 4oy + 8 ky and ky ki — 4 ky— 4 and 4 and 1/), 1/u Remarks
1 >0 Real <0 <0 A=1/\E=1/u All four on unit circle Stability
{X and u complex)
2 <o Complex Complex Complex A=miE=X Not on unit circle Cormpls
conjugates (X and g complex) insta
3 >0 Real >0 >0 A real, p real Two positive and two negative Even
A <0 roofs instobility
4 >0 Real >0 >0 Areal >0 Four real positive roofs Even—even
ureal >0 instability
5 >0 Real >0 >0 A real <0 Four real negative roofs Cdd~add
nreal <0 instability
6 >0 Real >0 <0 A real >0, u complex Two real positive roots and fwe Evermsami-
E=1/u complex roofs on wnit circle ingfobility
7 >0 Real <0 >0 X complex, A = 1/A Two real negative roots and two Qdd-samin
ureal <0 complex roots on unit circle instability
REGION 4 REGION § REGION 4 REGION 2 REGION 5
[ 94 Y A Y
1/ \\
Vi \XAp Vi ow
/) x EEYAN )
172) \\ 4
2 H
o - 402 +8<0
REGION 2 REGION 1
Y
AN
NIDA
1728
Vi
REGION 6 REGION 7 REGION é REGION 3 GION 7
Y M ¥

Fig. 2. Seven stability regions

REGION 3
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Fig. 3. Root configuration for stability regions




IV. Families of Periodic Orbits

In this section, the actual results of the machine cal-
culations are described. These results consist of 1127
periodic orbits, which are grouped as follows:

(1) One group of 13 isolated periodic orbits of the
rectilinear problem (1P).

(2) Four short segments of families of periodic orbits
with e = 1.0 or e ~ 1.0 (3P, 4P, 5P, and 9P).

(3) Two families related to the eccentricity ¢ = 1 (6A
and 124),

(4) Two families with the earth-moon mass-ratio
» = 0.012155 (7P and 7A).

(8) Five families with equal masses (8P, 8A, 10P, 11P,
and 11A).

(6) One family with periodic collision orbits.

Although much effort was made at the beginning to
complete each family, this has turned out to be impos-
sible because, in the investigation of the continuation of
one family, several new families are always discovered.

The letters “P” and “A” designate the periapsis- and
apoapsis-types of orbits, respectively, as described in
Section IIi. Fellowing the descriptions are tables with
initial and final conditions (see Tables 4-19). The column
headings at the top of each of these tables briefly describe
the family. Columns with suffix 0 (e.g., X0, YDOTO) cor-
respond to the initial conditions; columns with suffix 1
(e.g., X1, YDOT1) correspond to the final conditions. The
initial and final conditions are given in barycentric in-
ertial coordinates for families 1P, 8P, 4P, 5P, 9P, 6A,
and 12A. For the eight other families, the initial and final
conditions are given in barycentric rotating-pulsating
coordinates.

One of the computer programs was prepared to auto-
matically give the plots of the orbits on photographic
paper and on microfilm, and in five different coordinate
systems (the orbits being periodic in all five systems).
For this reason, some graphs are included in the text
with representations of orbits with respect to these frames
of reference. Not much information is gained by seeing
the orbits in different frames of reference, but it has been
judged useful to give a few figures in different coordinate
systems. If one would like to do a Fourier analysis of the
orbits, e.g., these figures may help in selecting the most
appropriate coordinate system. The following five sys-
tems have been used:

(1) Barycentric inertial.
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2) Barycentric rotating,

(

(3) Barycentric rotating—pulsating.

(4) Geocentric inertial (centered at m, = 1 — p).
(

5) Selenocentric inertial (centered at m, = p).

A. Families 12A and 6A of Periodic Orbits

The orbits of this family are symmetric with respect to
the Ox-axis in the rotating coordinate system, i.e., the
m,—m, line or syzygy-axis. They all satisfy the strong
periodicity criterion—that they cross the syzygy-axis
twice with a right angle at moments when m, and m, are
at an apse (Le., at the minimum or maximum elongation
of m; and m,).

This family is a continuation of an orbit with period
4, which belongs to Strdmgren’s Class C of symmetric
periodic orbits around the libration point L,. Thus, its
mass ratio is u = 0.50.

Strdmgren’s Class C of orbits is one of the well-known
classes of periodic orbits in the circular restricted three-
body problem with equal masses. The orbits are sym-
metric with respect to both the Ox-axis and the Oy-axis.
This class begins with infinitesimal retrograde periodic
orbits around the libration point L,, and its end is un-
known. It is also the class that contains one of the first
double-collision orbits to be discovered. Some of the
details of the evolution of Class C are shown in Fig. 4.
Orbit 3 is the double-collision orbit. The evolution of

“@ . ®

(T = 4m)

Fig. 4. Circular restricted three-body problem: Strom-
gren’s Class C of periodic orbits around L, (equal masses;
e = O; rotating axes)
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Class C beyond the collision orbit has been studied in
detail; it appears, in particular, that there is an orbit
with period 4= (orbit 5, Fig. 4).

This particular orbit with period 4= can be generalized
in an interesting way in the elliptic problem. More pre-
cisely, it is concluded that orbit 5 can be continued for
all eccentricities e from 0.0 to 1.0. For e = 1.0, orbit 5
seems also to exist for all mass ratios p from 0.0 to 0.5.

A series of periodic orbits with constant mass ratio
u =05, and with increasing eccentricity from 0.0 to
about 0.75, was first computed. These orbits have been
integrated with a recurrent power-series solution and
with the true anomaly as an independent variable. This
system of differential equations, which essentially results
from the well-known Nechville transformation, has a
singularity for ¢ = 1.0; numerical difliculties thus arise
for high eccentricities. For this reason, the integration
method has been changed at the higher eccentricities.
The inertial axes have been used, and the classical
Runge-Kutta integration method has been adopted, with
which only about five- or six-place accuracy has been
desired.

The Runge-Kutta program integrates a system of dif-
ferential equations that is valid for all eccentricities
(including ¢ = 1.0) where the two primaries are oscillating
(and colliding) on a straight line with a finite amplitude
(semimajor axis = 1.0). Using the barycentric inertial
formulation of the problem, there is still periodicity of
the orbits (the periodicity criterion being unchanged). It
then appears that the family of periodic orbits can be
continued up to eccentricity 1.0.

In Fig. 5, one orbit is shown in rotating axes. The form
is very similar for all eccentricities. Figure 6 shows the
complete evolution, with respect to inertial axes, for all
eccentricities. The outer orbit is the one that belongs to
Strémgren’s Class C (¢ = 0.0). It can be seen that the
orbits keep shrinking when the eccentricity increases up
to a rectilinear orbit corresponding to e = 1.0. In this last
rectilinear orbit, there is oscillation of the satellite on the
Oy-axis in synchronization with the oscillation of the two
primaries on the Ox-axis. The satellite reaches maximum
elongation (about =+-1.69) when the primaries collide, and
it passes between the two primaries when they are at
maximum elongation.

It is rather surprising that the rectilinear periodic orbit

for e = 1.0 was published in 1956 by Schubart. In fact,
Schubart has proposed this orbit as a starting point for
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the study of the elliptic restricted three-body problem
(see Ref. 8).

It has also been seen that this orbit has an interesting
development not only along e, but also along g, when ¢
is kept equal to 1.0. The evolution of this orbit has been

2.0

/’— e = 0.74
1 AN

)

Y —&
o

TN
~_ |

-2.0 -1.0 0 1.0 2.0

X g

Fig. 5. Elliptic restricted three-body preblem: periodic
orbit for mass ratio p = 0.5 (equal masses; e = 0.74;
rotating axes)
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Fig. 6. Elliptic restricted three-body problem: periodic
orbits for constant mass ratio x4 = 0.5 (equal masses)
and variable eccentricity e = 0.0 to 1.0; inerticl axes)
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followed for variable mass ratios up to p = 0.166. Judg-
ing from the results obtained, the evolution can probably
be extrapolated up to e = 0.0, although exact computa-
tions should be made, and a regularization appears to
be necessary in this case. These orbits, which form family
6A, are shown in Fig. 7. The initial conditions for family
64 are listed in Table 4, When u decreases, a bending of
the initial rectilinear orbit is seen. There is thus a back-
and-forth oscillation, with period 4, along a pseudo-
parabolic path. These paths are included in an envelope
of zero-velocity points, which are shown by dashed lines
in Fig. 7.

Of periodic orbits with p = 0.50 and with ¢ from 0.0
to 1.0, 132 have been computed, and 118 orbits have
been computed with ¢ = 1.0 and with x from 0.5 to 0.166.

o
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Fig. 7. Family 6A of periodic orbits—rectilinear elliptic
restricted three-body problem: periodic orbits for con-
stant eccentricity le = 1.0) and variable mass ratio
(v = 0.50 to 0.166; inertial axes)
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More orbits could have been computed, e.g., with
fixed e (different from 1.0) and variable y, or with fixed p
(different from 0.5) and variable e. This has not been
done because of the extensive computer time involved,
but it is possible that this family exists for all values of
¢ and p. The stability of this family has not been studied.

Orbits with x = 0.5 form family 12A (Fig. 8), whereas
orbits with e =1.0 form family 6A (see Fig. 7 and
Table 4). In the integration of these orbits, the two
primaries have always been taken at maximum elonga-
tion (at apoapsis) at t = 0, and so the letter A is used in
the symbols 6A and 12A designating these families. The
initial conditions for family 12A are listed in Table 5.

B. Periodic Orbits in the Rectilinear Restricted
Three-Body Problem

By studying the continuation of one of Str&mgren’s
periodic orbits, it is seen that the eccentricities ¢ =1
cannot be avoided in the natural prolongation of the
families, and that the rectilinear restricted three-body
problem thus plays a special role. For this reason, a spe-
cial study has been made of the rectilinear problem, and
the most important numerical results are described in
this section. Schubart had already proposed to take
the eccentricity e = +1 as a starting point for a system-
atic study of the elliptic restricted three-body problem.

Because of the simplicity of the equations of motion, it
was decided first to integrate some orbits with regularly
spaced initial conditions to see if some periodic orbits
would eventually exist. The rather surprising conclusion
was soon reached that a large number of periodic orbits
exist, although they are all isolated. Thirteen of these
periodic orbits have been computed with somewhat
higher precision. The classical Runge-Kutta numerical
integration procedure has been used with a variable step
(equal to 0.005 r,r,). The objective was not mainly the
high precision of the numerical results; e.g., by using
full double precision, the end results have probably only
five- or six-place accuracy. The periodic orbits were
obtained by two-dimensional linear differential correc-
tions when a good approximation had been obtained by
the previous computer runs.

The initial conditions that have been explored are of
the form

(%0, 0,0, o) (175)
and have been arbitrarily restricted to the limits
0.1 <x,<10, 02<y, <22 (176)
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Table 4. Initial conditions for family 6A

RECT.ELL.PROBLEM.MU=VARIABLE,E=1.0, (MU=0.5 IS RECTIL.} FAMILY 6
NR X0 YDOTO MASS RATIO ECC
1 0.0000000 1.0530847 0.5000000 1.0000000
2 ~-0.0050094 1.0530873 0.4990000 1.0000000
3 -0.0150282 1.0531077 0.4970000 1.0000000
4 -0.0250467 1.0531486 0.4950000 1.0000000
5 ~0.0350646 1.0532099 0.4930000 1.0000000
6 ~0.0450817 1.0532917 0.4910000 1.0000000
7 -0.0550978 1.0533940 0.4890000 1.0000000
8 ~0.0651127 1.0535167 0.4870000 1.0000000
9 ~0.,0751261 1.0536600 0.4850000 1.0000000
10 -0.0851378 1.0538237 0.4830000 1.,0000000
11 -0.0951477 1.0540081 0.4810000 1.0000000
12 ~-0.1051555 1.0542130 0.4790000 1.0000000
13 ~0.1151609 1.0544385 0.4770000 1.00600000
14 ~0.1251638 1.0546847 0.4750000 1.0000000
15 -0.1351639 1.0549516 0.4730000 1.0000000
16 -0.1451611 1.0552392 0.4710000 1.0000000
17 -0.1551551 1.0555476 0.4690000 1.0000000
18 ~-0.1651458 1.0558768 0.4670000 1.0000000
19 ~0.1751328 1.0562268 0.4650000 1.0000000
20 -0.1851162 1.0565980 0.4630000 1.0000000
21 -0.1950956 1.0569900 0.4610000 1.0000000
22 -0.2050708 1.0574032 0.4590000 1.0000000
23 -0.2150417 1.0578375 0.4570000 1.0000000
24 ~0.2250081 1.0582930 0.4550000 1.0000000
25 ~0.2349699 1.0587699 0.4530000 1.0000000
26 ~062449265 1.0592681 0.4510000 1.0000000
27 -0.2548782 1.0597878 0.4490000 1.0000000
28 ~0.2648248 1.0603291 0.4470000 1-0000000
29 ~0.2747658 1.0608921 0.4450000 1.0000000
30 -0.2847019 1.0614773 0.4430000 1.0000000
31 -0.2946312 1.0620836 0.4410000 1.0000000
32 ~-0.3045552 1.0627123 0.4390000 1.0000000
33 ~0.3144731 1.0633632 0.4370000 1.0000000
34 -~0.3243849 1.0640364 0.4350000 1.0000000
35 -0.3342904 1.0647319 0.4330000 1.0000000
36 -0.3441890 1.0654498 0.4310000 1.0000000
37 -0.3540818 1.0661909 0.4290000 1.0000000
38 ~0.3639676 1.0669547 0.4270000 1.0000000
39 -0.3738465 1.0677414 0.4250000 1.0000000
40 ~-0.3837184 1.0685514 0.4230000 1.0000000
41 ~0.3935833 1.0693848 0.4210000 1.0000000
42 ~0.4034412 1.0702420 0.4190000 1.0000000
43 ~0.4132914 1.0711226 0.4170000 1.0000000
44 ~0.4231344 1.0720273 0.4150000 1.0000000
45 -0.4329699 1.0729563 0.4130000 1.0000000
46 -0.4427978 1.0739097 0.4110000 1.0000000
47 -0.4526181 1.0748878 0.4090000 1.0000000
48 -0.4624305 1.0758306 0.4070000 1.0000000
49 ~0.4722352 1.0769190 0.4050000 1.0000000
50 -0.4820318 1.0779726 0.4030000 1.0000000
51 -0.4918205 1.0790519 0.,4010000 1.0000000
52 -0.5016011 1.0801573 0.3990000 1.0000000
53 ~0.5113735 1.0812889 0.3970000 1.0000000
54 -0.5211378 1.0824474 0.3950000 1.0000000
55 -0.5308937 1.0836324 0.3930000 1.0000000
56 -0.5406414 1.0848449 0.3910000 1.0000000
57 -0.5503806 1.0860851 0.3890000 1.0000000
58 -0.5601115 1.0873532 0.3870000 1.0000000
59 -0.5698338 1.0886497 0.3850000 1.0000000
60 ~0.5795476 1.0899749 0.3830000 1.0000000
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Table 4 (contd)

RECT-ELL.PROBLEM.MU=VARIABLE;E=1.0,

NR
61
62

X0
~0.5892529
~0.5989496
~0.6086376
~-0.6183170
~0.6279877
-0.6376498
-0.6473030
-0.6569476
-0.6665833
-0.6762103
-0.6858286
~0.6954380
-0.7050386
~-0.7146305
-0.7242135
-0.7337878
~0.7385716
~0.7624579
-0.7862893
~-0.8100663
-0.8337889
~0.8574577
-0.8810729
~0.9046351
-0.9281448
-0.9516025
-0.9750087
-0.9983642
-1.0216696
~1.0449255
~-1.0681326
-1.0912918
-1.1144036
-1.1374689
-1.1604884
-1.1834629
-1.2063931
-1.2292798
~1.2521239
=-1.2749260
~1.2976870
-1.3204076
-1.3430885
-1.3657305
~-1.3883343
-1.4109007
~1.4334302
-1.4559237
~1.4783821
-1.5008043
-1.5231925
~1.5321383
-1.5410783
-1.5500127
-1.5589428
-1.5678681
~1.5767853
~-1.5856986

YDOTO
1.0913295
1.0927137
1.0941278
1.0955725
1.0970482
1.0985555
1.1000946
1.1016664
1.1032712
1.1049098
1.1065826
1.1082903
1.1100337
1.1118133
1.1136298
1.1154840
1.1164254
1.1212802
1.1263905
1.1317705
1.1374358
1.1434038
1.1496934
1.1563259
1.1633246
1.1707156
1.1785277
1.1867933
1.1955485
1.2048340
1.2146951
1.2251836
1.2363577
1.2482838
1.2610378
1.2747065
1.2893905
1.3052059
1.3222887
1.3407982
1.3609228
1.3828872
1.4069615
1.4334735
1.4628257
1.4955178
1.5321793
1.5736156
1.6208768
1.6753471
1.7389361
1.7674878
1.7981249
1.8311020
1.8667278
1.9053503
1.9473569
1.9932978

{MU=0.5 IS RECTIL.)

MASS RATIO
0.3810000
0.3790000
0.3770000
0.3750000
0.3730000
0.3710000
0.3690000
0.3670000
0.3650000
0.3630000
0.3610000
0.3590000
0.3570000
0.3550000
0.3530000
0.3510000
0.3500000
0.3450000
0.3400000
0.3350000
0.3300000
0.3250000
0.3200000
0.3150000
0.3100000
0.3050000
0.3000000
0.2950000
0.2900000
0.2850000
0.2800000
0.2750000
0.2700000
0.2650000
0.2600000
0.2550000
0.2500000
0.2450000
0.2400000
0.2350000
0.2300000
0.2250000
0.2200000
0.2150000
0.2100000
0.2050000
0.2000000
0.1950000
0.13900000
0.1850000
0.1800000
0.1780000
0.1760000
0.1740000
0.1720000
0.1700000
0.1680000
0.1660000

ECC
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.00600000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
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Fig. 8. Family 12A of periodic orbits
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Table 5. Initial conditions for family 12A

O W o0 W N e D

ELL.PROBLEM.MU=0.5,E=1.0 TO 0.0 (E=1 IS RECT.) FAMILY 12
X0 YDOTO MASS RATID ECC
0.0000000 1.0530847 0.5000000 1.0000000
-0.0055055 1.0536413 0.5000000 0.9990000
-0.0095377 1.0547550 0.5000000 0.9970000
~0.0123140 1.0558693 0.5000000 0.9950000
-0.0145724 1.0569843 0.5000000 0.9930000
~0.0165242 1.0580999 0.5000000 0.9910000
-0.0182709 1.0592159 0.5000000 0.9890000
~0.0198647 1.0603329 0.5000000 0.9870000
-0.0213403 1.0614508 0.5000000 0.9850000
-0.0227208 1.0625691 0.5000000 0.9830000
-0.0240226 1.0636881 0.5000000 0.9810000
~0.0252577 1.0648078 0.5000000 0.9790000
~0.0264356 1.0659282 0.5000000 0.9770000
~0.0275644 1.0670495 0.5000000 0.9750000
~0.0286476 1.0681712 0.5000000 0.9730000
-0.0296924 1.0692937 0.5000000 0.9710000
-0.0307019 1.0704170 0.5000000 0.9690000
~0.0316795 1.0715410 0.5000000 0.9670000
-0.0326282 1.0726657 0.5000000 0.9650000
~0.0335496 1.0737910 0.5000000 0.9630000
-0.0344479 1.0749174 0.5000000 0.9610000
-0.0353229 1.0760444 0.5000000 0.95%0000
-0.0361770 1.0771721 0.5000000 0.9570000
~0.0370116 1.0783006 0.5000000 0.9550000
-0.0378280 1.0794298 0.5000000 0.9530000
-0.0386280 1.0805601 0.5000000 0.9510000
~0.0394105 1.0816%07 0.5000000 0.9490000
-0.0401786 1.0828223 0.5000000 0.9470000
-0.0409324 1.0839547 0.5000000 0.9450000
-0.0416727 1.0850879 0.5000000 0-.9430000
-0.0424003 1.0862219 0.5000000 0.9410000
~0.0431149 1.0873565 0.5000000 0.9390000
-0.0438194 1.0884923 0.5000000 0.9370000
-0.0445121 1.0896288 0.5000000 0.9350000
~0.0451943 1.0907661 0.5000000 0.9330000
~0.0458664 1.0919042 0.5000000 0.9310000
-0.0465289 1.0930431 0.5000000 0.9290000
-0.0471828 1.0941831 0.5000000 0.92706000
~-0.0478264 1.0953236 0.5000000 0.9250000
~0.0484623 1.0964651 0.5000000 0.9230000
-0.0430899 1.0976075 0.5000000 0.9210000
-0.0497096 1.0987507 0.5000000 0.9190000
-0.0503217 1.0998948 0.5000000 0.9170000
-0.0509258 1.1010396 0.5000000 0.9150000
-0.0515242 1.1021857 0.5000000 0.9130000
-0.0521150 1.1033324 0.5000000 0.9110000
-0.0526992 1.1044801 0.5000000 0.9090000
-0.0532770 1.1056286 0.5000000 0.9070000
~0.0538486 1.1067781 0.5000000 0.9050000
~0.0544148 1.1079287 0.5000000 0.9030000
~0.0549738 1.1090798 0.5000000 0.39010000
~0.0555278 1.1102320 0.5000000 0.8990000
~0.0560763 1.1113852 0.5000000 0.8970000
-0.0566195 1.1125393 0.5000000 0.8950000
~-0.0571574 1.1136944 0.5000000 0.8930000
~0.0576902 1.1148503 0.5000000 0.8910000
-0.0582182 1.1160073 0.5000000 0.8890000
-0.0587413 1.1171652 0.5000000 0.8870000
~0.0592598 1.1183241 0.5000000 0.8850000
-0.0597738 1.1194839 0.5000000 0.8830000
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Table 5 (conid)

X0
-0.0602834
-0.0607890
-0.0612888
~0.0617854
-0.0622780
-0.0627666
-0.0632513
-0.0637312
-0.064209%
~0.0646830
-0.0651530
-0.0656195
-0.0660825
-0.0665432
-0.0669987
-0.0674518
-0.0679018
-0.0683487
~0.0687926
-0.0692324
-0.0696713
-0.0698891
-0.0709677
-0.0720289%
-0.0730738
-0.0741024%
-0.0751157
-0.0761143
~0.0770985
-0.0780689
~0.0790258
-0.0799699
-0.0809014
-0.0818206
-0.0827279
~0.0836236
-0.0845082
-0.0853816
~0.0862444
-0.0870968
-0.0879389
-0.0887711
-0.0895934
-0.0904064
-0.0912099
-0.0920042
-0.0935661
-0.0950933
-0.0965871
-0.0980485
~-0.0994787
~0.1008790
-0.1022474
-0.1035882
-0.1049006
-0.1061855
-0.1074432
-0.1086732
-0.1098796
-0.1110591

YDDTO
1.1206447
1.1218065
1.1229694
1.1241332
1.1252980
1.1264638
1.1276306
1.1287985
1.1299673
1.1311372
1.1323082
1.1334802
1.1346532
1.1358272
1.1370024
1.1381786
1.1393559
1.1405343
1.1417138
1.1428944
1.1440759
1.1446672
1.1476275
1.1505949
1.1535693
1.1565510
1.1595399
1.1625362
1.1655401
1.1685514
1.1715706
1.1745974
1.1776321
1.1806748
1.1837256
1.1867845
1.1898517
1.1929273
1.1960114
1.1991041
1.2022054
1.2053155
1.2084345
1.2115624
1.2146995
1.2178458
1.2241663
1.2305249
1.2369225
1.2433599
1.2498380
1.2563577
1.2629201
1.2695259
1.2761761
1.2828717
1.2896137
1.2964032
1.3032409
1.3101281

MASS RATIO
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.,5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.,5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.,5000000
0.5000000
0.5000000
0.5000000
0.5000000

ELL.PROBLEM.MU=0.55E=1.0 TO 0.0 (E=1 IS RECT.) FAMILY 12

ECC
0.8810000
0.8790000
0.8770000
0.8750000
0.8730000
0.8710000
0.8690000
0.8670000
0.8650000
0.8630000
0.8610000
0.8530000
0.8570000
0.8550000
0.8530000
0.8510000
0.8490000
0.8470000
0.8450000
0.8430000
0.8410000
0.8400000
0.8350000
0.8300000
0.8250000
0.8200000
0.8150000
0.8100000
0.8050000
0.8000000
0.7950000
0.7900000
0.7850000
0.7800000
0.7750000
0.7700000
0.7650000
0.7600000
0.7550000
0.7500000
0.7450000
0.7400000
0.7350000
0.7300000
0.7250000
0.7200000
0.7100000
0.7000000
0.6900000
0.5800000
0.6700000
0.6600000
0.6500000
0.6400000
0.6300000
0.6200000
0.6100000
0.6000000
0.5900000
0.5800000
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Table 5 (contd)

ELL. PROBLEM.MU=0.5yE=1.0 TO 0.0 (E=1 IS RECT.) FAMILY 12
NR X0 YDOTO MASS RATIO ECC
121 ~0.1122135 1.3170658 0.5000000 0.5700000
122 -0.1133429 1.3240550 0.5000000 0.5600000
123 -0.1144479 1.3310968 0.5000000 0.5500000
124 -0.1155300 1.3381924 0.5000000 0.5400000
125 -0.1165856 1.3453429 0.5000000 0.5300000
126 -0.1176189 1.3525494 0.5000000 0.5200000
127 -0.1196155 1.3671351 0.5000000 0.5000000
128 -0.1215201 1.3819593 0.5000000 0.4800000
129 -0.1233338 1.3970321 0.50009200 0.4600000
130 -0.1250580 1.4123639 0.5000000 0.4400000
131 -~0.1266935 1.4279656 0.5000000 0.4200000
132 ~0.1282409 1.4438486 0.5000000 0.4000000
133 -0.1297006 1.4600249 0.5000000 0.3800000
134 -0.1310729 1.4765068 0.5000000 0.3600000
135 -0.1323581 1.4933075 0.5000000 0.3400000
136 -0.1335557 1.5104406 0.5000000 0.3200000
137 ~0.1346660 1.5279203 0.5000000 0.3000000
138 -0.1356886 1.5457617 0.5000000 0.2800000
i39 -0.1366232 1.5639806 0.5000000 0.2600000
140 -0.1374693 1.5825935 0.5000000 0.2400000
141 -0.1382262 1.6016178 0.5000000 0.2200000
142 -0.1388937 1.6210719 0.5000000 0.,2000000
143 -0.1394707 1.6409752 0.5000000 0.1800000
144 -0.1399566 1.6613480 0.5000000 0.1600000
145 -0.1403505 1.6822119 0.5000000 0.1400000
146 -0.1406515 1.7035896 0.5000000 0.1200000
147 ~-0.1408588 1.7255053 0.5000000 0.1000000
148 ~0.1409711 1.7479844 0.5000000 0.0800000
149 -0.1409871 1.7710539 0.5000000 0.0600000
150 -0.1409055 1.7947423 0.5000000 0.0400000
151 -0.1407288 1.8190812 0.5000000 0.0200000
152 -0.1404511 1.8441018 0.5000000 0.0000000

The velocity y, has also been restricted to be below some
parabolic or approximate escape velocity defined by

4o = (—2-> am

Xo

Figure 9 shows these initial conditions. Imposing the
above restrictions, the shaded area is obtained. This
area was then swept with regular intervals of 0.05 for x,
as well as for g,. The 18 points on Fig. 9 correspond to
the isolated periodic orbits that have been found. Eleven
of these orbits (3-13) form a single sequence, all of them
having one loop around one primary and an increasing
number of loops around the other primary.

The initial conditions of the 13 periodic orbits are
given in Table 6. A printout of the initial and final con-
ditions is presented in Table 7. All 13 orbits have the
period T = 2. In Fig. 10, the actual orbits are shown
referred to the barycentric coordinate system. Figure 11
shows the six simplest orbits referred to a coordinate sys-
tem centered at one primary m, = 1 — u (geocentric) and
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at the other primary m, = u (selenocentric). In this partic-
ular problem, with equal masses 1 — p = y = 0.5, the
word geocentric is used for the coordinate system centered

Table 6. Initial conditions for 13 periodic orbits

Orbit number Xp Yo
1 0.579152 1.680050
2 0.574506 0.346101
3 0.682309 0.981417
4 0.492110 1.192088
5 0.396211 1.347039
6 0.336523 1.473383
7 0.295148 1.581601
8 0.264484 1.677079
9 0.240690 1.763014
10 0.221596 1.841481
1 0.205876 1.913916
12 0.192667 1.981358
13 0171617 2.104198

JPL TECHNICAL REPORT 32-1360



2.2

r— PARABOLIC OR
ESCAPE VELOCITY

2.0

5’0 —

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8 1.0

Ko el

0

Fig. 9. Diagram of initial conditions for periodic orbits

at the primary shown on the left side of Fig. 11; simi-
larly, selenocentric refers to the primary shown on the
right side. When geocentric or selenocentric coordinates
are used, it can be seen that cusps are present in the form
of the orbits. These cusps are due to the accelerated
translational motion of the frame of reference rather than
the motion of the satellite.
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The 18 periodic orbits that have been computed are
isolated as far as ¢ and p are concerned. When e and n
are varied, however, families of periodic orbits are gen-
erated in the neighborhood of ¢ = 1, . = 0.5. To verify
the existence of these families, the following four fam-
ilies (5P, 9P, 4P, and 3P—Fig. 12) have been initiated:

(1) 5P—In the neighborhood of orbit 1: 22 periodic
orbits with e = 1.0 and p = 0.5 to 0.479 (Table 8).

