
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 

https://ntrs.nasa.gov/search.jsp?R=19700005883 2020-03-12T01:27:51+00:00Z



i

r
	 1

N70-1R1R7

^•'1

o,, S! 	 L	 .iiiiGLOGY

!	 ^	
//yy
	 1

RE-63

	

1	 INVESTIGATIONS OF THE TRAPPED

	

i ll 	 MAGNETIC FIELD

Ifil{1{II{II.1111111 1 11 1 1 1 l1^I J11^111{ii..11111nI

At

fl

C/1	 • 1	 ITNRU)	 /^ "• t ,1	1 7 O	 j

e
► ^ IrA6[/1	 OD	 ^`It

Y 2 ^ D '7,5I	 ^R y^ •
INACA CR 0.1 TMX UA AD NUM /LM)	 ICATCOO )

IIA/',SS."`.r ftUS F'f "r 	 I NSI. I .I• U 
.

1 , E	 Vii;-

cA^mb410GE	 33,	 ;A AS S.A.	 1151iV:'3

Tirs. Kenyon :

Thanks ) Lca

6

I
--=7mm^.--

1



N70-15187

TABLE. OF CONTENTS

CHAPTER I

Calculation of the Frozen-In Magnetic Field

Introduction----------------------------------------------- 	 3
Calcu.lations---------------------------------------- ------ 	 3
Boundary Conditions---------------------------------------- 	 5

Solution of Case I---------------,--------------------------	 6

CaseII---------------------------------------------------- 	 9
Comparison of the Two Results---------------------------- - 17
Experim ents Suggested ------------------------------------- 15

CHAPTER II

Diffusion Time for the Frozen-Field

17
Introduction----------------------------------------------- 17
Experimental Procedure---------------------------------- -- 17
Treatment of the Data ------------------------------------- 18
Geometry ---------------------------------------------,•---- 20
Th,^ory ------------------------------------------------------ 21
The Ratio R------------------------------------------------ 23
The Experiment--------------------------------------------- 24

24
a. Spazi al Variations of the External Field ----------- 24

b. Estimation of the Ratio R -------------------------- 28

c. A Value for L ---------------------------------------- 29
^	 I''^lr'>>^•::t;n» nF ^ Stlmat p n-F' ^r	 ^^

v . ww •♦ i/ "v w .L ^^t V ♦ a ^. K .► 3 V V V ♦ ^! i .^. 1. K V 1 V K ♦ V 1 • - - - - - - - - - - - - - - v - - - - - - , 1

Conclusions ----------.--------- --------------------r------ 32

CHAPTER III	 i

Temperature Dependence of the Trapped Flux
Diffusion Time

Introduction----------------------------------------------- 35
Experimental Procedures------------------------------------- 35
Conclusions------- -----------------• ---------------------- 42

CHAPTER IV

Amplification of the Frozen-In Magnetic Field.

Introduction----------------------------------------------- 43
The Experiment--------- --------------------------r--- ----- 43
Conditions Required------------------------------------------ 45
Status of tho Experiment------ ------------------------------------ 46

I
	 BIBLIOGRAPHY ----------------------- ----------------------------- 47

"

L? 4	 r

^µ r

e	 ..
	 Now—



r

ACKNOWLEDGEMENT

This report was prepared under DSR Project 71179, sponsored by

the National Aeronautics and Space Administration, George C. Marshall

Space Flight Center, Huntsville, Alabama through N.A.S.A. Contract

NAS 8-21451.

The publication of this report does not constitute approval by

the National Aeronautics and Space Administration or by the M.I.T.

Measurement Systems Laboratory of the findings or the conclusions

contained herein. It is published only for the exchange and stimulation

of ideas.

t



I

INVESTIGATIONS OF THE TRAPPED
MAGNE'CIC FIELD

by

Ronald R. Winters

ABSTRACT

Analytic expressions for the spatial and time behavior of trapped

magnetic fields in a cylindrical conductor are found for two sets of

boundary conditions. Estimates are obtained for the diffusion time in

terms of the geometry of the conductor and experiments are suggested

to check these estimates.

The diffusion time constant for the magnetic field trapped in a

rotating aluminum disc is measured and compared with estimates obtained

.'	 + w... _	 l f^........9 '1 1 t 	 n •..t.^ ri nl.+	 Y t	 C f fNirii li f'^" jr tilf' me:s! • 'eci•.jai.. .. .. ♦.. ,. ... .^^	 .. _.	 ^	 _	 •.

diffusion times are (2.4	 0.1) x 10 -3 seconds, in fair agreement with

the mathematical model. Estimates of a measure of the spatial varia-

tions in the trapped magnetic field are also obtained and compared with

the physical dimensions of the apparatus.

It is shown that the temperature dependence of the diffusion time

for the magnetic field trapped in a moving conductor is consistent with

the temperature dependence of the conductivity of the conductor. The

result is relevant to assumptions in the Babcock model of sun spots.

An experiment whicin studies the amplification of an azimuthal com-

ponent of an initially axisymmetric magnetic field trapped in a moving

conductor is described.

1
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CHAPTER I

Calculation of the Frozen-1n Magnetic }Meld

Introduction

Hovorka 1 has pointed out that any theory dealing with solar sur-

face phenomena must, by nature of the physical phenomena considered,

be experimentally examined in the Laboratory in a manner which isolates

the various predictions and assumptions. For,the past few weeks the

aspect of frozen fields  in the Babcock theory of sunspot development

has been under investigation at the M.I.T. Measurement Systems Labora-

tory. The experimental effort has been directed toward a fuller under-

standing of the diffusion of the frozen field. This report presents two

calculations, based on different boundary conditions, for experimental

arrangements similar to those used at the Laboratory.

