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Abstract 

Results of a detailed study of the two-dimensional, elliptic restricted three- 
body problem are presented. The equations of motion and the variational 
equations have been solved with recurrent power series. Several computer 
programs have been prepared to use the recurrent power series for the generation 
of families of periodic orbits. Some of these programs have been regularized 
with the well-known Birkhoff regularization. A total of 15 families of periodic 
orbits (1127 orbits) are described. The linear stability of several of these orbits 
has been computed; that of periodic orbits has been studied theoretically for 
the elliptic problem and for any nonintegrable, nonconservative, dynamical system 
with two degrees of freedom, and it has been found that seven types of stability 
or instability exist. Periodic orbits have been obtained for both the earth-moon 
mass ratio and the Striimgren mass ratio (equal masses). The whole range of 
eccentricities e from 0 to 1 (including 1) has also been studied, and it is shown 
that some periodic orbits exist for all of these eccentricities. A family of periodic 
collision orbits is also described. 
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Periodic Orbits in the Elliptic Restricted 
Three-Body Problem 

I. Introduction 

The elliptic restricted three-body problem is a particu- 
lar case of the well-known three-body problem. "Re- 
stricted" means that one of the three particles has a zero 
mass; "elliptic" means that the two other particles move 
in Keplerian elliptic orbits. The problem, then, is to study 
the motion of the massless particle or satellite under the 
influence of the two other massive bodies. In this report, 
the problem is two-dimensional. 

I t  can be seen in the literature that the particular case 
of the three-body problem that has been the most ex- 
tensively studied is the so-called "circular restricted 
three-body problem," and that most other special cases 
have been investigated much less. For this reason, it 
was considered useful to begin a numerical study of the 
particular case of the three-body problem that comes 
next to the circular problem-the elliptic problem. The 
elliptic problem may be considered as a remarkably 
simple dynamical system that is slightly more compli- 
cated than the circular one. In fact, however, the elliptic 
problem is considerably different from the circular 
problem. This is because the elliptic problem is non- 
conservative. 

The elliptic problem may be considered as the proto- 
type of all nonconservative, nonintegrable dyncrrnical 
systems with two degrees of freedom. The elliptic three- 
body problem is probably one of the simplest examples 
of such a system, the circular problem being the typical 
example of a conseruative, nonintegrable system with 
two degrees of freedom. It  has been demonstrated that 
the fact of being conservative or nonconservatave is 
extremely important, and that the absence of the energy 
integral has far-reaching consequences. 

Another reason for the interest in the ePPiptrc problem 
is that there are several situations f11 the solar system 
for which this configuration is a better approximation 
and a better model than the circular model. Bn the study 
of the motion of the moon, for example. it is better to use 
an elliptic orbit for the earth than a circular one When 
the motion of an artificial earth-moon spacecraft or of an 
artificial lunar satellite is studied, it 1s also better to use 
an elliptic orbit rather than a circular one for :he motion 
of the moon. The literature reveals that only a dew 
authors have studied the influence of laonzcro cccen- 
tricities for the motion of the primaries of a three-body 
problem in astronautical applications; among thew are 
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Coloii~lio, L'a-iltrnan, and Munford (Refs. 1 and 2), 
E1errrr.g (Ref 3), ancl Richards (Ref. 4). As for the natural 
satelliici and astero~ds, such a study has also been made 
by Hunter (Ref 5). 

The present report Concentrates on the numerical gen- 
erabroil of oeriodlc orbits in the elliptic problem. In this 
area, it must also be said, the circular problem has been 
studned more exten~ively than the elliptic problem. In 
fact, th15 work 1s '1 natural follow-up of the author's 
plevlou4 s t d y  c s i  the circular problem (Ref. 6). This work 
attempti to generdtize several concepts and methods 
that a l t  well eatabl~shed for the circular problem. The 
recurr,. lt power-serres solutions and the computation of 
the cha~,~cterls t~e exponents by the methods of Deprit 
and Piice (Ref 7), m particular, have been adapted here 
to the ellrptlc problem To the author's knowledge, this 
has not been done before. 

In coritrast wlth the abundance of research on periodic 
orb~ts the cnr~ular problem, only a few papers have 
been publlah~d that deal with the numerical computa- 
tion of periodle orbits in the elliptic problem, e.g., that 
of SclluXsart (Rcl 8) This is another reason to undertake 
~ u c h  ,P 5tudy 

A search of the literature on the elliptic restricted 
three-body problem found that the only aspect studied 
m some detail 1s the problem of the stability of motion 
in the neighborhood of the triangular libration points. 
This aspect of the problem has not been considered in 
the present work, therefore, and the works of the fol- 
iowing authors can be consulted: Bennett (Ref. 9), 
Danby (Ref. BO), Grebenikov (Ref. l l ) ,  Lanzano (Ref. 12), 
Moultoil (Re*. l3), Rabe (Ref. 14), and Szebehely (Ref. 15). 

As regards stability, some new theoretical and nu- 
merical results concerning the stability of periodic orbits 
are given herein. Probably the first discussion of the char- 
acteristic exporients of a nonconservative dynamical sys- 
tem with two-degrees-of-freedom is presented in this 
report, It is shown that seven classes of orbits exist. Some 
preliminary results were presented at the August 1968 
meeting of the American Institute of Aeronautics and 
Astroi~aiitics/i?irneriean Astronautical Society (AIAA/AAS) 
(Ref. 16). A short, related study of the characteristic 
exponents of a dynarnical system was also published by 
Broucke anid Lass (Ref. 17). Much numerical work has 
also becri accumulated to illustrate numerically the dif- 
ferent properties of the characteristic exponents of the 
orbits; in fact, periodic orbits have been found that 
belong to all stability classes. These orbits have been 

grouped in 15 families. Altogether, more than 1100 pe- 
riodic orbits are described in the present report. To find 
these periodic orbits, the circular restricted three-body 
problem has generally been used as a starting point, and 
the eccentricity has then been increased. For instance, 
some starting orbits have been taken from Broucke's re- 
port (see Ref. 6) and from Bartlett's publication (Ref. 18). 

Another remarkable property of the elliptic three-body 
problem, which has been the origin of several publica- 
tions, has to do with the so-called Nechville transforma- 
tion of the equations of motion. Nechville's paper was 
published in 1926 (Ref. 19), and his result has been dis- 
cussed recently by Szebehely (Ref. 20), Kopal and 
Lyttleton (Ref. 21), Herring (see Ref. 3), and Broucke 
(Ref. 22). In the present report, an attempt is made to 
remove the singularity e = 1 from the Nechville trans- 
formation. 

The Nechville transformation has also originated work 
on regularization of the elliptic problem, as can be seen 
in the works of Szebehely and Broucke (see Refs. 20 and 
22). Earlier work on regularization of the three-body 
problem has been published by the present author in 
Icarus (Refs. 23 and 24), where several regularizing 
transformations are discussed; only the Birkhoff trans- 
formation, however, has been used herein. Practically 
no previous numerical work has apparently been done on 
the elliptic three-body problem in regularized coordi- 
nates. For this reason, an extensive study has been made 
of the behavior of the integration of the regularized 
equations of motion. A regularization of the elliptic 
three-body problem that is independent of the Nechville 
transformation has been published by Schubart (Ref. 25). 
A review of the equations of motion and the regulariza- 
tion of the elliptic restricted three-body problem is con- 
tained in Szebehely's work on the theory of orbits 
(Ref. 26), which is probably the first description of a 
family of periodic collision orbits in the elliptic problem 
that has been published. 

The present report is subdivided into five sections. 
Section I1 describes the equations of motion relative to 
different coordinate systems, including the regularized 
equations. In the equations of motion, three differences 
between the circular and elliptic three-body problems are 
apparent, as follows: 

(I)  The elliptic problem contains two parameters rather 
than one-the eccentricity e and the mass ratio p. 

(2) The elliptic problem has no energy (or Jacobi) 
integral. 
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(3) The independent variable is explicitly present in 
the equations of motion, even when rotating axes 
are used. 

Section I11 describes the solution of the equations of 
motion and the variational equations with recurrent 
power series, and the properties of periodic orbits. I t  is 
shown that, in the elliptic problem, the period of a 
periodic orbit is always a multiple of 2a. For this reason, 
when e and p are kept fixed, only isolated periodic orbits 
exist in the elliptic problem; however, families of pe- 
riodic orbits may be generated with e or p (or both) as 
variable parameters. The present work is relative to 
symmetric periodic orbits only, although nonsyrnmetric 
periodic orbits may also exist. Another characteristic of 
the elliptic problem is that periodicity can be obtained 
in the inertial axes as well as in the rotating system 
(whereas, in the circular problem, the orbits are generally 
periodic only relative to the rotating coordinate system). 
It  is also shown in Section I11 that the linear stability 
in the elliptic problem-and in any nonconservative, 
nonintegrable dynamical system with two degrees of 
freedom-depends upon two independent real numbers 
rather than upon one, as in the circular problem. As a 
consequence of the existence of the two independent real 
stability coefficients, it is shown that seven types of sta- 
bility or instability exist in the elliptic problem. 

relative to each other or relative to their center ef mass. 
These Keplerian orbits will always be elliptic, and 110 

restriction will be made on the eccentricity e. Thus, the 
case with eccentricity e = 1 will be considered herein as 
well as the other values of e from 0 to 1. 

Basically, an inertial barycentrie frame of reference 
will be used, although several rotatmg systems of axes 
will also be used. The convention is that, at the ~nitial 
value of the independent variable (at t = 01, thc two 
primaries are always located on the x-axis, and are at an 
apse-either at  minimum elongation (periapsis) or maxi- 
mum elongation (apoapsis). On the other hand, a system 
of canonical units will be used in such a way that the 
semimajor axis a and the mean motion n of the two-body 
motion of the primaries are unity. It is then possible to 
designate the two masses of the primaries (hciudlng the 
gravitation constant) by m, = 1 -,u and m, = i ~ i ,  j 35. 
The distance r between the two primaries is ther 

.e  cos E) = P 
1 + ecosv  

where E is the eccentric anomaly, c is the true anomaly, 
and the semilatus rectum (1 -e2) has been called p. With 
respect to the barycentric inertial frame of reference, 
the coordinates of m, and m, are taken to be 

Sections IV and V contain descriptions of the families ( l = - p r ~ ~ ~ v  = - ~ ( c o s E - e )  
of periodic orbits and the computer programs. The com- 

P a )  

puter programs that have been prepared are too long to - 
be described completely herein, but they can be obtained 71 - -p r s inv  = -p ( l - e ' ) ' h s i r~E  (2b) 

from the author upon request. 
l2 = (1 - p)rcos v = (1 - ,L) (COS E - e ;  (2e) 

II. Equations of Motion 
,? = (1 - p)rsin v = (1 - ,L) (I - '"I/' e - )  sinE (2d) 

A. The Underlying Two-Body Problem 

In this report, the results are given of a numerical The eccentric anomaly E will be related to the time t 

study of the two-dimensional, elliptic restricted three- through Kepler's equation 

body problem. 
t + x = E - e s i n E  (3)  

A particle is supposedly moving under the effect of 
In the present study, the phase constant x is always taken 

the Newtonian attraction of two massive bodies called the 
as equal to 0 or a. The case x = 0 corresponds to a rnini- primaries. In the present study, the particle or satellite 
mum elongation (periapsis) of the two primaries a t t  = 0, and the two primaries (all three) move in the same plane. 
whereas the case x = a corresponds to maximum elnnga- The problem is called restricted because the two pri- 
tion (apoapsis). maries influence the satellite without themselves being - 

influenced by it. In other words, the satellite is small and 
supposedly "massless" with respect to the primaries. A few other formulas relating to the motion of the two 
This allows the two primaries to move in Keplerian orbits primaries will be needed. For instance, the first and 

JPL TECHNICAL REPORT 32- 1360 3 



second lime derivatives of r, v, and E are 

I 

/a?) " 0' = - 2)" " -2e sin v 
?? r3 (4) 

In the sections that follow, a special set of coordinates 
4 E' - - = -esinv (%?,;i) will be used. They will be called "reduced or 
i' ~ Y P ) " ~  pulsating coordinates, and will introduce a radial change 

of scale in such a way that the elliptic motion of the 
Using che above relations, the energy integral of the two- in the system in a circular 
Lady problem is easily verified: motion in the system (&). The change of scale must thus 

1 1 1 
be proportional to r: 

- (?^" .+ r'*'" - - = - - 
0 d T - 9 ( 5 )  

[ = rz, 7 = rf (10) 

In the aLove equations, a prime is used for the deriva- 
The reduced coordinates of the primaries m, and m, are 

tlves ~ 7 t h  respect to the time t, but later the true anomaly 
then u will be used as independent variable, and the deriva- 

tlves w th respect to the true anomaly v will be indicated - 
(1 = -pcosv, g2 = cosv by dot< The dernvatives of r are then 

(11) 

er' sinv 
T = 

P 

Energy Eq. (5) may also be written as 

(6) 
and represent circular motion (with nonconstant angular 
velocity). It  is clear that the transformation of Eq. (10) 
cannot be used when r = 0 or when e = 1. 

a 'h ro~~gh the use oi energy Eq. (7), i may be eliminated 
horn the second equation, Eq. (6), so that the following 
diflene;litial equation for r is obtained: 

DINercratlctl Eq (8) wllP be used rather than the explicit 
soleatlor? ob Ey (1) because this will facilitate the work 
wlth 1,cuVaerat pouer series. This equation is not valid 
BOP p - 0 01 e - Y For this reason, in cases with high 
valuc, of e, Eq (1) will be used rather than Eq. (8). In 
tl-irs ca\e, Keplei's equation, Eq. (3), has to be solved, 
there 5 lie duiEceailiy in solving Eq. (3) numerically by 
succei,lve al~pnox~mdtions, however, even for high eccen- 
trlcriii\, although Tome precautions may be necessary 
when P = P In wtwt follows, frequent changes of the 
~nadep~nslenc v,~rlabit~ from t to v will be made. For any 
cauant~iy 3', tire relations between the t-derivatives and 
v-der2-c ,stl~es ncco~dmg to the equation for v' in Eq. (4) 
dTe 

B. Inertial Barycentric Equations of Motion 
of the Satellite 

In the present study of the elliptic restricted three- 
body problem, it has been necessary to use different 
coordinate systems. The equations of motion of the satel- 
lite relative to these coordinate systems will now be 
given, starting with the equations relative to the bary- 
centric inertial system. Later, two other important bary- 
centric systems will be used; they are called the "rotating" 
and "pulsating" systems. Finally, some other derived 
coordinate systems must be used for special purposes, 
such as regularization. In other cases, coordinate systems 
centered at m, or at m, will be used. These systems will 
be called "geocentric" (at the "earth m,) or "seleno- 
centric" (at the "moon" m,) because, in many computa- 
tions, the earth-moon mass ratio has been used. Their 
function is mainly to show the forms of the orbits with 
respect to these masses (m, or m,). 

In the inertial barycentric frame of reference, the 
equations of motion of the satellite derive froill the 
Lagrangian equation 
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They are thus 

The distances between the satellite and m, and m, are 
obtained by 

s; = (6 - -I- (7) - 
(14) 

sa = (6 - t,)' + (? - 11,)9 

Lagrangian Eq. (12) is not conservative because it ex- 
plicitly contains the independent variable through s, 
and s,. 

If the true anomaly v were used as an independent 
variable, the equations of motion would be derived from 
the Lagrangian equation (see Ref. 22): 

If the "reduced or "pulsating" coordinates (&j) are 
used, according to Eq. (lo), and 

Lagrangian Eqs. (12) and (15) may be transformed ac- 
cordingly, to give two new Lagrangian equations: 

where 

Dividing the Lagrangian L in Eq. (18) by (p)" and re- 
placing + by its value taken from Eq. (B), the folIawing 
expression is obtained: 

1 2, L = - ((- + :? 
e r sin v 

2 - .I)+--- (5‘ + if?) P 

This Lagrangian equation may finally be  replaecd by a 
more simple one, 

which is obtained by subtracting from Eq. (20) the fol- 
lowing exact differential: 

The equations of motion of the satellite, in "mertiaF. 
barycentric pulsating" coordinates, vvith the true :inomaly 
v as independent variable, are thus 

The forces present in the last eqrratior~r of motion, 
Eq. (23), contain three terms: an apparent radial force 
that comes only from the radial scale change of thc 
coordinate system, and m, and m,, which are, oi: csurse, 
the Newtonian attraction potential from thc f 1 1 7 0  131-1- 

maries. 

C .  Equations of Mot ion  W i t h  Rotating Coordinates 

Rotating barycentric coordinates ale now sntroc'uced 
The rotation angle is the true anomaly .o Except when 
the eccentricity e is zero, the angular vcloclty of VIC axes 
will thus be time-dependent. The equ,ltroni oE motion En 
rotating axes will be written here 111 difIeler3i- fo-711s- 
with time and wit11 the true anomaly .is mdeyendent 
variable, and with ordinary and reduced purrat r ~ g  co- 
ordinates. The most important set of equntions. of motroll, 
however, is the set wherein the true anon'~ly 15 the 
independent variable and where pulsatrr-rg coord nates 
are used. 
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The ordinary rotating coordinates will be designated and the corresponding equations of motion may be writ- 
by (Z,i j), which are related to the inertial coordinates ten as 

[ = Tcosv - ijsinv 
(24) 

= Tsinv + ijcosu 

The rotating coordinates introduce the advantage that 
the two primaries m, and m2 are now permanently on 
the ?-axis, their coordinates becoming 

but these coordinates are not constants; the two primaries 
rn, and nj; are oscillating on the x-axis. Lagrangian 
Eq. ( J ? ) ) ,  under the effect of the rotation of Eq. (24), 
transionrns into 

The equations of motion corresponding to this Lagrangian 
equation are 

Eq;aation (27) will practically never be used, but will 
be t"cr,~iasformed once more in order to use rotating- 
pulsating coordinates (x,y). These coordinates are de- 
fined in the same way as in Eq. (10): 

Lagrangian Eq. (26) then transforms in the new La- 
grangian equation 

The equations of motion take a more simple form if 
the true anomaly v is used as an independent variable. 
This change of variable is done with the use of the ex- 
pression for vr, given in Eq. (4), in the same way as it was 
used to obtain Lagrangian Eq. (15). If one also subtracts 
the exact derivative, which is similar to Eq. (22), 

after division of the Lagrangian equation by (p)lh, then 
Eq. (29) finally transforms into 

1 L = - ( Z 2  + y" + (xzj - y f )  
2 

The equations of motion derived from this Lagrangian 
equation are 

The above Lagrangian and equations of motion, Eqs. 
(32) and (33), have the remarkable property that they 
differ only by the factor r /p  = 1/ (1  + e cos v )  from the 
Lagrangian and classical equations of motion of the 
circular restricted three-body problem. For this reason, 
the equations of motion, Eq. (33), with rotating-pulsating 
coordinates and with the true anomaly have often been 
used by different authors. They have also been used as 
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the basic equations for the study of the orbits described 
in this report. 

I t  should also be noted that Lagrangian Eq. (32) can 
be obtained directly from Lagrangian Eq. (21) by the 
simple application of a rotation similar to Eq. (24). In 
the different numerical integrations that have been done, 
the differential equations, Eq. (33), have mostly been 
treated with the recurrent power series method. For this 
purpose, the second differential equation, Eq. (6), has 
been joined to the system by Eq. (33). A system of the 
sixth order is then obtained that does not explicitly 
contain the independent variable. When this system is 
solved, the time t can be obtained by a quadrature. 
However, it is simpler to obtain the time t by numerical 
integration of the differential equation 

simultaneously with the equations for x, y, and r. The 
computer programs to integrate numerically Eqs. (33) 
and (34) are described in Section V. 

D. Equations of Motion for the Rectilinear Elliptic 
Restricted Three-Body Problem 

The equations of motion for the two primaries given in 
Eq. (2) are still valid for e = 1 when the eccentric 
anomaly-and the equations of motion of the satellite 
given in Eq. (13), which are relative to the inertial axes- 
are also valid when the eccentricity e of the primaries is 
one. The motion of the primaries being on a straight line 
(on the x-axis), there is not much need for rotating axes 
in this problem. On the other hand, the "reduced or 
"pulsating" coordinates, as used in Eq. (33), cannot be 
applied when r =O; the rotation of the axes with the true 
anomaly u as the rotation angle becomes senseless when 
r =O. For these reasons, it has been necessary to make a 
separate study of the elliptic problem with e = 1. 

A different set of computer programs was needed to 
study the rectilinear problem. It  was still possible to 
introduce a system of reduced coordinates that "fixes" the 
position of the primaries at the coordinates +% and -lh 
on the x-axis. This has been necessary mainly for the 
regularization of this problem with Birkhoff coordinates. 
However, this transformation is not valid when r = 0, and 
can thus only be used for those arcs of orbits for which 
r is not too small. Therefore, it is not possible to use this 
transformation to regularize the simultaneous collision of 
the two primaries and the satellite (which would be a 
case of triple collision). 

The motion of the satellite when e = h is still derived 
from the Lagrangian equation 

where 

As before, the masses of the two primaries are m, -- 1 - p  
and m, = p. 

The time t is related to the eccentric anomaly E by 
Kepler's equation 

and the distance r between the two primaries is 

Lagrangian Eq. (35) will now be transformed by a 
change of coordinates and a change of independent 
variable. The time t will be replaced by a new inde- 
pendent variable s, which is defined by the differential 
relation 

The derivatives with respect to s will here be desig- 
nated by dots. With the variable s, the differential equa- 
tion for r, corresponding to Eq. (6), beeoanes 

whereas the energy integral of Eq. (5) becomes 

2 - j.? - 4r" - 9 3 
-t" 

r (41) 

Using this energy integral, Eq. (40) may be written as 
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A chjrige of coordinates from (,t, 11) to (x, y )  will now 
:dso I:( in~erc~drxceci by 

wilere x,, is defined hy 

a 1 
x,) = , (m, - m,) = - (1 - 2p) - 2 (44) 

Solvirig Eq. (43) for [ and then gives 

Csmg /Sb, and tlze definitions of Eq. (43), it can now 
be i c ~ -  tFilt .rile ~ooa-dinates of the primaries relative to 
the 11, w ~oolc!mai-e system are 

- 7 nilon :qi (36a) and (36b), it is also seen now that 

Ap,) fv.rrig t1-i~ ~oclsdlnate transformation of Eq. (45) and 
i?,e t i  r c tranilorma,ion of Eq. (39) to Lagrangian Eq. (35) 
gives :i%e :~C\N Ldgrd~~gi~xn equation 

1 --y ' 2  - G') + [(x - x,) 2 + y $ ]  sin E - 
sin' E 

I [ (T - *c, , )~  + y21 7 

Eqilil A can be greatly simplified by subtracting 
krom , the exact dnfferential 

I 

The Lagrangian equation then becomes 

1 m m., 1 - 2 [(x - x,)" yy"] + -2 + - (50) ry" f 

The equations of motion that correspond to this 
Lagrangian equation are 

Again, the first of the three terms on the right side gives 
the artificial centrifugal force coming from the radial 
change of scale of the coordinates, and the two last terms 
are the ordinary Newtonian attraction terms. 

Because of the straight-line motion of the two primaries, 
the problem treated here presents some similarity with 
the well-known two-fixed-center problem, of which the 
present problem may be considered a generalization (the 
two "fixed centers" now move on a straight line in accor- 
dance with Keplerian laws of motion). Because of this fact, 
this problem seems more interesting than the two-fixed- 
center problem. The problem studied here is gravita- 
tionally consistent, whereas the definition of the two- 
fixed-center problem is somewhat arbitrary (the primaries 
attract the satellite but do not attract each other!). 
Among the similarities with the two-fixed-center problem, 
one can also mention the absence of Coriolis force and 
the characteristic loops in the orbits that are caused by 
this force. 

E. An Alternate Form of Equations of Motion for the 
Elliptic Restricted Three-Body Problem 

As aforementioned, the equations of motion, Eq. (33), 
with rotating-pulsating coordinates and with the true 
anomaly as independent variable are not valid when p = 0 
and e = 1, nor when r = 0. Attempts have been made to 
arrive at a corresponding system of equations of motion 
that would be valid for all values of e (including e = 1) 
and for all values of r (including r = 0). Such a set of 
equations has not been found, but a set is derived below 
wherein the singularities r = 0 and e = 1 are removed. 
However, this set is unsatisfactory because the situation 
r = 0 is now an equilibrium solution of the new equations 
of motion. Thus, these equations of motion are adequate 
for all values of e;  when e = 1, however, those parts of 
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the trajectory that are close to r = 0 must be avoided, and which gives the associated equations of motion 
have to be integrated in a different way, e.g., in ordinary - 
inertial coordinates. These equations of motion will now 
be derived. 

The rotating-pulsating coordinates are used as before, 
but the independent variable will no longer be the true 
anomaly. The new independent variable s will be related 
to t as in Eq. (39), but not in Eq. (34): 

The fact that the denominator (p)lh is not present here 
as in Eq. (34) will make the new time transformation of 
Eq. (52) valid even when e = 1 and p = 0. 

The value of r in these equations of ~ O ~ I O I :  c~ai? be 
obtained by simultaneous integration of a drRerc 1tr;ri 
equation similar to Eq. (6) or (40). HC the mdependent 
variable s defined in Eq. (52) is used, the second-rnder 
differential for r may be written as 

Using the reduced inertial coordinates (&) as before If the energy integral 
(but with no rotation of axes), the following Lagrangian 
equation corresponding to Eq. (21) is obtained: 2 - i+ $pr - 4r? = -ZT 

r 
(60) 

1 :' + '2 + (T- (($ + 72) L = -  ( 6  11) 
2 

is used to eliminate i, the differential equation ior i: 
becomes 

F3) = -2r3 + 31.2 - pr. 

The equations of motion derived from this Lagrangian As stated above, however, the differential equation for r 
equation are and the energy integral show that, when r = 0, then also 

g-  g2 i = i: = 0; thus, this becomes an eqiailibriuln soiution. 
+ m,- 

," 
(54) 

F. Some Formulas for Coordinate Changes 

The rotating coordinates (x,y) are now introduced by 

= x cos v - y sin v 

;i = x sin v + y cos v 
(55) 

where v is the true anomaly, related to the new inde- 
pendent variable s by the relation 

Lagrangian Eq. (53) now transforms into 

In the numerical study of periodic otblis it w lr fre- 
quently be necessary to make changes of coolainaces 
during the integration or for the input of il~areal ccsr~dltioi~.; 
This is also necessary for the output of the orb:ts, either 
in printed or in graphical form. The computer ptog7arns 
that have been prepared are all greatly flexible as to 
what concerns the different types of input and cc;tprrt 
Several subroutines havc thus had to be prepaied to 
make the changes of coordinates. For ehrs ieason, 
of the formulas are recapitulated belcw 

I .  Inertial coordinates ([,T) to rotating coordi~zates 
(2, a. 

+ r [+ (x' + y') + r, m' + 7 m 2 ]  (57) 
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2. Rotating coordinates (f,ij) to inertial coordinates 
([,$a 

3. Rotating coordinates (Z,ij) to pulsating coordinates 
i..,~)" 

The doti here indicate derivatives with respect to the true 
'~iiona'l~y r, 

4. Pubating coordkates (x,y) to  rotating coordinates 
(.,ti)* 

5. Inertial barycentric coordinates ([,7) to inertial 
geocentric coordinates ([,, 7,). 

[, = 2 + pr cos v 
(66) 

7,: = 7 + pr sin v 

6. Inertial barycentric coordinates ([,7) to inertial 
selenocentric coordinates ([,, 7,). 

The geocentric coordinates are relative to the larger 
mass m, = 1 - p, whereas the selenocentric coordinates 
are relative to the smaller primary m, = p. The last two 
transformations have been used only for graphical display 
of the orbits; therefore, the corresponding velocity trans- 
formations were not necessary, and are not reproduced 
here. 

6. The Five Equilibrium Points of the Elliptic Problem 

It  is well known that the five Lagrange points (or equi- 
librium points) of the circular restricted three-body 
problem still exist in the elliptic three-body problem. 
At these five points, the satellite always remains in the 
same position relative to the two primaries. I t  can be 
shown in different ways that five such points exist. This 
will be proven herein in two ways: (1) with the use of 
rotating-pulsating coordinates (x, y) and (2) with inertial 
coordinates ((, 7). 

In the system of rotating-pulsating ,coordinates, the five 
equilibrium points are fixed. It  can be seen by considera- 
tion of the equations of motion, Eq. (33), that there are 
five particular solutions with constant coordinates and 
with 2 = = ? = i~ = 0. These constant coordinates must 
thus be a solution to the equations obtained by setting 
the right side of Eq. (33) equal to zero. 

It  has been presumed here that r is always different 
from zero; the case e = 1 of the rectilinear elliptic problem 
is thus excluded in this study of the equilibrium points. 
Equation (68) is identical to those equations obtained in 
the treatment of the classical circular three-body problem. 
The conclusions thus usually derived from Eq. (68) are 
still valid for the elliptic problem. The two equilibrium 
solutions that are the easiest to find correspond to 
r ,  = r, = 1, as can be seen from Eq. (68); they correspond 
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to equilateral triangle configurations with the two pri- 
maries m, and m,. These solutions are generally called 
L, and L,, and their coordinates are 

The other three solutions of Eq. (68) are L,, L,, and L,. 
These are called the collinear equilibrium points because 
they correspond to y = 0, and are thus on the syzygy-axis 
(the line of the two primaries). 

The abscissa x must thus be a root of the equation 

where now 

Equation (70) has one root in each of the three intervals 
on both sides of m, and m, and between m, and m,. This 
is a consequence of the fact that, in each interval, f(x) is 
monotonously decreasing from + co to - w ,  the deriva- 
tive of f(x) being negative in each of the three intervals 

The abscissae of L,, L,, and L, can be obtained by 
numerically solving Eq. (70), which can be reduced to a 
fifth-degree equation in x. These coordinates have been 
tabulated by a large number of authors. 

It is of great importance to study the neighborhood of 
the equilibrium points, mainly to determine the stability 
of these points. For this purpose, it is interesting to 
linearize the equations of motion, Eq. (33), in the neigh- 
borhood of the equilibrium points to obtain the so-called 
first-order variational equations. To accomplish this, 
Eq. (33) may be written in the form 

where the potential function U is defined by 

The subscripts x and y are used to represent partial deriva- 
tives of U. 

The first-order variational equations corresp;.ortd;ng to 
Eq. (73) may then be written as 

Equation (75) forms a system of linear d18ere.atncl equa- 
tions with nonconstant periodic cocficients becarrsc of 
the factor r, which depends upon the cosrne of the true 
anomaly. I t  is well known that, in the circular fht ec-body 
problem, a system with constant coeficaents wol~ ld  be 
obtained (r being constant). In this fact resides a prm- 
cipal difference between the elliptic and the c~icular 
restricted problems. In the elliptic problem, a Inore 
difficult technique is necessary to study the var~ztional 
equations than in the circular problem. The Floquet 
theory can be used, for instance, as has been shown by 
several authors. The characteristic equation of the cystern 
formed by Eq. (75) would be 

but again the coefficients of this equation are pcriodie 
functions of the true anomaly v .  

It  is also possible to show the existence of thc five 
equilibrium points without using rotating coordmates. 
This will be done herein with the use of rncrtl,iI b x y -  
centric coordinates. This demonstration will F:e done 
separately, again, for the two equilateralpoints I,, and L ,  
and for the collinear points L,, L?, and L,. 

For the triangular points, it can be concluded that the 
inertial equations of motion, Eq. (13), have &he correspond- 
ing two particular solutions by simple geometrical eon- 
siderations (Fig. 1). The two primalies are supposed to 
be at points M I  and M,, with the center oi  mass at the 
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Fig. 1. Configuration of masses M,, M ,  and 
libration point L, 

orlglri iI oC the coordinate system. Each side of the triangle 
L , M ,  ? f -  has rhe length r, as given by Eq. (1). The co- 
ol-diil,~-ies ok $1, and LM., are given in Eq. (2) .  The coordi- 
nate\ a f the mndpoant Ma of the segment M,iV, are then 

t t o r  eos v, T~ = tor  sin v (77) 

wheli < ,  1s the S C I . ~ ~  as the quantity x,  already defined 
~ a a  Eq 44, :",, -- (Big) - p = ( 1  - 2,)/2. The equilibrium 
~01131 / arilcn has the coordinates 

(3)" r cos (90 deg + v )  ti = 4, -k - 
2 

== T :  f - (')" r sin (90 deg + v )  
2 

(3 )  i. sin u + - cos v l  
2 (78b) 

tPle Icrl=th of the segment M3L, being r(3/2)lh. It  is now 
cdsy :O veiify that the point L, with the coordinates of 
Eq (73) c oscribes a Keplerian ellipse that is a solution 
05 rh-ht zquatiolas of motion, Eq. (13), of the particle. 
The se:ond derlvatlves of Eq. (78) are 

Subst--ation of the roordinates of Eq. (78) and the accel- 
eratior15 of Eq (79) verifies Eq. (13), which thus proves 
that Eq (78) is a particular solution. 

It 1s remarkable that the geometry of the triangle 
L,M,;ki;_ depends upon the eccentricity e through the 

distance r only. In other words, the shape of the triangle 
depends upon e only, whereas angular quantities in this 
triangle depend upon the mass-ratio ,u only. For instance, 

cos a, = ( 2  - P)  
2(1 - , + 

cos a, = ( 1  - P)  
2(1 - , + ,")'/" 
( 3 )  'I3 

sin a,  = - P 
2 (1 - , + $)l/2 

(3)lA ( 1  - ,a) sin a, = - 
2 (l-,+,2)rh 

The length of the segment OL, is r(1 - p + p2)1h. The 
three forces that act on the point L ,  are the attractive 
forces F, and E,  from m, and m,, together with the 
centrifugal force F ,  : 

The resultant of the three forces is along the direction 
OL, with magnitude 

The existence of the collinear equilibrium solutions 
can be shown in a way similar to the above demonstra- 
tion for L, and L,. The coordinates of any point that is 
collinear with m, and m, may be expressed as 

[ = (1 -a ) [ ,  + a[, = ( a  - ,)r cos v 
(83) 

7 = ( 1  - a)771 + = ( a  - ,)r sin v 

The constant parameter a is between 0 and 1 for points 
that are between m, and m 2 ,  and outside of these two 
limits for points that are outside m ,  and m,. Substitution 
in the inertial equations of motion, Eq. (13), shows that 
Eq. (83) is a particular solution for the values of a that 
satisfy the condition 
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For each of the three intervals, inside and outside the 
limits 0 and tl, Eq. (84) becomes a fifth-degree equa- 
tion in a, and each time has one single real root. In this 
way, the three collinear points L,, L2, and L, are thus 
obtained. In fact, the fifth-degree equation obtained from 
Eq. (84) is fundamentally equivalent to Lagrange's well- 
known fifth-degree equation in the masses for the col- 
linear solutions of the general three-body problem. 

Similar expressions for the d e r i ~ a t n  c mav '3c t ~ l t t c ~ )  
when some other independent variable rs US& r 8recca- 
ing in this way, the different coordrnatil i j i f c r r c  that: 
have been introduced above could ail be used T ~ i i  mod 
elegant way of introducing the energy 1s  L?toi> 11-I\ o 1 1 7 ~  

the rotating coordinates and the t r ~ r i .  cinal.~c~l? 2.: i 7 

Eqs. (32) and (33): 

H. The Energy Equation of the Elliptic Restricted 
Three-Body Problem 

The classical energy or Jacobi integral of the circular 
restricted three-body problem has no analog in the 
elliptic problem. This is a well-known result and, because 
of this fact, the elliptic problem is fundamentally different 
from the circular problem. Even when rotating or pulsat- 
ing axes are used, the independent variable (e.g., time 
or true anomaly) is still present in the Lagrangian equa- 
tions and in the equations of motion; in the circular 
problem, the independent variable disappears by a simple 
rotation of axes. For this reason, the elliptic problem 
must be considered nonconservative as opposed to the 
circular problem, which is conservative. 

Although there is no known energy integral in the 
elliptic restricted three-body problem, it is still possible 
and even useful to define a quantity that can be called 
energy. This energy, however, will not be constant along 
any given trajectory. In this case, it will be possible to 
establish the differential equation for the variation of the 
energy. 

There are different ways of defining the energy and 
its differential equation, but the classical definition- 
with the Lagrangian or Hamiltonian equations-will 
probably be the most useful. If canonical variables and 
canonical equations of motion are used, the Hamiltonian 
H may be considered as the energy of the satellite; if 
Lagrangian equations of motion are used, the energy E 
is the difference between the second- and zero-degree 
terms in the velocity components of the Lagrangian 
equation, E = L, - Lo. In both cases, the derivative of 
the energy has a very simple expression: 

where U represents the negatiw oP t i l e  cyua "til 'n 
brackets in the first expression. Thc deribritr-vc 01 '- n rib 
respect to the time t or the true ancsrnai~ r, ,a 1.c oh- 
tained by using the expressions for tile dct - ~ q b ~ r  ( < g n  L U  
in Eqs. (4) and (6) for the variable 7 

I t  will be seen in the followmg sectrol s r ,a i  the 
"energy-differential equation," Eq. (871, p l r i y ~  .in im- 
portant role in the regularization of the equakllni of 
motion. These differential equations have alsc bec? ir.ii~t1 
for controlling the precision of the r~urne~rcal irzt  l,lati~\rt 
of the equations of motion. One of the equatlo Ir, ' 5 ~  (K), 
is integrated along with the equations of .lotior, .id thc 
result of the integration is continucu.;ly cornpaied wl<h 
the value of E computed directly w ~ t b  Eq (F6) 

I. Regularization With Birkhoff Coordinates 

For the computation of close approachci a7-d ct Iirsiorr 
trajectories, it has been necessary to uic a ? x L ,  elm O{ 

regularized equations of motion. Only the 93arlil~oE co- 
ordinates have been used herein for the cI11pti~ I, , ~ P I C ~ C ~  

three-body problem. The BirkhofF cocrdlnate5 =ir bnov 11 

to regularize simultaneously both slngi11,ra 7 rc - of rF?c 
problem, they also lead to relativci~ si~nplix ( l t~l t rnn"  
in both the Lagrangian and Harn~honrai~ fonrxa~ 

The Birkhoff coordinates will be intr R ~ I J C . C L C L  111 1 v l ? t i ~  
with the rotating-pulsating coordinates ;z,r/j f ncd in 
Eq. (28). They will be called <,rl. No coitftic~oili .x nth the 
inertial coordinates ([,?) used in Sectroer 11-1s I?' i cirile 
because thesc inertial coordinates will not t31 J 
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this point on. In fact, a coordinate system (X,Y) will also 
be used that is intermediate between the rotating coordi- 
nates (r,y) and the Birkhoff coordinates (2,rl). The co- 
ordinates (X,Y) are obtained from the coordinates (x,y) 
by a simple translation along the x-axis, which is made 
in such a way that the new origin becomes the midpoint 
of the two primaries m, and m,: 

where x,, is the quantity 

where the following abbreviation S is used: 

Solving Eq. (92) for t gives 

and this shows that Eq. (92) is a one-to-two mapping 
between the 2-plane and the Q-plane except at the two 
branch points 2 = =t1/2. These two branch points thus 
correspond with the two singularities of the problem, 
i.e., with the location of the two primaries m, and m,. 
The derivative 2' of Eq. (92) is 

which his already been used in Eq. (44). The coordinates --Z'=- t2 - 1 dZ - 
(X,Y) wvll be called median coordinates. The coordinates dQ 4P 

(96) 

of the primaries rn, and m, are now 
and the value of 2' is thus zero at the two critical points 

1 5 = + 1 and 5 = - 1, which are also the branch points X I = - -  Y, = 0 
2 ' Z = + 1/2 and Z = - 1/2 described above. Except at 

(90) these two points, Eq. (92) defines a conformed mapping 
1 between the 2-plane and the (-plane. The absolute value 

X 2 =  +-, Y, = 0 
2 of 2' in Eq. (96) is given by 

and the distances from the satellite to the primaries are a(x,y)  - 1 
obtained by 7) - =[(s + I)? - 4f21 

- - 
(97) 

The symbol 1 is used here to represent the Jacobian or 
the functional determinant of X,Y with respect to Ln. 

In what follows, it will be necessary to express rl,r, 
The Birkhof coordinates = 2 + irl are related to the and r,r, with the Birkhoff coordinates. This can be done 

median coordinates Z = X + iY by with the use of Eqs. (91) and (93): 

The function Z of 5. is thus analytic everywhere except at 
[ = O a n d % =  cc. 

[(S + 1) + 221 r1 = - 
4(S)'/' 

r, = - [(S + 1) - 221 
4(S)'lS (98) 

1 
rlr, = - [(S + 1)" 4P]  

Separating in Eq. (92) the real and imaginary parts 16s 
gives for X and Y the expressions 

Comparing the last relation of Eq. (98) with the expres- 
sion of Eq. (97) for the Jacobian determinant gives the 
new formula 

(93) 
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This last expression will be used to define a new inde- the median coordinates (X,Y) are used instead of (x ,y ) .  
pendent variable s, which will be used instead of the true Lagrangian Eq. (32) becomes 
anomaly v. In what follows, dots are used to designate 
derivatives with respect to the true anomaly v (the "o ld  1 
independent variable) and the symbol for derivatives L = - (x? + 9" + (x? - ~ i )  

2 
with respect to s (the "new" independent variable). Thus, 
s will be related to v by rn m (X' + Y2) + x,X + - + '1 

P I 1  ?' 2 -1 

From the transformation in Eq. (93) of the coordinates, The different terms of this L~~~~~~~~~ trans- 
the corresponding transformation of the velocity compo- form in the following way: 
nents is obtained by 

where the partial derivatives have the following values: 
26, 

x3+y2=- s + -  +- 
:6[( ) S (106~) 

(102) The second of the three preceding expressions :nay be 
written as 

1 
and where D is the difference x? - y i  = (A& + A~;) (107) 

D = ( ? -  2 
7 (Io3) where Af and A, are defined by 

To Eq. (101) corresponds the inverse transformation 1 a ?X i??' 
A* = - --(X? + Y?) = - x L  - y- 

of the derivatives (velocity components) : 2 a, Zri C?j 

a~ - ax . - 
.$=+-x--Y TJ (S" 46' - 1) 

16S2 
(10Sa) 

a, 3, 

The coordinates (I,?) themselves are easily derived from =+-  'I (S2 + ,$ - 1) 
16S2 

( IOSb) 

X and Y by taking the real and imaginary parts of - 
Eq. (95). 

To account for the change of independent variable 
from v to s according to Eq. (loo), Lagrangian Eq. (105) 

J. Equations of Motion With Birkhoff Coordinates must be multiplied by J. The followjng new Lagrangian 

Lagrangian Eq. (32) in rotating-pulsating coordinates equation is thus obtained: 

(x,y) will now be transformed to the Birkhoff coordinates 
(<,rl) and to the new independent variable s, and the 1 
corresponding equations of motion will be derived. If 

L = (P + $) + (A& + A~,;) + 2 JU (109) 
P 
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The eqaations of motion derived from this Lagrangian 
equation take the simple form 

The 1,i\t Lerm in these equations, proportional to the 
eneigy E,,?, is dxe to the change of independent variable 
(see We: 12)  

ar, 1 -=- 
at 4 (s3)lh [(S - 1)6 t 2?'] 

ar2 - 1 --- 
at 4 ( ~ 3 ) ' ~  

[(S - l)[ - 2?'] 

(113c) 

To hi. able to apply the above equations of motion to (413d) 
a nulvcrleal integration on a digital computer, all of the 7 )  a(r1r2) - 

8s' 
(S' + 4y - 1) 

exPB~clt ~ X P P C S . , I O ~ S  for the partial derivatives must be 3, 

de.i/elopcd These are given below. The four partials of 
A(. A, dye 

The above expressions will now be applied to obtain the 
partial derivatives of (JU), which are present in the equa- 
tions of motion, Eq. (110), the expression for (JU) being 

-A' = --(eD + 1) 
',t 4s. 

( l l l a )  
1 JU = - 
S m,rl + m2r, + r,r, - (X" f Y")  + xoX [ : 

% =- 4- & (2D + 1) 
cn 4Sd 

( l l l b )  
I 
(114) 

-1 The expression Em for the energy used in the equations 
A€ - (Si - s - 4st2 + 4 " 
? 16s s 7 + 16['v2) of motion, Eq. (110), is the "median" energy in opposi- 

(lllc) tion to the barycentric energy E defined in Eq. (86). The 
difference between the two values is given by 

- -  
i - n  7 4  - 

7 4BSi 
(S' - S + 4SV2 + 46' - 16t2,') 

r 
( l l l d )  E,=E +--xi 

P (145) 

1s: earl thui be seen that these partial derivatives satisfy  hi^ difference comes from the fact that the exact differ- 
the relations that have been used to simplify the equa- ential has been neglected in deriving ~~~~~~~i~~ 
tions of   notion, Eq. (110): Eq. (105) from Lagrangian Eq. (32). 

