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SUMMARY 

This report presents the conclusions of a research program 

aimed at the determination of inicrometeoroid mass, velocity and composi-

tion from its impact flash signature. A previous phase had demonstrated 

that flash intensity and rate of change of intensity for a metallic pro-

jectile impact generated flash is a very rapid varying function of the 

projectile diameter and velocity. In the present phase the same study 

has been applied to actual meteorite materials, Canyon Diablo iron and 

Bruderheim stone. 

The radiation emitted in the impact flash has been spectro-

scopically analyzed by a cluster of four photomultipliers monitoring the 

impact flash through four narrow band interference filters. With the 

Meteoroid Impact Flash Analyzer the Intensity and rate of change of 

intensity has been studied for projectiles of two different meteoritic 

materials, 'at different. velocities, diameters and shapes. 

The sum of the data collected for Canyon Diablo iron and Bruder-

heim stone projectiles does not yet lead to a firm determination of the 

exponent of the power laws which relate intensity and rate of change of 

intensity with the projectile velocity. The same conclusion can be given 

for the projectile diameter influence. This Is due to the spread of 

experiments over several varied parameters. More data points will be 

needed to positively define the relationship. However, a power law 

trend has been experienced. 

Experiments have been conducted to develop the capability of 

the identification of specific elements present in the projectile, from 

the experimental observation of their spectral emission at specific. 

wavelengths. The results obtained from a cluster of five photomultipliers 

monitoring five narrow spectral bands, have demonstrated that a measure-

ment of the amplitude of the signal cannot be used for element identifi-

cation. However, the possibility of obtaining the sought information 

from an integrated signal Is excellent. 
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The inability to use signal amplitude for material identifi-

cation seems to suggest the presence of radiation due to ionized species 

or continuum at the observed wavelengths. Preliminary consideration 

suggests that this will not be detrimental, and may in fact be bene-

ficial, to the extension of the power law relationship to higher velo-

cities. These newly.observed phenomena warrant further study. 
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1.	 INTRODUCTION 

An experimental study of the radiation emitted when a hyper-

velocity metallic projectile impacts a cadmium target has been reported 

in Reference 1. It has been demonstrated that for a given composition 

of the impacting projectile, the intensity and rate of change of intensity 

of the radiation generated at impact are functions of the projectile velo-

city and diameter. As a corollary this study has indicated that a 

measurement of the flash intensity and rate of change of intensity can 

reveal the velocity and mass of the impacting projectile provided its 

composition is known. Since part of 'the emitted radiation contains line 

emission corresponding to the elements present at impact, spectroscopic 

analysis of the flash can also lead to knowledge of the projectile's 

composition. 

This principle has been considered as a means of measuring the 

characteristics of micrometeoroids in space from a measurement of the 

characteristics of the flash produced when they impact on a target of 

known composition. 

The goal of the present program was to verify the above concept 

in the laboratory by the study of the flash produced by the impact of a 

projectile made from meteoritic material. The diagnosis of the radiation 

emitted was to be carried out by a detector system similar to a unit that 

is to be used in a space experiment. This 'sensor , package, consisting of 

nine narrow band filters corresponding to nine selected line emissions of 

the flash, has been constructed and calibrated. The choice of the proper 

filters was made by both theoretical and experimental work. For this 

purpose firings have been conducted to study the profile of some cadmium 

emission lines in the impact flash. The filters have been chosen to 

monitor target emission lines, background emission and lines which could 

lead to identification of the composition of the projectile. 

It is also speculated that certain meteorites may contain 

carbon. Its detection in space by the impact flash is of interest, so 
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special attention has been given to find out if carbon can be excited 

by the hypervelocity impact mechanism and its radiation spectroscopically 

detected. 
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2.	 THE IMPACT FLASH ANALYZER 

The optical system for light collection must satisfy the fol-

lowing conditions: 

(1) The radiation collected by the system must not 
be strongly dependent on the position of the 
micrometeoroid Impact point on the target. A 
variation by a factor of about 2 is acceptable. 

(2) The optical dispersion system must have sufficient 
resolution to isolate single lines of cadmium 
without including excess background'radiation. 
This limits the entrance slit width of spectro-
graph or the size of the acceptance cone of an 
interference filter. At present, a half maxi- 
mum bandwidth of about . 80R is envisioned. 

(3) The system must be sufficiently sensitive to 
detect the smallest and slowest micrometeoroids 
of interest. 

It is difficult to satisfy all three conditions with a spectrograph. 

Conditions I and 3 require a spectrograph with a very large aperture, and 

condition 2 requires an instrument with a small aperture. Condition 3 

requires a wide 'entrance slit, and condition 2 requires a narrow entrance 

slit. By using narrow band pass interference filters instead of a spectro-

graph, it is possible to satisfy all three conditions in a simple manner. 

