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INVESTIGATIONS OF THE TRAPPED
MAGNETIC FIELD
by

Ronald R, Winters
ABSTRACT

Analytic expressions for the spatial and time behavior of trapped
magnetic fields in a cylindrical conductor are found for two sets of
boundary conditions. Estimates are obtained for the diffusion time in
terms of the gecometry of the conductor and experiments are suggested

to check these estimates,

The diffusion time constant for the magnetic field trapped in a
votating aluminum disc is measured and compared with estimates obtained
Tavin wolLtizins 2E MoenT e panvarian. T+ e deuma tThAaTt Tne mensured
diffusion times are (2.4 % 0.1) x 10"'5 seconds, in fair agreement with
the mathematical model. Estimates of a measure of the spatial varia-
tions in the trapped magnetic field ;re also obtained and compared with

the physical dimensions of the apparatus.

It is shown that the temperature dependence of the diffusion time
for the magnetic field trapped in a moving conductor is consistent with
the temperature dependence of the conductivity of the conductor. The

result is relevant to assumptions in the Babcock model of sun spots.

An experiment whicn studies the amplification of an azimuthal com-
ponent of an initially axisymmetric magnetic field trapped in a moving

conduztor is described.
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CHAPTER 1

Calculation of the Frozen-ln Magnetic Field

Introduction

Hovorka1 has pointed out that any theory dealing with solar sur-
face phenomena must, by nature of the physical phenonena considered,
be experimentally examined in the Laboratory in a manner which isolates
the various predictions and assumptions. For the past few weeks the

aspuct of frozen fields®

in the Babcock theory of sunspot development
has been under investigation at the M.I.T. Mcasurcment Systems Labora-
tory. The experimental effort has been directed toward a fuller under-
standing of the diffusion of the frozen field. This report presents two
calculations, based on different boundary conditions, for experimental

arrangements similar to those used at the Laboratory.

Calculations

f.ons1aor the race o+ A condnCrny ot ondnectIviI ey fF mowrIng (6, Gniah
an external magnetic field restricted to some region of space V, as
shown in Fig. 1-1. The conductor is a disc of diameter D and thickness
b, rotating about a fixed axis through the center of the disc perpendi-
cular to a face of the disc. We are interested in the time development
of a magnetic field E which is trapped (i.e. frozen) in the disc and
carried out of the region V. A coordinate system is set up as shown in

Figure 1-1.

We assume that after the region of interest, A, has swept through
the external field, some part B of the external field is trapped in the

conductor as predicted byz



‘\\\\\\\ Region A

Disc

Region V

Figure 1-1
The Geometry
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where v is the linear velocity of a point X on the disk. Transforming

to the coordinate system (x,y,z) moving with the disk, we can write

-’.’ 2 ==
LI e § 0 (1-2)

whera we assume that v/c << 1, Let any component of B be denoted by

v(X,t),

- I
WL o E v, ) (1-3)

Equation (1-3) is the diffusion equation and we shall apply standard
methods in solving for E(i,t). First, the boundary conditior< must be

formulated.

Boundary conditions

Case 1.

z: We assume the frozen-in field is constant over the width of

the disk
v(r,0,z,t) = y(r,0,t) b/2 < z ¢ b/2,
0: We require that ¢y be a single-valued function of 6.

v(r,8,t) = Y(r,e+m2m,t) me= 0,41,42,... .

r: We require that y(r,0,t) be finite everywhere over the region A,

o
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Case 11,

2: We require that the frozen-in field be ar. cven function of 2

and reduce to zero at cither edge of the disk

w(rbeoz) . W(r,e,°2)
and

W(T.eotb/z) = 0,

6: Same as Case 1

r: Same as Case 1.

The [(rozen-in ficld is assumed an even function of z, for simpli-
city. For example, a solution odd in z can be found, but this solution
also vanishes at the center of the disk and its z-component would be
oppositely directed on ecither side of z = 0, Thus the trapped field at
t = 0 would be radically different from an external parcnt ficld ap-

proximacely constant over tne aisc,

In the solution of Eq. (1-1) for the two sets of boundury condi-
tions, it will be assumed that at t = 0 some initial spatial distribu-
tion of the trapped field exists., It is these initial conditiens which
must be precisely stated if anything other than general solutions are
to be found. Howev~r, it will be shown that, even without precisely
stating the initial conditions of the trapped field, an estimate for

the diffusion time constant can be found.