- 3 4  - 2J For practical computations, it is important to note that 
2,t a, the expressions of Eq. (S6) or (115) for energy should not 

('12) be used in the equations of motion, Eq. (110), for the 
+ - 0 - numerical integrations because the benefit of the regu- at a, larization would then be lost; the denominators r, and r ,  

are both present in the expression of Eq. (86) for the 
The p~dtiai derivatives of J, r,, r2, and r,r2 are energy E. Instead of this formula for the energy, the sec- 

ond differential equation, Eq. (87), should be regularized 
and integrated numerically, together with the equations 
of motion, Eq. (110): 
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To obtain the true anomaly v and the time t as a func- The momenta (p,t,p?) are related to the velacliy eon-  
tion of the independent variable s, the following differ- ponents (:,;) by 
ential equations must be integrated simultaneously with 
Eqs. (110) and (116): 

PC = i + A$ 

The Hamiltonian equations of motion that are derived 
from Eq. (121) are 

Equations (110), (116), and (117) thus form a seventh- 
order system. It  is this system that has been used ex- ( = p,t - A< 
tensively for the integration of orbits. The computer 
programs are described in Section V. 

; = P, - A,  

It  is just as easy to obtain a system of Ramiltonian 
rather than Lagrangian equations of motion; however, aASc 8A, i T ? T 

PC = PC- + p q -  p I{ (JU) 4- E),, -- 
most of the numerical work herein has been done with 4 
the Lagrangian equations. With the use of rotating- (123~)  
pulsating coordinates (x,y), the Hamiltonian equation 
of the ~ rob lem is 

m1 m, 
(x2 + y') + - + -1 

T I  T r  The differential equations for E, v,  and t shoud  again 
(11s)  be joined to Eq. (123) so that a seventh-order syqtern is 

again obtained. On the other hand, if the value of t is not 

whereas, with the median coordinates, wanted, the differential equation for this varial~le may 
be neglected, t not being present iin the other eqraatlons. 

1 r  The value of the energy used in Eq. (123) is again the 
H = -  pa + p ; )  + (Ypx - Xpy) - - U 2 ( "median" value because, in deriving Wamiltonian Eq 

P (119) from Hamiltonian Eq. (118), a term r x i i p  has been 
(11') suppressed. The value of r  was obtaii~ed by thr known 

two-body formula of Eq. ( 1 )  instead of b y  integrating 
With the Birkhoff coordinates (<,r!), the Hamiltonian the differential equation for r (the dlDFerentiaE equation 

equation is for s has been integrated by recurrent power wries in 
another nonregularized program). 

+ p i )  - ( A m r  +A,Pv)  
K. Initial Conditions for Ejection Orbits 

(I2') If regularized variables and equations o h o i ~ o n  are 
used, it is possible to compute orbits that go through the 

This Hamiltonian equation must be multiplied by the singularitieS at m, = 0 ,  6 = - 1 , = 0) o r a t m -  (1, = 0, 
function J to take account of the change of independent = + I ,  , = 0) .  ~t is also possible 10 compute or\:lts lhar 
variable from v to s: initially start from one of the primaries, and thwe orbrts 

may then be called ejection orbits. It i s  well known that, 
1 r  in the study of periodic orbits in the three-body prob- 

H = y ( P :  + P : )  - ( ~ P C  + &PT)  - 7 (IU) lem, collision orbits and ejection orbits play all Impor- 
(121) tant role. 
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It  1.5 shown herein how the initial conditions of the 
eguatioqs of motion, Eq. (110), can be determined for 
the casc st ejection orbits. Ejection orbits have the re- 
markable property of depending upon only two variable 
parameters: the energy E and the angle of ejection 0. 

The regularized velocity components (i,;) will then 
depend upon the angle 6, but not upon the value 
of E. In other words, the magnitude of the regularized 
velocity does not depend upon the energy E, as will be 
shown below. The energy equation may be written as 

t Y') + x,X + 2 + [mlr, + mrrl] 
2 "' I (124) 

Equation (124) has been written in such a form that it 
is still valid when r1 = 0 or rz = 0. The case of rl = 0 
will be considered first. This corresponds to a collision 
with (or ejection from) the larger primary ml (earth), 
upon which the P'oBlwwing special values hold: 

Energy Eq. (124) then gives 

and, according to this equation, 6 and T,I may be related 
to the collision angle 0 (in the Birkhoff plane) by 

The ejection orbits from m, may thus be integrated with 
0 0 

"ce initial values for (6, T ,  $, r l )  given by Eqs. (125) and 
(427), E and 0 being two arbitrary parameters that 
determine the particular ejection orbits. The collision 
with the smaller primary m, (moon) must be treated in 
the same way. This corresponds with 

Energy Eq. (124) becomes here 

and the velocity components may be expressed by 

2m2r "' i = ( )  cos 0 

sin 0 

I l l .  Computation of Periodic Orbits 

A. Integration of the Equations of Motion With 
Recurrent Power Series 

The well-known technique for integration with recur- 
rent power series has been used to integrate the equations 
of motion, Eq. (33), in rotating-pulsating coordinates. 
This method is usually referred to .as the Steffensen 
method, and it has been extensively used by the present 
author for the circular problem. The ideas of A. Deprit 
(see Ref. 7) have also been closely followed in the prep- 
aration of the recurrence relations. Both two- and three- 
dimensional programs have been prepared; however, 
only the two-dimensional case will be described herein. 
For the two-dimensional case, the system of simultaneous 
differential equations is of order seven. It  contains the 
two second-order differential equations for x and y given 
in Eq. (33), the first-order equation for t given in Eq. (34), 
and the second-order equation for r given in Eq. (6) 
(second equation). 

To make this system suitable for the recurrent power 
series approach, a few transformations have to be made. 
The recurrence relations will be simplified if some 
auxiliary variables are introduced. Redundant variables 
are generally introduced to enable the writing of the 
transformed system of equations in such a way that no 
more than two variables (two power series) ever have to 
be multiplied together. The system then obtained is 
sometimes called second degree. 
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In the present problem, 18 variables (parameters) Pi 
have been introduced for the three-dimensional case. For 
the two-dimensional case, three parameters (P,, P,, and 
P,,) are set equal to zero. For the first 13 parameters, 
there are 13 "first-order/second-degree" differential equa- 
tions. For the last five parameters (PI, to P,,), there are 
five second-degree equations that relate them directly to 
the preceding 13 parameters without using more differ- 
ential equations. The 18 parameters Pi are given in 
Table 1, together with their defining equations. 

Next, power series must be written for each of the 
18 variables, with the true anomaly v as the independent 
variable. These power series should be of the following 
form: 

It is important to note that these relations are really 
recurrent only if they are used in the proper order (1 to 18) 
because it can be seen, e.g., that to obtain the coefficient 
P,,(n+ 1), the coefficients P,,(n+ 1) and FP,,(n+ 1) of the 
same order are needed. In the recurrence relations given 
in Table 2, a capital P is used for the sernilatus rectum 
(instead of the usual lower-case p), and a capital Q is 
used for the square root of the sernilatus rectum. Three 
different kinds of summation symbols 2 have also been 
used to designate sums with different limits in the illdices 
p and q. These have the following meaning: 

where i = 1,2, -.., 18. 

p = 1,2, -.., ro + 1 
By substitution of these expressions in Table 1, 18 recur- q = n  + 1,n, ...,l (132~) 
rent relations are obtained for the different coefficients p + q T n + 2  
Pi(n) of the power series. The zero-order terms Pi(1) are 
determined by means of the initial conditions. The recur- 
rent relations then allow one to obtain all of the coefficients These equations have been programmed for the two- 
Pi(n+ 1) of order n as a function of the coefficients and three-dimensional problems in two separate programs, 
P,(l) to Pi(n) of lower orders. The different recurrence but no research has been done on the three-dimensional 
relations are collected in Table 2. case. 

Table 1. Orbit variables and defining equations 
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Table 2. Recurrence relations for coefficients of power series 

Recurrence relation 

pdn) 

Coefficient Recurrence relation 

Thc notation usescl herein for the coefficients P,(n) of 
thc poiver series expansions for the parameters P, was 
derived from the FORTRAN 4 programming language. 
Also, because oi some characteristics of FORTRAN 4, the 
indices n of the coeEicients P,(n) start a t  one rather than 
at zero Ahhough these notations are somewhat unusual, 
they greatly facilitate programming of the equations for 
the computer. 

The main disadvantage of the recurrent power series 
method is that it requires a complete transformation of 
the di&rentia4 eqeiations and the introduction of many 
auxiliary variables. On the other hand, the redundancy 
of the .variables can be used for checking the precision; 
in fact, each auxiliary variable may be used for a check 
in the same way as a first integral of the system. In the 
numerical calc~alations, e.g., the variables P,,, P,,, PI,, and 
PI, have been used for checking purposes. This is done 
in "she f0180wing way: Using P, and P2,  the values of r1 
and r ,  are computed: 

Tbc following four absolute values give a measure of 
the local integration error: 

In the computer programs, the four quantities of Eq. (134) 
are computed at each integration step; the average of 
all four is then printed out. 

B. Integration of the Variational Equations With 
Recurrent Power Series 

The variational equations play an important role in the 
study of periodic orbits because, by their solution, the 
partial derivatives of the variables ( x ,  y, 2, i )  with respect 
to the initial conditions (x,, y,, i,, 6,) are obtained. These 
partial derivatives are needed for two important reasons: 
(1) for the differential correction process to find the 
periodic orbits and (2) for the construction of the funda- 
mental matrix (by examination of the eigenvalues of this 
matrix, information on the stability of the orbits is 
obtained). 

The 16 partial derivatives are obtained by numerically 
integrating the variational equations four times. These 
four independent solutions can be considered as the four 
columns of a four-by-four matrix, which is called the 
fundamental matrix. In the most frequent applications, 
the initial conditions form a unit matrix. The particular 
fundamental matrix, which is the unit matrix at  t = 0, will 
here be called the principal fundamental matrix. 

The equations of motion may be written in the following 
form: 
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The potential function U was defined previously in Eq. 
(86). The equations of motion are the same as Eq. (33),  
but are written here in the form of first-order equations. 
The variational equations corresponding to Eq. (135) are 

To obtain the four independent solutions of the varla- 
tional equations, Eq. (136), to form the fundan~ental 
matrix, different computer programs have been prepared 
In one program, the numerical integrxtron 1s pcrfn* necl 
by a classical predictor-corrector method by w h r ~ n  21 
first-order differential equations must be solved irmul- 
taneously. Of these, the first to fourth equatrons a1 c the 
equations of motion, Eq. (135), and give the valtl~":OC 
x,y,?,zj, whereas the fifth to twentieth equations glT7e the 
matrix with four solutions of the var~atronal equatronr, 
Eq. (136). Finally, the last equation gives the tune f ai. a 
function of the true anomaly v .  

However, the best results have been. obtained by soivirag 
the variational equations, Eq. (136), .with the recurrent 
power series method, together with the equations of 
motion, Eq. (135). The formulation dlescribed in the pre- 
ceding section has been maintained to solve the eq~ations 
of motion; besides the 18 parameters P i  used 1 1  the 
preceding section, however, 32 new parameters P , ( i  = 19 
to 50) have been introduced. The 16 paramettrs P,!, to P::, 
give the four required solutions of the variatfoi~al eqera- 
tions, and the last 16 parameters P,, to Pz0 are auxiliary 
quantities that are used to obtain simple recurrence 
relations for the coefficients of the series. 

With the use of a large number of aerx~l~ary variables, 
the chain of con~putations can be set up In SPICII way 
that more than two power series never hate to be rnulel- 
plied together. Very simple recurre~~cc relatlans for the 
coefficients are then obtained. The forinulation 111 lt Paas 
been used here is certainly not unique, nn fact a formu- 
lation with fewer auxiliary variables ii posslbie. 

All 32 new parameters P I ,  to P,, ale represented b y  a 
The second partial derivatives of U have the value power series in the true anomaly t i ,  with coeEclents 

[ P , ( n )  (n = 1,2, ...)I. For parameters P,, to P ,, i ie cor- 

a2u ( X  -x2)" I responding differential equations are used, but rho aa~xlllnry + m ,  7 axax 2 differential equations are introduced for the other 16 
parameters to P,,. For the variational equatroni, these 
last 16 auxiliary quantities play the same sole as the 
variables P I ,  to P,, play for the equatloni. of imtron 

a2u ( x - X I )  (137b) The definitions of the variables P g j  to P,o ale given T? the - =3,[m,-- + m 2  ---- ( x  - x,) 
axay r : r . 4 I following: 

x-XI 
P,, = --- 

rl 

x-x2 
where V, is the auxiliary expression I'3 6 = - rr iS9bj 
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Y P s = -  
rr 

(139d) 

P 3 J =  - 1 + 3  - 
(";:l>' 

(139e) 

X-X2 
Pi,= -1+3(?) (139f) 

P,,= - 1 + 3  - (:IZ (139g) 

Pi,= - 1 + 3  (t)2 (139h) 

Y (X - XI) P U = 3 7 7 7  (139i) 

P~~ = 3 (y) (139j) 

P,, = I + m, Pl,P3, + ma P1,P,, (139k) 

P,, = ~ I P , , P , ~  + m2 P13P4, (1391) 

P,- = I + m, P12P,, + ma P13P,, (139m) 

r P,< = - Pis (139n) 
P 

r 
p49 = - P,, (1390) 

13 

r 
P,, = - P4i 

P ( 1 3 9 ~ )  

The last two of the four differential equations, Eqs. 
(436c) and (136d), may then be written as 

-- "' - P,,6x + P,,6y + 2 8 i  
do 

(140) 
-- "' - P4, 8~ + PSO sy - 2 8 i  

du 

Thc securrenee relations for the coefficients of the 
quantniaes P,, to P,, are given in the following: 

n P ,,(n i- 1) = P,,(n) (141a) 

re m?_,(n -t 1) = P,,(n) (141b) 

The recurrence equations for the coefficients of P,, to 
P,, are not reproduced because they are identical to those 
of P,, to P,,. The meaning of the different summation 
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signs is the same as is indicated in Eq. (132), except that 
the following new symbol is used: 

As aforesaid, the recurrence relations are recurrent only 
if they are used in the same order as they are given here 
(from PI to P,,). More precisely, they should be used in 
seven consecutive groups in the following order: (PI to PI,), 
(PI, to PIS), (PI, to P34), (P35 to P,,), (Pa, to P44), (P45 to P,,), 
and (P,, to P,,). 

C. Periodic Orbits in the Elliptic Restricted 
Three-Body Problem 

The elliptic restricted three-body problem has some 
fundamental differences from the circular problem, the 
most important of which is that the elliptic problem has 
no Jacobi integral or energy integral, as does the circular 
problem. The equations of motion, even in rotating or 
rotating-pulsating axes, explicitly contain the indepen- 
dent variable, e.g., the time, or the true or eccentric 
anomalies (cos v and sin v or cos E and sin E). This 
problem is thus essentially nonconservative (nonautono- 
mous according to another terminology). 

A consequence of this fact is that any periodic solution 
must have a period that is an integer multiple of the 
period of the periodic functions cos v and sin u. In other 
words, the period of any periodic orbit in the elliptic 
restricted three-body problem must be % or a multiple 
of this number. The period of rotation of the rotating 
axes being also 2a, a periodic orbit of the elliptic problem 
will be periodic with respect to the inertial axes as well 
as the rotating axes. Except for some details related, 
e.g., to the convenience of numerical integration, it is 
thus not essential to use rotating axes in this problem. 

Periodic orbits can also be studied with respect to the 
inertial axes. Because of the fixed value of the periods of 
periodic orbits in the elliptic problem, there are no 
families of periodic orbits similar to the families with 
continuously varying periods that exist in the circular 
problem. Only isolated periodic orbits can exist in the 
elliptic problem, with period 2ka (k = 1,2, ...). These 
periodic orbits are thus all "commensurable" or "syn- 
chronous" or "in resonance" with the primaries. 

The question of symmetric orbits with respect to the 
rotating x-axis (or syzygy-axis), which is so important in 

the circular problem, retains all of its value in the elliptic 
problem. Symmetric periodic orbits still exist in the 
elliptic problem, but the criteria or sulficient conditions 
for symmetric periodic orbits in the elliptic problem are 
slightly different, these criteria being more strict in the 
elliptic problem. In the circular problem, what may be 
called a "weak periodicity criterion" exists, unlike the 
elliptic problem, where there is a. "strong periodicity 
criterion." In the circular problem, the weak criterion for 
symmetry could be stated as follows: 

If the satellite crosses the sysygy-axis perpendicularly, 
its motion is symmetric with respect to this axis. 

In the elliptic problem, the corresponding strong eri- 
terion for symmetry could be stated in the form given by 
Moulton (see Ref. 13): 

If the satellite crosses the syzygy-axis perpendic~llarly, 
at a time when the primaries are at an apse, its motion 
is symmetrical with this axis. 

The time of perpendicular crossing is important, there- 
fore, in the elliptic problem. The crossing must be at the 
moment of an apse (maximum or minimum elongation 
of the primaries). In the circular problem, the time of 
perpendicular crossing of the sysygy-axis is irrelevant. 

The weak criterion for symmetric periodic orbits in 
the circular problem can be stated as follotvs: 

If an orbit has two perpendicular crossings with the 
syzygy-axis, it is periodic. 

It is because the times of crossing are unimportant 
that families of periodic orbits with continuously vary- 
ing periods exist. In the elliptic problem, the perpendicu- 
lar crossings must be such that they assure a period 
2kT; the strong criterion for symmetric periodic orbits 
may then be expressed in the following form: 

An orbit is periodic if it has two perpendicular eross- 
ings with the syzygy-axis, and if the crossings are at 
moments when the primaries are at an apse. 

The time between the two apses of the primaries in 
Keplerian motion being a multiple of .ir (say, kn), the 
period will then be 2ka. The above periodicity criterion 
gives a sufficient but not necessary condition for pe- 
riodicity, of course, as nonsymmetric periodic orbits may 
also exist. In the present study of the elliptic restricted 
three-body problem, some cases corresponding to the 
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uitegL s k = i, 2,3,4,5 have been investigated. Only sym- 
meta c pcrtocllie orbits have been studied. 

D, Families of Periodic Orbits in the  Elliptic Restricted 
Tksee-Body Problem 

2%'. WJ:, s t c r i e  d In the preceding section, in the sense of 
c\ hat g a w  all y dlone in the circular restricted three- 
ooil! iirotllcrn, as Lamilies of periodic orbits exist. Row- 
cven, L Z ~ ~  elylptie three-body problem has another 
-i.iapo-i cBr,as,~~tc~ristic that will make possible the 
qnc .  Iror: ni  contrnuous families of periodic orbits. 

all p ol?!im contains two parameters-the eccen- 
I ~ ~ L I L V  h , n d  the mass-ratio p of the primaries-in con- 
rr;-st 11 irh rhe single parameter p of the circular problem. 
'P chi. . pzlametes e, in fact, adds one degree of 
i-r ~ e d ,  (1; t3 :i.c problem of finding periodic orbits. When 
e ani a ,: fixcd, only isolated symmetric periodic orbits 
<-ten~r 111; ellst in the elliptic problem. However, if such 
a pc di>CaTi. O L ~ I P Z  has been found, and if e and p are 
al!ov cil e,r valy, rhis periodic orbit may be prolongated 
iii ,I if, :,b'e fs?f~r,rty of periodic orbits; in other words, in 
'1 !,27"3 l ; i  Jrp.ndn" uupn the two parameters e and p. 
Num, rcal experlrnents have disclosed that several such 
izmd . cadr~ally exlst. It has even been found that some 
t~xkll i ,  cxist ior all values of e and p: 0 < e < 1 and 
0 < ,+ -1 4 Ll[03t of the families described below have 
0196 _~,~ar?etep thdb has been fixed (p) and the other 
pascmiiitr ~al ldbic  (e). The computer programs are 
ta13a'iA iol genel-atmg periodic orbits by perturbing and 
~ h c a  2 its: erltndlly correcting both e and p. 

hlcn 01 tlie daurnerical integrations have been done 
warh i l~~sca~l t  i?, and increasing e, starting from the cir- 
cula: piob~crn, at e = 0. However, it can be seen that, for 
every Cyrn nehlc periodic orbit with e = 0, there are two 
way< 5 p olongatnng it to the elliptic problem. This is 
beens5. t i e  symmetrlc orbits have two perpendicular 
:nters ,tlo 1s wach the sysygy-axis, and each intersection 
 an b, used as a starting point for the integration. 

16 11 e point I S  rrsed, it is considered that at t = 0, then 
- O i e ,  at t =; G the two primaries are at  periapsis 

(on n Ilrn!xn elonga~ion). Taking the other intersection 
porrlt ~c_uiv,ifent to taking v = n when t = 0, and it is 
&en zi L)p?sed that tlae two primaries are at apoapsis at 
the n l A u  rleijt o: the first crossing of the sysygy-axis. When 
e = 0 lie forlr3s of the orbits are identical, but there is a 
phait ~ z i ~ s y .  of a half revolution between the two pri- 
ilialit. the satellite. When the eccentricity is in- 
elcast ci to XaonLero values, the forms of the orbits are 
difle111 I. drlc1 &%sent families are thus generated. These 

two families join at e = 0. Several illustrations of this 
situation have been found numerically. 

In all of the computations, two types of initial condi- 
tions have thus been used. The orbits that start with 
t = 0, v = 0 are called periapsis orbits, and will be desig- 
nated with the letter P. The orbits that start with t = 0, 
v = .rr are called apoapsis orbits, and will be designated 
with the letter A joined to the family number. 

To use the circular restricted three-body problem as a 
first approximation to the elliptic problem, the procedure 
described below has been followed. 

In a previous work on the circular problem, some 4000 
periodic orbits have been classified, all corresponding to 
the earth-moon mass ratio. The initial conditions of the 
periodic orbits published by Bartlett (see Ref. 18) and 
Henon (Ref. 27) have also been collected, and these all 
correspond to p = 1/2 (equal masses). The initial con- 
ditions for these periodic orbits have been punched on 
cards. Out of this large collection of orbits, the isolated 
periodic orbits with period 2kT (k = 1,2,3,4,5) have 
then been extracted by automatic interpolation with the 
use of a computer program. In this way, a total of 150 
resonant periodic orbits have thus been found. 

Some of these orbits have then been used for a starting 
point by an analytical continuation along increasing 
eccentricities e (and constant period) implemented in 
different programs. In a few other cases, the eccentricity 
has been kept constant and the mass-ratio has been varied. 

The computer programs are capable of varying any of 
the initial parameters of the problem and generating a 
family in this parameter. More precisely, only symmetric 
orbits have been studied, and periodic orbits have then 
been obtained by differential correction of two of the 
initial parameters. The symmetric periodic orbits are 
defined by two end conditions (y = 0, L = 0); two initial 
conditions are thus necessary to meet the requirements 
at the end of a half orbit. Altogether, three parameters 
are thus continuously varied by the computer programs. 
The first two parameters are varied by differential cor- 
rections to satisfy the orthogonal crossing condition 
y = 2 = 0 at the end; the third parameter is varied to 
generate the family of orbits. For the ordinary symmetric 
periodic orbits, the first two initial parameters have 
always been (x,, Go) and the third parameter e or p. For 
periodic symmetric collision orbits, the two initial condi- 
tions have been taken as the energy E and the eccentricity 
e, the final conditions remaining y = L = 0; the family 
parameter has been taken as p. 
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It  is noteworthy that, in the case of periodic symmetric 
collision orbits, only one-parameter families of periodic 
orbits exist. These orbits are determined by only two 
initial conditions-the energy E and the collision angle 6. 
To fulfill the symmetry conditions, 6 must be kept con- 
stant and only E can be varied. Thus, for e and p 

constants, there will generally be no periodic symmetric 
collision orbits. If E and e are varied simultaneously by 
differential corrections, periodic orbits may then be 
found; these orbits form a one-parameter family in p. 

E. Differential Corrections for Periodic Orbits 

To find periodic orbits in general, for the planar re- 
stricted problem, differential corrections must be made in 
four variables; for symmetric periodic orbits, differential 
corrections in only two variables are necessary. Computer 
programs have been written to handle both cases. 

In the general case, the vector with the four initial 
conditions (x,,y,,i,,tj,) of an orbit may be designated 
by x,, and the orbit with these initial conditions is desig- 
nated by x(t,x,). At the end of this orbit, at t = T = 2k, 
the values of the coordinates are thus x(T,x,). If the 
initial conditions of this orbit must be corrected by Ax, 
in such a way as to make the orbit periodic, the initial 
coordinates of the new orbit must match its final co- 
ordinates : 

If the correction Ax, is assumed to be small, the right 
side of Eq. (143) may be expanded in a Taylor series 
truncated at the first-order terms: 

- I g  Ax, = x, - x ( T ,  x,) (145) I 
The corrections AX, are thus obtained by solving the 

linear system of Eq. (145), whereas the partial derivatives 
are obtained by solving the variational equations. This 
system is the basis of the differential corrections to ob- 
tain periodic orbits. Because the problem is now linear 
and Eq. (145) has been made linear by making a trunca- 
tion of the Taylor series, the corrections of Eq. (145) 
must be computed and applied in an iterative way. If a 
sufficiently good approximation is known, the differential 
corrections converge in about four to five iterations. 

In the present work on the ellipire problem, 1t has 
always been possible to begin with the farily goac nrtral 
conditions given by the circular problem On thc sfher 
hand, in the generation of families of gcr~oisilc orbrii 
good initial approximations have always heen ~ b e , ~ ~ n e d  
by extrapolation from the previously eor;rrj?r~~tec: oi/\ltc 1x1 
the family. For the purpose of extrapolatrons e1.c pro- 
grams save the last 10 orbits or so 111 thc rnernary nt the 
computer. Using this available informatron E - r ~ b  ~i 'i;wcd 
considerable savings of iterations and eornprltei jiiaa~ 

It  is known that, in the circular restslcLe\d p1db/( 1~1 the 
matrix of Eq. (145) becomes singular because of the 
presence of an eigenvalue + 1 (of melktrplrcrty t p,o) of 
the fundamental matrix. This diGe.ilty can en(,zty lic 
avoided in the circular problem by '<e\ep~ng one ~f the 
four variables constant and allowing no var ~atroli 1% iol 
it. In the elliptic problem, however, this drficultv doc5 
not occur because of the nonexistence\ of the tinlt rxgen- 
value. In many cases, the matrix has been foaa~d to Kt, 
nearly singular for other reasons, mainly because ~f the 
existence of several solutions. It  has thms been nec c csaly 
to treat the near-singular case in a rpec:al \va! Thr, 
has been done with some programs prov*cicd by Ci C 
Lawson. In cases where the matrix of the syslem r i  1 e a r h  
singular, a least-squares approach 1s adopted f3r the 
solution of the system, Eq. (145). Hn this case, a ~orreo-  
tion Ax, with minimum length is used T h ~ a  t i n e  of 
solution for the near-singular situation har gi.i en I ~ g h l y  
satisfactory results for the differential corlectro-ss 

In most cases, the differential correction pinu ii de- 
scribed above can be slightly simplified In the caw of 
symmetric periodic orbits. There are only two va rables 
and, instead of a fourth-order matrrx, only a second- 
order matrix must be inverted. Here the rnitrd cond-rlon.; 
x, must be corrected by AX, in such a way as to 0'7ta.m a 
given preassigned final value x, for the state vector Thc 
equations of the periodicity conditions ase thrir 

Again making a Taylor series expansion lilnieed to the 
first-order terms gives 

or, finally, the following linear system in AX,,: 
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In 11le case of only two variables (x,, Go)  to be cor- 
rected, this system (Eq. 148) may be written explicitly as 
follows : 

The solution of this system is 

ZIJ a i  a2 ay D - -- 
ix, a$, ax, ago 

It tas been seen that, even with the simple system of 
Eq. (149), dlfic-srltles may occur because of indetermina- 
tlon ni the solution, and that the matrix may be nearly 
of r~lnii one In this case, the least-squares approach has 
agdrn 5een adopted. For the problem of finding periodic 
collls~on orbhts, the differential corrections have been 
madc In <he energy 64: and the eccentricity e by the fol- 
lowl~ig system, whnch is the analog of Eq. (149): 

- 2 (E ,  e, T )  

As was stated above, the periodic collision orbits ob- 
tamed ln t h s  way form a one-parameter family, with p 

as the v;siabie parameter. For the collision orbits, the 
probiem has been integrated with regularized Birkhoff 
eoordrnates Because no program has yet been written to 
solve ihe varaationali equations in Birkhoff coordinates, 
the pr r i~a l  de~lvatives in this case have been obtained 
by niiiner~cak dafferencing of perturbed solutions. 

F. Properties of the  IEigenvalues of the 
Fundamental Matrix 

Bn what follows, the stability of periodic orbits in the 
ePP~ptii, ;~cstrreted three-body problem will be examined. 
Only 5rst-order or linear stability will be considered 
here Thli stabdnty will depend exclusively upon the 
behavm oi  the elgenvalues of the principal fundamental 
Pnaai-n*r R As aforesaid, the principal fundamental matrix 

(matrix of partial derivatives) is obtained by solving the 
variational equations. Before the stability itself is dis- 
cussed, some important properties of the fundamental 
matrix R will be described herein. 

The variational equations, Eq. (136), may be written 
in a matrix form, 

where A is the fourth-order square matrix of Eq. (136). 
Matrix A may be written in the form 

where I is the second-order unit matrix and a is the 
second-order symmetric nonconstant matrix of the second- 
order partial derivatives of U given in Eq. (136), and 

A new fourth-order constant matrix S will now be 
defined as 

It  can be verified directly that matrix A of the varia- 
tional equations given in Eq. (153) satisfies the following 
property: 

The superscript T indicates the transpose operation. 
Matrices A that satisfy this relation (Eq. 156) will be 
called skew-symplectic relative to the matrix S. The 
important relation of Eq. (156) will be needed to estab- 
lish a similar important relation for the principal funda- 
mental matrix R. In fact, a very simple expression will 
be obtained for the inverse R-' of matrix R. Matrix R 
satisfies differential Eq. (152) : 

and the inverse R-I of R is a solution of the adjoining 
system 

JPL TECHNICAL REPORT 32-1360 



only upon the roots of the characteristle eqrrahon, fhere- 
dR-' - - R-1 A -- (158) fore, upon two numbers: (A+) or (a,,n,). 11.i other words, 
d v  two stability numbers correspond to each pervodie olbit 

The real numbers (a,,a,) may be considered as thc coordr- 
Using the Property (Eq. lS6) matrix A, it can now nates of a point in the (a,,aL) plane, and each periodrc 

be verified that inverse matrix R-l, which is a solution of is thus a point in this plane. 'rhc quLlltities 
Eq. (158), is obtained by (a,,a,) will be called stability coefFieients of thc orb~t .  

Two other numbers ( k ,  and k,), called siaFiTzfy mdices, 
SRTS-1 = R-1 ( Is9)  will also be used in the following: 

Matrices R that satisfy a relation of the form of 
Eq. (159) may be called symplectic with respect to the 
given matrix S. An important consequence of the relation 
of Eq. (159) is that matrices R, RT, and R - I  all have the 
same eigenvalues. Thus, whenever A is an eigenvalue of 
R, l / A  is also an eigenvalue. Zero eigenvalues are ex- 
cluded, of course, because the determinant of both 
matrices R and R-I is +l. The four eigenvalues of R 
may thus be written in the form 

This property is true for all values of the independent 
variable and for all solutions, periodic and nonperiodic, 
as has been shown in more detail in Ref. 17. However, 
the different properties of the eigenvaIues are mostly 
used for periodic orbits, and only for the value 2 h  = T  
of the independent variable v.  The characteristic ex- 
ponents related to the above eigenvalues may be desig- 
nated by (a ,  -a, @, -p) ,  and are defined by the relations 

They are defined, of course, only for modulo 2 d T .  

6. Solution of the Characteristic Equation of the 
Elliptic Problem 

As a consequence of the form of the roots of Eq. (160), 
the characteristic equation of matrix R may be written 
in the following form: 

The two coefficients of s4 and so ( f l ) ,  as well as the 
two coefficients of s3 and s, are thus equal. These two 
simple relations between the coefficients of the char- 
acteristic equation are used for checking the precision of 
the numerical computations. In most cases, a precision 
of at least has been obtained for these two relations. 
It  will be seen that the stability of the orbits depends 

One is reminded here that, in the ecincuBa~ problem, 
there is only a single nontrivial stabilrty mdex ic i>eeause 
of the presence of two unit eigenvalues, the e~gc~~vaSues 
being of the form (A, l / ~ ,  1, 1 )  because of the exritenee 
of the energy integral. In the circuliar problem, iialallity 
is discussed on the real k-axis (k = A. - I/,\), *n the 
elliptic problem, stability is discussed in the lea1 :u,,a-) 
plane. 

The characteristic equation, Eq. (162), may be written 
in the following form: 

and this form gives a relation between the stability coefi- 
cients (a,,a,) and the stability indices ( k , , kL ) :  

This shows that k ,  and k, are the roots of the seeond- 
degree equation 

X+ a, X i- (a,  - 2) = 0 (166) 

The expressions for k ,  and k ,  may thus be written as 

When k ,  and k,  have been found, the roots and p 

can be found again by solving second-degree equations. 
The solution of 
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are zero when k, or k, takes on the value _t2. In the 
(a,,a,) plane, this gives the two straight lines 

gives p. :md iilF b;d 

Thc ,- obiem of filxling the four roots of the charac- 
tersst;~ -qudt~on (i e., the four eigenvalues of the funda- 
ment,~ rn,)talx R) is thus reduced to solving three 
seconc -tJegree quations. Coefficients a, and a, of the 
chardcti~iis:re iqradtion are obtained directly from the 
i u i a d a , ~ ~ t ~ ~ ~ t , ~ l  matsix R, which is obtained by numerical 
inti-giai on of the variational equations. If the four col- 
umlws 04 the m,atrix IP are designated by x,, y,, x,, and i, 
( 1  = Y,2,3,1), then coefficients a, and a, are obtained by 

The iha:acte~lstnes of the roots-and, of course, the 
siabihiv of :hc olbits---will depend upon the discriminants 
of t h c ~  thz ee second-degree equations. Equation (166) 
h,ii a ii la ilisc~imlnnnt when 

arid th~. locus i: a prabola in the (a,,a,) plane. For the 
other Two second-degree equations, the discriminants 

These two lines are tangents of the parabola of Eq. (173) 
at the points (a, = r+4, a, = 6). 

El. The Seven Types of Stability Characteristics 

The stability of periodic orbits will be discussed in 
the (a,,~,) plane. This stability thus depends upon sta- 
bility coefficients (a,,a,) or stability indices (k,,k,), or on 
eigenvalues ( A , ~ )  and the corresponding characteristic 
exponents. 

A periodic orbit is said to be stable if the solutions of 
the associated variational equations have no terms with 
exponentially increasing terms. This happens if (and only 
if) the characteristic exponents have no positive real 
parts. However, as was seen above, the eigenvalues of 
the fundamental matrix R occur in reciprocal pairs, and 
the characteristic exponents occur in oppositive pairs. 
Therefore, there is stability if (and only if) the character- 
istic exponents of the orbit are all purely imaginary. 

If the characteristic exponents a and p given by 
Eq. (161) are purely imaginary, the corresponding eigen- 
values h and p thus must be on the unit circle. In other 
words, stability exists only when all four eigenvalues 
A, l / ~ ,  p, are on the unit circle. 

The location of the four eigenvalues with respect to 
the unit circle is discussed below. This can easily be done 
in the (a,,a,) plane. Considering the parabola of Eq. (173) 
and its two tangents (Eq. 174), the plane will be sub- 
divided into seven distinct regions, in each of which will 
be different types of stability properties. The properties 
of the roots in all seven regions are examined below. 

There are six unstable regions and one stable region; 
names are proposed for the six types of instability. The 
seven regions are shown in Fig. 2, and the corresponding 
configurations of roots are shown in Fig. 3. I t  can also 
be noted on the stability diagram (Fig. 2) that the circular 
restricted three-body problem-which has two roots + 1, 
and thus - k, = +2 or 7c, = $2-corresponds to the line 
a, = -2al - 2. 

The properties of the roots in each region are described 
in Table 3. 
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IV. Families of Periodic Orbits 

In thi4 section, the actual results of the machine cal- 
culations are described. These results consist of 1127 
periodic orbits, which are grouped as follows: 

(1) Onme group of 13 isolated periodic orbits of the 
rectilinear problem (1P). 

(2) Four short segments of families of periodic orbits 
with e = 1.0 or e x 1.0 (3P, 4P, 5P, and 9P). 

(3) Two families related to the eccentricity e = 1 (6A 
and 12A;. 

(4) Two families with the earth-moon mass-ratio 
p = 8.012155 (YIP and 7A). 

(5) Five families with equal masses (8P, 8A, lOP, 11P, 
a l ~ d  11A). 

(6) One family with periodic collision orbits. 

Although much effort was made at the beginning to 
complete each family, this has turned out to be impos- 
sible because, in the investigation of the continuation of 
one family, several new families are always discovered. 

The letters "P" and "A" designate the periapsis- and 
apoapsrs-types o h r b i t s ,  respectively, as described in 
Section 111. Following the descriptions are tables with 
initial and final conditions (see Tables 4-19). The column 
headings at the top of each of these tables briefly describe 
"re family. Columns with suffix O (e.g., XO, YDOTO) cor- 
respond to the initial conditions; columns with suffix 1 
(e.g., X1, YDBT1) correspond to the final conditions. The 
initial and final conditions are given in barycentric in- 
ertial coordinates ior families 1P, 3P, 4P, 5P, 9P, 6A, 
and 128, For the eight other families, the initial and final 
conditi~ns are given in barycentric rotating-pulsating 
coordinates. 

One aftthe cornputter programs was prepared to auto- 
matically give the plots of the orbits on photographic 
paper and on microfilirn, and in five different coordinate 
systems (the orbits being periodic in all five systems). 
For this reason, sorn'e graphs are included in the text 
with representations of orbits with respect to these frames 
of reference. Not much information is gained by seeing 
the orbits in different frames of reference, but it has been 
judged useful to give a few figures in different coordinate 
systems. If one would like to do a Fourier analysis of the 
orbits, -.,g., these figures may help in selecting the most 
appropriate coordinate system. The following five sys- 
tems have been used: 

(I) Basycentraic inertial. 

(2) Barycentric rotating. 

(3) Barycentric rotating-pulsating. 

(4) Geocentric inertial (centered at m, = 1 - p). 

(5) Selenocentric inertial (centered at m, = p). 

A. Families 12A and 6A of Periodic Orbits 

The orbits of this family are symmetric with respect to 
the Ox-axis in the rotating coordinate system, i.e., the 
m,-m, line or syzygy-axis. They all satisfy the strong 
periodicity criterion-that they cross the syzygy-axis 
twice with a right angle at moments when m, and m, are 
at an apse (i.e., at the minimum or maximum elongation 
of m, and m2). 

This family is a continuation of an orbit with period 
4 ~ ,  which belongs to Strgmgren's Class C of symmetric 
periodic orbits around the libration point L,. Thus, its 
mass ratio is p = 0.50. 

Striimgren's Class C of orbits is one of the well-known 
classes of periodic orbits in the circular restricted three- 
body problem with equal masses. The orbits are sym- 
metric with respect to both the Ox-axis and the Oy-axis. 
This class begins with infinitesimal retrograde periodic 
orbits around the libration point L,, and its end is un- 
known. It  is also the class that contains one of the first 
double-collision orbits to be discovered. Some of the 
details of the evolution of Class C are shown in Fig. 4. 
Orbit 3 is the double-collision orbit. The evolution of 

Fig. 4. Circular restricted three-body problem: Strijm- 

gren's Class C of periodic orbits around L, (equal masses; 
e = 0; rotating axes) 

JPL TECHNICAL REPORT 32- 1360 



Class C beyond the collision orbit has been studied in 
detail; it appears, in particular, that there is an orbit 
with period 4~ (orbit 5, Fig. 4). 

This particular orbit with period Ihr can be generalized 
in an interesting way in the elliptic problem. More pre- 
cisely, it is concluded that orbit 5 can be continued for 
all eccentricities e from 0.0 to 1.0. For e = 1.0, orbit 5 
seems also to exist for all mass ratios p from 0.0 to 0.5. 

A series of periodic orbits with constant mass ratio 
p = 0.5, and with increasing eccentricity from 0.0 to 
about 0.75, was first computed. These orbits have been 
integrated with a recurrent power-series solution and 
with the true anomaly as an independent variable. This 
system of differential equations, which essentially results 
from the well-known Nechville transformation, has a 
singularity for e = 1.0; numerical difficulties thus arise 
for high eccentricities. For this reason, the integration 
method has been changed at the higher eccentricities. 
The inertial axes have been used, and the classical 
Runge-Kutta integration method has been adopted, with 
which only about five- or six-place accuracy has been 
desired. 

The Runge-Kutta program integrates a system of dif- 
ferential equations that is valid for all eccentricities 
(including e = 1.0) where the two primaries are oscillating 
(and colliding) on a straight line with a finite amplitude 
(semimajor axis = 1.0). Using the barycentric inertial 
formulation of the problem, there is still periodicity of 
the orbits (the periodicity criterion being unchanged). I t  
then appears that the family of periodic orbits can be 
continued up to eccentricity 1.0. 

the study of the elliptic restricted three-body ~ rob lem 
(see Ref. 8). 

I t  has also been seen that this orbrt has an mtcresting 
development not only along e, but also along p. when e 
is kept equal to 1.0. The evolution of this orbit has been 

Fig.  5 .  Elliptic restricted three-body problem: periodic 
orbit for mass ratio p = 0.5 tequtrl masses; e --- 0.74; 
rotating axes) 

In Fig. 5, one orbit is shown in rotating axes. The form 
is very similar for all eccentricities. Figure 6 shows the 
complete evolution, with respect to inertial axes, for all 
eccentricities. The outer orbit is the one that belongs to 
Striimgren's Class C (e = 0.0). It  can be seen that the 
orbits keep shrinking when the eccentricity increases up 
to a rectilinear orbit corresponding to e = 1.0. In this last 
rectilinear orbit, there is oscillation of the satellite on the 
Oy-axis in synchronization with the oscillation of the two 
primaries on the Ox-axis. The satellite reaches maximum 
elongation (about i-1.69) when the primaries collide, and 
it passes between the two primaries when they are at  
maximum elongation. 

It is rather surprising that the rectilinear periodic orbit 
for e = 1.0 was published in 1956 by Schubart. In fact, 
Schubart has proposed this orbit as a starting point for 

Fig. 6. Elliptic restricted three-body problem: periodic 
orbits for constant mass ratio p =-= 0.5 (equal masses) 

and variable eccentricity (e = 0.0 to 1.0; inertial axes1 
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followei'i ior v ~ ~ a a b l e  mass ratios up to p = 0.166. Judg- 
mg ~ O P I  the reir~Sts obtained, the evolution can probably 
bc cxrl .polate$ up to e = 0.0, although exact computa- 
tion\ iiwu d be made, and a regularization appears to 
be uecc iiai y In till, c'lse. These orbits, which form family 
64, a?;: ihovvn 11; Fng. 7. The initial conditions for family 
6 4  arc 71sted Ir? Tzible 4. When p decreases, a bending of 
the m1+3a9 rcst1linear orbit is seen. There is thus a back- 
and-fc ~ r h  ,>scnliat~on, with period 48, along a pseudo- 
p,~rqboi c , -ah Thcc,e paths are included in an envelope 
ok zero-vel~cxty pan t s ,  which are shown by dashed lines 
nn Fig 7 

Of 91'11odi~ orbltc with p = 0.50 and with e from 0.0 
to 1.0, 152 liave bcen computed, and 118 orbits have 
bee11 ~ o m p , ~ t e d  with e = 1.0 and with ,U from 0.5 to 0.166. 

-2 L I I 
0 2 4 

X----C 

Fig. 7. Family 6A of periodic orbits-rectilinear elliptic 
restricted three-body problem: periodic orbits for con- 
stant  eccentricity (e = 1.0) and variable mass ratio 

( p  ' 0.50 to 0.8 66; inertial axes) 

More orbits could have been computed, e.g., with 
fixed e (different from 1.0) and variable p, or with fixed p 
(different from 0.5) and variable e. This has not been 
done because of the extensive computer time involved, 
but it is possible that this family exists for all values of 
e and p. The stability of this family has not been studied. 

Orbits with p = 0.5 form family 12A (Fig. 8), whereas 
orbits with e = 1.0 form family 6A (see Fig. 7 and 
Table 4). In the integration of these orbits, the two 
primaries have always been taken at maximum elonga- 
tion (at apoapsis) at  t = 0, and so the letter A is used in 
the symbols 6A and 12A designating these families. The 
initial conditions for family 12A are listed in Table 5. 