Calculations

I.r;n ,io1.^r The rain n+ ;; rmidiicTnr nt , ..nririr• ti ,%. s tv n nnvina ; t, Is,:ah

an external magnetic fi-:ld restricted to some region of space V, as

shown in Fig. 1-1. The conductor is a disc of diameter P and thickness

b, rotating about a fixed axis through the center of the disc perpendi-

cular to a face of the disc. We are interested in the time development

of a magnetic field B which is trapped (i.e. frozen) in the disc and

carried out of the region V. A coordinate system is setup as shown in

Figure 1-1.

We assume that after the region of interest, A, has swept through

'	 the external field, some part ^ of the external field is trapped in the

conductor as predicted by"
.n

3
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(1-i)

z
al^(x,t)_	

v x V x A(a,t) + ^`;Q ^^^ii(,t)	 (1-1)
at	 '

:;here ^^ is the linear velocity of c point z on the disk. Transforming

to the coordinate system (x,y,z) moving with the disk, we can write

aB(r,t)	 c2	 2.'

^t	 r Tn o V B(x,t) (1-2)

r.her^- we assume that v/c << 1. Let any component of 1+ he denoted by

a ty ? t	 C
2

v t —, a ro 
(X t, )

Equation (1-3) is the diffusion equation and ti,e shall apply standard

methods in solving for B(x,t).	 First. th,- houndar y coriditior^ must be

formulated.

Boundary conditions

Case 1.

z: We assume the frozen-in field is constant over the width of'

the disk

^( r , 0 , z , t ) = ^0-,0,t)	 b/2 < z < 'a /2.

0: We require that 41 be a single-valued function of 6.

^(r,e,t) - 1 (r,e +m2'i ,t)	 m R 0,+1, +21... .

I': We require that y(r,fi,t) be finite evervidivre over the region A.

5



Case II.

z:	 We require that the frozen-in field be a ►. c-en function of z

•	 and reduce to zero at either edge of the disk

and

V(r,0,.b/Z) - 0.

0: Same as Case I

r:	 Same as Case 1.

The frozen-in field is assumed an even function of z, for simpli-

city.	 for example, a solution odd in z can be found, but this solution

also vanishes at the center of the disk and its z-component would be

oppositely directed on either side of z - 0. Thus the trapped field at

t R 0 would be radically different from an external parent field ap-

proximately cor ► stant u> ,er Lne aisc.

In the solution of Eq. (1-1) for the two sets of boundary condi-

tions, it-i-:111 be assured that at t n C some initial spatial distribu-

tion of the trapped field exists.	 It is these initial conditions which

must be precisely stated if anything other than general solutions are

to be found. Howev-r, it will be shown that, even without precisely

stating the initial condition= of the trapped field, an estimate for

the diffusion time constZnt can be found.

•	 Solution of Case I

We shall seek solutions of the form

y(x,t) = S(x)T(t)
	

(1-4)

r

G



This suhstitution into Eq. (l -3) lCa(ts to

c 2 	1 ,̀ 2 S	 1 cur (t)	
0-S)T5v S	 T `3'L--

Setting both silos of I^q.(1-S) equal to constant - 1
T 

2

4n	
V2S	

- 1/t	 (1-6)

1 d'r 	_1/z	 (1-7)T 3t

Equation (1-7) can be integrated to yield

T(t) a C -t/T .	 (1-8)

We cnrk erli-!lr." c to Unirntin., (: A N —C I-U 7 f_:

S(r,0) = R(r)0(0)	 (1-9)

which leads to (expressing V2 in cylindrical coordinates)

r d (r dR ) 	4a 2	 1 d20	 (1.10)Rdr Ur ' ^
n
7—r	 - 7F d=

Setting each side of Eq. (1-10) equal to the constant m2 produces tH'o

ordinary differential equations,

2.
	 -m 2 0	 (1-11)

r r (z l)+ 1 
4 7 r^ m 2

J
^r = 0

c



,, r

Equ.it ion ( 1-11) can he integrate• < 1 to yield

0 - O -tcos (m o + 6m) (1-13)

where m is required to be an integer by the single valuedness of 0(a).

Iquation ( 1-12) is the Vessel's equation in the variable

-y	 4—z-°- l 1 / 2 r
r - Lc_ J

and, as such, has solutions (which arc finite at r - 0)

R(r)	 Jm (yr)	 (1-14)

the asymptotic behavior of J  is given  by

V T 

.1(Yr)	 m 
ymrm	 as r -+0	 (1-1G)

2 m

Hence, the general solution to Eq. (1-3) becomes

O x,t) _	 ^ C J (r) cos(mo + dm) 
c-t^T	

(1-17)
m=0 m m

In Eq. (1-17) the set of coefficients C m are to be determined by

more nearly precise statements of the boundary conditions. It is in-

terc— i.,ng to note that the result is a superposition of spatial wave

functions, all of which decay with the same time constant 1.

8



(1-18)

An cst mate of 1 can he arrivecl at as fellows. We s(• c from Eq.

(1 16) that for sma:l values of the argiinent of Jm(x),

1 0 > j  > j  etc.

In the Gaussian system of units the conductivity of most Food conduc-

tors is -10 '(' sec 1 ; hence, the coefficient of r in the argument of

the Bessel's functions has the order of marriitude, 10 "/i
112 ,	 If

I > 10'
4
 seconds, and if' we choose r - 1, so that the argument of Ressel's

functions will satisfy YL : 0.5, then we can assume that the m = o

term will prhdominate and write

If the ratio in the HIS is determined experimentally, then the value

of the arrillicllt of J O (YL) would serve as an estimate of 't in torus of

!..	 I.	 C LJ	 I I	 Y./^ 	 ^1^'^'f l^n^ 1^.. • , 	 IrinnA hn^.^.

