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ABSTRACT 

The unforced  frequencies  and  mode  shapes  for  the  longitudi- 
nal  vibrations  of  an  elastic-fluid-gas  system  are  determined. 
This  system  simulates  a  fuel  tank  and  drain  pipe  subsystem  of  a 
liquid  fueled  launch  vehicle  including  the  effects  of  the  liquid 
and  ullage  gas. 

A  Rayleigh-Lagrange  solution  was  developed  and  a  computer 
program  was  written  for  the  analysis  of  the  system  having  any 
dimensions  and  physical  properties.  Frequencies  and  mode  shapes 
can  be  found  for  all  liquid  heights.  Thus,  the  effect  of  fuel 
consumption  can  be  simulated. 

Axisymmetric  breathing  of  the  structure  and  the  flexibility 
of  the  tank  bottom  were  found  to  strongly  influence  the  system 
response.  However,  the  ullage  gas  had  only  a  small  effect  and 
asymmetric  breathing  had  no  effect  on  the  longitudinal  system 
response. 

Good  correlation was obtained  between  experimental  frequen- 
cies  determined  at  NASA  Langley  Research  Center on several 
system  configurations  and  those  calculated  by  the  method 
developed  herein. 

Parametric  studies  were  conducted  to  determine  families  of 
systems  that  have  the  same  frequencies  at  varying  liquid  levels. 
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VIBRATION  CHARACTERISTICS  OF  A  CYLINDER  PARTIALLY  FILLED 
WITH  LIQUID  WITH AN ATTACHED  ELASTIC  DRAIN  PIPE 

BY 

Robert J. Kroll  and Gerard  G.  Ventre 
University  of Cincinnati 

INTRODUCTION 

Statement  of  the  Problem 

The  longitudinal  vibrations  of  an  elastic-fluid-gas  system 
are  investigated. This  system,  chosen  to  simulate  a  fuel (or 
oxidizer)  tank  and  drain  pipe  subsystem  of  a  liquid  fueled  launch 
vehicle,  consists  of  an  elastic  structure  partially  filled  with  a 
liquid  and  pressurized  with  an  ullage  gas  above  the  liquid. As 
the  quantity of liquid  in  the  system  decreases,  corresponding  to 
fuel  consumption,  the  frequencies and  mode  shapes  change. 

The  main  purpose  of  this  investigation  is  to  determine  the 
influence  of  the  variable  liquid  mass  on  the  free  longitudinal 
frequencies  and  mode  shapes  of  the  system.  The  relative  impor- 
tance  of  the  system  parameters  are  also  studied. 

Background 

Flexural  vibrations of a  launch  vehicle  are  important  because 
of  their  effect on its  control  sensors.  However,  longitudinal 
vibrations  were  considered  to  be  unimportant  until  the  advent  of 
manned  launch  vehicles.  During  their  peak  amplitude  these  longi- 
tudinal  vibrations,  called  "POGO"  oscillations,  can  temporarily 
affect  the  performance  of  a  man. 

Many  authors  have  investigated  different  aspects  of  the  POGO 
oscillations,  which  occur  primarily  in  liquid  fueled  launch  vehi- 
cles. The complete  POGO  problem  involves  interaction  among  the 
structure,  the  liquid,  the  ullage  gas,  and  the  variafions  in 
thrust.  Bauer  (refs. 1,2,3) , Hutton  (ref. 4 )  , Bhuta  and  Koval 
(ref. 5), and  Tong  (ref. 6) considered  structure-fluid  inter- 
actions  with  primary  emphasis on fluid  motion.  Fung et al.  (ref. 
7) considered  the  effect  of  an  internal  gas on the  vibration  of 
shells.  Mixson  and  Herr  (ref. 8), Leroy  (ref. 9), Chu (ref. lo), 
and Chu  and  Kana (ref. 11) treated  the  breathing  vibration  of 
shells  containing  a  liquid. ,Uchiyama and Tai (ref. 12) considered 
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longitudinal  vibrations  of  a  tank  containing  a  liquid.  Runyan 
et al.  (ref. 13) analyzed  the  longitudinal'vibrations of shells 
with  liquid  and  ullage  gas,  using  a  lumped  parameter  analysis. 
Pinson et al.  (ref. 14) investigated  the  longitudinal  vibrations 
of an entire  launch  vehicle,  using  a  lumped  parameter  analysis, 
with  the  added  provision  of  accounting  for  shell  radial  motion. 
Pengelley  (ref. 15) considered  longitudinal  vibrations  of  cone- 
cylinder  combination  shells  including  the  effect  of  an  imcom- 
pressible  liquid  and  a  compressible  ullage gas, but  neglecting 
sloshing  and  the  kinetic  energy  of  the  radial  motion  of  the  liquid. 

In  this  investigation  a  continuous  analysis  of  the  system 
described  above  is  performed.  All of the  following  effects  are 
included:  (1)  sloshing  of  the  liquid, (2) radial  and  longitudinal 
kinetic  energy  of  the  liquid, ( 3 )  compressibility  of  the  ullage 
gas, ( 4 )  flexibility of the  structure  in  both  the  longitudinal 
and  radial  directions,  and ( 5 )  the  influence of breathing on the 
longitudinal  vibrations. As previously  mentioned,  this  is  an 
analysis  of  a  subsystem  of  an  entire  launch  vehicle. 

Technical  Approach 

A Rayleigh-Lagrange analysis.is used.  Structural  dis- 
placement  functions  containing  arbitrary  coefficients  are  assumed, 
These  arbitrary  coefficients  are  the  generalized  displacement 
coordinates.  Next  the  motion  of  the  liquid is made  compatible 
with  the.  structural  displacements. A compressible  ullage  gas, 
which  is  contained  in  the  closed  volume  above  the  liquid,  is  com- 
pressed  and  expanded as  the liquid  rises  and  falls  and  acoustic 
waves  travel  through  the  gas.  The  potential  and  kinetic  energies 
of  the  structure,  liquid,  and  gas  are  substituted  into  Lagrange's 
equation,  which  yields  the  general  characteristic  value  solution 
for  the  frequencies  and  mode  shapes. 

A computer  program,  in  which  any  geometry  and  Properties Of 
the  system  can  be  input,  is  developed  to  calculate  the  frequen- 
cies and  mode  shapes  at  all  liquid  levels.  Using  this  Program, 
extensive  parametric  studies  are  made  to  determine  the  importance 
of  all  system  variables  and  the  effects  of  breathing,  ullage  gas, 
structural  flexibility, and  the  configuration  of  the  drain pipe- 

* 
The  authors  wish  to  acknowledge  the  cont,ributions  made by 

Walter  Poplarchek  of  the  Astronomy  Department  at  the  University 
of Cincinnati  to  the  preparation  and  execution of the  computer 
programs of this  report. 
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LIST OF SYMBOLS 

D 

IS 

JS 

K 

k 

Definition 
Stiffness  matrix 
Integration  parameter  in  equation'(11)  on  page 10 

Radius  of  pipe 
a/R 
Adiabatic  bulk  modulus  of  elasticity  of  gas 
Mass  matrix 
Integration  parameter  in  equation (11) on page 10 

Speed  of  sound  in  gas 

Eh3 
12 (1-p2) 
Integration  parameter  in  equation (11) on page 10 

Modulus  of  elasticity 
Integration  parameter  in  equation  (11)  on  page 10 

Integration  parameter  in  equation (11) on page 10 

Acceleration  due  to  gravity 
See  appendix  A 

Liquid  height  in  tank 

H/R 
H/a 
Integration  parameter  in  equation (11) on  page 10 

Thickness 
See  appendix A 

Modified  Bessel  function  of  first  kind,  order s 

Bessel  function  of  first  kind,  order s 

Eh 
2 1-v 

Stiffness 
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U 

V 

Vrn  (t) 

Vol 
V 

Wrn 
W 

wn (t> 

z1 

Roots of Ji = 0 

Length of tank 

L/R 
Length of pipe 

a/a 
Function of rl and t  in  equation (10) on page g 

Direction  normal  to  surface 
Pressure 
Generalized  displacement  coordinate 

Generalized  displacement  coordinate  in  the  i-direction 

Generalized  velocity  in  the  i-direction 

Radius of tank 
Radial  coordinate 
Surface  area 
Kinetic  energy 
Time 
Generalized  displacement  coordinate 