An additional advantage of the filter system over he spectrograph is 

that the filter system is relatively insensitive to small changes in 

detector position, while the spectrograph system is critically sensitive 

to both the spectrograph exit slit poàition and the grating position. 

The impact flash analyzer consists of a set of filters and 

monitoring photomultipliers. These elements are described in turn below. 

	

2.1	 The Filters 

The optical filters selected for the analyzr consist of the 

following: those to provide information on size and velocity, those to 

provide information on meteoroid type, and those used to detect carbon. 
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Procedures in the selection of each of the three types of filter will be 

discussed below. 

With the use of interference filters the angle of incidence of 

the radiation must be restricted within limits dictated by the accepted 

decrease of transmissivity of the filters at the wavelength of interest 

at the maximum incidence angle. This can be achieved in two different 

manners. In a first approach a ground quartz light diffuser is used to 

collect the radiation emitted by an impact flash point source located at 

any angle on a plane target normal to the diffuser. In order to restrict 

the angle of incidence of the radiation on the filters, a limiter consis-

ting of tubes with a diameter to length ratio equal to the tangent of the 

acceptable angle, is placed between the diffuser and the filters. The 

diffuser will have to be lambertian to avoid preferential direction of 

transmittance. In such a case the transmission and diffusion losses can 

be very important. In a second approach no diffuser and no angle of 

incidence limiter is used. In this case the angle of incidence of the 

radiation on the Interference filters is fixed by limiting the physical 

dimensions of the target such that no radiation sources can be located 

outside the permissible angle. This has the disadvantage . of reducing the 

size of the collecting area but by allowingno :ligit losses, lower 

meteoroid impact flash can be collectect thus a larger number of events 

can be recorded. This approach can be accomplisheo by properly selecting 

the filter bandwidth and wavelength at maximum transmission. This is the 

method which has been selected and which is described In the following 

paragraphs. 

Two factors influence the selection of the filter bandwidth and 

wavelength of maximum transmission: spectral distribution of the emitted 

radiation (i.e, line profile) and maximum angleof incidence of the 

radiation on the filter. If, for example, the emitted radiation is •a 

sharp line emission and all the radiation falls on the filter at 

(measured from the filter normal), then a very narrow bandwidth filter 

centered exactly at the emission wavelength would be atIsfactory. If the 

emission is broadened line emission and the angle of incidence is 00, a 
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filter with more bandwidth will be advantageous, but the maximum trans-

mission should still be centered at the wavelength . of maximum emission. 

When we consider angles of incidence other than 00, however, the situation 

changes. Three things happen to the passband of a filter when the 

radiation is incident at angles other than 00 	 the bandwidth increases, 

the maximum transmission decreases, and the wavelength of maximum trans-

mission shifts to shorter wavelengths (see Reference 1). The possible 

serious consequences of these effects is shown in the diagram below, 

where it is assumed that the emission line is sharp and the filter 

centered at the emission wavelength at an angle of incidence 9. The 

filter bandpass has shifted such that very little of the incident line 

emission is transmitted. 

Filter Bandpass at 9 = 9M 

Line Emission 

Filter Bandpass at 0 0
 

Wavelength 

Sketch A. 

Consider the case where the filter is not centered at the emission 

wavelength, but rather at some higher wavelength. This situation is 

shown in Sketch B1 In this case, the filter passes the same amount of 

line radiation at 
9M 

as it does at 0°. The optimum choice of filter 

passband is seen to depend on the angle of the incident radiation. If 

the angle of incidence varies from 0° to 
9M' 

then the optimum filter will 

not be centered at the emission wavelength, but at some larger wavelength. 
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Filter Bandpass at 0 = _ 9 \	 Line Emission 

0 
r1 
U) 
U) 
r4
	

Filter Bandpass at 
U) 

Ca 

H

Wavelength 

Skch D, 

In order to evaluate the p aic waving h 9hift and the f ilter transm1ss1 
vity at angle	 9 (Refer ence ), the flwng equations can


be used.

(1) 

AD 

(9) E §P!=09- =	 f4 
1 ¼2:-W 

A D is the fjlter ! s 4g wY nth ! 9 is the wgv nth g f 	 wii


transmission  at angle of nc 4n! ,jqpjgp 

yes, tig4t@d , K is a qgngtgnt dMndiing On th	 T) 
is the p k 	 non	 ng Qf	 To 4 th pc 

fiItr tr-ansmlsslbn at ng] gf 	 9 4A is the filter. kn4w4th 

at half m4;^tMq!p, 'gr any Yfl	 iffl	 the kOY 

• equa 4. ops can be used to define AP ' 4A 	 that T(9)	 f fgr any 
To 
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given angle 9 such that-9M	
where f is some specified fraction. 