C •ise 1I

We return to Eq. (1-3) and seek solutions satisfying the second

set of boundary conditions listed on page 6. The boundary conditions

for z do not seem very meaningful physically, since clearly B(z=+b/2)

0 if the external field which induced B was non-zero at z 	 +b;2.

However, these boundary conditions do serve to explicitly shoe .ne ef-

fects of making dill. have a finite thickness h.

The separation of time and space variables result in

^(x,i) = S(x )c 	as before

9
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r

we are left with the equation

-^-V 2 S 	 +	 47'11	 S	 _	 0 (1	 19)
c

Using cylindrical coordinates, we have

I Y	 (r Y S ) 1	 Y 25
+

Y 2S 4ra	
S	 m	 0

r Y r	 Y r	 7- ^+r	
Y 0

17—
z"

--1--C 

We seek a solution of the	 form

S(r,4,z)	 =	 R(z)0(0)Z(z), and	 find that

-,r- d2oY ar	 r aR	 1) +	 d20( -	 -- I Z aZZ + Y 2
J	

tihcrc
"0rd` dz

4,ro
•T

c

Setting both	 sides	 of Eq.	 (1-20) equal to the constant X2 results	 in

the two equations

2
+	 [ l 2	 +	 Y2 ]z0

dz
(1-21)

and

2

rR ar 	 a r) - 2 - - —7— TU
	 (3-22)

r 0

Yquat.ion (1-21) can be integrated to yielu

Z(z) = cos(a2 +Y2 ) 1/2 z	 (1 - 23)

1 ^►

#f

r



Ilrrr we impo!-c the con\lit ion that Z(z) be even.	 Also, we have the con-

dition that Z(+1)12) - V. so that

1
,`	 2 + Y 2 ) 	 !tt • ^)'t 	n	 0,1,2,...

or

Y2 +	 2	 (2n4l )2r 	 n=n	
b2.
	 '	 (1 -24)

Il Iq.(1-22) is muItil!lied by r 2 , we have

2

1F a-I (r Tf - 
xt,r2	

- a ^	 (1-'S)

Fquating,, both sides of equation (1-25) to the constant m 2 results in

the two ordinary differential equations,

U1	 U l	 11

and

°20 + m 2 0 = 0	 (1-27)

dO2

Equation (1-27) can be integrated to yield

0 - 00 00S(m©+Sm)	 (1-28)

where the requirement on m is a resul+ of the single -valueduess of 0(0).

Equations (1-26) is l.rnown is the modified I essel's equation, and has

solutions (t ,rhich are finite at r = 0),

R(r) 
Till 

(? n r)	 (1-20)

II

t



The functions I m (x) are known as the modified Bessel functions of the

first kind of order m. These fonction!: have the asymptotic, values,

Im (), nr) - -- (a l^r) m 	 r	 0	 (1-30)
2 ml

and

X r

1 m (^ n r) _ ! 27TX rj 
-1/2 e r	 r	 ^,	 (1-31)

I

Nence, the complete solution to Eq. (1-3) for these boundary conditions

(Case II) can be written

 r	 - t /T
C I (a r) cos
 [ (2n+l)	 z ] cos (m©+dm) e

mnn=0 m=0

(1-32)

where

). 2 = (2n+1) 2 r 2	 4-Ta
^	 -2

V

The coefficient Cmn 
must be determined by more precisely stated boun-

dary conditions.

An estimate of the diffusion time T can bc made in exactly the

manner of Case I. Such an approach leads to

4 , (r=L,0	 10(X01,)	 J (za L)	 (1

where the smallest value of X n , n = 0, is used in the argument of the

modified Bessel's function.	 In Equation ;1-33),

X

	
r 

r 2 _ 4r a 11/2

0 L b c2 

1 `?



Note that if Eq. (1-24) is evaluated for n and n + 1 and the differences

formed, then

X 2_ X	 (.Ii+1) Tr 2
	(1-34)n+1	 n	 b2-__

Hence, for b = 0.5 cm, a a 0 is the dominant coefficient.

Comparison of the Two Results	 r

The two solutions are:

Case I	 t

W 1 (x,t) _	 cr1JM( yr)cos(m0+6 m) 	 c 	 (1-17)
Inwo

Case II.	 ► '

a'	 CO	
(?n+l)nz	 -t/T

^2 (x, l)	 I cmnIin (a n r) cos (mA+dm) cos	 ^— , e
In=0 ri=0

ri_zli

Note that both types of boundary conditions lead to spatial waves cha-

racterizod by Bessel's functions. This is to be expected and merely

reflects the cylindrical geometry assumed at the oatset. Note also that

in both cases (indeed for any boundary conditions) this technique sepa-

ration of variables) leads to the exponential decay of the frozen tied

with the decay constant indcnendent of the spatial distribution. 	 *^

r d
f 

In essence, Case I assumes the disk to extend in:initely far in

the + z directions.	 if we allow b	 in Fq. (1-32), w: have
s
E

,.

but

1:



V

-I M (j::) - j m Jm(-x)

bL'. I re (X nr) ' ( j) -mJm (y r)

so,

^2	
'^l as expected

It is unfortunate that neither result allows for an un-imbigous de-

termination of T in terms of the conductivity. 	 (However, an estiriate

of T in terms of a measure of the spatial variations of the trapped

field can be found.) From page 9 above for Csse 1, if we let K be the

value of the argument of Jo(yr) for which

R

L 2 4ra	 K2

C

r
r

2 4noL2
T Case I	 k c"
	 (1-35)

Similar]), , frori nose 11 for Case II with the same definitions of R and

k,

	

?. Z	
-1

L n
T Case lI	 l ^b^	 TCase I'	

(]-36)

The factor L is a length characterizing the spa'.ial variations of

the trapped field. To within the approximations leading to Equations

(1-35) and (1-36) the effect of the houndary condition of finite extent

in the ± z directions is to lengthen the decay time.