Axial  component of displacement 
Generalized  displacement  coordinate 

Generalized  displacement  coordinate 

Potential  energy 
Generalized  displacement  coordinate 

Volume 
Tangential  component  of  displacement 
Generalized  displacement  coordinate 

Radial  component  of  displacement 
Generalized  displacement  coordinate 

Function of 5 and t  in  equation (10) on page 9 
See  appendix  A 

z Axial  coordinate 

4 



Greek 

c1 P 

at 
T 
n 

nn R 
L 
- 

Y Ratio  of  specific  heats 

Yn 
n.rr a - 
R 

Y Z 0  Shear  strain 

*n 
6 

E 

(2n-1) IT 
2 

Dilatation 
Non-dimensional  axial  coordinate  for  pipe,  (2-L)/a 

E Normal  strain  in  z-direction z 

E 0 
Normal  strain  in  e-direction 

*n 

Non-dimensional  radial  coordinate  for  tank, r/R 
Function  of 0 and t in  equation (10) on  page 9 
Polar  angle 
f2n-1) ITR 

2L 
(2n-1)  na 

2R 
Poisson's  ratio 
Non-dimensional  axial  coordinate  for  tank, z/R 

Mass  density 
Non-dimensional  radial  coordinate  for  pipe, r/a 
Velocity  potential  function 
Natural  frequency 

Subscripts 

g  Gas 

g0 
R Liquid 
0 Static  equilibrium  condition 

P Pipe 

Gas  at  static  equilibrium  condition 
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Pb Pipe  bottom 
t Tank 
t b  Tank bottom 

ODerators 

V D e l  o p e r a t o r  

( * I  d (   ) / d t  

I n d i c e s  

i r j r k t m r n r p r r r s  

6 



" ". 

A N A L Y S I S  OF THE  CONTINUOUS  SYSTEM 

Configuration  of  the  System 

The  system  used  in  this  analysis  is  shown  in  Figure 1. 

The upper  cylinder  repre- 
sents  a  fuel  or  oxidizer  tank. 
For  this  investigation  the  tank $L 
bottom  is  a  flat  plate. The 
lower  cylinder  represents  the 
drain pipe. 

v 

A  liquid,  simulating  the 
fuel  or  oxidizer,  partially 
fills  the  tank  and  an  ullage 
gas  under  pressure  fills  the 
tank  above  the  liquid. i 

The  top  of  the  tank  and  the 
bottom  of  the  drain  pipe  are 
closed  with  idealized  rigid 
plates. 

Assumptions 

The  entire  system  is  sup- -2a 

ported  from  the  top  of  the  tank, 
which  is  stationary. 

The assumed  structural  dis-  Figure 1. 
placements  may be longitudinal,  System  Configuration 
circumferential, and radial  with 
the  following  constraints: (1) 
the  top  and  bottom  of the tan,k and  pipe  are  simply  supported, ( 2 )  
the  plate  is  simply  supported  at  its  outer  radius,  and ( 3 )  only 
axisymmetric  bending  of  the  plate  is  considered.  Normally  the 
tank  and  pipe  are  thin  walled  and  have  negligible  discontinuity 
stresses,  which  is  consistent  with  constraints (1) and ( 2 ) .  Small 
displacements  are  assumed  and  linear  structural  theory  is  used. 

I 

The liquid  is  incompressible  and  inviscid.  Sloshing of the 
liquid  is  allowed at its  free  surface,  but  contact  must  be  main- 
tained at all  structure-liquid  interfaces.  Draining  of  the 
liquid  is  considered  to  be  quasistatic,  thereby  eliminating  in- 
ertia  effects  associated  with  draining. 
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The ullage  gas is ideal  and  compressible.  Since  the  change 
of the liquid  and  gas  volume due to draining is assumed  to  be 
quasistatic,  the  static  ullage  gas  pressure  is  assumed  constant 
at any  liquid  height.  However, at a  given  liquid  height  there 
are  dynamic  gas  pressure  fluctuations,  because  the  vibratory  dis- 
placements  change  the  gas  volume.  Longitudinal  pressure  waves  in 
the  ullage  gas  are  considered,  using  a  one  dimensional  equation 
which  neglects  the  effect of radial  motion  of  the  tank  walls  on 
the gas. These  pressure  waves  are  totally  reflected  back  into 
the  gas  at  the  top  of  the  tank  and  at  the  liquid  surface,  be- 
cause  of  the  large  acoustic  impedance  mismatch  at  these  inter- 
faces. 

Kinematics  of  the  Structure 

The following  structural  displacements,  which  satisfy  conti- 
nuity  requirements  and  are  consistent  with  the  assumptions  listed 
above,  are  prescribed. 

For  the tank: 

Ut = C Un(t)sin(An§) 
W 

n=l (1) 

W W 

v = c  c t  r=l  n=l 'rn (t)  sin (rns 1 sin (re 1 (2) 

W w = c  C 
W (t)  sin 0,s )cos (re 1 ( 3 )  t r=O n=l 'rn 

For  the  tank  bottom: 

For  the  pipe: 

u =  P n=l ? kn(t)sin(AnL') + Dn(t)cos(Ana') + 

w = c wn (t) sin (y,~) W 

p n=l 
For  the  pipe  bottom: 

c 

u  pb = n=l W bn(t)sin(AnL') + on(t)cos(Ana') + un(t)sin(Aneld (7) 

The Un(t) , Vrn (t) , Wrn(t), .un (t) , u,(t), and  w  It) are  the  gener- 
alized  time  varying  coordinates  that  describe the structural dis- 
placements.  These  will be called  the  generalized  displacements. 

n .  
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Asymmetric  breathing  of  the  tank  is  allowed  by  the  choice  of 
vt and  wt  above.  However,  only  axisymmetric  breathing  of  the  pipe 
has  been  prescribed,  because  asymmetric  breathing  is  assumed  to  be 
a  second  order  effect  in  the  pipe. 

The displacements  prescribed  above  are  used  to  calculate  the 
strain  energy in  the  structure  in  terms  of  the  generalized  dis- 
placements.  This  strain  energy  will  then  be  substituted  into 
Lagrange's  equation. 

The kinetic  energy  of  the  structure  in  terms  of  the  gener- 
alized  velocities  will  also  be  required  in  Lagrange's  equation. 
To find  this  kinetic  energy,  the  velocities  of  all  points  in  the 
structure  are  calculated  as  the  time  derivatives  of  the  dis- 
placements. A typical  velocity  equation  is 

where fin(t) is  a  generalized  velocity. 

Kinetics  of  the  Liquid 

Laplace's  equation  (ref. 16) governs  the  motion  of  the  incom- 
pressible,  inviscid  liquid. In  terms  of  the  nondimensionalized 
coordinates  it  is 

where (0: is  the  velocity  potential  function. 

The solution  of  equation (9) is  accomplished  by  assuming 
that  the  velocity  potential  function  has  the  product  form  shown 
below  and  then  applying  standard  separation of  variables  tech- 
niques. 

The complete  solution of equation ( 9 )  is 



JS 
and  Is  are  respectively  Bessel  functions  and  modified  Ressel 

functions  of  the  first  kind of order s .  Neither  the  Bessel 
function  nor  the  modified  Bessel  functions  of  the  second  kind  ap- 
pear  in  equation (ll), because  of  their  singularities  at n = 0 
which  is  an  admissible  point  in  our  system. 

Rather  than  use one velocity  potential  function, (p, for  all 
of the  liquid  in  the  system,  it  is  more  convenient  to  consider  a 

for  the  tank  liquid  and  a + for  the  pipe  liquid.  Both +t and 
have  the  form  of  equation (ll), each  having  its  own  set  of 

@t 

@P 
P 

constants  of  integration  such  as  Asi(t). These  constants of inte- 
gration  are  determined from the  following  boundary  conditions: 

6. pt dA I = J §=L' A pp dA 1 ~ = 0  

Boundary  conditions 1 through 4 insure  contact  between  the 
liquid  and  the  structure  at  the  tank wall,  pipe  wall,  tank  bottom, 
and  pipe  bottom  respectively.  In  boundary  condition 3 ,  a  negli- 
gible  exchange  of  liquid  between  the  tank  and  pipe  is  assumed. 