(2) 9P—In the neighborhood of orbit 2: 12 periodic
orbits with . = 0.5 and e = 1.0 to 0.988 (Table 9).

(3) 4P—1In the neighborhood of orbit 2: 26 periodic
orbits with e = 1.0 and . = 0.5 to 0.458 (Table 10).

(4) 3P—In the neighborhood of orbit 3: 23 periodic
orbits with ¢ = 1.0 and p = 0.5 to 0.468 (Table 11).

C. Family 7P

This family (Fig. 13) begins with one of the periodic
orbits described in Ref. 6——an orbit of family C of retro-
grade satellite orbits around the smaller primary m. in
the circular restricted problem. The orbit that has been
chosen is close to orbit 87 in Ref. 6 because this orbit
has a period of 2. The initial conditions, in rotating
axes, may be given as follows:

%o = 0.15212027 (178a)
o = 3.16076559 (178b)
u = 0.012155 (178¢)
e=00 (1784)

Family 7P thus belongs to the earth-moon mass ratio,
and has the eccentricity e as the variable parameter.
The initial and final conditions are listed in Table 12.

About 130 orbits have been computed in this family,
with eccentricities ¢ from 0 to 0.50. No orbits with higher
eccentricity have been obtained as yet because there is a
collision with the larger primary just above this value
of e. Although the orbits of this family belong to the
class of “satellite orbits” in the circular problem, they are
all quite large in shape; in fact, they come closer to the
larger primary m, than to m..

Good stability information has been obtained for the

eccentricities up to 0.35 only. The orbits are all unstable,
and belong to region 6 in the stability diagram (see Fig. 2).
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Fig. 10. The 13 periodic orbits in the barycentric
{nertial) coordinate system
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Fig. 11. The first six periodic orbits in the geocentric
and the selenocentric coordinate systems

JPL TECHNICAL REPORT 32-1360




42

Table 7. Initial and final conditions for 13 periodic orbits

RECTILINEAR ELLIPTIC RESTRICTED THREE-BODY PROBLEM 1 HALF REV. PERI.
NR X0 YDOTO X1 YDOT1 MASS RATIOD ECC
1 0.5745062 0.3461014 2.2888544 0.2107393 0.5000000 1.0000000
2 0.5791522 1.6800505 -1.6589334 ~1.0153199 0.5000000 1.0000000
3 0.6823097 0.9814177 -1.6020894 0.9510169 0.5000000 1.000000D
4 064921103 1.1920888 -0.5101565 ~0.9672414 0.5000000 1.0000000
5 0.3962118 1.3470394 -1.2921322 1.4104449 0.5000000 1.0000000
5 023365234 1.4733837 -0.6546279 -1.0962909 0.5000000 1.0000000
7 002951483 1.5816018 -1.2049788 1.7100109 0.5000000 1.0000000
8 0.2644841 1.6770793 ~0.7239846 -1.2009274 0.5000000 1.0000000
9 0.2406901 1.7630140 -1.1620703 1.9393112 0.5000000 1.0000000
10 0,2215965 1.8414813 -0.7662645 -1.2895975 0.5000000 1.0000000
11 0.2058762 1.9139168 -1.1360074 2.1282105 0.5000000 1.0000000
12 0.1926678 1.9813582 -0.7952567 ~1.3671887 0.5000000 1.0000000
13 0.1716180 2.1041985 -0.8166100 -1.4366001 0.5000000 1.0000000
Table 8. Initial and final conditions for family 5P
RECTLELL.PROBLEM.MU=VARIABLE,E=1.0, FAMILY S5 (PERIAPSIS)
NR X0 YDOTO X1 YDOT1 MASS RATIO ECC
1 0.5791522 1.6800505 -1.6589334 ~-1.0153199 0.5000000 1.0000000
2 005798281 1.6787450 ~1.6577717 -1.0153041 0.4990000 1.0000000
3 0.5805048 1.6774394 —1.6566089 -1.0152883 0.4980000 1.0000000
4 05811814 1.6761353 -1.6554461 ~-1.0152713 0.4970000 1.0000000
5 0.5818578 1.6748327 ~-1.6542834 ~1.0152530 0.4960000 1.0000000
6 0.5825344 1.6735311 ~1.6531205 -1.0152337 0.4950000 1.0000000
7 0.5832109 1.6722311 -1.6519577 -1.0152131 0.4940000 1.0000000
8 05838874 1.6709325 -1.6507949 ~-1.0151914 0.4930000 1.0000000
9 0.5845639 1.6696351 -1.6496321 -1.0151686 0.4920000 1.0000000
10 05852403 1.6683392 ~-1.6484693 ~-1.0151446 0.4910000 1.0000000
11 0.5859166 1.6670446 ~1.6473065 ~1.0151194 0.4900000 1.0000000
12 0.5865931 1.6657512 —~1.6461436 -1.0150931 0.4890000 1.0000000
13 065872694 1.6644593 ~1.6449808 -1.0150656 0.4880000 1.0000000
14 0.5879457 1.6631688 ~-1.6438180 -1.0150370 0.4870000 1.0000000
15 0.5886221 1.6618792 ~-1.6426551 -1.0150074 0.4860000 1.0000000
16 0.5892983 1.6605914 -1.6414924% ~-1.0149764 0.4850000 1.0000000
17 065899745 1.6593047 -1.6403296 -1.0149444 0.4840000 1.0000000
18 0.5906507 1.6580193 -1.6391668 -1.0149113 0.4830000 1.0000000
19 0.5913268 1.6567353 -1.6380040 -1.0148770 0.4820000 1.0000000
20 0.5920030 1.6554525 -1.6368412 -1.0148416 0.4810000 1.0000000
21 0.5926790 1.6541710 -1.6356785 -1.0148051 0.4800000 1.0000000
22 055933551 1.6528909 -1.6345158 -1.0147675 0.4790000 1.0000000
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Table 9. Initial and final conditions for family 9P

ELLRESTR.PROBLEM, C E VARIABLE FROM 1.0 MU=0.5 PERI. 1 HALF REV. FAM 9
NR X0 ¥YDOTO X1 YDOT1 MASS RATIOD ECC
I 0.5745062 0.3461014 2.2888544 0.2107393 0.5000000 1.0000000
2 05554261 0.3536558 2.2735915 0.2485901 0.5000000 0.9990000
3 0.5391346 0.3588893 2.2672086 0.2649357 0.5000000 0.9980000
4 0.5226942 0.3634967 2.2623948 0.2776792 0.5000000 0.9970000
5 0.5057545 0.3677720 2.2584234 0.2885861 0.5000000 0.9950000
6 0.4880889 0.3718801 2.2550035 0.2983681 0.5000000 0.9950000
T 04694702 0.3759493 2.2519789 0.3074152 0.5000000 0.9940000
8 0.4496181 0.3801073 2.2492501 0.3159891 0.5000000 0.9930000
9 004281412 0.3845098 2.2467439 0.3243015 0.5000000 0.9920000
10 0.4044309 0.3893839 2.2443955 0.3325661 0.5000000 0.9910000
11 0.3774115 0.3951273 2.2421329 0.3410634 0.5000000 0.9900000
12 0.2984375 0.4150494¢ 2.2371638 0.3619545 0.5000000 0.9880000
Table 10. Initial and final conditions for family 4P
RECT.ELL.PROBLEM.MU=VARIABLE,E=1.0y FAMILY 4 (PERIAPSIS)
NR X0 YDDTO X1 YDOT1 MASS RATID ECC
1 0.5745062 0.3461014 2.2888544 0.2107393 0.5000000 1.0000000
2 05674326 0.3542697 2.2889281 0.2144953 0.4990000 1.0000000
3 0.5603530 0.3624437 2.2889941 0.,2181885 0.4980000 1.0000000
4 0.5532670 0.,3706281 2.2890527 0.2218205 0.4970000 1.0000000
5 0.5461754 0.3788288 2.2891041 0.2253941 0.4960000 1.0000000
& 0.5390791 0.3870518 2.2891482 0.2289118 0.4950000 1.0000000
7 0.5319790 0.3953027 2.2891852 0.2323760 0.4940000 1.0000000
8 0.5248759 0.4035872 2.2892151 0.2357887 0.4930000 1.0000000
9 065177707 0.4119105 2.2892379 0.2391520 0.4920000 1.0000000
10 0.5035575 0.4286952 2.2892623 0.2457375 0.4900000 1.0000000
11 004893471 0.4456986 2.2892590 0.2521460 0.4880000 1.0000000
12 04751470 0.4629622 2.2892282 0.2583889 0.4860000 1.0000000
13 0.4609653 0.4805276 2.2891704 0.2644764 0.4840000 1.0000000
14 0.4468103 0.4984367 2.2890859 0.2704176 0.4820000 1.,0000000
15 004326905 0.5167328 2.2889751 0.2762204 0.4800000 1.0000000
16 0.4186150 0.5354604 2.2888385 0.2818918 0.4780000 1.0000000
17 0.4045927 0.5546663 2.2886764 0.2874382 0.4760000 1.0000000
18 003906333 0.5743994 2.2884891 0.2928654 0.4740000 1.0000000
19 0.3767464 0.5947116 2.2882772 0.2981786 0.4720000 1.0000000
20 063629422 0.6156580 2.2880409 0.3033823 0.4700000 1.0000000
21 0.3492310 0.6372978 2.2877808 0.3084808 0.4680000 1.0000000
22 D.3356234 0.6596942 2.2874972 0.3134780 0.4660000 1.0000000
23 063221304 0.,6829159 2.2871903 0.3183777 0.4640000 1.0000000
24 0.,3087633 0.7070368 2.2868607 0.3231828 0.4620000 1.0000000
25 0.2955%335 0.7321377 2.2865088 0.3278966 0.4600000 1.0000000
26 0.2824529 0.7583063 2.2861349 0.3325218 0.4580000 1.0000000
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Table 11. Initial and final conditions for family 3P

NR

X0
0.6823097
0.6836911
0.6850722
0.6864528
0.6878332
0.6892132
0.6905929
0.6919722
0.6947297
0.6933511
0.6961080
0.6988633
0.7016172
0.7043695
0.7071203
0.7098694
0.7126169
0.7153627
0.,7181068
0.7208490
0.7235895
0.7263281
0.7290649

YDOTO
0.9814177
0.9788757
0.9763395
0.9738089
0.9712840
0.9687647
0.9662509
0.9637427
0.9587429
0.9612401
0.9562512
0.9512840
0.9463383
0.9414138
0.9365104
0.9316278
0.9267658
0.9219241
0.9171026
0.9123010
0.9075192
0.9027568
0.8980138

RECT.ELL.PROBLEM: MU=VARIABLE;E=1.0,

X1
~1.6020894
-1.6002956
-1.5985012
-1.5967064
-1.5949112
-1.5931155
-1.5913194
-1.5895228
-1.5859284
-1.5877258
-1.5841305
-1.5805335
-1.5769350
~1.5733348
~1.5697331
-1.5661298
~-1.5625252
-1.5589190
-1.5553115
-1.5517027
-1.5480925
-1.5444811
-1.5408685

FAMILY 3 (PERIAPSIS)

YDOT1
0-.9510169
0.9519198
0.9528221
0.9537237
0.9546246
0.9555248
0.9564243
0.9573231
0.9591187
0.9582213
0.9600155
0.9618069
0.9635956
0.9653814
0.9671644
0.9689446
0.9707218
0.9724963
09742678
0.9760364
0.9778020
0.9795647
0.9813245

MASS RATIO
0.5000000
0.4990000
0.4980000
0.4970000
0.4960000
0.4950000
0. 4940000
0.4930000
0.4910000
0.,4920000
0.4900000
0.4880000
0.4860000
0.4840000
04820000
0.4800000
0.4780000
0.4760000
0.4740000
0.4720000
0.4700000
0.4680000
0.4660000

ECC
1.0000000
1.0000000
1.0000000
1.0000000
1.0006000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
1.0000000
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Table 12. Initial and final conditions for family 7P

ELLIPTIC PROBLEM MU=0.012155 PS 1 HALF REV PERIAPSIS FAMILY 7
NR X0 ¥YDOTO X1 YDOT1 MASS RATIO ECC
1 0.1520965 3.1608994 1.8428499 -1.5495568 0.0121550 0.0001000
2 0.1520728 3.1610334 1.8427078 -1.5494262 0.0121550 0.0002000
3 0.1520491 3.1611673 1.8425657 -1.5492956 0.0121550 0.0003000
4 0.1520253 3.1613014 1.8424237 -1.5491650 0.0121550 0.0004000
5 0.1520059 3.1613835 1.8422775 -1.5490262 0.0121550 0.0005000
6 0.,1519822 3.1615176 1.8421355 -1.5488957 0.0121550 0.0006000
7 0.1519584 3.1616519 1.8419936 -1.5487653 0.0121550 0.0007000
8 0.1519347 3.1617862 1.8418517 -1.5486348 0.0121550 0.0008000
9 0.1519109 3.1619206 1.8417098 -1.5485044 0.0121550 0.0009000
10 0.1518872 3.1620550 1.8415679 -1.5483741 0.0121550 0.0010000
11 0.1518634 3.,1621895 1.8414260 -1.5482437 0.0121550 0.0011000
12 0.1518354 3.1623755 1.8412882 -1.5481215 0.0121550 0.0012000
13 0.1517879 3.1626453 1.8410047 -1.5478611 0.0121550 0.0014000
14 0.1517404 3.1629148 1.8407213 -1.5476007 0.0121550 0.0016000
15 0.1516928 3.1631846 1.8404379 -1.5473404 0.0121550 0.0018000
16 0.1516453 3.1634547 1.8401546 -1.5470802 0.0121550 0.0020000
17 0.1515978 3.1637250 1.8398714 -1.5468201 0.0121550 0.0022000
18 0.1515503 3.1639956 1.8395883 -1.5465602 0.0121550 0.0024000
19 0.1515028 3.1642664 1.8393054 -1.5463004 0.0121550 0.0026000
20 0.1514552 3.1645375 1.8390225 -1.5460407 0.,0121550 0.0028000
21 0.1514077 3.1648088 1.8387397 -1.5457812 0.0121550 0.0030000
22 0.1513602 3.1650804 1.8384570 -1.5455218 0.0121550 0.0032000
23 0.1513126 3.1653523 1.8381745 -1.5452625 0.0121550 0.0034000
24 0.1512651 3.1656244 1.8378920 -1.5450033 0.0121550 0.0036000
25 0.1512175 3.1658967 1.8376096 -1.5447442 0.0121550 0.0038000
26 0.1511700 3.1661693 1.8373273 -1.5444853 0.0121550 0.0040000
27 0.1511224 3.1664422 1.8370452 -1.5442264 0.0121550 0.0042000
28 0.1510748 3.1667153 1.8367631 ~-1.5439678 0.0121550 0.0044000
29 001510272 3.1669887 1.8364811 -1.5437092 0.0121550 0.0046000
30 0.1509797 3.1672623 1.8361993 -1.5434507 0.0121550 0.00%8000
31 0.1509321 3.1675362 1.8359175 -1.5431924 0.0121550 0.0050000
32 0.1508845 3.1678104 1.8356358 -1.5429342 0.0121550 0.0052000
33 0.1508369 3.1680847 1.8353543 ~1.5426761 0.0121550 0.0054000
34 0.1508131 3.1682220 1.8352135 -1.5425471 0.0121550 0.0055000
35 0.1507893 3.1683594 1.8350728 -1.5424181 0.0121550 0.00556000
36 0.1506941 3.1689094 1.8345102 -1.5419026 0.0121550 0.0050000
37 0.1505751 3.1695985 1.8338074 -1.5412588 0.0121550 0.0065000
38 0.1504560 3.1702892 1.8331053 -1.5406158 0.0121550 0.0070000
39 0.1503370 3.1709814 1.8324038 -1.5399736 0.0121550 0.0075000
40 0.1502179 3.,1716753 1.8317030 -1.5393321 0.0121550 0.0080000
41 0.1500987 3.1723708 1.8310027 -1.5386913 0.0121550 0.0085000
42 0.1499795 3.1730680 1.8303031 -1.5380514 0.0121550 0.0090000
43 0.1498604 3.1737667 1.8296041 -1.5374122 0.0121550 0.0095000
44 0.1497411 3.1744671 1.8289057 -1.5367737 0.0121550 0.0100000
45 0.1495029 3.1758696 1.8275105 -1.5354985 0.0121550 0.0110000
46 0.1492642 3.1772816 1.8261181 -1.5342269 0.0121550 0.0120000
47 001490255 3.,1787003 1.8247281 ~1.5329582 0.0121550 0.0130000
48 0.1487866 3.1801254 1.8233405 -1.5316926 0.0121550 0.0140000
49 0.1485477 3.1815572 1.8219554 -1.5304299 0.0121550 0.0150000
50 0.1483086 3.1829956 1.8205727 -1.5291703 0.0121550 0.0150000
51 0.1480694 3.1844405 1.8191925 -1.5279136 0.0121550 0.0170000
52 0.1478301 3.1858921 1.8178146 -1.5266599 0.0121550 0.0180000
53 0.1475907 3.1873503 1.8164392 -1.5254092 0.0121550 0.0190000
54 0.1473511 3.1888152 1.8150662 -1.5241614 0.0121550 0.0200000
55 0.1471115 3.1902868 1.8136956 -1.5229166 0.0121550 0.0210000
56 001468718 3.1917651 1.8123273 -1.5216747 0.0121550 0.0220000
57 0.1466319 3.1932502 1.8109615 -1.5204358 0.0121550 0.0230000
58 0.1463920 3.1947419 1.8095980 -1.5191998 0.0121550 0.0240000
59 001461519 3.1962405 1.8082369 -1.5179667 0.0121550 0.0250000
60 0.1459117 3.1977458 1.8068781 -1.5167366 0.0121550 0.0260000
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Table 12 (contd)

ELLIPTIC PROBLEM MU=0.012155 PS 1 HALF REY PERIAPSIS

NR
61
62
63
54
85
66
67

X0
0.1456714
001454310
0.1451905
0.1449498
0.1437451
0.1425372
0.1413268
0.1401138
0.1388980
0.,1376795
0.1364583
0.1352343
0.1340076
0.1327783
001315462
0.1303114
0.1290740
0.,1278339
0.1265911
0.1253457
0.1240976
0.1228469
0.1215936
0.1203377
0.1190792
0.1178181
0.1165544
0.1152882
0.1140193
0.1127480
D.1114742
0.1101979
0.,1089191
0.1076379
0.1063542
0.1050681
01037797
0.1024888
0.1011956
0.0999002
0.0986024
0.0973023
0.0960001
0.0946957
0.0920803
0.0894569
0.0868251
0.0841858
0.0815395
0.0788861
00762265
0.0735613
0.0708908
0.0682157
0.0655371
0.0628552
0.0601710
0.0574860
0.0548006
0.0521161

¥YDOTO
3.1992580
3.2007770
3.2023028
3.,2038355
3.2116029
3.2195499
3.2276708
3.2359716
3.2444577
3.2531297
3.2619923
3.2710488
3.2803021
3.2897563
3.2994151
3.,3092823
3.3193620
3.3296584
3.3401755
3.3509190
3.3618924
3.3731008
3.3845496
3.3962437
3.4081887
3.4203902
3.4328541
3.4455858
3.4585936
3.4718822
3.4854586
3.4993308
3.5135053
3.,5279901
3.5427935
3.5579232
3.5733881
3.5891975
3.6053602
3.6218855
3.6387860
3.6560701
3.6737485
3.6918346
3.7292754
3.7684904
3.8096025
3.8527260
3.8979911
3.9455605
3.,9955870
4.0482459
4.,1037439
4.1622978
4,2241443
4.2895686
4.3588715
4.4323779
4.5104873
4.5936304

X1
1.8055217
1.8041677
1.8028160
1.8014666
1.7947543
1.7881000
1.7815017
1.7749588
1.7684709
1.7620370
1.7556563
1.7493281
1.7430516
1.7368262
1.7306510
1.7245254
1.7184486
1.7124201
1. 7064393
1.7005051
1.6946172
1. 6887750
1.6829778
1.6772250
1.6715159
1.6658501
1.6602269
1.6546459
1.6491062
1.6436076
1.6381494
1.6327311
1.6273523
1.6220123
1.6167108
1.6114471
1.6062209
1.6010317
1.5958790
1.5907624
1.5856812
1.5806353
1.5756241
1.5706472
1.5607948
1.5510745
1.5414837
1.5320190
1.5226774
1.5134566
1.5043534
1.4953653
1.4864898
1.4777244
1.4690667
1.4605147
1.4520660
1.4437183
1.4354699
1.4273187

YDOT1
-1.5155093
~-1.5142850
-1.5130636
~1.5118451
-1.5057956
-1.4998187
-1.4939117
-1.4880748
-1.4823074
~1.4766087
-1.4709780
~1.4654149
-1.4599185
~1.4544885
~1.4491240
-1.4438247
~-1.4385899
~1.4334192
-1.4283121
-1.4232678
~1.4182861
~1.4133666
-1.4085087
-1.4037120
-1.3989761
-1.3943007
-1.3896852
-1.3851295
~1.3806330
-1.3761955
-1.3718167
~1.3674963
-1.3632339
-1.3590293
~1.3548823
~-1.3507926
-1.3467599
~1.3427842
-1.3388650
~1.3350025
-1.3311961
-1.3274460
-1.3237518
-1.3201137
-1.3130047
-1.3061179
~1.2994542
-1.2930122
-1.2867919
-1.2807952
~1.2750217
~1.2694722
~1.2641485
-1.2590522
-1.2541846
-1.2495490
-1.26451478
-1.2409829
-1.2370589
-1.2333795

FAMILY 7

MASS RATIO ECC

0.0121550 0.,0270000
0.0121550 0.0280000
0.0121550 D0.0290000
0.0121550 0.0300000
0.0121550 0.0350000
0.0121550 0.0400000
0.0121550 0.0450000
0.0121550 0.0500000
0.0121550 0.0550000
0.0121550 0.0600000
0.0121550 0.0650000
0.0121550 0.0700000
0.0121550 0.0750000
0.0121550 0.0800000
0.0121550 0.0850000
0.0121550 0.0900000
0.0121550 0.0950000
0.0121550 0.1000000
0.0121550 0.1050000
0.0121550 0.1100000
0.0121550 0.1150000
0.,0121550 0.1200000
0.0121550 0.1250000
0.0121550 0.1300000
0.0121550 0.1350000
0.0121550 0.1400000
0.0121550 0.1450000
0.0121550 0.1500000
0.0121550 0.1550000
0,0121550 0.1600000
0.0121550 0.1650000
0.0121550 0.1700000
0.0121550 0.1750000
0.0121550 0.1800000
0.0121550 0.1850000
0.0121550 0.1900000
0.0121550 0.1950000
0.0121550 0.2000000
0.0121550 0.2050000
0.0121550 0.,2100000
0.0121550 0.2150000
0.0121550 0.2200000
0.0121550 0.2250000
0.0121550 0.2300000
0.0121550 0.2400000
0.0121550 0.2500000
0.0121550 0J.2600000
0.0121550 0.2700000
0.0121550 0.2800000
0.0121550 0.2900000
0.0121550 0.3000000
0.0121550 0.3100000
0.0121550 0.3200000
0.0121550 0.3300000
0.0121550 0.3400000
0.0121550 0.3500000
0.0121550 D0.3600000
0.0121550 0.3700000
0.0121550 0.3800000
0.0121550 0.3900000
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Table 12 (contd)

ELLIPTIC PROBLEM MU=0.012155 PS 1 HALF REV PERIAPSIS FAMILY 7

NR X0 YDOTO X1 YDOT1 MASS RATIO ECC
121 0.0494341 4.6822788 1.4192626 -1.2299480 0.0121550 0.4000000
122 0.0467555 4.7770100 1.4113001 -1.2267703 0.0121550 0.4100000
123 0.0440821 4.8784508 1.4034294 -1.2238513 0.0121550 0.4200000
124 0.0414156 4.9873240 1.3956485 -1.2211963 0.0121550 0.4300000
125 0.0387577 5.1044787 1.3879562 -1.,2188122 0.0121550 0.4400000
126 0.0361103 5.2308875 1.3803507 -1.2167060 0.0121550 0.4500000
127 0.0334761 5.3676731 1.3728305 -1.2148847 0.0121550 0.4600000
128 0.0308572 5.5161770 1.3653942 ~1.2133572 0.0121550 0.4700000
129 0.0282564 5.6779674 1.3580405 -1.2121326 0.0121550 0J.4800000
130 0.0256766 5.8549100 1.3507681 -1.2112207 0.0121550 0.4900000
131 0.0231214 6.0492417 1.3435756 -1.2106323 0.0121550 0.5000000

However, they are all very close to the line a,= —2a, —2
in this diagram. This is to be expected because the orbits
are essentially two-body orbits around the larger primary
m, (in the inertial axes, these orbits appear as ellipses),
which are only weakly perturbed by the smaller primary.
As a consequence, there is still approximately an integral
of the motion, and there is a pair of eigenvalues of the
fundamental matrix that are close to +1. It should be
noted here that, in the circular restricted three-body
problem, all of the orbits belong to the straight line
a,= —2a,— 2.

D. Family 7A

This family (Fig. 14) begins with the same orbit as
family 7P (periapsis). About 120 periodic orbits have been
computed with eccentricity ¢ from 0.0 to 0.99 (Table 13).
Therefore, this is a family that probably exists for all
eccentricities, All of the orbits have been computed in
rotating (pulsating) axes, using the Nechville transfor-
mation. The orbit corresponding to the eccentricity e=1.0
would have to be computed in inertial axes.

Good stability information has been obtained only for
the orbits with eccentricities below 0.75. All of the orbits
are stable, and belong to region 1 (see Fig. 2). They are
on a line that is close to the line a, = —2a, —2. When the
eccentricity e increases, the orbits approach the sepa-
ration point (—4, 6) on the stability diagram.

E. Family 8P

Family 8 of periodic orbits is shown in Fig. 15. Family
8P (Fig. 16) begins at e = 0.0 with an orbit that has been
taken from Strémgren’s problem (circular restricted
three-body problem with equal masses). In fact, the start-
ing orbit has been taken from Bartlett’s class g (see

JPL TECHNICAL REPORT 32-1360

Ref. 18). The period 2= and the initial conditions for this
orbit may be written as follows (in rotating axes):

x, = —0.4017983 (179%)
go = +83.1437189 (179b)
p=05 (179¢)
e=00 (179d)

About 120 orbits have been obtained in family 8P with
eccentricities ranging from 0.0 to 0.075 (Table 14). It is
not yet known whether this family can be prolongated
all the way to ¢ = 1.0. These last orbits, with very high e,
would have to be computed in inertial axes; on the other
hand, there seems to be an additional difficulty because
the satellite has a close approach with one of the pri-
maries when e approaches 0.97.

The stability has been computed only for the orbits
with eccentricities up to 0.55. All of these orbits are
unstable, and belong to region 6 (even semi-instability)
in the stability diagram (see Fig. 2).