B. Periodic Orbits in the Rectilinear Restricted 

Three-Body Problem 

By studying the continuation of one of Strb'mgren's 
periodic orbits, it is seen that the eccentricities e = 1 
cannot be avoided in the natural prolongation of the 
families, and that the rectilinear restricted three-body 
problem thus plays a special role. For this reason, a spe- 
cial study has been made of the rectilinear problem, and 
the most important numerical results are described in 
this section. Schubart had already proposed to take 
the eccentricity e = +1 as a starting point for a system- 
atic study of the elliptic restricted three-body problem. 

Because of the simplicity of the equations of motion, it 
was decided first to integrate some orbits with regularly 
spaced initial conditions to see if some periodic orbits 
would eventually exist. The rather surprising conclusion 
was soon reached that a large number of periodic orbits 
exist, although they are all isolated. Thirteen of these 
periodic orbits have been computed with somewhat 
higher precision. The classical Runge-Kutta numerical 
integration procedure has been used with a variable step 
(equal to 0.005 r,r,). The objective was not mainly the 
high precision of the numerical results; e.g., by using 
full double precision, the end results have probably only 
five- or six-place accuracy. The periodic orbits were 
obtained by two-dimensional linear differential correc- 
tions when a good approximation had been obtained by 
the previous computer runs. 

The initial conditions that have been explored are of 
the form 

and have been arbitrarily restricted to the limits 
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Table 4. initial conditions for family 6A 

R E C T - E L L ,  PROBLEM-MU=VARIABLE, E = 1 , 0 1  
N R  X 0 Y D D T O  

1 O e O O O O O O O  1.0530847 
2 -0.0050094 1 e0530873 
3 -0.0150282 1,0531077 
4 -000250467 lo0531486 
5 -0.0350646 1,0532099 
6 -0,0450817 1.0532917 
7 -0.0550978 1.0533940 
8 -0oO651127 1.0535167 
9 -0.0751261 1.0536600 

10 -0.0851378 1,0538237 
11 -0.0951477 1,0540081 
12 -0.1051555 1,0542130 
1 3  -001151609 1.0544385 
1 4  -0. 1251638 1.0546847 
15  -0.1351639 1,05495 16 
16 -0- 145 161 1 1.0552392 
17  -0.1551551 1.0555476 
1 8  -0,1651458 1.0558768 
19 -0.1751328 1 a0562268 
20 -0o1851162 1.0565980 
2 1 -0,1950956 1.0569900 
22 -0.2050708 1 .0574032 
2 3 -0o2150417 1.0578375 
24 -0,225008 1 1 e0582930 
2 5 -00 2349699 1 e0587699 
2 6 -0,2449265 lo0592681  
27 -0.2548782 1,0597878 
28 -002648248 1 m0603291 
29 -0,2747658 1.0608921 
3 0 -002847019 1,0614773 
3 1 -0,2946312 1.0620836 
3 2 -0- 3045552 1e0627123 
33 -003144731 1.0633632 
34 -0.3243849 190640364 
35 -003342904 1 06473 19  
36 -003441890 100654498 
37 -003540818 1.0661909 
38 -0.3639676 1.0669547 
39 -00 3738465 lo0677414 
4 0 -003837184 100685514 
41 -0.3935833 1.0693848 
42 -0-4034412 1.0702420 
43 -0.4132914 lo0711226 
44 -0,4231344 la0720273  
4 5 -0.4329699 1,0729563 
4 6 -0,4427978 1,0739097 
47 -0.452618 1 1.0748878 
48 -014624305 1,0758906 
49 -0,4722352 1,0769190 
50 -0,4820318 100779726 
5 1 -0.4918205 lo07905  19 
52 -0.5016011 1.0801573 
5 3 -0.5113735 100812889 
5 4 -0e5211378 1.0824474 
55 -0.5308937 1,0836324 
5 6 -0,5406414 1.0848449 
5 7 -0.5503806 1.0860851 
5 8 -0,5601115 1.0873532 
5 9 -0.5698338 190886497 
60 -0.5795476 1,0899749 

(MU=0.5 I S  RECTIL, 1 F A M H L V  b 
M A S S  RATIO ECC 
0.5000000 1 eOOO0000 
0.4990000 lo0000000 
0.4970000 1.0000000 
0,4950000 l o  0000000 
Oa49300O0 1,0000000 
0.491 0000 190000000 
0,4890000 1. 0000000 
0.4870000 1,0000000 
Oe4850000 1 ~ 0 0 0 0 0 0 0  
Oe4830000 le0000000  
0 ~ 4 8 1 0 0 0 0  1 ~ 0 0 0 0 0 0 0  
0.4790000 1,0000000 
0.4770000 1.0000000 
Oe47500O0 1 ~ 0 0 0 0 0 0 0  
0.4730000 1.0000000 
004710000 100000000 
0,4690000 1-0000000 
Oe4670000 1.0000000 
0.4650000 1.0000000 
Oo4630000 1,0000000 
0.4610000 100000000 
0.4590000 1a0000000 
0.4570000 1.0000000 
0,4550000 1.0000000 
004530000 1,0000000 
0.4510000 1.0000000 
Oa4490000 1e0000000 
0,4470000 1.0000000 
0.4450000 1.0000000 
094430000 1*0000000 
Oa4410000 1 ~ 0 0 0 0 0 0 0  
O o  4390000 1.0000000 
Oo4370000 1.0000000 
0.4350000 1.0000000 
0.4330000 lo0000000 
0.4310000 1.0000000 
0.4290000 1.0000000 
0,4270000 1.0000000 
0.4250000 1.0000000 
0-4230000 1e0000000 
0,4210000 1e0000000 
0.4190000 l o O O O O O O O  
0.4170000 1o0000000 
0,4150000 1 ~ 0 0 0 0 0 0 0  
0.4130000 1.0000000 
0.4110000 1.0000000 
0.4090000 1.0000000 
Oe40700O0 1.0000000 
Oe4050000 1a0000000 
0-4030000 1 ~ 0 0 0 0 0 0 0  
0.4010000 1 ~ 0 0 0 0 0 0 0  
0-3990000 1-0000000 
Oe39700O0 1e0000000 
Oo3950000 1e0000000 
Oo3930000 1-0000000 
0.3910000 100000000 
0.3890000 1.0000000 
0.3870000 1.0000000 
0.3850000 1 ~ 0 0 0 0 0 0 0  
Oo3830000 1 e O O O O O O O  
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Table 4 (contd) 

V A R I A B L E ,  E-1-01 
YDDTO 

lo0913295 
100927137 
1.0941278 
1.0955725 
1.0970482 
100985555 
1 . 1000946 
1,1016664 
1,1032712 
10 1049098 
1 r 1065826 
1 e 1082903 
1 * 1100337 
lo1118133 
1.1 136298 
1 . 1154840 
1,1164256 
lo1212802 
1.1263905 
lo1317705 
101374358 
lo1434038 
10 1496934 
1 0  1563259 
10 1633246 
1,1707156 
l o  1785277 
101867933 
1.1955485 
1,2048340 
102146951 
1.2251836 
1.2363577 
1.2482838 
1,2610378 
1.2747065 
1.2893905 
1 3052059 
1,3222887 
1.3407982 
lo3609228 
103828872 
1.4069615 
104334735 
1,4628257 
1.4955178 
lo5321793 
1,5736156 
1.6208768 
196753471 
lo7389361 
1.7674878 
lo7981249 
le8311020 
1.8667278 
1,9053503 
199473569 
1.9932978 

(YU=005 IS REC 
MASS RATIO 
0.3810000 
0.3790000 
Oe3770000 
0,3750000 
Oe3730000 
0.3710000 
Oe3690000 
0.3670000 
00 3650000 
Oo3630000 
0,3610000 
0.3590000 
0.3570000 
0.3550000 
0, 3530000 
0.3510000 
0.3500000 
0.3450000 
Oa3400000 
0.3350000 
Oa3300000 
0.3250000 
Oo3200000 
0.3150000 
0.3100000 
0.3050000 
0.3000000 
Oa2950000 
0.2900000 
0,2850000 
0.2800000 
Oe2750000 
0.2700000 
Oe2650000 
0,2600000 
00 2550000 
0,2500000 
Oo2450000 
Oo2400000 
002350000 
Om 2300000 
002250000 
0.2200000 
002150000 
002100000 
0. 2050000 
0e2000000 
0.1950000 
0- 1900000 
Oe1850000 
0. 1800000 
0,1780000 
0. 1760000 
00 1740000 
Oe1720000 
Oe1700000 
0-1680000 
0.1660000 

T I L .  1 F A M I L Y  6 
E C C  

1,0000000 
1.0000000 
1.0000000 
1 e 0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
10 0000000 
1.0000000 
1.0000000 
1.0000000 
1~0000000 
1.0000000 
1 *0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1,0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1,0000000 
1,0000000 
10 0000000 
1.0000000 
1 ~OOOOOOO 
1.0000000 
10 0000000 
1.0000000 
1.0000000 
100000000 
1 0  0000000 
1.0000000 
1.0000000 
1 ,0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
1.0000000 
100000000 
100000000 
100000000 
100000000 
1.0000000 
1,0000000 
1.0000000 
100000000 
1.0000000 
1.0000000 
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Fig. 8. Family 12A of periodic orbits 
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Table 5. Initial conditions for family 12A 

ELL, PROBLEM-MU= 
N R X 0 

il 0.0000000 
2 -0.0055055 
3 -0.0095377 
4 -0-0123140 
5 -0.0145724 
b -0,0165242 
7 -0,0182709 
8 -0,0198647 
9 -OmO213403 

10 -0.0227208 
11 -0.0240226 
1 2 -0.0252577 
B 3 -0.0264356 
14 -0,0275644 
B 5 -0,0286476 
B B -0,0296924 
B 7 -0o0307019 
113 -Om0316795 
B 9 -0,0326282 
2 0 -000335496 
2 1 -0.0344479 
22 -0.0353229 
2 3 -0-0361770 
2 4 -0,0370116 
2 5 -0,0378280 
2 5 -0o0386280 
2 7 -0.0394105 
2 8 -0o0401786 
2 9 -0.0409324 
33 -0.0416727 
3 1 -0,0424003 
3 2 -0,0431149 
33 -0.0438194 
3 4 -000445121 
3 5 -0,0451943 
3 5 -0,0458664 
3 7 -0.0465289 
3 8 -0,0471828 
39 -0,0478264 
4 0 -0,0484623 
4 1 -0.0490899 
4 2 -0,0497096 
4 3 -0a0503217 
44 -0,0509258 
45 -0.0515242 
4 6 -0.0521150 
4 7 -0.0526992 
4 8 -0,0532770 
4 '3 -0.0538486 
5 0  -0.0544148 
5 1 -0.0549738 
52 -0,0555278 
5 3 -0,0560763 
54  -0,0566195 
5 5 -0,0571574 
5 4 -0.0576902 
5 7 -0.0582182 
5 8 -0.0587413 
5 9 -0.0592598 
b 0 -0,0597738 

0-5,E=1-0 TO 0 - 0  I 
YDOTO 

1.0530847 
1.0536413 
1.0547530 
1,0558693 
1.0569843 
1,0580999 
1.0592159 
1.0603329 
lo0614508 
1.0625691 
1,0636881 
1,0648078 
1.06592 82 
1 0670495 
1.0681712 
10 0692937 
1 e0704170 
1.0715410 
1.0726657 
1,0737910 
1,0749174 
1.0760444 
1.0771721 
1,0783004 
1 no794298 
1.0805601 
1.0816907 
1.0828223 
1.0839547 
1.0850879 
1.0842219 
lo0873565 
1.0884923 
1-0896288 
1 . 0907661 
1,0919042 
1.0930431 
1.0941831 
lo0953236 
1,0964651 
lo0976075 
1.0987507 
1,0998948 
1,1010396 
1.1021857 
1 0  1033324 
1 - 1044801 
1.1056286 
1 . 1067781 
1.1079287 
1.1090798 
1 o 1102320 
1,1113852 
1.1125393 
10 1136944 
1.1148503 
1.1160073 
1,1171652 
1 , 1183241 
1,1194839 

E = l  I S  RECT.1 F 
MASS RATIO 
0.5000000 
0,5000000 
Oo5000000 
0.5000000 
0.5000000 
0,5000000 
0,5000000 
0- 5000000 
0.5000000 
0,5000000 
0,5000000 
0.5000000 
0.5000000 
0- 5000000 
0. 5000000 
Oo5000000 
Oe5000000 
Oo5000000 
0,5000000 
O o  5000000 
0.5000000 
00 5000000 
O m  5000000 
Oo5000000 
Oo5000000 
0 ~ 5 0 0 0 0 0 0  
0.5000000 
0,5000000 
Oo5000000 
0- 5000000 
0.5000000 
005000000 
0.5000000 
0.5000000 
0 ~ 5 0 0 0 0 0 0  
Oa5000000 
Oo5000000 
Oo5000000 
0.5000000 
Oe5000000 
00 5000000 
0.5000000 
0.5000000 
0-5000000 
0-5000000 
0.5000000 
0,5000000 
0,5000000 
0,5000000 
0.5000000 
0, 5000000 
Oo5000000 
0,5000000 
0.5000000 
0, 5000000 
0 ~ 5 0 0 0 0 0 0  
0.5000000 
0- 5000000 
0.5000000 
0.5000000 

:AMILY 12 
ECC 

1 ~ 0 0 0 0 0 0 0  
0.9990000 
On9970000 
0.9950000 
0.9930000 
0,991 0000 
0.9890000 
0.9870000 
0,9850000 
0.9830000 
0.9810000 
0.9790000 
0.9770000 
0.9750000 
0-9730000 
0.9710000 
0,9690000 
0.9670000 
0.9650000 
0,9630000 
0,9610000 
0.9590000 
0.9570000 
Oe9550000 
Oo9530000 
0-9510000 
0,9490000 
0.9470000 
O o  9450000 
Om9430000 
0.9410000 
009390000 
0.9370000 
0.9350000 
009330000 
0.9310000 
0,9290000 
0.9270000 
0.9250000 
0.9230000 
0-9210000 
0.9190000 
Oo.9170000 
0.9150000 
0.9130000 
0.9110000 
0-9090000 
0,9070000 
0.9050000 
Om9030000 
0.9010000 
0.8990000 
008970000 
Oa8950000 
0.8930000 
0.8910000 
0.8890000 
Oe8870000 
0.8850000 
0,8830000 
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Table 5 (contdl 

ELL. PROBLEM,MU= 
NR X 0 
6 1 -0.0602834 
62 -0e0607890 
63 -0,0612888 
64 -0.0617854 
6 5 -0,0622780 
66 -0,0627666 
67 -0-0632513 
68 -0.0637312 
69 -00 0642094 
7 0 -0-0646830 
7 1 -0-0651530 
72 -0.0656195 
73 -0,0660825 
74 -0.0665432 
7 5 -0.0669987 
7 6 -0,0674518 
7 7 -0,0679018 
78 -0.0683487 
7 9 -0,0687926 
8 0 -090692324 
8 1 -0.0696713 
82 -0.0698891 
8 3 -0,0709677 
8 4 -0,0720289 
8 5 -0,0730738 
8 6 -0,0741024 
8 7 -0.0751157 
8 8 -0,0761143 
8 9 -0.0770985 
9 0 -0.0780689 
9 1 -0.0790258 
92 -0,0799699 
93 -000809014 
94 -0.0818206 
95 -0.0827279 
9 6 -0.0836236 
97 -0.0845082 
98 -0.0853816 
9 9 -0,0862444 
100 -0-0870968 
10 1 -0.0879389 
102 -0,0887711 
103 -0,0895934 
104 -0.0904064 
105 -0.0912099 
106 -0.0920042 
107 -0.093566 1 
108 -0.0950933 
109 -0.0965871 
110 -0.0980485 
11 1 -0.0994787 
112 -0- 1008790 
113 -0,1022474 
114 -0.1035882 
115 -0~1049006 
116 -0.1061855 
117 -0.1074432 
118 -0.1086732 
119 -0,1098796 
120 -011110591 

015,E=1.0 TO 0 
YDOTO 

1,1206447 
lo1218065 
101229694 
1.1241332 
1.1252980 
1,1264638 
1.1276306 
1 o 1287985 
1, 1299673 
lo1311372 
1-1323082 
1.1334802 
1.1346532 
1.1358272 
1.1370024 
1.1381786 
1.1393559 
1.1405343 
1.1417138 
1 a 1428944 
1.1440759 
1.1446672 
1.1476275 
1.1505949 
1.1535693 
1.1565510 
1,1595399 
101625362 
1 e 1655401 
1,1685514 
1.1715706 
1, 1745974 
1 - 1776321 
1. 1806748 
1 , 1837256 
1 . 1867845 
1.1898517 
1- 1929273 
1.19601 14 
1 199 1041 
1.2022054 
102053155 
1,2084345 
1,2115624 
1 a2146995 
lo2178458 
1.2241663 
1,2305249 
1.2369225 
1.2433599 
1.2498380 
1,2563577 
1.2629201 
1.2695259 
1.2761761 
1.2828717 
1,2896137 
1.2964032 
1 a3032409 
1.3101281 

-0 IE-1 IS RECT.)  FAMILY 12 
MASS RATIO ECC 
Oe5000000 0.8810000 
Oo5000000 Oe 8790000 
0.5000000 0.8770000 
0.5000000 0.8750000 
0.5000000 0,8730000 
0.5000000 0.871000CB 
Oe5000000 0.8690000 
Oa5000O00 Oe8670000 
0,5000000 Om8650000 
Oo5000000 018630000 
0~5000000 0.8610000 
0,5000000 0.8590000 
Oe5000000 0,8570000 
0.5000000 0.8550000 
Oa50000O0 Oe8530000 
Oa 5000000 0.8510000 
Oa 5000000 0.8490000 
Oo5000000 0.8470000 
0, 5000000 0.8450000 
0- 5000000 Oa843O000 
0.5000000 0.8410001b 
Oo5000000 0~8400008 
0.5000000 Oe835OD00 
Oe5000000 0,8300000 
Oe50000O0 0.8250000 
0,5000000 0.8200000 
0.5000000 0-81500OCB 
Oe50000O0 Oa8100000 
0,5000000 008050000 
0.5000000 0.8000000 
Oe5000000 0.7950000 
0,5000000 Om 7900000 
0.5000000 0.7850000 
0- 5000000 0m7800000 
Oe5000000 0.7750000 
0~5000000 0-7700000 
0~5000000 0,7650000 
0,5000000 007600000 
0- 5000000 0,7550000 
Oe50000O0 0m750000Cb 
0.5000000 0,7450000 
0~5000000 0,7400000 
0,5000000 0,7350000 
0- 5000000 Om7300000 
0,5000000 0.7250000 
0~5000000 0-7200000 
Oe5000000 0.7100000 
0.5000000 0.7000000 
0.5000000 0*6900000 
0~5000000 0.6800000 
Oe5000000 0.6700000 
Oe5000000 0.6600000 
0- 5000000 0-6500000 
Oe5000000 0.6400000 
Oa5000000 0.6300000 
0,5000000 0.6200000 
Oo 5000000 0.6100000 
0- 5000000 0.6000000 
0.5000000 0.590000U 
0.5000000 0.5800000 
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Table 5 (contd) 

ELL, PROBLEM- MU= 
X 0 

-0,1122135 
-0,1133429 
-0,1144479 
-0.1155300 
-0.1165856 
-011176189 
-0,1196155 
-0*1215201 
-0- 1233338 
-09 1250580 
-0.1266935 
-0.1282409 
-0.1297006 
-0,1310729 
-0- 1323581 
-001335557 
-0,1346660 
-0,1356886 
-0,1366232 
-0,1374693 
-001382262 
-001388937 
-0.1394707 
-0. 1399566 
-0- 1403505 
-0.1406515 
-0,1408588 
-0.1409711 
-0.1409871 
-0.1409055 
-0.1407288 
-0,140451 1 

0-5,E=1.0 TO 0.0 l E = l  I S  RECT.) FAMILY 12 
YDOTO MASS RATIO ECC 

1-3170658 Oa5000000 0.5700000 
1.3240550 0-5000000 0, 5600000 
1.3310968 0 ~ 5 0 0 0 0 0 0  0-5500000 
1.3381924 0 ~ 5 0 0 0 0 0 0  0,5400000 
1,3453429 O o  5000000 Oa5300000 
1 e 352 5494 O e  5000000 Oa5200000 
1,3671351 Oe5000000 0 ~ 5 0 0 0 0 0 0  
1.3819593 0.5000000 0,4800000 
1.3970321 0 ~ 5 0 0 0 3 0 0  O m  4600000 
1 e4123639 0.5000000 Oe4400000 
104279656 Oa5000000 0.4200000 
1.4438486 0 ~ 5 0 0 0 0 0 0  0a4000000 
1.4600249 0. 5000000 0.3800000 
1 a4765068 0,5000000 0.3600000 
1,4933075 0,5000000 0.3400000 
1-5 104406 0. 5000000 0-3200000 
1.5279203 Oa5000000 0,3000000 
1.5457617 Oe5000000 Oo2800000 
1.5639806 Oo5000000 0.2600000 
1-5825935 0,5000000 0.2400000 
1.6016178 Oe5000000 0-2200000 
1,6210719 Oe5000000 0,2000000 
1.6409752 0- 5000000 0-  1800000 
1-6613480 Oe5000000 Oo1600000 
1,6822119 0,5000000 Oa1400000 
1 a 7035896 Oo5000000 Om1200000 
1.7255053 0.5000000 0,1000000 
1.7479844 0,5000000 OeO800000 
1.7710539 0-5000000 0.0600000 
1, 7947423 Oe5000000 Oe0400000 
1.8190812 0.5000000 O e  0200000 
lo8441018 0,5000000 0 ~ 0 0 0 0 0 0 0  

The velocity G,, has also been restricted to be below some at the other primary m, = p (selenocentric). In this partic- 
parabo1ic or approximate escape velocity defined by ular problem, with equal masses 1 - p = p = 0.5, the 

word geocentric is used for the coordinate system centered 

(177) 

Table 6. Initial conditions for 13 periodic orbits 
Figure 9 shows these initial conditions. Imposing the 

above B-estrietions, the shaded area is obtained. This 
area was then swept with regular intervals of 0.05 for x, 
as well as for Go. The 13 points on Fig. 9 correspond to 
the isolated periodic lorbits that have been found. Eleven 
of these orbits (3-13) form a single sequence, all of them 
having one loop around one primary and an increasing 
number of loops around the other primary. 

The initial conditions of the 13 periodic orbits are 
given in Table 6. A printout of the initial and final con- 
ditions is presented in Table 7. All 13 orbits have the 
period T = 2r. In Fig. 10, the actual orbits are shown 
referred to the barycentric coordinate system. Figure 11 
shows the six simplest orbits referred to a coordinate sys- 
tem centered at one primary m, = 1 - p (geocentric) and 
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The 13 periodic orbits that have been computed are 
isolated as far as e and p are concerned. When e 2nd p 

are varied, however, families of periodic orbits are gen- 
erated in the neighborhood of e = 1, p = 0.5. T o  verify 
the existence of these families, the follo\.ving four tam- 
ilies (5P, 9P, 4P, and 3P-Fig. 12) have been lniiiatcid: 

(1) 5P-In the neighborhood of o:rbit 1: 22 periodic 
orbits with e = 1.0 and p = 0.5 to 0.439 (Table 8). 

(2) 9P-In the neighborhood of orbit 2: 12 periodic 
orbits with p = 0.5 and e = 1.0 to 0.988 (Table 9). 

(3) 4P-In the neighborhood of orbit 2: 26 periodic 
orbits with e = 1.0 and p = 0.5 to 0.458 (Table 10). 

(4) 3P-In the neighborhood of orbit 3: 23 periodic 
orbits with e = 1.0 and p = 0.5 to 0.466 (Table 11). 

C. Family 7P 

This family (Fig. 13) begins with one of the periodic 
orbits described in Ref. 6-an orbit of family C of ~efro-  
grade satellite orbits around the smaller primary m2 in 
the circular restricted problem. The orbit that bas been 
chosen is close to orbit 87 in Ref. 6 because this orbit 
has a period of 2 ~ .  The initial conditions, in rotating 
axes, may be given as follows: 

Family 7P thus belongs to the earth-moon mass ratio, 
and has the eccentricity e as the variable parameter. 
The initial and final conditions are listed in TabIe 12. 

Fig. 9. Diagram of initial conditions for periodic orbits 

at the primary shown on the left side of Fig. 11; simi- 
larly, selenocentric refers to the primary shown on the 
right side. When geocentric or selenocentric coordinates 
are used, it can be seen that cusps are present in the form 
of the orbits. These cusps are due to the accelerated 
translational motion of the frame of reference rather than 
the motion of the satellite. 

About 130 orbits have been computed in this family, 
with eccentricities e from 0 to 0.50. No orbits with lugher 
eccentricity have been obtained as yet because ther s is a 
collision with the larger primary just above this kalue 
of e. Although the orbits of this family belong to the 
class of "satellite orbits" in the circular problem, they are 
all quite large in shape; in fact, they come closer "i the 
larger primary m, than to m,. 

Good stability information has been obtained for the 
eccentricities up to 0.35 only. The orbits are all ilnrtable. 
and belong to region 6 in the stability &agram (see Fig. 2). 
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Fig. 10. The 13 periodic orbits in the barycentric 
(Inertial) coordinate system 
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GEOCENTRIC COORDINATES I SELENOCENTRIC COORDINATES 

Fig. 11.  The first six periodic orbits in *he geocentric 
and the selenocentric coordinate systerns 
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Table 7. lnitial and final conditions for 13 periodic orbits 

RECTILINEAR ELLIPTIC RESTRICTED THREE-BODY PROBLEM 1 HALF REV, PERIo 
N R X 0 YDOTO X 1 YODTl MASS RATIO ECC 
1 0.5745062 0.3461014 2,2888544 0a2107393 0.5000000 1~0000000 
2 0,5791522 1.6800505 -1.6589334 -1e0153199 0.5000000 1.0000000 
3 0.6823097 0.9814177 -106020894 0,9510169 0o5000000 1a0000003 
4 0,4921103 1.1920888 -0.5101565 -0.9672414 Oo5000000 1-0000000 
5 0.3962118 lo3470394 -lo2921322 1,4104449 Oe5000000 1o0000000 
b 0.3365234 1,4733837 -0,6546279 -100962909 0.5000000 laOO00OO3 
7 0.2951483 1*5816018 -1,2049788 lo7100109 Oa5000000 1a0000000 
8 0,2644841 1.6770793 -0,7239846 -1.2009274 0.5000000 1.0000000 
9 0,2406901 la7630140 -1m1620703 lo9393112 0.5000000 1.0000000 

10 0.2215965 1.8414813 -0,7662645 -1,2895975 0.5000000 lo0000003 
11 0.2058762 1.9139168 -1.1360074 2.1282105 0~5000000 1~0000000 
12 0,1926678 1.9813582 -0,7952567 -103671887 0.5000000 1~0000000 
13 0,1716180 2,1041985 -0e8166100 -1,4366001 Oe5000000 lo0000003 

Table 8. Initial and final conditions for family 5P 

R E C T ~ ~ E L L . P R O B L E M . M U = V A R I A ~ L E V E = ~ , O I  FAMILY 5 IPERIAPSIS) 
NW X 0 YDOTO X 1 YDOTl MASSRATIO ECC 
1 0,5791522 1-6800505 -106589334 -1,0153199 Oo5000000 1oOOOOOOO 
2 0,5798281 1-6787450 -1.6577717 -1.0153041 0.4990000 1~0000000 
3 0,5805048 lo6774394 -1,6566089 -1.0152883 0o4980000 1~00OOOOD 
4 0-5811814 106761353 -1,6554461 -1.0152713 0-4970000 1oOOOOOOO 
5 0,5818578 1,6748327 -106542834 -lo0152530 Oe4960000 1eOOOOOOO 
b 0,5825344 lo6735311 -1,6531205 -1.0152337 0.4950000 lo0000003 
7 Oo5832109 1.6722311 -106519577 -la0152131 Oo4940000 1oOOOOOOO 
8 0,5838874 1.6709325 -1,6507949 -1e0151914 0-4930000 1eOOOOOOO 
9 0,5845639 1.6696351 -1.6496321 -la0151686 0*4920000 1eOOOOOOD 

bQ 0,5852403 106683392 -1.6484693 -lo0151446 Oo4910000 la0000000 
11 0,5859166 1.6670446 -106473065 -la0151194 On4900000 1~0000000 
12 0,5865931 1.6657512 -106461436 -100150931 Oo4890000 1~0000000 
13 0,5872694 1,6644593 -1,6449808 -1,0150656 OO48800OO 1,0000003 
14 0,5879457 lo6631688 -106438180 -1-0150370 Oe4870000 1.0000000 
15 0,5886221 1,6618792 -1,6426551 -1.0150074 0.4860000 1~0000000 
16 0,5892983 1.6605914 -106414924 -1.0149764 0,4850000 1, 0000003 
17 005899745 la6593047 -1,6403296 -1.0149444 0,4840000 1oOOOOOOO 
18 0.5906507 lo6580193 -106391668 -1e0149113 0.4830000 1,0000000 
19 Oe59 13268 1 s6567353 -1. 6380040 -1.0148770 Oe4820000 1aOOOOOOO 
20 0e5920030 lo6554525 -1,6368412 -1.0148416 0-4810000 1aOOOOOOO 
21 0,5926790 la6541710 -1,6356785 -la0148051 0-4800000 1a0000000 
22 0,5933551 lo6528909 -1.6345158 -100147675 0*4790000 1a0000000 
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Fig. 12. Families SP, 9P, 4P, and 3P of periodic orbits 
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I 
Fig. 12 (contd) 
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Fig. 12 (contd) 
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Table 9. Initial and final conditions for family 9P 

ELL,RIESTR,PROBLEMn C E VARIABLE FROM 1.0 MU=O-5 PERI- 1 HALF REV, FAM 9 
N R X 0 YDDTO X 1 YDOTl M A S S  R A T I O  ECC 
1 0-5745062 0.3461014 2,2888544 0-2107393 0.5000000 1,0000000 
2 0,5554261 0,3536558 2,2735915 0*2485901 0e5000000 0,9990000 
3 0.5391346 0.3588893 2.2672086 002649357 Oe5000000 3-9980000 
4 0-5226942 On3634967 2.2623948 On2776792 0.5000000 0.9970000 
5 0,5057545 0.3677720 2,2584234 002885861 0 ~ 5 0 0 0 0 0 0  0.9960000 
6 0,4880889 0,3718801 2.2550035 0.2983681 Oe5000000 Ow9950000 
7 0.4694702 003759493 2n2519789 0.3074152 On5000000 0.9940000 
8 0,4496181 On3801073 2o2492501 On3159891 0.5000000 0.9930000 
9 0,4281412 0,3845098 2.2467439 0,3243015 0-5000000 0-9920000 
10 0,4044309 0.3893839 2.2443955 0.3325661 On5000000 On9910000 
11 0,3774115 0,3951273 2,2421329 0.3410634 Oe5000000 0.9900000 
12 0.2984375 004150494 2,2371638 0,3619545 0,5000000 0,9880000 

Table 10. Initial and final conditions for family 4P 

RECT-ELL, PROBLEM,MU=VARIABLE, E = 1 , O I  FAMILY 4 l 
N R XO YDOTO X 1 YDOTl 
1 0.5745062 0,3461014 2,2888544 On2107393 
2 Ow5674326 On3542697 2n2889281 0.2144953 
3 On5603530 0.3624437 2,2889941 0.2181885 
4 0.5532670 0,3706281 2,2890527 0,2218205 
5 0.5461754 0,3788288 2,2891041 0.2253941 
6 005390791 On3870518 202891482 0.2289118 
7 0,5319790 003953027 2n2891852 0.2323760 
8 005248759 004035872 2.2892151 002357887 
9 0,5177707 0,4119105 2.2892379 0,2391520 

10 0,5035575 004286952 202892623 0.2457375 
11 0.4893471 0,4456986 Zn289259O 0.2521460 
1 2  0,4751470 0.4629622 2.2892282 0.2583889 
13 0.4609653 004805276 2.2891704 0.2644764 
14 0.4468103 0.4984367 2.2890859 Om2704176 
1 5  0-4326905 0,5167328 2,2889751 0,2762204 
16 0,4186150 0.5354604 2.2888385 002818918 
1 7  Om4045927 005546663 2,2886764 0.2874382 
18 Om3906333 0.5743994 2,2884891 0,2928654 
19 0.3767464 0.5947116 2,2882772 0.2981786 
20 Om3629422 On6156580 2.2880409 0.3033823 
2 1  0.3492310 006372978 2,2877808 On3084808 
22 0,3356234 0,6596942 2,2874972 On3134780 
23 0.3221304 006829159 202871903 0.3183777 
24 0.3087633 007070368 2.2868607 0.3231828 
25 0,2955335 0,7321377 20 2865088 0.3278966 
26 0,2824529 0,7583063 2,2861349 0,3325218 

PERIAPSIS) 
MASS RATIO ECC 
0,5000000 l o  0000000 
0 ~ 4 9 9 0 0 0 0  1 ~ 0 0 0 0 0 0 0  
Oe4980000 1 m 0000000 
Oo4970000 1,0000000 
0,4960000 1n0000000 
Om4950000 1 ~ 0 0 0 0 0 0 0  
0- 4940000 1 n 0000000 
0,4930000 1n0000003 
0-4920000 1 ~ 0 0 0 0 0 0 0  
0,4900000 l o O O O O O O O  
0,4880000 1.0000303 
0.4860000 1 ~ 0 0 0 0 0 0 0  
0.4840000 1.0000000 
0.4820000 1 .OOOOOOO 
On4800000 1 .OOOOOOO 
0.4780000 1 ~ 0 0 0 0 0 0 0  
0- 4760000 1 n 0000000 
O m  4740000 1,0000000 
0-4720000 1.0000000 
0,4700000 1 o O O O O O O O  
Om4680000 1n0000003 
0,4660000 1.0000000 
0,4640000 1 w O O O O O O O  
Oe4620000 1 ~ 0 0 0 0 0 0 0  
Oo4600000 1 ~ 0 0 0 0 0 0 0  
0,4580000 1e0000000 
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Table 1 1 .  Initial a n d  final conditions for family 3P 

RECTeELL .PROBLEM.MU=VARIABLEIE= l ,D I  FAMILY 3 (PERIAPSIS) 
N R X 0 YDOTO X 1 YDDTl MASS RATIO 
1 0.6823097 0.9814177 -106020894 0,9510169 0 ~ 5 0 0 0 0 0 0  
2 0.6836911 0.9788757 -1,6002956 0.9519198 0.4990000 
3 0.6850722 0.9763395 -1.5985012 0.9528221 Oo4980000 
4 0.6864528 0.9738089 -1.5967064 0.9537237 0,4970000 
5 0.6878332 0.9712840 -1.5949112 0,9546246 0.4960000 
6 006892132 009687647 -105931155 0.9555248 0.4950000 
7 0.6905929 0.9662509 -1,5913194 0.9564243 0-4940000 
8 0,6919722 0.9637427 -1.5895228 0.9573231 0.4930000 
9 0.6947297 0,9587429 -1.5859284 0.9591187 004910000 

10 0.6933511 0.9612401 -1.5877258 0.9582213 Oe4920000 
11 0-6961080 0,9562512 -1.5861305 0.9600155 0.4900000 
12 0.6988633 0.9512840 -1.5805335 0.9618069 0.4880000 
13 0,7016172 0.9463383 -1,5769350 0.9635956 0.4860000 
14 0.7043695 0.9414138 -1.5733348 019653814 Oe4840000 
15 0.7071203 0.9365104 -1.5697331 0.9671644 0.4820000 
16 0.7098694 0.9316278 -1-5661298 0.9689446 0.4800000 
17 0-7126169 0.9267658 -105625252 0.9707218 0.4780000 
18 0.7153627 0.9219241 -1.5589190 0.9724963 0.4760000 
19 0,7181068 0,9171026 -105553115 0,9742678 0.4740000 
20 0.7208490 Oe9123010 -105517027 0.9760364 0.4720000 
21 0,7235895 0,9075192 -1.5480925 0-9778020 0.4700000 
22 0.7263281 0.9027568 -1.5444811 0.9795647 Oe4680000 
23 0.7290649 0.8980138 -1,5408685 0.9813245 0.4660000 
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Fig. 13. Family 7P of periodic orbits 
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Table 12. Initial and final conditions for family 7 P  

ELLIPTIC PROBLEM MU=0,012155 P S  1 HALF REV PERIAPSIS FAMILY 7 
N R X 0 YDDTO X 1 YDOTl MASS RATIO E C C  
1 0.1520965 3.1608994 1,8428499 -1.5495568 000121550 O00O01O00 
2 0o1520728 3.1610334 108427078 -115494262 0.0121550 0.0002000 
3 0, 1520491 3.1611673 108425657 -1.5492956 0.0121550 0-0003000 
4 0,1520253 301613014  1.8424237 -1.5491650 0.0121550 0.0004000 
5 001520059 3.1613835 1.8422775 -1-5490262 0- 0121550 0,0005003 
6 0.1519822 3.1615176 1.8421355 -1.5488957 0e0121550 0.0006000 
7 0.1519584 3.1616519 108419936 -1.5487653 0-0121550 Oe0007000 
8 0o1519347 3,1617862 1.8418517 -1.5486348 0.0121550 0.0008000 
9 0.1519109 3.1619206 1.8417098 - l o 5 4 8 5 0 4 4  Oo0121550 On0009000 

10 0, 15 18872 3.1620550 108415679 -1.5483741 000121550 Oe0010000 
11 0.1518634 3.1621895 1,8414260 -1,5482437 0,0121550 0,0011000 
12  0,1518354 3.1623755 1.8412882 -1.5481215 0-0121550 0.0012000 
13 Oo1517879 3.1626453 1.8410047 -1.5478611 0.0121550 0.00B4003 
14  0.1517404 3.1629148 108407213 -1.5476007 0.0121550 0.0016000 
15 Oo1516928 3.1631846 1,8404379 -1.5473404 Oo0121550 0*0018003 
16 0,1516453 3.1634547 1.8401546 -1.5470802 0.0121550 0.0020003 
17  0.1515978 3.1637250 1.8398714 -1.5468201 000121550 0,0022000 
18  0.15 15503 3,1639956 1.8395883 -1,5465602 0,0121550 0.0024000 
1 9  0-1515028 3,1642664 1.8393054 -1.5463004 0.0121550 0.0026000 
20 0.15 14552 3 -  1645375 10 8390225 -1-5460407 0.0121550 0,0028000 
2 1  O o  15 14077 3,1648088 1.8387397 -1,5457812 0.0121550 0.0030000 
22 00 1513602 3.1650804 1.8384570 -1.5455218 0o0121550 0.0OS2003 
23 0.1513126 3.1653523 lo8381745  -1.5452625 Oo0121550 0.003~4000 
24  0.1512651 3.1656244 1,8378920 -105450033 Oo0121550 0.0036000 
25 0-1512175 3.1658967 1-8376096 -105447442 0o0121550 0.0038003 
26 0-1511700 3.1661693 1.8373273 -1.5444853 0.0121550 0.0060000 
27 011511224 3,1664422 1.8370452 -1.5442264 0-0121550 0,0042000 
28 0,1510748 3- 1667153 1.8367631 -1.5439678 Oe0121550 0-0044000 
29 0 -1510272  3.1669887 1.8364811 -105437092 0-0121550 0.00C6000 
30 001509797 3.1672623 1.8361993 -1.5434507 OoO121550 0.0048000 
3 1  0,1509321 3,1675362 1.8359175 -1,5431924 0.0121550 0 ~ 0 0 5 0 0 0 0  
32 O n  1508845 3e1678104 1.8356358 -1.5429342 Oe0121550 0.0052000 
33 0.1508369 3.1680847 108353543 -105426761 0.0121550 Om0056000 
3 4  0 -1508131  3o1682220 1.8352135 -1,5425471 Oo0121550 0,0055000 
35 0,1507893 3,1683594 1,8350728 -1.5424181 0,0121550 0.0056000 
36 0, 1506941 301689094 l o  8345102 -1.5419026 0,0121550 0.0050003 
37 0.1505751 301695985 1,8338074 -105412588 0.0121550 0,0065000 
38 0.1504560 3,1702892 1.8331053 -1,5406158 0.0121550 On0070000 
39 On1503370 3,1709814 108324038 -105399736 0.0121550 Oa0075000 
40 0-1502179 3.1716753 lo8317030  -105393321 0.0121550 300000000 
4 1  0.1500987 3.1723708 1.8310027 -1.5386913 0.0121550 Oe0085000 
42 0.1499795 3.1730680 1.8303031 -105380514 0-0121550 0,0090005 
43 0,1498604 3.1737667 1.8296041 -Po5374122 Oe0121550 0,0095000 
44 0 -  1497411 3 0  1744671 1.8289057 -1.5367737 Oo0121550 0-0130000 
45 0.1495029 3,1758696 lo8275105  -1 a5354985 Oo0121550 0~011.0003 
46 0.1492642 3.1772816 1.8261181 -1.5342269 0.0121550 0.0120000 
47 0.1490255 3.1787003 1.8247281 -105329582 0.0121550 0.0130003 
48 0. 1487866 3,1801254 l o 8 2 3 3 4 0 5  -1-5316926 0.0121550 0.0140003 
49 0,1485477 3.1815572 1.8219554 -1.5304299 0.0121550 O.OP50000 
50 0.1483086 3.1829956 1.8205727 -1.5291703 0.0121550 Q~OLS0000 
5 1  001480694  301844405 1.8191925 -1.5279136 OeO121550 0.0170000 
52 0 -1478301  3 -1858921  108178146 -1.5266599 OeO121550 0,0183000 
53 0.1475907 30 1873503 1.8164392 -1.5254092 0.0121550 Oe0190000 
5 4  0 -1473511  301888152 1.8150662 - l o 5 2 4 1 6 1 4  Oo0121550 0.0200000 
55 0.1471115 3. 1902868 1. 8136956 -1.5229166 Oo0121550 OoO2X0003 
56 O o  1468718 3.1917651 1-8123273 -1,5216747 Oo0121550 300220003 
59 Oo1466319 3o1932502 lo8109615  -1.5204358 0-0121550 0.0230000 
58 0-1463920 301947419 1.8095980 -1,5191998 OeO121550 0-0260000 
59 0-1461519 3,1962405 1,8082369 -1.5179667 0o0121550 0.0250003 
60 0-1459117 3.1977458 1o8068781 -1.5167366 Oo0121550 0.02b000D 
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Table 12 (contd) 

ELL 
N W 
6 l 
6 2  
6 3 
$4 
65 
6 6 
$7 
6 8 
6 9 
70 
7 1 
7 2 
7 3 
7 4 
7 5 
7 6 
77 
7 8 
79  
8 Q 
8 1 
B 2 
8 3 
8 4 
8 5 
8 6 
8 7 
8 8 
Ei 9 
90 
9 1 
92 
9 3 
9 4 
9 5 
96 
9 7 
98 
99 

1 00 
101 
102 
1 0 3  
104 
105 
806, 
107 
108 
109 
110 
111 
B 12 
11% 
114 
B 1 5  
116 
117 
118 
119 
120 

l PTIC PROBL 
X 0 

0,1456714 
0,1454310 
0- 1451905 
0- 1449498 
0- 1437451 
0- 1425372 
00 1413268 
0- 1401138 
0. 1388980 
0,1376795 
0.1364583 
0- 1352343 
0,1340076 
0.1327783 
0,1315462 
0e1303114 
0- 1290740 
0.1278339 
0.1265911 
0- 1253457 
0- 1240976 
0.1228469 
0,1215936 
0.1203377 
0.1190792 
0- 1178181 
0,1165544 
0- 1152882 
0.1140193 
0,1127480 
0- 1114742 
0,1101979 
0.1089191 
0- 1076379 
0.1063542 
0.1050681 
0, 1037797 
0.1024888 
0.1011956 
0- 0999002 
0.0986024 
0,0973023 
Oe096000 1 
0.0946957 
0.0920803 
0.0894569 
0.0868251 
0.0841858 
0.08 15395 
0-0788861 
0.0762265 
0,0735613 
0*0708908 
0-0682157 
0,0655371 
0,0628552 
0-0601710 
0.0574860 
0,0548006 
0-0521 161 

.EM MU=0.012 
KDDTO 

3,1992580 
3,2007770 
3,2023028 
3.2038355 
3.2116029 
3,2195499 
3.2276708 
3.2359716 
3,2444577 
3.2531297 
3.2619923 
3,2710488 
3,2803021 
3,2897563 
3.2994151 
3, 3092823 
3,3193620 
3,3296584 
3,3401755 
3.3509190 
3,3618924 
3.3731008 
3.3845496 
3,3962437 
3.4081887 
3 e 4203902 
3,4328541 
304455858 
3,4585936 
3.4718822 
3,4854586 
3.4993308 
305135053 
3.5279901 
30 5427935 
3.5579232 
3,5733881 
3,5891975 
3.6053602 
3,6218855 
3.6387860 
3,6560701 
3,6737485 
3.6918346 
3,7292754 
3,7684904 
308096025 
3,8527260 
3.8979911 
3.9455605 
309955870 
4- 0482459 
40 1037439 
4.1622978 
402241443 
4.2895686 
4.3588715 
4,4323779 
405104873 
4,5936304 

155 PS 1 HALF R E V  PER1 
X 1 KDDTl 

1.8055217 -1,5155093 
1.8041677 -1.5142850 
1.8028160 -1.5130636 
1.8014666 -1,5118451 
1- 7947543 -1 a5057956 
1e7881000 -1.4998187 
lo7815017 -1,4939117 
1, 7749588 -1.4880748 
1. 7684709 -1,4823074 
1,7620370 -1,4766087 
1- 7556563 -1 -4709780 
107493281 -1.4654149 
1.7430516 -1,4599185 
lo7368262 -1,4544885 
1- 7306510 -104491240 
1. 7245254 -1.4438247 
1.7184486 -1,4385899 
1. 7124201 -1,4334192 
1.7064393 -1,4283121 
1. 7005051 -1.4232678 
1-6946172 -1.4182861 
1,6887750 -1 ,4133666 
1- 6829778 -1,4085087 
1.6772250 -la4037120 
1.6715159 -1,3989761 
10 6658501 -1.3943007 
1,6602269 -1,3896852 
1-6546459 -1,3851295 
1.6491062 -1 ,3806330 
lo 6436076 -1,3761955 
lo6381494 -1,3718167 
1.6327311 -1.3674963 
1.6273523 -1.3632339 
1, 6220123 -1,3590293 
lo6167108 -1.3548823 
lo6114471 -103507926 
1. 6062209 -1 3467599 
1.6010317 -103427842 
11 5958790 -1 -3388650 
lo5907624 -103350025 
lo 5856812 -1.3311961 
1- 5806353 -1,3274460 
1.5756241 -1.3237518 
1.5706472 -1,3201137 
1.5607948 -1.3130047 
la5510745 -la3061179 
1.5414837 -1,2994542 
1- 5320190 -1,2930122 
1,5226774 -1,2867919 
1,5134566 -1.2807952 
10 5043534 -1.2750217 
1,4953653 -1 02694722 
1-4864898 -1 -2641485 
1,4777244 -1 02590522 
1,4690667 -1,2541846 
1.4605147 -1 -2495490 
La4520660 -1,2451478 
lo4437183 -1.2409829 
104354699 -102370589 
1,4273187 -102333795 

APSIS FAMILY 7 
MASS RATIO ECC 
0.0121550 0,0270000 
0- 0121550 0,0280000 
0. 0121550 0-0290000 
0-0121550 0.0300000 
0,0121550 Oa0350000 
0.0121550 0.0400000 
0-0121550 0.0450000 
0-0121550 0.0500000 
0-0121550 Oa0550000 
Oa 0121550 0,0600000 
0-0121550 0.0650000 
0,0121550 Do07DOOOD 
0-0121550 0,0750000 
Oe0121550 0-0800000 
Ow0121550 0-0850000 
0-0121550 0,0900000 
0.0121550 0.0950000 
Oa0121550 0.1000000 
0.0121550 0.1050000 
0-0121550 0.1100000 
0.0121550 0.1150000 
0,0121550 0- 1200000 
0,0121550 0.1250000 
0.0121550 Oo1300003 
Oa0121550 0.1350000 
0, 0121550 0, 1400000 
0.0121550 Oo1450000 
0-0121550 0.1500000 
0-0121550 Oe1550000 
0.0121550 0.1600000 
0-0121550 0,1650000 
On0121550 Oa1700000 
0-0121550 0, 1750000 
0,0121550 0.1800000 
0.0121550 0.1850003 
0-0121550 0-1900000 
0,0121550 0,1950000 
0, 0121550 Oo2000000 
Oe0121550 Oo2050000 
0-0121550 0~2100000 
0-0121550 Oo2150000 
0-0121550 0.2200000 
0.0121550 0.2250000 
0,0121550 0~2300000 
0.0121550 0.2400000 
0.0121550 0,2500000 
0-0121550 3-2600000 
0,0121550 0,2700000 
0.0121550 0~2800000 
Oo0121550 0-2900003 
0,0121550 0-3000000 
0.0121550 0.3100000 
Oa 0121550 0~3200000 
Oo0121550 Oo3300000 
O w  0121550 0.3400000 
Oo0121550 Oo3500000 
0,0121550 3,3600000 
0,0121550 0,3700000 
0,0121550 Oo3800000 
0,0121550 0~3900000 
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Table 12 (contd) 

ELLIPTIC PROBLEM MU-0.012155 PS 1 HALF R E V  PERIAPSIS FAMILY 7 
N R X 0 YDDTO X 1 Y D O T l  MASS RATIO ECG 

121  Oa0494341 4.6822788 1.4192626 -102299480 0,0121550 0*4000000 
122 0,0467555 4.7770100 1,4113001 -1,2267703 0.0121550 0-4100000 
123 0,0440821 4.8784508 1,4034294 -102238513 0,0121450 0.4200000 
124 0,0414156 4.9873240 1.3956485 -1,2211963 0 ~ 0 1 2 1 5 5 0  0-4300000 
125 0,0387577 5,1044787 1,3879562 -1,2188122 0,0121550 0-4400000 
126 0,0361103 5,2308875 1.3803507 -1.2167060 0,0121550 0-4500000 
127 0,0334761 5.3676731 1,3728305 -1.2148847 0-0121550 0.4600000 
128 0,0308572 5.5161770 103653942 -102133572 0*0121550 0-4700000 
129 000282564 5,6779674 1,3580405 -1,2121326 0,0121550 3a4800000 
130 0,0256766 5-8549100 1.3507681 -1.2112207 0,0121550 0*4900000 
131 0,0231214 6,0492417 1.3435756 -1,2206323 0.0121550 0.5000000 

However, they are all very close to the line a, = -2a, -2 
in this diagram. This is to be expected because the orbits 
are essentially two-body orbits around the larger primary 
m, (in the inertial axes, these orbits appear as ellipses), 
which are only weakly perturbed by the smaller primary. 
As a consequence, there is still approximately an integral 
of the motion, and there is a pair of eigenvalues of the 
fundamental matrix that are close to +l. I t  should be 
noted here that, in the circular restricted three-body 
problem, all of the orbits belong to the straight line 
a,= -2a, - 2. 