I

r
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!:x eriment s Su izested

The above development suggests two experiments which would he use-

ful in understanding the nature of the diffusion of the trapped magne-

tic field.

1. Measurement of the diffusion time,

It would be interesting to compare the value predicted by Fyuations

(1-33) and (1-34) for the diffusion times with experimental measurements

of the diffusion time. In particular, Eq. (1--'4) predicts a lengtheni;ig

of the diffusion time when the thickness of the disc is reduced. Also

th(;se predictions,,coupled with measurements of the diffusion time, would

result in an estimate of that length I. which characterizes the spatial

variations in the trapped field.

2. Study of the behavior of the diffusion time with variations in

temperature of the conductor.

In both Case I and Case IT we should have, for a given geometry of

t)in nvnnrimnnt	 rt i4rrnom inn time nrnnnrtinry "1 to rn*nrj iirt ivit y 	 11 ^nre.. it

the conductivity of the conductor is changed,(e.g. by varying the disc

temperature), the diffusion constant should change proportionally. This

prediction could be checked with apparatus existin^^ at the l.ahorator;.

15
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CIIAPTI:R II

I)i ffusion Time for the Frozen-Field

Introduction

An important feature of the Bahcock 4 model of solar surface p`:--

nomena is trapping; (freezing-in) of magnetic fields in a conducting

medium. This trapped flux, which is at first nearly dipolar and axi-

symmetric, is distorted by the differential rotation rate of tl , c solar

plasma, producing; an azimuthal component of the magnetic field. This

azimuthal component is amplified until twisting of the tubes and buoyancy-

effects force loops of the flux tubes to break through the solar sur-

face, resulting; in bipolar magnetic regions. Such regions are associ-

ated with sun spot activity as well as with other surface phenomena.

Babcock assumed that the magnetic field was rigidly frozen into the

surrounding plasma. This retirement is too stringent. It is suffi-

cient fir Babcock's m odel to reuuire that the diffusion of the trapped

magnetic field be slow compared to the rate of distortion of the field

by the differential rotation of the plasma. A clearer understanding

of the diffusion constant in terms of the conducting medium is neces-

sary in order to examine the structure of Bahcock's model.

In the present work, an attempt is made to estimate the diffusion

time constant in terms of the characteristics of the conducting; medium,

in this case, an aluminum disc. This estimate is then compared with

measurements of the diffusion time constant for a rotating aluminum

disc.

Experimental Procedure

The apparatus used in this work is that discussed by Ilovora .? A

IS-inch-diameter aluminum disk, 1/4-inch thick, was rotated about an

:;

17



axis perpendicular to the plane of the dish. A small coil (about 100

turns of :'ine wire) of 1-inch diameter is cnl,edded in the .lisk, and is

carried by the rotating disk- through an external magnotic field ire.

'The extern:l field, ignoring fringing effects, was directed perpendicu-

lar to the plane of tho disl:, the effects of the external field on

the disk iri the region of the coil were studied via the induced voltage

at the terminals of the coil. The voltage pulse as the coil was swept.

through the field was recorded by a recording oscillo:.cope (T ,.: model

5-124. 	 The voltage trace was recorded on lire , tnian l inegraph direct

print paper with a record %,-,ced of 6 .1 inches/second and a writing -,peed

of about 8 x 10 4 inches/second. A t ypical voltage pul!-e is sho...n in

Figure 2-1. Note that the voltage peak corresponding to the exit of

the coil from the region of the external field has a smaller value for

the magnitude of the r ►ximum voltage than the peak corresponding to

the coil's entry into the external magnetic field. Also rote that the

AYlT ,:^; ,. ;)'	 .Ilt' C - 111 VU UV $_AY	 UwUr nu •• . 	 .	 ,,,'	 ^ 	 •l_„ n ^ ^' " ,. ,ten^t'

increases.	 In fact, the magnetic field :n the dish: is non-zero even

after the coil has left the region of the external magnetic field.

This is taken as evidenc of the trapping of n portion of the external

magnetic field. The part of the peak labeled "diffusion of *_rapped

field", than, characterizes the freezing-in of the external magnetic

field.

Treatmen t o f the Data

The oscillograms were not directly calibrated so that techniques

had to be developed to convert the raw voltage record into a useful ford.

Direct measurements could not be made from the oscillograms because,

even with the maximum available record speed (64 inches/sec. "i, the vol-

tage pulse was compressed to the ord:.r of one inch aloral; the time axis

of the record.

I
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One nethod of treat iilg; the osei Ilofraris is due to llovorka 2 .	 TI ► is

technique involves', tracing , .vr t1 ► e voItc!ge record in pencil to enhance

the contrast of the trace and then projecting; onto grapl ► paper via an

op,.que projector. The engla-ged (-3x) voltage record was then traced.