F. Family 8A

At e = 0.0, this family (Fig. 17) begins at the same orbit
as family 8P (periapsis). About 100 periodic orbits have
been computed with eccentricities from 0 to 0.83. No
orbits with eccentricities higher than 0.85 have yet been
obtained because the convergence of the differential
correction process was becoming increasingly slow. On
the other hand, there seems to be a moderately close
approach with one of the primaries for the last orbits that
have been computed.
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Table 13. Initial and final conditions for family 7A

ELLIPTIC PROBLEM MU=0.012155 E VARIABLE APOAPSIS FAMILY 7
NR X0 ¥YDOTO X1 YDOT1 MASS RATIO ECC
1 001521203 3.1607656 1.8429920 -1.5496874 0.0121550 0.0000000
2 0.1527133 3.1574396 1.8465530 -1.5529639 0.0121550 0.0025000
3 0.1530096 3.1557914 1.8483396 -1.5546093 0.0121550 0.0037500
4 001533057 3.1541530 1.8501301 -1.5562597 0.0121550 0.0050000
5 0.1536016 3.1525243 1.8519247 -1.5579149 0.0121550 0.0062500
6 0.1538973 3.1509053 1.8537234 -1.5595751 0.0121550 0.0075000
7T 0.1541929 3.1492960 1.8555261 -1.5612401 0.0121550 0.0087500
8 001544883 3.1476964 1.8573329 -1.5629101 0.0121550 0.0100000
9 0.1547835 3.1461064 1.8591438 -1.5645850 0.0121550 0.0112500
10 0.1550785 3.1445259 1.8609589 ~-1.5662649 0.0121550 0.0125000
11 0.1553734 3.1429551 1.8627780 -1.5679497 0.0121550 0.0137500
12 0.1556681 3.1413938 1.8646014 -1.5696395 0.0121550 0.0150000
13 0.1568450 3.1352432 1.8719365 -1.5764490 0.,0121550 0.0200000
14 0.,1580192 3.1292428 1.8793394 -1.583339% 0.0121550 0.0250000
15 0.1591906 3.1233909 1.8868111 -1.5903119 0.0121550 0.0300000
16 0.1603591 3.1176858 1.8943528 -1.5973674 0.0121550 0.0350000
17 0.1615248 3.1121257 1.9019655 ~1.6045069 0.0121550 0.0400000
18 0.1626877 3.1067091 1.9096503 -1.6117315 0.0121550 0.0450000
19 0.1638478 3.1014346 1.9174086 -1.6190425 0.0121550 0.0500000
20 0.1650050 3.0963007 1.9252413 -1.6264407 0.0121550 0.0550000
21 0.1661593 3.0913060 1.9331499 -1.6339276 0.0121550 0.0600000
22 001673108 3.0864492 1.9411355 -1.6415041 0.0121550 0.0650000
23 0.1684595 3.0817291 1.9491993 -1.6491717 0.0121550 0.0700000
24 (0.1696052 3.0771444 1.9573428 -1.6569314 0.,0121550 0.0750000
25 0.1707481 3.0726941 1.9655672 -1.6647846 0.0121550 0.0800000
26 0.,1718881 3.0683771 1.9738739 -1.6727326 0.0121550 0.0850000
27 0.1730252 3.0641923 1.9822643 -1.6807768 0.0121550 0.0900000
28 001741594 3.0601389 1.9907398 -1.6889186 0.,0121550 0.0950000
29 0.,1752907 3.0562158 1.9993019 ~1.6971593 0.0121550 0.1000000
30 0.1764191 3.0524223 2.0079521 -1.7055004 0.0121550 0.1050000
31 0.1775445 3.0487575 2.0166919 -1.7139435 0.0121550 0.1100000
32 0.1786670 3.0452207 2.0255228 -1.7224900 0.0121550 0.1150000
33 0.1797866 3.0418113 2.0344465 -1.7311415 0.0121550 0.1200000
34 0.1809032 3.0385284 2.0434646 -1.7398996 0.0121550 0.1250000
35 0.1820169 3.0353717 2.0525787 ~1.7487660 0.0121550 0.1300000
36 0.,1831275 3.0323404 2.0617907 -1.7577424 0.0121550 D0.1350000
37 0.1842352 3.0294342 2.0711022 -1.7668305 0.0121550 0.1400000
38 0.1853399 3.0266526 2.0805150 -1.7760321 0.0121550 0.1450000
39 0.1864415 3.0239952 2.0900311 -1.7853489 0.0121550 0.1500000
40 0.1875401 3.0214616 2.0996522 -1.7947830 0.0121550 0.1550000
41 001886357 3.0190516 2.1093803 -1.8043361 0.0121550 0.1600000
42 0.1908177 3.0146011 2.1291655 -1.8238077 0.0121550 0.1700000
43 001929873 3.0106425 2.1494033 -1.8437800 0.0121550 0.1800000
44 (0.1951445 3.0071750 2.1701108 -1.8642704 0.0121550 0.1900000
45 0.1972890 3.0041986 2.1913062 -1.8852970 0.0121550 0.2000000
46  0.,1994207 3.0017143 2.2130087 -1.9068790 0.0121550 0.2100000
47 002015395 2.9997237 2.2352385 -1.9290368 0.0121550 0.2200000
48 0.2036452 2.9982293 2.2580168 -1.9517915 0.0121550 0.2300000
49 (0,2057375 2.9972341 2.2813659 -1.9751659 0.0121550 0.2400000
50 0.2078163 2.9967422 2.,3053095 -1.9991837 0.0121550 0.2500000
51 0.2098814 2.9967586 2.3298726 -2.0238701 0.0121550 0.2600000
52 0.2119325 2.9972889 2.3550814 -2.0492517 0.0121550 0.2700000
53 0.2139692 2.9983396 2.3809640 -2.0753567 0.0121550 0.2800000
54 0.2159915 2.9999184 2.4075496 -2.1022151 0.0121550 0.2900000
55 0.2179989 3.0020336 2.4348697 -2.1298583 0.0121550 2.3000000
56 022199911 3.0046948 2.4629574 -2.1583200 0.0121550 0.3100000
57 0.2219678 3.0079123 2.4918476 -2.1876358 0.0121550 0.3200000
58 0.2239287 3.0116978 2.5215779 -2.2178435 0.0121550 0.3300000
59 0.2258732 3.0160639 2.5521878 -2.2489833 0.0121550 0.3400000
60 U0.2278010 3.0210246 2.5837195 -2.2810981 0.0121550 0.3500000

JPL TECHNICAL REPORT 32-1360




Table 13 (contd)

ELLIPTIC PROBLEM MU=0.012155 E VARIABLE APDAPSIS FAMILY
NR X0 YDOTO X1 YDOT1 MASS RATID
61 0.2297116 3.0265951 2.6162180 -2.3142334 0.0121550
62 0.2316046 3.0327919 2.6497310 -2.3484378 0.0121550
63 0.2334794 3.0396330 2.6843098 -2.3837631 0.0121550
64 0.2353354 3.0471379 2.7200087 -2.4202647 0.0121550
65 002371720 3.0553277 2.7568863 -2.4580018 0.0121550
66 0.2389887 3.0642254 2.7950048 -2.4970377 0.0121550
67 0.2407846 3.0738557 2.8344313 -2.5374404 0.0121550
68 0.2425591 3.0842454 2.8752375 -2.5792827 0.0121550
69 0.2443113 3.0954236 2.9175004 -2.6226427 0.0121550
70 0.2460404 3.1074215 2.9613031 -2.6676046 0.0121550
Tl 0.2477456 3.1202732 3.0067347 -2.7142589 0.0121550
72 022494257 3.1340152 3.0538917 -2.7627032 0.0121550
73 0.2510797 3.1486873 3.1028781 -2.8130430 0.0121550
T4 0.2527066 3.1643325 3.1538062 -2.8653922 0.0121550
75 022543051 3.1809973 3.2067979 -2.9198743 0.0121550
76 0.2558739 3.1987323 3.2619855 -2.9766229 0.0121550
77 0.2574116 3.2175921 3.3195124 -3.0357835 0.0121550
78 002589166 3.2376365 3.3795351 -3.0975142 0.0121550
79 0.2603875 3.2589301 3.4422239 -3.1619875 0.0121550
80 0.2618223 3.2815433 3.5077649 -3.2293915 0.0121550
81 0.2632192 3.3055532 3.5763620 ~-3.2999322 0.0121550
82 0.2645763 3.3310436 3.6482386 -3.3738353 0.0121550
83 0.2658912 3.3581063 3.7236403 -3.4513483 0.0121550
84 0.2671616 3.3868419 3.8028373 -3.5327460 0.0121550
85 0.2683849 3.4173607 3.8861284 -3.6183279 0.0121550
86 0.2695584 3.4497839 3.9738437 -3.7084276 0.0121550
87 002706789 3.4842453 4.,0663497 -3.8034149 0.0121550
88 0.2717433 3.5208923 4.1640539 -3.9037004 0.0121550
89 0.2727479 3.5598884 4.2674108 -4.0097420 0.0121550
90 0.2736889 3.6014145 4.3769288 -4.1220520 0.0121550
91 0.2745619 3.6456723 4.4931783 -4.2412046 0.0121550
92 0.2753624 3.6928864 4.6168014 -4.3678461 0.0121550
93 0.2760853 3.7433082 4.7485234 -4.5027062 0.0121550
94 0.2767250 3.7972199 4.8891665 -4.6466119 0.0121550
95 02772754 3.8549392 5.0396665 -4.8005040 0.0121550
96 0.2777297 3.9168252 5.2010930 -4.9654574 0.0121550
97 0.2786805 3.9832852 5.3746733 -5.1427053 0.0121550
98 0.2783196 4.0547833 5.5618231 -5.3336694 0.0121550
99 0.2784378 4.1318508 5.7641832 -5,5399970 0.0121550
100 0.2784251 4.,2150985 5.9836655 -5.7636074 (0.0121550
101 0.2782701 4.3052322 6.2225111 -6.0067493 0.0121550
102 0.2779601 4.4030728 6.4833634 -6.2720740 0,0121550
103 0.2774809 4.5095803 6.7693616 ~-6.5627298 0,0121550
104 0.2768164 4.6258848 7.0842611 -6.8824819 0.0121550
105 0.2759484 4.7533272 7.4325915 -7.2358700 0.0121550
106 0.2748561 4.8935101 7.8198638 -7.6284169 0.0121550
107 0.2735159 5.0483671 8.2528496 -8.0669066 0.0121550
108 0.2719001 5.2202534 8.7399588 -8.5597626 0.0121550
109 0.2699771 5.4120692 9.2917616 -9.1175708 0.0121550
110 0.2677096 5.6274301 9.9217234 -9.7538131 0.0121550
111 0.2650536 5.8709058 10.6472574-10.4859223 0.0121550
112 0.2619565 6.1463636 11.4912723-11.3368286 0.0121550
113 0.2583550 6.4674731 12.4845035-12.3372918 0.0121550
114 0.2541711 6.8384717 13.6691338-13.5295236 0.0121550
115 002493079 7.2753611 15.1046178-14.9730126 0.,0121550
116 002436419 T.7978572 16.8774426-16.7542861 0.0121550
117 002404594 8.0997033 17.9287531-17.8100023 0.0121550
118 02370121 844347116 19.1183074-19.0040927 0.0121550
119 0.2332711 8.8088615 20.4745557-20.3650155 0.0121550
120 0.2292023 9.2297084 22,0342278-21.9295106 0.0121550

7
ECC

0.3600000
0.3700000
3.3800000
0.3900000
0.4000000
0.4100000
0.4200000
0.4300000
0.4400000
0.4500000
0.,4600000
0.,4700000
0.4800000
0.,4900000
0.5000000
0.5100000
0.5200000
0.5300000
0.5400000
0.5500000
0.5600000
0.5700000
0.5800000
0.5900000
0.6000000
0.6100000
0.6200000
0.6300000
0.6400000
0.56500000
0.6600000
0.6700000
0.6800000
0.6900000
0.7000000
0.7100000
0.7200000
0.7300000
0.7400000
0.7500000
0.7600000
0.7700000
0.7820000
0.7900000
0.8000000
0.8100000
0.8200000
0.8300000
0.8400000
0.8500000
0.8600000
0.8700000
0.8800000
0.8900000
0.90000C0
0.9100000
0.9150000
0.9200000
0.9250000

0.9300000
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Table 13 (contd)

ELLIPTIC PROBLEM MU=0.012155 E VARIABLE APOAPSIS FAMILY
NR X0 YDOTO X1 YDOT1 MASS RATIO
121 0.2247649 9.7069522 23.8455637-23.7458279 0.0121550
122 0.,2199099 10.2532730 25.9731719-25.8785896 0.0121550
123 0.,2145768 10.8855977 28.5055699-28.4163270 0.0121550
124 0.2086907 11.6270829 31.5672896-31.4835904 0.0121550
125 0.,2021559 12.5103375 35.3391337-35.2612047 0.0121550
126 001948485 13.5828971 40.0937490-40.0218430 0.0121550
127 0.1866120 14.9166899 46.2614918-46.1958947 0.0121550
128 0.1772819 16.6242127 54.5601788-54.5012097 0.0121550
129 0.1668050 18.8853600 66.2729273-66.2209234 0,0121550
130 0.1555807 21.9903128 83.9203405-83.8756008 0.0121550

7
ECC
0.9350000
0.9400000
0.9450000
0.,9500000
2.9550000
0.9600000
0.,9650000
0.9700000
0.9750000
0.9800000
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Fig. 15. Family 8 of periodic orbits
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Fig. 16. Family 8P of periodic orbits
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Table 14. Initial and final conditions for family 8P

ELL.RESTR.PROBL &
NR X0
1 -0.4017933
2 -0.4019453
3 -0.4021730
4 -0.4025519
5 -0.4029300
6 -0.4033074
7 -0.4036839
8 ~0.4040596
9 -0.,4044345
10 -0.4048085
11 -0.4051817
12 ~0.4055541
13 -0.4059257
14 -0.4062964
15 -0.4066662
16 ~-0,4070352
17 -0.4074033
18 -0.4077706
19 -0.4085024
20 -0.4092308
21 ~0.4099555
22 -0.4106767
23 ~0.4113942
24 -0.4121081
25 -0.4128183
26 -0.4135248
2T -0.4142276
28 ~0.4149267
29 -0.4156220
30 -0.4163137
31 -0.4170015
32 -0.4176856
33 -0.4183660
34 -0.4190427
35 -0.4197155
36 ~0.4203847
37 -0.4210501
38 -0.4217119
39 -0.4223699
40 -0.4230243
41 -0.4236750
42 ~0.4243221
43 ~0.4249655
44 -0.4256054
45 —-0.4262418
46 -0.4268747
47 -0.,4275041
48 -0.4281300
49 -0.4287526
50 ~0.4293719
51 -0.4299879
52 ~0.4306007
53 -0.4312103
54 -0.4318168
55 -0.4324203
56 ~-0.4330208
57 -0.4336184
58 -0.4342133
59 -0.4348055
60 -0.4353950

MU=0.5 (E

YDOTO
3.1437189
3.1434523
3.1430654
3.1424548
3.1418866
3.1413603
3.,1408755
3.1404316
3.1400283
3.1396650
3.1393413
3.1390568
3.1388111
3.1386037
3.1384342
3.1383023
3.1382075
3.1381495
3.1381423
3.1382778
3.1385532
3.1389658
3.1395132
3.1401929
3.1410025
3.1419400
3.1430031
3.1441900
3.1454986
3.1469273
3.1484742
3.1501379
3.1519168
3.1538096
3.1558149
3.1579314
3.1601582
301624942
3.1649385
3.1674903
3.1701489
3.1729137
3,1757842
3.1787600
3.1818408
3.1850266
3.1883173
3.1917130
3.1952139
3.1988204
3.2025330
3.2063524
3.,2102795
3.2143153
3.2184608
3.,2227176
3.2270872
3.,2315715
3.2361724
3.2408923

VARIABLE))

X1
2,0396019
2.0358729
2.0303090
2.0211138
2.0120150
2.,0030111
1.9941007
1.9852825
1.9765550
1.9679171
1.9593675
1.9509048
1.9425278
1.9342354
1.9260263
1.9178994
1.9098536
1.9018877
1.8861913
1.8708017
1.8557107
1.8409103
1.8263929
1.8121511
1.7981778
1.7844661
1.7710095
1.7578014
1.7448358
1.7321067
1.7196082
1.7073349
1.6952813
1.6834421
1.6718124
1.6603873
1.6491619
1.6381317
1.6272923
1.6166394
1.6061687
1.5958762
1.5857581
1.5758104
1.5660295
1.5564117
1.5469537
1.5376519%
1.5285031
1.5195041
1.5106519
1.5019432

1.4933753

1.4849452
1.4766501
1.4684874
1.4604543
1.4525483
1. 4447669
1.4371076

PERIAPSIS

YDOTL
-1.5061162
-1.9026045
-1-8973689
-1.8887278
-1.8801915
-1.8717586
-1.8634279
-1.8551980
~1.84T70677
-1.8390358
-1.8311009
-1.8232621
-1.8155180
-1.8078676
-1.8003097
-1.7928434
-1.7854674
-1.7781809
-1.7638720
-1.7499089
~1.7362842
-1.7229%907
-1.7100217
-1.6973708
-1.6850317
-1.6729988
~1.6612663
~-1.6498292
-1.6386823
-1.6278209
-1.6172406
-1.6069373
-1.5969069
-1.5871457
-1.5776505
-1.5684178
-1.5594449
-1.5507290
-1.5422676
-1.5340586
~1.5261000
-1.5183901
-1.5109274
-1.5037107
-1.4967392
-1.4900121
-1.4835291
-1.4772900
-1.4712951
-1.4655450
-1.4600403
-1.4547823
-1.4497725
-1.4450129
-1.4405056
-1.4362534
-1.4322595
-1.4285274
-1.4250614
-1.4218660

FAMILY 8
MASS RATIO
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
05000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0,5000000
0.5000000
0.5000000
0.5000000
0.5000000
0,5000000
05000000
0,5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

ECC
00000000
0.0020000
0.0050000
0.0100000
0.0150000
0.0200000
0.0250000
0.0300000
0.0350000
00400000
0.0450000
0.0500000
0.055%50000
0.0600000
0.0650000
0.0700000
0.0750000
0.0800000
0.0900000
0.1000000
0.1100000
0.1200000
0.1300000
0.1400000
0.1500000
0.1600000
0.,1700000
0.1800000
0.1900000
0.2000000
0.2100000
0.2200000
0.2300000
0,2400000
0.2500000
0.2600000
0.2700000
0.2800000
0.2900000
0.3000000
0.3100000
03200000
03300000
0.3400000
0.3500000
0.3600000
0.3700000
038000060
0.390000C0
0.4000000
0.4100000
0.4200000
0.4300000
0.4400000
0.4500000
0.4600000
3.4700000
0.4800000
0.4900000
0.5000000
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Table 14 (contd)

ELL-RESTR.PROBL.
NR X0

61 -0.4359820
62 ~0.4365667
63 ~0.,4371490
64 ~0,4377292
65 ~0.4383073
66 ~0.4388836
67 -0,4394581
58 —-0,4400310
69 ~0.4406025
70 ~0.4411728
TL -0.4417421
72 -0.4423105
73 ~0.4428783
T4 ~0.4434458
75 ~0.4440133
76 ~0.4445809
77 ~0.4451491
78 -0.4457183
79 ~0.4462887
80 -0.4468608
Bl ~0.4474350
82 ~0.4480120
83 ~0.4485922
84 -0.4491763
85 ~0.4497650
86 -0.4503591
87 ~0,4509595
88 ~0.4515672
89 -0.4521834
90 ~0.4528095
91 =-0.4531267
92 ~0.4534470
93 ~0.4537706
94 -0,4540977
95 ~0.4547638
96 -0.4551033
97 ~0.4554477
98 ~0.4557973
99 -0.4565140
100 -0.4568821
101 ~0.4572575
102 -0.4576408
103 ~-0.4584342
104 -0.4588461
105 -0.4592695
106 -0.4597056
107 -0.4606220
108 ~0.4611057
109 -0.4616093
110 -0.4621353
111 ~0.4632682
112 -0-4638835
113 -0.,4645385
114 ~0.4652407
115 -0.4668266
116 ~0.4687597
117 -0.4699217
118 ~0.4712760

MU=0.5 (E VARIABLE))

YDOTO
3.2457338
3.2506997
3.2557932
3.2610180
3.2663779
3.2718772
3,2775208
3.2833140
3.2892627
3.2953732
3.3016528
3.3081094
3.3147516
3.3215892
3.3286328
3.3358944
3.3433872
3.3511259
3.3591269
3.3674087
3.3759920
3.3849000
3.3941591
3.4037991
3.4138539
3.4243624
324353692
3.4469258
3.4590923
3.4719386
3.4786420
304855474
3.4926676
3.5000165
3.5154634
3.5235968
3.5320302
3.5407863
3.5593711
3.5692596
3.5795918
3.5904079
3.6136807
3.6262491
3.6395276
3.6535959
3.6844910
3.7015574
3.7199019
3.7397127
3.7847075
3.8105339
3.8391554
3.8711661
3.9488063
4.0542798
4.1239666
4.2117288

X1
1.4295681
1.4221459
1.4148388
1. 4076446
1.4005610
1.3935860
1.3867175
1.3799534
1.3732916
1.3667303
1.3602674
1.3539011
1.3476295
1.3414507
1.3353629
1.3293643
1.3234530
1.3176273
1.3118853
1.3062252
1.3006453
1.2951437
1.2897185
1.2843678
1.2790897
1.2738820
1.2687428
1.2636697
1.2586603
1.2537121
1.2512600
1.2488222
1.2463981
1.2439875
1.2392044
1.2368310
1.2344690
1.2321177
1.2274448
1.2251216
1.2228062
1.2204975
1.2158960
1.2136007
1.2113070
1.2090131
1.2044166
1.2021089
1.1997907
1.1974583
1.1927313
1.1903243
1.1878775
1.1853800
1.1801723
1.1745218
1.1714314
1.1680704

PERIAPSIS

YDOT1
~1.4189466
-1.4163091
-1.4139601
-1.4119068
~1.4101576
-1.4087215
~1.4076086
~1.4068299
~-1.4063980
~1.4063264
~-1.4066303
-1.4073267
~1.4084342
-1.4099736
-1.4119680
~1.4144432
~1.4174282
-1.4209551
~-1.4250603
~1.4297845
-1.4351739
~1.4412807
-1.4481644
~1.4558927
-1.4645435
-1.4742065
-1.4849856
~1.4970020
~1.5103976
-1.5253403
-1.5334527
~1.5420297
-1.5511024%
~1.5607054
-1.5816580
-1.5930962
-~1.6052430
-1.6181564
~1.6465504
~1.6621861
~1.6789017
-1.6968034
~1.7366688
~1.7589335
-1.7829945
-1.8090714
-1.8683588
-1.9022462
~1.9395326
~1.9807642
-2.0779387
-2.1358086
~2.2016244
-2.2772331
-2.4687947
-2.7458479
~2.9384809
~-3.1909472

FAMILY 8
MASS RATID
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
05000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

ECC
0.5100000
0.5200000
0.5300000
0.5400000
0.5500000
0.5600000
0.5700000
0.5800000
0.5900000
0.6000000
0.6100000
0.6200000
0.6300000
0.6400000
0.6500000
0.6600000
0.6700000
0.6800000
0.6900000
0.7000000
0.7100000
0.7200000
0.7300000
0.7400000
0.7500000
0.7600000
0.7700000
0.7800000
0.7900000
0.8000000
J.8050000
0.8100000
0.8150000
0.8200000
0.8300000
0.8350000
0.8400000
0.8450000
0.8550000
0.8600000
0.8650000
2.8700000
0.8800000
0.8850000
0.8900000
0.8950000
0.2050000
0.9100000
0.9150000
0.9200000
0.9300000
0.9350000
0.9400000
0.9450000
0.9550000
0.9650000
0.9700000
0.9750000
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Fig. 17. Family 8A of periodic orbits
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A remarkable evolution of the stability properties in
this family has been found. It was possible to determine
the roots of the fundamental matrix for all of the orbits
up to ¢ = 0.85 (Table 15). Family 8A starts in region 4,
and passes (in region 2) all the way up to e = 0.85, except
that the last computed orbit (e = 0.85) itself has just
crossed the parabola a, = a?/4 + 2 (see Fig. 2). There-
fore, this orbit belongs to region 1 and is stable, unlike
all of the other orbits of this family, which are unstable.

G. Family 11P

Family 11 of periodic orbits is shown in Fig. 18. Family
11P (Fig. 19) also begins at ¢ = 0.0 with an orbit with
period 2= taken from Strémgren’s problem (in fact, also
from Bartletf’s class g). The initial conditions in rotating
axes are

x, = —0.07084826 (180a)
g, = +0.82832745 (180b)
p=205 (180c¢)
e =00 (180d)

In this family, 51 orbits have been computed with
eccentricities ¢ from 0 to 0.453 (Table 16). It is not known
at present whether this family goes much farther than
¢ = (.453. The last orbits computed show increasing
difficulties in the convergence of the differential cor-
rection process. The last orbit (¢ = 0.453) was obtained
with very slow convergence on the differential corrections
(10 iterations), whereas, for e = 0.454, there was definite
divergence. The loss of convergence is not apparently
due to a close approach with one of the primaries.

Family 11P begins with the even instability of the
circular problem at e=0. The orbits then move in region 4
(even—even instability), with four real, positive roots (see
Fig. 2). The stability coefficient a, reaches a maximum
of about 13400 in the neighborhood of ¢ = 0.18, and then
decreases all the way to 1000 at e = 0.45. The stability
coeflicient a, is permanently increasing from —5000 to
—200 when the eccentricity goes from 0.0 to 0.45. All of
the orbits of this family are thus unstable.

H., Family 114

This family (Fig. 20) begins with the same orbit as
family 11P (periapsis). About 100 periodic orbits have
been found with ¢ = 0.0 to ¢ = 0.895 (Table 17). At this
latter value of ¢, there is a close approach with one of the
primaries.

66

The stability of the orbits has been determined only
up to e = 0.80. The stability coefficients a, and a, both
go through a minimum: @,= —35500 at ¢ = 0.18, and
a,= —5200 at e = 0.67. From ¢ = 0.0 to 0.30, all of the
orbits are in region 6; from e = 0.30 to 0.80, they are all
in region 3 (see Fig. 2). All of the orbits of this family
are thus unstable.

I. Family 10P

This is a family of periodic orbits that are symmetric
with respect to both the x-axis and the y-axis in the
rotating—pulsating coordinate system (Fig. 21). These
orbits all belong to a mass-ratio of u = 0.5. In the circular
restricted three-body problem, it is well known that only
in the case of equal masses (u=0.5) are there such
periodic orbits that are symmetric with respect to both
rotating coordinate axes. Strémgren had already com-
puted several such symmetric periodic orbits in the
circular problem. The family described herein shows that,
in the elliptic three-body problem, periodic orbits also
exist with the same type of symmetry.

Family 10P begins with ¢ = 0 and goes up to ¢ = 0.70,
the mass-ratio u being constant. The first orbit (e = 0)
has been taken from Bartlett’s class v (see Ref. 18), and
has the following initial conditions:

% =0 (181a)
yo = —0.29524274 (181b)
%, = —0.31965294 (181c¢)
7= 0 (181d)

This orbit and all the other orbits of the family have a
period 4, but only one-quarter of the orbit (v =0 to =)
must be integrated because of the symmetry. The arc of
the orbit that has been integrated thus starts on the
y-axis with a right angle, and ends on the x-axis (also
with a right angle). At the starting point on the y-axis,
the two primaries are at their minimum elongation
(periapsis), and the orbits are thus all “p-orbits.” The
orbits have all been computed in rotating-pulsating
coordinates.