10 



Boundary  condition 5 applies  to  the  free  surface  (ref. 17) 
condition  of  the  liquid. In applying  this  free  surface  condition, 
the  ullage  gas  dynamic  pressures  are  assumed  to  be  small  compared 
to  the  static  pressure, po. Essentially,  this  implies  that  the 
dynamic  pressures  have  negligible  influence on the  shape  of  the 
liquid  surface  waves. 

In  boundary  condition 6 the  total  hydrostatic  force  at  the 
top of the  pipe  is  the  same  when  calculated  using  either  the 
pressure  in  the  tank  or  pipe.  This  is  a  simplification  over  re- 
quiring  the  pressure  at  each  point  at  the  top  of  the  pipe  to  be 
the  same  in  both  the  tank  and  pipe. 

The  resulting  equation  for I$, is 

4, - (LI- H I -  - - § )  C fin(t)sin(AnL') 1 m 
" 

R "t n=l 

+ h3(r,j,n)cosh(k  §)Jr(k . n ) l  cos(re)irn(t) 
rj r1 (12) 

r 1 

The  functions  hl  (r,n)  through  h7  (j ,n)  in  equation  (12)  are  listed 
in  Appendix A,  which  is  a  listing  of  reference  equations. 

Similar  equations  for I$ are  also  listed  in  Appendix A .  

The  kinetic  energy of the  liquid  in  terms  of  the  generalized 
velocities  will  be  required  in  Lagrange's  equation. To find  this 
kinetic  energy,  the  velocity  component  in  the  n  direction, Gn, at 
each  point  in  the  liquid  is  calculated  by  the  equation  (ref. 16) 

P 

;In 
= - *  

an 

When 4, or are  substituted  into  equation  (13)  the  velocity 
components  are  found  in  terms  of  the  generalized  velocities, fin(t), 
etc. 

11 
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Kinematics  of  the  Ullage  Gas 

Although  the  actual  motion  of  the  gas  is  three  dimensional, 
it is  its  longitudinal  motion  that  primarily  affects  the  longi- 
tudinal  vibrations  of  the  system.  Therefore,  the  displacement  of 
any  point  in  the  gas  is  assumed  to be one-dimensional  as  follows, 

The Qn(t)  are  new  generalized  displacements  which  account 
for  the  one-dimensional  acoustic  waves  that  travel  between  the 
liquid  surface  and  the  top  of  the  tank. 

The  other  terms  in  equation (14) account  for  the  one-di- 
mensional  displacements  of  the  gas  caused  by  the  longitudinal 
motion of the  liquid  averaged  over  its  free  surface. This  aver- 
age  displacement  is  determined  as  follows: (1) the  longitudinal 
velocity  at  any  point  in  the  liquid  is  obtained  by  substituting 
the $t of  equation  (12)  into  equation (13), where  n  is  the  axial 
direction;  (2)  when 5 = L ' - H ' ,  the  velocity  on  the  free  surface 
is  found; ( 3 )  then  this  velocity  is  integrated  with  respect  to 
time  to  find  the  displacement:  and ( 4 )  the  displacements  are 
integrated  over  the  area  of  the  free  surface  and  divided  by ITR . 2 

From  the  gas  displacement  function  of  equation (14), the 
dilatation  at  any  point  in  the  gas  will  be  calculated.  Because 
the  dilatation  changes  very  rapidly,  it  is  assumed  that  little 
heat  transfer  can  occur  and  the  process  is  adiabatic  (ref. 18). 
The total  potential  energy  in  the  gas,  which  will  be  needed  in 
Lagrange's  equation,  is'  found  from  the  dilatation  (ref. 19). 

The  longitudinal  velocity  in  the gas,  which is  found  from 
the  time  derivative  of u , is  a  function of the  generalized  vel- 
ocities fin (t) , lon(t),  Un(t),  and  bn(t). The  kinetic  energy  of 
the  gas  is  found  from  this  velocity  function  for  substitution 
into  Lagrange's  equation. 

&- 

Equations  of  Motion 

Lagrange's  equation  (ref.  20)  for  the  unforced  vibrations  of 
this  system  is 
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i = 1,2,3, ... 

where T is  the  total  kinetic  energy  and V is  the  total  potential 
energy  of  the  system. The  symbols qi and ii represent  the,  gener- 
alized  displacements  and  the  generalized  velocities  respectively. 

The total  kinetic  energy  of  the  system  is  the  sum  of  the 
kinetic  energies  of  each  component,  or 

T = T - + T   + T   + T   + T R  t  tb P Pb + T  
g (16) 

The total  potential  energy  of  the  system  is  the  sum  of  the 
potential  energies  of  each  component,  or 

v = v  t + V t b + V   + v  
P 9- 

( 1 7  1 

Since  the  displacements  are  measured  from  the  static  equilibrium 
configuration  of  the  system,  the  potential  energy  associated  with 
the  longitudinal  (vertical)  displacement  of  weight  is  cancelled 
by the  change  in  strain  ener.gy  associated  with  the  stresses  at 
equilibrium.  For  this  reason  the  strain  energy of the  structure 
is  referred  to  a  zero  value  at  equilibrium  and  no  potential  ener- 
gy  associated  with  the  weight  of  the  structure,  liquid,  or  gas  is 
included.  Therefore,  the  first  three  terms  in  equation (17) are 
the  strain  energies of the  tank,  tank  bottom,  and  pipe  respective- 
ly. The  last  term  is  the  potential  energy  in  the  gas  due  to  its 
dilatation. The liquid  has  no  potential  energy  because  it  is  in- 
compressible. 

Each  kinetic  energy  component  in  equation (16) and  each  po- 
tential  energy  component  in  equation .(17) is  an  integral.  All  of 
these  integrals  are  listed  in  Appendix B. 

Equation  (15)  is  written  once  for  each  generalized  dis- 
placement  and  corresponding  generalized  velocity.  For  instance, 
for  U1  and  U1 it  is 

When  equations  (16)  and (17) are  substituted  into  equation  (18) , 
there  results  six  kinetic  energy  derivative  and four potential 
energy  derivative  terms. 

13 



For  instance,  the  kinetic  energy  of  the  tank  cylinder  is 
9 

where pt is  the  mass  density  of  the  tank  material.  The  partial 
derivative  is 

Since  u  v  and wt  are  linear  functions  of  the  generalized  ve- 
locities,  then  equation  (20) is also  linear  in  these  generalized 

t'  t' 

d "lt velocities. The  term - (7) is  obtained  by  differentiating 
dt au, 

I 

equation  (20)  and  is  a  linear  function of the  generalized  acceler- 
ations,  such  as U1, U2, Wol, ul, etc.  Assuming  the  motion  of  the 
system  is  simple  harmonic,  the  generalized  acceleration  can  be 
replaced  by  the  negative  of o2 times  the  corresponding  generalized 
displacement.  For  instance 

..  .. .. 

.. u l - - w  - 2 
u1 (21) 

d a Tt Therefore,  the  term ( y ) ,  which  is one of the  contributions 
a u1 

to  the  first  term  of  equation (18) , involves w and  linear  combi- 
nations  of  the  generalized  displacements. 

Similarly,  the  strain  energy  of  the  plate  bottom  is 

Equation  (22)  involves  the  squares  and  products  of  the  gener- 
aVtb alized  displacements. The equation  for - , which  is  one  of 

the  contributions  to  the  second  term  of  equation (18), is linear 
in  the  generalized  displacements. 
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Many  kinetic  energy  derivatives,  such as --(,- 1, and po- d aTt 
dt au, I 

avtb tential  energy  derivatives,  such  as -- are  substituted  into 

equation (18) to  produce  an  equation  of  the  form 
aul 

where  f (q ) and  g  (q  are  linear  functions  of  the  generalized 
displacements. 

1 i   1 i  

Equation  (23)  is  Lagrange's  equation  for  the  generalized  dis- 
placement, U1. One  equation  for  each  generalized  displacement 
is  formulated  and  a  set  of  simultaneous  equations  of  the  follow- 
ing  form  is  generated 

+ = o  

Equation  (24) can be written  in  matrix  notation  as 

where [A] and [B] are  square  matrices  and  {qlis  a  column  matrix 
of  the  generalized  displacements. 