Unfortunately, the double-tracing procedure resulted in final voltage

records which were not simply enlarged copies of the oririnols. In

particular, the narrow voltage peak: in the entry part of the curve

were difficult to trace over witliou! :ome change in the apparent width

of the peak. In fact, the widti: of the pencile=d curve was often about

equal to the peak width in the original voltage record. However, with

practice, this method was developed to a precision of about 101.

A second method proved to be more satisfactory. In this method

a photographic trail Fparancy of the oscillogram was made using; Polaroid

film (type 146-I). The transparency was then projected via photograph:c

enlarger onto graph paper. The enlarged (-.2x) voltage record was than

traced. This method eliminated one of the free-hand :racing;s, but was 	 i

plagued by the lack of contrast in the oscillograms.	 ine zero cross-

over point was not visible in the transparencies. However, this point

was easily located relative to the peaks in the oscillog;ram. Precise

measurements of the relative position of the zero cross-over resulted

in the location of the zero cross-over on the enlarged tracings %..itli

an expected error of less than 2%.

Geometry

The following; developr ►ent will employ a cylindrical coordinate

system (r,e,z) fixed in the disc with origin at the center of the de-

tection coil. The z axis is directed perrendicular to the plane of the

disc with z = 0 located at the half thickness of the disk.

20
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I 1•c ory

The tirie-spatial development of the magnetic field R,x,t) in a

conducting medium.. of conductivity can be written

aH .7
,I1 _ P x v x P(x,t) + Cana V 2 P( x ► )

	
(2-1)

In Eq. ( 2 - 1).v is the velocity of the conducting; medium relative to

some frame of reference. If the transformation to a frame of reference

moving instantaneously with velocity v is made (rind v/c « 1), thin

Eq. (2 . 1) becomes

tl̀ 3t t) _ Tna 7 (11("t)	 (7-2)

The solution to I:q. (2-2) is discussed in Chapter I, and only the

results will be presented here. In Chz pter I, it is shown that if the

	

oft..	 -- r: -	 ,".  !} „t T11e .;1 <.K	 thnn

	

•	 .•	 —. -..	 .....^ ,. ,..	 rag a)	 Vr -	 L1^:	 llllt.Alll'.

solutions to Eq. (2--2) have the form

1

t

Ba (r,o % z,t)	 Cn111(Pr) cos(nO + dn)}e-th

where

a - (r,A,z)

and

Q2	 4r.a
7—
C T

(2-3)

(2-4)

(2-4)

r

!

t,

t,

r

The functions J 11 (.^r) are the }vessel functions of the fired Lind of

order n.	 If r is limited to values such that

21-
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8r < 0.5 ,	 (2-5)

then the n u 0 • ,.*rm in Fq. (2-3) dominates the slim so that

R n (r,O,c) z C 0' 7 0 (Pr) cos d o e -th	 (2-6)

We can write.

II (I.,C,t)

IT	 0

where

K2	 P 2 1. 2 	(2-8)

I. : 05

Thus, an estimate for the diffusion can be written

K 2	 2

where K 2 must satisfy Eq. (2-5) for r - L. It was shown in Reference
r

2 that the farm of t is not changed by imposing a z dependence on the

trapped field. Hencc,in any experiment for which tho trapped fie](: is

approximately independent of z, we would expect Eq. (2-9) to yield a

good estimate of 1. The choice of a value for the . ratio R remains very

much arbitrary. All that can he said at this point is that the ratio

should be chosen in such a way as to measure the spatial variation of

the trapped field.

to
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Figure 2-2

The Boundary Conditions on B

Applying Gauss's theorem for the surface (See Figure 2-2) of the

disc, to the equation

-+ i -+
V • B(x,t) - 0

yields

[B(r,O,z=±I)/:.,t) - Be(r,O,z=+b/2,t)] • n = 0

or

Bz(r,O,z=+I)/2,t) = BzC(r,O,z=+1,/2,t).

Thus, if the external field exhibits some spatial character over

the surface of the d4sc, the trapped field shares that character near

z = (+U/2),	 For a thin disc, ar.d an external field which is only a

mild function of z over the thickness of the disc, it should be ap-

proximately true that the trapped field approximately retains the (r,e)

character of the parent external field. This assumption allows an
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estimate of the ratio R to be Made in terris of the external magnetic

field. With this assumption Eq. (2-7) can be writtrn

Bcc(L.^.z.t)	 Bae(1.g.z.t)
R(Y) H

	 Kae(0.0.z.t)

Thus, it is sufficient to measure the spatial variations in the exter-

nal magnetic field.

The Fx eriment

a.	 Spatial Variations of the External Field.

The external field was napped using a gaussmeter (Radio Frequency

Labs -model 129S) equipped with a hall-crystal probe. The mapping was

done relative to a rectangular coordinate system with origin at the

canter of the nagnet bap. The z axis is assumed parallel to the z

axis of the rvlindrical coordinate system fixed in Lhe disc (Sce Figure

2-3).

9

I

I

L	 y	 I
/11W	 ^ Pole

Coil

Figure 2-3

Mapping Geometry

7?ie results of the mapping are shown in the field contours in Figures

2-4 and
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1
Over the thickness of the disc, tho variation in the z component of

the external field was found to be less than 2t. Since this variation

is within the experimental error of the measurement process, it can be

assumed that the z component of the external field is constant over the

thickness of the disc. Thus, if it is assumed that the spatial charac-

teristics of the z component of the trapped field are the same as those

of the external field, the solutions corresponding to Case I of Chap-

ter I should be applicable.