This family (Fig. 14) begins with the same orbit as 
family 7P (periapsis). About 120 periodic orbits have been 
computed with eccentricity e from 0.0 to 0.99 (Table 13). 
Therefore, this is a family that probably exists for all 
eccentricities. All of the orbits have been computed in 
rotating (pulsating) axes, using the Nechville transfor- 
mation. The orbit corresponding to the eccentricity e = 1.0 
would have to be computed in inertial axes. 

Good stability information has been obtained only for 
the orbits with eccentricities below 0.75. All of the orbits 
are stable, and belong to region 1 (see Fig. 2).  They are 
on a line that is close to the line a, = -2a, -2. When the 
eccentricity e increases, the orbits approach the sepa- 
ration point (-4,6) on the stability diagram. 

E. Family 8P 

Family 8 of periodic orbits is shown in Fig. 15. Family 
8P (Fig. 16) begins at e = 0.0 with an orbit that has been 
taken from Striimgren's problem (circular restricted 
three-body problem with equal masses). In fact, the start- 
ing orbit has been taken from Bartlett's class g (see 

Ref. 18). The period 2~ and the initial conditions for this 
orbit may be written as follows (in rotating axes): 

About 120 orbits have been obtained in family 8B with 
eccentricities ranging from 0.0 to 0.875 (Table 14). It  is 
not yet known whether this family can be prolongated 
all the way to e = 1.0. These last orbits, witla very higl-e e, 
would have to be computed in inertial axes; on the other 
hand, there seems to be an additional difficulty F-iceause 
the satellite has a close approach with one of the pri- 
maries when e approaches 0.97. 

The stability has been computed only for the orbits 
with eccentricities up to 0.55. AII of these orbits are 
unstable, and belong to region 6 (even semi-instability) 
in the stability diagram (see Fig. 2). 

F. Family 8A 

At e = 0.0, this family (Fig. 17) begins at the salne orbit 
as family 8P (periapsis). About 1001 periodic orbits have 
been computed with eccentricities from 0 to 0 85. No 
orbits with eccentricities higher than 0.85 have ye: been 
obtained because the convergence of the dificree~tial 
correction process was becoming increasingly slow. On 
the other hand, there seems to be a moderateiy close 
approach with one of the primaries for thc last orixts that 
have been computed. 
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Fig. 14. Family 7A of periodic orbits 
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Fig. 14 (contd) 
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Table 13. Initial and final conditions for family 7A 

E L L  
N R 
1 
2 
3 
a, 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
B 5 
B 6 
17 
B 8 
19 
20 
2 9 
2 2 
2 3 
2 4  
25 
26 
2 7 
2 8 
29 
30  
3 1 
32  
3 3 
34 
3 5 
36 
37 
38 
39 
4 0 
41 
4 2 
43 
44 
4 5 
4 6 
4 7 
4 8 
4 9 
5 0  
5 11 
52 
5 3 
5 4  
5 5 
5 6 
5 7 
5 8 
5 9 
$0 
- 

.EM MU=0.012155 E VARIABLE APOAPSlS FAMl LY 
YDOTO X 1 YDOTl MASS RATIO 

3, 1607656 1- 8429920 -1 05496874 0.0121550 
3,1574396 1.8465530 -1.5529639 0.0121550 
31  1557914 1. 8483396 -1 -5546093 0 ~ 0 1 2 1 5 5 0  
3.1541530 1,8501301 -1.5562597 0,0121550 
30 1525243 1- 8519247 -1.5579149 0,0121550 
3.1509053 1.8537234 -1-5595751 0o0121550 
3.1492960 1.8555261 -1.5612401 0.0121550 
3.1476964 1.8573329 -1.5629101 Oo0121550 
3,1461064 1.8591438 -1.5645850 0.0121550 
3.1445259 1.8609589 -1.5662649 0-0121550 
3.1429551 1.8627780 -1.5679497 Oo0121550 
3. 1413938 1.8646014 -1,5696395 0.0121550 
3, 1352432 1-8719365 -1.5764490 0.0121550 
3,1292428 1.8793394 -1.5833395 0.0121550 
3.1233909 lo8868111 -1.5903119 0.0121550 
3.1176858 1,8943528 -1.5973674 0.0121550 
3,1121257 1.9019655 -1.6045069 0.0121550 
3.1067091 1,9096503 -1.6117315 0.0121550 
3.1014346 1,9174086 -1.6190425 0,0121550 
3.0963007 1.9252413 -1.6264407 0.0121550 
3.0913060 1,9331499 -1,6339276 0.0121550 
3,0864492 1,9411355 -106415041 0.0121550 
3.0817291 1.9491993 -1.6491717 0.0121550 
300771444 lo9573428 -1.6569314 OeO121550 
3.0726941 1.9655672 -1.6647846 0- 0121550 
3,0683771 1.9738739 -1.6727326 Oe0121550 
3,0641923 1,9822643 -106807768 0- 0121550 
3.0601389 1.9907398 -1.6889186 0.0121550 
3,0562158 119993019 -1.6972593 0.0121550 
3.0524223 2,0079521 -1,7055004 0.0121550 
3,0487575 2.0166919 -1.7139435 0.0121550 
3.0452207 2.0255228 -1.7224900 Oo0121550 
3.0418113 2,0344465 -1.7311415 0,0121550 
3,0385284 2.0434646 -1.7398996 0,0121550 
3,0353717 2.0525787 -1.7487660 0.0121550 
3.0323404 2,0617907 -1.7577424 Oo0121550 
3.0294342 2,0711022 -107668305 0.0121550 
3.0266526 2.0805150 -1 -7760321 0. 0121550 
3.0239952 2-0900311 -1 -7853489 Oo0121550 
3.0214616 200996522 -1.7947830 Oe0121550 
3,0190516 2.1093803 -1.8043361 0.0121550 
3o0146011 2- 1291655 -1.8238077 0.0121550 
3,0106425 2-1494033 -1.8437800 Oe0121550 
3.0071750 2.1701108 -1.8642704 Oo0121550 
3.0041986 2.1913062 -1,8852970 On0121550 
3,0017143 2,2130087 -1,9068790 0.0121550 
2.9997237 2.2352385 -1.9290368 0.0121550 
2.9982293 2.2580168 -1.9517915 Oo0121550 
2.9972341 2,2813659 -1.9751659 0.0121550 
2,9967422 2,3053095 -1.9991837 0.0121550 
2.9967586 2- 3298726 -2.0238701 0,0121550 
209972889 2.3550814 -2.0492517 Oa0121550 
2.9983396 2.3809640 -2.0753567 0.0121550 
2.9999184 2,4075496 -2.1022151 On0121550 
300020336 2,4348697 -2,1298583 0.0121550 
3,0046948 2.4629574 -20 1583200 0.0121550 
300079123 2.4918476 -2.1876358 On0121550 
3.0116978 2,5215779 -2.2178435 Oe0121550 
3.0160639 205521878 -2.2489833 0.0121550 
3.0210246 2,5837195 -2.2810981 0.0121550 

7 
ECC 

0.0000000 
0,0025000 
0.0037500 
0.0050000 
0.0062500 
0.0075000 
0.0087500 
0 ~ 0 1 0 0 0 0 0  
3.0112500 
0.0125000 
Oe0137500 
0,0150000 
0.0200000 
0,0250000 
0.0300000 
0. 0350000 
0.0400000 
0. 0450000 
0.0500000 
0e0550000 
0.0600000 
0.0650000 
0e0700000 
Oo0750000 
0.0800003 
3.0850000 
0,0900000 
0.0950000 
0.1000000 
0.1050000 
0.1100000 
0.1150000 
0, 1200000 
0. 1250000 
0,1300000 
0- 1350000 
0.1400000 
0,1450000 
0o1500000 
Om1550000 
0.1600000 
0.1700000 
0.1800000 
0.1900000 
D.2000000 
0,2100000 
0.2200000 
0.2300000 
0.2400000 
002500000 
0.2600000 
0.2700000 
0.2800000 
0.2900000 
3 ,  3000003 
0.3100000 
0.3200000 
0,3300000 
0.3400000 
0,3500000 
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Table 13 (contd) 

ELLIPTIC PROBL 
NR X 0 
61  0.2297116 
62 0.2316046 
63 0,2334794 
64 0,2353354 
65 0.2371720 
66 0.2389887 
67 002407846 
68 0,2425591 
69 0.2443113 
70 0.2460404 
7 1  002477456 
72 002494257 
73 0.2510797 
74 002527066 
75 0.2543051 
76 0,2558739 
77 0-2574116 
78 002589166 
79 0.2603875 
80 0.2618223 
81  Om2632192 
82 0,2645763 
83 002658912 
84 0.2671616 
85 002683849 
86 0.2695584 
87 0,2706789 
88 0.2717433 
89 0,2727479 
90 0.2736889 
9 1  0.2745619 
92 0,2753624 
93 002760853 
94 012767250 
95 0,2772754 
96 0.2777297 
97 0,2780805 
98 0.2783196 
99 0.2784378 

100 0.2784251 
101 Oe2782701 
102 0.2779601 
103 0.2774809 
104 0,2768164 
105 002759484 
106 0.2748561 
107 0,2735159 
108 On2719001 
109 0.2699771 
110 0 . 26 77096 
111 0.2650536 
112 0.2619565 
113 0,2583550 
114 0.2541711 
115 0.2493079 
116 002436419 
117 0.2404594 
118 0.2370121 
119 Om2332711 
120 0,2292023 

EM HU=Oe012155 E VARIABLE APOAP 
YDOTO X 1 YDOTl 

3.0265951 2o6162180 -2.3142334 
3.0327919 206497310 -2,3484378 
3.0396330 20 6843098 -2.3837631 
3.0471379 2,7200087 -2,4202647 
300553277 207568863 -2.4580018 
3,0642254 2,7950048 -2,4970377 
3.0738557 2.8344313 -295374404 
3.0842454 2,8752375 -2.5792827 
300954236 2.9175004 -2,6226427 
3.1074215 2.9613031 -206676046 
3 0  1202732 3,0067347 -2.7142589 
3.1340152 30 0538917 -2.7627032 
301486873 30 1028781 -2.8130430 
3.1643325 3.1538062 -2.8653922 
3,1809973 3,2067979 -2,9198743 
30  1987323 30 2619855 -209766229 
3.2175921 3,3195124 -3.0357835 
3,2376365 3,3795351 -3,0975142 
3.2589301 3.4422239 -3.1619875 
3-2815433 3. 5077649 -3,2293915 
3.3055532 3.5763620 -3.2999322 
3.3310436 3,6482386 -3.3738353 
3,3581063 3.7236403 -3.4513489 
3,3868419 3.8028373 -3.5327460 
3,4173607 3.8861284 -3.6183279 
3,4497839 3.9738437 -3.7084276 
3.4842453 4.0663497 -3.8034149 
3.5208923 4.1640539 -3.9037004 
3.5598884 4.2674108 -400097420 
3.6014145 4.3769288 -4.1220520 
3,6456723 4.4931783 -4.2412046 
306928864 4.6168014 -4.3678461 
3.7433082 4.7485234 -4,5027062 
3.7972199 40 8891665 -4,6466119 
3,8549392 5.0396665 -4w8005040 
3.9168252 5w2010930 -4,9654574 
3.9832852 5.3746733 -5.1427053 
400547833 5.5618231 -5.3336694 
4,1318508 5.7641832 -5.5399970 
4,2150985 5.9836655 -5,7636074 
4,3052322 6.2225111 -6,0067493 
4,4030728 6.4833634 -6.2720740 
4,5095803 6.7693616 -6.5627298 
4.6258848 7.0842611 -6.8824819 
4.7533272 7.4325915 -7,2358700 
4,8935101 7,8198638 -706284169 
!LO483671 8,2528496 -8.0669066 
5,2202534 8.7399588 -8,5597626 
5.4120692 9.2917616 -9,1175708 
5,6274301 9,9217234 -9,7538131 
5.8709058 10.6472574-10,4859223 
6,1463636 11.4912723-11,3368286 
6,4674731 12.4845035-12.3372918 
6.8384717 13.6691338-13.5295236 
702753611 15,1046178-14,9730126 
7,7978572 16.8774426-16.7542861 
800997033 17.9287531-17.8100023 
8 m4347 116 190 1183074-19.0040927 
8.8088615 20.4745557-20,3650155 
9.2297084 22.0342278-21,9295106 

5 1 s  FAMILY 7 
MASS RATIO ECC 
0.0121550 0,3600000 
0,0121550 0.37000OD 
0,0121550 3.3829000 
0.0121550 0,3900008 
Oe0121550 0 ~ 4 0 0 0 0 0 0  
0-0121550 Ow4100000 
0.0121550 0,4200000 
0,0121550 0.4300000 
0.0121550 0.4400000 
0.0121550 0,4500003 
0.0121550 Oe4600000 
0.0121550 0.4700000 
0-0121550 0,48010000 
00 0121550 Da49010000 
0,0121550 0.500~0CPOO 
000121550 0.510~0000 
0.0121550 0,5200000 
0,0121550 0.53010000 
0.0121550 0.54010000 
0.0121550 0,550~0000 
0.0121550 0.56010000 
Ow0121550 0.570~0000 
0.0121550 0m58Q~0000 
0.0121550 0.5900000 
0.0121550 0, bOO~0000 
0.0121550 0.6100000 
OmO121550 0.62010000 
0.0121550 0.6300000 
0.0121550 0.6400000 
0.0121550 0 ~ 6 5 0 0 0 0 0  
0.0121550 0w66010000 
000121550 0.6700000 
0-0121550 0.6800000 
0.0121550 0,6900003 
Oo0121550 0-7000000 
0.0121550 0-7100000 
0.0121550 O a  7200000 
Oo0121550 0.7300000 
0. 01 21 550 Oo7400~000 
0.0121550 0,7500000 
Oa0121550 0.7600000 
0.0121550 0,7700000 
0.0121550 0.7830000 
0.0121550 0-7900000 
0.0121550 0,8000000 
0.0121550 0*8100000 
0.0121550 0.8200000 
0-0121550 0.8309000 
0.0121550 0.8400000 
0.0121550 0,8500000 
0.0121550 3.8600000 
0,0121550 0,8700000 
0,0121550 0,8800000 
0.0121550 0.8900000 
0,0121550 0.9000D00 
0,0121550 0.9100000 
0.0121550 0.9150000 
0.0121550 0,9200000 
0.0121550 0.9250000 
0.0121550 0,9300000 

-- 
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Table 13 (contd) 

ELLIPTIC PROBLEM MU=0.012155 E VARIABLE APOAPSIS FAMILY 7 
N W X 0 YDOTO X 1 Y O O T l  MASSRATIO E C C  

1 2 1  8,2247649 9-7069522 23.8455637-23-7458279 0-0121550 0.9350000 
122  0,2199099 10.2532730 25-9731719-25.8785896 0.0121550 3,9400000 
123 0.2145768 10.8855977 28-5055699-28.4163270 0-0121550 0.9450000 
1 2 4  0-2086907 11 -6270829 31,5672896-31-4835904 0.0121550 0.9500000 
125 0.2021559 12.5103375 35.3391337-35.2612047 0-0121550 3,9550000 

1 1 2 6  0.1948485 13.5828971 40-0937490-40-0218430 0.0121550 0.9600000 
/ 127  0.1866120 14.9166899 46.2614918-46-1958947 0.0121550 0.9650000 
I 128 0.1772819 16,6242127 54-5601788-54.5012097 0.0121550 0.9700000 

129 0.1668050 18-8853600 66-2729273-66.2209234 0.0121550 3.9750000 
130  0,1555807 21-9903128 83-9203405-83.8756008 0.0121550 0.9800000 

a 4 
1 

Fig. 15. Family 8 of periodic orbits 

JPL TECHNICAL REPORT 32- 7360 



Fig. 16. Family 8P of periodic orbits 
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Fig. 16 (contd) 
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Fig. 16 (contd) 
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Fig. 16 (contd) 
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Table 14. Initic 31 and final conditions for family 8P 

, MU=015 ( f  
YDOTO 

3 -  1437189 
3.1434523 
3-  1430654 
3.1424548 
3,1418866 
3 e 141 3603 
3,1408755 
301404316 
3.1400283 
3, 1396650 
3 -  1393413 
3,1390568 
3.1388111 
3.1386037 
3 0  1384342 
30 1383023 
3,1382075 
3.1381495 
3.1381423 
3,1382778 
3,1385532 
3.1389658 
3,1395132 
3,1401929 
3 -  1410025 
3 0  1419400 
3.1430031 
3,1441900 
30 1454986 
3 -  1469273 
3 -  1484742 
3.1501379 
3. 1519168 
3 -  1538096 
3.1558149 
3 -  1579314 
3,1601582 
30  1624942 
3,1649385 
3,1674903 
3,1701489 
3 -  1729 137 
3.1757842 
3,1781600 
3.1818408 
3.1850266 
3.1883173 
3,1917130 
3.1952 139 
3, 1988204 
3,2025330 
3.2063524 
3.2102795 
3.2143153 
3.2184608 
3,2227176 
302270872 
3,2315715 
3.2361724 
3 a 2408923 

V A R L A B L E  P P E R I A P S I S  F A M I L Y  8 
X 1 YDOTl MASS R A T I O  

Zoo396019 -1,9061162 0-5000000 
2,0358729 -1.9026045 0- 5000000 
2-0303090 -1.8973689 0- 5000000 
2.0211 138 -1.8887278 Oe5000000 
2.0120150 -1e8801915 Oe5000000 
2.0030111 -1,8717586 0 ~ 5 0 0 0 0 0 0  
1.9941007 -1.8634279 0.5000000 
1.9852825 -1,8552980 0-5000000 
1.9765550 -1.8470677 0- 5000000 
1,9679171 -1,8390358 0,5000000 
1-9593675 -1 -8311009 0.5000000 
1.9509048 -1.8232621 Oe5000000 
1,9425278 -1.8155180 Oe5000000 
1,9342354 -1.8078676 Oe5000000 
1.9260263 -1n8003097 0*5000000 
1.9178994 -107928434 0.5000000 
1.9098536 -1.7854674 0*5000000 
1,9018877 -1.7781809 0.5000000 
1.8861913 -1.7638720 0.5000000 
1.8708017 -1.7499089 0.5000000 
1.8557107 -107362842 0.5000000 
1-8409103 -1.7229907 0e5000000 
1,8263929 -1,7100217 0.m5000000 
1.8121511 -1,6973708 0-5000000 
1,7981778 -1,6850317 0.5000000 
1.7844661 -1.6729988 Oe5000000 
1.7710095 -1.6612663 0 ~ 5 0 0 0 0 0 0  
1,7578014 -1,6498292 0.5000000 
1.7448358 -1.6386823 0- 5000000 
1.7321067 -1.6278209 0.5000000 
1, 7196082 -1.6172406 0.5000000 
1.7073349 -1.6069373 005000000 
1.6952813 -1.5969069 0.5000000 
La6834421 -1.5871457 0-4000000 
1.6718124 -1.5776505 0 ~ 5 0 0 0 0 0 0  
1,6603873 -1.5684178 0.5000000 
1.6491619 -1.5594449 0.5000000 
1.6381311 -1,5507290 0,5000000 
1.6272923 -105422676 0-5000000 
1.6166394 -1,5340586 0,5000000 
1,6061687 -105261000 0-5000000 
1.5958762 -1.5183901 0,5000000 
1,5857581 -1,5109274 0.5000000 
1,5758 104 -1 .5037107 0.5000000 
1.5660295 -1.4967392 0.5000000 
1,5564117 -1.4900121 Oo5000000 
1.5469537 -1 ,4835291 0- 5000000 
1.5376519 -1,4772900 0,5000000 
1.5285031 -1.4712951 Oe5000000 
1.5195041 -1.4655450 0 ~ 5 0 0 0 0 0 0  
1.5106519 -1.4600403 0- 5000000 
1,5019432 -1,4547823 Oo5000000 
1,4933753' -1.4497725 0,5000000 
1,4849452 -1 -4450129 0- 5000000 
1-4766501 -1,4405056 0.5000000 
1,4684874 -1,4362534 Oe50000O0 
1.4604543 -1.4322595 0.5000000 
1.4525483 -1.4285274 0 ~ 5 0 0 0 0 0 0  
1,4447669 -1.4250614 0.5000000 
1,4371076 -1.4218660 0.5000000 

E C C  
0, 0000000 
0100218aoa 
0,0050000 
0,OHOQOOO 
0a015000CP 
0.02DCkOOCB 
000250080 
0,03000600 
0.0350008 
0,04D0000 
0.0450000 
0.050LaOOO 
0,055OO00 
0,0600000 
0.065000CP 
O~O7DOOQO 
0.075000CP 
0.08CECbOOCa 
0.09OODOD 
o.nooaoo0 
0.110~DOOO 
0,1200C800 
0 - 1  3Cl0190D 
0,1400000 
0,15CIG000 
O o  16CIO~DO0 
0a17D0000 
0,18Ci0000 
0.19OCiODD 
0.20CbOO00 
0.2P0OCa00 
0,2200000 
0,2300000 
0.2411D000 
0,2500000 
Oe2600003 
0.270IDCOO 
0 ~ 2 8 0 0 0 0 0  
0,2900000 
0,30[30000 
003100000 
0,3200000 
Oe3 300000 
0,34081B00 
0,3500000 
0,3600000 
0,37OOLslB[6 
0.380GsCa03 
0,3900000 
0.eo0oaoo 
0.41QO000 
0,4200000 
0.G300000 
0,4400000 
0,450000O, 
0,4603000 
0,4700000 
0,4800000 
0,6900000 
0.500000D 
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Table I4 (contd) 

MU=O.5 ( E  
YDOTO 

3.2457338 
3.2506997 
3,2557932 
3.2610180 
3.2663779 
3.2718772 
302775208 
3.2833140 
3-2892627 
3,2953732 
3.3016528 
3,3081094 
3,3147516 
3,3215892 
3,3286328 
303358944 
30 3433872 
3.3511259 
3,3591269 
3,3674087 
3.3759920 
3.3849000 
3-3941591 
3,4037991 
3.4138539 
3 04243624 
3.4353692 
3.4469258 
3.4590923 
3,4719386 
3,4786420 
3.4855474 
3.4926676 
3.5000 165 
3,5154634 
3.5235968 
3,5320302 
3,5407863 
3.5593711 
3.5692596 
3,5795918 
3,5904079 
3.6136807 
3.6262491 
3,6395276 
306535959 
3,6844910 
3,7015574 
3,7199019 
307397127 
307847075 
3,8105339 
3,8391554 
3.8711661 
3.9488063 
400542798 
4.1239666 
4.2117288 

VARIABLE) 1 PERIAPSIS FAMILY 8 
X 1 YDDT1 MASS RATIO 

1.4295681 -1.4189466 0.5000000 
1.4221459 -1.4163091 0.5000000 
1. 4148388 -1.4139601 0- 5000000 
1,4076446 -1.4119068 Oa5000000 
1-4005610 -1.4101576 Oe5000000 
10 3935860 -1.4087215 0e5000000 
la3867175 -1.4076086 Oa5000000 
1- 3799534 -1 04068299 Oo5000000 
1,3732916 -1,4063980 0.5000000 
1- 3667303 -104063264 O a  5000000 
1- 3602674 -1.4066303 0.5000000 
1,353901 1 -1 04073267 0-5000000 
1.3476295 -104084342 Oe5000000 
1.3414507 -1.4099736 0-5000000 
1,3353629 -1,4119680 0.5000000 
1,3293643 -1.4144432 Oa5000000 
1- 3234530 -1.4174282 Oo5000000 
1.3176273 -1.4209551 0.5000000 
1.3118853 -1.4250603 0.5000000 
1,3062252 -1,4297845 0.s5000000 
1,3006453 -1.4351739 0~5000000 
1,2951437 -1 -4412807 Oo5000000 
1.2897185 -1,4481644 Oo5000000 
1,2843678 -1,4558927 0-5000000 
1,2790897 -1,4645435 Oo5000000 
1- 2738820 -1.4742065 Om 5000000 
1.2687428 -104849856 0- 5000000 
1- 2636697 -1-4970020 Oe5000000 
1.2586603 -1.5103976 0, 5000000 
1.2537121 -1,5253403 Oe5000000 
1-2512600 -105334527 Oe5000000 
1,2488222 -1.5420297 Ow5000000 
1.2463981 -1.551 1024 0- 5000000 
1. 2439875 -1.5607054 Oe5000000 
1- 2392044 -1.5816580 Oo5000000 
1,2368310 -105930962 Oa5000000 
102344690 -1.6052430 0.5000000 
1-2321177 -1.6181564 0-5000000 
1,2274448 -1.6465504 Oe5000000 
1.2251216 -1.6621861 0,5000000 
lo2228062 -1,6789017 Oe5000000 
1.2204975 -1.6968034 Oa50000O0 
1.2158960 -1,7366688 005000000 
1.2136007 -1,7589335 0.5000000 
1.2113070 -1,7829945 0~5000000 
102090131 -1.8090714 0.5000000 
1-2044166 -1.8683588 0.5000000 
1.2021089 -1,9022462 0.5000000 
lo 1997907 -1,9395326 0-5000000 
10 1974583 -109807642 Oe5000000 
10 1927313 -2.0779387 0- 5000000 
1- 1903243 -2. 1358086 0.5000000 
1,1878775 -2.2016244 0.5000000 
l o  1853800 -202772331 0~5000000 
lo1801723 -2.4687947 0~5000000 
1,1745218 -2,7458479 0.5000000 
1.1714314 -2.9384809 0.5000000 
la1680704 -3- 1909472 0. 5000000 

ECC 
0.5100000 
0.5200000 
0-5300000 
0.5400000 
0.5500000 
0.5600000 
0.5700000 
0~5800000 
0, 5900000 
0.6000000 
Oe6100000 
0.6200000 
3-6300000 
0-6400000 
0.6500000 
0.66ODOOO 
Oe6700000 
0,6800000 
Oa6900000 
Oe7000003 
0- 7100000 
0*7200000 
0,7300000 
0.7400000 
0-7500000 
Oo7600003 
0.7700000 
0.7800000 
0,7900003 
3,8000000 
3.8050000 
0~8100000 
Oo8150000 
0- 8200000 
0.8300000 
0.8350000 
Oa84000O0 
0.8450000 
0.8550000 
0.8600000 
Oo8650000 
3,8700000 
0.8800000 
3.8850000 
0.8900000 
Oa8950000 
Oo9050000 
0.9100000 
Oo9150000 
0-9200000 
0.9300000 
0- 9350000 
0.9400000 
Oe9450000 
0-9550000 
0*9650000 
0,9700000 
0*9750000 
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Fig. 17. Family 8A of periodic orbits 
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I 
Fig. 17 (contd) 
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Fig. 17 (contd) 
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A le7r~a~kabie evolution of the stability properties in 
thlr i,,rrarly has kcen found. It  was possible to determine 
the rooti of the rundamental matrix for all of the orbits 
up to c - 0 85 (Table 15). Family 8A starts in region 4, 
and p.ilies((~n ~ e g m n  2) all the way up to e = 0.85, except 
that rile last computed orbit (e = 0.85) itself has just 
caossed "shi pa~abola nr = af/4 + 2 (see Fig. 2). There- 
lore, this olble belongs to region 1 and is stable, unlike 
all of the o"cm csorblts of this family, which are unstable. 

G, Family l I P 

Fanm Iy 11 ot perrcsdic orbits is shown in Fig. 18. Family 
1JP (Y,g 19) also begins at e = 0.0 with an orbit with 
perrod 2;r taken trom Strb'mgren's problem (in fact, also 
Srom B~rtlett's class g). The initial conditions in rotating 
axes arkx 

In this fil~7lbilj/, 51 orbits have been computed with 
eccentricities e from 0 to 0.453 (Table 16). It  is not known 
at presYat whether this family goes much farther than 
e = 0.453. The last orbits computed show increasing 
difliceilties in the convergence of the differential cor- 
rection process. The last orbit (e = 0.453) was obtained 
with very slow convergence on the differential corrections 
(10 iterations), whereas, for e = 0.454, there was definite 
divergel~ce. The loss of convergence is not apparently 
due to a close approach with one of the primaries. 

Family lllP begins with the even instability of the 
circular problem at e =O. The orbits then move in region 4 
(even-cven instability), with four real, positive roots (see 
Fig. 2) .  The stability coefficient a, reaches a maximum 
of about 1:340BD in the neighborhood of e = 0.18, and then 
decreases all the way to 1000 at e = 0.45. The stability 
coefficient a, is permanently increasing from -5000 to 
-200 when the eccentricity goes from 0.0 to 0.45. All of 
the orbits of this family are thus unstable. 

H. Family 11A 

Thi5 family (Fig. 20) begins with the same orbit as 
family BIP (perrapsis). About 100 periodic orbits have 
beer] iound with e = 0.0 to e = 0.895 (Table 17). At this 
latter v,~lue of e, there is a close approach with one of the 
primaa.7 es. 

The stability of the orbits has been determined only 
up to e = 0.80. The stability coefficients a, and a? both 
go through a minimum: a,= -5500 at e = 0.18, and 
a, = -5200 at e = 0.67. From e = 0.0 to 0.30, all of the 
orbits are in region 6; from e = 0.30 to 0.80, they are all 
in region 3 (see Fig. 2). All of the orbits of this family 
are thus unstable. 

I .  Family 10P 

This is a family of periodic orbits that are symmetric 
with respect to both the x-axis and the y-axis in the 
rotating-pulsating coordinate system (Fig. 21). These 
orbits all belong to a mass-ratio of p = 0.5. In the circular 
restricted three-body problem, it is well known that only 
in the case of equal masses (p = 0.5) are there such 
periodic orbits that are symmetric with respect to both 
rotating coordinate axes. Strb'mgren had already com- 
puted several such symmetric periodic orbits in the 
circular problem. The family described herein shows that, 
in the elliptic three-body problem, periodic orbits also 
exist with the same type of symmetry. 

Family 10P begins with e = 0 and goes up to e = 0.70, 
the mass-ratio p being constant. The first orbit (e = 0) 
has been taken from Bartlett's class v (see Ref. 18), and 
has the following initial conditions: 

This orbit and all the other orbits of the family have a 
period 4 ~ ,  but only one-quarter of the orbit (u = 0 to a) 
must be integrated because of the symmetry. The arc of 
the orbit that has been integrated thus starts on the 
y-axis with a right angle, and ends on the x-axis (also 
with a right angle). At the starting point on the y-axis, 
the two primaries are at their minimum elongation 
(periapsis), and the orbits are thus all "p-orbits." The 
orbits have all been computed in rotating-pulsating 
coordinates. 

Family 10P contains 76 orbits, with e from 0 to 0.70 
(Table 18), and these 76 orbits have all been obtained in 
a single computer run with an automatic program. The 
computation was stopped at e = 0.70 because of slow 
convergence of the differential correction process. 
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Table 15. initial and final conditions for far 

ELL.RESTR.PROBL. MU=0.5 ( E  VARIABLE)) APOAPSIS 
N R X 0 YDOTO X 1 YDDTl 
1 -0,4017933 3.1437189 2,0396019 -109061162 
2 -0040 16032 3. 1440620 2.0442855 -lo9105301 
3 -0.4014129 3.1444159 2.0489940 -109149712 
4 -0.40 12223 3, 1447808 2.0537278 -1,9194394 
5 -004010316 3.1451568 200584869 -109239351 
6 -0,4008407 3.1455439 2.0632716 -1.9284585 
7 -0,4006497 3. 1459422 200680821 -1.9330097 
8 -0,4004584 3,1463518 2.0729186 -1.9375889 
9 -0.4002669 3.1467727 2. 0777811 -1.9421962 
10 -0,3994993 301485709 2,0974972 -1,9609118 
11 -0,3987287 3.1505560 2.1176483 -1-9800946 
12 -0.3979554 30 1527329 2, 1382483 -1.9997582 
13 -0.3971793 3,1551067 201593115 -2.0199164 
14 -0,3964007 30 1576824 2, 1808530 -2.0405841 
15 -0.3956195 3.1604655 2.2028885 -2,0617767 
16 -0.3948359 3.1634618 2,2254345 -200835102 
17 -0.3940499 3. 1666771 2,2485079 -2,1058017 
18 -0.3932617 3o1701178 202721269 -2.1286688 
19 -0,3924715 3.1737903 2.2963102 -201521301 
20 -0.3916793 3.1777013 2.3210775 -2.1762051 
21 -0,3908852 3,1818580 203464494 -2.2009143 
22 -0,3900895 3.1862678 203724475 -2.2262791 
23 -0,3892921 3,1909385 2.3990945 -2.2523222 
24 -0,3884934 3.1958782 2- 4264142 -2.2790672 
25 -0,3876934 3,2010955 2.4544316 -203065390 
26 -0,3868924 3,2065993 2.4831729 -2,3347640 
27 -0a3860904 3.2123990 205126658 -2,3637696 
28 -0.3852877 3,2185044 2,5429394 -2,3935849 
29 -0,3644845 302249259 2.5740242 -204242406 
30 -0a3836809 3,2316744 2,6059525 -2.4557689 
31 -003828773 3,2387613 2,6387583 -2,4882039 
32 -0,3820738 3.2461987 2.6724773 -2.5215815 
33 -0,3812706 3.2539991 2.7071475 -2.5559397 
34 -0.3804681 3,2621759 207428089 -2-5913185 
35 -0.3796664 3.2707432 2.7795037 -2.6277605 
36 -0,3788659 3.2797157 2.8172766 -2,6653105 
37 -0.3780669 3,2891093 2, 8561751 -2m7040162 
38 -0.3772696 3,2989402 2,8962493 -2,7439279 
39 -0,3764744 3,3092262 2,9375525 -2.7850991 
40 -0.3756817 3.3199856 2.9801412 -2.8275868 
41 -0,3748917 3.3312381 3.0240755 -2.8714513 
42 -0,3741050 3,3430043 3.0694193 -2.9167567 
43 -0.3733219 3,3553064 3,1162405 -2-9635716 
44 -0.3725428 3.3681677 3.1646117 -3.011968'7 
45 -0.3717683 303816130 3.2166101 -3.0620258 
46 -0,3709987 3,3956687 3,2663183 -3.1138259 
47 -0,3702346 3.4103631 3,3198243 -301674576 
48 -0.3694766 3.4257260 30 3752227 -3.2230159 
49 -0,3687252 3.4417895 3.4326145 -3,2806025 
50 -0,3679810 3.4585878 3.4921080 -3.3403262 
51 -0.3672448 3.4761573 3.5538197 -3.4023044 
52 -0.3665171 3.4945373 3.6178747 -3.4666626 
53 -0,3657988 3,5137695 3,6844077 -305335365 
54 -0,3650906 3.5338991 3,7535639 -3.6030719 
55 -0.3643934 3,5549744 3o8255000 -3,6754264 
56 -0,3637080 3,5770473 3.9003853 -3,7507703 
57 -0,3630355 3.6001740 3.9784032 -308292879 
58 -0,3623767 306244148 4,0597525 -309111790 
59 -0.3617329 3.6498352 4,1446490 -3.9966605 
60 -0.3611052 3,6165059 4.2333276 -4.0859684 

nily 8A 

F A M I L Y  8 
MASS RATIO 
0.5000000 
0.5000000 
0.5000000 
0.5000000 
0.5000000 
0. 5000000 
0.5000000 
Oa5000000 
0.5000000 
0,5000000 
0,5000000 
0.5000000 
0.5000000 
005000000 
0,5000000 
0.5000000 
0.5000000 
0. 5000000 
0.5000000 
0.5000000 
0.5000000 
0,5000000 
0.5000000 
0.5000000 
0.5000000 
0.5000000 
00 5000000 
0.5000000 
0~5000000 
Oe5000000 
Oa5000000 
0.5000000 
0.5000000 
0.5000000 
0,5000000 
0.5000000 
0,5000000 
0.5000000 
0.5000000 
0.5000000 
0.5000000 
0. 5000000 
0.5000000 
0,5000000 
00 5000000 
0,5000000 
0.5000000 
01 5000000 
0.5000000 
0.5000000 
0. 5000000 
0. 5000000 
0,5000000 
00 5000000 
0. 5000000 
0,5000000 
0.5000000 
0.5000000 
0,5000000 
0.5000000 
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Table 15 (contd) 

MU=Oo5 t E  VARIABLE)) A P O A P S I S  
Y D O T O  X 1 YDDT 1 

3,7045035 4.3260440 -4.1793597 
3,7339114 404230776 -4.2771150 
3,7648200 4, 5247339 -403795410 
307973282 40 6313474 -4,4869740 
3.8315437 4.7432856 -4.5997829 
3,8675844 4.8609530 -4.7183738 
3,9055796 4,9847956 -4.8431943 
3,9456715 5,1153064 -4,9747394 
309880165 5.2530319 -5.1135575 
4.0327875 5,3985792 -5.2602577 
4,0801757 5,5526246 -5.4155186 
4,1303935 5,7159241 -5,5800986 
4 -  1836772 5,8893248 -5,7548470 
4,2402907 600737791 -509407192 
4.4332550 6,7049441 -6.5765873 
4.3005296 6.2703616 -6,1387925 
4,3647261 6,4802890 -6,3502864 
4,5065407 6,9459054 -6,8192769 
4,5850657 7,2049817 -7.0801677 
4.6693809 7.4842562 -7,3613468 
4,7601 188 7,7861398 -706652294 
4,8580087 8,1134373 -7,9946249 
4.9638960 8,4694312 -8.3528205 
5.0787674 8.8579863 -8.7436866 
5,2037809 9,2836844 -9,1718103 
5.3403059 9,7519969 -9.6426692 
5,4899734 10,2695097-10- 1628561 
5.6547433 10,8442206-10,7403759 
5,8369919 11,4859359-11,3850429 
6.0396302 12,2068081-12.1090181 
6,2662653 13,0220771-12-9275510 
6,5214243 13,9511 105-13,8600202 

F A M I L Y  8 
M A S S  R A T I O  
0-5000000 
0.5000000 
0.5000000 
Oa5000000 
0,5000000 
0- 5000000 
Oe5000000 
0.5000000 
0.5000000 
0, 5000090 
O e  5000000 
0, 5000000 
Ov5000000 
Oe5000000 
Oe5000000 
0- 5000000 
O m  5000000 
Oe5000000 
Oe5000000 
0,5000000 
0.5000000 
00 5000000 
O m  5000000 
0,5000000 
0 ~ 5 0 0 0 0 0 0  
0 ~ 5 0 0 0 0 0 0  
005000000 
0.5000000 
0- 5000000 
Ov5000000 
00 5000000 
O e  5000000 

ECC 
0.5400000 
0-550ODOD 
Oo5630000 
0.5700000 
Oa5800000 
Oe59000O0 
0,6000000 
0e6100000 
0.6200000 
Oa6300O00 
0.6400000 
0*6500000 
0, 6600000 
0.6700000 
0 ~ 7 0 0 0 0 0 0  
3,6800000 
0-6900000 
Oa7100000 
Ov720000D 
0-7300000 
0.7400000 
Oo7500000 
Oo7600000 
0.7700000 
0a7800000 
0*7900000 
3*8000000 
0.8100000 
0,8200000 
0-8300000 
0,8400000 
Oe8500000 

a -D 
1 

Fig. 18. Family 1 1  of periodic orbits 
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Fig. 19. Family 11  P of periodic orbits 
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Fig. 19 Icontd) 
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Table 16. Initial 