General  Characteristic Value Equation 

Equation  (25)  governs  the  unforced  vibrations  of  the  system. 
It  is  a  general  characteristic  value  equation  (ref.  21),  whose 
solution  furnishes  the  natural  frequencies  of  the  system  as  the 
characteristic  values  and  the  corresponding  mode  shapes  as  the 
characteristic  functions. 

In  the  Rayleigh-Lagrange  analysis,  accuracy  is  improved  by 
using  more  generalized  coordinates  to  approximate  the  motion  of 
the  continuous  solution.  Therefore,  the  matrices  are  of  large 
order. Also the  individual  elements  in  the A and B matrices  are 
very  complicated  and  involve  lengthy  calculations.  For  these 
reasons,  the  solution  of  equation  (25)  has  been  programed  for  a 
digital  computer. 
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COMPUTER PROGRAM 

A  computer  program  has  been  developed  that  will  determine 
the  frequencies  and  mode  shapes  for  any  system  consistent  with 
Figure 1 and  the  assumptions  previously  stated.  The  program  is 
written  in  Fortran IV language  and  is  executed on  an IBM 360/50 
computer. The  flow  chart  is  presented  in  Appendix C. 

Any  numerical  values  for  the  dimensions  of  the  system  and 
the physical  properties  of  the  structural  materials,  the  liquid 
and  the  gas  may  be  used-  as  input. The  specification  of  the 
number  and  types  of  generalized  displacements  is  also  required  as 
input  to  the  program. 

The program  uses  the  input  to  calculate the  individual  ele- 
ments  of  the  A  and B matrices  in  equation ( 2 5 ) .  Then  a  subrou- 
tine  finds  the  characteristic  values  and  functions,  frequencies 
and  mode  shapes, by  using  a  Jacobi  (ref. 2 2 )  matrix  diagonalization 
technique. 

The  output  of  the  computer  program  consists  of  the  frequen- 
cies  and  corresponding  mode  shapes  for  the  system  at  all  liquid 
heights, H, which  were  specified  in  the  input  data.  One 
frequency  and  corresponding  mode  shape  is  obtained  for  each 
generalized  displacement  specified  in  the  input.  The  frequencies, 
in  Hz,  are  printed  in  ascending  order  and  the  corresponding  mode 
shapes,  which  are  normalized  to  produce  a  maximum  generalized 
displacement  equal  to  unity,  are  printed  next  in  the  same  order. 
The input  data  and  generalized  displacements  specified  are  also 
printed  in  a  convenient  format.  A  typical  computer  printout  is 
shown  in  Appendix C. 

After  the  program  has  been  compiled,  each  data  point  is  exe- 
cuted  in  a  few  seconds  up  to  about  two  minutes,  depending on  the 
number  and  types  of  generalized  displacements  specified  in  the 
input. In  the  analysis,  a  modified  Schwarz  integral  of  the  form 

is  encountered.  Instead  of  using  a  subroutine in  this  computer 
program  to  calculate  the  values  of  Zl(j,m)  for each  data  point, 
a  table  of  values  was  generated  using  Simpson's  Rule  in  a  sepa- 
rate  computer  program  and  the  values  were  read  into  this  program. 
This  represents  a  substantial  saving of  execution  time  for  each 
data point. The  zeros  of Ji are  also  needed  and  were  read  into 
the  program  in  preference  to  using  a  subroutine.  This  also  re- 
duces  the  execution  time. 
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A  plotter  program  has  been  developed  to  produce  a  graph  of 
the  two  lowest  frequencies  versus  liquid  height.  If a plot  is 
desired,  the  punched  output  cards of the  computer  program are 
used in  the  plotter  program,  which  draws  the  graph  with  the  axes 
annotated  and  the  system  properties  listed..  A  typical  computer 
plot  is  included in Appendix  C. 

INFLUENCE  OF THE GENERALIZED  DISPLACEMENTS 
ON THE  SYSTEM  RESPONSE 

Discussion 

The  computer  program  facilitates  the  study  of  many  configu- 
rations  of  the  basic  system  shown  in  Figure 1. It  also  permits 
the  selection  of  a  large  number  of  generalized  displacements  for 
increased  accuracy  of  the  frequencies  and  mode  shapes  obtained  by 
the  Rayleigh-Lagrange  method.  However,  care  must  be  exercised  in 
the  types  of  generalized  displacements  selected  as  well  as  in 
their  number.  Because  the  motion  being  studied  is  longitudinal, 
it is  reasonable to select  many  longitudinal  generalized  dis- 
placements,  such  as  Un(t),  Un,(t), 
un(t),  and  Qn(t) . Since 

- 

breathing can  influence  the 
longitudinal  motion,  generalized 
displacements  such  as  Vrn  (t) , T'i 
Wrn (t) , and  wn(t)  should  also  be I /  I I  
selected,  but  in  smaller  numbers. I 

The  system,  whose  di- I 120" 

mensions  are  shown  in  Figure 2, 
will  be  used  to  study  the  influ- 
ence of the  generalized  dis- 
placements  specified  in  the  com- 
puter  program on the  frequencies 
calculated.  This  system,  which 
is  made  of  aluminum  and  contains 
water  and  air at atmospheric 
pressure,  was  tested  at  NASA 
Langley  Research  Center  by 
Harold B. Pierce.  These  were 
preliminary  tests  to  determine 
the  frequencies  in  the  range 
expected  from an  approximate 
analysis  of  its  longitudinal 
vibrations.  Hereafter,  this 
system  will  be  called  the 

I 
-15"- 0.016" 

I 
I 

Figure 2 .  
Standard  Configuration 
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"standard  configuration". 

The  frequencies  for  the  standard  configuration  will  be  de- 
termined  from  several  computer runs,  each  of  which  contain  differ- 
ent  combinations of generalized  displacements.  These  runs  will 
be  of  increasing  complexity  to  evaluate  the  influence  of  each 
type  of  generalized  displacement on the  calculated  frequencies. 

First  the  system  will  have  a  rigid  tank  bottom,  no  ullage 
gas  effects,  and  only  axisymmetric  breathing.  This  is  ac- 
complished  by  assigning  values  of  zero  to  the un (t)  terms,  the 
gas  density  and  bulk  modulus,  and  the  subscript  r  respectively. 

Next  the  tank  bottom will be  made  flexible  by  selecting  some 
nonzero Un (t)  terms. 

Then  the  effect  of  the  ullage  gas  is  considered by  selecting 
nonzero  gas  density  and  bulk  modulus  and  nonzero  Qn(t)  terms. 
For  this  study  the  tank  bottom  is  made  rigid  again  by  assigning 
zero  to  the un (t)  terms. 

In  the  next  run  the  ullage  gas  effects  are  included  and  the 
tank  bottom  is  also  made  flexible. 

Finally  the  effect  of  asymmetric  breathing is evaluated  by 
letting the  subscript  r  be  nonzero. 

The  purpose  of  these  studies  is  to  determine  the  relative 
importance  of  the  different  types  of  generalized  displacements  on 
the  calculated  frequencies. The  experimental  frequencies  will 
then  be  compared  to  the  computed  frequencies  to  evaluate  the  ef- 
fectiveness  of  the  different  methods of selecting  the  generalized 
displacements. 

Rigid  Tank  Bottom - No  Ullage  Gas 

The generalized  displacements  selected  for  this  computer  run 
are ul, U2, U3, W1, W2, W3, ul, u2, u3, and wl. Note  that  when 
r = 0, all  terms  in  Vrn(t)  disappear  and  the  Wrn(t)  terms  can  be 
written  as Wn(t). 

The  three  lowest  frequencies  versus  liquid  height, H, are 
shown  in  Figure 3. 
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The uncoupled  frequency  of 
the  pipe  is  approximately 85 Hz 
and  the  uncoupled  frequency  of 
the  tank  varies  inversely  with 
the  square  root  of  the  liquid 
height  from  approximately 163 to 
16 Hz. These  are  shown  by 
dotted  lines  in  Figure 3 .  

The  tank  motion  is  relative- 
ly  uncoupled  from 10 to  '120 
inches  as  shown  by  the  lowest 
curve. It would  follow  the 
dotted  curve  between 0 and 10 
inches  if  it  remained  uncoupled. 
However,  it  couples  strongly  with 
the  pipe  in  this  region. 