It was found that the spatial behavior of the external magnetic

field would be described by a foam

Be ( x , y ) = a 0 + a l y + a 2yx + a 3y 2 + a 
4 
x 2 + a S y 2x + a6yy2

	+a7y2x2 + agx4.	 (2-10)

Thn rnnFFi. c.nk; in l : n	 /x_1/11	 n+n n,r •?^.ntnrI nI, r- 	 t{1n F,.n rl iron

to pass through nine experimentally determined valises of the external

magnetic field. The values of the coefficients are given . in Table

2-I.

a 0 al a2 113 a4 aS a6 a7 a8

186 11 14 -74 -191 -3 -20 SS SS

Table 2-I

Values of the Coefficients in Eq. (2-10),

Table 2-II presents an estimate of the goodness of this fit by comparing

experimentally determined values of the external field with those cal-

culated from Eq. (2-10). The fit is l:y no means perfect, but sl3uld

be food enough for the job at hand, i.e, for the estimation of R.
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I

(x	 y )

Inches

Bz"(x,y)

Calculated

B`e(x,y)

Experimental

Difference

(0 1 0) 186	 gauss 186 gauss 0 gauss

(0,1/4) 174 183 9

(0,112) 141 143 2

(0,3/4) 96 96 0

i0,1) r,0 59 9

(3/4,0) 1S2 142 10

(1/2 1 0) 174 173 1

(1/4,0) 184 180 4

(-1/4,0) 178 183 S

(-3/4,1) S8 41 17

(0,-1) SO SO 0

(-1/2,-1) 58 47 11

Table 2-1I

Comparison of Fitted Function
with Mea.ured Values of

External Field
	 t^

b. Estimation of the Ratio R

If the initial trapped field retains the symmetry of the external

field, then from Eq.(2-7) vve can estimate the ratio R by

Bze(L,O,z,t)
R ^ —

Bze(O,O,z,t)
(2-11)

Transforming Eq. (2-10) to cylindrical cuarciinates, and assuming that

the njximal field is trapped as the center of the coil is coincident

with t tic center of the gap, we can w;-i to for the value of R

t



R _ 18()+111, sin0+141. 2 sinecos0 -741. sin 0- 1911, 2 Cos `0	 (2-12)
T8-6

In Eq. (2-12) terms of the order L 3 have been neglected. Values of R

for a few values of 0 are given in TabIc 2-III.

0 R*

0	 rad. 1.00	 -	 1.03L2

71/2 1.00	 +	 0.06I, -	 0.401.2

71 1.00	 -	 1.031.2

371/2 1.00	 -	 0.061. -•	 0,401, 2

Table 2-I11

The Ratio R

*Note: L nmst be expressed in inches in this case.

c. A Value for L

We require that L be a measure over which the spatial variation

in the external field is R.	 If we arbitrarily set R = 0.9S and 0.90,

the fol loi.. ing val , ics for L are found.

I;	 I. 0=0	 rad, 6=r,/2 0 =71 0 =371/2

0.95 0.6cri I.lcm 0.6cm 0. 7cm

0.90 0.8cm 1.4cm 0.8cri l.lcm

Table 2-IV

1. Values

R I.

0. 9S

0.90

0. 7cm

1.Ocm

Table "2-V

L Values

f
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As expected iron; the approximate azimuthal syrirnetry of B Z e , the v; ► lue

of L is not strongly -lepundevt on e. Hence, Table Z-1 • Rives the value

of L averaged over 0 for each value of R.

d.	 Calcul ation of E stimate of i.

From Eq. (2-9), we :,in estimate T by

1	 4 Tic 1.2

K	 c`

where K satisfies l:q. (2-5) and

R(K) = J O CK) .

The data giver, in Table 2-VI are taken from the 11andb ook of Ta bles for

R	 z	.1 O (1:) K L Jl (K)

0.9` 0.40 0.7cm 0.20

0.90 0.60 1.Ocm 0.29

Table 2-VJ

Parameters for Calculation of 1

Note that K just satisfies Eq. (2-5) for R - 0.95 and just exceeds the

bound established by Eq. (2-5) for R = 0.95. 	 (Comjtarc .1 0 with .1 1 i.n

Table 2-1'1).	 Using a = 2.7 x 10 -7 sec - l for commercial %Iuriinum, the

following estimates Caere calculated for the diffusion constant.

14 /

r

F

t
C
I

r



k ^ I.(:m) z (ms)

0.95

0.90

0. 40

0.60

U. ; cm

l.Ocin

l . 2r ► s

l.Oms

TahIc 2-VII

Calculated Diffusion Constant

Hence, the mathematical model predicts a diffusion time constant of

the order of 10 -3 seconds.

e.	 Experime n tal L.-te rmination o f i

As has alread y been pointed nut, I'igure 2-1 shows that the voltage

pulse does not go to zero as the coil leaves the region of non-zero ex-

ternal field. The resultant voltage curve (labeled C(t) in rigure 2-1)

as the coil leaves the region V is a result of two effects; one, the

rate of change of the external field and, two, the rate of change of

the traps^d flux. We can write
r

0( t ) ° C C ( t ) + Yt)

where
Ce(t) = voltage due to changes in external field as the

coil exits from V.

m f (t) = voltage due to changes in the trapped flux in the

region A.

The external magnetic field has been shown 2 to be nearly symmetric with

respect to the coil's entry into and exit from the region V. Hence, it

should be approximately true that in the absence of trapping of the field,

31
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-

v Cn (t)	 - G^( -t)

where d en t) = inducrd voltage as coil enters V. Thus, we can write

mf(t)	 d' (t) + ©en(t)	 (2-13)

Now, Faraday's law implies

m f (t)	 -	 f • n d 	 (2-14)
A

O f (t)	 C1. VS z (r,c,z)da^c -t/T 	 (2-15)
(((((( A

where S  is the z component of the trapped field (Eq. (2-3)). Thus,

Wt: LJII W t L bP.

lnm f (t)	 - t—t + constant	 (2-16)

Figure 2-6 presents a typical plot of w(t) for data taken with the

disk rotating at 1700 rpm. The slope of the fitted st,aight line, re-

sults in the meast,red value for T.