For example, when f = 1/2 and 9M = 15
0
, then ADOO A, and K can be chosen 

such that the radiation transmitted by the filter from a constant intensity 

source will not decrease more than a factor 2 as 9 is varied from 00 to 

±15°. The actual choice of 9 will depend either on the physical con-

straints of the actual satellite experiment or on the upper bound that 

has been calculated for the filters used. In the example chosen, the 

intensity of the studied emission will be constant at 00 and ±150. 

If the radiation source emitted continuum radiation as well as 

line emission, the situation would be alittle more complicated. In the 

extreme case where the radiation was all continuum and the Intensity was 

independent of wavelength for the small range of wavelengths considered, 

then the shift of the filter's peak wavelength with angle of incidence 

would not be important, but the reduction of peak transmission with angle 

of incidence would be important. 

It is evident from the above discussion that the choice of 

optimum filter parameters depends on both the line profile and the angle 

of incidence of the radiation. The angle of incidence of the radiation 

for the laboratory program is 00. Therefore, the filter's transmission 

band has been chosen such that it peaks at the cadmium line of interest, 

i.e., 3261k, 3610L or 5085g . In the present case where 9M = 0°, only 

the filter's bandwidth remains to be specified. Experiments conducted 

to deduce the filter's optimum bandwidth from emission line measurements 

are described below. 

We fired three shotp with the width of the qxit slit of the 

polychromator set successively at 500,u, 2000,u, and 8000,u, corresponding 

to filter bandwidths of 5, 20L and 80X respectively. The projectile in 

each case was a .318 cm copper sphere. Results of the shots are shown 

in the table below. All intensities are normalized to a velocity arbi-

trarily chosen at 5.2 km/sec by multiplying the observed intensity by 

(5.2/V) 8 . The choice of this normalizing factor is discussed in Section 

4. 
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Shot Effèctivë Velocity Pressure Normalized Intensity, uw/cm' @ iN 
No. Bandwidth (km/sec) Torr

3261 3610 490OR 5085k 

171. 5 5.88 3.8x105 25. 160. 15.6 151. 

166 20 5.24 4.0x105 105. 430. -- 454. 

173 80 5.98 4.0x105 450. 1100. 284. 1240.

For the two regions, 3261X and 4900, the intensity increases 

approximately linearly with the spectral bandwidths. At 4900k, which 

corresponds to a background wavelength region where no line emission 

exists, linearity was expected as the results show. The behaviour of the 

3261 can be explained on the grounds that at a bandwidth of 20, the 

sensor detects the presence of cadmium emission at 3252k and at a band-

width of 80R the emission of copper at 3247R and 3273k, and cadmium at 

3248g . The line profile at 3610 and 5085X is not flat since the 

intensity increases less than linearly with spectral bandwidth. Based 

on the results obtained, an approximate line profile can be drawn for 

these two lines. Figures 1 and 2 show the results obtained. It was also 

observed that the shape of the initial pulse of light does not change as 

the effective bandwidth is increased from 5R to 80X. Correspondingly the 

filter bandwidth has been selected to be 80 to 100. Four wavelengths 

have been chosen for the filters used to provide information about the 

size and velocity of the impacting particle: 3261, 3610, 5085, and 

4900g . The first three wavelengths correspond to cadmium emission lines 

and the last wavelength corresponds to a region free of cadmium emission 

lines, i.e, to a region of background radiation. 

The transmisslvity of 'each filter has been measured. The filters 

were successively mounted in the focal plane of the spectrograph behind a 

500 micrometer wide slit covering a bandwidth of 5.. The spectral distri-

bution of the continuum radiation of a quartz incandescent lamp, as seen 

through the filter, was monitored by a photomultiplier. The results, 
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expressed in terms of percentage of the maximum transmissivity as a 

function of wavelengths, are given in Figure 3 for the four filters used. 

To provide information on meteoroid types, five appropriate 

filters have been selected. The selection has been based, on the follow-

ing arguments. A comparison is made of the concentration of the different 

elements present in the different types of meteorites as expressed in the 

following table obtained from Reference 3. 

Iron	 Stoney-Iron	 Stony 

Fe	 . 91 55	 16. 

Mg .03 12	 14 

Si .01 8	 21 

Ca .02	 ' --	 1.8 

Al - --	 1.6

Table of The Concentration of the Most Important 

Elements in the Different Meteorite Types 

One can see that apart from the Iron, elements can be coupled in pairs 

to give a unique determination of types of ptony or stony-iron by their 

presence or absence. This can be achieved by grouping Mg-Si and Ca-Al. 

It also happens that the Ca-Al pair. has a group of lines concentrated in 

the same spectral region, namely the Ca+ 3934L 3968k 'and Al 3944k, 3961 

lines. Similarly Mg-Si pair have lines 30R apart at 2852k and 2881 

respectively. 