In  the 35 to 70 inch  range 
the  pipe is also  coupled  with 
tank  breathing,  which  is  the 
second  lowest  curve  at  high 
liquid  heights  and  the  highest 
curve  below 50 inches.  The  pipe 
is  also  coupled  with  another 
breathing  mode  in  the  90-120 
inch  range. 

Thus,  the  axisymmetric 
breathing  can  be  seen  to  have  a 
considerable  influence  on  the 
longitudinal  frequencies  of  the 
system. 

Figure 3 .  
Rigid  Bottom - No Ullage  Gas 

Flexible  Tank  Bottom - No Ullage  Gas 
The  generalized  displacements  selected  for  this  computer  run 

The three  lowest  frequencies  versus  liquid  height  are  shown 
on Figure 4 .  For  reference  the  curves  of  Figure 3 are  shown 
dotted  on  Figure 4 .  

The lowest  curve  corresponds  primarily  to  the  motion of the 
tank  bottom.  However,  the  tank  bottom  also  couples  strongly  with 
the  other  motions. 

Due to coupling  with  the  tank  bottom,  the  tank  frequency 
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curve is raised  and  now  couples  with the pipe  in  the 0 to 40 inch 
range. 

The pipe  motion is so highly  coupled  that  it is virtually 
indistinquishable  in  Figure 4 .  

The tank  breathing  curve is also  raised  in  the 40 to 120 
inch  region  due to coupling  with  the  tank  bottom. 

The most  significant  effect  of  including  the  flexibility of 
the  tank  bottom  is  the  lowering  of  the  fundamental  frequency  of 
the system.  The  other  frequencies  are  also  changed  significantly 
due  to  increased  coupling. 

Rigid  Tank  Bottom  with  Ullage  Gas 

The  generalized  displacements  selected  for  this  computer  run 
are U1, U2, U 3 ,  W1, W2, ul, u2' u3, wl, Q,, Q,, Q 3 ,  Q4, and Q5. 

0 20 40 60 6J 100 110 

Liquid  Height  (inches)  Liquid  Height  (inch=?) 

Figure 4 .  Figure 5. 
Flexible  Bottom - No Ullage  Gas  Rigid  Bottom  With  Ullage Gas 
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The bulk  modulus  is 21 pounds  per  square  inch  and  the  gas  density 
is 1.376 x slugs  per  cubic  inch.  These  correspond  to  the  air 
at  atmospheric  pressure  of  Langley's  experiment. 

The  six  lowest  frequencies  versus  liquid  height  are  shown on 
Figure 5. 

These  frequency  curves  are  quite  different  from  those  of 
x. Figure 3 where  the  ullage  gas  was  not  considered.  However,  any 

one  curve  is  composed of  structure  motion  at  certain  liquid 
heights  and  acoustic wave  motion  at  other  liquid  heights.  For 
instance,  the  lowest  frequency  curve  corresponds  to  acoustic 
motion  from 0 to  about 60 inches  and  tank  motion  from 60 to 110 
inches. 

In  Figure 6 the  frequencies  of  the  pure  acoustic  waves  are 
shown  as  dotted  lines  and the  structural  frequencies  from  Figure 
3 are  shown  solid.  Where these  curves  cross  in  Fiqure 6 there  is 
coupling and  the  coupled  curves  pass  above  and  below  the  inter- 

I I . .  I 1 I t  I I - I T '  
LANGLEY  TEST  DATA 

0 Excitation at tank 
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Figure 6 -  Figure 7. 
Separate  Structural 
and  Acoustic  Modes 

Structural  Modes 
with  Acoustic  Effects 
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sections.  In  this  manner  the 
curves  of  Figure 6 can be  corre- 
lated  to  those of Figure 5. 

Therefore,  the  frequencies 
corresponding  primarily to 
structural  motions  are  only 
changed  at  certain  liquid  heights 
where  they  are  coupled  with  the 
acoustic  waves.  The  solid  curves 
in  Figure 7 show  the  structural 
frequencies  as  altered  by  the 
acoustic  waves. The dotted 
curves  in  Figure 7 are  identical 
to  Figure  3  where  no  ullage  gas 
is  considered. 

A s  may  be  seen  from  Figure 
7, the  ullage  gas  has  only  a 
small  effect  on  the  structural 
frequencies.  However,  numerous 
acoustic  wave  frequencies  are 
also  present.  For  the  case  of 
forced  vibrations,  the  ullage  gas 
can  have  infinite  impedance  at 
certain  forcing  frequencies,  and 
reduce  the  amplitude of  the 
structural  motion  to  zero  (ref. 
23). 

0 20 40 60 8 0  100 110 

Liquid Height  (inches) 

Figure 8. 
Flexible  Bottom  with  Ullage  Gas 

Flexible  Tank  Bottom  with  Ullage  Gas 

The generalized  displacements  selected  for  this  computer run 
- 

are  U1,  U2' U3, W1, U1, U2, U3, ul, u2, wl, Q,, Q 2 t  Q,, Q4, and 
Q 5 .  The  gas  properties  are  the  same  as  the  previous  computer  run. 

- - 

The  six  lowest  frequencies  versus  liquid  height  are  shown  on 
Figure 8. 

In  general,  the  results  are  similar  to  those  where  the  tank 
bottom  is  rigid.  The  frequency  curves  are  made  up  of  the 
structural  frequency  curves  and  the  acoustic  wave  curves  with 
coupling at certain  liquid  heights.  Again  the  structural  frequen- 
cies  are  only  affected  to  a  small  extent  by  the  ullage  gas. A l s o ,  
as  before,  numerous  acoustic  wave  frequencies  are also present 
and  they  may  have  infinite  impedance  at  certain  forcing  frequen- 
cies. 
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Asymmetric  Breathing 

When  some  asymmetric  breathing  terms  are  added  to  a  previous 
axisymmetric  computer run, the  new  list  of  frequencies  and  mode 
shapes  contain  those  of  the  axisymmetri,c  case  plus  new  uncoupled 
frequencies  and  mode  shapes  that  correspond  to  the  asymmetric 
breathing.  Therefore,  asymmetric  breathing  has  no  effect on the 
longitudinal  frequencies  and  mode  shapes  of  the  system,  because 
a  linear  analysis  is  used. 

The  cross  sectional  area  of  the  tank  at  any  longitudinal 
station  is  not  altered  by  asymmetric  breathing,  because  there  is 
as  much  area  subtracted  due  to  inward  radial  displacements  as  is 
gained  from  outward  radial  displacements.  Thus  for  asymmetric 
breathing,  there  is  no  tendency  for  the  liquid  to  rise  or  fall 
due to cross  sectional  area  change.  This  is  obviously  not  the 
case  for  axisymmetric  breathing.  Therefore,  the  conclusion  that 
axisymmetric  breathing  does  and  asymmetric  breathing  does  not 
affect  the  longitudinal  frequencies  is  physically  reasonable. 

Comparison  of  Experimental  and  Calculated  Frequencies 

The  Langley  experiments  on  the  standard  configuration  were 
performed  only  for  low  liquid  levels,  up  to  approximately 15 
inches. The  experimental  frequencies  are  shown  as  data  points  on 
Figures 3, 4 ,  5, 6, and 8. Circled  data  points  are  the  frequen- 
cies  for  excitation of the  system  at  two  diametrically  opposite 
points  on  the  bottom  edge  of  the  tank.  Triangle  data  points  are 
the  frequencies  for  excitation  of  the  system  at  the  bottom  of  the 
pipe.  There  are  small  discrepancies  between  the  frequencies  de- 
termined  by  the  two  methods of excitation. 

As can  be  seen  in  Figures 3 and 4 ,  the  general  correlation 
is  poor  when  no  ullage  gas  effects  are  included.  Many  of  the  ex- 
perimental  data  points  are  completely  uncorrelated  with  the 
curves. 

In  Figure 6 most  experimental points  correlate  with  the 
curves  that  are  primarily  acoustic wave  motion.  The  experimental 
points  near 8 0  Hz do  not  correlate with  any  curve. 

In Figure 8 all  of  the  experimental  points  correlate  with 
the  curves. The  two  lower  sets  of  points  are  primarily  acoustic 
wave  motion  and  the  points  near 8 0  Hz are  primarily  structural 
motion. The 80 Hz points  also  correlated  in  Figure 4 where  no 
ullage  gas  effects  were  considered. 