Family 10P contains 76 orbits, with e from 0 to 0.70
(Table 18), and these 76 orbits have all been obtained in
a single computer run with an automatic program. The
computation was stopped at e = 0.70 because of slow
convergence of the differential correction process.
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Table 15. Initial and final conditions for family 8A

ELL.RESTR.PROBL.
NR X0
1 -0.4017933
2 -0.4016032
3 -0.4014129
4 -0.4012223
5 -0.4010316
6 -0.4008407
7 -0.4006497
8 ~0.,4004584
9 -0.4002669
10 -0.3994993
11 -0.3987287
12 -0.3979554
13 ~0.3971793
14 -0.3964007
15 -0.3956195
16 -0.3948359
17 -0.3940499
18 -0.3932617
19 -0.3924715
20 ~0.3916793
21 -0.3908852
22 -0.3900895
23 ~-0.3892921
24 -0.3884934
25 -0.3876934
26 -0.3868924
27 -0.3860904
28 ~0.3852877
29 -0.3844845
30 -0.3836809
31 -0.3828773
32 -0.3820738
33 -0.3812706
34 -0.3804681
35 -0.3796664
36 -0.3788659
37 -0.3780669
38 -0.3772696
39 ~0.3764T744%
40 -0.3756817
41 -0.3748917
42 ~0.3741050
43 -0.,3733219
44 —0.3725428
45 -0,3717683
46 —-0,3709987
47 ~0.3702346
48 —-0.3694766
49 -0.3687252
50 -0.3679810
51 -0.3672448
52 -0.3665171
53 -0.3657988
54 -0.3650906
55 -0.3643934
56 -0.3637080
57 ~-0.3630355
58 -0.3623767
59 -0.3617329
60 -0.3611052

MU=0.5 (E

YyDoTO
3.1437189
3.1440620
3.1444159
3.1447808
3.1451568
3.1455439
3.1459422
3.1463518
3.1467727
3.1485709
3.1505560
3.1527329
3.1551067
3.1576824
3.1604655
3.1634618
3.1666771
3.1701178
3.1737903
3.1777013
3.1818580
3.1862678
3.1909385
3.1958782
3.2010955
3.2065993
3.2123990
3.2185044
3.2249259
3.2316744
3.2387613
3.2461987
3.2539991
3.2621759
3.2707432
3.,2797157
3.2891093
3.2989402
33092262
3.3199856
3.3312381
3.3430043
3.3553064
3.3681677
3.3816130
3.3956687
3.4103631
3.4257260
3.4417895
3.4585878
3.4761573
3.4945373
3.5137695
3.5338991
3.5549744
3.5770473
3.6001740
3.6244148
3.6498352
3.6765059

VARIABLE))
X1
2.0396019
2.0442855
2.0489940
2.0537278
2.0584869
2.0632716
2.0680821
2.0729186
2.0777811
2.0974972
2.1176483
2.1382483
2.1593115
2.1808530
2.2028885
2.2254345
2.2485079
2.2721269
2.2963102
2.3210775
2.3464494
2.3724475
2.3990945
2.4264142
2.4544316
2.4831729
2.5126658
25429394
2.5740242
2.6059525
2.6387583
2.6724773
2.7071475
2.7428089
2.7795037
2.8172766
2.8561751
2.8962493
2.9375525
2.9801412
3.0240755
3.0694193
3.1162405
3.1646117
3.2146101
3.2663183
3.3198243
3.3752227
3.4326145
3.4921080
3.5538197
3.6178747
3.6844077
3.7535639
3.8255000
3.9003853
3.9784032
4.0597525
401446490
4,2333276

APOAPSIS FAMILY 8

YDOTL
-1.9061162
-1.9105301
-1.9149712
~1.9194394
-1.9239351
-1.9284585
-1.9330097
-1.9375889
-1.9421962
~1.9609118
-1.9800946
-1.9997582
-2.0199164
-2.0405841
-2.0617767
-2.0835102
-2.1058017
-2.1286688
-2.1521301
-2.1762051
-2.2009143
-2.2262791
~2.2523222
-2.2790672
-2.3065390
-2.3347640
-2.3637696
-2.3935849
-2.4242406
-2.4557689
-2.4882039
-2.5215815
-2.5559397
-2.5913185
~2.6277605
-2.6653105
~2.7040162
-2.7439279
-2.7850991
-2.8275868
-2.8714513
~2.9167567
-2.9635716
-3.0119687
-3.0620258
-3.1138259
-3.1674576
-3.2230159
~3.2806025
-3.3403262
-3.4023044
~3.4666626
-3.5335365
-3.6030719
-3.6754264
~3.7507703
-3.8292879
-3.9111790
-3,9966605
~4,0859684

MASS RATIO
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.,5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.,5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

ECC
0.0000000
0.0025000
0.0050000
2.0075000
0.0100000
0.0125000
0.0150000
00175000
0.0200000
0.0300000
0.,0400000
0.0500000
0.0600000
0.0700000
0.0800000
0.0900000
0,1000000
0,1100000
0.1200000
0.,1300000
0.1400000
0.1500000
0.1600000
0.,1700000
0.1800000
0.1900000
0.2000000
0.2100000
0.2200000
0.2300000
0.2400000
0.2500000
0.2600000
0.2700000
0.2800000
0.2900000
0.3000000
0.3100000
03200000
3.3300000
0.3400000
0.3500000
0.3500000
0.370000D
0.3800000
0.,3900000
0.4000000
0.,4100000
0.4200000
0.4300000

" D.4400000

0.4500000
0.4600000
0.470000C0
0.4800000
0.,4900000
0.5000000
0.5100000
0.5200000
0.5300000

JPL TECHNICAL REPORT 32-1360

67



Table 15 (contd)

ELL.RESTR.PROBL. MU=0.5 {(E VARIABLE}) APOAPSIS FAMILY 8
NR X0 YDOTO X1 YDOT1 MASS RATIO ECC
61 ~0.3604948 3.7045035% 4.,3260440 ~-4,1793597 0.5000000 0.5400000
62 =0.3599030 3.,7339114 4.4230776 -4.2771150 0.5000000 0.5500000
63 -0e3593314 3.,7648200 4.5247339 -4.3795410 0.5000000 0.5620000
64 —0.3587815 3.7973282 4.6313474 -4.4869740 0.5000000 0.5700000
655 ~0.3582548 3.,8315437 4,7432856 -4,5997829 0.5000000 0.5800000
66 ~0.3577533 3.8675844 4.8609530 -4.7183738 0.5000000 0.5900000
67 =0+3572788 3.9055796 4,.9847956 -4.8431943 0.5000000 0.6000000
68 -0.3568335 3,9456715 5,1153064 -4,9747394 (0.5000000 0.56100000
69 -0.3564195 3.9880165 S5.2530319 -5.1135575 0.5000000 0.6200000
70 -0.3560393 4,0327875 5.3985792 -5.2602577 0.5000000 0.6300000
71 -03556956 4.,0801757 5.5526246 -5,4155186 (0.5000000 0.6400000
72 -0.3553911 4.1303935 5,7159241 -5.5800986 0.5000000 0.6500000
73 ~0.3551292 4.1836772 5.8893248 -5,7548470 0.5000000 0.6600000
74 =-063549130 4.2402907 6.,0737791 -5.9407192 0.5000000 0.6700000
75 -0+3545783 4.4332550 6.704944)1 ~6.5765873 0.5000000 0.7000000
76 -0.3547464 4,3005296 6,2703616 -6.1387925 0.5000000 0.6800000
T7 ~0.3546334 4.3647261 6.4802890 -6.3502864 0.5000000 0.6900000
78 ~0.3545862 4,5065407 6.9459054 -6.,8192769 0.5000000 0.7100000
79 =-0+3546623 4.5850657 7.2049817 -7.0801677 0.5000000 0.7200000
80 -0+3548125 4.6693809 7.4842562 ~T7.3613468 0.5000000 0.7300000
81 =-0+3550434 4,7601188 7.7861398 ~7.6652294 0.5000000 0.7400000
82 -0.3553621 4.8580087 8.1134373 -7.9946249 0.5000000 0.7500000
83 =~D0.3557768 4.9638960 B.4694312 -8.3528205 0.5000000 0.7600000
84 ~0.3562964 5.0787674 8.8579863 -8.7436866 0.5000000 0.7700000
85 -0.3569309 5.2037809 9.2836844 -9.,1718103 0.5000000 0.7800000
86 ~D.3576916 5.3403059 9,.7519969 -9.6426692 0.,5000000 D.7900000
87 ~0.3585912 5.489973% 10.2695097-10.1628561 0.5000000 2.8000000
88 -0.3596442 5.6547433 10.8442206~-10.7403759 0,.5000000 D0.8100000
89 =-0.3608670 5.8369919 11.4859359-11.3850429 0.5000000 0.8200000
90 —-0.3622784 6.,0396302 12.2068081~12.1090181L 0.5000000 0.8300000
91 ~-0.3639002 6.2662653 13,0220771-12.9275510 0.5000000 0.8400000
92 «0.36575T77 6.5214243 13.9511105-13.8600202 0.5000000 0.8500000
80,000
40, 000
| _PERIAPSIS
\\\
e=0.0
0
UN
e=0$
//
APOAPSIS e=0.50
-40,000 \/Je=0.70
-80, 000
-8000 ~4000 0 4000 8000
a, —&

1

Fig. 18. Family 11 of periodic orbits
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Table 16. Initial and final conditions for family 11P

ELL.RESTR.PROBL. MU=0.5 (E

NR

X0
-0.0708483
-0.0714931
~0.0721437
-0.0728000
~0.0734622
-0.0741303
~-0.0748045
-0.0761713
-0.0775634
~0.0789816
-0.0804268
-0.0818999
-0.0834018
~-0.0849336
-0.0864962
-0.0880909
-0.0897186
-0.0913808
~-0.0930787
-0.0948137
-0.0965873
~-0.0984009
-0.,1002563
-0.1021552
~0.1040995
-0.1060911
-0.1081321
~0.1102249
-0.1123716
~0.1145750
-0.1168377
~-0.1191626
-0.1215529
-0.1240117
~0.1265428
~0.1291498
-0.1318368
-0.1346081
-0.1374682
-0.1404219
—~0.1434742
-0.1466303
-0.1498953
-0.1532743
01567716
~0.1603903
-0.1641306
-0.1679856
-0.1719294
-0.1723260
-0.1727222
-0.1731180

YDOTO
0.8283275
0.8304851
0.8326576
0.8348450
0.8370476
0.8392657
0.8414995
0.8460152
0.8505968
0.8552467
0.8599671
0.8647605
0.8696297
0.8745775
0.8796069
0.8847210
0.8899233
0.8952173
0.9006068
0.9060959
0.9116888
0.9173903
0.9232052
0.,9291386
0.9351961
0.9413838
0.9477078
0.9541750
0.9607927
0.9675685
0.9745108
0.9816285
0.9889309
0.9964282
1.0041313

1.0120514

1.0202009
1.0285925
1.0372395
1.0461554
1.0553540
1.0648479
1.0746483
1.0847623
1.0951894
1.1059120
1.1168784
1.1279422
1.1385403
1.1394828
1.1403568
1.1410928

VARIABLE)} PERIAPSIS

X1
1.2236640
1.2218368
1.2200206
1.2182156
1.2164212
1.2146374
1.2128639
1.2093470
1.2058689
1.2024279
1.1990221
1.1956502
1.1923103
1.1890008
1.1857197
1.1824654
1.1792362
1.1760299
1.1728448
1.1696786
1.1665294
1.1633948
1.1602726
1.1571596
1.1540538
1.1509519
1.1478507
1. 1447467
1.1416357
1.1385139
1.1353758
1.1322161
1.1290283
1.1258052
1.1225383
1.1192170
1.1158295
1.1123608
1.1087928
1.1051020
1.1012589
1.0972227
1.0929392

- 1.0883287

1.0832702
1.0775609
1.0708240
1.0621817
1.0481904
1.0458821
1.0430663
1.0392112

YDOT1
~0.2419082
~0.2367393
~0.2315685
-0.2263955
-0.2212194
~0.2160397
-0.2108557
~0.2004725
-0.1900647
-0.1796269
-0.1691535
~0.1586389
-0.1480771
-0.1374619
-0.1267868
~0.1160448
~0.105228%9
~0.0943313
-0.0833440
-0.0722583
~0.0610651
-0.0497544
-0.0383155
-0.0267367
-0.0150057
~-0.0031087

0.0089695
0.0212454
0.0337377
0.0464666
0.0594558
0.0727314
0.0863236
0.1002670
0.1146019
0.1293764
0.1446467
0.1604819
0.1769665
0.1942071
0.2123395
0.2315480
0.2520779
0.2742862
0.2987115
0.3262535
0.3585667
0.3994813
0.4638789
0.4742526
0.4868058
0.5038149

FAMILY 11
MASS RATID
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

ECC
0.0000000
0.0050000
0.0100000
0.0150000
0.0200000
0.0250000
0.0300000
0.0400000
0.0500000
0.0600000
0.0700000
0.0800000
0.0900000
0.1000000
0.1100000
01200000
0.1300000
0.1400000
0.1500000
0.1600000
0.1700000
0.1800000
0.1900000
0.2000000
0.2100000
0.2200000
0.2300000
0.2400000
0.2500000
0.2600000
0.2700000
0.2800000
0.2900000
03000000
0.3100000
0.3200000
0.3300000
0.3400000
0.3500000
0.3600000
0.3700000
0.3800000
0.3900000
0.4000000
0.4100000
0.4200000
0.4300000
0.4400000
0.4500000
0.4510000
0.4520000
0.4530000
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Table 17. Initial and final conditions for family 11A

ELL.RESTR.PROBL.
NR X0
1 -0.0708483
2 ~0.,0702090
3 -0.,0695752
4 ~0.0689469
5 ~0.0683240
6 ~0.0670939
7 -0.,0658843
8 ~0.0646947
3 -0.0635246
10 ~0.0623734
11 ~0.0612406
12 ~-0.0601258
13 ~0.0590284%
14 -0.0579482
15 -0.0568846
16 -0,0558372
17 ~0.0548056
18 ~0.0537896
19 ~0.0527886
20 ~-0.0518024
21 ~0.0508307
22 -0,0498730
23 ~0.,0489291
24 —0.,0479987
25 ~0.0470815
26 ~0.0461772
27 -0.,0452856
28 ~0.,0444063
29 ~0.0435392
30 ~0.,0426839
31 ~0.0418403
32 ~-0.0410080
33 -0.0401870
34 -0,0393768
3% ~0.0385774
36 -0.0377885
37 ~0.0370099
38 -0.0362414
39 ~0.0354829
40 -0.,0347340
41 -8.0339947
42 ~0.,0332646
43 ~-0.0325438
44 -0.0318318
45 ~-0,0311287
46 ~0.0304341
47 -0.0297480
48 ~0.0290700
49 ~-0.0284001
50 ~0.,0277381
51 ~0.0270837
52 ~0.0264367
53 -~0.,0257971
54 -0.0251645
55 ~0.,0245388
56 ~0.0239198
57 -0.,0233071
58 ~0.0227007
59 ~0.,0221002
60 ~-0,0215054

MU=0.5 (E
YDOTO
0.8283275
0.8261843
0.8240555
0.8219408
0.8198400
0.8156795
0.8115723
0.8075171
0.8035126
0.7995575
0.7956506
0.7917910
0.7879774
0.7842090
0.7804849
0.7768043
0.7731663
0.7695704
0.7660157
0.7625018
0.7590281
0.7555941
07521994
0.7488437
0.7455266
0.7422478
0.7390071
0.7358044
0.7326396
0.7295126
0.7264233
0.7233719
0.7203584
0,7173830
0.7144458
0.7115472
0.7086874
0.7058668
0.7030857
0.7003447
0.6976443
0.6949849
0.6923672
0.6897919
0.6872597
0.6847713
0.6823274
0.6799291
0.6775770
0.6752721
0.6730152
0.6708074
0.6686495
0.6665424
0.6644870
0.6624842
0.6605345
0.6586387
0.6567971
0.6550101

VARIABLE)) APDAPSIS
X1 YDOT1
1.2236640 ~0.2419082
1.2255026 -0.2470759
1.2273528 -0.2522431
1.2292148 -0.2574102
1.2310889 -0.2625779
1.2348740 -0.2729172
1.2387100 ~0.2832657
1.2425987 -0.2936278
1.2465420 -0.3040079
1.2505418 -0.3144107
1.2546001 -0,3248404
1.2587190 -0.3353014
1.2629005 -0.3457983
1.2671468 -0.3563354
1.2714603 -0.3669173
1.2758431 ~-0.3775484%
1.2802977 ~-0.3882333
1.2848267 -0.3989767
1.2894326 ~0.4097832
1.2941182 ~0.4206576
1.2988863 -0.4316047
13037397 ~0.4426297
1.3086817 —~0.4537375
1.3137155 -0.4649335
1.3188444 ~0.4762229
1.3240719 -0.4876115
1.3294018 -0.4991048
1.3348380 -0.5107089
1.3403846 -0,5224298
1.3460459 -0.5342741
1.3518266 -0.5462482
1.3577313 -0.5583592
1.3637652 ~0.5706143
1.3699337 -0.5830210
1.3762425 ~0.5955873
1.3826977 -0.6083215
1.3893057 -0.6212322
1.3960733 -0.6343288
1.4030079 -0.6476210
1.4101171 -0.6611190
1.4174094 -0.6748336
1.4248936 -0.6887766
1.4325792 -0.7029600
1.4404764 -0.7173970
1.4485963 -0.7321016
1.4569507 -0.7470887
1.4655522 -0.7623742
1.4744148 -0.7779753
1.4835533 -0.7939104
1.4929840 ~0.8101995
1.5027245 -0.8268641
1.5127939 ~-0.8439273
1.5232132 -0.8614146
1.5340054 -0.8793535
1.5451957 -0.8977739
1.5568119 -0.9167088
1.5688845 -0.9361943
1.5814474 -0.9562701
1.5945383 -0.9769800
1-6081991 ~-0.9983726

FAMILY 11
MASS RATIO
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000080
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

ECC
0.0000000
0.0050000
0.0100000
0.0150000
0.0200000
0.0300000
0.0400000
0.0500000
0.0600000
0.0700000
0.0800000
0.0900000
0.1000000
0.1100000
0.1200000
0.1300000
0.1400000
0.1500000
0.1600000
0.1700000
0.1800000
0.1900000
0.2000000
0.2100000
0,2200000
0.2300000
0.2400000
0.,2500000
0.2600000
2.2700000
0.2800000
0.2900000
0.3000000
0.3100000
0.3200000
0.3300000
0.3400000
0.3500000
0.3600000
0.3700000
0.3800000
0.3900000
0.4000000
0.4100000
0.4200000
0.4300000
0.4400000
0.4500000
0.4600000
0.4700000
0.4800000
0.4900000
0.5000000
0.5100000
0.5200000
0.5300000
0.5400000
0.5500000
0.5600000
0.5700000
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Table 17 (contd)

ELL.RESTR.PROBL.
NR X0
61 -0.0209160
62 -0.0203317
63 -0.0197522
64 -0.0191772
65 -0.0186062
66 -0.0180388
67 —0.0174747
68 -0.0169132
69 -0.0163539
70 -0.0157960
71 -0.0152389
72 -0.0146818
73 -0.0141238
74 —0.0135638
75 -0.0130006
76 —0.0124328
77 -0.0118590
78 -0.0112771
79 -0.0106852
80 -0.0100809
81 ~0.0094614
82 -0.0088235
83 -0.0081638
84 -0.0074782
85 -0.0067618
86 ~0.0060082
87 -0.0052072
88 ~0.0043416
89 -0.0033809
90 -0.0022736
91 -0.0009317
32 0.0008073
93 0.0019244

MU=0.5 (E

YDOTO
0.6532777
0.6515994
0.6499745
0.6484018
0.6468793
0.6454043
0.6439730
0.6425806
0.6412209
0.6398858
0.6385656
0.6372480
0.6359186
0.6345603
0.6331536
0.6316773
0.6301102
0.6284346
0.6266430
0.6247502
0.6228148
0.6209771
0.6195207
0.6189705

'0.6202322

0.6247621
0.6347131
0.6529777
D.6831124
0.7293410
0.7970914
0.8949025
0.9598935

VARTABLE})
X1
1.6224768
1.6374238
1.6530995
1.6695710
1.6869144
1.7052169
1.7245783
1.7451138
1.7669573
1.7902649
1.8152203
1.8420412
1.8709870
1.9023702
1.9365701
1.9740515
2.0153901
2.0613061
2.1127105
2.1707682
2.2369836
2.3133158
2.,4023274
2.5073655
2.6327527
2.7839428
2.9675846
3.1915298
3.4650655
3,7999312
4.2128522
407310377
5.0439827

APOAPSIS

¥YDOT1
-1.0205021
~-1.0434286
-1.0672199
-1.0919518
-1.1177103
-1.1445929
-1.1727108
-1.2021918
-1.2331831
~-1.2658555
-1.3004090
-1.3370785
-1.3761428
-1.4179351
~-1.4628575
~-1.5113991
-1.5641616
-1.6218924
-1.6855299
-1.7562650
~1.8356240
-1.9255781
-2.0286853
-2.1482591
~2.2885449
-2.4548627
-2.6536719
~2.8926113
~3.1808004
-3.5299395
-3.9569061
~4.,4893070
-4.8096513

FAMILY 11
MASS RATIO
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0. 5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000
0.5000000

ECC
0.5800000
05900000
0.6000000
0.6100000
0.6200000
0.6300000
0.6400000
0,6500000
0.660000Q0
06700000
0.6800000
0.6900000
0.7000000
0.,7100000
0.7200000
0.7300000
0.7400000
0.7500000
07620000
0.7700000
0.7800000
0.7500000
0.8000000
0.81000Q000
0.,8200000
2.8300000
0.8400000
0.,85000060
J.8600000
0.8700000
0.8800000
0.8%900000
0.8950000
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Fig. 21. Family 10P of periodic orbits
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Table 18. Initial and final conditions for family 10P

ELL.RESTR.PROBL. MU=0.5 (E VARIABLE)) X AND Y SYM.

NR

= OO0 sd O W W PN e

bt

i

YO
-0.2952427
~0.,2961463
-0,2970537
~0.2979651
~0,2988807
~0.2998002
~0.,3007239
~0.,3016517
~0.3025837
~0.3035199
-0,3044604%
~0,3063543
~0.3082659
~0.3101956
=-0.3121436
~0.3141105
~0.3160966
~0,3181025
~-0.3201286
~0.,3221755
~003242436
-0.,3263335
~0.3284459
~0.3305813
~0,3327404
-~0.3349238
~0.3371323
~0:3393667
=0.3416276
~0.3439161
~0.3462329
~0.3485789
~0.3509552
-0.3533628
~0.3558027
~0.3582762
~0.3607846
~0.3633288
~0.3659106
~003685313
~-0.3711924
~0.3738957
~0.3766430
-0.3794360
~0.3822769
~0.3851679
~0.3881113
~0,3911096
~0.3941656
~0.3972822
~0.4004626
~0.4037105
~0.4070294%
~0.4104238
~0.4%4138983
~0.4174578
-0.4211082
~-0.4248558
~0.4287078
~0.4326722

XDOTO
~0.3196529
-0.3207342
-0.3218168
-0.3229008
-0.3239862
-0.3250729
-0.3261610
-0.3272505
-0.3283413
-0.3294335
-0.3305270
-0.3327181
-0.3349145
-0.3371164%
-0.3393238
-0.3415366
-0.3437549
-0.3459789
~-0.3482084
~0.3504438
-0.3526850
-0.3549323
-0.3571857
-0.3594453
-0.3617115
-0.3639844
~0.3662641
~0.3685510
-0.3708452
-0.3731471
-0.3754570
-0.3777751
-0.3801019
-0.3824378
~0.3847831
-0.3871382
-0.3895036
-0.3918803
~0.3942683
~0.3966683
~0.3990810
~0.4015071
~0.4039474
-0.4064026
-0.4088737
-0.4113615
-0.4138671
~0.4163916
-0.4189361
~0.4215019
~0.4240905
-0.4267033
-0.4293420
~0.4320083
-0.4347044
-0.4374323
~-0.4401945
~0.4429935
~0.4458325
-0.4487147

X1
-1.2283965
~1.2264245
~1.2244687
-1.2225285
-1.2206052
-1.2186971
-1.2168045
~1.2149273
~1.2130653
-1.2112188
-1.2093863
~1.2057661
-1.2022036
~-1.1986975
-1.1952467
-1.1918501
~1.1885066
~-1.1852150
-1.1819749
~-1.1787847
-1.1756437
-1. 1725510
-1.1695058
-1.1665071
-1.1635541
~1.1606461
-1.1577822
~1.1549617
-1.1521839
-1. 1494480
-1.1467535
~1.1440994
-1.1414853
-1.1389104
~1.1363740
-1.1338756
-1l.1314144%
-1.1289899
-1.1266015
-1.1242484
-1.1219302
~1.1196460
-1.1173953
~-1.1151775
-1.1129917
-1.1108372
-1.1087140
-1.1066203
-1.1045558
-1.1025196
~-1.1005106
-1.0985281
-1.0965704
~-1.0946368
-1.0927257
-0.4151629
-1.0889644
~-1.0871102
-1.0852709
~-1.0834430

¥YDOT1
0.1762734%
0.1705527
0.1648409
0.1591371
0.1534424
0.1477549
0.1420746
0.1364012
0.130734%3
0.1250740
0.1194182
0.1081232
0.0968461
0.08%5836
0.0743326
0.0630897
0.0518516
0.0406150
0.0293768
0.0181332
0.0068809
-0.0043837
~0,0156641
-0.0269639
-0.0382873
~0.0496377
-0.0610193
-0.0724362
-0.0838926
-0.0953928
-0.1069414
-0.1185431
-0.1302027
-0.1419253
-0.1537163
-0.1655811
~0.1775258
~-0.1895553
-0.2016773
-0.2138981
-0.2262246
~-0.2386645
-0.2512255
-0.2639162
~0.2767456
~0.2897233
-0.3028586
-0.3161637
-0.3296498
-0.3433298
~0.357217%
-0.3713271
-0.3856761
-0.4002814
-1.0908355
~0.4303421
-0.4458430
~0.4616926
-0.4779202
-0.4945605

FAMILY 10

MASS RATIO ECC

0.5000000 0.0000000
0.5000000 0.0050000
0.5000000 0.0100000
0.5000000 0.0150000
0.5000000 0.0200000
0.500000C6 0.0250000
0.5000000 0.0300000
0.5000000 0.0350000
0.5000000 0.0400000
0.5000000 0.0450000
0.5000000 0.0500000
0.5000000 0.0600000
0.5000000 0.,0700000
0.5000000 0.0800000
0.5000000 0.0900000
0.5000000 0.1000000
0.5000000 0.1100000
0.5000000 0.1200000
0.5000000 0.1300000
0.5000000 0.,1400000
0.5000000 0.1500000
0.5000000 0.16000060
0.5000000 0.1700000
0.5000000 0.1800000
0.5000000 0.,1900000
0.5000000 0.2000000
0.5000000 0.2100000
0.5000000 0.2200000
0.5000000 0.2300000
0.5000000 0:2400000
0.5000000 0.2500000
0.5000000 0.2600000
0.5000000 0.2700000
0.5000000 0.2800000
0.5000000 0.2900000
0.5000000 ©0.3000000
0.5000000 0.3100000
0.5000000 0.3200000
0.5000000 0.3300000
0.5000000 0.3400000
0.5000000 0.3500000
0.5000000 0.3600000
0.5000000 0.3700000
0.5000000 0.3800000
0.5000000 0.3900000
0.5000000 0.4000000
0.5000000 0.4100000
05000000 0.4200000
0.5000000 0.4300000
0.5000000 0.4400000
0.5000000 0.4500000
0.5000000 0.4600000
0.5000000 0.4700000
0.5000000 0.4800000
0.5000000 0.4900000
0.0000000 0.5000000
0.5000000 0.5100000
0.5000000 0.5200000
0.5000000 0.5300000
0.5000000 0.5400000
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Table 18 (contd)

ELL.RESTR.PROBL. MU=0.5 {(E VARIABLE)) X AND Y SYM. FAMILY 10

NR YO XDOTO X1 YDOT1 MASS RATIO ECC

61 ~0.4367584 —0.4516439 -1.0816235 -0.5116522 0.5000000 0.5500000
62 04409769 ~0.4546243 -1.0798080 -0.5292397 0.5000000 0.5600000
63 —0.4453402 ~0.4576609 ~1.0779915 -0.5473751 0.5000000 0.5700000
64 ~0.4498628 —-0.4607593 -1.0761678 -0.5661195 0.5000000 0.5800000
65 ~0.4545622 -0.4639262 -1.0743290 -0.5855459 0.5000000 0.5900000
66 —-0.4594595 —0.4671695 -1.0724648 -0,6057430 0.5000000 0.6000000
67 ~0.4645808 -0.4704987 -1.0705622 -0.,6268205 0.5000000 02.6100000
68 ~0.4699592 -D.4739257 ~1.0686035 ~0.6489178 0.5000000 0.6200000
69 —0.4756377 ~D.4774657 —1.0665644 -0.6722167 0.5000000 0.6300000
70 ~0.4816747 -0.4811385 ~-1.0644104 -0.6969639 0.5000000 0.6400000
71 ~0.4881523 -0.4849718 -1.0620903 ~0.7235097 0.5000000 0.6500000
72 -0.4951948 -0.4890059 ~1.0595226 -0.7523847 0.5000000 0.6600000
73 ~0.5030064 —0.4933061 -1.0565675 -0.7844678 0.5000000 0.6700000
T4 -0.5119728 -0.4979931 -1.0529487 -0.8214318 0.5000000 0.6800000
75 -0.5230283 -0.5033547 -1.0479696 -0.8673676 0.5000000 0.6900000
76 -0.5409435 ~0.5108416 -1.0379172 -0.9434420 0.5000000 0.7000000

No attempt has yet been made to determine the reason

The eccentricities ¢ were varied from 0.1 to 0.

3

, and

for this slow convergence or to prolongate the family for
eccentricities higher than 0.70. The stability and the
characteristic exponents of these orbits have not been
determined.

J. A Family of Periodic Collision Orbits

Using the regularized computer program, it was
possible to find a family of 69 periodic collision orbits.
The integrations were made with a predictor-corrector
method (eighth-order) and Birkhoff regularized coordi-
nates in the neighborhood of the primaries (within a
radius of 0.07 canonical unit of distance from each
primary). The starting procedure used for the Adams-
Moulton integration was Runge-Kutta—Merson, of fourth
order, with automatic error control and step adjusting.
Outside of the two circular areas of radius 0.07 around
the two primaries, the integrations were performed with
the recurrent power-series method. Generally, the terms
up to twelfth order have been used in the power series,
with an integration step of 0.03, as compared with a step

. o 0.4
of 0.005 in the Adams-Moulton method. z  (BECAUSE ENERG
g . 1S TOO SMALL
E ORBIT IS TOO
The principles of differential corrections for periodic é SMALL)
ejection orbits have been explained previously. In all of 2 02

the numerical work described herein, the collision angle 4
has been kept at zero, and only collisions from the pri-
mary m, (= p) have been studied. At first, some attempts
were made to find a periodic collision orbit corresponding
to equal masses, but these attempts were unsuccessful.
It was then decided to run a series of collision orbits in
the equal-mass problem.

JPL TECHNICAL REPORT 32-1360

.
the energy constant was taken between 0 and —1.5, This
allowed the determination of the interesting regions of
energies shown in Fig. 22. Orbits with energies larger
than about —0.7 all escape from the system, whereas
orbits with energies below —1.2 are close satellite orbits,
and have been disregarded. The region that has then
been studied in more detail is the white region in the
center of Fig. 22. The following procedure was then
performed to find approximate initial conditions for peri-
odic orbits: the two lines y,= 0 and % = 0 were con-
structed by examining the final values y, and %, of the
variables y and x (at the end of a half revolution, v = =).
The intersection of these two lines then corresponds to a
symmetric periodic orbit. An intersection was found close

0.6

BECAUSE ENERG
15 TGO LARGE)
0 |
-1.4 -1.2 -1.0 -0.8 ~0.é -0.4
ENERGY E

Fig. 22. Ejection orbits {(from m, = ul
with § = 0.0, p = 0.5
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\E =-0.60
0.8

ECCENTRICITY e

¥= -0.90
0.2

o NE=~-1.15

.35 0.45 0.55 0.65 0.75
m

Fig. 23. Family of ejection orbits (e vs u)

to E = —0.79, ¢ = +0.42. Starting from these values, the
exact periodic orbit was then obtained with the differen-
tial correction program.

Once the first periodic orbit had been found, cor-
responding to p = 0.5, it was not difficult to follow the
corresponding family of periodic orbits along increasing
and decreasing mass-ratios. The variations of the eccen-
tricity ¢ along this line are shown in Figs. 23 and 24.
At the eccentricity e = 0.0, the family joins a classical
collision orbit of the circular three-body problem, with
period 2. At the other end of this family (e = 1), there

82

/u= 0.36
0.8

0.6
/= 0.45
0.4 A 0'50

ECCENTRICITY e

H1=0.,55
0.2 4
4=0.60
oblH=0.66
-1.15 -0.95 -0.75 ~0.55 ~0.45

Fig. 24. Family of ejection orbits (e vs E)

seems to be a triple collision of both primaries and the
satellite. The last orbit computed corresponds to e=0.995,
p = 0.40. It is obvious that, to be able to study the end
of this family numerically, a program is necessary that
can handle (and regularize eventually) the triple-collision
phenomenon.