Solution of Case 1

We shal! seek solutions of the form

v(x,t) = S(x)T(t) (1-4)
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T

This substitution into Eq.(1-3) leads to

? .
e’ 1 o3. o 1 &7(2)
8 R S | (1-5)
Setting both siles of Eq.(1-5) equal to constant - % :
c2 } oo
WogvVse -1 (1-6)
E LIS V2 (1-7)
Equation (1-7) can be integrated to yield
T(t) a e t/T, (1-8)
We sepek crnlntinne tn Fqun"nn (1 ‘? af t*: f:r:
S(r,0) = R(r)o(9) (1-9)
which leads to (expressing v2 in cylindrical coerdinates)
r d ,. dRy , 4m0 _2 1 d%e
R-a-}-(ra?)‘-—z—f "—o—d—e-z (1-10)
c

Sctting each side of Eq. (1-10) equal to the constant m

ordinary differential equations

2 produces two

2
4% 0 2
s & i) 0 (1-11)
d“o
T %f (r g%) + [if% re- mz]R = 0 (1-1?)



tquation (1-11) can be integrated to yicld
0 = 0,ccs(mo + ém) (1-13)

where m is required to bYe an integer by the single valuedness of 0(90).

Equation (1-12) is the Bessel's equation in the variable

1/2
yr = [543-] r

.

C

and, as such, has solutions (which are finite at r = 0)

R(r) = J (yr) (1-14)
The asymptotic behavior of Jm is given3 by
g ¥ = “ -2-‘— f‘ﬁG(vv‘-’m“ AG 1 & W (: ;:;
L ‘ n' .
Jm(Yl‘) ~ -:—l- Ymrm as r » 0 {(1-16)
2'm

Hence, the general solution to Eq. (1-3) becomes
o t/
vix,t) ={ § € J (r) cos(me + ém)je ~/" (1-17)
m=0 :

In Eq. (1-17) the set of coefficients Cm arc to be determined by
more nearly precise statements of the boundary conditions. It is in-
terc-ting to note that the result is a superposition of spatial wave

functions, all of which decay with the same time constant 1,



An estimate of 1 can be arrived at as follows, We see from [Fq.

(1-16) that for small values of the argument of Jm(x),

Jop > J, ? J2 etc.

0 1

In the Gaussian system of units the conductivity of most good conduc-

tors is ~10'6 scc'l; hence, the coefficient of r in the argument of
.3

the Bessel's functions has the order of magnitude, 10 ‘/11/2. If

t > 108

seconds, and if we choose r = L so that the argument of Bessel's
functions will satisfy yL < 0.5, then we can assume that the m = 0

term will predominate and write

VE.E,H._E)_ - 3%(07‘_ = Jo(YL) (1-18)

If the ratio in the LHS is determined experimentally, then the value

of the argument of JO(YL) would serve as an estimate of T in terms of

g ID78 Wil he inrthay duvuelanad hAnalasy

Case 11

We return to Eq. (1-3) and secek solutions satisfying the second
set of boundary conditions listed on page 6. The boundary conditions
for z do not seem very meaningful physically, since clcarlylﬁ(z=3h/2)
¥ 0 if the external field which induced E was non-zero at z = +b/2Z,
However, these boundary conditions do serve to explicitly shov tne ef-

fects of making disk have a finite thickness b,

The separation of time and spacc variables result in

sty

W(;,t) = S(;)c as before



wWe are left with the equation

Using cylindrical coordinates, we have

2 2
1y YS 1 3°8 - v°% . B
- (r 2=) ¢+ Sy by & & + —y— S =
» 1y 4 " %0 $~ e

We seek a solution of the form

S(r,0,z) = R(z)0(8)Z(z), and find that

2 2
1 1 d% [1 dz z]
¥ & ' 3 3 iy Sgen 8 = — + Y where
¥ e ¥ r°0 d z dz

Setting both sides of Eq. (1-20) equal to the constant 22

the two equations

2
%—% 4 [Az + YZ]Z = 0
z

and

L4 a4 5. 8
mar (F ar T 40

Equation (1-21) can be integrated to yiela

Z(z) = cos(k2+yz)1/zz

0

(1-19)

-20:

results in

(1-21)

(1-22)

(1-23)



Here we impose the condition that 2(z) be even, Also, we have the con-

dition that Z2(+b/2) = ¢, so that

1/2
R S B RURE L R
or
2 2 (2n+1)°%n?
y2 ea 2. 20t neo0,1,2,... (1-24)
n bZ
1€ Fq.(1-22) is multiplied by rz, we have
r d dr 2 1 a0
RaF P "M oI (3-25)

Equating both sides of equation (1-25) to the constant m2 results in

the two ordinary differential equations,

- ;f Iy :“.1 = u“ r" ¢+ 2R u (120
and
ie 2
+ m‘o = 0 (1-27)
de?

Equation (1-27) can be integrated to yield

0 = Oocos(m0+6m) (1-28)

where the requirement on m is a result of the single-valuedness of 0(8).