Pierce  noted  that  the  experimental  frequencies  near 35 Hz 
were  "full of harmonics".  The 35 Hz frequency  is  the  first  har- 
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monic  acoustic  wave,  while  the  other  harmonic  frequencies  noted 
by  Pierce  are  the  fundamental at about 18 Hz plus  all  the  other 
harmonics  of  the  acoustic  waves.  This  can be observed on Figure 
6. 

Except  for  the  frequencies  hear 80 Hz, most  of  the  experi- 
mental  frequencies  found  were  associated  with  acoustic  wave 
motion.  The  fundamental  structural  motion of the  system,  which 
is primarily  tank  bottom  bending,  was  not  observed  experimentally, 
because  the  tests  were conducted.above this  frequency. 

INFLUENCE  OF GEOMETRY ON SYSTEM  RESPONSE 

Discussion 

In  this  section  the  influence  of  changing  dimensions  from 
those  of  the  standard  configuration  will  be  investigated.  One 
dimension  will  take  on  different  values  while  all  others  remain 
standard.  The  frequencies  will  be  determined  at  all  liquid 
heights  for  each  value  of  that  dimension.  This  procedure  will  be 
repeated  using  different  dimensions  as  the  nonstandard  value. 

No ullage  gas  effects  will  be  included  in  these  investi- 
gations,  because  the  structural  frequencies  are  masked by  these 
effects.  Only  the  changes  in  the  fundamental  frequency  will  be 
presented. 

Rigid  Tank  Bottom - No  Ullage  Gas 
The frequency  versus  liquid 

height  curves  for  variations  of 
the  tank  radius,  the  tank  wall 
thickness,  the  pipe  length  (or 
pipe  radius),  and  the  pipe  wall 
thickness  are  shown  in  Figures 9 
to 12 respectively. In each 
case  the  fundamental  frequency 
corresponds  to  the  uncoupled 
frequency of the  tank  above 
about 30 inches  with  some  pipe 
coupling  below 30 inches  or  less. 

In  Figure 9 an  increase  in 
tank  radius  decreases  the  funda- 
mental  frequency,  because  the 
mass  of  the  liquid  in  the  tank 
is  increased. At low  liquid 
heights  the  curves  converge  be- 

0 20 40 60 80 100 120 

Liquid Height (inches) 

Figure 9. 
Variabie  Tank  Radii 
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cause  of  coupling  with  the  pipe. 

I 

An  increase  of  tank  wall  thickness  increases  the  fundamental 
frequency  as  shown  in  Figure 10, because  the  tank  stiffness  is 
increased.  Again  the  curves  tend  to  converge at low  liquid  levels 
because  of  pipe  coupling. 

An  increase  of  the  pipe  length  (or  pipe 
the  uncoupled  pipe  frequency,  be- 
cause  the  pipe  mass  increases. 
This  in  turn  causes  the  coupling 
between  the  tank  and  pipe  to  oc- 
cur  over  a  greater  range  of  liq- 
uid  heights. A decrease  of  pipe 
length  (or  pipe  radius) will 
have  the  opposite  effect.  For 
instance,  coupling  is  almost 
eliminated  for R = 60" as  shown 
in  Figure 11. 

Decreasing  the  pipe  wall 
thickness  decreases  the  uncoupled 
pipe  frequency,  because  the  pipe 
stiffness  decreases.  This  again 
causes  the  coupling  to  occur  over 
a  greater  range of liquid  heights 
as  shown  in  Figure 12. 

4 0  6 0  80 100 120 

Liquid  Height  (inches) 

Figure 11. 
Variable  Pipe  Lengths 

9 9  I I 

radius)  decreases 

0 20  4 0  6 0  80 100 120 

Liquid  Height  (inches) 

Figure 10. 
Variable  Tank  Wall  Thickness 

0 20  4 0  6 0  8 0  100 120 

Liquid  Height  (inches) 

Figure 12. 
Variable  Pipe  Wall  Thickness 
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Flexible  Tank  Bottom - No Ullage  Gas 
The frequency  versus  liquid  height curves  for  variations  of 

the  tank bottom  thickness,  tank  radius, and  pipe  lensth  (or  pipe 
radius)  are  shown  in  Figures 13 
to 15 respectively. In each  case 
the  fundamental  frequency  corre- 
sponds  primarily  to  the  motion  of 
the  tank  bottom. 50 

" 

- 4 0  
a2 

30 An  increase  in  the  tank  bot- 
tom  thickness  stiffens  the'  tank 
bottom  and  raises the  fundamental 
frequency as  shown  in  Figure 13. 

- 
x 
E $ 20 
Lp 

L4 10 

An  increase  in  tank  radius 
increases  the  mass  of  liquid  in 
the  tank,  which  must  be  supported 

0 20 4 0  60  ac 
Liquid   He ight   ( inches )  

by  the  tank  bottom,  and  also  de- 
creases  the  bending  stiffness  of Variable Tank Bottom Thickness 
the  tank  bottom.  Both  of  these 

Figure 13. 

effects  tend  to  lower  the  funda- 
mental  frequency as shown  in 
Figure 14. 

Changes  in  the  pipe  length 
(or  pipe  radius)  at  high  liquid 
heights  have  no  effect on the 
fundamental  frequency,  because 
the  slight  change  in  mass  of  the 
liquid  in  the  pipe  compared  to 
the  liquid  in  the  tank  is  insig- 
nificant.  However,  at  low  liquid 
levels  the  pipe  liquid  becomes 
comparable  to  the  tank  liquid, 
and  the  mass  supported  by  the 
tank  bottom  is  significantly 
altered  by  changes  in  pipe  length 
(or  pipe  radius).  Increasing 
the  pipe  length  (or  pipe  radius) 
increases  the  mass  supported  by 
the  tank  bottom,  and  decreases 
the  fundamental  frequency as 
shown  in  Figure 15. 

Changes  in  the  tank  wall 
thickness  have  little  effect on 
the  fundamental  frequency,  be- 
cause  they  do  not  change  the  li- 
quid  mass  supported  by  the  tank 
bottom  or  the  tank  bottom 

6 0  

- 
I 

40 

x 
C 
0 g 20 
W 
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Figure 14. 
Variable  Tank  Radii 
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Variable  Pipe  Lengths 
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LANGLEY TEST DATA 

E x c i t a t i o n  a t  t a n k  bottom 
A E x c i t a t i o n  a t  p i p e  bottom 

! 0 
7 8 9 10 11 

L i q u i d  Height ( i n c h e s )  

o-" I I  
8 

LANGLEY TEST DATA 

E x c i t a t i o n  a t  tank   bo t tom 1 
9 10 11 12 

Liquid   Height   ( inches)  

Figure 16. Figure 17. 
Steel  Pipe  Configuration No Pipe  Configuration 

stiffness. The  changes  of  the  uncoupled  tank  frequency  do  not 
affect  the  fundamental  frequency,  because  they  are  uncoupled. 

Changes  in  the  pipe  wall  thickness  have  little  effect  on  the 
fundamental  frequency  for  the  same  reasons  cited  for  changes  in 
the  tank  wall  thickness. 

Comparison  of  Experimental  and  Calculated  Frequencies 

The  experimental  investigations  conducted  at  Langley  Research 
Center  by  Pierce  included  two  geometries  other  than  the  standard 
configuration. The  first  used  a  steel  pipe  with  a  wall  thickness 
of 0.12", instead  of  an  aluminum  pipe. The second  had  no  pipe. 
These  tests  were also performed  only  for  low  liquid  levels,  up  to 
approximately 15 inches. 

Computer  runs  were  made  for  these  two  configurations  in- 
cluding  the  effects of a  flexible  tank  bottom  and  the  ullage  gas. 
The  computed  frequencies  for  the  steel  pipe  configuration  are 
shown  in  Figure 16 with  the  experimental  data  shown  by  circled 
and  triangle  points  as  defined  on  page 23. Similar  curves  and 
experimental  data  for  the  no  pipe  configuration  are  shown  on 
Figure 17. The  correlation  between  the  calculated  and  experi- 
mental  frequencies is satisfactory. 
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PARAMETRIC  STUDIES OF SYSTEM RESPONSE 

Discussion 

Certain  combinations  of  system  dimensions  and  physical  prop- 
erties  can  be  grouped  together  to  form  parameters.  All  systems 
having  the  same  numerical  values of all  parameters  constitute  a 
family  having  essentially  identical  system  responses. 