0 MU=0.5 t E 
YDOTO 

0.8283275 
008304851 
0,8326576 
0.8348450 
O o  8370476 
0.8392657 
0 ,8414995 
0.8460152 
0.8505968 
0,8552467 
0.8599671 
0,8647605 
0 -8696297 
0 a8745775 
0.8796069 
0,8847210 
0 . 8899233 
0.8952 173 
0.9006068 
009060959 
0.9116888 
0 -9173903 
0.9232052 
0.9291386 
0,9351961 
0,9413838 
0 -9477078 
Oo9541750 
0.9607927 
0,9675685 
009745108 
0.9816285 
0,9889309 
0,9964282 
1.0041313 
lo0120514 
100202009 
1,0285925 
1.0372395 
1,0461554 
1,0553540 
1.0648479 
1,0746483 
1.0847623 
lo0951894 
lo1059120 
1.1168784 
1 0  1279422 
la1385403 
1. 1394828 
1.1403568 
1 . 1410928 

I and final conditions for fa 

VARIABLE)) P E R I A P S I S  
X 1 YOOTl 

1,2236640 -0-2419082 
1,2218368 -0,2367393 
1,2200206 -0,2315685 
1,2182156 -0,2263955 
1,2164212 -0o2212194 
1,2146374 -0.2160397 
1.2128639 -0o2108557 
lo2093470 -0.2004725 
1. 2058689 -0- 1900647 
lo2024279 -0,1796269 
lo1990221 -0,1691535 
1.1956502 -001586389 
1. 1923103 -0o1480771 
1 0  1890008 -0.1374619 
1.1857197 -001267868 
1,1824654 -00 1160448 
1- 1792362 -00 1052289 
1,1760299 -0,0943313 
1,1728448 -0,0833440 
1.1696786 -0,0722583 
1 0  1665294 -0o0610651 
1,1633948 -00 0497544 
1.1602726 -0.0383155 
1 0  1571596 -0,0267367 
l a  1540538 -0e0150057 
lo1509519 -0,0031087 
1. 1478507 Oo0089695 
1,1447467 0.0212454 
lo1416357 0,0337377 
1.1385139 0,0464666 
10 1353758 0.0594558 
1.1322161 000727314 
lo1290283 0,0863236 
lo1258052 0. 1002670 
1,1225383 Oo1146019 
lo1192170 0.1293764 
1,1158295 0.1446467 
lo1123608 0-1604819 
1- 1087928 O o  1769665 
1-1051020 Oo1942071 
1,1012589 002123395 
1.0972227 002315480 
1,0929392 Oo2520779 
1.0883287 0.2742862 
1.0832702 0.2987115 
1.0775609 0,3262535 
lo0708240 0.3585667 
la0621817 003994813 
lo0481904 0.4638789 
1,0458821 0,4742526 
1,0430663 0,4868058 
lo0392112 0,5038149 

mily 1 1  P 

FAMI LY 11 
MASS RATIO 
0.5000000 
Oo5000000 
0 ~ 5 0 0 0 0 0 0  
0- 5000000 
Oo5000000 
Oo 5000000 
0.5000000 
Oe5000000 
0. 5000000 
0 ~ 5 0 0 0 0 0 0  
0.5000000 
0, 5000000 
0. 5000000 
Oe5000000 
0,5000000 
Oo5000000 
Oo5000000 
0 ~ 5 0 0 0 0 0 0  
Oa5000000 
00 5000000 
0.5000000 
00 5000000 
0.5000000 
00 5000000 
0 ~ 5 0 0 0 0 0 0  
0-5000000 
00 5000000 
0. 5000000 
0- 5000000 
0.5000000 
0, 5000000 
0,5000000 
Oo5000000 
0. 5000000 
005000000 
O o  5000000 
0.5000000 
Oo  5000000 
0.5000000 
O o  5000000 
0,5000000 
0,5000000 
0,5000000 
0, 5000000 
0. 5000000 
Oo5000080 
00 5000000 
Oo5000000 
0.5000000 
0, 5000000 
Oo5000000 
0. 5000000 

ECC 
0.0000~000 
000050~000 
0.0100000 
0.0150000 
0.02001000 
0.0250000 
0, 03OCI000 
0- 0400000 
0.0500I000 
0,0600000 
0,0700000 
0,080CI000 
Oa0900000 
o m  1000000 
D,1100000 
0.1200000 
0.13000100 
0- 1400000 
Oe150000(3 
0.1600000 
001700000 
O.l8000[DO 
Do1900000 
0 ~ 2 0 0 0 0 0 0  
0 ~ 2 1 0 0 0 0 0  
0.2200000 
Oa2300000 
0.2400000 
0.2590000 
Oo2600000 
0.2700000 
0.2800000 
0.2900000 
Oa3000000 
003100000 
0.3200003 
0e3300000 
Oe3400000 
0a3500000 
0.3600000 
0-3700000 
Oo3800000 
0.3900000 
0.4000000 
0.4100000 
0,4200000 
0o4300000 
0.4400000 
Oo4500000 
Oo4510000 
0.4520000 
0-4530000 
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Fig. 20. Family 1 l A  of periodic orbits 
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Fig. 20 (contd) 
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Fig. 20 (contd) 
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Fig. 20 (contd) 
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Table 17. Initial and final conditions for family 11A 
-- 

ELL-RESTRePROBL, MU=O*S ( E  VARIABLE) APDAPSIS FAMILY 11 
N R X 0 VDDTO X 1 YDOTl MASS RATIO ECC 
1 -0,0708483 0.8283275 1-2236640 -0,2419082 0-5000000 0 ~ 0 0 0 0 0 0 0  
2 -0-0702090 008261843 1.2255026 -0,2470759 0.,5000000 0.0050000 
3 -0,0695752 0,8240555 1,2273528 -0,2522431 0.5000000 0~0100000  
4 -0,0689469 0,8219408 1,2292148 -0.2574102 0,5000000 0,0150000 
5 -0-0683240 0 -8198400 1. 2310889 -0,26257 79 Oo5000000 0,0200000 
6 -0-067093'3 0.8156795 1,2348740 -0-2729172 Oa5000000 0,0300000 
4 -0,0658843 0,8115723 1-2387100 -0,2832657 0,5000000 0 ~ 0 4 0 0 0 0 0  
8 -0,0646947 3.8075171 1,2425987 -0.2936278 0,5000000 Oa05000O0 
9 -0,0635246 0-8035226 1,2465420 -0.3040079 Oo5000000 Oa0600000 
10 -0,0623734 0.7995575 1.2505418 -0,3144107 Oe5000000 0,0700000 
11 -0,0612406 0,7956506 1.2546001 -0,3248404 0.5000000 0.0800000 
12 -0-0601258 0.7917910 1,2587190 -0,3353014 0,5000000 0*0900000 
13 -0,0590284 0,7879774 1,2629005 -0.3457983 Oe5000000 0 ~ 1 0 0 0 0 0 0  
14 -0,0579482 0e7842090 1,2671468 -0,3563354 0,5000000 0.l100000 
1 5  -0,0568846 0,7804849 1,2714603 -0,3669173 0,5000000 0a1200000 
Lb -0.0558372 0,7768043 192758431 -0,3775484 0.5000000 0.1300000 
17 -0,0548056 0.7731663 1.2802977 -0,3882333 0 ~ 5 0 0 0 0 0 0  0-1400000 
18 -0,0537894 0.7695704 1.2848267 -0,3989767 0,5000000 0-1500000 
19 -0,0527886 0,7660157 1,2894326 -0,4097832 005000000 0.1600000 
20 -0.0518024 0.7625028 1,2941182 -0.4206576 0,5000000 Oe1700000 
2 1  -0-0508307 0.7590281 1,2988863 -0-4316047 0.5000000 0.1803000 
22  -0,0498730 097555941 1.3037397 -0.4426297 0,5000000 0 ~ 1 9 0 0 0 0 0  
2 3  -5,0489291 0,7521994 1-3086817 -0,4537375 0,5000000 0.2000000 
2 4  -0,0479987 0,7488437 1-3137155 -0.4649335 0-5000000 0.2100000 
2 5  -0,0470815 0.7455266 1.3188444 -0,4762229 0 ~ 5 0 0 0 0 0 0  002200000 
26 -0,0461772 0,7422478 1.3240719 -094876115 0.5000000 0.2300000 
27 -3,0452856 0-7390071 103294018 -0.4991048 0,5000000 0-2400000 
28  -0.0444063 0.7358044 1,3348380 -0.5107089 0,5000000 0.2500000 
29 -0,0435392 0,7325396 1.3403846 -0,5224298 0-5000000 Oo2600000 
3 0  -9,0426839 0.7295126 1,3460459 -0,5342741 0.5000000 302700000 
31 -lDe0418403 007264233 103518266 -0,5462482 0, 5000000 0.2800000 
32 -0,0410080 0,7233719 1.3577313 -0,5583592 Oe5000000 Oo2900000 
33 -13e0401870 0,7203584 1,3637652 -0e5706143 0-5000000 0,3000000 
34 -13,0393768 0,7173830 1.3699337 -0.5830210 0.5000000 0.3100000 
35  -10,0385774 0.7144458 1,3762425 -0.5955873 0.5000000 0.3200000 
36 -0-0377085 017115472 1,3826977 -0.6083215 0.5000000 0.3300000 
37 -0,0370099 0,7086874 1,3893057 -0,6212322 0.5000000 0,3400000 
38 -0,0362414 0.7058668 1.3960733 -096343288 0,5000000 0.3500000 
39 -0,0354829 Oe7030857 1,4030079 -0e6476.210 Oe5000000 0.3600000 
b0 -0,0347340 0,7003447 1,4101171 -Oe6611190 0- 5000000 0.3700000 
41 -8,0339947 0,6976443 1,4174094 -0,6748336 0-5000080 0,3800000 
42 -0,0332646 0 -6949849 1.4248936 -0,6887766 0.5000000 0.3900000 
43 -0,0325438 Om6923672 1.4325792 -0,7029600 0,5000000 0~4000000  
44 -0,0318318 0,6897919 1,4404764 -0.7173970 0.5000000 0.4100000 
45 -0,0311287 0,6872597 1,4485963 -0.7321016 0-5000000 0.4200000 
66 -13,0304341 0.6847713 1.4569507 -0.7470887 0,5000000 Om4300000 
47 -0,0297480 0.6823274 104655522 -0,7623742 0,5000000 0-4400000 
48 -0,0290700 0,6799291 1,4744148 -0,7779753 0.5000000 004500000 
49 -0,0284001 Om6775770 1,4835533 -0,7939104 Oa5000000 0-4600000 
50 -0,0277381 0,6752721 1.4929840 -0.8101995 0,5000000 0.4700000 
51 -0,0270837 0,6730152 1.5027245 -0.8268641 0.5000000 0.4800000 
5 2  -0,0264367 0,6708074 1.5127939 -0,8439273 0.5000000 Oe4900000 
53  -13,0257971 0.6686495 1- 5232132 -098614146 0- 5000000 0-5000000 
54 -13,0251645 0,6665424 1.5340054 -0.8793535 0.5000000 Oe51000O0 
55 -0.0245388 0.6644870 105451957 -0.8977739 0 ~ 5 0 0 0 0 0 0  0*5200000 
56 -13,0239198 0,6624842 105568119 -0,9167088 Oe5000000 0.5300000 
57  -0.0233071 0,6605345 1.5688845 -0,9361943 0.5000000 Oe5400000 
58 -0,0227007 0.6586387 1.5814474 -0,9562701 0, 5000000 0.5500000 
59 -0,0221002 0,6567971 1,5945383 -0.9769800 015000000 0.5600000 
$ 0  -0,0215054 0,6550101 1-6081991 -0,9983726 0.5000000 0.5700000 
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Table 17 (contd) 

ELL.RESTR,PKOBL. MU=0,5 I E  
N R X 0 YDOTO 
61 -0e0209160 0,6532777 
62 -0.0203317 006515994 
63 -0,0197522 0.6499745 
64 -000191772 0,6484018 
65 -0,0186062 016468793 
66 -0.0180388 0.6454043 
67 -0.0174747 0,6439730 
68 -0,0169132 0,6425806 
69 -000163539 0.6412209 
70 -0,0157960 0,6398858 
71 -0,0152389 0.6385656 
72 -0.0146818 096372480 
73 -0.0141238 0.6359186 
74 -0.0135638 0.6345603 
75 -0e0130006 0,6331536 
76 -0,0124328 0.6316773 
77 -0,0118590 0,6301102 
78 -010112771 0,6284346 
79 -0,0106852 0.6266430 
80 -0-0100809 0.6247502 
81 -0.0094614 0,6228148 
82 -0.0088235 096209771 
83 -0,0081638 006195207 
84 -010074782 0,6189705 
85 -0-0067618 0.6202322 
86 -0.0060082 0-6247621 
87 -0e0052072 006347131 
88 -0,0043416 0.6529777 
89 -0,0033809 0-6831124 
90 -0.0022736 0,7293410 
91 -0-0009317 0.7970914 
92 0-0008073 0,8949025 
93 0-00 19244 0.9598935 

V A R I A B L E  l l ABOAPSI S 
X 1 YDOT 1 

1,6224768 -1.0205021 
1.6374238 -1.0434286 
1.6530995 -1.0672199 
1,6695710 -1.0919518 
1.6869144 -1.1177103 
1-7052169 -1-1445929 
1,7245783 -101727108 
1.7451138 -1.2021918 
1.7669573 -1.2331831 
107902649 -1.2658555 
1,8152203 -1,3004090 
1- 8420412 -1.3370785 
1.8709870 -1.3761428 
1,9023702 -104179351 
1,9365701 -1,4628575 
1.9740515 -1.5113991 
2.0153901 -1 -5641616 
2. 0613061 -1 16218924 
2,1127105 -1.6855299 
2.1707682 -1.7562650 
2- 2369836 -1-8356240 
2-3133158 -1,9255781 
2,4023274 -2.0286853 
2.5073655 -2,1482591 
2.6327527 -2.2885449 
2.7839428 -2.4548627 
2.9675846 -2.6536719 
301915298 -2-8926113 
304650655 -3,1808004 
3,7999312 -3,5299395 
4.2128522 -3.9569061 
4- 7310377 -4,4893070 
5,0439827 -4,8096513 

FANILV 11 
MASS RATIO ECC 
0,5000000 0~5805000 
0,5000000 0,5900300 
0.5000000 0,6000800 
Oe5000000 0,6100000 
0.5000000 0e6200000 
0- 5000000 0.6300000 
00 5000000 0e64DOOOC 
0.5000000 0,6500800 
0~5000000 0,BbDDDOD 
0- 5000000 0.6700000 
0.5000000 0,6800000 
0.5000000 D.690000C 
0- 5000000 0,7000000 
0,5000000 0,7100000 
0-5000000 0~7200003 
0- 5000000 0e7300000 
0.5000000 0.7400000 
0- 5000000 0e750DOOD 
0.5000000 0.7630000 
Oe5000000 0~7700000 
0~5000000 0.7800900 
0,5000000 0,7900000 
0.5000000 9.8000000 
0.5000000 0,8100000 
0~5000000 De8200000 
0.5000000 3.8300000 
0- 5000000 3-840000O 
Oe5000000 Oe8500000 
0,5000000 3,8600000 
00 5000000 0-8700000 
0, 5000000 0e8B00000 
0~5000000 0.8900000 
Oa5000000 3,8950000 
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Fig. 21. Family 10P of periodic orbits 
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Fig. 21 (contd) 
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Table 18. Initial a n d  final conditions For family 10P 

EB&,RESTR,PROBL- MU=O-5 ( E  VARIABLE) I X AND V S Y I  
N R V 0 X DOT 0 X 1 YDOT1 
1 -0,2952427 -0.3196529 -1,2283965 0,1762734 
2 -0,2961463 -0,3207342 -1.2264245 0,1705527 
3 -0.2970537 -0.3218168 -1.2244687 0,1648409 
4 -0,2979651 -0.3229008 -1,2225285 0.1591371 
5 -0,2988807 -0,3239842 -1-2206052 0,1534424 
6 -0.2998002 -OO325O729 -1,2186971 0,1477549 
7 -3,3007239 -0,3261610 -1.2168045 0,1420746 
8 -0.3016517 -0.3272505 -1,2149273 0,1364012 
9 -3,3025837 -0.3283413 -1.2130653 0,1307343 

hO -3.3035199 -0.3294335 -1.2112188 0-1250740 
k l  -0.3044604 -0,3305270 -1.2093863 0,1194182 
12 -0.3063543 -0,3327181 -1.2057661 0.1081232 
13 -0.3082659 -0,3349145 -1,2022036 0.0968461 
84 -3,3101956 -0,3371164 -1,1986975 0.0855836 
15 -0,3121436 -0.3393238 -1,1952467 0.0743326 
16 -0.3141105 -0.3415366 -1,1918501 0.0630897 
I.? -9,3160966 -0,3437549 -1.1885066 0.0518516 
88 -0,3181025 -0,3459789 -1.1852150 0-0406150 
89 -0,3201286 -0.3482084 -1,1819749 0.0293768 
20 -0.3221755 -0,3504438 -1,1787847 0.0181332 
2 1  -0,3242436 -0.3526850 -101756437 Os0068809 
22  -0,3263335 -0,3549323 -1.1725510 -0,0043837 
23 -0,3284459 -0.3571857 -1,1695058 -0.0156641 
24  -0,3305813 -0,3594453 -1.1665071 -0.0269639 
25 -0,3327404 -0,3617115 -1.1635541 -0.0382873 
26 -0,3349238 -0,3639844 -1.1606461 -0,0496377 
2 7  -0.3371323 -0,3662641 -1.1577822 -0.0610193 
28 -0.3393667 -0.3685510 -1,1549617 -0,0724362 
29 -0,3416276 -0.3708452 -1,1521839 -0.0838926 
30 -0,3439161 -0.3731471 -1.1494480 -0,0953928 
3 1  -0,3462329 -0,3754570 -1,1467535 -0,1069414 
32 -0,3485789 -0.3777751 -1.1440994 -0,1185431 
33 -0,3509552 -0.3801019 -1.1414853 -0.1302027 
3 4  -0,3533628 -0.3824378 -1.1389104 -0.1419253 
35 -0-35 58027 -0,3847831 -1.1363740 -0.1537163 
36 -0,3582762 -0.3871382 -1.1338756 -0.1655811 
37 -0,3607846 -0.3895036 -1.1314144 -0,1775258 
38 -0,3633288 -003918803 -1,1289899 -0.1895553 
39 -0,3659106 -0,3942683 -1, 1266015 -0.2016773 
40 -0,3685313 -0.3966683 -1.1242484 -0.2138981 
41 -0,3711924 -0.3990810 -1.1219302 -0.2262246 
42 -0,3738957 -0.4015071 -1. 1196460 -0.2386645 
43 -013766430 -0,4039474 -1.1173953 -0,2512255 
44 -0,3794360 -0.4064026 -1.1151775 -0.2639162 
45 -0,3822769 -0.4088737 -1.1129917 -0.2767456 
46 -0,3851679 -0.4113615 -1.1108372 -0.2897233 
47 -0,3881113 -0.4138671 -1,1087140 -0.3028586 
48 -0,3911096 -0,4163916 -1,1066203 -0.3161637 
49 -0,3941656 -0,4189361 -1.1045558 -0.3296498 
50 -0,3972822 -0o4215019 - la1025196 -0.3433298 
5 1  -0,4004626 -0.4240905 -1.1005106 -0,3572173 
5 2  -0,4037105 -0.4267033 -1,0985281 -0.3713271 
53 -0,4070294 -0.4293420 -1. 0965704 -0,3856761 
54 -0,4104238 -0.4320083 -1,0946368 -0,4002814 
55  -0,4138983 -0,4347044 -1.0927257 -1.0908355 
56 -0,4174578 -0,4374323 -0,4151629 -0.4303421 
57 -0,4211082 -0.4401945 -1,0889644 -0.4458430 
58 -0,4248558 -0,4429935 -1e0871102 -0,4616926 
59  -0,4287078 -0,4458325 -1,0852709 -0,4779202 
60 -0-4326722 -0,4487147 -1.0834430 -0.4945605 

Y, FAMILY 
M A S S  R A T I O  
Oe5000000 
0.5000000 
0e5000000 
0.5000000 
0.5000000 
Oe5000000 
0.5000000 
Oe5000000 
0,5000000 
0.5000000 
Oe5000000 
0. 5000000 
005000000 
0,5000000 
Oe5000000 
0,5000000 
Oo5000000 
0.5000000 
0- 5000000 
0,5000000 
0, 5000000 
0.5000000 
0,5000000 
0.5000000 
0- 5000000 
0.5000000 
0,5000000 
0 ~ 5 0 0 0 0 0 0  
0- 5000000 
0,5000000 
0,5000000 
0.5000000 
0.5000000 
0.5000000 
0.5000000 
0,5000000 
0.5000000 
0, 5000000 
0,5000000 
Oe5000000 
0,5000000 
0.5000000 
0.5000000 
0.5000000 
Oe5000000 
0- 5000000 
0.5000000 
0,5000000 
0,5000000 
0,5000000 
0.50000001 
0,5000000 
0.5000000 
Oa5000000 
0 ~ 5 0 0 0 0 0 0  
0,0000000 
0.5000000 
Oe5000000 
0,5000000 
0.5000000 

10 
I ECC 

0 ~ 0 0 0 0 0 0 0  
0.0050000 
0,0100000 
0,0150000 
0.0200000 
0.0250000 
0.0300000 
0,0350000 
0.0400000 
0,0450000 
0 ~ 0 5 0 0 0 0 0  
0,0600000 
0.0700000 
0.0800000 
Oe0900000 
0,1000000 
0,1100000 
0.1200000 
0.1300000 
0,1400000 
0 ~ 1 5 0 0 0 0 0  
0.1600000 
0.1700000 
0.1800000 
0.1900000 
0 ~ 2 0 0 0 0 0 0  
0.2100000 
0.2200000 
Oe2300000 
0; 2400000 
0,2500000 
0.2600000 
0.2700000 
0,2800000 
Oo2900000 
0.3000000 
Oe3100000 
0.3200000 
0-3300000 
0.3400000 
0.3500000 
0,3600000 
0.3700000 
0,3800000 
0.3900000 
0,4000000 
Oo4100000 
0.4200000 
0.4300000 
0.4400000 
0,4500000 
0.4600000 
0,4700000 
Oe4800000 
0.4900000 
0.5000000 
0.5100000 
Oe5200000 
0.5300000 
0, 5400000 
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Table 18 (contd) 

ELL,RESTR,PROBL, MU=0.5 ( E  VARIABLE)) X AND Y SYM. FAMILY 10 
N R  V 0 XDDTO X 1 YDOTl MASS RATIO EGG 
61 -0,4367584 -0.4516439 -1,0816235 -0-5116522 0.5000000 0,5500000 
62 -0,4409769 -0.4546243 -1.0798080 -0.5292397 0~5000000 0,5600000 
63 -0,4453402 -0,4576609 -1.0779915 -0,5673751 0.5000000 0.5700000 
64 -0,4498628 -0,4607593 -1.0761678 -0.5661195 0.5000000 0.58D0000 
65 -0.4545622 -0.4639262 -1.0743290 -0.5855459 0,5000000 0.5900000 
66 -0.4594595 -0,4671695 -1.0724648 -0.6057430 0~5000000 0.6000000 
67 -0.4645808 -0.4704987 -1.0705622 -0,6268205 0.5000000 3,6100000 
68 -0,4699592 -0,4739257 -1.0686035 -016489178 0e5000000 0.6200000 
69 -0.4756377 -0,4774657 - 1.0665644 -0.6722167 0.5000000 0,6300000 
70 -0.4816747 -0.4811385 -1.0644104 -0,6969639 0-5000000 0-540000D 
71 -0.4881523 -0,4849718 -1.0620903 -0.7235097 Oe5000000 0.6500000 
72 -0.4951948 -0.4890059 -1.0595226 -0.7523847 0.5000000 0.6600000 
73 -0.5030064 -0.4933061 -1,0565675 -0.7844678 0.5000000 0,5700000 
74 -0.5119728 -0,4979931 -1,0529487 -0.8214318 0.5000000 3.6800000 
75 -0.5230283 -0.5033547 -1,0479696 -0.8673676 0.5000000 0.6900000 
76 -005409435 -0a5108416 -1.0379172 -0,9434420 0e5000000 0*70'00000 

No attempt has yet been made to determine the reason The eccentricities e were varied from 0.1 to 0.5, and 
for this slow convergence or to prolongate the family for the energy constant was taken between 0 and - 1 5 This 
eccentricities higher than 0.70. The stability and the allowed the determination of the interesting regions of 
characteristic exponents of these orbits have not been energies shown in Fig. 22. Orbits \vith energies larger 
determined. than about -0.7 all escape from the system, whereas 

orbits with energies below -1.8 are close sateilitc orbits, 
J. A Family of Periodic Collision Orbits and have been disregarded. The iregion that has then 

Using the regularized computer program, it was 
possible to find a family of 69 periodic collision orbits. 
The integrations were made with a predictor-corrector 
method (eighth-order) and Birkhoff regularized coordi- 
nates in the neighborhood of the primaries (within a 
radius of 0.07 canonical unit of distance from each 
primary). The starting procedure used for the Adams- 
Moulton integration was Runge-Kutta-Merson, of fourth 
order, with automatic error control and step adjusting. 
Outside of the two circular areas of radius 0.07 around 
the two primaries, the integrations were performed with 
the recurrent power-series method. Generally, the terms 
up to twelfth order have been used in the power series, 
with an integration step of 0.03, as compared with a step 
of 0.005 in the Adams-Moulton method. 

The principles of differential corrections for periodic 
ejection orbits have been explained previously. In all of 
the numerical work described herein, the collision angle B 
has been kept at zero, and only collisions from the pri- 
mary m, (=  p) have been studied. At first, some attempts 
were made to find a periodic collision orbit corresponding 
to equal masses, but these attempts were unsuccessful. 
It  was then decided to run a series of collision orbits in 
the equal-mass problem. 

been studied in more detail is the white region rn the 
center of Fig. 22. The following procedure was then 
performed to find approximate initial col~ditioris for peri- 
odic orbits: the two lines yr= 0 and ir = 0 were con- 
structed by examining the final values y~ and i, of the 
variables y and x (at the end of a half revolution I: = x). 
The intersection of these two lines &be corresporlds to a 
symmetric periodic orbit. An intersection was foran? close 

a 0.4 
> 
t : 
C- 

E 
M 0.2 

IS TOO LARGE) 

-1.4 -1.2 -1 .O -0.8 -0.6 -0.4 

ENERGY E 

Fig. 22. Ejection orbits (from rn2 = 
with 0 =: 0.0, p = 0.5 
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Fig. 23.  Family of ejection orbits (e vs 

to E = -0.79, e = 1-0.42. Starting from these values, the 
exact periodic orbit was then obtained with the differen- 
tial correction program. 

Once the first periodic orbit had been found, cor- 
responding to p = 0.5, it was not difficult to follow the 
corresponding family of periodic orbits along increasing 
and decreasing mass-ratios. The variations of the eccen- 
tricity e along this line are shown in Figs. 23 and 24. 
At the eccentricity e = 0.0, the family joins a classical 
collision orbit of the circular three-body problem, with 
period 2 ~ .  At the other end of this family (e  = l), there 

Fig. 24. Family of ejection orbits (e vs El 

seems to be a triple collision of both primaries and the 
satellite. The last orbit computed corresponds to e =0.995, 
p = 0.40. It is obvious that, to be able to study the end 
of this family numerically, a program is necessary that 
can handle (and regularize eventually) the triple-collision 
phenomenon. 

Figures 25 and 26 show (in Birkhoff coordinates) two 
extreme orbits of the family, with e = 0 and e = 0.98. 
Figure 27 shows some of the collision orbits represented 
in different coordinate systems. The final conditions for 
this family are listed in Table 19. 
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Fig. 25. An extreme orbit of the family of periodic 
collision orbits (e = 0 )  
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Fig. 26. An extreme orbit of the family of periodic 
collision orbits (e = 0.981 
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Fig. 27. Periodic collision orbits in different coordinate systems 
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Fig. 27 (contd) 
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Table 19. Final conditions for periodic collision orbits 

PERIODIC COLLISION ORBITS 
X l  YOOT 1 ENERGY 

0.4317709 3.5154248 -1.1470386 
0.4422967 3.4560406 -1.1248080 
0.4452673 3.4397299 -1.1187117 
0,4482423 3,4235877 -1,1126825 
0,4512215 3,4076114 -1,1067194 
0.4542051 3.3917987 -1- 1008213 
0.4571929 3.3761471 -1.0949873 
0,4601851 3.3606543 -1,0892163 
0.4752110 3.2854956 -1,0612741 
0.4903469 3.2139907 -1.0347706 
8,5055945 3.1459079 -1,0096007 
0.5209562 3.0810431 -0,9856676 
0.5364350 3.0192178 -0.9628819 
0,5520341 2,9602770 -0.9411609 
0.5598800 2.9318458 -0.9306753 
005677575 2.9040875 -0.9204274 
0,5756673 2.8769886 -0,9104082 
0.5836100 2.8505372 -0.9006093 
015915865 2.8247225 -0,8910223 
0.5995974 2.7995348 -018816390 
0,6076438 2.7749661 -0.8724517 
0,6157265 2.75 10093 -0.8634525 
0.6238467 2.727659 1 -0,8546340 
0*6320055 2,7049113 -0,8459889 
0.6402042 2.6827633 -0,8375099 
0-6484443 2.6612140 -0.8291898 
0.6567272 2.6402639 -0.8210217 
0.6650549 2,6199155 -0.8129987 
0.6734291 2.6001731 -0,8051139 
0.6818520 2.5810431 -0.7973603 
0.6852354 2.5735644 -0.7942941 
006860825 2 -57  17103 -0.7935307 
0.6869301 2.5698625 -007927684 
0.6877783 2.5680210 -0,7920073 
0.6886270 2.5661857 -0,7912474 
0.6894762 2.5643568 -0.7904887 
0,6903260 2.5625342 -0,7897312 
0.6911763 2,5607178 -0,7889749 
0.6920272 215589078 -0,7882197 
0.6928786 2,5571042 -0,7874657 
0-6937305 2.5553069 -0.7867129 
0.6971437 2.5481817 -0.7837129 
0,6988537 2.5446576 -0,7822196 
0.7074380 2.5274276 -0.7748186 
0,7160823 2.5108617 -0,7675211 
0.7247902 2-4949811 -0.7603199 
0.7424141 2,4653825 -0.7461761 
0,7603504 2.4389009 -007323241 
0.7786518 2,4159184 -0,7186934 
0.7973892 2.3969803 -0.7052024 
0.8166596 2.3828802 -0.6917513 
0.8366019 2.3748101 -0.6782115 
0,8574241 2.3746475 -0,6644036 
0.8794613 2,3855670 -0.6500552 
019033125 2.4135514 -0,6346959 
0,9302562 2,4721542 -0,6173412 
0.9458395 2.5235941 -0,6071866 
0.9642965 2.6070881 -0.5949220 
0,9910076 2,7898253 -0,5763913 
1,0006883 2.8816913 -005693343 

M A S S  R A T I O  
0.6641096 - 
0-6570000 
0.6550000 
0,6530000 
0.6510000 
01 6490000 
0, 6470000 
0.6450000 
0.6350000 
0,6250000 
0.6150000 
0.6050000 
0.5950000 
0.5850000 
015800000 
0,5750000 
Oe5700r)O0 
0.5650000 
0,5600000 
0.5550000 
0.5500000 
0.5450000 
0 5400000 
0,5350000 
0.5300000 
0.5250000 
0,5200000 
0-5150000 
0,5100000 
0.5050000 
0.5030000 
0.5025000 
0-5020000 
0,5015000 
0.5010000 
0 ~ 5 0 0 5 0 0 0  
0.5000000 
0.4995000 
0 -4990000 
0,4985000 
0.4980000 
0-4960000 
0.4950COO 
0.4900000 
0.4850000 
0.4800000 
0.4700000 
0.4600000 
0.4500000 
0.4400000 
0-4300000 
0.4200000 
0..4100000 
0.4000000 
0,3900000 
0.3800000 
0,3750000 
0,3700000 
0,3650000 
0.3640000 

ECC 
.o. 01100000 
Oa0174910 
0.0224 155 
0.0273420 
0,3322704 
O o  0372008 
0,0421 334 
0.0470682 
0.0717771 
0.0965512 
011214000 
0.1463340 
0.1713645 
0, 1965040 
0,2891188 
0,2217661 
0.2344478 
0,2471659 
0,2599226 
0.2727201 
0.2855607 
0.2984472 
003113820 
0.3243681 
0,3374084 
0.3505063 
0.363665 1 
0.3768885 
0.3901 806 
0,4035455 
0.4089129 
0.4102567 
0.4116013 
0 - 4  129468 
0-  4 142 930 
0.4156460 
0.4169879 
0.4183366 
0,4196861 
0.4210365 
0.4223 877 
0.4278010 
0.4305 128 
0.4441257 
014578323 
0,4716393 
0,4995836 
0.5280252 
0,5570476 
0.5867579 
O o  6172978 
0.6488630 
0,6817391 
0, 7163739 
0,7535 523 
0.7949235 
0.8183975 
Oo 8455 941 
0.8833366 
0,8963937 
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Table 19 (contd) 

P E R I O D I C  C O L L I S I O N  O R B I T S  
NR X 1 VDOT 1 ENERGY 
61 1.0083154 2.9671155 -0.5636017 
62 1,0161692 3.0697326 -0.5575095 
63 1-0243012 3.1951282 -0.5509627 
64 1,0327810 3.3518316 -0.5438277 
65 1.0417075 3.5536714 -0.5359065 
66 1.0512286 3.8249412 -0.5268868 
67 1.0615840 4.2134702 -0,5162289 
68 180732118 4.8315714 -0.5028633 
69 1.0870994 6,0419078 -0,4840867 

MASS R A T I O  ECC 
0,3635774 0,9063937 
0.3635184 01 9163937 
0.3639060 0.9263937 
0.3648572 0.9363937 
0,3665460 0,9463937 
0.3692469 0-9563933 
0,3734351 01966393'7 
0.3800552 0,9763937 
0,3915046 0,9863937 

V. Computer Programs 

A. Introduction 

The periodic orbits described previously were ob- 
tained with the use of several more or less automatic 
computer programs. These programs were all written in 
FORTRAN 4 language, but use a limited number of 
machine-language subroutines taken from the JPL library. 
Because of the presence of some nonstandard subroutines 
in these programs, and because of a few characteristics 
that are related to JPL's particular hardware configura- 
tions, it has not been judged useful to include herein a 
complete description of all of the computer programs. 

B. Derivative Subroutines 

TO integrate the equations of motion numcrlcaIlv I[ as 
necessary to program the derivatives of the? aepl a~dent 
variables (or the right-hand members of rhc cTilff( 1 c nhral 
equations), and to insert this coding in the nnanln psocrram 
or in the subroutine that is used fol a~umer , e~ l  i r  t-gla- 
tion. The subroutines described belovri grve 1112 dc~rx . trves 
for a few different coordinate systcmi 01 ertcA~atiax, 
methods. In all cases, the differenlnal t-qtiailol a ~ c  
reduced to first-order equations. 

The first four subroutines (DERIV) are to be insc:b wrth 
predictor-corrector or Runge-Kutta types of iiAtegrcitior: 

Some of the nonstandard subroutines that are not 
methods. For con~pleteness, a short fourth-oldel ( 1  ,i;rc,ai described herein are for timing of the computations and 
Runge-Kutta integration subroutine 3s '~lsi) g ~ ~ ~ e l t  ' 1 0 ~ 7 -  for plotting of the orbits; others are standard subroutines, 
ever, the user should preferably replacc r t  wnPa ', ~rncl~e e.g., those for matrix inversion or for step-wise numerical 

integration. Every reader who is interested in the inte- efficient integrator. Each call to the Tiinltyc-Kutt<: iub- 

gration of orbits will certainly have his own programs for routine will perform a single intcgl-atmn ctcp a:>:' thri 

numerical integration or for matrix inversion. Thus, it was subroutine will call subroutine DERIV Eorir trr12i'. Sub- 

decided to describe herein a few subroutines that are routine RUNGE-KUTTA may be used for any 1ailr21-el 

directly related to the elliptic restricted three-body of simultaneous first-order differential cqrrat~n:~~.  

problem. 

These subroutines do not all belong to the same 
program, but they have been used in different main 
programs. To give an example of the logic used in the 
computing efforts, two main programs are also described. 

Some of the descriptions given below are not quite 
complete, but they are complemented by the presence of 
many comments in the programs. It  is hoped that, with the 
information provided herein and with the FORTRAN 4 
listings, any programmer will be able to construct fairly 
rapidly a running program for the elliptic restricted 
three-body problem. 

1. Subroutine DEHV with inertial coorditzate* Thrs 
subroutine is for the numerical integration oi t'le eqryainons 
of motion, Eq. (13), in barycentric inertval csctrcT wtcs 
This subroutine may be used for all eccentr~ertr~r. x l u d -  
ing e = +l. It is prepared for five trlepende~~t v ,~ r  ,ibleh, 
the last of which is also the independent valiab e t (I me) 
The subroutine calls subroutine KEPLER to tralzlorin 
the mean anomaly AM in the eccentric a n o ~ ~ ~ ~ t ' y  ;'(:AN 
Subroutine KEPLER uses the ? ~ ~ W C O I ^ L I ~  it( liGtvon 
method. In case the Newtonian iterahror ;'~e+laccS doci  
not converge, a bisection method is used TI1114 C A  1 clnrtlj/ 

happen for an eccentricity of 4- I 'ind lor somc , * J ~ L o ~ -  

tional values of the mean anomaly Ah% 
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Subroutine DERIV uses the following constants, which 
are in C:OMMON: 

RU = mass-ratio p = m2 (182a) 
E = eccentricity e (184e) 

E = eccentricity e (182c) 

2,  Subroutine DERIV with rotating-pulsating coordi- 
nates. Thls subroutine uses the pulsating coordinates 
(x, y) described in Eq. (33). The independent variable is 
the tilac anomaly G .  The distance r between the primaries 
is obtailned here as a function of the true anomaly rather 
than by integrating a differential equation. The first four 
equations give (x, y, a!, i ) ,  the fifth gives the time t, and 
the sixth gives the true anomaly v. No Kepler equation 
has to rje solved with this set of variables, the primaries 
having fixed Boea"coas on the x-axis. This subroutine uses 
the foliow~ng constants, which must be in COMMON: 

IRU = mass-ratio p = m, (183a) 

E = eccentricity e (183e) 

3. Subroutine DERIV with regularized Birkhof 
coordi~aates. This is the subroutine that has been used in 
t h  ecgularized program; it integrates differential Eqs. 
(PIO), (P16), and (117). Here the differential equations are 
agai;; + the first-order form. The first four equations give 
(4, q, ;, ?). The last tliree equations give the energy E, true 
anomaly o, and time t. The regularized independent 
variable s is not explicitly present in the differential 
equations. The following constants are used by the 
seibro~tane, and must be in COMMON: 

AM2 = p = m, (mass-ratio) (184a) 

4. Subroutine D E R N  with rotating-pulsating vari- 
ables and with variational equations. This subroutine 
uses the same variables and the same formulation as the 
subroutine described in Section V-B-3. The first four vari- 
ables are the same as before. The fifth to twentieth 
variables are four times the four variations. The 16 
variables (5 to 20) will thus give the fundamental 
matrix R with partial derivatives. The initial conditions 
for the 16 variables should form a unit-matrix. It  should 
be noted that good results will be obtained for the 
solutions of the variational equations only if a good 
integration subroutine is available. In particular, if the 
simple Runge-Kutta subroutine is used, no high precision 
should be expected. On the other hand, there will also 
be an appreciable loss of precision in the solution of the 
variational equations in cases with close approaches 
between the satellite and the primaries, or between the 
primaries themselves (for high values of e). 

The following constants must be present in COMMON 
for this subroutine: 

RU = mass-ratio p = m2 (185a) 

E = eccentricity e (185e) 

5. Subroutine ERPSV for recurrent power series. This 
subroutine implements the solution of both the equations 
of motion and four sets of variational equations with 
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the recurrent power-series method and with rotating- 
pulsating variables. The equations that are programmed 
are Eqs. (139) and (141) and those listed in Tables 1 and 2. 
The notations of these equations are closely followed in 
the FORTRAN 4 program; for this reason, very little 
explanation is necessary here. 

In the listing of subroutine ERPSV, it can be seen that 
only a minimum number of DO-loops has been used. 
I t  was considered preferable to write these long lists of 
similar statements because, on many compilers or com- 
puters, this will actually result in a more efficient object 
program from the point of view of the speed of calcu- 
lations. Subroutine ERPSV could have been programmed 
in a much shorter way, but this would be possible only 
by using more nested DO-loops and a slightly longer 
computer time. In other words, the present subroutine 
has been designed for efficiency in speed more than in 
memory occupation. 

As aforementioned in Section 111, variables P, through 
P,, are relative to the equations of motion, whereas 
variables P19 through P,, are relative to the variational 
equations. A user interested only in the equations of 
motion could remove from the subroutine all of the 
statements that are relative to the variational equations; 
i.e., variables PI, through Pi,. 

The input to the subroutine consists of the integration 
step DT for the independent variable v (true anomaly) 
and initial values for 11 components of the vector X 
(XI . . . X, have the meaning x, y, 2, Q, r, ;, t, whereas XI, 
. . . XI3 are r,, r2, r i 3 ,  r i 3 ) .  The components X,, X, are z, 2, 
and are not used in the two-dimensional program. 

The output after every integration step consists of the 
new values of the 11 parameters XI . . . X, and XI, .. . XI,, 
together with the matrix A containing the fundamental 
matrix (partial derivatives). 

Subroutine ERPSV is designed to operate in the 
following three ways, as far as the input is concerned, 
according to the input parameter INIT: 

(1) INIT = 1 for the first integration step of the orbit. 
Initial conditions must be given for X, through X, 
only. 

(2) INIT = 2 for all succeeding integration steps. Initial 
conditions must be given for variables XI . . . X, and 
XI, ... XI,. In fact, the values of these variables 
were computed by the preceding integration step. 

(3) INIT = 3 if the values of the series must hc com- 
puted without recomputing tlne eoeEeients of the 
series. This option is useful if points muet bc 
computed for odd values of the independea,t vari- 
able v between the regularly spaced inkegration 
points. 

In this subroutine, it can be seen that tlne eqlsatrons of 
motion do not explicitly contain the independent vn7 iable 
v (true anomaly), and that the value of r (distance 
between the primaries) is obtained by solving the 
differential equation verified by r. 

The dimension statements of subroutir~e ERPSV are 
such that only power series with a n~aximum of 261 tern-ns 
can be used. 

The following constants are needed by this subro- J t '  me, 
and should be in the proper locations in GOMbION: 

RU = mass-ratio p = m2 (E86a) 

E = eccentricity e (886e) 

NT = n = number of terms 
used in power series ja86h) 

C. Conversion Subroutines 

In the program listings, a few subroutines are i ~ d u d e d  
that have been used to convert different coordinate 
systems, mainly for the purpose of inputof iniltiel eon- 
ditions or output of the orbits in different fornris. 

The first four subroutines correspond to same of the 
transformations described in Section 11. They essentially 
transform four quantities (two coordinates and two 
velocity components) into the four corresponding quan- 
tities in another coordinate system. These s~brovrtines 
contain no COMMON statements. and aPB input and 
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ourp I anc tr-rdnsrnnt"ied through the paramcter list of the 
CAI 1 i3t, te~ncnts The exact function of each subroutine 
7 1  25 J c ' l l ~ ~ ~  

(1 1 I'U LROT tnar?sforms pulsating coordinates XP into 
ot,li-ing coo~dinates XR according to Eq. (65). 

( 2 )  ;?OTPL 3, hr  ansforms rotating coordinates XR into 
;3uLatlnq coordinates XP according to Eq. (64). 

(3) XOTIlY tinnsforms rotating coordinates XR into 
ne-tral jbarycentric) coordinates X according to 
17s (63) 

(4; 1YliOT tlani;forms inertial coordinates X into ro- 
i l t ~ ~ ~ g  (fl,o?cliinates XW according to Eq. (62). 