Equation (1-26) is known as the modified Bessel's equation, and has

solutions (which are finite at r = 0),

R(r)I (A 1) (1-29)

11
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The functions lm(x) are known as the modified Bessel functions of the

first kind of order m. These functions have the asymptotic values l
L0 1) - = (" r =0 (1-30)
2'm!
and
A r
1.0r) - [2m 1] 2% raa (1-31)

Hence, the complete solution to Eq. (1-3) for these boundary conditions

(Case II) can be written

w o 2
v(x,t) = nzo mzo Cmnlm(knr)cos [ﬂZﬂi%l_E,z ]cos(me+6m)] e't/T

(1-32)

where

& (Zn+1)21r2 _ 4mo
= 7 =y

The coefficient Cm must be determined by more precisely stated boun-

n
dary conditions.

An estimate of the diffusion time 1 can be made in exactly the

manner of Case I. Such an approach leads to

L= I,(\ L)
st T%TE%" = Jo(224L) (1-35)

where the smallest value of Ap» D 7 0, is used in the argument of the

modified Bessel's function. In Equation {1-33),

) =[v2 . 4ne M2
& 1pt iy



Note that if Eq.(1-24) is evaluated for n and n+l and the differences

formed, then

2 8(n+1 2
AE ..Lb-z..l v (1-34)

Hence, for b = 0,5 cm, a Xo is the dominant coefficient,

Comparison of the Two Results

The two solutions are:

Case I

w1(§,t) B nfo chm(Yr)cos(me¢6m)' e t/T (1-17)

Case II.

-> 4 = &
vy (x,t) = nzo mZocmnlm(knr)cos(meoém)cos [iﬁﬂ:l%ﬂi_]] e~ t/1
(1.22)

Note that hoth types of boundary conditions lead to spatial waves cha-
racterized by Bessel's functions. This is to be expected and merely
reflects the cylindrical geometry assumed at the outset. Note also that
in both cases (indeed for any boundary conditions) this technique sepa-
ration of variabies) leads to the expornential decay of the frozen fieid

with the decay constant independent of the spatial distribution.

In essence, Case I assumes the disk to extend iafinitely far in

the + z directions. If we 2l1low b + @ in Eq. (1-32), we have

2.2
bkm = (2n+;% S 4;° r = Ll
c

but




1, (3x) = 3703, (-x)

or

be 1,00 = (1) ™ (yr)

s0,
vy * ¥y as expected

It is unfortunate that neither result allows for an unambigous de-
termination of T in terms of the conductivity. (However, an estimate
of 1 in terms of a measure of the spatial variaticns of the trapped
field can be found.) From page 9 above for Case I, if we let K be the

value of the argument of Jo(yr) for which

_ G (r=lyt)
R = W;TUTTT—— - JO(YL) ’

-\ -~

2 4vo 2
s adl
[ o5
- . 1 4moL? (1-35)
Case I ~ ;7 CZ

Similarly, from pnge 11 for Case II with the same definitions of R and

k,

2.21°!
= . Lom 1-36)
Tcase 11 ° 1 Kzgf YCcase I° (1

The factor L is a length characterizing the spa ial variations of
the trapped field. To within the approximations leading to Equations

(1-35) and (1-36) the effect of the boundary condition of finite extent

in the + z directions is to lengthen the decay time.

P
[F &N



Experiments Suggested

The above development suggests two experiments which would be use-
ful in understanding the nature of the diffusion of the trapped magne-
tic field,

1. Measurement of the diffusion time%

It would be interesting to compare the value predicted by Equations
(1-33) and (1-34) for the diffusion times with experimental mcasurements
of the diffusion time. In particular, Eq. (1-24) predicts a lengthening
of the diffusion time when the thickness of the disc is reduced. Also
these predictions,coupled with measurements of the diffusion time, would
result in an estimate of that length L which characterizes the spatial
variations in the trapped field.

2. Study of the bchavior of the diffusion time with variations in
temperature of the conductor.

In both Case I and Case IT we should have, for a given gecometry of
tha avneriment diffncinn time nranartioanns? ta canductivity Hence, i€
the conductivity of the conductor is changed, (e.g. by varying the disc
temperature), the diffusion constant should change proportiocnally. This

prediction could be checked with apparatus existing at the Laboratory.

15
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CHAPTER 11

Diffusion Time for the Frozen-Field

Introduction

An important fecature of the Babcock4 model of solar surface phe-
nomena is trapping (freezing-in) of magnetic fields in a conducting
medium. This trapped flux, which is at first nearly dipolar and axi-
symmetric, is distorted by the differential rotation rate of the solar
plasma, producing an azimuthal component of the magnetic field. This
azimuthal component is amplified until twisting of the tubes and buoyancy-

effects force loops of the flux tubes to break through the solar sur-
face, resulting in bipolar magnetic regions. Such regions are associ-

ated with sun spot activity as well as with other surface phenomena.
Babcock assumed that the magnetic field was rigidly frozen into the

surrounding plasma. This requirement is too stringent. It is suffi-

cient for Babcock's model to reaquire that the diffusion of the trapped
magnetic field be slow compared to the rate of distortion of the field
by the differential rotation of the plasma. A clearer understanding
of the diffusion constant in terms of the conducting medium is neces-

sary in order to examine the structure of Babcock's model.