In  this  section  these  parameters  will  be  identified  and  com- 
puter  calculations  will  be  used  to  check  their  validity. 

The computer  program  uses  individual  dimensions  and  physical 
properties  rather  than  parameters as  input. No attempt  has  been 
made to change  the  input  format  to  accept  the  parameters.  Once 
the  validity  of  the  parameters  has  been  proven,  the  program can 
be  run  using  dimensions  which  yield  the  desired  values  of  the 
parameters  and  these  runs  are  valid  for  all  systems  having the 
same  values  of  the  parameters. 

Definition  of  System  Parameters 

It is  reasonable  to  expect  all  systems  that  have  identical 
uncoupled  frequencies  of  each  component  and  also  the  same  ratio 
of  masses  of  the  components  to  be  members  of  the  same  family  and 
have  identical  frequency  responses. 

Therefore,  it  is  postulated  that  a  family  of  systems,  which 
have  the  basic  configuration  shown in  Figure 1, have  practically 
identical  frequency  curves  when  the  following  conditions  are 
satisfied: 

1. The  mass  ratios  of  the  liquid  in  the  tank  to  the  liquid  in 
the  pipe to the  ullage  gas  are  the  same  for  all  systems. 

2. The  ratios of  the  stiffness  of  the  tank  to  the  pipe  to  the 
tank  bottom  to  the  ullage  gas  are  the  same  for  all  systems. 

3 .  The  ratio  of  the  stiffness  divided  by  the  mass,  that  is 
the  square  of  the  uncoupled  natural  frequency,  of  each  of 
the  tank,  pipe,  tank  bottom,  and  ullage  gas  are  the  same 
for  all  systems. 

Obviously,  if any  two  of  the  above  conditions  are  satisfied,  then 
the  remaining condition is automatically  satisfied. 

The approximate  stiffnesses  of  the  tank,  pipe,  tank  bottom, 
and  ullage  gas  respectively  are  proportional  to 
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Since  only  ratios  of  the  stiffnesses  are  required,  it is only 
necessary  to  define  each  stiffness to within  a  constant  of  pro- 
portionality. The approximate  stiffnesses  of  the  tank,  pipe,  and 
ullage  gas  have  been  determined  from  a  one  dimensional  analysis. 
The  stiffness  of  the  tank  bottom  is  its  flexural  stiffness. 

The mass  of  the  tank  bottom  is  assumed  to  be  the  mass  of  the 
liquid in  the  system,  because  it  is  all  supported by  the  tank 
bottom,  The  mass  of  the  tank  bottom  itself  and  of  the  ullage  gas 
are  considered  negligible  compared  to  that  of  the  liquid. 

Because  approximations.  are  involved  in  the  stiffnesses  and, 
to  a  lesser  extent,  the  masses  of  each  component  of  the  system, 
the  frequency  responses  of  systems  of  a  given  family  might  not  be 
identical.  Therefore,  several  computer  investigations  have  been 
performed  to  check  the  validity  of  the  postulated  criteria  for 
parametric  systems. 

Parametric  Studies 

x 
letter 

A: 

B: 

C: 

D: 

E: 

F: 

The  response  of  the  standard  configuration  has  been  thorough- 
ly  investigated in  the  section  "Influence  of  the  Generalized  Dis- 
placements  on  the  System  Response".  Therefore,  the  standard  con- 
figuration  will  be  used  to  establish  the  parameters  of  a  family. 
The  following  parametric  systems  are  also  members  of  the  same 
family  according  to  the  rules  postualted  above.  The  dimensions 
and  properties  listed  below  are  the  only  ones  changed  from  the 
standard  configuration,  except  in  all  cases B = 140  and p = .931 

g 
were  used.  Each  parametric  system  is  designated  by  a 
as  follows: 

h = .0073,  E = 30  x 1 0  . (symbol A )  

R = 120,  a = 1.3, h = .0338.  (symbol 0 )  

- = 30 X 10 , P~ = 2.8035 x 10 . (symbol 0) E t = E  - 6  -4 

ht = .0053,  htb = .3467,  Et = Etb = 30 x 10 6 . (symbol  x) 

R = 10, a = 1, ht = .0107,  h = .0147, htb = .2911. 
P 

(symbol * )  

6 
P P 

P 

P 

R = 20, a = 2, ht = .0213,  h = .0293,  htb = .7335. 
(symbol 0 1 P 
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The  results  of  these  parametric  studies  are  shown  in  Figures 
18 through 20. On  these  figures  the  curves  are  for  the  standard 
configuration  while  the  frequencies  of  the  parametric  systems  are 
shown  as  data  points  having  the  symbols  listed above. When  sever- 
al symbols are  either at the  same  point  or  in  very  close  prox- 
imity,  only  one symbol will be  shown  for  clarity.  In  all  cases 
the symbol that  is  in  greatest  disagreement  with  the  solid  curve 
will  be  shown. 

Figure 18 shows  the  results  for  a  rigid  tank  bottom  with  no 
ullage  gas,  Figure- 1 9  for  a  flexible  tank  bottom  with  no  ullage 
gas, and Figure 20 for  a  flexible  tank  bottom  with  the  ullage  gas 
effect. The dotted  curves in  Figure 20 are  the  pure  acoustic 
wave  frequencies,  while  the  solid  curves  are  the  structural 
frequencies  with  acoustic  effects  analogous to the  solid  curves 
in  Figure 7. 

0 20 40 60 8 0  

L i q u i d   H e i g h t   ( i n c h e s )  

.s 

Figure 18. 
Rigid  Bottom - No Ullage  Gas 

L i q u i d   H e i g h t   ( i n c h e s )  

Figure 19. 
Flexible  Bottom - No Ullage  Gas 
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SUMMARY AND CONCLUSIONS 

Summary 

A Rayleigh-Lagrange  solution  has  been  developed  and  a  com- 
puter  program  has  been  written  for  determining  the  unforced  fre- 
quencies  and  mode  shapes at all  liquid  heights  for  any  system 
which  has  the  general  configuration  shown  in  Figure 1. 

Comparison  of  the.experimenta1  data with  the  calculated  fre- 
quency  curves  clearly  indicates  that  the  flexibility  of  the  tank 
bottom  is  important  and  should  be  included  in  the  analysis.  The 
structural  frequencies  correlated  well  with  the  experimental  fre- 
quencies  when  the  flexibility  of  the  tank  bottom  was  considered, 
even  when  the  ullage  gas  effect  was  neglected.  However,  ullage 
gas  effects  must  be  included  if  the  acoustic  wave  frequencies  are 
to  be  determined.  In  addition,  the  acoustic  waves  couple  with 
the  structural  motion  to  a  small  extent  as  shown  in  Figure 7. 

Axisymmetric  breathing  should  be  included  in  the  analysis, 
because  at  some  liquid  heights,  it  couples  strongly  with  the 
longitudinal  structural  motion.  Asymmetric  breathing  is  com- 
pletely  uncoupled  and  should  not  be  included  in  the  analysis. 

The  effects  of  changing  individual  dimensions  or  physical 
properties  of  the  system  have  been  determined  and  are  represented 
graphically  in  Figures 9 through 15. The trends  represented  quan- 
tatively  in  these  -figures  are  in  agreement  with  qualitative  trends 
obtained  from  physical  considerations. 

Parameters  have  been  identified  which  define  families  of 
systems  having  practically  identical  frequencies at all  liquid 
heights. It is  concluded  that  the  approximations  made  in  the 
parametric  studies  do  not  seriously  affect  the  accuracy  of  the 
parametric  calculations. 

Conclusions 

The method  developed  herein  for  finding  frequencies  and  mode 
shapes  is  accurate  and  tractable  for  the  system  being  studied. 

A fuel (or  oxidizer)  tank of a  liquid  fueled  launch  vehicle 
normally  has  some  shell  type  bottom,  rather  than  a  flat  plate. 
In this  analysis,  the  effect  of  the  tank  bottom  on  the  frequencies 
and  mode  shapes  has  been  found  to  be  very  important.  For  this 
reason,  the  actual  tank  bottom  configuration  should  be  represented 
faithfully  in  future  analyses. 