T1 Je>cri:;:~on ~i the input and output parameters is 
q i vc -  n ilet.iil in the comments. It  can be seen that, for 
b 

liii. 1 rise sasbsoutines, the true anomaly TRUE is 
,11 - .~~ l  i: th 13111111. subroutines. Because of this parameter, 
ar-aot"li sinair subroutine has been written to compute 
ti~c. +* i ,>nor i r y  (TRUEAN). I t  is joined to the listings 
: ~ i i h  ~ I I I : I G " u ~ ~ L ) ~ s  Thls subroutine first calls subroutine 
KFPqAER to obtain the eccentric anomaly from the mean 
.,r;oln^zily. ,ncxr r t  converts the eccentric anomaly into the 
truc I 101 la11 s The value of v at exit is between 0 
and 2- 

So-t., otlier eortversion subroutines included in the 
l1s;nnq ,lrl sc;<~ted to the Birkhoff regularization. The two 
most npoltxant su ,routines convert between Cartesian 
r otaid 1 ;-i~ulzci "cng median coordinates and velocity 
eornl-ciier3is X ,  and regularized Birkhoff coordinates and 
veloc t "  ewnlponents XB. Subroutine BIRCR transforms 
ir0-n 31rI~l~oiI to Cartesian coordinates, whereas sub- 
routnv C'4RSjR converts from Cartesian to Birkhoff 
coorcli~iatri 

Sia , r>ull~sc CAZ-iBlia must compute the square root of a 
cornyi,x number, and this is done in the small auxiliary 
iubroritlrae COMSQR. In subroutine COMSQR, the com- 
plex . I r , t l  anetlc fcaitures that are available in many 
~nodcs?i TORTRAN 4 compilers are not used. To have 
In,Ixi-.i~rm flcx~bllity, no COMMON statements have been 
sricd to wb?nlli-ines BIRGR, GARBR, and COMSQR. 

T ~ L  two q?o>sibie determinations of the square root of 
the conpiex number treated in subroutine COMSQR 
eo~rcipnnd to the two points in the Birkhoff plane that 
,arc ~~c.inci,ntcc? with a single point in the Cartesian plane 
(the f~~~i. t l~ofl '  !raslsiormation being 2 to 1). In all of the 

work that has been done, only one determination has 
been used, but the other determination could easily be 
obtained by changing the signs of A and B in subroutine 
COMSQR. I t  should be noted that subroutine BIRCR 
cannot be used when r ,  = 0 or r2 = 0 because the 
velocity components computed by this subroutine contain 
r, and r ,  in the denominators. 

D. Differential Correction Subroutines 

Two main programs are described below, each of 
which uses a different technique for differential cor- 
rections. In one program, the variational equations are 
solved to obtain the necessary partial derivatives. In the 
other program (which is regularized), finite differences 
between a nominal orbit and perturbed orbits are used 
to obtain the partial derivatives. The operations related to 
the generation of the nominal orbit, the perturbed orbits, 
the partial derivatives, and the corrections to the initial 
conditions have been grouped in a single general-purpose 
differential correction subroutine called SEARCH. This 
subroutine, along with its listing, will be briefly described. 

Subroutine SEARCH calls a matrix-inversion sub- 
routine, which is not given here. Instead of the general 
matrix-inversion subroutine, a short subroutine is given 
for the solution of a system with two equations because, 
in the present problem of finding symmetric periodic 
orbits in the three-body problem, differential corrections 
in only two variables were necessary. I f a  more general 
matrix-inversion subroutine is added, however, sub- 
routine SEARCH may be considered as a general-purpose 
subroutine for linear differential corrections in n variables. 

The general problem consists of adjusting n initial 
parameters in such a way that n final parameters have a 
preassigned value. This problem can be expressed by a 
system of n generally very complicated equations, which 
are first linearized and solved by classical elimination or 
matrix inversion. Let x, (i = 1, ..., n) be the initial un- 
known parameters for which the values must be found. 
Also, let y ,  be the final parameters for which the desired 
values Y, are given. Then y ,  must be considered as func- 
tions of x,: 

yi = Fi(x,, x,, . . ., x,) (186) 

and the problem consists of solving the following system 
in xi: 

Fi(xl ,  x2, ,.., x,) - Yi = O (187) 
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At first a standard or nominal solution is computed, 
using as initial conditions the given approximation xio' .  
This nominal solution has tlie final values y in)  . The devia- 
tions between the nominal solution and the desired ideal 
solution are thus given by 

Next, tlie partial derivatives are computed by perturb- 
ing successively each x jo)  by the given small quantity 6j. 
Each perturbed orbit will then give one column of the 
complete square matrix of partial derivatives: 

y . .  - y(0' a y i -  l.l -- 
axj  s j  

where yij is the final value of the orbit with the jth 
initial parameter x perturbcd by Fj. 

The solution of linear system 

then gives the corrections a x j ,  which must be applied to 
the initial conditions x j O ) .  Because of the nonlinearity 
of the problem, the whole process has to be repeated 
several times. At each iteration, the values of I h y i  / or 
/ AX,  1 are compared with some given ~i > 0 to decide 
whether the problem has converged with the required 
precision. 

The input and output of the subroutine are described 
in detail in the comments. The meaning of some of the 
most important FORTRAN variables is as follows: 

X = initial value for nominal solution xlo' (input) 

= new computed initial values x i0)  + ax i  (output) 

G = array with perturbed initial conditions x:") 
+ 6i (output) 

YO = final values y iO)  of nominal solution (input) 

YF = desired final values Y+ (input) 

DEL = increments S i  for perturbed solutions (input) 

EPS = vector with precision constants ~i (input) 

EP = E = limit for determinant of matrix; if deter- 
minant is smaller than E in absolute value, 
matrix is declared singular (input) 

E. Main Program With Variational Ifquatiions and 
Recurrent Power Series 

In the FORTRAN 4 listings given below, el\ o d fkercnl 
main programs are included. The main program dec;cribed 
in this section may be characterized by the ia;iowing 
four main points: 

(1) Solves simultaneously the equations of ~ i o e  on and 
the variational equations in lotating-pnlsat~ng cc- 
ordinates. 

(2) Uses the method of recurrent power series for the 
numerical integration. 

(3) Uses a least-squares approach for the diffelcntial 
corrections of periodic orbits. 

(4) Has no regularization. 

This program is also characterized by two t ,pes of 
input cards that are accepted and by two completely 
different functions that it can accornplrs8.c The -nput is 
normally done with a single NAMELIST statcme 11i colw 
taining about 30 quantities. These quantities all Itave ,a 

nominal value built into the program nn such a 1 4 ~ 3 ~  that 
only the parameters that are different from thc z?ominal 
value have to be read in. If several successive C'\S;S are 
treated in one computer run, the cornpentatron~, never 
alter the input quantities; therefore, on succeedirrg cases, 
only parameters that are different- from the pncceding 
case must be punched on cards. This mpnt pbiicrophy 
allows a great flexibility, and allows the running of many 
cases with a minimum of preparation of inpub cdacls. 

Another type of input whose posslbllitiei; a*cx very 
interesting is made with "recapitulation cards ' Each 
time a periodic orbit is found by the prognam, 2 set of 
four cards is punched in full double preeis~on These 
tour cards contain the initial condiilons (yo, yc, I ,, Ij,,), 
the final conditions (x , ,  y,, d,, zj,), and the two sraram- 
eters ( p ,  e-also the energy E in the c a w  of ~ ~ P P O ~ I C  

collision orbits). These are punched and lead. aitordmg 
to the FORMAT: 3D24.17, 18, and coc t a :~~  the ii~forma- 
tion in the following order: 

(1) Card one: x,, x,, p, 1. 

(2) Card two: yo, y,, e, 2. 

(3) Card three: x,, X I ,  E, 3. 

(4 )  Card four: yo, y,, 0.0, 4. 

Recapitulation cards of this type are compatli.Ee wnth 
work previously done by the author on the c ~ z c t ~ l a ~  re- 
stricted threc-body problem. Thew! four rccap t,~lai~onr 
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cards may be used, together with the NAMELIST input, 
to ddchne all of the initial conditions for each com- 
puter run, 

Tlmc program ns capable of running in two different 
mode\ which are called "Job One" (JN = 1) and "Job 
Two" (JN = 2) .  The two different jobs are described in 
the 1321 c~gicip41s that follow. Subsequent paragraphs de- 
scribe ~ r n e  other operations that are done by the main 
progg Im 

9. J N  = 1. The program computes a list with a given 
nurnbe- oli orbnts (nonperiodic) equally spaced in any of 
the lrilrlal palameters. If an orbit in the list is almost 
periocilc, difieiential corrections are started to find the 
permdrc o l b ~ t  and punch it on four recapitulation cards. 
Then the normal 1st continues. Previous recapitulation 
cards may be used to read in the initial conditions that 
are necessary to begin the list. 

2. JW = 2. The program computes a list with periodic 
orbits equally spaced in any given parameter. Each orbit 
is "made 2eriodic" by differential corrections. Approxi- 
mate initial conditions must be given only for the first 
orbit in the list. This first approximation may also be on 
recapitulation cards. Each periodic orbit that is found 
will be punched on four recapitulation cards, and will 
also be added to an extrapolation table. This table is thus 
used for extrapolations to find a good initial guess for 
the next periodic orbit. In this way, the program gradu- 
ally builds up a table with "past experience"; as the 
number of periodic orbits increases in the table, a better 
and better initial guess will be obtained for the new 
periodic orbits. An initial extrapolation table- with pe- 
riodic orbits on recapitulation cards (from a previous 
companter run) may also be entered in the table at the 
beginning, and the list will then start from there. At 
the first orbit that is not converging, the whole list will 
be interrupted. 

The interpolation-extrapolation subroutine INPOL, 
which has been used, uses the Lagrange-Aitken method; 
the FORTRAN listing of this subroutine is given in 
Table 22. 

3. Computing the variable-integration step. The recur- 
rent power-series method is used with a variable- 
integri~tion s tep  This step is made smaller when the 
satellite approaches one of the primaries. The effective 
step that is used is 7,Ch. The distances 6 and ?;? are only 
approximations, retained from the preceding integration 
step. The nominal integration step h is an input quantity. 

If the factor FIT2 is larger than 2, it is not applied, and 
the integration step is taken as 2h. If the factor FIT2 is too 
small (e.g., smaller than 0.02), the integration is stopped. 
Each call to subroutine ERPSV thus increases the inde- 
pendent variable v (true anomaly) by the quantity ?;,F2h, 
and computes the corresponding values of all of the 
dependent variables. 

4. Logic of the differential correction process. This 
logic is contained in the main program; however, this 
operation also involves calling several subroutines, espe- 
cially for solving systems of linear equations. The differ- 
ential correction may operate in two different ways 
according to two different periodicity criteria. The pro- 
gram may search for periodic orbits by attempting to 
"close the orbit"; i.e., to match the initial and final con- 
ditions. This method may also be used for symmetric 
periodic orbits; for these, however, the program may 
also proceed in a different way-by attempting to end 
the orbit by a perpendicular crossing with a syzygy-axis. 
The user may choose either of these periodicity criteria. 

If the program is asked to "close the orbit," there will 
generally by a differential correction in four variables, 
but this number may be restricted to three if the user 
keeps one of the four initial parameters fixed by "zeroing 
out" one entire matrix column of the equations of condi- 
tions. The system of linearized differential-correction 
equations will then be solved by a method that is essen- 
tially equivalent to the least-squares method. In  general, 
when the matrix of the linear system is too nearly singu- 
lar, a least-squares solution will be made. In the circular 
problem, this matrix becomes singular for each periodic 
orbit. This may also happen (for different reasons) in the 
elliptic problem, but it has been observed that the least- 
squares approach gives a satisfactory solution to this 
problem. Subroutines CORL2 and CORR, which are 
relative to these operations, are considered too lengthy 
to be included in this report. 

5. Additional operations for periodic orbits. When a 
periodic orbit is found, the program must perform a few 
operations that are related to this periodic orbit. The 
orbit will be added to the extrapolation table (if JN = 2); 
the coefficients of the characteristic equation will be 
computed (with subroutine CARP04); and the four re- 
capitulation cards with initial and final conditions will 
be punched. 

6. Computer time. The computer time (in seconds) is 
printed for each periodic orbit, and for each list of orbits. 
For this purpose, use is made of the standard built-in 
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7094 clock. Subroutines CLOCK1 and CLOCT, which 
are relative to the timing, are too machine-dependent to 
be listed in this report. 

F. A Regularized Main Program 

This main program has the following principal char- 
acteristics : 

(1) Solves the equations of motion in two different 
ways, according to the region in which the particle 
is found. In two circular regions with given radius 
around each primary, the regularized Birkhoff 
coordinates are used; in the remaining part of the 
plane, the ordinary pulsating variables are used. 

(2) The integration in Birkhoff variables is done with 
a Runge-Kutta or a predictor-corrector method. 
In pulsating variables, it is done with the recurrent 
power-series method, with a variable step. 

(3) No variational equations are solved. The partial 
derivatives and the differential corrections are ob- 
tained by subroutine SEARCH, and are adapted 
to symmetric periodic orbits only. 

Table 20. Families of periodic orbits 

Family 

1 P 

3P 

4 P 

5P 

9P 

6A 

12A 

7P 

7A 

8P 

8A 

1 OP 

11 P 

11A 

Periodic collision 

orbits 

Number 

of orbits 

13 

23 

26 

22 

12 

118 

152 

131 

130 

118 

92 

7 6  

52 

93 

69  

0.5 

Variable 

0.5 

Variable 

0.5 

Variable (0.5-0) 

0.5 

0.01 21 55 

0.012155 

0.5 

0.5 

0.5 

0.5 

0.5 

Variable 

Table 21. List of subroutines 

EccenloiciBy 

e 

1.0 

I .3 

Variable 

1.3 

Vaaicble 

1 .O 

Variable (0-1.0) 

Variable 

Vasieble 

Vasicble 

Varieble 

Wariebie 

variable 

Variable 

Variable 

-- 

The input philosophy with NAMELIST and with re- 
capitulation cards is similar to that described for the 
preceding program. The regularized program is also de- 
signed to run in the same two modes-"Job One" for a 
list of nonperiodic orbits (with eventual interpolation 
for a periodic orbit) and "Job TWO" for a list of periodic 
orbits. 

The differential-correction logic is in the main pro- 
gram. The logic of the switching between regularized 
and pulsating variables has been collected in subroutine 
ORBIT. The function of this subroutine is to compute a 
single complete orbit at each call. Subroutine ORBIT 
contains the different input conversions, the conversions 
related to the switching of regions, and the necessary 
interpolations to end the orbit at the desired value k~ 
of the true anomaly v (even in regularized coordinates 
where v is not the independent variable). 

The families of periodic orbits, along with their prin- 
cipal characteristics, are listed in Table 20. Table 21 is a 
list of the subroutines. Table 22 is a printout of the 
computer program. 

I Subroutine ( Function 

MAlN 

ERPSV 

DERlV 

RUK 

KEPLER 

TRUEAN 

PULROT 

ROTPUL 

ROTlN 

INROT 

DERlV 

DERlV 

MAIN 

ORBIT 

DERlV 

BlRCR 

CARBR 

COMSQR 

SEARCH 

SOLVE2 

INPOL 

Main program with voriotional equations 

Elliptic recurrent power series with variational eqvatio-s 

Derivatives for equations of motion and variational equations 

Runge-Kutta integration 

Solution of Kepler equation 

Computes true anomaly v 

Converts pulsating to rotating coordinates 

Converts rotating to pulsating coordinates 

Converts rotating to inertial coordinates 

Converts inertial to rotating coordinates 

Computes derivatives for equations in pulsating coordinates 

Computes derivatives for equations i n  inertial coordinodes 

Main program with Birkhoff regularization 

Computes one orbit in Cartesian or BirkhoCf coordinates 

Computes derivatives for equations in Birkhoff coordiqaies 

Converts Birkhoff to Cartesian coordinates 

Converts Cartesian to Birkhoff coordinates 

Square root o f  complex number 

Linear differential corrections 

Solution o f  linear system with two variables 

Interpolation with Lagrange-Aitken method 
"- 
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Table 22. Computer program 
- 

TIC R 3 B V P S  
E L L I P T I C  R E S T R . 3 - B O D Y / V A R I A T I O N A L  E Q U A T I O N S I R E C U R R E N T  POWER S E R I E S  
J N  = J O B  NUMBER 

=1-COMPUTE L I S T  O F  O R B I T S 9 W I T H  S E A R C H  F O R  P E R I O D I C  O R B I T S  
OR COMPUTE A  L I S T  O F (  P E R 1 O D I C ) O R B I T S  F R O M ( A P P R O X I M A T E 1  
I N I T I A L  C O N D I T I O N S  ON R E C A P  CARDS 

= 2 - G E N E R A T E  L I S T  O F  P E R I O D I C  ORB I T S  B Y  E X T R A P O L A T  I O N S  
N T  =NUMBER O F  T E R M S  I N  POWER S E R I E S  
N P R I N = P R I N T  S T E P  

ONE L I N E  W I L L  B E  P R I N T E D  E V E R Y  N P R I N  I N T E G R A T I O N  STEPS.  
N D I F C = M A X I M U M  NUMBER O F  D I F F E R E N T I A L  C O R R E C T I O N S  ALLOWED 

T O  MAKE AN O R B I T  P E R I O D I C  
MNO = M A X I M U M  NUMBER O F  O R B I T S  T O  COMPUTE I N  L I S T  , I F  J N = 1  

= M A X I M U M  NUMBER O F  P E R I O D I C  O R B I T S  T O  B E  G E N E R A T E D  ? I F  J N = 2  
M N P S z M A X I M U M  NUMBER O F  P O I N T S  U S E D  I N  E X T R A P O L A T I O N S 9 W H E N  J N = 2  

WHEN MNPS=O,NO E X T R A P O L A T I O N  T A B L E  I S  U S E D  
A T  ANY T I M E p O N L Y  T H E  L A S T  MNPS G E N E R A T E D  O R B I T S  ARE I N  T H E  
E X T R A P O L A T I O N  T A B L E ,  

N C n L = O  DO N O T  R E A D  I N I T I A L  C O N D I T f O N S  FROM R E C A P  C A R D S  
= 1  OR 2  R E C A P  C A R D S  A R E  U S E D  FOR I N I T I A L  C O N D I T I O N S  

l = I N I T I A L  C O N D I T I O N S  A R E  I N  C O L S  1 T O  2 4  
2 = I N I T I A L  C O N D I T I O N S  A R E  I N  C O L S  2 5  T O  4 8  

MCOL=O WHEN NO I N I T I A L  T A B L E  FOR E X T R A P O L A T I O N  I S  READ I N  
= 1  OR 2  WHEN T A B L E  FOR E X T R A P O L A T I O N  I S  R E A D  I N  

1 = C O L S  1 TO 2 4  2 = C O L S  2 5  T O  4 8  
I M I I E = O  WHEN E  A N D  R U  O N  R E C A P  C A R D S  A R E  N O T  U S E D  

=NOT 0 WHEN E  A N D  R U  ON R E C A P  C A R D S  A R E  U S E D  
MU I S  I N  C O L S  49 T O  7 2  ,ON C A R D  ONE 
E  I S  I N  C O L S  49 T O  7 2  ,ON C A R D  TWO 

T H E  F O R M A T  OF R E C A P I T U L A T I O N  C A R D S  I S  ( 3 0 2 4 . 1 7 9 1 8 )  
T H E R E  ARE FOUR R E C A P I T U L A T I O N  C A R D S  P E R  P E R I O D I C  O R B I T  

I 1  = V A R I A B L E  T O  B E  I N C R E M E N T E D  WHEN G E N E R A T I N G  L I S T  OF O R B I T S  
I 1  I S  FROM 1 TO 8 . ( 1 9 2 9 3 9 4 = X 9 Y , X D U T 9 Y D O T ,  7 = M U 9 8 = E )  

I S 1  = F I R S T  V A R I A B L E  T O  S E A R C H  ON ( G E N E R A L L Y  1 )  
I S 2  =SECOND V A R I A B L E  T O  S E A R C H  ON ( G E N E R A L L Y  4 )  
I F 1  = F I R S T  V A R I A B L E  T O  D R I V E  T O  0.0 ( G E N E R A L L Y  2 )  
I F 2  =SECOND V A R I A B L E  T O  D R I V E  T O  0.0 ( G E N E R A L L Y  3 )  
N 1  = T Y P E  O F  P E R I O D I C I T Y  C R I T E R I O N  U S E D  

= l = T R Y  TO F I N D  A  P E R P E N D I C U L A R  C R O S S I N G  O F  T H E  X OR Y  A X I S  
T H I S  I S  A  TWO B Y  TWO S E A R C H  

= 2 = T R Y  TO C L O S E  T H E  O R B I T  ( T H I S  I S  A N  N * N  S E A R C H )  
T H E  L I N E A R  S Y S T E M  I S  S O L V E D  W I T H  T H E  L E A S T  SQUARES METHOD 
WHEN N l = l r I S l  AND I S 2  ARE USED,AND ZRO I S  NOT U S E D  
WHEN N 1 = 2 , Z R O  I S  U S E D  A N D  I S 1 9 I S 2  A R E  NOT U S E D  

X ( 1  TO 4 ) = I N I T I A L  C O N D I T I O N S  =X9Y,XDOT,YDOT. 
RMU =MU=MASS-RATIO 
E = E C C E N T R I C I T Y ( O F  T H E  P R I M A R I E S )  
H  = N O M I N A L  I N T E G R A T I O N  S T E P  
TRUIN=O.ODO WHEN S T A R T  A T  P E R I A P S I S  

= l .ODO WHEN S T A R T  A T  A P O A P S I S  
H O R B  =NUMBER O F  H A L F - O R B I T S  T O  B E  C O M P U T E D I N U M B E R  OF T I M E S  P I )  
D E L T A = I N C R E M E N T  F O R  L I S T  ( T O  B E  A D D E D  T O  X ( I 1 ) )  
E P S L l = P R E C I S I O N  F A C T O R  T O  D E C I D E  I F  A  S E A R C H  FOR A P E R I O D I C  O R B I T  

H A S  TO B E  S T A R T E D  ( U S E D  I F  J N = 1  O N L Y )  
P R E C I S = P R E C I S I O N  TO D E C I D E  WHETHER A N  O R B I T  I S  P E R I O D I C  OR N O T  
ZRO =4-VECTOR W I T H  O N E S  OR Z E R O S  U S E D  T O  ZERO O U T  

SOME COLUMNS O F  T H E  M A T R I X  W I T H  P A R T I A L S  
F O R  I N S T A N C E  

U S E  Z R O = l e 9  1.9  1 . 9  1. F O R  NON S Y M M E T R I C  O R B I T S  
U S E  Z R O = l . r O * , O . r l .  F O R  O X - S Y M M E T R I C  O R B I T S  
U S E  Z R O = O e , l e  9 1 . 9 0 -  FOR O Y - S Y M M E T R I C  O R B I T S  

ZRO=O., 1 .9  l r l .  FOR N O N - S Y M M E T R I C  O R B I T S  WHEN NO C O R R E C T I O N  D X  
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Table 22 (contd) 

C I N  THE VARIABLE X I S  ALLOWED * 
C R l M I N = C O L L I S I O N  L I M I T  FOR R 1  
C R2MIN=COLLIS ION L I M I T  FOR R2  
C DXMIN=MINIMUM CORRECTION DX ALLOWED 
C DXMAX=MAXIMUM CORRECTION DX ALLOWED 
C THE D I F F E R E N T I A L  CORRECTION ITERATIONS W I L L  BE INTERRUPTED I F  O h E  
C OF THE COMPONENTS OF THE PROPOSED CORRECTION VECTOR DX 
C I S  OUTSIDE THE L I M I T S  DXMIN AND DXMAXvIN ABSOLUTE VALUE 

DOUBLE PRECIS ION X ( 1 3 ) 9 A M A T ( 4 9 4 )  , R M U , U M U ~ D V ~ E C O F ( ~ ) ~ E ~ P , Q Y S ~ ~  S29PI 
1yTRUIN,TRUF1,XIl1XI2,R,HyR1R29 T9 TRUE* ZERO,DX(6),DEV,PRECISt 
Z Z R I l ( 8 )  ¶HORB, ERROR,DUMY13) PNP( 1 0 )  ? T A B L E 1 ( 2 0 )  p T A B L E 2 ( 2 0 l ~ T A B L E 3 ~ 2 0  
3 ) , X P I ( 8 ) g D E L T A ~ D X M I N ~ D E T E R , E P S L 1 9 R 1 M I N ~ R 2 M I N ~ T A B L E 4 ( 2 O ) ~ T A B I ~ E X ~ 2 O ~  
4yDXMAX9A23(2 ,3 )  

DIMENSION N B R ( 4 )  
COMMON R M U ~ l J M U y X I 1 , X I 2 ~ E ~ P ~ Q ~ S l ~ S 2 ~ P I ~ N T ~ N T M l ~ N P R I N  

3 6  FORMAT ( l H 0 1 1 9 H  THE TOTAL T IME I S  rF11.39 9H SECONDS I 
1 9 1  FORMAT( 1H 9 1P6D18 .11p I59  l P O 9 - 1 )  
1 9 4  FORMAT(1H ,25H A49A3tA29A1,AO 1 
1 9 5  FORMAT ( 1H r 5 D 2 4 . 1 7 )  
1 9 7  FORMAT( l H l r 2 0 1 5 )  
2 0 6  FORMAT( 1H r4D25 .16 )  
3 0 8  FORMAT ( 1H 95D24e 1 7 )  
7 0 3  FORMAT( lH0925H NO PERIODIC ORBIT  FOUND 1 
7 0 4  FORMAT ( 1 H  , I 3 9  2 2 H  PERIODIC ORBITS FOUND 1 
7 0 6  FORMAT ( 1H 
7 0 7  FORMAT( 1H r 19H SUGGESTED CHANGES=r4D16* 9 )  
7 0 8  FORMAT( lH0914HNEAR C O L L I S I O N  92D25.15)  
7 0 9  FORMAT( lH l ,3HJN=y  I l,2X3HNT=p 1292X6HNPRIN=v 14*2X6HNDIFC=p 12?2X4HMNO 

1 = ~ I 3 ~ 2 X 5 H M N P S = ~ I 2 ~ 2 X 5 H N C O L = ~ I 1 ~ 2 X 5 H M C O L = ~ I 1 p 2 X 5 H I M U E = , I 1 r 2 X 3 t 4 I H = ~ I  
2 1 ~ 2 X 4 H I S 1 = ~ I 1 ~ 2 X 4 H I S 2 = , I 1 ~ 2 X 3 H N 1 = ~ I 1 ~ 2 X 4 H I F l ~ ~ I l ~ 2 X 4 H I F 2 ~ ~ ~ l ~  

7 1 0  FORMAT(1H 9 2 H H = p l P D l 0 1 3 9 8 H 7  T R U I N = r D 8 e l r 7 H ~  HORB=,D9.2~8H, DELTA=* 
1D9.2,8H, E P S L ~ = ~ D B . ~ T ~ H I  PRECIS=,D8-1)  

7 1 1  FORMAT( 1H ,4HZRO=94( lPD8 .1 )  p 5X6HR1MIN=9D8e1,3X6HR2MIN=9D8el~ 
15X6HDXMIN=9D8e l r  3X6HDXMAX=tD8.1) 

7 1 2  FORMAT( lH0,4HRMU=, 1PD24.169 3X2HE=9D24.16) 
7 1 3  FORMAT(1H 912HTHE T IME I S  ,F11.39 9 H  SECONDS 1 
9 7 7  FORMAT(3D24.17,18) 

CALL FPTRP(O,O90) 
N B R ( l ) = l  
N B R ( 2 ) = 2  
N B R ( 3 ) = 3  
N B R ( 4 ) = 4  
P I = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3  
ZERO=O ,OD0 
N PO I N = 2 0 0 0  
N A M E L I S T / N A M E S / X , R M U ~ E 9 T R U I N , N C O L t N l r  NT 9H,HORB,NPRIN,NDIFCpJNp 

1 M C ~ L ~ M N O ~ M N P S ~ I M U E ~ I 1 ~ I S 1 , I S 2 ~ D E L T A , Z R O ~ E P S L l ~ R l M I N ~ R 2 M I N  
29PRECIS9DXMIN,DXMAX,IFl,IF2 

C THE B U I L T - I N  VALUES FOR THE INPUT PARAMETERS ARE 
JN= 1 
NT=12  
NPRIN=200  
NDIFC=8  
MNO=3 
MNPS=O 
NCOL=O 
MC OL =O 
IMUE=O 
I l = 7  
I S  l=  1 
I S 2 = 4  
I F  1 = 2  
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Table 22 (conld) 

1 F 2 = 3  
N 1 =  1 
D O  900 I = l r 9  

900 X ( I ) = O . O D O  
X ( 1 )=Om 1024888100 
X ( 4 ) = 3 . 5 8 9 1 9 7 5 D O  
R M U = O . O 1 2 1 5 5 D O  
E=O.ZDO 
W=0,02DO 
T R U  I N = O  .OD0 
HOR B=l .ODO 
D E L T A = - O 1 D O  
E P S L  l = O . O l D O  
PREC I S = l e O D - 1 2  
DXM IN=O.  1 D - 1 4  
DXMAX=O. lDO 
DO 615 I = l 9 4  

Z R O ( 1 )  = l e O D O  
515 Z R O ( I + 4 ) = O e O D O  

R 1 M I N Z O  e O 2 D O  
M P O I N = M P O I N + l  
I F  ( M P O I N - N P O I N ) 6 1 0 , 6 1 1 ~ 6 1 1  
R Z M I N = O e O l D O  

C. WERE T O  S T A R T  A  NEW C A S E  
5 C A L L  C L O C K 1  

R E A D ( 5  , N A M E S )  
W R I T E ( 6 ~ 7 0 9 ) J N ~ N T ~ N P R 1 N ~ N D I F C ~ M N O ~ M N P S ~ N C O L ~ M C O L ~ I M U E ~ I l ~ I S l ~ I S 2 ~ N  

I l r  I F 1 9 I F 2  
W R I T E ( 6 r 7 1 O ) H , T R U I N 9 H O R B 9 D E L T A 9 E P S L l p P R E C I S  
T = P I * H O R B  
N T M  l = N T - 1  
X (  7 ) = R M U  
X ( 8 ) = E  
DO 5 0 1  1 ~ 1 9 8  

5 0 1  X P I ( I ) = X ( I )  
W R I T E ( 6 9 7 1 1 )  ( Z R O ( 1  ) 9 1 = 1 9 4 )  t R l M I N 9 R 2 M I N 9 D X M I N , D X M A X  
I F ( N C O L . E Q . 0 )  GO TO 800 

C R E A D - I N  R E C A P  C A R D S  W I T H  I N I T I A L  C O N D I T I O N S  
12 R E A D ( ~ , ~ ~ ~ ) D U M Y ( ~ ) ~ D U M Y ( ~ ) ~ D U M Y ( ~ ) , N N N N  

I F ( N N N . E Q . 9 9 )  GO T O  41 
X P I  ( l ) = D U M Y ( N C O L )  
I F (  IMUE.NE.0)  X P I  ( 7 ) = D U M Y  ( 3 )  
R M U = X P I  ( 7 )  
R I E A D ( 5 , 9 7 7 1 D U M Y ( l )  v D U M Y ( 2 )  , D U M Y ( 3 )  
X P I  ( 2 ) = D U M Y ( N C O L 1  
I F  ( 1 M U E o N E . O )  X P I  ( 8 ) z D U M Y  ( 3 )  
E = X P I  ( 8 )  
R E A D ( 5 9 9 7 7 ) D U M Y ( l )  f D U M Y ( 2 )  
X P I  ( 3 ) = D U M Y ( N C D L )  
R E A D ( 5 9 9 7 7 1 D U M Y (  1) 9 L l U M Y ( 2 )  
X P I  ( 4 ) = D U M Y  ( N C O L )  

8 0 0  NNO=O 
N  PS=O 
I F ( M C O L o E Q . 0 )  GO TO 600 

C. R E A D - I N  I N I T I A L  E X T R A P O L A T I O N  T A B L E  ON R E C A P  C A R D S  
13 R E A D ( 5 , 9 7 7 ) D U M Y ( 1 ) 9 D U M Y ( 2 ) 9 P N P ( 7 ) , N N N  

I . F ( N N N . E Q o 9 9 ) G O  TO 600 
P N P (  l ) = D U M Y ( M C O L )  
R E A D ( 5 , 9 7 7 ) D U M Y  ( l ) , D U M Y ( 2 ) 9 P M P ( 8 )  
P N P ( 2 ) = D U M Y ( M C O L )  
R E A D ( 5 9 9 7 7 ) D U M Y ( l ) , D L 1 M Y ( 2 )  
P N P ( 3 ) = D U M Y ( M C O L )  

JPL TECHNICAL REPORT 32- 1360 



Table 22 (contd) 

JPL TECHNICAL REPORT 32- 1360 

T A B L E X ( N P S ) = P N P (  11) 
T A B L E l ( N P S ) = P N P (  1 )  
T A B L E Z ( N P S ) = P N P ( Z )  
T A B L E 3 ( N P S ) = P N P (  3 )  
T A B L E 4 ( N P S ) = P N P ( 4 )  
W R I T E ( ~ ~ ~ O ~ ~ T A B L E X ( N P S ) V T A ~ L E ~ ( N P S ) ~ T A B L E Z ( N P S )  

, T A B L E 3 ( N P S )  $ T A B L E 4 ( N P S )  
GO T O  1 3  

6 3 0  T A B L E X ( N P S ) = P N P (  1 1 )  
T A B L E l ( N P S ) = P N P ( I S l )  
T A B L E Z ( N P S ) = P N P (  I S 2 1  
W R I T E ( 6 , 3 0 8 ) T A B L E X [ N P S ) 9 T A B L E l ( N P S ) r T A B L E Z ( N P S )  
GO T O  13 

600 IF (MNPS.EQ.0 )  GO TO 14 
C  E X T R A P O L A T E  F I R S T  G U E S S  FOR NEW P E R I O D I C  O R B I T .  

I F ( N l . E Q . 1 )  GO TO 6 3 1  
I F ( N P S - 1 )  1 4 , 6 3 2 1 6 3 3  

6 3 2  X P I ( l ) = T A B L E l ( l )  
X P I  ( 2 1 = T A B L E 2 (  1) 
X P I  ( 3 ) = T A B L E 3 (  1) 
X P I  ( 4 ) = T A B L E 4 (  1 )  
GO T O  14 

633 I F ( Z R O ( l I . E Q . l . O D 0 )  
* C A L L  I N P O L ( T A B L E X 9 T A B L E 1 , X P I  ( 1 1 ) 9 X P I (  1 )  9 N P S )  

I F ( Z R O ( Z ) . E Q . l . O D O )  
* C A L L  I N P O L ( T A B L E X , T A B L E Z ~ X P I ( I l ) ~ X P I ( 2 1 , N P S )  

I F ( Z R O ( 3 )  eEQ.1.ODO) 
* C A L L  I N P O L ( T A B L E X , T A B L E 3 , X P I  ( 1 1 )  # I (  3 )  9 N P S )  

I F ( Z R O ( 4 ) e E Q - 1 - 0 0 0 )  
* C A L L  I N P O L ( T A B L E X 9 T A B L E 4 , X P I  ( 1 1 )  r X P I ( 4 )  9 N P S )  

GO T O  14 
631  I F  ( N P S - 1 1 1 4 9 1 5 ,  16 

1 5  X P I ( I S l ) = T A B L E l ( l )  
X P I ( I S Z ) = T A B L E Z ( l )  
GO TO 14 

16 C A L L  I N P O L ( T A B L E X , T A B L E 1 9 X P I  ( 1 1 )  9 X P I f  I S 1 1  9 N P S )  
C A L L  I N P O L ( T A B L E X 9 T A B L E 2 , X P I  ( 1 1 )  , X P I  ( I S 2 1  I N P S I  

C  P R E L I M I N A R Y  C O M P U T A T I O N S  FOR E A C H  O R B I T .  
14 R M U = X P I ( 7 )  

E = X P I  ( 8 )  
P=l .ODO-E*E 
Q = D S Q R T ( P )  
UMU=l.ODO-RMU 
X I  1=-RMU 
X I  Z=UMU 
T R U F I = P I * T R U I N + P I * H O R B  
W R I T E ( 6 , 7 1 2 ) R M U 9  E  
M D I F C = O  

100 T R U E = T R U I N * P I  
R = P / ( l . O D O + E * D C O S ( T R U E ) )  
D O  2 1  I = 1 9 4  

2 1  X ( I ) = X P I ( I )  
X ( 5 ) = R  
X ( 6 ) = 0 1 0 D 0  
X ( 7 ) = 0 . O D O  
Sl=DSQRT((X(l)-XI1)**2+X(2)**2) 
S 2 = D S Q R T (  ( X (  l ) - X I 2 ) * * 2 + X ( 2 ) * * 2 )  
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ERROR=O.ODO 
D O  700 I = 1 9 4  

DO 700 J = 1 9 4  
A M A T ( 1 ,  J)=O.ODO 

700 I F ( 1 . E Q . J )  A M A T ( I 9 J ) = l , O D O  
M  PO I N = O  
M P R I N = O  
W R I T E ( 6 y 1 9 1 )  ( X ( I I , I = 1 , 4 ) , X (  7 ) 9 T R U E 9 M P O I N , E R R O R  
M D I F C = M O I F C + l  
I N I T = l  

C  COMPUTE I N T E G R A T I O N  S T E P  
607 R l R 2 = S l * S 2  

D V = H  
I F ( R l R Z e L T . 2 e O D O )  D V = H * R l R Z  

C  C A L L  E R P S V  DO PERFORM ONE I N T E G R A T I O N  S T E P  
6 1 2  C A L L  E R P S V ( X ~ A M A T I D V ~  I N I T )  

T R U E = T R U E + D V  
S l = X (  1 0 )  
S 2 = X ( l l )  

C C H E C K  I F  C O L L I S I O N  W I T H  ONE OF P R I M A R I E S  
IF(Sl~GT.RlMIN.AND~S2.GT.R2MIN) GO T O  6 2 5  
W R I T E ( 6 , 7 0 8 )  S 1 9 S 2  
GO T O  ( 4 1 0 , 1 1 8 ) f J N  

6 2 5  M P R I N = M P R I N + l  
6 1 0  IF(MPR1N-NPRIN)608,6099609 

C  E S T I M A T E  L O C A L  I N T E G R A T I O N  ERROR 
609 E R R O R = 0 , 2 5 D O * ( D A B S (  X ( 1 0 ) * * ( - 3 ) -  X ( 1 2 ) )  

l + D A B S I  X ( l l ) * * ( - 3 ) -  X ( 1 3 ) )  
2 + D A B S ( D S Q R T (  ( X ( 1 ) - X I 1 ) * * 2 +  X ( 2 ) * * 2 ) -  X ( 1 0 )  ) 
3 + D A B S ( D S Q R T ( [  X ( 1 ) - X I 2 ) * * 2 +  X ( 2 ) * * 2 ) -  X ( 1 1 ) )  1 

W R I T E ( 6 9 1 9 1 )  ( X ( I  ),1=194)9X(7),TRUE,MPOIN9ERRoR 
M P R I N = O  

6 0 8  I F  ( D A B S ( T R U F 1 - T R U E ) - D V )  6 0 6 9 6 0 7 , 6 0 7  
606 D V = T R U F I - T R U E  

MPR=MPO I N  
M P O I N  = 9 9 9 8  
GO T O  6 1 2  

C  E S T I M A T E  L O C A L  I N T E G R A T I O N  ERROR FOR F I N A L  P O I N T  
611 E R R O R = O e 2 5 D 0 * ( D A B S (  X ( l O ) * * ( - 3 ) -  X ( 1 2 ) )  

l + D A B S (  X ( l l ) * * ( - 3 ) -  X ( 1 3 ) )  
2 + D A B S ( D S Q R T ( (  X ( 1 ) - X I l I * * 2 +  X ( 2 ) * * 2 ) -  X ( 1 0 ) )  
3 + D A B S ( D S Q R T ( (  X ( 1 ) - X I 2 ) * * 2 +  X ( 2 ) * * 2 ) -  X ( 1 1 ) )  1 

W R I T E ( 6 9 1 9 1 )  ( X ( I  ) , 1 = 1 9 4 1 9 X ( 7 ) , T R U E t M P R  ,ERROR 
C  S T A R T  D I F F E R E N T I A L  C O R R E C T I O N S  

I F ( N 1 e N E . l ) G O  TO 619 
DUMY(l)=DABS(X(IFl))+DABS(X(IF2) 
GO T O  6 2 4  

6 1 9  DUMY ( l ) = O . O D O  
DO 6 2 0  I = l r 4  

6 2 0  DUMY(l)=DUMY(l)+DABS(X(I)-XPI(I))*ZRO(I) 
6 2 4  I F ( J N e N E e 1 ) G O  TO 6 1 8  

I F ( D U M Y l l ) . G T . E P S L l )  GO T O  410 
6 1 8  I F ( N l . E Q . 2 ) G O  T O  6 2 2  

A 2 3 ( 1 , 1 ) = A M A T (  I F 1 1 I S 1 )  
A 2 3 (  1 , 2 ) = A M A T ( I F l 9 I S 2 )  
A 2 3 ( 2 r  l ) = A M A T (  I F 2 9  1.51)  
A 2 3 ( 2 9 2 ) = A M A T ( I F Z , I S 2 )  
A 2 3 ( 1 , 3 ) = - X (  I F 1 1  
A 2 3 ( 2 r 3 ) = - X ( I F 2 )  
C A L L  C O R L Z ( A 2 3 , D X )  
D E V = D A B S ( D X ( l ) ) + D A B S ( D X ( 2 )  
W R I T E ( 6 9 7 0 7 )  ( D X ( I ) , I = 1 1 2 )  
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X P I ( I S l ) = X P I ( I S l ) + D X ( l )  
X P I ( I S Z ) = X P I ( I S Z ) + D X ( 2 1  
GO TO 6 2 3  

6 2 2  C A L L  C O R R ( 4 , A M A T , X P I  9 X 9 D X 9 Z R O )  
W R I T E ( 6 , 7 0 7 ) ( D X ( I  ) , I = 1 , 4 )  
DO 2 2  I = l r 4  

2 2  X P I ( I ) = X P I ( I ) + D X ( I )  
DEV=O .OD0 
DO 7 0 1  I = 1 9 4  

7 0 1  DEV=DEV+ D A B S (  DX ( I ) 1 
6 2 3  W R I T E ( 6 r 7 0 6 )  

C  CHECK I F  P E R I O D I C  O R B I T  FOUND OR I F  D I V E R G E N C E  
I F ( D U M Y ( 1 ) e L T e P R E C I S )  GO TO 7 0 2  
I F ( D E V e L T e D X M 1 N )  GO TO 6 1 3  
IF(DEV.GT.DXMAX) GO TO 6 1 3  
I F ( M D I F C . L T e N D I F C )  GO TO 1 0 0  

6 1 3  W R I T E ( 6 9 7 0 3 )  
GO TO ( 4 1 0 , 1 1 8 ) ~  J N  

7 0 2  DO 2 0 5  1 ~ 1 9 4  
2 0 5  W R I T E ( 6 9 2 0 6 )  ( A M A T ( I , J ) ,  J = l r 4 )  

C  COMPUTE C O E F F I C I E N T S  O F  C H A R A C T E R I S T I C  EQUAT I O N  
C A L L  C A R P O 4 t  AMATr  E C O F I  
W R I T E ( 6 , 1 9 4 )  
W R I T E ( 6 9 1 9 5 )  ( E C O F ( I ) t I = 1 , 5 )  
NNOO=NNO+l 
W R I T E ( 6 9 7 0 4 )  NNOO 

C  RECORD M A C H I N E  T I M E  FOR T H I S  P E R I O D I C  O R B I T  
C A L L  C L O C T (  P A R T I M v T O T T I M )  
W R I T E ( 6 9 7 1 3 ) P A R T I M  
I F ( M N P S e E Q . 0 )  GO TO 17 

C  STORE P E R I O D I C  O R B I T  I N  E X T R A P O L A T I O N  T A B L E  
I F ( N 1 . E Q . l )  GO TO 6 2 6  
IF (NPS.LT.MNPS1 GO TO 6 2 7  
DO 6 2 8  I = 2 p N P S  
T A B L E X ( 1 - l ) = T A B L E X ( I I  
T A B L E I (  I - l ) = T A B L E l (  I )  
T A B L E 2 ( I - l ) = T A B L E Z ( I )  
T A B L E 3 ( 1 - 1 ) = T A B L E 3 ( 1 )  

6 2 8  T A B L E 4 ( 1 - 1 ) = T A B L E 4 ( 1 )  
GO TO 6 2 9  

6 2 7  N P S = N P S + l  
6 2 9  T A B L E X ( N P S ) = X P I  ( I  1 )  

T A B L E l ( N P S ) = X P I  ( 1 )  
T A B L E Z ( N P S ) = X P I  ( 2 )  
T A B L E 3 ( N P S ) = X P I ( 3 )  
T A B L E 4 ( N P S ) = X P I ( 4 )  
GO TO 17 

6 2 6  IF (NPS.LT.MNPS1 GO TO 1 8  
DO 1 9  I = 2 , N P S  
T A B L E I (  I - l ) = T A B L E l (  I) 
T A B L E 2 ( 1 - l ) = T A B L E 2 ( 1 )  

1 9  T A B L E X ( 1 - l ) = T A B L E X ( I )  
GO TO 2 0  

1 8  N P S = N P S + l  
2 0  T A B L E X ( N P S ) = X P I ( I l )  

T A B L E l ( N P S ) = X P I ( I S l )  
T A B L E Z ( N P S ) = X P I ( I S Z )  

C  PUNCH 4 RECAP CARDS FOR P E R I O D I C  O R B I T  
17  PUNCH 9 7 7 , X P I  ( 1 )  ,X ( 1 )  r R M U v N B R (  1 )  9 

1 X P I ( Z ) , X  ( 2 ) r E  , N B R ( 2 1 ,  
2  X P I ( 3 1 , X  ( 3 ) , E C O F ( 2 ) r N B R ( 3 ) ,  
3 X P I ( 4 ) p X  ( 4 ) , E C O F ( 3 )  , N B R ( 4 )  
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410 N N O = N N O + l  
I F ( N N 0 - M N 0 ) 1 0 7 q 1 1 8 , 1 1 8  

C P E R T U R B  T H E  L I S T - P A R A M E T E R  B Y  D E L T A  
1 0 7  X P I  ( I l ) = X P I  ( I l ) + D E L T A  

W R I T E ( 6 , 7 0 6 )  
GO T O  600 

118 I F ( N C O L ) 1 2 r 4 1 ~ 1 2  
41  C A L L  C L O C T ( P A R T I M , T O T T I M )  

W R I T E ( 6 9 3 6 ) T O T T I M  
GO T O  5  
END 

S I B F T G  ERPS. 
S U B R O U T I N E  E R P S V ( X g A g D T 9 I N I T )  

C I N P U T = I N I T , D V , X (  I N I T I A L  V A L U E S )  g A ( F 1 N A L  V A L U E S ) .  
C OUTPUT=X ( F I N A L  V A L U E S  A N D  A (  F I N A L  V A L U E S ) .  
C A Z M A T R I X  W I T H  16 P A R T I A L  D E R I V A T I V E S .  
C D T = I N T E G R A T I O N  S T E P  
C T H E  I N D E P E N D E N T  V A R I A B L E ( T R U E  A N O M A L Y )  I S  N O T  E X P L I C I T L Y  I N  THE 
& E Q U A T I O N S  OF M O T I O N  H E R E  
C S N I T = l  FOR T H E  F I R S T  S T E P  OF T H E  O R B I T  
C I N I T = 2  F O R  THE F O L L O W I N G S  S T E P S  
C I N 4 T = 3  T O  COMPUTE T H E  V A L U E  O F  T H E  POWER S E R I E S  O N L Y  
C WHEN I N I T = l  OR 2  T H E  C O E F F I C I E N T S  A N D  T H E  V A L U E S  O F  T H E  
C POWER S E R I E S  A R E  E V A L U A T E D  
C T H E  13 COMPONENTS O F  X  ARE 
C X ( ~ ) = X I X ( ~ ) = Y ~ X ( ~ ) = X D O T ~ X ( ~ ) = Y D O T T  
C X ( 5 ) . = R , X ( 6 ) = R D O T g X ( 7 ) = T I M E , X ( B )  A N D  X ( 9 )  A R E  NOT U S E D  
C X ( l O ) = R l  9 X ( l l ) = R 2  , X ( 1 2 ) = R 1 * * ( - 3 )  t X ( 1 3 ) = R 2 * * ( - 3 ) .  
C TO S T A R T  AN O R B I T g O N L Y  X ( l ) . . . X ( 7 )  MUST B E  G I V E N q N O T  X ( l O ) . * . X ( 1 3 )  
C A T  E X I T  FROM E A C H  I N T E G R A T I O N  S T E P , X ( l ) . . . X ( 1 3 )  A R E  COMPUTED. 