T n (2.4 + 0.1) x 10 -3 seconds.

Conclusions

•	 The measured decay constant is about twice the estimated value.

This would imply that the length L has been underestimated by Eq. (1-11).

Hoi••ever, the approximate agreement i=ndicates that the trapped field

1
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Mors approximately retain the spatial characteristics of the parent

external field.	 Also, it is clear thet the parameter 1. (for this

experiment) is of the order of one half the radius of the detection

coil.

time -

g a
	 —T--T

>,	 S

^	 q

r 3

4

4
3.0	 3.7	 4.4	 5.7	 5.8	 7.9	 8.6

time (ms)

Fivure 2-6

Decay of the Trapped Flux
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CIIAPTI:R III

Temperature llependvnce of the Trapped Flux Diffusion Time

ln tro,lu c tio n

This chapter continues the discussion of thv nature of the dif-

fusion of a magnetic field trapped in a rotating aluminum disc. The

impetus for the study is a paper by Babcock 4 in which a model for solar

surface bipolar magnotic regions is presented. One of the essential

features of this riode' is the assumation that the solar plasma (to the

r
dopth of 0.1 It o ) has great enough conductivity to trap (freeze-in)''

the magnetic field. It tins been shown  that the diffusion time of the

trapped field should be proportional to the conductivity. The present

work was undertaken to test this prediction and the assumptions leading

to it.

Fxlcrim , ntal Proce dur es

The conducting medium for this and other worx vas a 1:) incn ui d-

meter aluminu.^r disc which rotated about an axis perpendicular to the

plane of the disc. A one inch diameter coil of 100 turns of fine wire

was embedded in the di:c. The center of the coil was located at the

half-thickness about G 1/2 inches from the center of the disc. the

coil was carried by the rotation of the Jisc throur , h a magnetic field

of about ISO gauss. Chapter 2 discussed the geometry of the field.

The conductivity of the disc was varied by varying the disc temperature.

The temp erature was inonitoree.. by a thermocouple clamped tightly, to the

disc in the vicinity of the coil. The disc temperature was varied about

room tcmperature by two methods. rirst, the disc wos cooled to about

10°C and then, while approaching thermal equilibrium with the room,

measure. -nts of the diffusion time were !rude. For temperatures above
t

bicr.t tt , ..:perature, the disc was heated to .abo;.t IWC and tn ► easurc•ments
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of the ditfu:; ion tires were made as the disc cooled to room temperature.

Diffusion times were measured over a temperature span of about 33°C.

The diffusion o: the magnetic field was detected by the voltage induced

at the terminals of the coil. A typical voltage pulse is shown in

•	 Figure 2-1.

The voltage records were recorded by a recording oscilloscope with

a record speed of 64 inches / second and a writing; speed ( with Kodak

Direct Print Paper) of about 8 x 10 5 inches / second. As shown by Figure

2-1, the voltage pulse is asymmetrical about the zero cross-over (de-

fined to occur at time t n 0). The quantities appearing in Figure

2-1 are defined by:

q

0(t)	 induced voltage

ternal magnetic

^en(t) = induced voltage

magnetic field.

O e (t) = induced voltage

flux trapped as

field.

as the coil recedes from the ex-

field.

as th:. coil enters the external

expected it there were i ► u maguc;Li._

the disc moves out of the external

'f, as in the present work, the geometry of the coil's encounter

with the external magnetic field is symmetric with the coils exit from

the field 
2, 

then one would expect that, in the absence of trappi n g of

the external field,

©(t) = - ^cn(-t)

Clearly this is not the ca3e. The diffusion time of the trapped field

•	 is long; enough so that an appreciable voltage is induced for about a

millisecond after tl:a coil leaves the external field. The induced .ol-

tage ^-(t) is due to tH •o effects, one the rate or change of the external



field and, two, the rate of change of the trapped flux. We can express

this as

d(t)	 e(t) { Of(t)	 (3-1)

where

©f(t)	 the voltage induced by the decay of the tramped

field.

Since, in the absence of trapping, we expect symmetry in the induced

voltage with respect to entry into and exit from the external field,

we require

^c(t) - - den(-t)
	

(3-2)

Thus, the induced voltage due only to the diffusion of the tra;.,:ed

flux can be written

4 f ( t ) ' v( t ) + m en (t)	 (3-3)

Equation (3-3) allows the effects of diffusion to be calculated from

the voltage record (Figure 2-1).

Since the diffusion is assumed  to be exponential. with diffusion

constant T, we can write for the z component of the trapped magnetic

field

}3z(r,O,t) _ S z (r,O)e -t/T	 (3-4)

where ti z is the spatial functional dependence of the 
z component of

the trapped field in the region of the coil. No; .., ) the induced voltage

c,:n be expressed
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9

If (t)	 f ;_A -; cla
A

where 1, = trapped magnetic field

A	 area of the :oil

n	 unit vector perpendicular to plane of disc and coil.

C f (tj t. cT { .^s L da^c
1 A

(3-S)

or

In Q f (t) a - t/T + constant
	

(3-6)

Figure 3-1 presents a typical semilog plot of ^ f (t) versus t. The fact	 l

	

that most of the data lie nearly on a straight line supports the as-	 I

sumptions leading to Eq. (3-6). The slope of the line drawn through

the data provides the measured value of T.