Figures 25 and 26 show (in Birkhoff coordinates) two
extreme orbits of the family, with e == 0 and e = 0.98.
Figure 27 shows some of the collision orbits represented
in different coordinate systems. The final conditions for
this family are listed in Table 19.
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Fig. 25. An exireme orbit of the family of periodic Fig. 26. An extreme orbit of the family of periodic
collision orbits (e = 0} collision orbits (e = 0.98)
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Fig. 27. Periodic collision orbits in different coordinate systems
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Fig. 27 (contd)
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Table 19. Final conditions for periodic collision orbits

O W= OIS W T

PERICDIC COLLISION ORBITS

X1
0.4317709
0.4422967
0.4452673
C.4482423
0.4512215
04542051
0.4571929
0.4601851
0.4752110
0.4903469
0.5055945
0.5209562
05364350
0.5520341
0.5598800
0.5677575
05756673
0.5836100
0.5915865
05995974
0.6076438
0.6157265
0.6238467
0.6320055
0.6402042
0.6484443
06567272
0.6650549
0.6734291
0.6818520
0.6852354
0.6860825
0.6869301
0.68B77783
0.6886270
0.6894762
0.6903260
06911763
0.6920272
0.6928786
0.6937305
0.6971437
0.6988537
07074380
0.7160823
0.7247902
07424141
0.7603504
0.7786518
0.7973892
0.8166596
0.8366019
0.8574241
0.8794613
0.9033125
0.9302562
0.9458395
0.9642965
0.9910076
1.0006883

YDOT1
3.5154248
3.4560406
3.4397299
3.4235877
3.4076114
3.3917987
3.3761471
3.3606543
3.2854956
3.2139907
3.1459079
3.0810431
3.0192178
2.9602770
2.9318458
2.9040875
2.8769886
2.8505372
2.8247225
2.7995348
2. 7749661
247510093
2.7276591
2.7049113
2.6827633
2.6612140
2.6402639
2.6199155
2.6001731
2.5810431
2.5735644
2.5717103
205698625
2.5680210
2.5661857
2.5643568
2.5625342
2.5607178
2.5589078
2.5571042
2.5553069
2.5481817
2.5446576
2.5274276
2.5108617
24949811
2.4653825
2.4389009
2.4159184
2.3969803
2.3828802
2.3748101
2.3746475
2.3855670
24135514
2.4721542
2.5235941
2.6070881
2.7898253
2.8816913

ENERGY
~1.147C386
-1.1248080
-1.1187117
-1.,1126825
-1.1067194
~-1.1008213
-1.0949873
-1.0892163
-1.0612741
-1.0347706
-1.0096007
-0.9856676
—0.9628819
-0.9411609
-0.9306753
-0.9204274
-0.9104082
-0.9006093
-0.891C223
-0.8816390
-0.8724517
~0.8634525
~0.8546340
-0.8459889
-0.8375099
-0.8291898
-0.8210217
-0.8129987
-0.8051139
-0.7973603
~0.7942941
-0.7935307
~0.7927684
~0.7920073
~0.7912474
-0.7904887
-0.7897312
~0.7889749
-0.,7882197
-0.7874657
~0.7867129
~0.7837129
-0.7822196
-0.7748186
~0.7675211
-0.7603199
~0.7461761
-0.7323241
-0.7186934
-0.7052024
~0.6917513
-0.6782115
—0.6644036
-0.6500552
~0.6346959
-0.6173412
—~0.6071866
—0.5949220
-0.5763913
—0.5693343

MASS RATIO

0.6641096
0.6570000
0.6550000
0.6530000
0.6510000
0.6490000
0.6470000
0.6450000
0.6350000
0.6250000
0.6150000
0.6050000
0.5950000
0.5850000
0.5800000
0.5750000
0.5700000
0.5650000
0.5600000
0.5550000
0.5500000
0.5450000
0.5400000
0.5350000
0.5300000
0.5250000
0.5200000
0.5150000
0.5100000
0.5050000
0.5030000
0.5025000
0.5020000
0.5015000
0.5010000
0.50054G00
0.5000000
0.4995000
0.4990000
0.4985000
0.4980000
0.4960000
0.4950C00
0.4900000
0.4850000
0.4800000
0.4700000
0.4600000
0.4500000
0.4400000
0.4300000
0.4200000
0.4100000
0.4000000
0.3900000
0.3800000
0.3750000
0.3700000
0.3650000
0.3640000

ECC
-0.0000000
0.0174910
0.0224155
0.0273420
0.0322704
0.0372008
0.0421334
0.0470682
0. 0717771
0.0965512
0.1214000
0.1463340
0.1713645
0.1965040
0.2091188
0.2217661
0.2344478
0.2471659
0.2599226
0.2727201
0.2855607
0.2984472
0.3113820
0.3243681
0.3374084
0+3505063
0.3636651
0.3768885
0.3901806
0.4035455
0.4089129
0.4102567
0.4116013
0.4129468
0.4142930
04156400
0.4169879
0.4183366
0.4196861
0.4210365
0.4223877
0.4278010
0.4305128
0.4441257
C.4578323
0.4716393
0.4995836
0.5280252
0.5570476
0.5867579
0.6172978
0. 6488630
0.6817391
0.7163739
0.7535523
0.7949235
0.8183975
0. 8455941
0.8833366
0.8963937
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Table 19 (contd)

PERIODIC COLLISION ORBITS

NR X1 YDOT1 ENERGY MASS RATIO ECC

61 1.0083154 2.9671155 —0.5636017 0.3635774 0.9063937
62 1.0161692 3.0697326 —-0.5575095 0.3635184 0.9163937
63 1.0243012 3.1951282 -0.5509627 0.3639060 0.9263937
64 1.0327810 3.3518316 —0.5438277 0.3648572 0.9363937
65 1.0417075 3.5536714 —0.5359065 0.3665460 0.9463937
66 1.0512286 3.8249412 -0.5268868 0.3692469 0.9563937
67 1.0615840 4.2134702 ~0.5162289 0.3734351 0.9663937
68 1.0732118 4.8315714 —0.5028633 0.3800552 0.9763937
69 1.0870994 6.0419078 —0.4840867 0.3915046 0.9863937

V. Computer Programs

A. Introduction

The periodic orbits described previously were ob-
tained with the use of several more or less automatic
computer programs. These programs were all written in
FORTRAN 4 language, but use a limited number of
machine-language subroutines taken from the JPL library.
Because of the presence of some nonstandard subroutines
in these programs, and because of a few characteristics
that are related to JPL’s particular hardware configura-
tions, it has not been judged useful to include herein a
complete description of all of the computer programs.

Some of the nonstandard subroutines that are not
described herein are for timing of the computations and
for plotting of the orbits; others are standard subroutines,
e.g., those for matrix inversion or for step-wise numerical
integration. Every reader who is interested in the inte-
gration of orbits will certainly have his own programs for
numerical integration or for matrix inversion. Thus, it was
decided to describe herein a few subroutines that are
directly related to the elliptic restricted three-body
problem.

These subroutines do not all belong to the same
program, but they have been used in different main
programs. To give an example of the logic used in the
computing efforts, two main programs are also described.

Some of the descriptions given below are not quite
complete, but they are complemented by the presence of
many comments in the programs. It is hoped that, with the
information provided herein and with the FORTRAN 4
listings, any programmer will be able to construct fairly
rapidly a running program for the elliptic restricted
three-body problem.
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B. Derivative Subroutines

To integrate the equations of motion numerically, it is
necessary to program the derivatives of the dependent
variables (or the right-hand members of the differential
equations), and to insert this coding in the main program
or in the subroutine that is used for numerical integra-
tion. The subroutines described below give the derivatives
for a few different coordinate systems or integration
methods. In all cases, the differential
reduced to first-order equations.

equations are

The first four subroutines (DERIV) are to be used with
predictor-corrector or Runge-Kuitta types of integrati
methods. For completeness, a short fourth-order classi
Runge-Kutta integration subroutine is also given; how-
ever, the user should preferably replace it with a more
efficient integrator. Each call to the Runge-Kutta sub-
routine will perform a single integration step, and this
subroutine will call subroutine DERIV four times. Sub-
routine RUNGE-KUTTA may be used for any nuniber N
of simultaneous first-order differential eguations.

1. Subroutine DERIV with inertial coordinates. This
subroutine is for the numerical integration of the equations
of motion, Eq. (13), in barycentric inertial coordi
This subroutine may be used for all eccentricities
ing e = +1. It is prepared for five dependent va
the last of which is also the independent variable f (time).
The subroutine calls subroutine KEPLER to transform
the mean anomaly AM in the eccentric anomaly ECAN.
Subroutine KEPLER wuses the Newtonian iteration
method. In case the Newtonian iteration method doeg
not converge, a bisection method is used. This can only

happen for an eccentricity of -1 and for some excep-
tional values of the mean anomaly AM.
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Subroutine DERIV uses the following constants, which
are in COMMON:

RU = mass-ratio p = m, (182a)
UMM = 1—p=m, (182h)
E = eccentricity e (182¢)
Q=01—-e)" (182d)

2. Subroutine DERIV with rotating-pulsating coordi-
nates. This subroutine uses the pulsating coordinates
(x,1) described in Eq. (33). The independent variable is
the true anomaly v. The distance r between the primaries
is obtained here as a function of the true anomaly rather
than by integrating a differential equation. The first four
equations give (x,y,4, ), the fifth gives the time ¢, and
the sixth gives the true anomaly v.- No Kepler equation
has to be solved with this set of variables, the primaries
having fixed locations on the x-axis. This subroutine uses
the following constants, which must be in COMMON:

RU = mass-ratio p = m, (183a)
UMM =1—p=m (183Db)
Xll=2= —p=—my (183c¢)
X2=zx,=1—p=m, (183d)

E = eccentricity e (183e)
P=1—-¢ (183f)
Q= (1—e)" (183g)

3. Subroutine DERIV with regularized Birkhoff
coordinates. This is the subroutine that has been used in
the regularized program; it integrates differential Egs.
(110), (118), and (117). Here the differential equations are
again in the first-order form. The first four equations give
(& 7, & ). The last three equations give the energy E, true
anomaly v, and time ¢, The regularized independent
variable s is not explicitly present in the differential
equations. The following constants are used by the
subroutine, and must be in COMMON:

AMZ = 4 = m, (mass-ratio)

(184a)

AMl=1—p=m, (184b)
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XIl=x,= —p=—m, (184c¢)
X2=a, =1~ p=m, (1844)
E = eccentricity ¢ (184e)
P=1-¢ (184f)
SP = (1—e2)* (184g)
X0= =4 ,=0t% (184h)

4. Subroutine DERIV with rotating—pulsating vari-
ables and with variational equations. This subroutine
uses the same variables and the same formulation as the
subroutine described in Section V-B-3. The first four vari-
ables are the same as before. The fifth to twentieth
variables are four times the four variations. The 16
variables (5 to 20) will thus give the fundamental
matrix R with partial derivatives. The initial conditions
for the 16 variables should form a unit-matrix. It should
be noted that good results will be obtained for the
solutions of the variational equations only if a good
integration subroutine is available. In particular, if the
simple Runge-Kutta subroutine is used, no high precision
should be expected. On the other hand, there will also
be an appreciable loss of precision in the solution of the
variational equations in cases with close approaches
between the satellite and the primaries, or between the
primaries themselves (for high values of e).

The following constants must be present in COMMON
for this subroutine:

RU = mass-ratio p = m, (185a)
UMM = 1— u=m, (185b)
XMl=x,=—p=—m, (185¢)
X2=x,=1—p=m, (185d)
E = eccentricity e (185¢)
P=1-—¢? (185f)
Q=(1-e* (185¢)

5. Subroutine ERPSV for recurrent power series. This
subroutine implements the solution of both the equations
of motion and four sets of variational equations with
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the recurrent power-series method and with rotating-
pulsating variables. The equations that are programmed
are Egs. (139) and (141) and those listed in Tables 1 and 2.
The notations of these equations are closely followed in
the FORTRAN 4 program; for this reason, very little
explanation is necessary here.

In the listing of subroutine ERPSV, it can be seen that
only a minimum number of DO-loops has been used.
It was considered preferable to write these long lists of
similar statements because, on many compilers or com-
puters, this will actually result in a more efficient object
program from the point of view of the speed of calcu-
lations. Subroutine ERPSV could have been programmed
in a much shorter way, but this would be possible only
by using more nested DO-loops and a slightly longer
computer time. In other words, the present subroutine
has been designed for efficiency in speed more than in
memory occupation.

As aforementioned in Section III, variables P, through
Pys are relative to the equations of motion, whereas
variables P;, through P, are relative to the variational
equations. A user interested only in the equations of
motion could remove from the subroutine all of the
statements that are relative to the variational equations;
ie., variables P,, through P;,.

The input to the subroutine consists of the integration
step DT for the independent variable v (true anomaly)
and initial values for 11 components of the vector X
(X, -+ X, have the meaning %,y, %, 9, 7, 7, £, whereas X,,

-+ Xy are 1y, 15, 7%, 15°). The components Xs, X, are z, z,
and are not used in the two-dimensional program.

The output after every integration step consists of the
new values of the 11 parameters X, -+ X; and X, - - X3,
together with the matrix A containing the fundamental
matrix (partial derivatives).

Subroutine ERPSV is designed to operate in the
following three ways, as far as the input is concerned,
according to the input parameter INIT:

(1) INIT = 1 for the first integration step of the orbit.
Initial conditions must be given for X, through X,
only.

(2) INIT = 2for all succeeding integration steps. Initial
conditions must be given for variables X; - -+ X; and
X0 - X45 In fact, the values of these variables
were computed by the preceding integration step.
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(8) INIT = 8 if the values of the series must be com-
puted without recomputing the coefficients of the
series. This option is useful if points must be
computed for odd values of the independent vari-
able v between the regularly spaced integration
points.

In this subroutine, it can be seen that the equations of
motion do not explicitly contain the independent variable
v (true anomaly), and that the value of r (distance
between the primaries) is obtained by sclving the
differential equation verified by r.

The dimension statements of subroutine ERPSV are
such that only power series with a maximum of 20 terms
can be used.

The following constants are needed by this subroutine,
and should be in the proper locations in COMMON:

RU = mass-ratio p = m, (186a)
UMM =1—p=m, (186Db)
XMl=2, = —p = —m, (186¢)
X2=x,=1—p=m (1864)
E = eccentricity e (186¢)
P=1-—¢ (1861)
Q= (1—e»* (1862)

NT = n = number of terms
used in power series (186h)
NTMl=n—1 (1861)

C. Conversion Subroutines

In the program listings, a few subroutines are included
that have been used to convert different coordinate
systems, mainly for the purpose of input of initial con-
ditions or output of the orbits in different forms.

The first four subroutines correspond to some of the
transformations described in Section II. They essentially
transform four quantities {two coordinates and two
velocity components) into the four corresponding quan-
tities in another coordinate system. These subroutines
contain no COMMON statements, and all input and
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output are fransmitted through the parameter list of the
CALL statemnents. The exact function of each subroutine
is as follows:

(1) PULROT: transforms pulsating coordinates XP into
rotating coordinates XR according to Eq. (65).

—
©

ROTPUL: transforms rotating coordinates XR into
pulsating coordinates XP according to Eq. (64).

(3) BOTIN: transforms rotating coordinates XR into
inertial (barycentric) coordinates X according to
Eq. (63).

(4 INROT: transforms inertial coordinates X into ro-
ing coordinates XR according to Eq. (62).

iption of the input and output parameters is
n i ail in the comments. It can be seen that, for
the last two subroutines, the true anomaly TRUE is
among the input subroutines. Because of this parameter,
another small subroutine has been written to compute
the frue anomaly (TRUEAN). It is joined to the listings
with subroutines. This subroutine first calls subroutine
KEPLER to obtain the eccentric anomaly from the mean
anomaly; next it converts the eccentric anomaly into the
true anomaly ©. The value of v at exit is between 0
and Zx.

Some other conversion subroutines included in the
listings are related to the Birkhoff regularization. The two
most important subroutines convert between Cartesian
rotating-pulsating median coordinates and velocity
components X, and regularized Birkhoff coordinates and
velocity components XB. Subroutine BIRCR transforms
from Birkhoff to Cartesian coordinates, whereas sub-
routine CARBR converts from Cartesian to Birkhoff
coordinates.

=y

Subroutine CARBR must compute the square root of a
complex number, and this is done in the small auxiliary
subroutine COMSQR. In subroutine COMSQR, the com-
plex arithmetic features that are available in many
modern FORTRAN 4 compilers are not used. To have
maxirum flexibility, no COMMON statements have been
used in subroutines BIRCR, CARBR, and COMSQR.

The two possible determinations of the square root of
the complex number treated in subroutine COMSQR
correspond to the two points in the Birkhoff plane that
are associated with a single point in the Cartesian plane
(the Birkhoff transformation being 2 to 1). In all of the
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work that has been done, only one determination has
been used, but the other determination could easily be
obtained by changing the signs of A and B in subroutine
COMSQR. It should be noted that subroutine BIRCR
cannot be used when 7, =0 or r =0 because the
velocity components computed by this subroutine contain
r, and 7, in the denominators.

D. Differential Correction Subroutines

Two main programs are described below, each of
which uses a different technique for differential cor-
rections. In one program, the variational equations are
solved to obtain the necessary partial derivatives. In the
other program (which is regularized), finite differences
between a nominal orbit and perturbed orbits are used
to obtain the partial derivatives. The operations related to
the generation of the nominal orbit, the perturbed orbits,
the partial derivatives, and the corrections to the initial
conditions have been grouped in a single general-purpose
differential correction subroutine called SEARCH. This
subroutine, along with its listing, will be briefly described.

Subroutine SEARCH calls a matrix-inversion sub-
routine, which is not given here. Instead of the general
matrix-inversion subroutine, a short subroutine is given
for the solution of a system with two equations because,
in the present problem of finding symmetric periodic
orbits in the three-body problem, differential corrections
in only two variables were necessary. If a more general
matrix-inversion subroutine is added, however, sub-
routine SEARCH may be considered as a general-purpose
subroutine for linear differential corrections in n variables.

The general problem consists of adjusting n initial
parameters in such a way that n final parameters have a
preassigned value. This problem can be expressed by a
system of n generally very complicated equations, which
are first linearized and solved by classical elimination or
matrix inversion. Let x; (i = 1, --+,n) be the initial un-
known parameters for which the values must be found.
Also, let y; be the final parameters for which the desired
values Y; are given. Then y; must be considered as func-
tions of x;:

Yi = Fi(xb Koy to 7y xn) (186>

and the problem consists of solving the following system
in x;:

F'i<x1: X, ", xn) - Yl = O (187)
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At first a standard or nominal solution is computed,
using as initial conditions the given approximation x{®.
This nominal solution has the final values y® . The devia-
tions between the nominal solution and the desired ideal
solution are thus given by

Ayi, —_ Yz - yéo) (188)
Next, the partial derivatives are computed by perturb-
ing successively each x{» by the given small quantity §;.
Each perturbed orbit will then give one column of the
complete square matrix of partial derivatives:

oys _ Y Uyl
ax]" Sj

(189)

where y,;; is the final value of the orbit with the jth
initial parameter x ( perturbed by ;.

The solution of linear system

o
8 = 3 5 o
7

(190)

then gives the corrections Ax;, which must be applied to
the initial conditions x{®. Because of the nonlinearity
of the problem, the whole process has to be repeated
several times. At each iteration, the values of | Ay; | or
iAxi} are compared with some given ¢; >0 to decide
whether the problem has converged with the required
precision. '

The input and output of the subroutine are described
in detail in the comments. The meaning of some of the
most important FORTRAN variables is as follows:

X = initial value for nominal solution x{* (input)
= new computed initial values x{® + Ax; (output)

G = array with perturbed initial conditions x{"
+ 8; (output)

YO = final values y(* of nominal solution (input)
YF = desired final values Y; (input)
DEL = increments §; for perturbed solutions (input)
EPS = vector with precision constants €; (input)

EP = € = limit for determinant of matrix; if deter-
minant is smaller than € in absolute value,
matrix is declared singular (input)

JPL TECHNICAL REPORT 32-1360

E. Main Program With Variational Equations and
Recurrent Power Series

In the FORTRAN 4 listings given below, two different
main programs are included. The main program described
in this section may be characterized by the following
four main points:

(1) Solves simultaneously the equations of motion and
the variational equations in rotating-pulsating co-
ordinates.

(2) Uses the method of recurrent power series for the
numerical integration.

(3) Uses a least-squares approach for the differential
corrections of periodic orbits.

(4) Has no regularization.

This program is also characterized by two types of
input cards that are accepted and by two completely
different functions that it can accomplish. The input is
normally done with a single NAMELIST statement con-
taining about 30 quantities. These quantities all have a
nominal value built into the program in such a way that
only the parameters that are different from the nominal
value have to be read in. If several successive cases are
treated in one computer run, the computations never
alter the input quantities; therefore, on succeeding cases,
only parameters that are different from the preceding
case must be punched on cards. This input philosophy
allows a great flexibility, and allows the running of many
cases with a minimum of preparation of input cards.

Another type of input whose possibilities are very
interesting is made with “recapitulation cards.” Each
time a periodic orbit is found by the program, a set of
four cards is punched in full double precision. These
four cards contain the initial conditions (¥, yo; o, 7o),
the final conditions (x:, y,, %, ¥1), and the two param-
eters (u, e—also the energy E in the case of periodic
collision orbits). These are punched and read according
to the FORMAT: 3D24.17, 18, and contain the informa-
tion in the following order:

1) Card one: x,, x4, p, 1.

3) Card three: x,, x5, E, 3.

(

(2) Card two: yo, 1, €, 2.

(

(4) Card four: y,, y:, 0.0, 4.

Recapitulation cards of this type are compatible with
work previously done by the author on the circular re-
stricted three-body problem. These four recapitulation
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cards may be used, together with the NAMELIST input,
to define all of the initial conditions for each com-
puter run,

The program is capable of running in two different
modes, which are called “Job One” (JN = 1) and “Job
Two” (JN = 2), The two different jobs are described in
the paragraphs that follow. Subsequent paragraphs de-
scribe some other operations that are done by the main
program.

1. JN = 1. The program computes a list with a given
number of orbits (nonperiodic) equally spaced in any of
the initial parameters. If an orbit in the list is almost
periodic, differential corrections are started to find the
periodic orbit and punch it on four recapitulation cards.
Then the normal list continues. Previous recapitulation
cards may be used to read in the initial conditions that
are necessary to begin the list.

2. JN = 2. The program computes a list with periodic
orbits equally spaced in any given parameter. Each orbit
is “made periodic” by differential corrections. Approxi-
mate initial conditions must be given only for the first
orbit in the list. This first approximation may also be on
recapitulation cards. Each periodic orbit that is found
will be punched on four recapitulation cards, and will
also be added to an extrapolation table. This table is thus
used for extrapolations to find a good initial guess for
the next periodic orbit. In this way, the program gradu-
ally builds up a table with “past experience”; as the
number of periodic orbits increases in the table, a better
and better initial guess will be obtained for the new
periodic orbits. An initial extrapolation table-with pe-
riodic orbits on recapitulation cards (from a previous
computer run) may also be entered in the table at the
beginning, and the list will then start from there. At
the first orbit that is not converging, the whole list will
be interrupted.

The interpolation-extrapolation subroutine INPOL,
which has been used, uses the Lagrange—Aitken method;
the FORTRAN listing of this subroutine is given in
Table 22.

3. Computing the variable-integration step. The recur-
rent power-series method is used with a variable-
integration step. This step is made smaller when the
satellite approaches one of the primaries. The effective
step that is used is 7,7.h. The distances 7, and 7. are only
approximations, retained from the preceding integration
step. The nominal integration step A is an input quantity.
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If the factor 7.7, is larger than 2, it is not applied, and
the integration step is taken as 2h. If the factor 7,7, is too
small (e.g., smaller than 0.02), the integration is stopped.
Each call to subroutine ERPSV thus increases the inde-
pendent variable v (true anomaly) by the quantity 7,7.h,
and computes the corresponding values of all of the
dependent variables.

4. Logic of the differential correction process. This
logic is contained in the main program; however, this
operation also involves calling several subroutines, espe-
cially for solving systems of linear equations. The differ-
ential correction may operate in two different ways
according to two different periodicity criteria. The pro-
gram may search for periodic orbits by attempting to
“close the orbit”; i.e., to match the initial and final con-
ditions. This method may also be used for symmetric
periodic orbits; for these, however, the program may
also proceed in a different way—by attempting to end
the orbit by a perpendicular crossing with a syzygy-axis.
The user may choose either of these periodicity criteria.

If the program is asked to “close the orbit,” there will
generally by a differential correction in four variables,
but this number may be restricted to three if the user
keeps one of the four initial parameters fixed by “zeroing
out” one entire matrix column of the equations of condi-
tions. The system of linearized differential-correction
equations will then be solved by a method that is essen-
tially equivalent to the least-squares method. In general,
when the matrix of the linear system is too nearly singu-
lar, a least-squares solution will be made. In the circular
problem, this matrix becomes singular for each periodic
orbit. This may also happen (for different reasons) in the
elliptic problem, but it has been observed that the least-
squares approach gives a satisfactory solution to this
problem. Subroutines CORLZ2 and CORR, which are
relative to these operations, are considered too lengthy
to be included in this report.

5. Additional operations for periodic orbits. When a
periodic orbit is found, the program must perform a few
operations that are related to this periodic orbit. The
orbit will be added to the extrapolation table (if N = 2);
the coeflicients of the characteristic equation will be
computed (with subroutine CARP04); and the four re-
capitulation cards with initial and final conditions will
be punched.

6. Computer time. The computer time (in seconds) is
printed for each periodic orbit, and for each list of orbits.
For this purpose, use is made of the standard built-in
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7094 clock. Subroutines CLOCKI and CLOCT, which
are relative to the timing, are too machine-dependent to
be listed in this report.

F. A Regularized Main Program

This main program has the following principal char-
acteristics:

(1) Solves the equations of motion in two different
ways, according to the region in which the particle
is found. In two circular regions with given radius
around each primary, the regularized Birkhoff
coordinates are used; in the remaining part of the
plane, the ordinary pulsating variables are used.

(2) The integration in Birkhoff variables is done with
a Runge-Kutta or a predictor-corrector method.
In pulsating variables, it is done with the recurrent
power-series method, with a variable step.

(3) No variational equations are solved. The partial
derivatives and the differential corrections are ob-
tained by subroutine SEARCH, and are adapted
to symmetric periodic orbits only.

The input philosophy with NAMELIST and with re-
capitulation cards is similar to that described for the
preceding program. The regularized program is also de-
signed to run in the same two modes—“Job One” for a
list of nonperiodic orbits (with eventual interpolation
for a periodic orbit) and “Job Two” for a list of periodic
orbits.

The differential-correction logic is in the main pro-
gram. The logic of the switching between regularized
and pulsating variables has been collected in subroutine
ORBIT. The function of this subroutine is to compute a
single complete orbit at each call. Subroutine ORBIT
contains the different input conversions, the conversions
related to the switching of regions, and the necessary
interpolations to end the orbit at the desired value kr
of the true anomaly v (even in regularized coordinates
where v is not the independent variable).