D O U B L E  P R E C I S I O N  X ~ D T ~ P ~ ~ P ~ , P ~ , P ~ ~ P ~ , P ~ T P ~ , P ~ , P ~ , P ~ O , P ~ ~ , P ~ Z T P ~ ~ T  
l P 1 4 T P 1 5 , ~ l 6 , ~ 1 7 ~ ~ 1 8 , R ~ , U M M , ~ I 1 g ~ I 2 g E ~ P , Q ~ S l ~ S 2 ~ P I ~ F N ~ F Q ~ S O M  
2 P A I P 1 9 7 P 2 0 9 P 2 1 , P 2 2 9 P 2 3 9 P 2 4 , P 2 5 ~ P 2 6 , P 2 7 j P 2 8 7 P 2 9 , P 3 0 q P 3 1 9 P 3 2 9 P 3 3 9 P 3 4  
3 9 P 3 5 g P 3 6 ~ P 3 7 g P 3 8 , P 3 9 , P 4 0 , P 4 1 9  P 4 2 1 P 4 3 , P 4 4 , P 4 5 ~ P 4 6 9 P 4 ? ~ P 4 8 9 P 4 9 , P 5 O  

COMMON R U ~ U M M ~ X I ~ ~ X I ~ ~ E ~ P ~ Q ~ S ~ Y S ~ ~ P I ~ N T ~ N T M ~  
D I M E N S I O N  ~ ( 1 3 ) g ~ 1 ( 2 0 ) ~ P 2 ( 2 0 ) ~ P 3 ( 2 0 ) , P 4 ( 2 0 ) 1 P 5 ( 2 0 ) 9 P 6 ( 2 O ) ~ P 7 ( 2 0 ) ~  
1 P 8 ( 2 0 ) , ~ 9 ~ 2 0 ) ~ ~ 1 0 ( 2 0 ) t P 1 1 ( 2 0 ) ~ P 1 2 ( 2 0 ~ ~ P 1 3 ~ 2 0 ~ ~ P 1 4 ~ 2 0 ~ ~ P l 5 ~ 2 0 ~ ~  
2 P l h ( 2 0 ) , P 1 7 ( 2 0 ) q P 1 8 ( 2 0 )  
3 9 P 1 9 ( 2 0 ) 9 P 2 0 ( 2 0 ) 9 ~ 2 1 ( 2 0 ) 9 ~ 2 2 ( 2 0 ) , ~ 2 3 ( 2 0 ~ 9 P 2 4 ~ 2 0 ~ 7 P 2 5 ~ 2 0 ~ 9 P 2 6 ~ 2 0 ~ 9  
4 P 2 7 ( 2 0 ) t ~ 2 8 ( 2 0 ) ~ ~ 2 9 ( 2 0 ) , ~ 3 0 ( 2 0 ) ~ ( 2 0 ) ~ ~ 3 2 ~ 2 0 ~ ~ ~ 3 3 ~ 2 0 ~ ~ P ~ 4 ~ ~ 0 ~ ~  
5 ~ 3 5 ( 2 0 ) ~ ~ 3 6 ~ 2 0 ) ~ ~ 3 7 ( 2 0 ) ~ 8 ( 2 0 ) 1 P 3 9 ( 2 0 ) g ~ 4 0 ~ 2 O ~ ~ P 4 1 ~ 2 0 ~ ~ P 4 2 ~ 2 0 ~ ~  
6 P 4 3 ( 2 0 ) , ~ 4 4 ( 2 0 ) , ~ 4 5 ( 2 0 )  j ~ 4 6 ( 2 0 ) 1 ~ 4 7 ( 2 0 )  , ~ 4 8 ( 2 0 ) * ~ 4 9 ( 2 0 ) t ~ 5 0 ( 2 0 ) q  
7 A t t 4 9 4 )  

GO T 0 ( 1 9 2 , 3 )  q I N I T  
1 I N I T = 2  

P 1 0 ( 1 ) = D S Q R T (  ( X ( l ) - X I 1 ) * * 2 + X ( 2 ) * * 2 )  
P 1 1 (  l ) = D S Q R T (  ( X ( l ) - X I 2 ) * * 2 + X ( 2 ) * ; ; 2 )  
P 1 2 ( 1 ) = 1 . O D O / P 1 0 ( 1 ) * * 3  
P 1 3 ( 1 ) = 1 . 0 D O / P l l (  1)**3 
GO T O  4 

2 P 1 0 ( 1 ) = X ( 1 0 )  
P 1 1 (  1 1 = X (  11) 
P 1 2 (  1 ) = X ( 1 2 )  
P 1 3 ( 1 ) = X ( 1 3 )  

4 P l ( l ) = X ( l )  
P 2 (  1 ) = X ( 2 )  
P 4 ( 1 ) = X ( 3 P  
P 5 ( 1 ) = X ( 4 P  
P 7 ( 1 ) = X ( 5 )  
P 8 (  1 ) = X ( 6 )  
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P 3 3 { N P l ) = P 3 3 ( N P l ) / F N  
P 3 4 ( N P l ) = P 3 4 ( N P l )  /FN  
P 3 5 ( N P l ) = P l ( N P l )  
P 3 6 ( N P l ) = P l ( N P l )  
P 3 7 ( N P l ) = P Z ( N P l )  
P 3 8 ( N P l ) = P Z ( N P l )  
DO 2 0 1  N P = 2 r N P 1  
NQ=N-NP+2 
P35(NPl)=P35(NPl)-PlO(NP)*P35(NQ) 
P 3 6 ( N P l ) = P 3 6 ( N P l ) - P l l  ( N P ) * P 3 6 ( F : Q )  
P3?(NPl)=P37(NPl)-PlO(NP)*P37(NQ) 

2 0 1  P38(NPl)=P38(NPl)-Pll(NP)*P38(NQ) 
P35(NPl)=P35(NPl)/PlO(l) 
P36(NPIl=P36(NP1)/Pll(l) 
P 3 7 ( N P l ) = P 3 7 ( N P l )  / P 1 0 (  1 )  
P 3 8 ( N P l ) = P 3 8 ( N P l ) / P l l (  1 )  
P 3 9 ( N P l ) = O e O D O  
P40(NPl )=O.ODO 
P 4 1 ( N P l ) = O e O D O  
P42(NPl )=O.ODO 
P 4 3 ( N P l ) = O e O D O  
P44(NPl )=O.ODO 
P45(NPl )=O.ODO 
P46(NPl )=O,ODO 
P 4 7 ( N P l ) = O * O D O  
P48(NPl )=O.ODO 
P49(NPl)=O,ODO 
P5O(NP l )=OeODO 
DO 2 0 2  N P = l , N P l  
NQ=N-NP+2 
P 3 9 ( N P l ) = P 3 9 ( N P 1 ) + 3 ~ 0 D O * P 3 5 (  N P ) * P 3 5 ( N Q )  
P 4 0 ( N P l ) = P 4 0 ( N P l ) + 3 . O D O * P 3 6 ( N P ) * P 3 6 (  NQ) 
P 4 1 ( N P l ) = P 4 1 ( N P 1 ) + 3 . O D O * P 3 7 ( N P ) * P 3 7 ( N Q )  
P42(NP l )=P42(NP1)+3 .ODO*P38(NP) * ;P38(NQ)  
P 4 3 ( N P l ) = P 4 3 ( N P l ) + 3 . O D O * P 3 7 ( N P ) * P 3 5 ( N Q )  

2 0 2  P 4 4 ( N P l ) = P 4 4 ( N P 1 ) + 3 e O D O * P 3 8 ( N P ) ' : P 3 6 ( N Q )  
DO 2 0 3  N P = l r N P l  
NQ=N-NP+2 
P 4 5 ( N P I ) = P 4 5  (NPl)+UMM*P12(NP)*P39(NQ)+RU*Pl3(NP)*P40(NQl 
P 4 6 ( N P l ) = P 4 6  ( N P l ) + U M M * P 1 2 ( N P ) * P 4 3 ( N Q ) + R U ~ ~ P 1 3 ( N P ) * P 4 4 ( N Q l  

2 0 3  P47(NPl)=P47(NPl)+UMM*P12(NP~*P41(NQ)+RU*Pl3(NP)*P42(NQl 
DO 2 0 4  N P = l q N P l  
NQ=N-N P+Z 
P 4 8 ( N P l ) = P 4 8 ( N P l ) + P ? ( N P ) r P 4 5 ( N Q )  / P  
P49(NPl)=P49(NPlf+P?(NP)*P46(NQ)/P 

2 0 4  P 5 0 ( N P l ) = P 5 0 ( N P l ) + P 7 ( N P ) * P 4 ? ( N Q ) / P  
111 CONTINUE 

3  X ( l ) = P l ( N T )  
X ( 2 ) = P 2 ( N T )  
X ( 3 ) = P 4 ( N T )  
X ( 4 ) = P 5 ( N T )  
X ( 5 ) = P 7 ( N T )  
X ( 6 ) = P 8 ( N T )  
X ( ? ) = P 9 ( N T )  
X ( l O ) = P l O ( N T )  
X (  l l ) = P l l ( N T )  
X ( 1 2 ) = P 1 2 ( N T )  
X (  1 3 ) = P 1 3 ( N T )  
A (  11 l ) = P 1 9 ( N T )  
A ( 2 r  l ) = P Z O ( N T )  
A ( 3 q l ) = P 2 1  ( N T )  
A ( 4 t  l ) = P 2 2 ( N T )  
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A ( 1 , 2 ) = P 2 3 ( N T )  
A t 2 9  2 ) = P 2 4 ( N T )  
A ( 3 9 2 ) = P 2 5 ( N T )  
A ( 4 , 2 ) = P 2 6 ( N T )  
A (  1 9 3 ) = P 2 7 ( N T )  
A ( 2 9 3 ) = P 2 8 ( N T )  
A ( 3 9 3 ) = P 2 9 ( N T )  
A ( 4 , 3 ) = P 3 0 ( N T )  
A (  1 , 4 ) = P 3 1 ( N T )  
A ( 2 9 4 ) = P 3 2 ( N T )  
A ( 3 9 4 ) = P 3 3 ( N T )  
A ( 4 9 4 ) = P 3 4 ( N T )  
DO 1 2 0  K = 2 9 N T  
IL=NT-K+ l  
X ( l ) = X ( l ) * D T + P l ( L )  
X ( Z ) = X ( 2 ) * D T + P 2 ( L )  
X ( 3 ) = X ( 3 ) * D T + P 4 ( L )  
X 1 4 ) = X ( 4 ) * D T + P 5 (  L )  
X ( 5 ) = X ( 5 ) * D T + P 7 ( L )  
X ( b ) = X ( 6 ) * D T + P 8 (  L )  
X ( ? ) = X ( 7 ) * D T + P 9 ( L )  
X ( l O ) = X (  l O ) * D T + P l O ( L )  
X ( l l ) = X ( l l ) * D T + P l l ( L )  
X (  1 2 ) = X (  1 2 ) * D T + P 1 2 (  L )  
X ( 1 3 ) = X ( 1 3 ) * D T + P 1 3 ( L )  
A (  1 9 1 ) = A (  l r l ) * D T + P 1 9 ( L )  
A I 2 r l ) = A ( 2 9 1 ) * D T + P 2 0 ( L )  
A ( 3 9 1 ) = A ( 3 , 1 ) * D T + P 2 1 ( L )  
A ( 4 , 1 ) = A ( 4 r l ) * D T + P 2 2 ( L )  
A (  1 9 2 ) = A ( l 9 2 ) * D T + P 2 3 ( L )  
A ( 2 9 2 ) = A ( Z r Z ) * D T + P 2 4 (  L )  
A ( 3 9 2 ) = A ( 3 9 2 ) * D T + P 2 5 (  L )  
A ( 4 , 2 ) = A ( 4 9 2 ) * D T + P 2 6 ( L )  
A (  1 9 3 ) = A (  1 9 3 ) * D T + P 2 7 ( L )  
A ( 2 , 3 ) = A ( 2 , 3 ) * D T + P 2 8 ( L )  
A ( 3 9 3 ) = A ( 3 , 3 ) * D T + P 2 9 ( L )  
A ( 4 9 3 ) = A ( 4 , 3 ) * D T + P 3 0 ( L )  
A ( 1 9 4 ) = A ( 1 9 4 ) * D T + P 3 1 (  L )  
A ( 2 , 4 ) = A ( 2 9 4 ) * D T + P 3 2 ( L )  
A ( 3 , 4 ) = A ( 3 9 4 ) * D T + P 3 3 ( L )  
A ( 4 , 4 ) = A ( 4 , 4 ) * D T + P 3 4 ( L )  

120  C O N T I N U E  
IRETURN 
E N D  

BZBFBG D E R I V .  
S U B R O U T I N E  D E R I V ( X , F )  

C S U B R O U T I N E  D E R I V  W I T H  P U L S A T I N G  C O O R D I N A T E S  
C ( E Q U A T I O N S  O F  M O T I O N  + V A R I A T I O N A L  E Q U A T I O N S )  
C I N P U T  =X = 
C X ( l  THROUGH 4 ) = X 9 Y y X D O T , Y D O T  
C X ( 5  THROUGH 2 0 ) = V A R I A T I O N A L  E Q U A T I O N S  
C X ( 2 1 ) = T I M E  
C X  ( 2 2  = T R U E  ANOMALY 
C F = D E R I V A T I V E S  O F  X  

D O U B L E  P R E C I S I O N  F(22)rC9,ClO,S129S22,YS9V3,X(22)tC1~C2,C3,C49C5,C 
1 6 ~ C 7 7 S 1 ,  S ~ , R I P ~ U M M ~ X I ~ , R U ~  X I 2 , Q 9 D F X X 9 D F X Y , D F Y Y , E  

COMMON R U q U M M 9 X I  1 9 x 1 2 ,  E, P 9 Q 9 S 1 9  S 2  
C l = X ( l ) - X I 1  
C 2 = X ( 1 ) - X I 2  
C 3 = X ( 2 ) * X ( 2 )  
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C 4 = 1 . O D O + E f D C O S ( X ( 2 2 ) )  
R = P / C 4  
S 1 2 = C  l f C l + C 3  
S 2 2 = C 2 * C 2 + C 3  
S l = D S Q R T (  S 1 2 1  
S 2 = D S Q R T  ( S 2 2 )  
C 5 = U M M / S l  
C 6 = R U / S 2  
C  7=1 e O D O / C 4  
V 3 = C 5 / S 1 2 + C 6 / S 2 2  
C 9 = C 5 f C 1  
C  1 0 = C 6 f C 2  
F ( l ) = X ( 3 )  
F ( 2 ) = X ( 4 )  
F(3)=2.ODOfX(4)+C7f(X(l)-C9/S12-C10/S22) 
F ( 4 ) = - 2 . 0 D 0 * X ( 3 ) + C 7 * ( X ( 2 ) - C 5 * X ( 2 ) / S 1 2 - C 6 * X ( 2 ) / S 2 2 )  
D F X X = C 7 f t  1,ODO-V3+3.ODO*( C 9 * C l / S 1 2 /  S 1 2 + C l O f C 2 / S 2 2 / S 2 2 )  1 
D F X Y = 3 . O D O * C 7 * ( X  ( 2 ) * C 9 / S 1 2 / S 1 2 + X (  2 ) ~ ~ c C 1 0 / S 2 2 / S 2 2 )  
D F Y Y = C 7 f (  1.ODO-V3+3.ODOXc( C 3 f  C5/S12/S12+C3*C6/S22/S22 ) 1 
D O  100 1 = 5 , 1 7 r 4  
F ( I ) = X ( I + 2 )  
F ( I + l ) = X  ( I + 3 )  
F (  I+2)=DFXXfX(I)+DFXY*X(I+1)+2.0DO*X( I + 3 )  

100 F(I+3)=DFXYfX(I)+DFYY*X(I+1)-2.0DOfX(I+2) 
F ( 2 1 1 = R * R / Q  
F ( 2 2 ) = l e O D 0  
R E T U R N  
E  NO 

$ I B F T C  D E R I V .  
S U B R O U T I N E  D E R I V ( X 9 F )  

C  S U B R O U T I N E  D E R I V  F O R  P U L S A T I N G  C A R T E S I A N  C O O R D I N A T E S .  
C  I N P U T  = X ( ~ ) = X T Y ~ X D O T ~ Y D O T , T I M E  . 
C O U T P U T = C O R R E S P O N D I N G  D E R I V A T I V E S .  
C  SOME O T H E R  I N P U T  C O N S T A N T S  A R E  I N  COMMON. 

D O U B L E  P R E C I S I O N  R , C ~ ~ R U T X I ~ , Q ~ U M M ,  E , S ~ T X I ~ ~ P T S ~ ~ S ~ ~ ~ C ~ ,  V v 6 3 p S 2 3  
l , C l t C 4 ~ C 5 ~ C 8 9  C 6 t X (  1 0 )  9 F (  1 0 ) y P I  
~ T C H I ~ E C A N T A M ~ C O S E ~ S I N E ~ C O S V T S I N V T R H O ~ ~ R H O ~ ~ C X ~ ~ C X ~ ~ C Y ~ T C Y ~  

COMMON R U P U M M T X I ~ , X I Z T E ~  P ~ Q , S ~ T S ~ ~ P I , N T , N T M ~ ~ C H I , E C A N ~ C O S V , S I N V ~ ~ ~ K  
C l = X ( l ) - X I 1  
C 2 = X (  1 ) - X I 2  
C 3 = X ( 2 ) * X ( 2 )  
C 4 = 1 e O D O + E * D C O S ( X (  6 )  
R = P / C 4  
S l = D S Q R T ( C l f C l + C 3 )  
S 1 3 = S 1 f S 1 f S 1  
S 2 = D S Q R T (  C 2 * C 2 + C 3 )  
S 2 3 = S 2 f S 2 f S 2  
C  5 = U M M f C l / S 1 3 + R U f C 2 / S 2 3  
C 6 = U M M / S 1 3 + R U / S 2 3  
C  7=1.ODO/C4 
C8=1.ODO-C7 
F(l)=X13) 
F ( 2 ) = X ( 4 )  
F ( 3 ) = 2 e O D O * X ( 4 ) + C 7 f ( X (  1 ) - C 5 )  
F ( 4 ) = - 2 . O D O f X ( 3 ) + C 7 f X ( 2 ) * (  1 * 0 D O - C 6 )  
F ( 5 ) = R * R / Q  
F ( 6 ) = 1 . O D O  
R E T U R N  
E N D  
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S B B F T C  D E R I V .  
S U B R O U T I N E  D E R I V ( X , F )  

C S U B R O U T I N E  D E R I V  FOR I N E R T I A L  C A R T E S I A N  C O O R D I N A T E S .  
C I N P U T  = X ( 6 ) = X , Y  9 X D O T 9 Y D O T 9 T I M E , T R U E A N O M A L Y .  
C O U T P U T = C O R R E S P O N D I N G  D E R I V A T I V E S .  
C SOME O T H E R  I N P U T  C O N S T A N T S  A R E  I N  COMMON. 

D O U B L E  P R E C I S I O N  R ~ C ~ , R U , X I ~ ~ Q ~ U M M I E ~ S ~ , X I ~ ~ P ~ S ~ ~ S ~ ~ ~ C ~ ~  V , C 3 9 S 2 3  
l p C l , C 4 9 C 5 y C 8 9  C 6 9 X ( l O ) 9 F ( l O ) r P I  
2 9 C H I  ~ E C A N ~ A M ~ C O S E ~ S I N E , C O S V ~ S I N V ~ R H O l ~ R H O 2 ~ C X l  , C X 2 , C Y l 9 C Y 2  

COMMON R U , U M M ~ X I ~ ~ X I ~ ~ E ~ P ~ Q ~ S ~ ~ S ~ I P I ~ N T ~ N T M ~ , C H I ~ E C A N ~ C O S V ~ S I N V ~ N K  
A M = X ( 5  ) + C H I  
C A L L  KEPLER(AM,E9ECAN,O. lD- l2 ,NK,12)  
S I N E = D S I N ( E C A N )  
GOSE=DCOS ( E C A N  
C O S V = ( - E + C O S E )  
S I N V = ( Q * S I N E )  
C  X I = - R U  *COSV 
lCX2=+UMM*COSV 
C Y  1=-RU * S  I N V  
C Y  2 = + U M M * S I N V  
S l = D S Q R T (  ( X (  l)-CXl)**Z+(X(2)-CYl)**2) 
Sl3=S19 : ' 3  
S Z = D S Q R T (  ( X (  l ) - C X 2 ) * * 2 + I X ( 2 ) - C Y 2 ) * * 2 )  
S Z 3 = S 2 * * 3  
F ( l ) = X ( 3 )  
F ( 2 ) = X ( 4 )  
F  (3)=-UMM*(X(l)-CXl)/Sl3-RU*(X( 1 ) - C X 2 ) / S 2 3  
F(4)=-UMM*(X(2)-CYl)/Sl3-RU*(X(2)-CY2)/S23 
F  1 5 ) = + l r O D 0  
R E T U R N  
E N D  

B I B F I C  K E P L R .  
S U B R O U T I N E  K E P L E R ( A M ~ E ~ E A ~ E P S V N I T , M A X )  

e SOLVES KEPLER EQUATTION 
D O U B L E  P R E C I S I O N  AM9 E q E A 9 E P S t  EMIN,EMAX,SLOPE,DEyEO,FE 
EO=EA 
EM IN=AM-E 
EMAX=AM+E 

C H E R E  W I T H  NEWTON I T E R A T I O N  METHOD 
N I T = O  

3 SLOPE=l .ODO-E*DCOS(.EO) 
I F  (SLOPE.LT.1.D-3)  S L O P E = l - D - 3  
D E = ( E O - E * D S I N ( E O ) - A M ) / S L O P E  
EA=EO-DE 
I F ( E A . L T . E M I N )  E A = E M I N  
I[F ( E A e G T e E M A X )  EA=EMAX 
I F ( D A B S ( D E ) - E P S )  1 , 1 9 2  

2 EO=EA 
P I I T = N I T + l  
1 F ( N I T - M A X ) 3 , 4 , 4  

C H E R E  W I T H  B I S E C T I O N  METHOD ( W H E N  E z 1 . 0 )  
4 N I T = O  
5 E A = . 5 D O * ( E M I N + E M A X )  

F E = E A - E * D S I N ( E A ) - A M  
I F ( F E ) l O l r 1 , 1 0 3  

101 E M I N = E A  
60 TO 104 

103 E M A X = E A  
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104 I F (  ( E M A X - E M I N ) - O e l D - 1 2 )  1 , 1 9 5  
1 RETURN 

END 
N I T = O  

1 RETURN 

B I B F T C  RUKe 
SUBROUTINE R U K ( X , D T ~ N , U I  F 9 D )  

C  RUNGE-KUTTA 4 T H  ORDER, C L A S S I C A L  R U K 0 0 0 3 0  
C  INTEGRATES A  SYSTEM W I T H  N  D I F F E R E N T I A L  EQUATIONS (F IRST-ORDER)  
C  W I T H  N  V A R I A B L E S  X  ? W I T H  I N T E G R A T I O N  STEP DT 
C  U,F9D=TEMPORARY STORAGE(1N  C A L L I N G  L I S T  BECAUSE OF V A R I A B L E  D I M E N S I O N )  
C  1 2  OPERATIONS PER STEP AND PER V A R I A B L E  K U K Q 3 0 4 0  

D I M E N S I O N  X ( N ) 9 U ( N ) r F ( N ) t D ( N )  
C A L L  D E R I V ( X , D )  
DO 101 I = 1 9 N  RUKaO LOO 
O ( I ) = D ( I ) * D T  

101 U ( I  ) = X ( I  ) +0 .5DO*D( I  
C A L L  D E R I V  ( UIF ) 

D o  1 0 2  I = 1 9 N  I<UKOOl40  
F ( I ) = F ( I ) * D T  
D ( I  ) = D ( I  ) + 2 . 0 D O * F ( I )  

1 0 2  U ( I I = X ( I ) + O I ~ D O * F ( I )  
C A L L  D E R I V ( U 9 F )  
DO 1 0 3  I = 1 9 N  R t l K O Q l 8 0  
F ( I ) = F ( I ) * D T  
D(II=D(I)+Z.ODO*F(I) 

1 0 3  U ( I ) = X ( I ) + F ( I )  RUKOQ2OO 
C A L L  D E R I V  (U, F  
DO 1 0 4  I = l t N  R U K 0 0 2 2 3  
F ( I I = F ( I ) * D T  

104 X(I)=X(I)+(D(I)+F(I))/6eODO 
RETURN R W K 0 0 2 4 0  
END R U K 0 0 2 5 0  

$ I B F T C  TRUANO 
SURROUTINE TRUEAN(  T IME ,  V t  R I  

C  COMPUTES THE TRUE ANOMALY V  AND D I S T A N C E  R  
C  I N P U T  = T I M E  

DOUBLE P R E C I S I O N  A M ~ E I E C A N ~ C O S E ~ S I N E ~ R ~ C O S V I  S I N V , V 9 Q v P I  
l ~ T I M E ~ R U t U M M ~ X I l t X I 2 ~ P ~ S 1 9 S 2 q C H I  

COMMON R U ~ U M M 9 X I 1 ~ X I 2 , E ~ P ~ Q ~ S 1 ~ S 2 ~ P I ~ N T , N T M 1 ~ C H I ~ E C A N ~ C O S V 9 S 1 N V ~ ~ l K  
AM=TIME+CHI  
C A L L  KEPLER(AM,E,ECAN,O.lD-lZ,NK,121 
S I N E = D S I N ( E C A N )  
COSE=DCOS (ECAN 
R=l.ODO-E*COSE 
I F ( R - 1 e O D - 1 0 )  4 0 1 ~ 4 0 1 , 4 0 2  

4 0 2  COSV= (-E+COSE /R 
S I N V = ( Q * S I N E ) / R  
GO TO 403 

401 COSV=+l.ODO 
S  INV=+O.ODO 

4 0 3  C A L L  ARC(COSV9SI-NVt V) 
C  ARC=ARC TANGENT S U B R O U T I N E ( 0  TO 3 6 0 )  

RETURN 
END 

JPL 7'ECHNlCAL REPORT 32-1360 



Table 22 (contd) 

S U B R O U T I N E  I N R O T ! X , X R ~ T R U E , R I U I  
C  C O N V E R T S  I N E R T I A L  X  T O  R O T A T I N G  C O O R D I N A T E S  XR 
C  I N P U T = X , T R U E 9 R ? Q  ( X = X , Y q X P R I M E q Y P R I M E )  
C  O U T P U T = X R  = X , Y , X P R I M E ? Y P R I M E  
C  T R U E = T R U E  ANOMALY 
C  R = D I S T A N C E  BETWEEN P R I  M A R 1  E S  
c Q=SQRT ( 1.0-E**~I 

D O U B L E  P R E C I S I O N  X , X R , C O V , Q ? S I V , C l , T R U E 9 R  
D I M E N S I O N  X (  1 0 )  , X R (  1 0 )  
COV=DCOS(  TRUE ) 
S I V = D S I N  ( T R U E )  
C  l = Q / R * * 2  
XR(l)=+X(l)*COV+X(Z)*sIv 
XR(Z)=-X(l)*SIV+X(2)*COV 
X R ( 3 ) = + X R ( Z ) ~ C l + X ( 3 ) * C O V + x ( 4 ) a S I V  
XR(4)=-XR(l)*Cl-X(3)*SIV+X(4)*COV 
X R ( 5 f = X ( 5 )  
X R ( b ) = X ( 6 )  
X R ( 7 ) = X (  7 )  
X R ( 8 1 = X ( 8 )  
X R ( 9 ) = X ( 9 )  
R E T U R N  
E  NO 

$ I B F T C  R O T I N .  
S U R R O U T I N E  R O T I N ( X R , X , T R U E , R q Q )  

C  C O N V E R T S  R O T A T I N G  XR T O  I N E R T I A L  C O O R D I N A T E S  X  
C  I N P U T = X R ? T R U E 9 R , Q  ( X R = X , Y , X P R I M E , Y P R I M E )  
C  O U T P U T = X  = X , Y , X P R I M E ? Y P R I M E  
C  T R U E  = T R U E  ANOMALY 
C  R = D I S T A N C E  BETWEEN P R I  M A R 1  E S  
C  Q = S Q R T ( l . O - E * * Z )  

D O U B L E  P R E C I S I O N  C O V , Q , S I V 9 C Z , C l , X R , X , T R U E , R  
D I M E N S I O N  X R (  1 0 )  , X (  1 0 1  
COV=DCOS(  T R U E  
S I V = D S I N  ( T R U E )  
X (  l ) = X R ( I ) * : C O V - X R ( 2 ) g S I V  
X ( Z ) = X R (  l ) * S I V + X R ( Z ) * C O V  
C l = X R ( 3 ) - X R ( 2 ) * Q / R * * Z  
C  2 = X R ( 4 )  + X R (  1 )  *Q /R**2  
X (  3 =C l * C O V - C 2 : k S I V  
X  ( 4 ) = C  1 * S I V + C 2 * C O V  
X ( 5 ) = X R ( 5 )  
X ( 6 ) = X R ( 6 )  
X ( 7 ) = X R ( 7 )  
X ( 8 ) = X R ( 8 )  
X ( 9 ) = X R ( 9 )  
R E T U R N  
E N D  

$ I B F T C  ROTPL.  
S U B R O U T I N E  R O T P U L (  XR,XP,R , R P ?  Q )  

C  C O N V E R T S  R O T A T I N G  XR TO P U L S A T I N G  X P  C O O R D I N A T E S  
C  I N P U T =  X R 9 R v R P v Q .  
C  O U T P U T = X P  
C  X R = X ? Y , X P R I M E v Y P R I M E  X P = X , Y , X D O T ? Y D O T  
C  R = D I S T A N C E  B E T W E E N  TWO P R I M A R I E S  
C  R P = R P R I M E  
C  Q = S Q R T (  1 . 0 - ~ * * 2 )  

D O U B L E  P R E C I S I O N  Q,XR,XPvR,RP 
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D I M E N S I O N  X R (  10)  , X P (  10)  
X P ( l ) = X R ( l ) / R  
X P ( 2 ) = X R ( 2 ) / R  
X P ( 3 ) = ( R * X R ( 3 ) - R P * X R ( l ) ) / Q  
X P ( 4 ) = ( R * X R ( 4 ) - R P * X R ( Z )  /Q 
X P ( 5 ) = X R ( 5 )  
X P ( 6 ) = X R ( 6 )  
X P ( 7 ) = X R ( 7 )  
X P ( 8 ) = X R ( 8 )  
X P ( 9 ) = X R ( 9 )  
R E T U R N  
E N D  

$ I B F T C  PULRT.  
S U B R O U T I N E  P U L R O T ( X P , X R , R  ,RD, Q )  

C  C O N V E R T S  P U L S A T I N G  X P  T O  R O T A T I N G  XR C O O R D I N A T E S  
C  INPUT=XP,R,RD,Q. 
C  O U T P U T = X R  
C  XP=X,Y q X D O T 9 Y D O T  X R = X q Y  q X P R I M E ,  Y P R I M E  
C  R = D I S T A N C E  B E T W E E N  P R I M A R I E S  
C  RD=RDOT 
C  Q=SQRT ( 1 .0 -E* *2 )  

D O U B L E  P R E C I S I O N  X P , X R q C l q Q q R , R D  
D I M E N S I O N  X P ( 1 0 )  , X R ( 1 0 )  
X R ( l ) = R * X P ( l )  
X R ( Z ) = R * X P ( Z )  
C1=Q/R2J*2  
XR(3)=(RD*XP(l)+R*XP(3I)*Cl 
X R ( 4 f = ( R D * X P ( 2 ) + R * X P ( 4 ) ) * C l  
X R ( 5 ) = X P ( 5 )  
X R ( b ) = X P ( 6 )  
X R ( 7 ) = X P ( 7 )  
X R ( 8 ) = X P ( 8 )  
X R ( 9 ) = X P ( 9 )  
R E T U R N  
E N D  

B I B F T C  M A I N E 3  
C  R E G U L A R I Z E D  R E S T R I C T E D  E L L I P T I C  THREE-BODY P R G 3 L E M  R - B R O U C K E  5 / 6 7  
C I N P = I N T E G E R  I N P U T  VECTOR ( D I M E N S  I O N = Z Z  
C  1= J N =  J O B  NUMBER 
C  l = C O M P U T E  A  L I S T  O F  O R B I T S q W I T H  S E A R C H  F O R  P E R I O D I C  O R B I T S  
C 2 = G E N E R A T E  A  L I S T  O F  P E R I O D I C  O R B I T S  ( B Y  E X T R A P O L A T I O N S )  
C  2 = I N P U T  CODE ( 1  TO 4 )  
C  1 =  I N P U T  W I T H  C A R T E S I A N  B A R Y C E N T R I C  R O T A T  I N G  P U L S A T I N G  
C  2 = I N P U T  W I T H  B I R K H O F F  C O O R D I N A T E S  
C  3 = I N P U T  FOR E J E C T I O N  FROM M 1  ( G I V E  O N L Y  R N P ( 5 )  A N D  R N P ( 1 5 ) )  
C  4 = I N P U T  FOR E J E C T I O N  FROM M2 ( G I V E  O N L Y  R N P ( 5 )  AND R N P ( l . 5 ) )  
C  4 = P R I N T  S T E P  
C  ONE L I N E  W I L L  B E  P R I N T E D  E V E R Y  I N P ( 4 )  I N T E G R A T I O N  S T E P S  
C 7 =NCOL=O WHEN NO R E C A P  C A R D S  A R E  U S E D  F O R  I N I T I A L  C O N D I T I O N S  
C  = 1  OR 2 WHEN R E C A P  C A R D S  U S E D  F O R  I N I T I A L  C O N D I T l O N S  
C  1 = U S E  C O L S  1 TO 2 4  FOR I N I T I A L  C O N D I T I O N S  
C  2 = U S E  C O L S  2 5  TO 4 8  F O R  I N I T I A L  C O N D I T I O N S  
C  8 = M A X = M A X I M U M  NUMBER O F  I T E R A T I O N S  I N  S E A R C H  
C  9=MNO=MAXIMUM NUMBER OF O R B I T S  I N  L I S T  ,WHEN J N = 1  
C  = M A X I M U M  NUMBER O F  P E R I O D I C  ORB I T S  ,WHEN J N = 2  
C  l O = I l = V A R I A B L E  TO B E  I N C R E M E N T E D  I N  L I S T q W H E N  J N = 1  ( 1  TO 8 )  
C = V A R I A B L E  TO B E  P E R T U R B E D  WHEN J N = 2  ( 1  T O  8 )  
C 1 3 = I S 1 =  F I R S T  V A R I A B L E  T O  S E A R C H  ON 
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C 14=I  S 2 =  SECOND V A R I A B L E  T O  S E A R C H  O N  
C 1 5  =O WHEN E  A N D  MU ON R E C A P  C A R D S  A R E  N O T  U S E D  
C =NOT 0 WHEN E  A N D  MU ON R E C A P  C A R D S  A R E  U S E D  
C 1 6 =MCOL=O WHEN N O  I N I T I A L  T A B L E  F O R  E X T R A P O L A T I O N  I S  R E A D  I N  
C = 1  OR 2  WHEN T A B L E  FOR E X T R A P O L A T I O N  I S  R E A D  I N  
C 1 7 = M N P S  = M A X I M U M  NUMBER O F  P O I N T S  U S E D  I N  E X T R A P O L A T  I O N S  
C 1 8 = N T = N U M B E R  O F  TERMS U S E D  I N  POWER S E R I E S  
C 1 9 z M A X I M U M  NUMBER O F  I N T E R S E C T I O N S  W I T H  X - A X I S  ( B U I L T - I N = 2 )  
C 2 0 = M A X I M U M  NUMBER O F  I N T E G R A T I O N  S T E P S  ALLOWED ( B U I L T - I N = 1 0 0 0 )  
C R N P = R E A L  I N P U T  VECTOR ( D I M E N S I O N = 2 2 )  
C 1 ,2 ,3 ,4=X,Y9VXgVY ( N O T  U S E D  FOR C O L L I S I O N  O R B I T S )  
G 5 z E N E R G Y  ( B A R Y C E N T R I C ) ( U S E D  O N L Y  F O R  C O L L I S I O N  O R B I T S )  
C 7 = M A S S - R A T I O  
C 8 = E C C E N T R I C I T Y  
C 9 = E P S I  L O N  FOR M A T R I X  I N V E R S I O N  
C 1 0 = P R E C I S I O N  F O R  F I R S T  V A R I A B L E  T O  S E A R C H  ON 
I: 1 1 = P R E C I S I O N  FOR SECOND V A R I A B L E  T O  S E A R C H  ON 
C 1 2 = F I R S T  I N C R E M E N T  F O R  P A R T I A L  D E R I V A T I V E S  I N  S E A R C H  
C 1 3 = S E C O N D  I N C R E M E N T  FOR P A R T I A L  D E R I V A T I V E S  I N  S E A R C H  
C 1 4 = N U M B E R  OF H A L F  R E V O L U T I O N S  
C 1 5 = C O L L I S I O N  A N G L E  I N  B I R K H O F F  P L A N E ( 1 N  D E G R E E S )  
C 16=0.0 F O R  S T A R T  A T  P E R I A P S I S ,  A N D  1.0 F O R  A P O A P S I S  
G 1 7 = I N C R E M E N T  FOR L I S T  
C 1 8 = I N T E G R A T I O N  S T E P  FOR B I R K H O F  C O O R D I N A T E S  
G 1 9 = N E C E S S A R Y  P R E C I S I O N  T O  S T A R T  S E A R C H  WHEN J N = 1  
C 2 0 = N O M I N A L  I N T E G R A T I O N  S T E P  W I T H  POWER S E R I E S  
C 2 1 = R l M I N  = R 1 - L I  M I T  FOR S W I T C H I N G  O F  V A R I A B L E S  
I: 2 2 = R 2 M I N  = R 2 - L I M I T  F O R  S W I T C H I N G  O F  V A R I A B L E S  

I N T E G E R  I N P (  2 2 )  9NBR ( 4 )  
D O U B L E  P R E C I S I O N  R N P ( ~ ~ ) , X P ( ~ ~ ) , X B ( ~ ~ ) P X P I ( ~ ~ ) ~ X P I R ( ~ ~ ) ~  

l T A B L E l ( 2 0 )  9 T A E L E 2 ( 2 0 )  , T A B L E 3 ( 2 0 )  D U M Y ( 3  P N P 2 0  9 

2 X S ( 2 ) r Y 1 2 ) 9 Y 0 ( 2 ) 9 G ( 2 ) , Y F ( 2 )  
~ ~ U , U M ~ V X I ~ ~ X I ~ ~ E ~ P P S P , R ~ , R ~ ~  P I 9 x o  

COMMON U , U M 1 9 X I l , X I 2 r E , P g S P , R 1 9 R 2 ,  P I 9 N T 9 N T M 1 9 X O  
3 6  FORMAT ( l H 0 9 1 9 H  T H E  T O T A L  T I M E  I S  9 F 1 1 . 3 ,  9 H  SECONDS 

111 F O R M A T ( l H O g 7 H  A L A R M = 9 1 2 )  
3 0 8  F O R R A T (  1 H  9 4 0 2 4 . 1 7 9  1 4 )  
3 1 3  F O R M A T ( 2 5 X 1 4 H N O  C O N V E R G E N C E )  
314 FORMAT(26X13HDETERMINANT=O)  
4 0 0  FORMAT ( 1 H 0 9 2 2 H  P E R I O D I C  O R B I T  F O U N D  1 
977 F O R M A T ( 3 D 2 4 . 1 7 9 1 8 )  
9 7 8  FORMAT ( 1 H O )  
9 8 0  F O R M A T ( 1 H  r 6 ( l P D 2 0 . 1 3 ) )  
9 8 1  F O R M A T (  1 H  9 2 4 1 5 )  
9 8 8  FORMAT ( l H l 9 6 7 H R E G U L A R I Z E D  E L L 1  PT  I C  R E S T R I C T E D  T H R E E  BODY P R O B L E M  - 

L TWO D I M E N S I O N S )  
D A T A ( N E R ( 1 )  9 1 = 1 9 4 ) / 1 9 2 , 3 9 4 /  
DO 6 0 1  I = l r 2 2  
I N P ( I ) = O  

601 R N P (  I )=O.ODO 
C A L L  F P T R P ( O 9 O g O )  
P I = 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3  
Y F (  l )=O.ODO 
YF ( 2 )  =O .OD0 
N A M E L I S T / N A M E S / I N P , R N P  

C B U I L T - I N  V A L U E S  F O R  I N P U T  P A R A M E T E R S  
I N P ( 1 ) = 2  
! [ N P ( 2 ) = 3  
I N P ( 4 ) = 2 0  
I N P ( 7 ) = O  
1 N P ( 8 1 = 5  
I N P ( 9 ) = 3  
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I N P (  1 0 ) = 7  
I N P (  1 3 ) = 5  
I N P (  1 4 ) = 8  
I N P ( 1 5 ) = 0  
I N P ( 1 6 ) = O  
I N P ( 1 7 ) = 6  
I N P (  1 8 ) = 1 2  
I N P (  1 9 ) = 2  
I N P ( 2 0 ) = 1 0 0 0  
RNP( 1)=0.02DO 
RNP(Z)=O.ODO 
RNP(3)=O.ODO 
RNP(4)=6.3DO 
RNP(5)=-0.216DO 
RNP(7)=0 .012155DO 
RNP(8)=+0.670DO 
RNP(9)=0.1D-8 
RNP( 10)=0.1D-8 
RNP( 1 1 ) = O e l D - 8  
R N P ( 1 2 ) = 0 e l D - 6  
R N P ( 1 3 ) = 0 * 1 D - 6  
RNP( 14 )=1aODO 
RNP( 1 5  )=O.ODO 
RNP( 16)=O.ODO 
RNP( 17)=O.O1DO 
RNP( 18)=0.02DO 
RNP( 19 )=Oe lODO 
RNP(20  )=0e02DO 
R N P ( 2 1 ) = O e 0 8 D 0  
RNP(221=0,05DO 