In the present work, an attempt is made to estimate the diffusion
time constant in terms of the characteristics of the conducting medium,
in this case, an aluminum disc. This estimate is then comparcd with
measurements of the diffusion time constant for a rotating aluminum

disc.

Experimental Procedure

The apparatus used in this work is that discussed by Hovorha.z A

15-inch-diameter aluminum disk, 1/4-inch thick, was rotated about an

17
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axis perpendicular to the plane of thc disk, A small coil (about 100
turns of [ine wire) of l-inch diameter is embedded in the disk, and is
carried by the rotating disk through an external magnetic field ﬁc.

The external field, ignoring fringing effects, was directed perpendicu-
lar to the plane of the disk, The effects of the external field on

the disk in the region of the coil were studied via the induced voltage
at the terminais of the coil. The voltage pulse as the coil was swept
through the field was recorded by a recording oscilloscope CEL model
5-124., The voltage trace was recorded on Eastman liregraph direct
print paper with a record speed of 64 inches/second and a writing speed
of about 8 x 10° inches/second. A typical voltagc pulse is shown in
Figure 2-1. Note that the voltage peak corresponding to the exit of
the coil from the region of the external field has a smaller value for
the magnitude of the niximum voltage than the peak corresponding to

the coil's entry into the external magnetic field. Also note that the
ex1t peai of the curve decays away wuch wore slowly than the erntry peab
increases. In fact, the magnetic field in the disk is non-zero even
after the coil has left the region of thc external magnetic field.

This is taken as evidenc of the trapping of a portion of the external
magnetic field. The part of the peak labeled "diffusion of trapped
field", then, characterizes the freezing-in of the external magnetic

field.

Treatment of the Data

The oscillograms were not directly calibrated so that techniques

had to be developed to convert the raw voltage record into a useful form.

Direct measurements could not be made from the oscillograms because,
even with the maximum available record speed (64 inches/sec.), the vol-
tage pulse was compressed to the order of one inch along the time axis

of the record.

RO
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One method of treating the oscillograms is due to Hovorka?, This
technique involved tracing - .er the vo{tagc record in pencil to enhance
the contrast of the trace and then projecting onto graph paper via on
opaque pronjector., The englarged (~3x) voltage record was thea traced,
Unfortunately, the double-tracing procedure resulted in rinal voltage
records which were not simply enlarged copies of the originals, In
particular, the narrow voltage peak: in the entry part of the curve
were difficult to trace over without :ome change in the apparent width
of the peak. In fact, the widtii of the penciled curve was often about
equal to the peak width in the original voltage record. However, with

practice, this method was developed to a precision of about 10%,.

A second method proved to be more satisfactory. In this method
a photographic transparancy of the oscillogram was made using Polaroid
film (type 146-1). The transparency was then projected via photographic
enlarger onto graph paper. The enlarged (~2x) voltage record was then
traced. This method eliminatad one of the free-hand tracings, but was
plagued by the lack of contrast in the oscillograms, lhe Zero Cross-
over point was not visible in the transparencies. However, this point
was easily located relative to the peaks in the oscillogram. Precise
measurements of the relative position of the zero cross-over resulted
in the location of the zerc cross-over on the enlarged tracings with

an expected error of less than 2%.

Geometry

The following development will employ a cylindrical coordinate
system (r,0,z) fixed in the disc with origin at the center of the de-
tection coil. The z axis is directed perpendicular to the plane of the

disc with z = 0 located at the half-thickness of the disk.

20



Theory

The time-spatiul development of the magnetic field ? . x,t) in a

conducting medium of conductivity can be written
TR R o c2 > o
| v x vx B(x,t) ¢ 155 VeB(x,t) (2-1)

In Eq.(Z-l).? is the velocity of the conducting medium relative to
some frame of reference, If the transformation tc a frame of reference
moving instantancously with velocity v is made (and v/c << 1), then

Eq. (2-1) becomes

i 2 e
E’_BT{Z;_J_)_ = $= VAB(X,1) (2-2)

The solution to Eq. (2-2) is discussed in Chapter I, and only the
results will be presented here. In Chapter I, it is shown that if the
MHEwanonn L£4,1310 D 19