AS SLaLCU Cd111Ci, ►.1	 ..

times, and therefore different temperatures, as the disc approached

thermal equilibrium with the roorr.. The temperature of the disc could

be monitored only when it was not rotating. Thris, the disc temperature

for each determination of - was estimated by interpolation of temperatur,

data obtained before and after each measurement of T. Figure 3-2 pre-

sents the temperature data for a typical series of diffusion time de-

terminations. The curve drawn throur;r the data in Fifiure 3-2 was used

for estimating the temperature at the various timers ti.

Table 3-I presents the measured values of the diffusion time for

various temperatures.

i
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Temp* C

2.19	 + 0.13 56°C

2.2 .1	 + 0.09 41

2.4o	 + 0.18 j

2.45	 + 0.07 23

2. 50	 + 0.09 23

Vote: the errors
quoted are in Table
I an(i represent the
prul.abl y errors of
the measurements.

Table 3-I

Diffusion Times for
Various Temperatures

The resistivity of commercial aluminum can be represented 6 by

z(T) = 1 + a 
0 
T x 10 -3 	(3-7)

_	 .	 ._	 ._.,a	 +.	 .^._	 ...4r...__
U

rortional to the conductivity or inversely proportional to the resis-

tivity.

T 
(.i) 

(X
	 l

^T )

If we let T  be some temperature such that T < T I < 0, then

T(1- 

1^
)	 = 1 - a 0 [T-T l ] x 10-3

^ ^^	
(3-8)

Figure 3-3 presents a plot of the measured diffusion times (Table 3-I)

versus temperature. Equation (3-8) wa-F forced to pass through the data

at T 1 j 23°C and is shown as the line drawn through the Bata in Figure

3- 3.
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Conclusions

The diffusion time of the

dependence which is consistent

T' , is result is consistent with

of the trapped field is propor

trapped field di::plays a temperature

with that expected of the conductivity.

the assumption that the diffusion time

tional to the conductivity of the medium.
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CHAPTER II,

fft

9

;^li fication of t}u' Frozen- In Magnetic Field

. ► , . uc ►:'s a model of the sun's m:egneti^ field, the de vclope"Ient

:uid"l field from the initial dipolar field results in the pro-

of the bipolar magnetic regions (11MR) associated with sunspotspot

 The model pictures the toroidal fielll as heing produced by

rtlon, of the dipolar field at depths of about 0.1R by the differen-

rotation of the solar plasma. The dipolar field is imagined

,,cd in (frozen into) the plasma and carried with it. The toroidal

i

1 is produced and amplified as the trapped field is wrapped around
1

rotation axis of the sun. Ultimately, as a consequence of twisting,

;s are formed in the toroidal field. When these loops become buoyant

.-1...,	 l ..., .i-	 hr.n/+h	 thh	 Cr11...	 . T .:el.,.	 IC :IIJ.L^II ►;	 lu 	 uv,	 .....,.

all :ciated with sunspot activity. Babcock's model rests heavily on the

r	 supposition that if initially an axis ymmetric magnetic field is trapped

in a differentially rotating conducting medium, the trapped field will	 t

e distorted and the distortions amplified.

Y:

t

A great deal of work ^^^p^10,1e has been undertaken to study the

^ffe• cts of an exter:lal field on a rotating conducting medium. Surprisingly,

reference can be found of work done to detect the inverse effect,

t'.,lt is, to detect the distortions of the magnetic field by the rota-

: ► c;, of the conducting medium.	 It is this latter effect that is v.tal

Tr., l+abcock's model and which llovorka and the :author propose to stu;ly

•	 .:ehorator^ experiments.

^ TI P rl llr fit

It itiproposrd to study the distortion oil an initially axisvrmeIr:c

'w
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magnetic field by the differential rotation of an annulus rf mercury.

A• shown in figure 4-1, an annulus of mercur y will be liven a ro-

tational velocity •(z); the z-dependence of the velocity will be such

that it velocity gradient in the mercury will he set up along the axis

of rotation z.	 The rotational velocity of the driving rotor (Fig. 4-1)

will be slowly increased and the presence of an increase in an azimuthal

component of the trapped field will be detected by a coil oriented as

shown in Figure 4-1.	 Thus, any distortion of the initial axisyllmetric

field producing a field component perpendicular to the plane of th- coil,

will result in an induced voltage at the terminals of the coil.

Condi tion s Redui re3

If the differential rotation of the. mercury produces a "twist" in

the frozen-in field of an amount A©, this twist will be transported ir.

the z direction at the ► :► agnetohydrodynamic spc-^dg

V	 b
(4 r,

where

a: the magnetic field strength

p: density of mercury

v: magnetic permability of mercury

The differential rotational speed Ow = w(z - 0) - w(z > 0) must be about

equal to the speed of twist-transport V is an amplification of the azi-

►iuthal :omponent is to take place, thus,

L6 z (47T
0

—p- ) 171 
z 1 cycle/second

I

l:,
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r

for the physic.- r parameter pertinent to the present experiment. Such

a rotation rate is easily attained and, in fact, stutlies 9 of the effects

of the magne ti c field oil 	 rotation of mercury at about these rotational

speeds have been reported.

Status of the Lxrcriment

Preparaoions for they proposed experiment have been completed.

Drawings for the apparatus have been submitted and the machine shop

work started. A system to vary the speed of the driving rotor syn-

chronously with the recording of the coil voltage is yet to be designed

and built.
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