The families of periodic orbits, along with their prin-
cipal characteristics, are listed in Table 20. Table 21 is a
list of the subroutines. Table 22 is a printout of the
computer program.
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Table 20. Families of periodic orbits

Family Number Mass-ratio Eccentricity
No. group of orbits u e
1 1P 13 0.5 1.0
2 3P 23 Variable 1.0
3 4P 26 0.5 Variable
4 5P 22 Variable 1.0
5 9P 12 0.5 Variable
-] 6A 118 Variable (0.5-0) 1.0
7 12A 152 0.5 Variable (0-1.0}
8 7P 131 0.012155 Variable
9 7A 130 0.012155 Yariable
10 8P 118 0.5 Yariable
11 8A 92 0.5 Yariahle
12 10P 76 0.5 Yariable
13 11P 52 0.5 Yariable
14 11A 93 0.5 Variable
15 Periodic collision 69 Variable Variable
orbits

Table 21. List of subroutines

Subroutine

Function

MAIN
ERPSV
DERIV
RUK
KEPLER
TRUEAN
PULROT
ROTPUL
ROTIN
INROT
DERIV
DERIV
MAIN
ORBIT
DERIV
BIRCR
CARBR
COMSQR
SEARCH
SOLVE2
INPOL

Main program with variational equations

Elliptic recurrent power series with variational equations
Derivatives for equations of motion and variational equations
Runge~Kutta integration

Solution of Kepler equation

Computes true anomaly v

Converts pulsating to rotating coordinates

Converts rotating fo pulsating coordinates

Converts rotating to inertial coordinates

Converts inertial to rotatfing coordinates

Computes derivatives for equations in pulsafing coordinates
Computes derivatives for equations in inertial coordinates
Mdain program with Birkhoff regularization

Computes one orbit in Cartesian or Birkhoff coordinates
Computes derivatives for equations in Birkhaff coordinates
Converts Birkhoff to Cartesian coordinates

Converts Cartesian to Birkhoff coordinates

Square root of complex number

Linear differential corrections

Solution of linear system with two variables

Interpolation with Lagrange—Aitken method
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Table 22. Computer program

(=]

BFTC
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R3BVPS
ELLIPTIC RESTR.3-BODY/VARIATIONAL EQUATIONS/RECURRENT POWER SERIES
JN  =J0B NUMBER
=1-COMPUTE LIST OF ORBITS,WITH SEARCH FOR PERIODIC ORBITS
OR COMPUTE A LIST OF(PERIOCDIC)ORBITS FROM{APPROXIMATE)
INITIAL CONDITIONS ON RECAP CARDS
=2-GENERATE LIST OF PERIODIC ORBITS BY EXTRAPOLATIONS
NT =NUMBER OF TERMS IN POWER SERIES
NPRIN=PRINT STEP
ONE LINE WILL BE PRINTED EVERY NPRIN INTEGRATION STEPS.
NDIFC=MAXIMUM NUMBER OF DIFFERENTIAL CORRECTIONS ALLOWED
TO MAKE AN ORBIT PERIODIC
MNO =MAXIMUM NUMBER OF ORBITS TO COMPUTE IN LIST ,IF JN=1
=MAXIMUM NUMBER OF PERIODIC ORBITS TO BE GENERATED ,IF JUN=2
MNPS=MAXIMUM NUMBER OF POINTS USED IN EXTRAPOLATIONS,WHEN JN=2
WHEN MNPS=0,NO EXTRAPOLATION TABLE IS USED
AT ANY TIME,ONLY THE LAST MNPS GENERATED ORBITS ARE IN THE
EXTRAPOLATION TABLE. .
NCOL=0 DD NOT READ INITIAL CONDITIONS FROM RECAP CARDS
=1 OR 2 RECAP CARDS ARE USED FOR INITIAL CONDITIONS
1=INITIAL CONDITIONS ARE IN COLS 1 TO 24
2=INITIAL CONDITIONS ARE IN COLS 25 TO 48
MCOL=0 WHEN NO INITIAL TABLE FOR EXTRAPOLATION IS READ IN
=1 OR 2 WHEN TABLE FOR EXTRAPOLATION IS READ 1IN
1=COLS 1 TO 24 , 2=COLS 25 7O 48
IMUE=0 WHEN E AND RU ON RECAP CARDS ARE NOT USED
=NOT O WHEN E AND RU ON RECAP CARDS ARE USED
MU IS IN COLS 49 TO 72 ;0N CARD ONE
E IS IN COLS 49 TO 72 ,0ON CARD THWO
THE FORMAT OF RECAPITULATION CARDS IS (3D24.17,18)
THERE ARE FOUR RECAPITULATION CARDS PER PERIODIC ORBIT
I1 =VARIABLE TO BE INCREMENTED WHEN GENERATING LIST OF ORBITS
I1 IS FROM 1 TO 8¢(1525354=X,Y,XD0OT,YDOT, 7=MU,8=EFE)
IS1 =FIRST VARIABLE TO SEARCH ON (GENERALLY 1)
I52 =SECOND VARIABLE TO SEARCH ON (GENERALLY 4)
IF1 =FIRST VARIABLE TO DRIVE TO 0.0 (GENERALLY 2)
IF2 =SECOND VARIABLE TO DRIVE TO 0.0 (GENERALLY 3)
N1 =TYPE OF PERIODICITY CRITERION USED
=1=TRY TO FIND A PERPENDICULAR CROSSING OF THE X OR Y AXIS
THIS IS A TWO BY TWO SEARCH
=2=TRY TO CLOSE THE ORBIT (THIS IS AN N*N SEARCH)
THE LINEAR SYSTEM IS SOLVED WITH THE LEAST SQUARES METHOD
WHEN N1=1,I81 AND IS2 ARE USED;AND ZRO IS NOT USED
WHEN N1=2,ZR0O IS USED AND IS1,1S2 ARE NOT USED
X{1 TO 4)=INITIAL CONDITIONS =X,;Y,XDOT,YDOT.
RMU =MU=MASS~RATIO
E =ECCENTRICITY{(OF THE PRIMARIES)
H =NOMINAL INTEGRATION STEP
TRUIN=0.,0D0 WHEN START AT PERIAPSIS
=1.0D0 WHEN START AT APOAPSIS
HORB =NUMBER OF HALF-ORBITS TO BE COMPUTED{NUMBER OF TIMES PI)
DELTA=INCREMENT FOR LIST (TO BE ADDED TO X(I1))
EPSL1=PRECISION FACTOR TO DECIDE IF A SEARCH FOR A PERIODIC ORBIT
HAS TO BE STARTED (USED IF JN=1 ONLY)
PRECIS=PRECISION TO DECIDE WHETHER AN ORBIT IS PERIODIC OR NOT
ZR0O =4-VECTOR WITH ONES OR ZEROS USED TO ZERO OUT
SOME COLUMNS OF THE MATRIX WITH PARTIALS
FOR INSTANCE
USE ZRO=lesle.sleyl. FOR NON SYMMETRIC ORBITS
USE ZRO=1.30+30.51. FOR OX-SYMMETRIC ORBITS
USE ZRO=0e3layle30. FOR OY-SYMMETRIC ORBITS
ZR0=0e5leoslyle FOR NON-SYMMETRIC ORBITS WHEN NO CORRECTION DX
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Table 22 (contd)

IN THE- VARIABLE X IS ALLOWED .
RIMIN=COLLISION LIMIT FOR R1
R2MIN=COLLISION LIMIT FOR R2
DXMIN=MINIMUM CORRECTION DX ALLOWED
DXMAX=MAXIMUM CORRECTION DX ALLOWED
THE DIFFERENTIAL CORRECTION ITERATIONS WILL BE INTERRUPTED IF ONE
0F THE COMPONENTS OF THE PROPOSED CORRECTION VECTOR DX
IS OUTSIDE THE LIMITS DXMIN AND DXMAX,IN ABSOLUTE VALUE
DOUBLE PRECISION X(13)sAMAT{4s4) s RMU;UMU,DV,ECOF(8),EsP5Qs51552,P1
1sTRUINs TRUFI2XI1sXI2sRsHsR1R2, T, TRUE, ZERO,DX(6},DEV,PRECIS,
27ZR0O(8),HORB; ERRORyDUMY(3),PNP(10},TABLEL(20),TABLE2(20),TABLE3{20
3)sXPI(8)sDELTA;DXMIN;DETER,EPSLLI,RIMIN;R2ZMIN, TABLE4 (20}, TABLEX {20}
4,DXMAXsA23(2,3)
DIMENSION NBR(4)
COMMON RMUsUMU3XI1sXI25E,PyQsS15S2,PIsNT o NTML,NPRIN
36 FORMAT (1HOy19H THE TOTAL TIME IS sFll.3, 9H SECONDS }

191 FORMAT(1H ,1P6D18.,11,15,1PD9.1)

194 FORMAT(1H 25H A4,A3,A2,A1,A0 )

195 FORMAT(1H ,5D24.17)

197 FORMAT(1H1,20I5)

206 FORMAT{1H ,4D25.16)

308 FORMAT(1H ,5D24.17)

703 FORMAT(1HO0,25H NO PERIODIC ORBIT FOUND }

704 FORMAT(1H ,13,22H PERIODIC ORBITS FOUND }

706 FORMAT(1H )

707 FORMAT(1H 519H SUGGESTED CHANGES=,4D16.9)

708 FORMAT(1HO,14HNEAR COLLISION ,2D25.15)

709 FORMAT (1H133HJN=311,2X3HNT=,12;2X6HNPRIN=31432X6HNDIFC=12y2X4HMND
1=5 I3, 2X5HMNPS=312,2XSHNCOL=5 119 2X5HMCOL =511 s2XSHIMUE=,1152X3HI1=.1
215 2X4HIS1=31132X4HIS2=31132X3HNL=y I1s2X4HIF1=y11+2X4HIF2=,11)

710 FORMAT(1H ;2HH=,1PD10.3,8Hs TRUIN=;D8s15s7Hy HORB=3D9.2,8H, DELTA=;
1D9.2,8H, EPSL1=3D8.1,9H, PRECIS=,D8.1) ’

711 FORMAT(1H ;4HZRO=;4(1PD8¢1)3s5X6HRIMIN=9D80133X6HRZMIN=;D841>
15X6HDXMIN=9D86193X6HDXMAX=4D8.1)

712 FORMAT(1HO, 4HRMU=3,1PD24%4.1653X2HE=yD24.16)

713 FORMAT(1H ,12HTHE TIME IS sFl1.3, 9H SECONDS )

977 FORMAT(3D24.17,18)

CALL FPTRP(050,0)

NBR(1)=1

NBR(2)=2

NBR(3)=3

NBR{4}=4

PI1=3.141592653589793

ZERD=0,0D0

NPOIN=2000

NAMELIST/NAMES/XsRMU,;E; TRUIN;NCOLy N1y NT sHsHORBsNPRINS;NDIFC, N,
1MCOL sMNOsMNPS, IMUE, 11,151,152, DELTAy ZROSEPSLI,RIMINS,RZMIN
29PRECISsDXMINsDXMAXsIFL,IF2

C THE BUILT-IN VALUES FOR THE INPUT PARAMETERS ARE

JN=1

NT=12

NPRIN=200

NDIFC=8

MNO=3

MNPS=0

NCOL=0

MCOL=0

IMUE=0

I1=7

IS1=1

1S2=4

IF1=2

OO0 O0
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Table 22 (contd)

C

C

C

300

515

IF2=3

N1=1

DO 900 I=159
X{I)=0.0D0
X{(1)=0.10248881D0
X{4)=3.5891975D0
RMU=0.012155D0
E=0.,2D0

H=0.02D0
TRUIN=0.0DO
HORB=1.0D0
DELTA=.01DO
EPSL1=0.01D0
PRECIS=1.0D-12
DXMIN=0,1D-14
DXMAX=0,1DO

DO 615 I=1s4
ZRO{I) =1.0D0
ZRO(I+4)=0.0D0
RIMIN=0.02D0
MPOIN=MPOIN+1
IF(MPOIN-NPOIN)610,611,611
RZ2MIN=0,01D0

HERE TO START A NEW CASE

5

501

READ~IN RECAP CARDS WITH INITIAL CONDITIONS
12 READ(5,977)DUMY(1),DUMY(2),DUMY(3) s NNN

800

READ-IN INITIAL EXTRAPOLATION TABLE ON RECAP CARDS
13 READ(5,977)DUMY (1) ,DUMY(2),PNP(7),NNN

CALL CLOCKI
READ (5 ,;NAMES)

WRITE(65709)JINsNTsNPRINs NDIFCy MNOy MNPS ;NCOL sMCOL » IMUE,T1,1S1,1S52,4N

11, IF1,1IF2

WRITE(69710)Hs TRUIN;HORBy DELTA,EPSL1,PRECIS

T=PI*HORB
NTM1=NT=1
X{7)=RMU
X{8)=E

DO 501 I=1,8
XPI(I)=X(I)

WRITE(6sT1L)(ZRO(I)sI=194) yRIMIN,R2ZMIN,DXMIN;DXMAX

IF(NCOL.EQ.0) GO TO 800

IF(NNN.EQ.99) GO TO 41
XPI{1)=DUMY(NCOL)
IF{IMUE.NE.O) XPI(T7)=DUMY(3)
RMU=XPI{T)
READ(5,977)DUMY (1), DUMY(2),DUMY(3)
XPI{(2)=DUMY(NCOL)
IF(IMUE.NE.O) XPI(8)=DUMY(3)
E=XPI(8)
READ(5,977)DUMY (1) ,DUMY(2)
XPI(3)=DUMY(NCOL)
READ(5,977)DUMY (1) ,DUMY(2)
XPI(4)}=DUMY(NCOL)

NNO=0

NPS=0

IF(MCOL.EQ.0) GO TO 600

IF(NNN.EQ.99)G0O TO 600
PNP(1)=DUMY(MCOL)
READ(5,977)DUMY (1) +DUMY(2), PNP(8)
PNP(2)=DUMY(MCOL)
READ(55,977)DUMY (1), DUMY(2)
PNP(3)=DUMY (MCOL)
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c

READ(5,977)DUMY (1) ,DUMY(2)
PNP(4)=DUMY (MCOL)
NPS=NPS+1

IF(N1.EQ.1) GO TO 630
TABLEX(NPS)=PNP(I1)
TABLEL(NPS)=PNP(1)
TABLE2(NPS)=PNP(2)
TABLE3(NPS}=PNP(3)
TABLE4(NPS)=PNP(4)

WRITE(6,308)TABLEX(NPS)» TABLEL(NPS), TABLE2(NPS)
* s TABLE3(NPS) , TABLE4 (NPS)

GO TO 13

630 TABLEX(NPS)=PNP(I1)
TABLEYL(NPS)=PNP(IS1)
TABLE2(NPS)=PNP(1S2)

WRITE(65308) TABLEX(NPS) s TABLEL(NPS) s TABLEZ2(NPS)

GO TO 13
600 IF(MNPS.EQ.0) GO TO 14
EXTRAPOLATE FIRST GUESS FOR NEW PERIODIC ORBIT.
IF(N1.EQ.1) GO TO 631
IF(NPS-1)14,632,633
632 XPI(L)=TABLEl(1)
XPI(2)=TABLE2(1)
XPI(3)=TABLE3(1)
XPI(4)=TABLE4(1)
GO TO 14
633 IF(ZRO(1).EQ.1.0D0)
*CALL INPOL(TABLEX; TABLEL,XPI(I1)sXPI{1)4NPS}
IF(ZRO(2).EQ.1.0D0}
*CALL INPOL(TABLEX,TABLE2,XPI(I1),XPI(2)4NPS)
IF(ZRO(3).EQ.1.0D0)
*CALL INPOL(TABLEX,TABLE3,XPI(I1)sXPI(3),NPS)
IF(ZRO(4)+EQ.1.0D0)
#CALL INPOL(TABLEXs TABLE4,;XPI(I1)sXPI{4)NPS)
GO TO 14
631 IF(NPS-1)14515,16
15 XPI(IS1)=TABLE1l(1)
XPI(IS2)=TABLE2(1)
GO TO 14

16 CALL INPOL(TABLEX, TABLE1lsXPI(I1)sXPI(IS1)sNPS)
CALL INPOL(TABLEXsTABLE2,XPI(I1)XPI(IS2)4NPS)

PRELIMINARY COMPUTATIONS FOR EACH ORBIT.
14 RMU=XPI(T7)
E=XPI(8)
P=1.0D0-EX*E
Q=DSQRT(P)
UMU=1.0D0-RMU
XI1=-RMU
XI2=uMu
TRUFI=PI*TRUIN+PI*HORB
WRITE(6,T12)RMU,E
MDIFC=0
100 TRUE=TRUIN*PI
R=P/(1.0DO+E*DCOS{TRUE))
DO 21 I=1:4
21 X(I)=XPI(I}
X{5)=R
X{6)=0.0D0
X{7)=0.0D0
S1=DSQRT{(X(1)~XI1)*¥2+X{2)%*2)
S2=DSQRT((X{1)-XI2)**%2+X(2)%%2)
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ERROR=0.0D0
DO 700 I=l,4
DO 700 J=1ls4
AMAT(I,J)=0.0D0

700 IF(I.EQ.J) AMAT(I,J)}=1.0D0
MPOIN=0
MPRIN=0

WRITE(65191) (X{(I),I=154)4X{ 7),TRUE;MPOIN,ERROR

MD IFC=MDIFC+1
INIT=1
COMPUTE INTEGRATION STEP
607 R1R2=S1%S2
DV=H
IF(RIR2.LT+2.0D0) DV=H*R1R2
CALL ERPSV DO PERFORM ONE INTEGRATION STEP
612 CALL ERPSV(XyAMAT,DV,INIT)
TRUE=TRUE+DV
S1=X(10)
S2=X(11)

CHECK IF COLLISION WITH ONE OF PRIMARIES
IF(S1.GT.RIMIN.AND.S2.GT.R2MIN) GO TO 625
WRITE(6,708)S1,52
G0 TO (410,118)3JN

625 MPRIN=MPRIN+1

610 IF (MPRIN-NPRIN)608,609,609

ESTIMATE LOCAL INTEGRATION ERROR

609 ERROR=0,25D0%(DABS( X(10)%%(=3)= X(12})

1+DABS( X(11)%%(=3)- X(13))
2+DABS(DSQRT(( X(1)=XI1)#%2+ X(2)%%2)~ X(10))
3+DABS(DSQRT({ X(1)=XI2)*%2+ X(2)#%2)~ X(11)) )
WRITE(65191) (X{1),1=1,4),X(7), TRUE,MPOIN,ERROR
MPRIN=0
608 IF (DABS(TRUFI-TRUE)~DV) 606,607,607
606 DV=TRUFI-TRUE
MPR=MPO IN
MPOIN =9998
GO TO 612
ESTIMATE LOCAL INTEGRATION ERROR FOR FINAL POINT
611 ERROR=0.25D0%(DABS( X(10)**(=3)= X(12))
1+DABS{ X(11)#%(-3)~ X(13))
2+DABS(DSQRT({ X(1)-XI1)##2+ X(2)#%%2)~ X(10))
3+DABS(DSQRT(( X(1)=XI2)*¥2+ X(2)%%2)- X(11)) )
WRITE(6,191) (X(I),1=1,4),X(7),TRUE,MPR ,ERROR
START DIFFERENTIAL CORRECTIONS
IF(N1.NE.1)GO TO 619
DUMY (1)=DABS(X (IF1))+DABS(X(IF2))
60 TO 624
619 DUMY(1)=0.0D0
DO 620 I=1,4
620 DUMY(1)=DUMY (1)+DABS{X(I)=XPI(I))*ZRO(I)
624 IF(JN.NE.1)GO TO 618
IF(DUMY(1).GT.EPSL1) GO TO 410
618 IF(N1.EQ.2)G0 TO 622
A23(1,1)=AMAT(IF1,151)
A23(1,2)=AMAT(IF1,152)
A23(2,1)=AMAT(IF2,1S1)
A23(2,2)=AMAT(IF2,152)
A23(1,3)=-X{IF1)
A23(2453)==-X{IF2)
CALL CORL2(A23,DX)
DEV=DABS(DX(1))+DABS(DX(2))
WRITE(6,707) (DX(1),I=1,2)
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XPI(ISL)=XPI(IS1}+DX(1)
XPI(IS2)=XPI(1IS2)+DX(2)
GO TO 623

622 CALL CORR{4,AMAT; XPI¢X;DX5ZR0O)
WRITE(6,707)(DX(1)51=1+4)
DO 22 I=154

22 XPI(I)=XPI(I}+DXI(I)
DEV=0.0D0O
DO 701 I=1:4%

701 DEV=DEV+ DABS(DX(I))

623 WRITE(6,706)

C CHECK IF PERIODIC ORBIT FOUND OR IF DIVERGENCE
IF(DUMY(1).LT.PRECIS) GO TO 702
IF(DEV.LT.DXMIN) GO TO 613
IF(DEV.GT.DXMAX) GO TO 613
IF{(MDIFC.LT.NDIFC) GO TO 100

613 WRITE(6,703)
GO TO (410,118) 3 JN
702 DO 205 I=1l,4
205 WRITE{(6:206) (AMAT(I,J),Jd=1,4)

C COMPUTE COEFFICIENTS OF CHARACTERISTIC EQUATION
CALL CARPO4{AMAT,ECOF)

WRITE(6,194)
WRITE(65;195)}(ECOF(I},1I=1,5}
NNOO=NNO+1

WRITE(6, 704} NNOO

C RECORD MACHINE TIME FOR THIS PERIODIC ORBIT
CALL CLOCT(PARTIM,TOTTIM)
WRITE(6,T13)PARTIM
IF(MNPS.EQ.0) GO TO 17

C STORE PERIODIC ORBIT IN EXTRAPOLATION TABLE
IF(N1.EQ.1) GO TO 626
IF{NPS.LT-MNPS} GO TO 627
DO 628 1=2,NPS
TABLEX{(I-1)=TABLEX(I)
TABLEL(I-1)=TABLEL(I)
TABLE2(I-1)=TABLE2(I)
TABLE3(I-1)=TABLE3(I)

628 TABLE4(I-1)=TABLE4(])
GO TO 629
627 NPS=NPS+1
629 TABLEX(NPS)=XPI(I1)
TABLEL(NPS)=XPI(1)
TABLEZ(NPS)=XPI(2)
TABLE3(NPS)=XPI(3)
TABLE4{(NPS)=XPI(4)
GO TO 17
626 IF(NPS.LT.MNPS) GO TO 18
DO 19 I=2+NPS
TABLEL{(I-1)}=TABLELl(1)
TABLE2(I-1)=TABLE2(1I)
19 TABLEX(I-1)=TABLEX(I)
GO TO 20
18 NPS=NPS+1
20 TABLEX(NPS)=XPI(I1)
TABLEL(NPS)=XPI(IS]1)
TABLEZ2(NPS)=XPI(IS2)
C PUNCH 4 RECAP CARDS FOR PERIODIC ORBIT
17 PUNCH 977:XPI{1)sX (1)sRMUsNBR(1),
1 XPI{2),X (2)5sE sNBR(2]),
2 XPI(3)sX (3),ECOF{2),NBR(3},
3 XPI{4)sX (4),ECOF(3),NBR(4)
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410 NNO=NNO+1

IF{(NNO-MNO)107,1185118
C PERTURB THE LIST-PARAMETER BY DELTA

107 XPI(IL)=XPI(I1l)+DELTA
WRITE{(6,706)
GO TO 600

118 IF(NCOL)12541512

41 CALL CLOCT(PARTIM,TOTTIM)
WRITE(6536)TOTTIM
GO TO 5
END

$IBFTC ERPS.
SUBROUTINE ERPSV(XsAyDT,INIT)
INPUT=INIT,DTsX(INITIAL VALUES);A(FINAL VALUES).
QUTPUT=X{FINAL VALUES) AND A{FINAL VALUES).
A=MATRIX WITH 16 PARTIAL DERIVATIVES.
DT=INTEGRATION STEP
THE INDEPENDENT VARIABLE(TRUE ANOMALY)IS NOT EXPLICITLY IN THE
EQUATIONS OF MOTION HERE
INIT=1 FOR THE FIRST STEP OF THE ORBIT
INIT=2 FOR THE FOLLOWINGS STEPS
INIT=3 TO COMPUTE THE VALUE OF THE POWER SERIES ONLY
WHEN INIT=1 OR 2 THE COEFFICIENTS AND THE VALUES OF THE
POWER SERIES ARE EVALUATED
THE 13 COMPONENTS OF X ARE
X{1)=XsX{2)=Y s X{3)=XDOTy X{(4)=YDOT,
X{5)1=RsX(6)=RDOT,X(7)=TIME,X(8) AND X(9) ARE NOT USED
X{10)=R1 5 X(11)=R2 , X{12)=R1*%(-3)} , X(13)=R2*¥*(-3).
TO START AN ORBIT,ONLY X(1)eaoeX(7) MUST BE GIVENsNOT X(10)e.sX(13)
AT EXIT FROM EACH INTEGRATION STEP,;X(1)eeeX(13) ARE COMPUTED.
DOUBLE PRECISION X:DTyP1lyP2,P3,P43P5,P6sP7sP84P9,P10sP11,P1l2,P13,
1P14,P15,P165P17,P183RU; UMMy XI1,XI2,E4P,Q4S51,52+P1,FN,FQ,S0OM
29A,P19,P20,P21,P22+P234P24,P25,P264P27,P28,P29,P30,P31,P32,P33,P34
3,P35,P36sP373P38,P39,P40,P41,P42,P43, P44 P45,P46,P4T,P48,P49,P50
COMMON RUyUMM,;XI1sXI2:EsP3QsS1,S52sPIsNT,NTM1
DIMENSION X(13)},P1(20),P2(20)5P3(20),P4{20)4,P5(20)5P6(20);P7(20),
1P8(20),P9(20)4P10(20),P11(20),P12(20),P13(20},P14(20),P15(20),
2P16(20),P17(20),P18(20)
3,P19(20),P20(20),P21(20),P22(20),P23(20),P24(20),P25(20),P26(20),
4 P27020),P28120),P29120),P30{20),P31(20),P32(20),P33(20),P34(20),
5 P35(20)sP36(20),P37(20),P38(20),P39(20),P40(20),P41(20}),P42(20),
6 P43(20)sP44(20)4P45(20),P46{20),P47(20),P48(20),P49(20),P50(20),
TAL454)
GO TO(15,253) 5 INIT
1 INIT=2
PLO{1)=DSQRT((X(1)~XI1)*¥*2+X(2)**2)
PL1(1)=DSQRT((X(1)=-XI2)%¥2+X(2)**2])
P12(1)=1.0D0/P10{1)%%*3
P13(1)=1.0D0/P11(1)**
GO 7O 4
2 P1O(1)=X(10)
P11(1)=X(11)
P12(1)=x(12)
P13(1)=X(13)
4 PL{1)=X{1)
P2{1)=X(2}
P4{1)=X(3)
P5{1)=X(4)
PT{1)=X(5)
P8(1)=X(6)

SO GOOOOOOOC OOt
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PO(1)=X(T)
P14(1)=1,0D0-UMM*P12(1)~RU*P13(1)
P15(1)=P1(1)*P14( 1) +RU*UMM*{PL13(1}~-PL2(1))
P16(1)=P2(1)*P14(1)
P18(1)=P7(1)**%2
P19(1)=A(1,1)

P20(1)=A(2,51)

P21(1)=A(351)

P22({1)=Al4,1)

P23(1)=A(1+2)

P24(1)=A(2,2)

P25(1)1=A(3,2)

P26{(1)=A(4,2)

P27(1)=A(1,3)

P28(1)=A(2,3)

P29(1)=A(3,3)

P30(1l)=A(4,3)

P31(1)=A(1s4)

P32(1)=A(244)

P33(1)=A(3,4)

P34(1)=A(4454)
P35(1)=(P1(1)~XI1)/P10{1)
P36(1)=(P1(1})-XI2)/P11(1)
P37(Li=(P2(L})/P10O(1)
P38(1)={(P2(1))/P11(1)
P39(1)==1.D0+3.D0%P35(1)*x*
P40(1)==1.D0+3.DO*P36(1)**2
P41(1)=-1.D0+3.D0*P37(1)%**
P42(1)=-1.D0+3.D0%P38(1)%*2

P43(1)= +3.D0*P37(1)%P35(1)
P44(1)= +3.D0%P38(1)*P36(1)
P45(1)=+1.0D00+UMM*P12(1)*P39(1)+RU*P13(1)*P40(1)
P46(1)= +FUMM*P12( 1) #P43( 1) +RU*PL3(1)*P44(1)

P47(1)=+1,0D0+UMMXP12(1)*P41(1)+RUXPL3(1)*P42(1)

P48(1)=PT7(1)*P45(1)/P

P49 (1)=PT7(1)*P46(1) /P

PS50(L)=P7T(1)*P4T(1)/P

DO 111 N=1,NTML

NP1=N+1

FN=N

PLINP1)=P4{(N)}/FN

P2(NP1)=P5{(N)/FN

P4 (NP1)=+2.0D0*P5(N)

P5(NP1)=-2.0D0*P4(N)

PT(NPL)=P8{(N)/FN

PB(NPL)=P18(N)

PO(NP1)=P18(N})/(FN*Q)

P1O(NPL)=RU*P4(N)

P11(NP1)=—~UMM*P4(N}

P12(NP1)=0.0D0O

P13(NP1)=0.0D0O

SOM=0.0D0

DO 112 NP=1.N

NQ=N=NP+1

P4 {(NP1)=P4(NPL)+PT7{NP)*PL5(NQ)/P

PSINP1)=P5(NPL)+PT(NP)*PL6(NQ) /P

P8(NP1)=P8(NP1)+2.0DO*P8(NP)}*P8(NQ)—-P7(NP}*P18(NQ)/P
112 SOM=SOM+PLINP)*P4(NQ)+P2{(NP)}*P5(NQ)

P4 (NPL)=P4(NPL) /FN

P5(NP1)=P5(NPL1}/FN

PLO(NP1}=P10(NP1)+SOM

PLL{NPL)=P11(NP1)+SOM
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114
113

115

119

200

IF(N.EQ.1) GO TO 113

DD 114 NP=24N

NQ=N-NP+1

NQP1=NQ+1

FQ=NQ

PB{NPL)=PB(NPL1)-FQ*P7(NP)*P8{NQP1)
PLO(NP1)=PlO(NPL)~FQ*P1O(NP)*PLO(NQP1)
P11{(NP1)=P1l1{(NP1)~FQ*P11(NP}*P11(NQPL)
P1Z2(NP1)=P12(NP1)-~FQ%*PLO(NP)}*PL2{NQP1)
P13(NP1)=P13(NP1)~FQ*P1l1(NP)*P13(NQP1)

P8 (NPL)=P8INPL) /{FN*xP7(1))
P1O(NPL)=P1O(NPL)/(FN*P10(1))
PLLINPL)=PL1(NP1)/(FN*P11(1))

DO 115 NP=1,N

NQ=N-NP+1

NQP1=NQ+1

FQ=NQ
P12(NP1)=P12{(NP1)=3.0D0*FQ*PL2{(NP)*PLO(NQPL)
P13(NP1})=P13(NP1)-3.0D0O*FQ*PL3(NP)*PL1(NQPL1)
PL2(NPL)=PL2(NP1)/(FN*P10(1))

P13 (NP1)=P13(NPL1)/(FN*P11(1))

P14 (NP1)==UMM*P12{NPL)~RU*PL3(NPL)

P15 (NP1)=RU*UMM*(P13{(NP1)~P12(NPL1})
P16(NP1)=0,0D0

P18(NP1)=0.0D0O

DO 119 NP=1,NP1

NQ=N-NP+2

PL5S(NPL)=PLS(NPLI+PL(NP)*P14(NQ}
P16(NP1)=P16(NPL)+P2{(NP)*P14(NQ)
P18(NPL)=P18(NP1}+PT7(NP)*PT(NQ)
P19(NP1)=P21(N)/FN

P20(NPL1)=P22(N)/FN

P21{NP1)=+2.D0O%P22 (N)