31 



APPENDIX A 
Velocity  Potential  Function for  Pipe 

1 k .a 
+ h3(0,j,n)cosh(k L'q - J1(+)Gon(t) 

oj koj 

m 

+ c [-E cos(Ana') + 7 2R2 p5(j,n)sinh(k L ' )  
n= 1 a j=O oj 

Definition of Functions  Used  in +t and + Equations 
P 

7 
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+ yncosh(k H' 
r j  n n n 

2Z1 ( j  , n )  
h 5 ( j , n )  = p i n h ( k   L ' l h 6 ( j )  - c o s h ( k  L I ~  

k . J 2 ( k  ) o j  o j  
O-J o o j  
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APPENDIX B 

Kinetic  Energy  Integrals 

The  kinetic  energy  of  a  structural  component  of  the  system 
in  three  dimensional  space is given  by 

This  equation  is  written  for  each  structural  component  of  the 
system  as  follows: 

Tt - - ptR2ht):' 2 12' 
0 

= IT ppa2 i, (h i  + w2)da P P P 

1 2 - 2  
Tpb = 7 IT Ppb a hpb  Upb 

The  kinetic  energy of the  liquid  in  the  system is given  by 

Using  Green's  theorem  (ref. 2 4 ) ,  this  can  be  simplified  to 

The  kinetic  energy  of  the  ullage  gas  is 
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Potential  Energy  Integrals 

The strain  energy  in a cylindrical  shell  is  'given by the 
equation  (ref.  25) 

where 
CI 

- au (r-R) - a Lw 
E2 - - - az  az 2 

w 1 av r-R a w 2 
E = E + E a e - - -  

0 R~ a e 2  
- 1 au  av  2(r-R) a w - " + "  

2 

y z e  R a e  az R  azae 

The  partial  derivatives - av and  have  been  considered  negligible 
in  the  equation  for E and y above. 

ae  a z  

e 2 0  

This  equation  is  written  in  terms  of  the  nondimensional  co- 
ordinates  for  the  tank  and  pipe. 

a Vt a Ut  aut av, + 2 W t K  + 2pw "42p- - t ac .  a g  a e  
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The equation  for  the  strain  energy of a circular  plate  in 
bending  (ref. 26) is  used  to  find  the  potential of the  tank  bot- 
tom  in  terms of the  nondimensional  coordinates. 

The potential  energy  of  the  gas is (ref.  1 9 )  

and  the  adiabatic  bulk  modulus (B) is  related  to  the  speed of 
sound  by  (ref. 2 7 ) .  

This  gives 
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APPENDIX  C 

Computer  Program  Details 

CENERGLIZEG COORDS; 
'TFINK U ,   P IPE U, 
TANK W ,  P I P E  W ,  
TANK U, P l P E  U, 
TRNK W ,  P I P E  U, 
TRNK U? 
TRNK W ?  

1 

- TANK i 
LENGTH-1 20, '' 
EADIUS=IS. '' 
THICKNESS=.016" 
E = l X 1 0 ' P S I  
BTM. THK. =, 500;' 

LENGTH-90, '' 
PRDIUS=I, 5:' 
THlCKNESS=.022" 
E - l X 1 0 ' P S I  

Figure C1. 
Computer  Plot for the  Standard  Configuration 

with  a  Rigid  Bottom and No  Ullage  Gas 
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(+) 

S1, NS2,  NS3,  NS 
FOR  EXTENDED 

OUTPUT 

CONFIGURATION 

GENERALIZED 
COORDS. 

A NEED  (I) 

MESSAGE 

ABOVE 
ACTIO 

PRINT  CONFIG. 

GENERALIZE 
COORDS . 

REMAIN  UNCHANGED 
UNTIL IP CHANGES 

THAT  WILL 

0 DETERMINE  BRANCHING  CONTROLS 
FOR INDIVIDUAL  MATRIX  ENTRIES. 

SET MATRIX 

ET INDICATOR 
T(1,J) = 0 

r--------"" 
I WITH IND=O, THE I 

-I 

i MASS  MATRIX IS 
- - - - - - - - - - 3 COMPUTED I 

I WITH IND=1 THE ' 
STIFFNESS ~ T R I X ~  

ALUES TO COMPUTE L- -13- S?MPVTED - 
MATRIX  ENTRIES 

i (1,J) = -T(I,J) 

A 
Q >  SW. ON? F/ 
(L,LL) = T(L,LL) 

A IS THE 

MATRIX 

t 

Figure C2. 
Computer  Program Flow Chart 
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SET MATRIX 
T(I,J) = 0 

I A 

RESTORE THE 
MATRIX STIFFNESS MATRIX 

\ PRINT / 

MESSAGE 
WRITE 

134 
No 

Y 

DETERMINE 

1:::fl::bk 
EIGENVALUES 

ASCENDING ORDER) 

EIGENVALUES 
PRINT 

I 

EIGENVALUE3 
TWO LOWEST 

AND 
EIGENVECTORS 

' PUNCH 

\ 

t 
IPfO? 

ENERALIZED 
COORDS. 

STORED" 

Figure c2. (Continued) 
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****  TANK DIMENSIONS ****  
LENGTH = 120.000 INCHES RADIUS = 15.000  INCHES 

DENSITY(MATERIAL)=O.25879988E-03 SLUGS/CU. INCH 

* *  PIPE DIMENSIONS * *  

DENSITY(MATERIAL)+O.25879988E-03 SLUGS/CU.  INCH 
LENGTH = 90.000 INCHES RADIUS = 1.500  INCHES 

GRAVITATIONAL  ATTRACTION=  386.4OINCHES/SEC./SEC. 

GENERALIZED  DISPLACEMENT  COORDINATES  CONSIDERED 
TANK 

PIPE 
TANK 

PIPE 
TANK 
TANK 
PIPE 
TANK 
TANK 
PIPE 

MODULUS OF ELASTICITY=O.lOOOOOOOE 08 PSI 
THICKNESS = 0.0160 INCHES BOTTOM  THICKNESS = 0.5000 INCHES 

MODULUS OF ELASTICITY=O.lOOOOOOOE 08 PSI 

MU= 0.300  LIQUID  DENSITY=0.93449999F-04  SLUGS/CU. INCH 

THICKNESS  0.0220  INCHES  BOTTOM  THICKNESS = 0.5000  INCHES 

U SUB 1 
W SUB 1 
U SUB 1 
W SUB 1 
U SUB  2 
W SUB  2 
U SUB 2 
U SUB 3 
W SUB 3 
U SUB 3 

THE 10 X 10 MATRIX, IN UPPER  TRIANGULAR FORM,  IS SOLVED 

USING THE CONFIGURATION GIVEN ABOVE, WITH  LIQUID  HEIGHT=  0.0 INCHES, AND THE NO. OF CIRCUMFERENTIAL  HALF-WAVES= 0 CASE 1 

0.781889953  02  4 
0.16267899E  03 
0.21850551E 03 

1 
7 

0.91160986E  03  5 
0.12764651E  04 
0.170558013 04 

3 
8 

0.218699393  04 
0.220643513  04 

2 

0.23209241E  04 
6 
9 

0.32245195E  04 
0.33398092E 00 -0.19660514E-01  0.10000000E 01 0.344899863-01  -0.37466418E-01  0.17038848E-03  -0.78027427E-01  0.1219663OE-01 

10 

-0.10840345E-01  0.144444738-02 
0.75100017E 00 -0.43704368E-01  0.10000000E 01 -0.47904916E-01  -0.751670603-01  -0.13847763E-02  -0.13178980E 00 0.238735043-01 

-0.34273183E 00 0.19691329E-01  0.10000000E 01 -0.14402218E-01  0.29843684E-01  0.15026771E-02  -0.11980408E 00 -0.917973OOE-02 

-0.49217418E-02  0.44278163E-01 

0.48402995E-02  0.19224305E-01 

NEED(1)  RESTORED 

ENCOUNTERED P=O,THUS SET NEED(I),I=5,6,12,13,19,20,26,27,33,34,40,41,47,48 ALL TO ZERO. 

SAME CONFIGURATION AS ABOVE, EXCEPT WITH  LIQUID  HEIGHT=  5.00 INCHES, AND THE NO. OF CIRCUMFERENTIAL  HALF-WAVES= 0 CASE 2 

0.720506133 02 
0.10095039E 03 

4 

0.191496123 03 
1 
7 

Figure C3. 
Sample  Computer  Program  Printout 
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