C  START ONE CASE 
1 0 2  READ ( 5  ,NAMES) 

CALL  CLOCK1 
W R I T E ( 6 9 9 8 8 )  
W R I T E ( 6 9 9 8 1 )  ( I N P C I  , I = 1 7 2 0 )  
W R I T E ( 6 y 9 8 0 )  ( R N P ( I ) t I = 1 9 2 2 )  

C  PRELIMINARY CALCULATIONS 
JN = I N P ( l )  
I N = I N P ( 2 )  
NPRIN=INP ( 4 )  
N C O L = I N P ( 7 )  
M A X = I N P ( 8 )  
M N O = I N P ( 9 )  
I 1  = I N P ( 1 0 )  
I S l = I N P (  1 3 )  
I S 2 = I N P (  1 4 )  
MCOL=INP( 1 6 )  
MNPS=INP( 1 7 )  
N T = I N P (  1 8 )  
NTMl=NT-1 
DO 1 0  I = 1 9 2 2  

1 0  X P I ( I ) = R N P ( I )  
IF(NCOL.EQ.0) GO TO 11 

C  READ-IN I N I T I A L  CONDITIONS ON RECAP CARDS 
1 2  R E A D ( ~ ~ ~ ~ ~ ) D U M Y ( ~ ) , D U M Y ( ~ ) ~ D U M Y ( ~ ) , N N N N  

IF(NNN.EQ.99) GO TO 1 0 8  
W R I T E ( 6 9 9 7 8 )  
X P I (  l )=DUMY (NCOL) 
I F ( I N P ( 1 5 ) e N E e O )  X P I ( 7 ) = D U M Y ( 3 )  
R E A D ( 5 9 9 7 7 ) D U M Y ( 1 ) 9 D U M Y ( 2 ) 9 D U M Y ( 3 )  
X P I  (Z)=DUMY(NCOL) 
I F ( I N P ( 1 5 ) . N E . O )  X P I ( 8 ) = D U M Y ( 3 )  
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R E A D ( 5 , 9 7 7 ) D U M Y ( l l r D U M Y ( 2 ) 9 X P I ( 5 )  
X P I  ( 3 ) = D U M Y  ( N C O L )  
R E A D ( 5 9 9 7 7 ) D U M Y l l ) 9 D U M Y ( 2 1  
X P I ( 4 ) = D U M Y ( N C O L )  

11 NIVO=O 
NPS=O 
IF (MCOL.EQ.O)GO TO 600 

C R E A D  I N I T I A L  E X T R A P O L A T I O N  T A B L E  ON R E C A P  C A R D S  
1 3  R E A D ( 5 9 9 7 7 ) D U M Y ( l ) , D U M Y ( 2 ) 9  P N P ( 7 ) y N N N  

I F ( N N N . E Q . 9 9 )  GO TO 2 4  
P I N P ( ~ ) = D U M Y ( M C O L )  
R E A D ( 5 , 9 7 7 ) D U M Y ( l )  , D U M Y ( 2 ) , P N P ( 8 )  
P N P ( Z ) = D U M Y ( M C O L )  
R E A D ( 5 9 9 7 7 ) D U M Y (  1 )  r D U M Y ( 2 1  v P N P ( 5 )  
P N P ( 3 ) = D U M Y ( M C O L )  
R E A D ( 5 , 9 7 7 ) D U M Y ( 1 ) 9 D U M Y ( 2 )  
P N P ( 4 ) = D U M Y ( M C O L I  
I F ( N P S . L T . M N P S )  GO TO 2 1  
D O  2 2  I = 2 9 M N P S  
T A R L E l ( 1 - l ) = T A B L E l ( I )  
T A B L E 2 ( I - l ) = T A B L E 2 ( 1 )  

22  T A B L E 3 1 I - l ) = T A B L E 3 ( 1 )  
GO TO 2 3  

2 1  N P S = N P S + l  
2 3  T A B L E l ( N P S ) = P N P (  1 1 )  

T A B L E Z ( N P S ) = P N P ( I S l )  
T A B L E 3 ( N P S ) = P N P ( I S 2 )  
GO TO 13 

2 4  I F ( N P S . E Q . 0 )  GO TO 600 
XPI(Il)=TABLEl(NPS)+RNP(17) 
DO 2 5  I = 1 9 N P S  

25  W R I T E ( 6 9 3 0 8 )  T A B L E l ( I 1 , T A D L E 2 ( 1 ) 9 T A B L E 3 ( 1 )  
6 0 0  I F ( I N P ( l 7 ) , E Q . O )  GO T O  14 

G E X T R A P O L A T I O N  F O R  F I R S T  G U E S S  O F  NEW P E R I O D I C  O R B I T  
I F  ( N P S - 1 )  1 4 9  1 5 9  16 

1 5  X P I  ( I S l ) = T A B L E Z (  1) 
X P I ' ( I S Z ) = T A B L E 3 (  1) 
GO TO 14 

16 C A L L  I N P O L ( T A B L E l r T A B L E 2 9 X P I  (11) 9 X P I  ( I S 1 1  9 N P S )  
C A L L  I N P O L ( T A B L E 1 9 T A B L E 3 , X P I  ( 1 1 )  9 X P I (  I S 2 1  , N P S )  

C  COMPUTE ONE C O M P L E T E  O R B I T ( B Y  C A L L  O R B I T )  
14 C A L L  O R B I T ( X P I 9 X P  r X B 9  I N P y N P R I N  r I A L A R M )  

I F ( I A L A R M a G T . 0 )  GO T O  110 
MC = o  
GO T O  ( 3 0 0 9 3 0 1 ) t J N  

3 0 0  IF(DABS(XP(2))-RNP(l9))3029302?106 
3 0 2  IF(DABS(XP(3))-RNP(l9))303t3039106 
3 0 3  DO 3 0 5  I = 1 9 9  

3 0 5  X P I R ( 1  ) = X P I  ( I )  
3 0 1  I F ( D A B S ( X P ( 2 1 1 - R N P ( 1 0 ) ) 3 0 6 ~ 3 0 6 ~ 3 0 7  
3 0 6  IF(DABS(XP(3))-RNP(l1))309,309t307 

C B E G I N  S E A R C H  F O R  P E R I O D I C  O R B I T  
3 0 7  X S (  l ) = X P I ( I S l )  

X S ( 2 ) = X P I ( I S 2 )  
M C = l  
N A L = 2  
Y O (  1 ) = X P ( 2 )  
Y 0 ( 2 ) = X P ( 3 )  

100 WRITE(6~308)XPI(IS1)~XPI(IS2)~YO( 1 ) 9 Y 0 ( 2 )  9MC 
101 C A L L  SEARCH(XS,G,YO,Y,YF,RNP( 1 2 )  , R N P (  1 0 )  , 2 , M A X 9 2 9 N A L f M C ? R N P ( 9 ) 9  L L )  

GO TO ( 1 0 6 9 2 ~ 2 9 4 r 5 9 6 ) r N A L  
2 I F ( ( + D A B S ( X P I  ( I S l ) - G ( l )  ) ) .GT . l .ODO)  GO T O  5  
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IF((+DABS(XPI(IS2)-G(2))).GT.l*ODO) GO T O  5 
X P I ( I S l ) = G ( l )  
X P I  ( I S Z ) = G ( 2 )  
C A L L  O R B I T ( X P 1 , X P  9 X B t I N P g O  I A L A R M )  
I F ( I A L A R M . G T . 0 )  GO T O  110 
GO TO ( 1 0 6 , 3 , 7 1 , N A L  

3 IF(DABS(XP(Z)).GT,DABS(YO(l))) GO T O  109 
I F ( D A B S ( X P ( 3 )  1 . G T . D A B S ( Y O (  2 ) )  GO T O  109 
Y O ( l ) = X P ( Z )  
Y 0 ( 2 ) = X P ( 3 )  
GO T O  100 

7 Y ( l ) = X P ( Z )  
Y ( 2 ) = X P ( 3 )  
GO TO 101 

309 WRITE(6t308)XPI~ISl),XPI(IS2) t X P ( 2 ) 1 X P ( 3 )  9MC 
GO TO 401 

4 X P I ( I S l ) = X S (  1) 
X P I ( I S Z ) = X S ( 2 )  

401 W R I T E  (6,400) 
I F ( I N P ( 1 7 ) e E Q . O )  GO T O  8  

C  S T O R E  P E R I O D I C  O R B I T  I N  E X T R A P O L A T I O N  T A B L E  
I F ( N P S . L T . M N P S I  GO T O  1 Q  
DO 19 I = 2 , N P S  
T A B L E l ( 1 - l ) = T A B L E l ( I )  
T A B L E 2 (  I - 1 ) = T A B L E 2 (  I) 

19 T A B L E 3 ( 1 - l ) = T A B L E 3 ( 1 )  
GO TO 2 0  

1 8  N P S = N P S + l  
2 0  T A B L E l ( N P S ) = X P I  ( I  1 )  

T A B L E Z ( N P S ) = X P I ( I S l )  
T A B L E 3 ( N P S ) = X P I ( I S 2 )  

C  PUNCH 4 R E C A P  C A R D S  F O R  P E R I O D I C  O R B I T  
8  P U N C H  977,XPI(l)rXP(l)tXPI(7),NBR(l), 
1 X P I ( ~ ) , X P ( ~ ) , X P I ( ~ ) T N E R ( ~ ) ~  
2  X P I ( ~ ) , X P ( ~ ) T X P I ( ~ ) , N B R ( ~ ) ,  
3 X P I ( 4 ) 9 X P ( 4 )  t X P I ( 1 5 ) , N B R ( 4 )  

310 GO T O  ( 3 1 1 9 1 0 6 ) , J N  
311 DO 3 1 2  1x199 
3 1 2  X P I  (I ) = X P I R ( I )  

GO T O  106 
109 W R I T E ( 6 g 3 0 8 ) X P I  ( I S 1 )  1XPI ( I S 2 1  9 X P ( Z ) g X P ( 3 )  ,MC 

5  W R I T E ( 6 9 3 1 3 )  
GO T O ( 3 1 1 9 1 1 8 ) , J N  

6 W R I T E ( 6 7 3 1 4 )  
GO T 0 ( 3 1 1 , 1 1 8 ) , J N  

110 W R I T E ( 6 r l l l )  I A L A R M  
GO TO ( 1 0 6 , 1 1 8 ) 9 J N  

106 N N O = N N O + l  
I F ( N N 0 - M N 0 )  1 0 7 , 1 1 8 , 1 1 8  

C  P E R T U R B  L I S T  P A R A M E T E R  
107 X P I ( I l ) = X P I ( I l ) + R N P ( l 7 )  

W R I T E ( 6 9 9 7 8 )  
GO T O  600 

1 1 8  I F  ( N C O L )  1 2 1  1 0 8 9 1 2  
1 0 8  C A L L  C L O C T ( P A R T 1 M t T O T T I M )  

W R I T E  ( 6 9 3 6 ) T O T T I M  
GO T O  1 0 2  
E N D  

$ I B F T C  O R B I T .  
S U B R O U T I N E  ORBIT(XI,X9XBpINP,NPRIN,IALARM) 
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C I N P U T = X I = I N I T I A L  C O N D I T I O N S  
r- X I ( 2 2 ) = 2 2  I N P U T  C O N S T A N T S + I N I T I A L  CONDIT IONS. (=RNP)  

C I N P z I N T E G E R  I N P U T  VECTOR ( O N L Y  I N P ( 2 )  I S  USED) .  
C N P R I N  =PRINT-STEP (NO P R I N T I N G  I F  ZERO) ( = I N P U T )  
C I N P (  2 0  ) = 2 0  INTEGER I N P U T  CONSTANTS 
C DUTPUT=X,XB AND I A L A R M  
C X ( 6  )=OUTPUT=F I N A L  P O I N T  OF THE O R B I T ?  I N  CARTES I A N  COORDINATES 
C X B ( 6 ) = O U T P U T = F I N A L  P O I N T  OF THE O R B I T ,  I N  B I R K H O F F  COORDINATES 
C X  AND X B ( 1  TO 7 )  =X9Y,XDOT,YDOT/ENERGY/TRUE ANOMALY/T IME 
G I A L A R M  I S  NON-ZERO I N  CASE OF AN ABNORMAL E N D I N G  OF THE O R B I T  

DOUBLE P R E C I S I O N  A B C , X ~ X B , E ¶ P , U M ~ ~ U , X O ~ S P ~ P I ~ R A D , E P S ~ , X S ~ ~ D S T S F ~ Y S  
~ ~ R ~ ~ R ~ , E P ~ , S ? X B ~ P R T S P R E C , D S S , X I , E N E R , A ( ~ )  , B ( 7 ) 7 C ( 7 )  yYACTyYPREC 
2 ~ X I 1 y X I 2 ~ D V C y X I S ~ E T S , S U M ~ D I F ~ E X ~ X S Y S ~ C C C ~ R l R 2 g T R U E ~ E R R O R  

D I M E N S I O N  X(22),XB(22)9XI122)~INP(20) 
COMMON U ~ U M ~ , X I ~ ~ X I ~ , E ~ P ~ S . P , R ~ T R ~ T P I ~ N T ~ N T M ~ ~ X O  

26  FORMAT(1H  , 5 ( 1 P D Z 1 . 1 3 ) r l P D 9 . 1 )  
603  FORMAT (10X3HMU=9 D24.179 5X4HECCz 9 D 2 4 . 1 7 )  
989 FORMAT(1H  r 6 ( 1 P D 1 4 . 7 ) ~ 2 ( 1 P D 1 8 . 1 1 ) )  

RAD= lBO.DO/P I  
IALARM=O 
MT EM P=O 
INTER=O 
I N = I N P ( 2 )  
MTOTAL=O 
E RROR=O .OD0 
DO 10 I = l r 5  

10 X ( I ) = X I ( I )  
XB(7)=O.ODO 
X (7)=O.ODO 
S=OmODO 
M PRIN=O 
EPS4=1eOD-13  
U = X I  ( 7 )  
UM 1 ~ 1 -  ODO-U 
X I  1=-u 
X I Z = U M l  
XO= m5DO-U 
XS2=0.5DO*XO*XO 
E = X I  ( 8 )  
I F  ( N P R I N . G T e O ) W R I T E ( 6 9 6 0 3 ) U ,  E  
P=l.ODO-E+E 
I F ( P . L E e O e O D 0 )  GO TO 1 2  
S P=DSQRT ( P )  
D S = X I  ( 1 8 )  
S F = P I * ( X I  ( 1 4 ) + X I  ( 1 6 )  

C CONVERT I N I T I A L  C O N D I T I O N S  
GO TO ( l , l r 3 , 4 ) , I N  

P Y S = X [ 2 ) * X ( 2 )  
R l = D S Q R T (  ( X (  1 ) + U ) * * 2 + Y S )  
R2=DSQRT((X(l)-l.ODO+U)**Z+YS) 
X b 6 ) = X 1 ( 1 6 ) * P I  
E P l = l . O D O / (  l e O D O + E * D C O S ( X ( 6 )  ) ) 

E N E R = . ~ D O + ( X ( ~ ) * * Z + X ( ~ ) * * Z ) - E P ~ * ( . ~ D O * ( X (  l)*X(l)+YS)+UMl/Rl+U/R2) 
C C H E C K  I N  WHICH R E G I O N  I N T E G R A T I O N  HAS TO START 

IF(R1.GTeXI(2l).AND.R2.GT.XI(22) GO TO 2 8  
I F  (NPRIN.GT.0) 

* W R I T E ( 6 , 9 8 9 ) X ( l ) , X ( 2 ) 1 X ( 3 ) , X ( 4 ) t X ( 6 )  9 X B ( 7 )  YENERYENER 
X [ 5 ) = E N E R + X S 2 * E P l  

C CONVERT TO B I R K H O F F  COORDINATES 
X (  1 ) = X (  1 ) - x o  
C A L L  C A R B R ( X 9 X B )  
YACT=X ( 2 )  
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GO TO 1 7  
2 8  T R U E = X ( 6 )  

X ( 5 ) = P * E P 1  
X ( 6 ) = E * D S I N ( X  ( 6 )  ) * X (  5 ) * * 2 / P  
I N I T = l  
I F  ( N P R I N e G T . 0  

* W R I T E ( 6 9 2 6 )  ( X ( 1  ) , 1 = 1 9 4 ) , E N E R t E R R O R  
GO TO 1 8  

3 X B ( l ) = - 1 . O D O  
X B ( 2 ) = O o O D O  
X B ( 6 ) = X I ( 1 6 ) * P I  
E P l = l * O D O / [  l.ODO+E*DCOS( X B (  6 )  1 )  
XB(3)=DSQRT(2~ODO*UMl*EPl)*DCOS( X I (  1 5 ) / R A D )  
X B ( 4 ) = D S Q R T ( 2 . O D O * U M l * E P l ) * D S I N (  X I ( 1 5 ) / R A D )  
X B ( 5 ) = X  ( 5 ) + X S 2 * E P 1  
R l = O  .OD0 
R 2 = 1 e O D O  
GO TO 5  

4 X B (  l ) = l . O D O  
X B ( 2 ) = O e O D O  
X B ( 6 ) = X I ( 1 6 ) * P I  
E P l = l . O D O / (  l .O+E*DCOS( X B O )  ) 1 
XB(3 )=DSQRT(2 .0DO*U*EP l ) *DCOS(  X 1 ( 1 5 ) / R A D )  
XB(4 )=DSQRT(2 .0DO*U*EP l ) *DS IN(  X I (  1 5 )  /RADP 
X B ( 5 ) = X  ( 5 ) + X S 2 * E P 1  
R l = l e O D O  
R 2 = 0 1 0 D O  

5  S=OeODO 
YACT=O.ODO 
I F ( N P R I N e G T . 0 )  GO TO 9 

C  CHECK I F  A  CHANGE OF R E G I O N  I S  NECESSARY 
8 IF(R1.LT.XI(21).0R.R2~LTeXI(22) 1 GO TO 17 

C A L L  B I R C R ( X B , X )  
X ( l ) = X ( l ) + X O  
TRUE=XB ( 6  1 
X ( 5 ) = P / ( l * O D O + E * D C O S ( X B ( 6 1 ) ) 1  
X ( 6 ) = E * D S I N ( X B ( 6 )  ) * X ( 5 1 * * 2 / P  
X (  7 ) = X B (  7 )  
I N I T = l  
GO TO 18 

C  I N T E G R A T I O N  W I T H  B I R K H O F F  COORDINATES 
1 7  X B 6 P R = X B ( 6 )  

Y  PREC=YACT 
SPREC=S 
C A L L  R U K ( X B I D S ~ ~ ~ A ~ B , C )  
S=S+DS 
M T O T A L = M T O T A L + l  
Y A C T = X B ( 2 ) * ( X B (  1 ) * * 2 + X B ( 2 ) * * 2 - 1 . O D O )  
IF(YPREC*YACT.LT.O.ODO) I N T E R = I N T E R + l  
I F ( I N T E R e G E e I N P ( l 9 l l  GO TO 3 0  
I F ( M T O T A L e G E . I N P ( 2 0 ) )  GO TO 3 0  
ABC=XB(  l ) * * 2 + X B (  2 )  * * 2  
I F ( A B C e L T . 0 . 0 0 1 D O )  GO TO 1 3  
I F  (ABCeGT.  1 0 0 0 o D O )  GO TO 14 
I F ( X B ( 5 ) . G T e 5 0 e D O )  GO TO 1 5  
I F ( X B ( 6 ) - S F ) 6 , 1 3 4 , 1 3 4  

C  I N T E G R A T I O N  OF END OF O R B I T  I N  B I R K H O F F  COORDINATES 
1 3 4  D S S = ( S P R E C - S ) * ( X B (  6 ) - S F )  / (  X B ( 6 ) - X B 6 P R )  

X B 6 P R = X B ( 6 )  
SPREC=S 
C A L L  RUK ( X B * D S S ~ ~ ~ A P B I C )  
S=S+DSS 
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MTEMP=MTEMP+l 
IF (MTEMP.GT.15)  GO TO 1 6  
ABC=XB(  1 ) * * 2 + X B (  2 ) * * 2  
I F ( A B C o L T . O e 0 0 1 D O )  GO TO 13  
I F  ( ABC *GT. 1000. DO GO TO 14 
I F ( X B ( 5 ) - G T . 5 O . D O )  GO TO 1 5  
I F ( D A B S ( D S S ) - E P S 4  1 7 9 7 , 1 4 2  

1 4 2  IF(DABS(XB(6)-SF)-EPS4)7,79134 
C CONVERT TO C A R T E S I A N  COORDINATES 

7 C A L L  B I R C R ( X B 9 X )  
X ( l ) = X ( l ) + X O  
EPl=l.OD0/(1~ODO+E*DCOS(X(6) ) 1 
Y S = X ( 2 ) * X ( 2 )  
Rl=DSQRT((X(l)+U)**2+YS) 
R2=DSQRT(  ( X (  l ) - l o O D O + U ) * * 2 + Y S )  
E N E R = . ~ D O * ( X ( ~ ) * * ~ + X ( ~ ) * * ~ ) - E P ~ * ( . ~ D O ~ ( X ( ~ ) * X ( ~ ) + Y S ) + U M ~ / R ~ + U / R ~ )  
X ( 5 ) = X ( 5 ) - X S Z * E P l  
I F ( N P R I N . E Q . 0 )  GO TO 11 
W R I T E ( ~ , ~ ~ ~ ) X ( ~ ) ~ X ( ~ ) ~ X ( ~ ) , X ( ~ ) , X ( ~ ) T X B ( ~ )  9 X ( 5 ) 9 E N E R  
GO TO 11 

4 I F ( N P R I N . E Q . 0 )  GO TO 8 
M P R I N = M P R I N + l  
I F ( M P R 1 N - N P R I N ) B r 9 7 9  

9 C A L L  B I R C R ( X B 9 X )  
X ( l ) = X ( l ) + X O  
E P 1 = 1 . O D O / ( 1 . O O O + E * D C O S ( X ( 6 )  1 )  
Y S = X l Z ) * X ( 2 )  
Rl=DSQRT((X(l)+U)**2+YS) 
R 2 = D S Q R T (  ( X (  1 ) - l o O D O + U ) * * Z + Y S )  
ENER=.5DO*(X(3)**2+X(4)**2)-EP1*(.5DO*(X(l)*X(l)+YS)+UMl/Rl+U/R2) 
X  ( 5  ) = X ( 5 ) - X S 2 * E P l  
w R I T E ( ~ ~ ~ ~ ~ ) X ( ~ ) , X ( ~ ) , X ( ~ )  A 4 1  1 X ( 6 ) , X B ( 7 ) g X ( 5 ) , E N E R  
MPRIN=O 
GO TO 8 

C CHECK I F  A  CHANGE OF R E G I O N  I S  NECESSARY 
19 IF(R1.GTeXI(21).AND.R2.GT.XI(22)) GO TO 1 8  

Y S = X ( ~ ) * X ( Z )  
R l = D S Q R T (  ( X (  l ) + U ) * * Z + Y S )  
R2=DSQRT((X(l)-UMl)**Z+YS) 
X B ( 7 ) = X ( 7 )  
X  ( 6  )=TRUE 
E P l = l . O D O / (  l .ODO+E*DCOS(X( 6 )  ) 
X ( ~ ) = . ~ D O * ( X (  3 ) * * 2 + X ( 4 ) * * 2 ) - E P 1 * ( - 5 D O * j  X (  l)*X(l)+YS)+UMl/Rl+U/R2) 
X ( 5 ) = X ( 5 ) + X S 2 * E P l  
X ( l ) = X ( l ) - x o  
C A L L  C A R B R ( X , X B )  
S=O .OD0 
YACT=X ( 2 )  
GO TO 17 

C I N T E G R A T I O N  W I T H  POWER S E R I E S  
18 D V C = X I  ( 2 0 )  

YPREC=X ( 2  
R  1R2=R l * R Z  
I F ( R l R 2 - 2 * O D 0 ) 2 0 , 2 0 9 2 1  

20  D V C = R l R Z * X I  ( 2 0 )  
2 1  . I F ( D A B S ( S F - T R U E ) - D V C ) 2 2 9 2 3 * 2 3  
2 2  DVC=SF-TRUE 

M T O T A L = 9 9 9 9  
2 3  C A L L  E R P S ( X 7 D V C 9 I N I T )  

YACT=X ( 2  
M T O T A L = M T O T A L + l  
TRUE=TRUE+DVC 
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R l = X (  1 0 )  
R 2 = X ( l l )  
I F ( N P R I N . E Q . 0 )  GO TO 2 4  
M P R I N = M P R I N + l  
I F  ( M P R I N - N P R I N )  2 4 9  2 5 7 2 5  

2 5  M P R I N = O  
E R R O R = 0 . 2 5 D O * ( D A B S ( X ( 1 0 ) * * ( - 3 ) - X (  1 2 )  ) 

l+DABS(X(11)**(-3)-X(13)) 
2 + D A B S ( D S Q R T (  (X(l)-XI1)**2+X(2)**2I-X( 1 0 )  1 
3 + D A B S ( D S Q R T ( ( X (  l)-XI2)**2+X(2)**2)-X(ll) 1 )  
WRITE(6926)(X(I),I=1?4)9X(7)9ERROR 

24 I F ( X ( Z ) * Y P R E C . L T e O e O D O )  I N T E R = I N T E R + l  
I F ( I N T E R . G E . I N P ( l 9 ) )  GO TO 3 0  
I F  (MTOTALeGT.  I N P ( 2 0 ) .  ANDeMTOTAL. L T . 9 9 9 9 )  GO T O  3 0  
I F ( M T 0 T A L - 9 9 9 9 ) 1 9 9 2 7 9 2 7  

2 7  I F ( N P R I N e E Q . 0 )  GO TO 2 9  
ERROR=O.Z5DO*(DABS(X(  10) ta ( -3 ) -X(  1 2 )  ) 
l+DABS(X(11)**(-3)-X(13)) 
2 + D A B S ( D S Q R T (  ( X (  l ) - X I l ) * * Z + X ( 2 ) * * 2 ) - X (  10) 1 
3 + D A B S ( D S Q R T (  ( X (  l ) - X I 2 ) * * 2 + X (  2 ) * * 2 ) - X (  1 1 )  1 )  

W R I T E ( 6 9 2 6 ) ( X ( 1 ) 7 1 = 1 9 4 ) q X ( 7 ) 9 E R R O R  
2 9  X ( l ) = X ( l ) - X O  

C A L L  C A R B R ( X , X B )  
X ( l ) = X ( l ) + X O  
GO TO 11 

1 2  I A L A R M = l  
GO TO 11 

13 I A L A R M = 2  
GO TO 11 

14 I A L A R M = 3  
GO TO 11 

1 5  I A L A R M = 4  
GO TO 11 

1 6  I A L A R M = 5  
GO TO 11 

30 I A L A R M = 6  
11 RETURN 

END 

d I B F T C  D E R I V .  
C  S U B R O U T I N E  D E R I V  FOR B I R C K O F F  C O O R D I N A T E S  

S U B R O U T I N E  D E R I V ( X 9 F )  
C  I N P U T = X ( 7 ) = X I 9 E T A , X I D O T ? E T A D O T 9 E N E R G Y 9 T R U E A N O M A L Y 9 T I M E  
C  OUTPUT=F ( i ' )=CORRE+SPONDI NG D E R I V A T I V E S  

DOUBLE P R E C I S I O N  E9P,AM19AM29XD,SP9X,F ,  X I S T E T S I S ~ D ~ E X ~ X S V S ~ G ~ R E .  
~ ~ R ~ ~ R R ~ A J ~ S S ~ D J D X I ~ D J D E T ~ O X D X I ~ D X D E T T D X ~ D X ~ D X ~ D E ~ D R ~ ~ X ~ D R ~ ~ E ~ ~ ~ ~ ~ R  
~ ~ D E ~ D R ~ D X ~ D R ~ D E ? E C V , E P ~ T R R V ~ R ~ C ~ ~ A ~ B ~ D J V D X ~ D J V D E T E N E R ~ D R ~ D X  
Z , X I  1 , X I 2 ? P 1  

D I M E N S I O N  X ( 7 )  ? F ( 7 )  
COMMON A M 2 , A M l , X I l , X 1 2 9  E9 P , S P ~ R ~ T R ~ ~ P I , N T ~ N T M ~ ? X C ~  
X I S = X (  l ) * X ( l )  
E T S = X ( 2 ) * X ( 2 )  
S=X I S+ETS 
D=X I S-ETS 
E X = X (  1) /4.0DO*(  l .ODO+l .ODO/S) 
XSYS=(S+ l -ODO/S+2.ODO*D/S)  /16.0DO 
C=4.0DO*DSQRT( S )  
R l = ( S + l o O D 0 + 2 . O D O * X ( 1 )  ) / C  
R2=(S+ loODO-2 .ODO*X(  1) / C  
RR=R 1 * R 2  
A J = R R / S  
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SS=S*S 
C=4*ODO*S*SS 
D J D X I = X (  l ) * ( Z . O D O * D - S - l . O D O ) / C  
DJDET=X(2)* (2 .0DO*D+S- l .ODO)/C 
D X D X I = (  1.ODO-D/SS) /4.ODO 
DXDET=-X( l ) * X ( Z )  / (Z.DO*SS) 
C=8eODO*SS 
D X Z D X = X ( l ) / C * ( S S + 4 . 0 D O * E T S - l . O D O )  
D X Z D E = X ( Z ) / C * (  SS-4.0DO*XIS-1.ODO) 
D R 1 2 X = X (  1 )  / C * (  SS-4.0DO*ETS-l.ODO) 
D R l Z E = X ( Z )  / C * (  S S + 4 ~ 0 D O * X I S - l . O D O )  
C=4.0DO*DSQRT(SS*S)  
S 1 = S - l e O D O  
D R 1 D X = (  S 1 * X (  l )+Z .ODO*ETS) . /C  
D R l D E = ( S l - 2 . 0 D O * X ( l )  ) * X (  2 ) / C  
DRZDX=(Sl*X(l)-Z.ODO*ETS)/C 
DRZDE=(S l+Z.ODO*X(  1 )  ) * X (  2 ) / C  
E C V = E * D C O S ( X ( 6 )  
C = l e O D O + E C V  
E P l = l . O D O / C  
R=P/C 
C2=.5DO*XSY S+XO*EX 
RRV=AMl*RZ+AMZ*R l+RR*CZ 
A=-Z.ODO*E P l / S S  
B =  E P 1 / S  
DJVDX=A*X ( 1 l *RRV+B*  ( A M l * D R 2 D X + A M Z + D R l D X + C Z * D R l Z X + R R *  ( .5DO*DXZDX+XO 

1 * D X D X I  1 )  
DJVDE=A*X~2)*RRV+B*(AM1*DR2DE+AMZ*DRlDE+CZ*DR1ZE+RR*~~5DO*DXZDE+XO 

l * D X D E T  1 )  
F l [ l ) = X ( 3 )  
F [ 2 ) = X ( 4 )  
F 63)=2.ODO*AJ*X ( 4 )  + D J V D X + X (  5 ) t D J D X I  
F ( 4 ) ~ - Z . O D O * A J * X (  3 ) + D J V D E + X (  5 ) * D J D E T  
F(5)=-RRV*E*DSIN(X(6))/(S*C*Cj 
F (6 ) = A J  
F ( 7 ) = R R * R * R / ( S * S P )  
RETURN 
END 

$IBFTC CARBR. 
S U B R O U T I N E  CARBR ( X C 9  X B )  

C CONVERTS C A R T E S I A N  COORDINATES TO B I R K H O F F  
C INPUT = C A R T E S I A N  M E D I A N Z X  =X,Y,XDOT9YDOT. 
C  OUTPUT= B I R K H O F F  = X B = X I 9 E T A 9 X I D O T 9 E T A D O T .  

DOIJBLE P R E C I S I O N  XC,XB9A, B9U9 V 9 X I S 9 E T S r S , D , S S , D X D X I  ,DYDET,DXDET,DY 
l D X l  

D I M E N S I O N  X C ( 6 ) r X B ( 6 )  
A = X C ( l ) * X C (  l ) - X C ( 2 ) * X C ( 2 ) - . 2 5 D O  
B = Z . O D O * X C ( l ) + X C ( Z )  
C A L L  COMSQR(A,B9U,V) 
X B ( l ) = ( X C ( l ) + U ) * Z . D O  
X B ( Z 1 = 1 X C ( Z ) + V ) * Z . D O  
X I S = X B (  l ) * X B (  1 )  
E T S = X B ( Z ) * X B ( Z )  
S = X I  S+ETS 
D = X I S - E T S  
SS=S*S 
D X D X I = (  l * O D O - D / S S ) * . 2 5 D O  
D Y D E T = D X D X I  
D X D E T = - ( X B (  l ) * X B (  2 )  1/(2.DOsSS) 
DYDXI=-DXDET 
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X B ( 3 ) = D Y D E T * X C (  3 ) - D X D E T * X C ( 4 )  
XB ( 4 ) ~ - D Y D X I * X C ( 3 ) + D X D X I s X C ( 4 )  
X B ( 5 ) = X C ( 5 )  
X B ( 6 ) = X C ( 6 )  
RETURN 
END 

$ I B F T C  B I R C R o  
S U B R O U T I N E  B I R C R ( X B , X C )  

C CONVERTS B I R K H O F F  COORDINATES TO CARTES I A N  FOR OUTPUT 
C I N P U T = B I R K H O F F = X B = X I  t ETA9 X I  DOT 9 ETADOT . 
C OUTPUT = C A R T E S I A N = X  = X,Y, XDOT? YDOT(=CARTES I A N  M E D I A N )  

DOUBLE P R E C I S I O N  X B I X C ? X I S ~ E T S I S ~ S S , D I C , R ~ ~ R ~ , A J ~ D X D X I ~ D Y D E T * D X D E T  
1 9 D Y D X I  

D I M E N S I O N  X B ( 6 ) r X C ( 6 )  
X I S = X B (  1 ) * X B (  1 )  
E T S = X B (  2 ) * X B ( 2 )  
S=) ( IS+ETS 
SS=S*S 
D = X I S - E T S  
C=e25DO/S**.5DO 
Rl=C*(S+ l .OD0+2.0DO*XB(  1 )  
R ~ = C * ( S + ~ O O D O - ~ . O D O * X B (  1) 
A J=R l * R 2 / S  
DXDXI= .25DO*(  1.ODO-D/SS) 
D Y O E T = D X D X I  
D X D E T = - X B ( l ) * X B ( 2 )  / ( 2 . 0 D O s S S )  
DYDXI=-DXDET 
XC ( l ) = X B (  I ) * (  l * O D O + l . O D O / S ) * . 2 5 D 0  
XC ( 2 ) = X B (  2 ) * (  l . O D O - l . O D O / S ) * ~ 2 5 D O  
XC ( 3 ) = ( D X D X I * X B ( 3 ) + D X D E T * X B ( 4 )  1 / A J  
XC ( 4 ) = 1 D Y D X I * X B ( 3 ) + D Y D E T * X B ( 4 )  / A J  
X C ( 5 1 = X B ( 5 )  
X C ( 6 ) = X B ( 6 )  
RETURN 
E NO 

S I B F T C  COMSQ. 
S U B R O U T I N E  COMSQR ( A A v B B r A r B )  

COMPUTES SQUARE ROOT(  A9 0 )  OF COMLEX NUMBER( A A v B B )  
DOUBLE P R E C I S I O N  TEMPO9 AA9 BB, A 7 B  
TEMPO=DSQRT(AA**2+BB**2)  
I F ( T E M P O e L T o D A B S ( A A ) )  TEMPO=DABS(AA)  
A = D S Q R T ( o 5 D O * ( A A + T E M P O )  
I F  ( B B )  1 0 9 2 0 q 2 0  

10 B=-DSQRT(Oe5DO+( -AA+TEMPO))  
GO TO 3 0  

2 0  B=DSQRT(eSDO*( -AA+TEMPO))  
30 RETURN 

END 

d I B F T C  SEARC. 
S U B R O U T I N E  S E A R C H ( X ~ G ~ Y O ~ Y I Y F , D E L ~ E P S ~ N ~ M P N P ~ N A L ~ M C ? E P ~ L )  

C X C O N T A I N S  THE I N I T I A L  VALUES OF THE N UNKNOWNS ( I N P U T )  
C AND T H E I R  COMPUTED V A L U E  ( O U T P U T )  
C G I S  AN ARRAY WHERE SEARCH STORES THE VALUES OF X FOR 
C C O M P U T A T I O N  OF N O M I N A L  AND V A R I E D  S O L U T I O N ,  W I T H  N A L = 2  ( G = O U I P U T B  
C Y O (  I N P U T ) = N O M I N A L  S O L U T I O N  ( F I N A L  V A L U E S )  
C Y=ARRAY WHERE THE M A I N  PROGRAM HAS TO STORE T H E  V A R I E D  
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C F I N A L  V A L U E S ?  WHEh N A L = 3  ( I N P U T )  
C Y F = ( I N P U T )  D E S I R E D  F I N A L  VALUES OF Y  
C DEL=ARRAY W I T H  PERTURBATIONS FOR X (  I N P U T )  
C EPS=ARRAY W I T H  ACCURACY PARAMETERS FOR X ( N P = l )  
C OR FOR Y  ( N P = 2 )  ( I N P U T )  
C N=NUMHER OF V A R I A B L E S  ( I N P U T )  
C M=MAXIMUM NUMBER OF I T E R A T I O N S  ( I N P U T )  
C NAL= l .FOR I N I T I A L  START 
C 2 . ( S E T = 2  BY SUBROUTINE SEARCH)=NOMINAL  VALUES YO HAVE TO BE 
C COMPUTED W I T H  X. THEN SEARCH HAS TO BE CALLED AGAIN.  
C 3. ( S E T = 3  BY SUBROUTINE SEARCH)=VARIED VALUES Y  HAVE TO BE 
C COMPUTED W I T H  THE V A R I E D  VALUES G  OF X. 
C THEN C A L L  SEARCH AGAIN.  
C 4.END OF SEARCH-CONVERGENCE I N  LESS THAN M I T E R A T I O N S  
C 5.END OF SEARCH. NO COIJVERGENCE 
C. 6.END OF SEARCH. DETERMINANT WAS ZERO I N  M A T R I X  I N V E R S I O N  
C MC=ACTUAL NUMBER OF I T E R A T I O N S  ( O U T P U T )  
C E P = E P S I L O N  FOR M A T R I X  I N V E R S I O N  ( I N P U T )  
C AZMATRIX  ( N y N 1 )  OF P A R T I A L S  (OUTPUT)  ( N l = N + l )  
C L = I N D E X  OF COLUMN OF P A R T I A L  D E R I V A T I V E S ( 0 U T P U T )  

DOOBLE P R E C I S I O N  X 9 G , Y O 1 Y , Y F 9 D E L y E P S 7 E P 9 A , D E T E R  
D I M E N S I O N  X ( 2 ) 9 G ( 2 1 , Y 0 ( 2 ) 9 Y ( 2 ) , Y F ( 2 )  9 D E L ( 2 ) , E P S ( 2 ) 9 A ( 2 , 3 )  
GO TO ( 1 9 2 , 3 ) ? N A L  

1 MC=1 
1 0 0  N A L = 2  

DO 1 2 6  I = 1 9 N  
1 2 6  G ( I ) = X ( I )  

GO TO 999 
2  DO 111 I = l , N  

111 A ( I q N + l ) = Y F ( l l - Y O ( 1 )  
I F ( N P - 2 )  1 1 6 9  1 1 3 , 1 1 6  

1 1 3  DO 114 I = l r N  
I F ( D A B S (  A (  I y N + l )  1 -EPS(  I )  1 1 1 4 , 1 1 6 9  116 

114 CONTINUE 
N A L = 4  
GO TO 9 9 9  

1 1 6  L = l  
300 DO 1 1 8  J = l , N  
1 1 8  G ( J ) = X ( J )  

G ( L ) = X ( L ) + D E L ( L )  
N A L = 3  
GO TO 9 9 9  

3  DO 117 K = l , N  
1 1 7  A(K,L)=(Y(K)-YO(K))/DEL(L) 

L = L + 1  
I F ( L - N )  3 0 0 9 3 0 0 , 3 0 1  

3 0 1  C A L L  SOLVEZ t  A ~ E P I D E T E R )  
I F ( D E T E R ) 1 2 5 , 1 2 4 ~ 1 2 5  

1 2 5  DO 1 1 9  I = l r N  
1 1 9  X ( I ) = X ( I ) + A ( I , N + l )  

I F ( N P - 1 1 1 2 0 r  1 2 1 9 1 2 0  
1 2 1  DO 1 2 2  I = l r N  

IF(DABS(A(I,N+l))-EPS(I))1229120~120 
1 2 2  CONTINUE 

N A L = 4  
GO TO 999 

1 2 0  MC=MC+l 
I F ( M C - M ) 1 0 0 ~ 1 0 0 ~ 1 2 3  

1 2 3  N A L = 5  
GO TO 9 9 9  

1 2 4  N A L = 6  
9 9 9  RETURN 
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Table 22 (contd) 
1 

END 

$ I B F T C  SOLV2. 
SUBROUTINE S O L V E 2 ( A ,  EPIDETER) 

C  I N P U T = A y E P  
C  A = G I V E N  2 * 3  M A T R I X  
C  E P  = P R E C I S I O N  FOR ZERO-DETERMINANT 
C  OUTPUT=DETER AND A 
C  DETER=DETERMINANT 
C  ( T H E  L A S T  COLUMN I S  THE S O L U T I O N  OF THE SYSTEM) 

DOIIBLE P R E C I S I O N  A 9 E P t D E T E R t  B  
D I M E N S I O N  A (  27 3 ) 1  B ( 2 9 3 )  

9 0 0  FORMAT( 1 0 X t 3 D 1 6 . 8 )  
W R I T E ( 6 7 9 0 0 )  ( A ( l r K ) t K = l t  3 )  
W R I T E ( 6 9 9 0 0 ) ( A ( 2 9 K f , K = l r 3 )  
OETER=A(  1 9  l ) * A ( 2 , 2 ) - A (  172)9 ;A(2 ,1 )  
I F  ( D A B S ( D E T E R 1 - E P )  1 0 0 9  1 0 1 9  1 0 1  

1 0 1  B (  1 7  1 ) = + A ( 2 1 2 )  /DETER 
B (  1 9 2 1 = - A (  l t 2 ) / D E T E R  
B ( Z t l ) = - A ( 2 9  l ) / D E T E R  
B ( 2 , 2 1 = + A (  l r l ) / D E T E R  
B ( 1 9 3 ) = + R ( l t l ) * A (  l t 3 ) + B ( 1 , 2 ) * A ( 2 , 3 )  
B ( 2 , 3 ) = + B ( 2 r l ) * A (  1 9 3 ) + B ( 2 9 2 ) * A ( Z t 3 )  
A (  1 9  1 ) = B (  1 9  1 1  
A ( 1 9 2 ) = B (  1 7 2 )  
A ( 2 9  1 ) = B ( 2 9  1 )  
A ( 2 9 2 ) = 8 ( 2 9 2 )  
A ( 1 , 3 ) = 5 ( 1 9 3 )  
A ( 2 ? 3 ) = B ( 2 , 3 )  
GO TO 9 9 9  

1 0 0  DETER=O .OD0 
999 RETURN 

END 

I B F T C  INPOL.  POLYNOMIAL I N T E R P O L A T I O N , A I T K E N  
I N P O L  POLYNOMIAL  I N T E R P O L A T I O N 9 A I T K E N  

SUBROUTINE  I N P O L ( G , H ~ X ~ Y I N )  
R.A. BROUCKE, J P L 9  1 9 6 6  

C G (  T A B L E  OF A B S C I S S A E  
C  H (  T A B L E  OF ORDINATES 
C  X  I N P U T  ARGUMENT 
C  Y  OUTPUT INTERPOLATED VALUE 
C  N  NO. OF P O I N T S  TO B E  USED 

DOUBLE P R E C I S I O N  G 9 H 7 X 1 Y 9 F  
D I M E N S I O N  F ( 3 0 ) y G ( 3 0 ) 9 H ( 3 0 )  
DO 100 M = l r N  

1 0 0  F  ( M ) = H ( M )  
K=N-1 
DO 111 J = 1 9 K  
L = J + 1  
DO 111 I = L 1 N  

111 F(I)=((X-G(J))*F(I)-(X-G11))9F(J))/(GII)-G(J)) 
Y=F ( N I  
RETURN 
END 
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