P22(NP1)=-2.DO0*P21(N)

P23 {(NP1)=P25(N) /FN

P24 (NP1)=P26(N)/FN

P25 (NP1)=+2.,D0*P26(N)

P26 (NP1)=-2.D0*P25(N)

P27(NP1)=P29(N)/FN

P28(NPL)=P30(N)/FN

P29(NP1)=+2.D0%P30 (N)

P30 (NP1)==2,D0*P29(N)

P3L(NP1)=P33(N)/FN

P32(NP1)=P34(N)/FN

P33 (NP1)=+2.D0%P34(N)

P34 (NP1)=-2.D0%*P33(N)

DO 200 NP=1sN

NQ=N-NP+1
P21(NP1}=P21(NPL)+P48(NP)*PLI(NQ)+P49(NP)*P20(NQ)
P22(NPL)=P22(NPL1)+P49(NP}*P1I(NQ}+P50(NP)*P20(NQ)
P25 (NP1)=P25(NP1)+P48(NP)*P23(NQ)}+P49(NP)*P24(NQ)
P26 (NPL)=P26(NP1)+P49(NP}*P23(NQ)+P50(NP)}*P24(NQ)
P29(NP1)=P29(NPL)+P48(NP)*P2T7(NQ)+P49(NP)*P28(NQ)
P30 (NP1)=P30(NPL1)+P49(NP}*P27(NQ)+P50(NP)*P28(NQ)
P33 (NP1)=P33(NP1)+P48(NP}*P31(NQ)+P4I(NP)I*P32(NQ)
P34 (NPL)=P34(NPL}+P4I(NP}*P3L(NQ}+P50(NP)*P32(NQ)
P2L(NP1)=P21(NP1)/FN

P22{(NP1}=P22(NPL)/FN

P25(NP1)=P25(NP1)/FN

P26 (NP1)=P26 (NP1) /FN

P29 (NPL)=P29(NPL1}/FN

P30{(NP1)=P30(NPL1)/FN
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P33{NP1)=P33(NP1)/FN
P34 (NP1)=P34(NP1) /FN
P35(NP1)=P1(NP1)
P36 (NPL1)=PL1{(NP1)
P37(NP1)}=P2(NP1)
P38(NP1})=P2(NP1)
DO 201 NP=2¢NP1
NQ=N-NP+2
P35(NP1)=P35(NP1)}~P1O(NP)*P35(NQ)
P36(NP1)=P36(NP1)-PL11(NP)*P36(NQ)
P3T(NPL)=P3T7(NPL)~PLO(NP)*P37(NQ)
201 P38(NP1)=P38(NPLl)-PLL(NP)*P38(NQ)
P35(NP1)=P35(NP1)/P10(1)
P36 (NPL)=P36(NP1}/P11(1)
P37(NP1)=P37{(NP1)/P10(1)
P38(NP1)=P38(NP1)/P11(1)
P39(NP1)=0.0D0
P40(NP1)=0.0D0
P41(NP1)=0.0D0
P42(NP1)=0.0D0
P43 (NP1)=0.0D0
P44(NP1)=0.0D0
P45(NP1)=0.0D0
P46 (NP1)=0,0D0
P47(NP1)=0.0DO
P48 (NP1)=0.0D0
P49 (NP1)=0.0D0
P50 (NP1)=0.0D0
DO 202 NP=1,NP1
NQ=N-NP+2
P39(NP1)=P39(NP1)+3.0D0%P35(NP)*P35(NQ)
P40 (NPL1)=P40(NP1)+3.0D0*P36(NP)*P36(NQ)
P41(NP1)=P4LINPL)+3.0DO%P37(NP)*P37(NQ)
P42(NP1)=P42(NP1)+3.0D0*P38(NP)*P38(NQ)
P43 (NP1}=P43{(NP1)+3.0D0*P37(NP)*P35(NQ)
202 P44(NP1)=P44(NP1)+3.0D0%*P38(NP)*P36(NQ)
DO- 203 NP=1,4NP1
NQ=N~NP+2
P45 (NPL)=P45 (NP1} +UMMXPL12Z2(NPI*P39(NQ)I+RU*P1L3(NP)*%P4O(NQ}
P46 (NP1)=P46 (NPL1)+UMM*P12(NP)}*P43(NQ}+RU*PL3 (NP)*P44 (NQ)
203 P4T(NPL)I=P4TI(NPL)+UMMXPL2(NP)*P41(NQ)+RU*PLI3(NP)*%P42 (NQ])
DO 204 NP=1,NP1
NQ=N-NP+2
P48 (NPL)=P48(NP1)}+PT(NP)*P45(NQ) /P
P49(NP1)=P49(NPL)+PT(NP)*P46(NQ)/P
204 P50(NP1)=P50(NPLI+PT(NP)*P4T(NQ)/P
111 CONTINUE
3 X{1)=PL(NT)
X(2)=P2(NT}
X(3)=P4&(NT)
X(4)=P5(NT)}
X(5)=P7(NT)
X{(6)=P8(NT)
X{T7)=P9(NT)
X{10)=P1O(NT)
X{11)=P11(NT)
X(12)=P12(NT)}
X{13)=P13(NT)
A(1,1)=P1l9(NT)
A{2,1)=P20(NT)
A(3,11=P21(NT)
Al4,1)=P22(NT)
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A(1,2)=P23(NT)
A(252)=P24(NT)
A{332)=P25(NT)
A{432)=P26(NT)
Al{153)=P27(NT)
A(2,3)=P28(NT)
A(333)=P29(NT)
A(443)=P30(NT)
Al1s4)=P31(NT)
A(244)=P32(NT)
A(3,4)=P33(NT)
A(494)=P34(NT)

DO 120 K=2,NT

L=NT-K+1
X{1)=X(1)%DT+P1(L)
X(2)=X(2)%*DT+P2(L)
X(3)=X(3)%DT+P4(L)
X{4)=X{4)%DT+P5(L)
X({5)=X(5)*DT+PT7(L)
X{6)=X(6)*DT+P8(L)
X{T7Y=X{7)*DT+P9 (L)
X(10)=X{10)*DT+P10O(L)
X{11)=X(11)*DT+P11(L)}
X{(12)=X(12)*DT+P12(L)
X{13)=X(13)%DT+P13 (L)
Alls1)=A(1,1)%DT+P19(L)
Al251)=A(2,1)%DT+P20(L)
A{3,1)=A(3,1)%DT+P21(L)
A4s1)=A04,1)%DT+P22(L)
A{192)=A{1,2)%DT+P23(L)
A(292)=A02,2)%DT+P24(L)
A(3,2)=A(3,2)%DT+P25(L)
Al432)=A14,2)%DT+P26(L)
Al1s3)=A(1y3)%DT+P27(L)
Al293)=A(2,3)*%DT+P28(L)
A{343)=A(3,3)%DT+P29(L)
Al493)=A04,3)%DT+P30(L)
Al1l:4)=A(1,4)%DT+P31(L)
A(294)=A(2,4)%DT+P32(L)
Al3,4)=A(3,4)%DT+P33(L)
Albs4)=Al434)%DT+P34(L)

120 CONTINUE
RETURN
END

$IBFTC DERIV.
SUBROUTINE DERIV{X,;F)
SUBROUTINE DERIV WITH PULSATING COORDINATES
{EQUATIONS OF MOTION + VARIATIONAL EQUATIONS)
INPUT =X =
X{1 THROUGH 4)=X,Y,XDOT,YDOT
X{5 THROUGH 20)=VARIATIONAL EQUATIONS
X{21)=TIME
X{(22)=TRUE ANOMALY
F=DERIVATIVES OF X
DOUBLE PRECISION F({22),C9,C10,55S125522,Y5,V3,X(22)5C15C25C3,C4,C5,C
169C75513S25R+Py UMMy, XI15RUy X123 QsDFXXsDFXY,;DFYY,E
COMMON RU UMMy XI19sXI24E4PyQyS1,S2
Cl=X(1)~XI1
C2=X(1)=-XI2
C3=X(2)*X(2)

aXeleNeNeNeNeNe!l
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C4=1.,0D0+E*DCOS(X(22))
R=P/C4
S12=C1*C14C3
$22=C2%C2+C3
S1=DSQRT(S12)
S$2=DSQRT(S522)
C5=UMM/S1
C6=RU/S2
C7=1.0D0/C4%
V3=C5/S12+C6/522
C9=C5*%C1
C10=Co6%*C2
F(1)=X(3)
F{2)=X(4)
F(3)=2.0D0%X{4)+CT*(X(1)-C9/S12-C10/522)
F(4)==2.000%X(3)+CT*(X{(2)-C5%X{(2)/512-C6%X(2)/522)
DFEXX=C7#(1.0D0-V3+3,0D0*(C9%C1/S12/ S12+C10%C2/522/5822))
DFXY=3.,0D0*CT7*(X(2)*%C9/S12/512+X(2)*C10/S22/522)
DFYY=C7#(1.0D0-V3+3,0D0*(C3%C5/S12/S512+C3%(6/522/522))
DO 100 I=5,17y4
FII)=X{1+2)
FII+1)=X(1I+3)
FIUI+2)=DFXX¥(X{(I)+DFXY®X{I+1)+2.0D0%X(1+3)
100 FUI+3)=DFXY®X{(I)+DFYY*X(I+1)-2.0D0%X{I+2)
F(21)=R*%R/Q
F{22)=1.0D0
RETURN
END

$IBFTC DERIV.
SUBROUTINE DERIV(X,F}
c SUBROUTINE DERIV FOR PULSATING CARTESIAN COORDINATES.
C INPUT =X(6)=XsY,XDOT,YDOT,TIME .
C OUTPUT=CORRESPONDING DERIVATIVES.
C SOME OTHER INPUT CONSTANTS ARE IN COMMON.
DOUBLE PRECISION RyC7ysRUsXI25Q;UMM,E4S14X11,P,52,S13,C2, V3(3:;5823
1,C14C4,C5,+C8, C643X(10)sF(10},5PI
243CHISECAN; AM3COSE, SINE,COSVs SINV,RHO1,RHO2,CX14CX25CY1sCY2
COMMON RUsUMMyXI1sXI25EsPyQ9S1sS2yPIsNT4NTML,CHIECAN,COSVy SINVNK
Cl=X{1)-XIl
C2=X(1)-XI2
C3=X(21%X(2)
C4=1.0D0+E*DCOS(X(6})
R=p/C4
S1=DSQRT(C1*C1+C3)
S13=S51%S1%*S1
S$2=DSQRT(C2%C2+C3)
$23=52%82%852
C5=UMM*C1/S13+RU%*C2/523
C6=UMM/S13+RU/S23
C7=1.0D0/C4
C8=1.0D0~C7
FL1)=X(3)
F(2)=X(4)
F(3)=2,0D0*X{4)+CT7*(X(1)-C5)
Fl4)=-2.0D0%X(3)+C7*X(2)*(1.0D0-C6)
F(5)=R*R/Q
F(6)=1.0D0
RETURN
END
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$IBFTC DERIV.

SUBROUTINE DERIVI(X,sF)

C SUBROUTINE DERIV FOR INERTIAL CARTESIAN COORDINATES.
C INPUT =X{6)=X;YsXDOT,YDOT, TIME, TRUEANOMALY.

C OUTPUT=CORRESPONDING DERIVATIVES.

C SOME OTHER INPUT CONSTANTS ARE IN COMMON.

DOUBLE PRECISIDN RyC7sRUyXI2,QsUMM;E,S14X11,4P»S2,513,4C2y V,(34523
1sC1,C45C5,5C8, C6yX(10),F{10),4PI
29CHISsECANyAM;COSEsSINESsCOSV, SINV,RHOL s RHD2:CX1CX25CY1,CY2

COMMON RUSUMM,XI1yXI23E4P3QsS13S2sPIoNTyNTML1,CHIECAN,COSVySINV,NK

AM=X{5)+CHI

CALL KEPLER(AM;EsECAN,0.1D~123NKs12)

SINE=DSIN(ECAN)

COSE=DCOS(ECAN)

COSV=(~-E+COSE)

SINV=(Q*SINE)

CX1l=—RU *COSV

CX2=+UMM*COSV
CY1l==RU *SINV
CY2=+UMMESINV

SI=DSQRT((X(1)-CX1)*%2+(X(2)-CY1)*%2)

$13=S1%=%3

S2=DSQRT{{X{1)~-CX2)**2+(X{2)~CVY2)%%2)

S23=82%%3

F{1)=X(3)

Fl2)=X{4) )

F(3)==UMM=(X(1)-CX1)/S13~RU*(X(1)-CX2)/523

F{4)==UMM%{X(2)~CY1)/S13-RU*(X(2)-CY2)/S23

F{5)=+1.0D0

RETURN

END

$IBFTC KEPLR.
SUBROUTINE KEPLER(AM;E;EA,EPS,NIT,MAX)
C SOLVES KEPLER EQUATTION
DOUBLE PRECISION AM,E,EA,EPS,EMIN,EMAX,SLOPE,DE,EQ,FE
EO=EA
EMIN=AM-E
EMAX=AM+E
C HERE WITH NEWTON ITERATION METHOD
NIT=0
3 SLOPE=1.0D0~E*DCOS(EQ)
IF(SLOPE.LT.1.D-3) SLOPE=1.D-3
DE=(EO-E*DSIN(EO)—-AM)/SLOPE
EA=EOQO-DE
IF(EA.LT.EMIN) EA=EMIN
IF(EA.GT.EMAX) EA=EMAX
IF(DABS{DE)-EPS) 1,1,2

2 EO=EA
NIT=NIT+1
IFINIT-MAX) 3454
C HERE WITH BISECTION METHOD (WHEN E=1.0)
4 NIT=0

5 EA=.5DO*{EMIN+EMAX)
FE=EA-E*DSIN(EA)~AM
IF(FE)101,1,103

101 EMIN=EA
GO TO 104
103 EMAX=EA
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104 IF{(EMAX-EMIN)}-0.1D-12) 1,1+5
1 RETURN
END
NIT=0
1 RETURN

$IBFTC RUK.
SUBROUTINE RUK(Xy,DT3NyUyF,D)
C RUNGE=-KUTTA 4TH ORDER, CLASSICAL
C INTEGRATES A SYSTEM WITH N DIFFERENTIAL EQUATIONS (FIRST-ORDER)
C WITH N VARIABLES X ,WITH INTEGRATION STEP DT
C UsF,D=TEMPORARY STORAGE(IN CALLING LIST BECAUSE OF VARIABLE DIMENSION)
c 12 OPERATIONS PER STEP AND PER VARIABLE
DIMENSION X(N),U(N),F(N),D(N)
CALL DERIVI(X,D)
DO 101 I=1,N
D(I)=D(I1)=*DT
101 U(TI)=X(I}+0.5D0%D(1)
CALL DERIV(UsF)
DO 102 I=14N
FII)=F(I)*DT
D(I)=D(I)+2.,0D0*F (1)
102 ULI)=X(1)+05D0*F (1)
CALL DERIV{UsF)
DD 103 I=1,N
FII)=F(I1)}*DT
D(I)=D(I)+2.0D0%F(I)
103 U(I)=X(1)+F(I)
CALL DERIV(UsF)
DO 104 I=1sN
FII)=F(I)*DT
104 X{I)=X(I}+{(D(I)+F(I))/6,0D0
RETURN
END

$IBFTC TRUANO
SUBROUTINE TRUEAN(TIME,V,R)
o COMPUTES THE TRUE ANOMALY V AND DISTANCE R
c INPUT =TIME
DOUBLE PRECISION AM,;E;ECAN,COSE;SINE;RyCOSVs SINVV,QsPI
13 TIMEsRU,UMMyXI15XI12,PyS1,52,CHI
COMMON RU UMMy XI1yXI25EsPyQyS1sS2sPIsNTyNTMLyCHIJECAN,COSV y SINV 4 NK
AM=T IME+CHI
CALL KEPLER(AM;E,ECAN;0.1D-12,NK;12)
SINE=DSIN(ECAN)
COSE=DCOS(ECAN)
R=1,0D0-E*COSE
IF{R=1.0D-10) 401,401,402
402 COSV={(-E+COSE) /R
SINV=(Q*SINE) /R
GO TO 403
401 COSV=+1.0D0
SINV=+0.0D0
403 CALL ARC(COSVsSINV,V)
c ARC=ARC TANGENT SUBROUTINE(O TO 360)
RETURN
END

$IBFTC INROT.

RUKQQO30

RUKQD040

RUK0O0100

RUKO0140

RUKO0180

RUKQ0Z00

RUKD0220

RUKC0240
RUK00250
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SUBROUTINE INROT{X,;XRyTRUE;RsQ)

CONVERTS INERTIAL X TO ROTATING COORDINATES XR
INPUT=X, TRUEsRQ (X=Xy Yy XPRIME,; YPRIME)
OQUTPUT=XR =X4YsXPRIME, YPRIME

TRUE=TRUE ANOMALY

R=DISTANCE BETWEEN PRIMARIES
Q=SQRT(1.0~E*%2)

DOUBLE PRECISION Xy3XRy;COV,QySIV,C1l, TRUEsR
DIMENSION X{10),XR{10)

COV=DCOS(TRUE)

SIV=DSIN{TRUE)

C1=Q/R#*%x2

XR{1)=+X (1) *COV+X(2}*SIV
XR{2)==X(1)*SIV+X{2}*%C0OV
XR{3)=+XR({2}*C1+X(3)*COV+X{4)*SIV

AR (4)==XR{L)*C1~-X(3)%SIV+X(4)*COV
XR(5})=X(5)

XR(6)=X(6)

XR{T)=X(T)

XR(8)=X(8)

XR(9)=X(9)

RETURN

END

$IBFTC ROTIN.

eNeoEeNeNaNe]

SUBROUTINE ROTIN(XR, X, TRUE,R, Q)

CONVERTS ROTATING XR TO INERTIAL COORDINATES X
INPUT=XR s TRUEsRQ (XR=XyYs XPRIME; YPRIME)
OUTPUT=X =XsYsXPRIME,YPRIME

TRUE =TRUE ANOMALY

R=DISTANCE BETWEEN PRIMARIES
Q=SQRT(1.0—-E**2)

DOUBLE PRECISION COV,QsySIVsC25C1lyXRy Xy TRUESR
DIMENSION XR(10),X(10)

COV=DCOS(TRUE)

SIV=DSIN(TRUE)

X(1)=XR(1}*COV-XR{2)*SIV
X{2)=XR{1)*SIV+XR{2)*COV
C1=XR{3)~-XR(2)*Q/R*%*2

C2=XR {4} +XR (1) *Q/R#*%*2

X{3)=C1*COV-C2*S1V

X (4)=C1%SIV+C2%COV

X{5)=XR(5)

X(6)=XR(6)

X(7)=XR(7)

X(8)=XR(8)

X{9)=XR({9)

RETURN

END

$IBFTC ROTPL.

OOOO0000

SUBROUTINE ROTPUL(XRyXPsRyRP,Q)

CONVERTS ROTATING XR TO PULSATING XP COORDINATES
INPUT= XR3sR3sRP,+Q.

OUTPUT=XP

XR=X,Y s XPRIME,YPRIME XP=X,Y,XDOT,YDOT
R=DISTANCE BETWEEN TWO PRIMARIES

RP=RPRIME .

Q=SQRT(1.0~E**2)

DOUBLE PRECISION QsXRyXPsRsRP
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DIMENSION XR(10),XP(10}
XP{1)=XR(1)/R
XP{2)=XR(2)/R
XP(3)=(R*XR(3)-RP*XR(1})/Q
XP(4)=(R*XR(4)-RP*XR(2))/Q

XP(5)=XR(5)
XP{6)=XR(6)
XP{7)=XR(T)
XP({8)=XR(8)
XP(9)=XR(9)
RETURN

END

$IBFTC PULRT.
SUBROUTINE PULROT(XPsXRsR,RD,yQ)

C CONVERTS PULSATING XP TO ROTATING XR COORDINATES
c INPUT=XPsRsRDsQo

c OUTPUT=XR

c XP=X3Y s XDOT,YDOT XR=X,Y s XPRIME, YPRIME

c R=DISTANCE BETWEEN PRIMARIES

c RD=RDOT

c

Q=SQRT(1.0-E*x2)

DOUBLE PRECISION XPyXRsC1l4QsR4RD
DIMENSION . XP{10)},XR(10)
XR({1)=R*XP (1)

XR(2)=R*XP(2)

Cl=Q/R**2
XR(3)=(RD*XP(L)+R*XP(3))*C1l
XR{4)=(RD*XP(2)+R*XP(4)}*C1
XR(5)=XP(5)

XR(6)=XP(6)

XRAT)=XP(T)

XR(8)}=XP(8)

XR(9)=XP(9)

RETURN

END

$IBFTC MAINE3
REGULARIZED RESTRICTED ELLIPTIC THREE-BODY PRGGLEM R.BROUCKE 5/67
INP=INTEGER INPUT VECTOR(DIMENSION=22)
1=JN=J0B NUMBER
1=COMPUTE A LIST OF ORBITS,WITH SEARCH FOR PERIODIC ORBITS
2=GENERATE A LIST OF PERIODIC ORBITS (BY EXTRAPOLATIONS)
2=INPUT CODE (1 TO 4)
1=INPUT WITH CARTESIAN BARYCENTRIC ROTATING PULSATING
2=INPUT WITH BIRKHOFF COORDINATES
3=INPUT FOR EJECTION FROM M1 (GIVE ONLY RNP(5) AND RNP(15}}
4=INPUT FOR EJECTION FROM M2 (GIVE ONLY RNP(5) AND RNP{15})
4=PRINT STEP
ONE LINE WILL BE PRINTED EVERY INP(4) INTEGRATION STEPS
7 =NCOL=0 WHEN NO RECAP CARDS ARE USED FOR INITIAL CONDITIONS
=1 OR 2 WHEN RECAP CARDS USED FOR INITIAL CONDITIONS
1=USE COLS 1 TO 24 FOR INITIAL CONDITIONS
2=USE COLS 25 TO 48 FOR INITIAL CONDITIONS
8=MAX=MAXIMUM NUMBER OF ITERATIONS IN SEARCH
9=MNO=MAXIMUM NUMBER OF ORBITS IN LIST sWHEN JN=1
=MAXIMUM NUMBER OF PERIODIC ORBITSsWHEN JN=2
10=11=VARIABLE TO BE INCREMENTED IN LIST,WHEN JN=1 (1 TO 8}
=VARIABLE TO BE PERTURBED WHEN JN=2 (1 TO 8)
13=IS1= FIRST VARIABLE TO SEARCH ON

[sXsFeleRaizEsEeloNoNelaNoReNoNeNe e NeNa N o N a]
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14=152=SECOND VARIABLE TO SEARCH ON

15 =0 WHEN E AND MU ON RECAP CARDS ARE NOT USED
=NOT O WHEN E AND MU ON RECAP CARDS ARE USED
16 =MCOL=0 WHEN NO INITIAL TABLE FOR EXTRAPOLATION IS READ IN

=1 OR 2 WHEN TABLE FOR EXTRAPOLATION IS READ IN
17=MNPS =MAXIMUM NUMBER OF POINTS USED IN EXTRAPOLATIONS
18=NT=NUMBER OF TERMS USED IN POWER SERIES
19=MAXIMUM NUMBER OF INTERSECTIONS WITH X—=AXIS (BUILT-IN=2)
20=MAXIMUM NUMBER OF INTEGRATION STEPS ALLOWED (BUILT-IN=1000)

RNP=REAL INPUT VECTOR (DIMENSION=22)

1929354=XsY3 VX VY{NOT USED FOR COLLISION ORBITS)
5=ENERGY (BARYCENTRIC)(USED ONLY FOR COLLISION ORBITS)
T=MASS~RATIO

8=ECCENTRICITY

9=EPSILON FOR MATRIX INVERSION

10=PRECISION FOR FIRST VARIABLE TO SEARCH ON
11=PRECISION FOR SECOND VARIABLE TO SEARCH ON
12=FIRST INCREMENT FOR PARTIAL DERIVATIVES IN SEARCH
13=SECOND INCREMENT FOR PARTIAL DERIVATIVES IN SEARCH
14=NUMBER OF HALF REVOLUTIONS -

15=COLLISION ANGLE IN BIRKHOFF PLANE(IN DEGREES)
16=0.0 FOR START AT PERIAPSIS,; AND 1.0 FOR APOAPSIS
17=INCREMENT FOR LIST

18=INTEGRATION STEP FOR BIRKHOF COORDINATES
19=NECESSARY PRECISION TO START SEARCH WHEN JN=1
20=NOMINAL INTEGRATION STEP WITH POWER SERIES
21=R1IMIN =R1-LIMIT FOR SWITCHING OF VARIABLES
22=R2MIN =R2-LIMIT FOR SWITCHING OF VARIABLES

INTEGER INP(22)sNBR(4)

DOUBLE. PRECISION RNP(22)sXP(22)3XB(22) ¢XPI{22)yXPIR(22),
ITABLEL(20),TABLE2(20) s TABLE3(20)3DUMY(3) sPNP (20}
2XS(2)sY(2)4Y0(2)5G(2),YF(2)
39UsUMLyXTLsXI29EsPySPsR1,R2,PI 4 X0

COMMON U, UML14XI1sXI25EsP3sSPyR1,R2yPI4NTsNTML, X0

36 FORMAT (1HO,19H THE TOTAL TIME IS sF11.35 9H SECONDS )

111 FORMAT(1HOs7H ALARM=,12)

308 FORMAT(1H +4D24.17:14)

313 FORMAT(25X14HNO CONVERGENCE)

314 FORMAT(26X13HDETERMINANT=0) .

400 FORMAT(1HO,22H PERIODIC ORBIT FOUND )

977 FORMAT(3D24.17,18)

978 FORMAT(1HO)

980 FORMAT(1H ,6(1PD20.13))

981 FORMAT(1H 52415)

988 FORMAT(1Hl1,67HREGULARIZED ELLIPTIC RESTRICTED THREE BODY PROBLEM -
1 TWO DIMENSIONS)

DATA(NBR(I)sI=1s4)/192:354/

DO 601 I=1,22

INP{I}=0

601 RNP{I)=0.0D0

CALL FPTRP(0,0,0)

PI=3.141592653589793

YF{1)=0.0D0

YF(2)=0.0D0

NAMELIST/NAMES/INP,;RNP

C BUILT-IN VALUES FOR INPUT PARAMETERS
INP(1)=2
INP(2)=3
INP{4)=20
INP(T7)=0
INP(8)=5
INP{9)=3

OO OO0 00
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c

c

c

INP(10)=7
INP(13)=5
INP(14)=8
INP(15)=0
INP(16})=0
INP(1T7)=6
INP(18)=12
INP(19)=2
INP(20)=1000
RNP{1)=0.02D0
RNP(2)=0.0D0
RNP{3)=0.0D0
RNP (4)=6.3D0
RNP(5)=-0.216D0
RNP(7)=0.012155D0
RNP(8}=+0.670D0
RNP(9)=0.1D-8
RNP(10)=0.1D-8
RNP(11)=0.1D-8
RNP(12}=0.1D-6
RNP(13)=0.1D~6
RNP(14)=1.0D0
RNP{15)=0.0D0
RNP{16)=0.0D0
RNP(17)=0.01D0
RNP(18)=0.02D0
RNP(19)=0.1000
RNP(20)=0.02D0
RNP(21}=0.08D0
RNP(22)=0.,05D0

START ONE CASE
102 READ(5,NAMES)

CALL CLOCKI
WRITE(6,988)

WRITE(6,981) {INP¢I),1=1,20)
WRITE(65980) (RNP(I),1=1,22)

PRELIMINARY CALCULATIONS

JN =INP(1)
IN=INP(2)
NPRIN=INP (4)
NCOL=INP(7)
MAX=INP(8)
MNO=INP(9)
I1 =INP(10)
IS1=INP(13)
IS2=INP(14)
MCOL=INP(16)
MNPS=INP(17)
NT=INP(18)
NTM1=NT-1
DO 10 I=1,22
10 XPI(I)=RNPI(I)
IF(NCOL.EQ.O0) GO TO 11

READ-IN INITIAL CONDITIONS ON RECAP CARDS

12 READ(5,977)DUMY (1), DUMY(2),; DUMY(3),NNN
IF(NNN.EQ.99) GO TO 108
WRITE(6,978)
XPI(1)=DUMY(NCOL)
IFCINP(15)eNELO) XPI(7)=DUMY(3]}
READ(54977)DUMY (1), DUMY (2),DUMY(3)
XPI(2)=DUMY(NCOL)
IFCINP(15).NE.O) XPI(8)=DUMY(3)
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C