£3213" 2 Qoo wol vaiy ovesr the thickness n ot the dick, then

sclutions to Eq. (2-2) have the form

Ba(r,e,z,t) " nZOC"J"(Br) cos(nd + én) e't/T (2-3)
where
g fr.0.5) (2-4)
and
e
A (2-4)

The functions Jn(Br) arc the Bessel functions ot the first kind of

order n. If r is limited to values such that




Br s 0.5 , (2-5)

then the n = 0 term in Eq. (2-3) dominates the sum so that

By (r,6,t) = Coly(Br) cos 8pe”t/T (2-6)
We can writc
R0 B, (L,t,t) : ' a-1
K) B 2 JafkK 2-7
| B (0,0,1) 0
where
k%2 = 212 (2-8)

Thus, an estimate for the diffusion can be written
P i YL :
Ty m (2-9)

where Kz must satisfy Eq. (2-5) for r = L. It was shown in Reference

2 that the form of 1 is not changed by imposing a z dependence on the
trapped field. Hence,in any experiment for which the trapped fielc is
approximately independent of z, we would expect Eq. (2-9) to yield a
good estimate of 1. The choice of a value for the ratio R remains very
much arbitrary. All that can be said at this point is that the ratio
should be chosen in such a way as to measure the spatial variation of

the trapped field.

22



The Ratio R
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Figure 2-2

->
The Boundary Conditions on B

Applying Gauss's theorem for the surface (See Figure 2-2) of the

disc, to the equarion

-+ &
VeB(X,t) = 0
yields

> *a =
[B(r,0,z=+b/%2,t) - B (r,0,2=+b/2,t)]+n = 0

or

B,(r,0,2z=4b/2,t) = B,°(r,0,2=4b/2,t).

Thus, if the external field exhibits some spatial character over
the surface of the disc, the trapped field shares that character near
z = (+b/2), For a thin disc, and an external field which is only a
mild function of z over the thickness of the disc, it should be ap-
proximately true that the trapped field approximately retains the (r,6)

character of the parent external field. This assumption allows an



estimate of the ratio R to be made in terms of the external magnetic

field, With this assumption Eq. (2-7) can be written

B (L,6,2,t) B °(1,6,2,1)

R(K) 2 g 10707570

B, °(0,0,2,t)

Thus, it is sufficient to measure the spatial variations in the exter-

nal magnetic field.

The Experiment

a, Spatial Variations of the External Field.

The external field was mapped using a gaussmeter (Radio Frequency
Labs model 1295) equipped with a Hall-crystal probe. The mapping was
done relative to a rectangular coordinate system with origin at the
center of the rniagnet gap. The z axis is assumed parallel to the 2z
axis of the rvlindrical coordinate system fixed in the disc (Sce Figure

2-3).

Pole

e A .,-' sz I‘/

""l
+
v

e

Figure 2-3
Mapping Geometry

The results of the mapping are shown in the field contours in Figures

2-4 and 2-5,
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 Over the thickness of the disc, the variation in the z component of

the external ficld was found to be less than 2%, Since this variation
is within the experimental error of the mecasurement process, it can be
assumed that the z component of the external field is constant over the
thickness of the disc. Thus, if it is assumed that the spatial charac-
teristics of the z component of the trapped field are the same as those
of the external field, the solutions corresponding to Case I of Chap-

ter I should be applicable.

It was found that the spatial behavior of the external magnetic

field would be described by a foim

Bc(x,y) = ag + a;y +azyx ¢+ a3y2 + a4x2 + asyzx + aﬁyrz

+a7>,zxz - 88x4. (2-10)

Tha rAanffi,. ante in Bn (2-1NY vavra avalnatad hy Fav~ina thea Ffunctinn

to pass through nine experimentally determined values of the external

magnetic field. The values of the coefficients are given in Table

2-1.
186 11 14 -74 -191 -3 -20 55 55

Table 2-1

Values of the Coefficients in Eq. (2-10).

Table 2-II presents an estimate of the goodness of this fit by comparing
experimentally determined values of the external field with those cal-
culated from Eq. (2-10). The fit is by no means perfect, but sl uld

be good enough for the job at hand, i.e. for the estimation of R.
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(x,y) Bz°(x,y) B:c(x,y) Difference
Inches Calculated Experimental
(0,0) 186 gauss 186 gauss 0 gauss
(0,1/4) 174 183 9
(0,1/2) 141 143 2
(0,3/4) 96 96 0
(0,1) 50 59 9
(3/4,0) 152 142 10
(1/z,0) 174 173 1
(1/4,0) 184 180 4
(-1/4,0) 178 183 5
(-3/4,1) 58 41 17
(0,-1) 50 50 0
(-1/2,-1) 58 47 11
' - SEBC ae A R Ep—
Table 2-1I