C

READ(5,977)DUMY (1) s DUMY (2}, XPI(5)
XPI{3)=DUMY (NCOL)
READ(5,977)DUMY (1) 5 DUMY (2)
XPI{(4)=DUMY (NCOL)
11 NNO=0
NPS=0
IF(MCOL.EQ.0)GD TO 600
READ INITIAL EXTRAPODLATION TABLE ON RECAP CARDS
13 READI(5,977)DUMY(1)sDUMY(2); PNP(7)sNNN
IF(NNN.EQ.99) GO TO 24
PNP(1)=DUMY (MCOL)
READ(5,977)DUMY (1) ,DUMY(2),PNP(8)
PNP(2)=DUMY (MCOL)
READ(5,977TIDUMY (1) ,DUMY (21}, PNP(5)
PNP{3)=DUMY{MCOL)
READ(5,4977)DUMY (1), DUMY(2)
PNP(4)=DUMY{MCOL)
IF{NPS.LT.MNPS) GO TO 21
DO 22 I=24MNPS
TABLELI(I-1)=TABLEL1(I)
TABLE2(1-1)=TABLE2(I)
22 TABLE3{I-1)=TABLE3(1I)
GO TO 23
21 NPS=NPS+1
23 TABLEL(NPS)=PNP(Il)
TABLE2{(NPS)=PNP(IS1)
TABLE3(NPS}=PNP(IS2)
GO TO 13
24 IFI(NPS.EQ.0) GO TO 600
XPI(I1)=TABLEL1(NPS)+RNP(17)
DO 25 I=14NPS
25 WRITE(6,308) TABLE1(I),TABLE2(I),TABLE3(I)
600 IF({INP(17).EQ.0) GO TO 14
EXTRAPOLATION FOR FIRST GUESS OF NEW PERIODIC ORBIT
IF(NPS=1) 14,15,16
15 XPI(IS1)=TABLE2(1)
XPI(IS2)=TABLE3(1)
GO TO 14
16 CALL INPOL(TABLElsTABLE2,XPI(I1)sXPI(ISL) NPS}
CALL INPOL(TABLEL,TABLE3,XPI(I1)sXPI(IS2),NPS)
COMPUTE ONE COMPLETE ORBIT(BY CALL ORBIT)
14 CALL ORBIT(XPI;XP +XBsINP;NPRIN , IALARM)
IF(IALARM.GT.0) GO TO 110
MC=0
GO TO (300,301)sJN
300 IF(DABS(XP(2))-RNP{19))302,302,106
302 IF(DABS{XP(3))-RNP(19))303,303,106
303 DO 305 I=1,9
305 XPIR(I)=XPI(I)
301 IF(DABS(XP(2))—~RNP(10))306,306,307
306 IF(DABS(XP(3))-RNP(11))309,309,307
BEGIN SEARCH FOR PERIODIC ORBIT
307 XS(1)=XPI(IS1)
XS(2)=XPI(1S52)
MC=1
NAL=2
YO({1l)=XP(2)
YO(2)=XP(3)
100 WRITE(65,308)XPI(IS1)sXPI(IS2),Y0(1),Y0(2),MC

101 CALL SEARCH(XS3GsYOsYsYFaRNP(12)sRNP(10)32yMAXs2¢sNALsMCsRNP(9),LL)

GO TO (10652;2549556) 3 NAL
2 IF{(({+DABS{XPI(IS1)-G(1))).GT.1.0D0) GO TO 5
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309

4

401

19

18
20

8

310
311
312

109
5

6

110

106

107

118
108

1
2
3

IF((+DABS{XPI(IS2)-~G(2))).GT.1.0D0) GO TO 5
XPI(IS1)=G(1)

XPI{1S2)=6G(2)

CALL ORBIT{XPIs;XP sXBsINP,0 sy IALARM)
IF(IALARM.GT.0} GO TO 110

GO TO (10633, 7)sNAL
IF(DABS(XP(2)).GT.DABS(YO(1))) GO TO 109

IF (DABS(XP(3)).GT.DABS(Y0O(2)})) GO TO 109
YOU1)=XP(2)

YO{2)=XP(3)

GO TO 100

Y{1}=XP(2)

Y(2)=XP(3)

GO TO 101
WRITE(65308)XPItISL)yXPI(IS2)3XP(2),XP(3),MC
GO TO 401

XPI(IS1)=XS(1)

XPI(IS2)=XS(2)

WRITE (63400)

IFCINP(17).EQ.0) GO TO 8

C STORE PERIODIC ORBIT IN EXTRAPOLATION TABLE

IF(NPS.LT-MNPS) GO TO 12
DO 19 I=2,4NPS
TABLEL(I~1)=TABLEL(I)
TABLE2(I-1)=TABLE2(I)
TABLE3(I-1)=TABLE3(I)

GO TO 20

NPS=NPS+1
TABLEL(NPS)=XPI(I1)
TABLE2(NPS)=XPI(IS1)
TABLE3(NPS)=XPI(IS2)

C PUNCH 4 RECAP CARDS FOR PERIODIC ORBIT

PUNCH 977:XPI(1)sXP(1)sXPI(T7}sNBR(L),
XPI(2),XP{2),XPI(8),NBR{2),
XPI(3)sXP(3)9XPI(5):NBR(3),
XPI(4)sXP(4) s XPI{15),NBR(4)

GO TO (311,106),JN

DO 312 I=1,9

XPI{I)=XPIR(I)

GO TO 106

WRITE(65308)XPI(IS1)sXPI(IS2),XP(2)yXP(3),MC

WRITE(64+313)

GO TO(311,118)5JN

WRITE(64314)

GO TO(311,118),JN

WRITE(6:111) IALARM

GO TO (106,118)+JN

NNO=NNO+1

IF(NNO-MNO) 107,118,118

C PERTURB LIST PARAMETER

XPI(I1)=XPI(I1)+RNP(17)
WRITE(6,978)

GO TO 600
IF(NCOL)12,108512

CALL CLOCT(PARTIM,TOTTIM)
WRITE (6:36)T0TTIM

GO TO 102

END

$IBFTC ORBIT.

SUBROUTINE ORBIT(XIsXyXBsINPyNPRINy IALARM)
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INPUT=XI=INITIAL CONDITIONS
X1(22)=22 INPUT CONSTANTS+INITIAL CONDITIONS.(=RNP)
INP=INTEGER INPUT VECTOR (ONLY INP(2) IS USED).
NPRIN =PRINT-STEP (NO PRINTING IF ZERO) {(=INPUT)
INP(20)=20 INTEGER INPUT CONSTANTS
OUTPUT=XsXB AND IALARM
X{6)=0UTPUT=FINAL POINT OF THE ORBIT; IN CARTESIAN COORDINATES
XB{6)=0UTPUT=FINAL POINT OF THE ORBIT,IN BIRKHOFF COORDINATES
X AND XB(1 TO 7) =X,Y,XDOT, YDOT/ENERGY/TRUE ANOMALY/TIME
IALARM IS NON-ZERO IN CASE OF AN ABNORMAL ENDING OF THE ORBIT
DOUBLE PRECISION ABCs Xy XBsEsPsUMLl,Uy XOsSP3sPIsRADyEPS43XS52sDSsSF,YS
1yR14R25EP1y Sy XB6PR s SPREC; DSSy XIyENERyA(T) 9B(T7)5C(7)}3YACT,YPREC
29X114XI2:DVCyXIS;ETSsSUMyDIF,EXs XSYS2CCCyR1R2 3 TRUEERROR
DIMENSION X(22)+XB(22),X1722),INP(20)
COMMON UsUM1sXI19XI29EsPySP3RLsR2,PIsNTsNTM1,X0
26 FORMAT(1H ,5(1PD21.13),1PD9.1)
603 FORMAT{10X3HMU=,D24.17,y5X4HECC=,D24.17)
989 FORMAT(1H ,6(1PD14.7),2(1PD18.11))
RAD=180.D0O/PI
IALARM=0
MTEMP=0
INTER=0O
IN=INP(2)
MTOTAL=0
ERROR=0.0D0
DO 10 I=1,5
10 X{I)=XI(I)
XB(7)=0.0D0
X{7)=0.0D0
$=0.0D0
MPRIN=0
EPS4=1,0D-13
U=x1(7)
UM1=1.0D0~U
XIl=-U
XI12=UM1
X0=.5D0~-U
XS$2=0.5D0*X0*X0
E=XI(8)
IF{NPRIN.GT.O)WRITE(65,603)UsE
P=1.0D0O-E*E
IF(P.LE.O.0DO) GO TO 12
SP=DSQRT(P)
DS=X11(18)
SF=PI®*(XI(14)+XI{16})
C CONVERT INITIAL CONDITIONS
GO TO (1515394), 1IN
1 YS=X(2)*X(2)
R1=DSQRT((X{1)+U}*%*2+YS)
R2=DSQRT((X(1)-1.0D0+U)*%2+YS)
X{6)=XI(16)*PI
EP1=1.0D0/(1.0DO+E*DCOS(X(6)))
ENER=.5D0% (X (3)*%2+X(4)*%2) ~EPL* (o 5DO* (X{ 1) *X{1)+YS}+UML/R1+U/R2)
C CHECK IN WHICH REGION INTEGRATION HAS TO START
IF(R1GToXI{21)eANDR2.GT.XI(22)) GO TO 28
IF{NPRIN.GT.0)
HWRITE(65989)IX(1)5X(2)sX({3)5X(4)sX(6)sXB{T)ENER,ENER
X{5)=ENER+XS2*EPL
C CONVERT TO BIRKHOFF COORDINATES
X{1)=X(1)-X0
CALL CARBR({XyXB)
YACT=X(2)

AT OOOO0
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GO 70O 17
28 TRUE=X(6)
X{5)=P*EPL
X(6)=EXDSIN(X (6))%X(5)*%x2/P
INIT=1
IF{NPRIN.GT.0)
FWRITE(6,26){X(1)sI=154)sENER, ERROR
GO TO 18
3 X8(1)=-~1.00D0
XB(2)=0.0D0
XB(6)=XI(16)*PI
EP1=1.0D00/(1.0D0O+E*DCOS(XB(6)))
XB{(3)=DSQRT(2.0D0*UML*EP1)*DCOS({ XI(15)/RAD)
XB(4)=DSQRT(2.,0D0*UM1*EP1)*DSIN( XI{(15)/RAD)
XB{5)=X (5)+XS2*EP1
R1=0.0D00
R2=1.0D0
GO T0O 5
4 XB{(1l)=1.0D0
XB{(2)=0.,0D0
XB(6)=XI(16)*PI
EP1=1.0D0/(1.0+E*DCOS(XB(6)))
XB(3)=DSQRT(2.0D0*U*EPL)*DCOS{ XI(15)/RAD)
XB(4)=DSQRT{2.0D0*U*EPLI*DSIN{ XI(15)/RAD}
XB{5)=X (5)+XS2*EP1
R1=1.000
R2=0.0D0
5 §=0.,0D0
YACT=0.0D0
IF{NPRIN.GT.0) GO TO 9
C CHECK IF A CHANGE OF REGION IS NECESSARY
8 IF(RL.LTeXI{21)e0RR2.LToXI(22)) GO TO 17
CALL BIRCR({XByX)
X(1)=X{1)+X0
TRUE=XB(6)
X{5)=P/(1.0DO+E*DCOS(XB(6)})
X(6)=E*DSIN{XB(6) XX (5)**2/P
X{T)=XB(7)
INIT=1
GO TO 18
C INTEGRATION WITH BIRKHOFF COORDINATES
17 XB6PR=XB(6)
YPREC=YACT
SPREC=S
CALL RUK(XB¢DS;75;A,B5C)
S=S+DS
MTOTAL=MTOTAL+1
YACT=XB(2)*=(XB{Ll)**2+XB(2)**2~1.0D0)
IF(YPREC*YACT«LT-0.0D0) INTER=INTER+1
IFUINTER.GE.INP(19)) GO TO 30
IF(MTOTAL.GE.INP{20}) GD TO 30
ABC=XB(1)*%2+XB(2)*%2
IF(ABC.LT-0.001D0) GO TO 13
IF(ABC.GT-1000.D0) GO TO 14
IF{XB(5)GT-50.D0) GO TO 15
IF{XB{(6)~-SF)65134,134
C INTEGRATION OF END OF ORBIT IN BIRKHOFF COORDINATES
134 DSS=(SPREC-S)I*(XB{6)=-SF)/(XB(6)-XB6PR)
XB6PR=XB(6)
SPREC=S
CALL RUK (XB+DSS,73A3B,C)
S=S+DSS
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142

MTEMP=MTEMP+1

IF(MTEMP.GT.15) GO TO 16
ABC=XB(1)*x2+XB(2)*%2
IF{ABC.LT.0.001D0) GO TO 13
IF(ABCGT-1000.D0}) GO TO 14
IF{XB{(5).6T.50.D0) GO TO 15
IF(DABS(DSS)~EPS4 }7,7,142
IF(DABS(XB(6)-SF)—-EPS4)}7,7,134

C CONVERT TO CARTESIAN COORDINATES
7 CALL BIRCR(XBjyX)

X{1)=X(1)+X0

EP1=1.0D00/(1.0D0+E*DCOS{X(6)})

YS=X(2)%X(2)

R1=DSQRT((X(1)+U)**¥2+YS)
R2=DSQRT{(X(1)-1.0D0+U)*%*2+YS}

ENER=5D0% (X (3)*%2+X (4)*%2)-EPL*( «5D0O* (X( L) %X (1) +YS)+UML/R1+U/R2)
X(5)=X(5)-XS2*EP1

IF (NPRIN.EQ.O) GO TO 11

WRITE(65989)X (1) sX(2)3X{3)3X{4),X(6)3XB(T)+X(5),ENER
GO TO 11

IF(NPRIN.EQ.O)} GO TO 8

MPRIN=MPRIN+1

IF(MPRIN-NPRIN)8;9,9

9 CALL BIRCR({XBjsX)

X{1)=X(1)+X0

EP1=1.0D0/(1.0DO+E*DCOS(X(6)))

YS=X{2)*X(2)

RI=DSQRT (X (1) +U)**2+YS)

R2=DSQRT((X(1)=1.0DO+U)**2+YS)

ENER=3DO0* (X{3) %% 2+X(4)*#%2)—EP1* (. 5D0* (X{1)*X(1)+YS)+UM1/R1+U/R2)
X(5)=X(5)—-XS2*EP1
WRITE(65,989)X(1)sX{(2)sX{3)sX{4),X(6)9XB(T)sX(5),ENER

MPRIN=0

GO TO 8

C CHECK IF A CHANGE OF REGION IS NECESSARY

C

19

IF{R1.GTXI(21)«AND.R2.GToXI(22)) GO TO 18
YS=X(2)%¥X(2)

R1=DSQRT({X(1)+U)*%k2+YS)
R2=DSQRT((X(1)—UML)**2+YS)

XBLT7)=X(T)

X{6)=TRUE

EP1=1.0D0/(1.0D0O+EXDCOS(X(6)))

X(5)=e5D0% (X (3)%%x2+X(4)%%2)~EP1% (o 5D0%{ X( 1) %X (1)+YS)+UM1/R1+U/R2)
X{5)=X(5)+XS2*%EP1

X{1)=X(1)=-X0

CALL CARBR(X,XB)

$=0,0D0

YACT=X(2)

GO TO 17

INTEGRATION WITH POWER SERIES

18

20
21
22

23

DVC=XI(20)

YPREC=X(2)

R1R2=R1*R2
IF(R1R2-2.0D0)20,20,21
DVC=R1R2*X1(20}

IF (DABS(SF-TRUE)~DVC)22,23,23
DVC=SF~TRUE
MTOTAL=9999

CALL ERPS(XsDVC,INIT)
YACT=X{(2)
MTOTAL=MTOTAL+1
TRUE=TRUE+DVC
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R1=X(10)
R2=X(11)
IF(NPRIN.EQ.O) GO TO 24
MPRIN=MPRIN+1
IF(MPRIN-NPRIN} 24,25,25
25 MPRIN=0
ERROR=0,25D0%*{DABS{X(10) **(=3}-X(12))
1+DABS (X (11)**{-3}-X(13))
2+DABSI{DSQRT(X(1)=XIL)**%2+X(2)*%2)-X{10))
3+DABS{DSQRT((X{1)—XI2)*%2+X(2)**2)-X(11)})
WRITE(6526) (X{(I)sI=154),X(7)sERROR
24 IF{(X{(2)*YPREC.LT+0.0D0) INTER=INTER+1
IF{INTER.GE.INP{(19)) GO TO 30
IF(MTOTAL.GT.INP{20).AND.MTOTAL.LT.9999) GO TO 30
IF{MTOTAL-9999)19,27,27
27 IF(NPRIN.EQ.O) GO TO 29
ERROR=0,25D0*(DABS(X(10)*x(~-3)-X(12})
1+DABS(X(11)*%(-3)-X(13))
24DABS(DSQRT({(X (1)} =XI1)**2+X(2)**%2)-X(10))
3+DABS{DSQRT{(X{(1)=XI2)*¥2+X{(2)*%2}-X{11)))
WRITE(6526) (X{1)31=154)4X(7)yERRCOR
29 X{(1)=X{(1)-X0
CALL CARBR({XsXB)
X(1)=X(1)+X0
GO TO 11
12 TALARM=1
GO TO 11
13 IALARM=2
GO TO 11
14 IALARM=3
G0 TO 11
15 IALARM=4
GO TO 11
16 IALARM=5
GO TO 11
30 IALARM=6
11 RETURN
END

$IBFTC DERIV.
C SUBROUTINE DERIV FOR BIRCKOFF COORDINATES
SUBROUTINE DERIV(X,F)
C INPUT=X(T7)=XI4ETAsXIDOT,ETADOT,ENERGY, TRUEANOMALY s TIME
C DUTPUT=F(7)=CORRESPONDING DERIVATIVES
DOUBLE PRECISION EsPsAML;AM24X0sSPyXsFy XISyETS9sSyDsEXsXSYS3CyR1
1,R2;RRyAJsSSyDJIDXI 9y DIDETyDXDXI yDXDETsDX2DXyDX2DEsDR1I2XyDR1I2EsS1DR
21DEsDR2DXyDR2DESECVsEPLsRRVyRsC2yA9B, DJVDXyDJVDEsENER,DR1IDX
ZyX11,XI2,P1
DIMENSION X{(7)sF(7)
COMMON AM2;AM14XI1yXI25EsPySPsR1,R2,PIyNTsNTML,X0
XIS=X{1)*X{(1)
ETS=X{(2)*X{(2)
S=XIS+ETS
D=XIS-ETS
EX=X(1)/4.0D0%(1.0D0+1.0D0/S)
XSYS=(S+1.0D0/S+2.0D0%D/S)/16.0D0
C=4.0D0O*DSQRT(S)
R1=(S+1.0D0+2.0D0%X(1))/C
R2=(S+1.0D0—-2.0D0%X (1)) /C
RR=R1*R2
AJ=RR/S
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$IBFTC CARBR.

C
C

C

58=8%§

C=4.0D0*5*%SS
DJUDXI=X(1)*{2.0D0%D~S5-1.,0D0)/C
DJIDET=X(2)*(2.0D0%D+5~-1.0D0) /C
DXDXI={1.0D0-D/SS)/4.0D0
DXDET==X({1)*X(2)/(2.D0%SS)
C=8.0D0%SS
DX2DX=X(1)/C*(SS+4.0DO*ETS~1.0D0)
DX2DE=X{(2)/C*(SS-4,0D0*XIS~1.0D0)
DR12X=X(1)/C*(SS—-4.0D0O*ETS-1.0D0)
DR12E=X(2) /C*(SS+4.0D0*XIS~1.0D0)
C=4.0D0*DSQRT{SS*S)

51=5-1.0D0
DRIDX=(S1*X(1)+2.0DO*ETS)./C
DRIDE=(S1-2.0D0*X{1))*X(2)/C
DR2DX=(S1%X(1)—-2.0DO*ETS) /C
DR2DE=(S1+2.0D0%X(1}))*X(2}/C
ECV=E#*DCOS(X{6))

C=1.0D0+ECV

EP1=1.0D00/C

R=P/C

C2=05D0%XSYS+XO*EX

RRV=AM1*R2+AM2%R 1+RR*(C2
A=-2.0DO*EP1/SS

B= EP1/S

DUVDX=A%X (L) *RRV+B* ( AML*DRZDX+AM2*DR1IDX+C2%*DR1Z2X+RR* (. 5D0*DX2DX+X0
1#DXDXI))

DJVDE=A%X(2)*RRV+B*{ AM1*DR2DE+AM2*DR1DE+C2*DRI2E+RR*{ . 5D0*DX2DE+X0
1#DXDET))

F{1)=X(3)

Fi2)=X(4)

F{3)=2.0D0%AJ*X (4)+DJIVDX+X(5)*DJDXI
Fl4)=-2.0D0%AJS*X(3)+DJVDE+X(5)*DJDET
F{5)=—RRV*E*DSIN(X(6)) /(S*C*C}
F{6)=AJ

F{7)=RR*#R*R/(S*SP)

RETURN

END

SUBROUTINE CARBR({XC,yXB)

CONVERTS CARTESIAN COORDINATES TO BIRKHOFF
INPUT =CARTESIAN MEDIAN=X =X,Y,XD0OT,YDOT.
OuTPUT= BIRKHOFF =XB=XI,ETA, XIDOT,ETADOT.

DOUBLE PRECISION XCyXBsAsByUsVyXISsETS:S9DySS»DXDXI4DYDET sDXDET, DY

1DX1

DIMENSION XC(6)sXB(6)

A=XC{1)*%XC(1)-XC(2)*XC{2)-.25D0

B=2,0D0*XC(1)*xXC(2)

CALL COMSQR(AsByU,V)

XB(1)={XC(1)+U)*2.D0

XBl2)={XC(2)+V}*2.D0

XIS=XB{1)*XB(1)

ETS=XB(2)*XB(2)

S=XIS+ETS

D=XIS-ETS

RERNE

DXDXI={1.0D0-D/SS)}*.25D0

DYDET=DXDXI

DXDET=-(XB{1)%*XB(2))/(2.D0*SS)

DYDXI=~DXDET

JPL TECHNICAL REPORT 32-1360




Table 22 (contd)

XB(3)=DYDET#XC{3)~DXDET*XC(4)
XB(4)==DYDXI*XC(3)+DXDXI*XC(4)
XB({5)=XC(5)

XB(6)=XC(6)

RETURN

END

$IBFTC BIRCR.
SUBROUTINE BIRCR({XB,XC)
C CONVERTS BIRKHOFF COORDINATES TO CARTESIAN FOR QUTPUT
C INPUT=BIRKHOFF=XB=XI,ETA, XIDOT ,ETADOT -
C OUTPUT =CARTESIAN=X = XsYsXDOT,YDOT(=CARTESIAN MEDIAN)
DOUBLE PRECISION XByXCyXISsETSySsSSsDsCsRL3R2,AJsDXDXIDYDETOXDET
1,DYDXI
DIMENSION XB(6)¢XC(6)
XIS=XB(1)}*XB(1)
ETS=XB(2)*XB(2)
S=XIS+ETS
§5=5%§
D=XIS-ETS
=625D0/5%%.5D0
R1=C#*(S+1.0D0+2.0D0*XB{1)}
R2=C*(S+1.0D0~2.0D0%XB(1))
AJ=R1*%R2/S
DXDXI=.25D0%(1.0D0~D/SS)
DYDET=DXDXI
DXDET=-XB(1}*XB(2)/{2.0D0%SS)
DYDXI=-DXDET
XC(1)=XB{1)})*{1.0D0+1.0D0/S)*.25D0
XC(2)=XB{2)*{1.0D00~1.0D0/S})*.25D0
XC(3)=(DXDXI*XB(3)+DXDET*XB{4))/AJ
XC{4)=(DYDXI%XB(3)+DYDET%XB(4))/AJ
XC{5)=XB(5)
XC(6)=XB(6)
RETURN
END

$IBFTC COMSQ.
SUBROUTINE COMSQR (AA;BB,A,B)
COMPUTES SQUARE RDOT(A,8) OF COMLEX NUMBER(AA,BB)
DOUBLE PRECISION TEMPO,;AA,BB,A+B
TEMPO=DSQRT (AA**%2+BB*#*2)
IF(TEMPO.LT.DABS(AA)) TEMPO=DABS(AA)
A=DSQRT(.5D0* (AA+TEMPO))
IF (88) 10,20,20
10 B=-DSQRT(0.5D0*(~AA+TEMPD))
GO TO 30
20 B=DSQRT{.5D0*(-AA+TEMPD)})
30 RETURN
END

$IBFTC SEARC.

SUBROUTINE SEARCH(X3sGsYOsYsYFsDELsEPSsNyMsNPyNALsMCEP,L)

X CONTAINS THE INITIAL VALUES OF THE N UNKNOWNS (INPUT)

AND THEIR COMPUTED VALUE (OUTPUT)

G IS AN ARRAY WHERE SEARCH STORES THE VALUES OF X FOR
COMPUTATION OF NOMINAL AND VARIED SOLUTION, WITH NAL=2 (G=0QUTPUT}
YO(INPUT)=NOMINAL SOLUTION (FINAL VALUES)

Y=ARRAY WHERE THE MAIN PROGRAM HAS TO STORE THE VARIED

OO OO0O0
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Table 22 (conid)

FINAL VALUES, WHEN NAL=3 (INPUT)
YF=(INPUT) DESIRED FINAL VALUES OF Y
DEL=ARRAY WITH PERTURBATIONS FOR X(INPUT)
EPS=ARRAY WITH ACCURACY PARAMETERS FOR X{NP=1)
OR FOR Y (NP=2) (INPUT)
N=NUMBER OF VARIABLES (INPUT)
M=MAXIMUM NUMBER OF ITERATIONS (INPUT)
NAL=1.FOR INITIAL START
2. (SET=2 BY SUBROUTINE SEARCH)=NOMINAL VALUES YO HAVE TO BE
COMPUTED WITH X. THEN SEARCH HAS TO BE CALLED AGAIN.
3. (SET=3 BY SUBROUTINE SEARCH)=VARIED VALUES Y HAVE TO BE
COMPUTED WITH THE VARIED VALUES G OF X.
THEN CALL SEARCH AGAIN,
4 END OF SEARCH.CONVERGENCE IN LESS THAN M ITERATIONS
5.END OF SEARCH. NO CONVERGENCE
6.END OF SEARCH. DETERMINANT WAS ZERO IN MATRIX INVERSION
MC=ACTUAL NUMBER OF ITERATIONS (OUTPUT)
EP=EPSILON FOR MATRIX INVERSION (INPUT)
A=MATRIX (NyN1} OF PARTIALS (QUTPUT) (Nl1=N+1)
L=INDEX OF COLUMN OF PARTIAL DERIVATIVES(OUTPUT)
DOUBLE PRECISION X3G,YO,YsYF,DEL,EPS,EPsA,DETER
DIMENSION X{(2),G(2)Y5Y0(2)sY(2),YF(2),4DEL(2)4EPS(2),A(2,3)
GO TO (1,2,3)sNAL
1 MC=1
100 NAL=2
DO 126 I=1,N
126 G(I)Y=X(1)
GO TO 999
2 DO 111 I=1sN
111 A(TSN+1)=YF(I)-YO(I)
IF(NP-2)1165113,116
113 DO 114 I=14N
IF(DABS(A(IsN+1))—=EPS(I)) 114,116,116
114 CONTINUE
NAL =4
GG TO 999
116 L=1
300 DO 118 J=1.N
118 G(J)=X(J)
G(L)=X(L)+DEL(L)
NAL=3
GO TO 999
3 DO 117 K=1sN
117 A(K,L)={Y(K})=YO(K))/DEL(L)
L=L+1
IF(L-N) 300,300,301
301 CALL SOLVE2(A,EPyDETER)
IF(DETER) 125,124,125
125 DO 119 I=14N
119 X(I)=X(I)+A(I,N+1)
IF(NP~1)120,121,120
121 DO 122 1I=14N
IF{DABS(A(IsN+1))-~EPS(1))122,120,120
122 CONTINUE
NAL=4
GO TOQ 999
120 MC=MC+1
IF(MC~M)100,1005123
123 NAL=5
GO TO 999
124 NAL=6
999 RETURN

QOO OO0 OO0
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Table 22 (contd)

END

$IBFTC SOLVZ.
SUBROUTINE SOLVE2(A,EP,DETER)
INPUT=A,EP
A=GIVEN 2%3 MATRIX
EP =PRECISION FOR ZERO-DETERMINANT
QUTPUT=DETER AND A
DETER=DETERMINANT
(THE LAST COLUMN IS THE SOLUTION OF THE SYSTEM)
DOUBLE PRECISION A,EP,DETER,B
DIMENSION A(2,3),B(2,3)

900 FORMAT(10X,3D16.8)
WRITE(65900)(A(1sK)sK=1y3)
WRITE(69900)(A(2,K)sK=143)
DETER=A{1,1)*A(2,2)=A{1,2)%A(2,1)
IF(DABS(DETER)-EP) 100,101,101

101 B(1,1)=+A(2,2)/DETER

B(1,2)=~A(1,42)/DETER
B(2,1)=—A(2,1)/DETER
B(2,2)=+A(1,s1)/DETER
Bl143)=+B(1,1)*A(1,3)+B(1,2)%A(2,3)
B(2:3)=+B(2,1)*A(1,3)+B(252)%A(2,3)
A(1,1)=B(1,1)
A(1,2)=B(1,2)
A(2,1)=8(2,1)
A(2,2)=B(252)
A(153)=B(1,3)
A(2,3)=B(2,3)
GO TO 999

100 DETER=0.0D0O

999 RETURN
END

OO0

$IBFTC INPOL. POLYNOMIAL INTERPOLATION,AITKEN
INPOL . POLYNOMIAL INTERPOLATION,AITKEN
SUBROUTINE INPOL(GsHsXsYsN)
ReA. BROUCKE s JPL, 1966
G() TABLE OF ABSCISSAE
H() TABLE OF ORDINATES
X INPUT ARGUMENT
Y OUTPUT INTERPOLATED VALUE
N NO. OF POINTS TO BE USED
DOUBLE PRECISION GsHyXsYsF
DIMENSION F(30),G(30),H(30)
D0 100 M=1,N
100 F(M)=H(M)
K=N-1
DO 111 J=1sK
L=J+1
DO 111 I=LsN
111 ALY = ((X~G(J))*F (D) =(X=-GLIN=F(J))/{G(I)~G(J})
Y=F (N)
RETURN
END

OOO0O0O0 O
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