Comparison of Fitted Function
with Mea . ured Values of
External Field

b. Estimation of the Ratio R

If the initial trapped field retains the symmetry of the external

field, then from Eq.(2-7) we can estimate the ratio R by

B e(L 8,2,t)
R = __Z_e_’__'..l__ (2-11)
B,(0,6,2,t)

Transforming Eq. (2-10) to cylindrical coordinates, and assuming that
the maximal field is trapped as the center of the coil is coincident

with the center of the gap, we can write for the value of R



(2-12)

Values of R

p - 186+11L sine+141%sinecos0-741%sin%6-19112cos’o
- 186
In Eq. (2-12) terms of the order L3 have been neglected.
for a few values of ¢ are given in Table 2-I1I.
) R*
0 rad. 1.00 - 1.03L°
/2 1.00 + 0.06L - 0.40L°
- 1.00 - 1.03L2
3n/2 1.00 - 0.06L - Q.40L2
Table 2-II1
The Ratio R
®*Note: L must be expressed in inches in this case.
. A Value for L

We require that L be a measure over which the spatial variation

in the external {field is R.

the following values for L are found.

If we arbitrarily set R = 0,95 and 0.90,

R L 6=0 rad, 6=m/2 8= 6=3n/2 R L
0.95 0.6cm l1.1cnm 0.6cm 0.7cm 0.95 0.7cm
0.90 0.8cnm l.4cm 0.8cm l.1lcm 0.90 1.0cm

Table 2-1V Table 2-V
I. Values L Values




¢
z !

of L is not strongly dependent on €, Hence, Table 2-V gives the value

As expected [rom the approximate azimuthal symmetry of B the value

of L averaged over 0 for each value of R.

d. Calculation of Estimate of 1.

From Eq. (2-9), we can estimate T by

where K satisfies Eq. (2-5) and
R(K) = JO(K) .

The data given in Table 2-VI are taken from the Handbook of Tables for

¢ . &
M bl i v w
- —_—

R = JO(K) K L Jl(K)
0.95 0.40 0.7cm 0.20
0.90 0.60 1.0cm 0.29

Table 2-VI

Parameters for Calculation of =7

Note that K just satisfies Eq. (2-5) for R = 0.95 and just exceeds the
bound establishked by Eq. (2-5) for R = 0.95. (Compare Jo with Jl in
Table 2-VI).  Using o = 2,7 x 10°7 sec™! for commercial aluminum, the

following estimates were calculated for the diffusion constant.

’/{)



R K L(cm) 1(ms)

0.95 0.40 0.7¢cm 1.2ms
0.90 0.60 1.0cm 1.0ms

Table 2-VII

Calculated Diffusion Constant

Hence, the mathematical model predicts a diffusion time constant of

3

the order of 10 ” seconds.

e. Experimental De¢termination of 1,

As has alrcady been pointed out, Figure 2-1 shows that the voltage
pulse does not go to zero as the coil leaves the region of non-zero ex-
ternal field. The resultant voltage curve (labeled ¢(t) in Figure 2-1)
as the coil leaves the region V is a result of two effects; one, the
rate of change of the external field and, two, the rate of change of

the trapped flux. We can write

(1) = 65(t) + de(t)

where
¢e(t) Z voltage due to changes in external field as the
coil exits from V.
¢f(t)  voltage due to changes in the trapped flux in the

region A,

The external magnetic field has been shown2 to b¢ nearly symmetric with
respect to the coil's entry into and exit from the region V. Hence, it

should be approximately true that in the absence of trapping of the field,



Oonlt) = = ¢, (t)
where ¢en(t) # induced voltage as coil enters V. Thus, we can write
() = 6(t) + ¢, (1) (-13)

Now, Faraday's law implies

0£(t) . - % j{ %%-ﬁ da (2-14)
og(t) = %? 3J£sz(r,c,z)dazc'tlr (2-15)

where S, is the 2z component of the trapped field (Eq. (2-3)). Thus,

wWe Ldll wiie

In¢.(t) = - £+ constant (2-16)
Figure 2-6 presents a typical plot of ¢(t) for data taken with the
disk rotating at 1700 rpm. The slope of the fitted stiaight line, re-
sults in the mecasured value for T.

T = (2.4 +0.1) x 10°° seconds.

Conclusions

The measured decay constant is about twice the estimated value.
This would imply that the length L has been underestimated by Eq. (2-11).

However, the approximate agreement indicates that the trapped field



does approximatecly retain the spatial characteristics of the parent
external field. Also, it is clear thet the parameter L (for this
experiment) is of the order of one half the radius of the detection

coil.

= A - A N -

T
.

of(t) [Arbitrary Units]
e

1 i ] | | 1 L L |
5.0 3.7 4.8 5.7 3.8 1:%8 8.0

time (ms) -
Figure 2-6

Decay of the Trapped Flux
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CHAPTER 111

Temperature Dependence of the Trapped Flux Diffusion Time

Introductiog

This chapter continues the discussion of the nature of the dif-
fusion of a magnetic ficld trapped in a rotating aluminum disc. The
impetus for the study is a paper by Babcock4 in which a model for solar
surface bipclar magnetic regions is presented. One of the essential
features of this mode! is the assumotion that the solar plasma (to the
depth of 0.1 Re) has great enough conductivity to trap (freeze-in)5
the magnetic field. It has been shownS that the diffusion time of the
trapped ficld should be proportional tuv the conductivity. The present
work was nndertaken to test this prediction and the assumptions leading

T

Experimental Procedures

The conducting medium for this and other wWOrk was a 1> 1nch dia-
meter aluminunr disc which rotated about an axis perpendicular to the
plane of the disc. A one inch diameter coil of 100 turns of fine wire
was embedded in the disc. The center of the coil was located at the
half-thickness about 6 1/2 inches from the center of the disc. The
coil was carried by the rotation of the Jisc through a magnetic field
of about 150 gauss. Chapter 2 discussed the geometry of the field.

The conductivity of the disc was varied by varying the disc temperature.
The temperature was monitored by a thermocouple clamped tightly to the
disc in the vicinity of the coil. The disc temperature was varied about
room temperature by two methods. First, the disc was cooled to about
10°C and then, while approaching thermal equilibrium with the room,
measure. ents of the diffusion time were made. For temperatures above

ambient tewperature, the disc was heated to about 120°C and measurements



of the diffusion times were made as the disc cooled to room temperature.
Diffusion times were measured over a temperature span of about 33°C,

The diffusion ol the magnetic ficld was detected by the voltage induced
at the terminals of the coil. A typical voltage pulse is shown in

Figure 2-1.

The voltage records were recorded by a recording oscilloscope with
a record speed of 64 inches/second and a writing speed (with Kodak
Direct Print Paper) of about 8 x 10S inches/second. As shown by Figure
2-1, the voltage pulse is asymmetrical about the zero cross-over (de-
fined to occur at time t = 0). The quantities appearing in Figure

2-1 are defined by:

¢(t) = induced voltage as the coil recedes from the ex-
ternal magnetic field.
¢en(t) £ induced voltage as thi coil enters the external
magnetic field.
¢e(t) = induced voltage expected 1t there were nu magiicuic

flux trapped as the disc moves out of the external
field.

“f, as in the present work, the geometry of the coil's encounter
witlh the external magnetic field is symmetric with the coils exit from
the fieldz, then one would expect that, in the absence of trapping of

the external field,

$(t) = - 65, (-t)

Clearly this is not the case. The diffusion time of the trapped field
is long enough so that an appreciable voltage is induced for about a
millisecond after the coil leaves the external field. The induced /ol-

tage ¢(t) is due to two effects, one the rate of change of the external
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field and, two, the rate of change of the trapped flux. We can express

this as

o(t) = ¢,(t) + 6.(t) (3-1)
where

0f(t) = the voltage induced by the decay of the trapped
field.

Since, in the absence of trapping, we expect symmetry in the induced
voltage with respect to entry into and exit from the external field,

we require
o (t) = = 6, (-1 (3-2)

Thus, the induced voltage due only to the diffusion of the tra; .ed

flux can be written
p(t) = 0(t) + ¢, () (3-3)

Equation (3-3) allows the effects of diffusion to be calculated from

the voltage record (Figure 2-1).

Since the diffusion is assumed? to be exponential with diffusion
constant T, we can write for the z component of the trapped magnetic

field
B,(r,0,t) = Sz(r,e)e't/T (3-4)
where S, is the spatial functional dependence of the z component of

the trapped field in the region of the coil. Now, the induced voltage

can be expressed
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1 3B~
¢e(t) = - fv‘-'n da
f A \t

3

-
where B = trapped magnetic field

A £ arca of the coil

n = unit vector perpendicular to plane of disc and coil,

b Liv. aal ¥ :
°f(t) C—'l-'- 3 ASZ da‘c (3 S)

or

In ¢£(t) = - t/T + constant (3-6)

Figure 3-1 presents a typical semilog plot of ¢f(t) versus t. The fact
that most of the data liec ncarly on a straight line supports the ar-
sumptions leading to Eq. (3-6). The slope of the line drawn through
the data provides the measured value of T,

«~- . o ®

As stated earliiei, the diflusion times were measured at various
times, and therefore different temperatures, as the disc approached
thermal equilibrium with the room. The temperature of the disc could
be monitored only when it was not rotating. Thus, the disc temperature
for each determination of 7T was estimated by interpolation of temperature
data obtained before and after each measurcment of t. Figure 3-2 pre-
sents the temperature data for a typical series of diffusion time de-
terminations. The curve drawn through the data in Figure 3-2 was used

for estimating the temperature at the various times ty.

Table 3-1 presents the measured values of the diffusion time for

various temperatures.
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T(ms) Temp® C

2.19 + 0.13 56°C Note: the errors
quoted are in Table

2.24 + 0.09 41 I and represent the
protable errors of

2.46 + 0,18 33 the measurements.

2.45 + 0.07 28

2,50 + 0.09 23

Table 3-1

Diffusion Times for
Various Temperatures

The resistivity of commercial aluminum can be rcprcsented6 by

E(T) = 1+ T x 1073 (3-7)
i aae m . P A i A ctmerd e ntlae “L- 434 F 320 nem -l n .l--‘..‘ly,l L h ennenm
- & - u = X - he - . - . [ > . > & 3 ‘

portional to the conductivity or inversely proportional to the resis-

tivity.
1
e ey
If we let T1 be some temperaturc such that T < T, < 0, then

1(T)
18y

3

* 1= 0077 x 107 (3-8)

Figure 3-3 presents a plot of the measured diffusion times (Table 3-I)
versus temperature. FEquation (3-8) wac forced to pass through the data
at T, = 23°C and is shown as the line drawn through the data in Figure

3*3,
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Conclusions

The diffusion time of the trapped field displays a temperature
dependence which is consistent with that expected of the conductivity.
This result is consistent with the assumption that the diffusion time

of the trapped field is proportional toc the conductivity of the medium,



CHAPTER 1V

taplification of the Frozen-In Magnetic Field

in ra%;ock'sd model of the sun's magnetic field, the developement
toreoidal field from the initial dipolar field results in the pro-
n of the bipolar magnetic regions (BMR) associated with sunspot
;ity. The model pictures the torcvidal field as being produced by
.+ortion of the dipolar field at depths of about 0.1R by the differen-
+... rotation of the solar plasma. The dipolar field is imagined
trapped in (frozen into) the plasma and carried with it. The toroidal
fi01d is produced and amplified as the trapped field is wrapped around
th+ rotation axis of the sun. Ultimately, as a consequence of twisting,

lvops are formed in the toroidal field. When these loops become buoyant

af, By hyeolk iheauch the snisy surrace resulting in fhe DMR'S
associated with sunspot activity. Babcock's model rests heavily on the
supposition that if initially an axisymmetric magnetic field is trapped
in a differentially rotating conducting medium, the trapped field will

¢ distorted and the distortions amplified.

A great deal of work7’8’9’10’11 has been undertaken to study the
cifects of an external field on a rotating conducting medium. Surprisingly,
ro reference can be found of work done to detect the inverse effect,
that is, to detect the distortions of the magnetic ficld by the rota-
ticn of the conducting medium. It is this latter effect that is v.tal
te Babcock's model and which Hovorka and the author propose to study

+% laboratory experiments.

Lxperinent

[t is proposed to study the distortion of an initially axisymmetric
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magnetic field by the differential rotation of an annulus of mercury,.

As shown in Figure 4-1, an annulus of mercury will be given a ro-
tational velocity 3(:); the z-dependence of the velocity will be such
that a velocity gradient in the mercury will be set up along the axis
of rotation 2. The rotational velocity of the driving rotor (Fig. 4-1)
will be slowly increased and the prescnce of an increase in an azimuthal
component of the trapped field will be detected by a coil oriented as
shown in Figure 4-1. Thus, any distortion of the initial axisymmetric
field producing a field component perpendicular to the plane of th~ coil,

will result in an induced voltage at the terminals of the coil.

Conditions Required

If the differential rotation of the mercury produces a '"twist" in
the frozen-in field of an amount A¢, this twist will be transported ir

the z direction at the magnetohydrodynanmic speeda

V = B .,
( 173 :

4upp)
where

B: the magnetic field strength
p: density of mercury

u: magnetic permability of mercury

The differential rotational speed Aw = w(z = 0) - w(z > 0) must be about
equal to the speed of twist-transport V is an amplification of the azi-

muthal component is to take place, thus,

& 4 1
8o ¥ ———yyy =3 cycle/sccond
(4mpu) e 1



for the physice! parameter pertinent to the present experiment, Such
a rotation rate is ecasily attained and, in fact, studicsg of the effects
of the magnertic ficld on the rotation of mercury at about these rotational

speeds have been reported,

Status of the Experiment

Preparations for the proposed experiment have been completed.
Drawings for the apparatus have been submitted and the rachine shop
work sturted. A system to vary the speed of the driving rotor syn-
chronously with the recording of the coil voltage is yet to be designed

and built,
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