A filter peaking at 3942k with a half width of 80R was selected 

to identify the Ca-Al. A second filter peaking at 2866k with a bandwidth 

of'80R was also selected to identify the pair of lines pertaining to the 

emission lines across the whole visible and ultra violet regions of the 

spectrum, with its most • important transitions in the 3737k region. A 

corresponding filter was then selected at 3735g . The detection of carbon 
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is achieved by the selection of a filter at the 2478k emission line of 

carbon. Finally a filter bandwidth of 80R was selected in a spectral 

region essentially free of iron transitions, this filter peaks at 2707g. 

Figure 4 gives the transmissivity curves of these last filters. 

This choice of filters can be visualized by means of Figure 5, 

where the integrated spectra of the radiation emitted by the impact of 

projectiles made from CanDi, Bruderheim and carbon materials are displayed 

with the bands of the filters selected. For the laboratory experiment 

where the radiation Incidence is maintained close to 00, the filters have 

been selected with their peak transmission at the selected wavelengths. 

2.2	 Photomultipliers 

EMI Type 9601B photomultipliers . have been chosen as the light 

detectors. They are head-on type with a diameter of 0.9 inch. They have 

an S-11C response with a cutoff at 2l00 in the ultra violet and 6000 

in the yellow. The output signal of the photomultiplier is fed to a 500 

ohm load resistor then to an emitter follower. Electroscopes are then 

used to record the signal. A circuit diagram of the voltage divider and 

emitter follower is given in Figure 6. The photomultipliers are mounted 

in two clusters of four and five units respectively. This was done to 

mount the clusters at two different windows on the impact area in order 

avoid having a large radiation incidnce On the filters. The mechanical 

construction of one unit is such that the voltage divider and the emitter 

follower are contained in a cylinder , of the same dimension as the photo-

multiplier itself. These elements, photomultiplier, divider and emitter 

follower, are contained in a single tubular. holder. In front of each 

photomultiplier is mounted an aperture holder, .a neutral density filter 

holder and the interference filter. Figure 7 shows four assembled units 

which form •a cluster. A detailed drawing of the construction is given 

in Figure 8. 
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2.3	 Calibration of the Photomultipliers 

Each photomultiplier was calibrated in order to correlate its 

voltage to the absolute radiation intensity. A mercury ultra violet 

standard lamp mounted 1 meter in front of controlled apertures of the 

photomultipliers was used as a standard source. The . àpertures consisted 

of calibrated pin-holes. The lamp itself is calibrated such, that the 

intensity of the 3650k mercury group of lines falling on a surface of i 

cm  located 1 meter from the source is 60 microwatts when operated at the 

specified current and voltage. Using a narrow band filter of known 

transmissivity at 3650k and a set of controlled apertures, the voltage 

response of the photomultiplier versus the Intensity falling on the 

photo cathode has been measured. Typical results are given in Figure 9 

for four photoinultipliers. It can be observed in the response curves 

that the voltage is not a linear function of the intensity but varies 

as the intensity to some power, where the exponent is different for each 

photomultiplier. This situation is associated with the construction of 

the dynode-electrode of the EMI tubes selected. This non-linearity 

requires a good control over the high voltage at which the tubes operate, 

and that each'photomultiplier be individually treated. ' This shortcoming 

is, however, compensated by the extended operating range of the photo-

multiplier since the exponent is smaller than unity, nearly equal to 0.70 

in each case. 

Prior to each firing, the response of the photomultipliers is 

checked for consistency against a constant intensity cadmium light source. 

	

2.4	 Installation of the Analyzer 

The flash analyzer has been mounted behind a quartz window to 

view the flash in the . plane of the target along a line nearly perpendi-

cular to the line of flight (see Figure 10). The incidence of the 

radiation, in the worst case, , is 
50 

and would correspond, for the inter-

ference filter, to a peak wavelength shift of approximately 0.1% (Reference 

2). 
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3.	 MICROMETEOROID DETECTION SYSTEM 

The flash detection system comprises a target area, photo-

multiplier sensor array equipped with interference filters cut to accept 

radiation in carefully chosen regions of the spectrum, signal processing 

package, storage, and telemetry interface. The physical arrangement is 

shown in Figure 11. The target area would preferably be located on the 

back of a solar panel, since these are usually oriented at right angles 

to the sun, and such locations are therefore protected frOm direct solar 

radiation. The various parts and sub-assemblies are discussed In the 

following paragraphs. 

	

3.1	 Sensors 

The minimum detectable flash depends on flash intensity, sensor 

sensitivity, noise, non-flash light levels, and physical layout. The 

most sensitive practicable photo sensitive devices for use as detector 

are photomultiplier tubes and continuous strip type photomultiplier, 

such as the Bendix Channeltron. 

The channeltron appears attractive at first glance due to lower 

dark currents and lower apparent power requirements. Further examination 

reveals the requirement for light collection optics of appreciable 

dimensions, if the system light sensitivity is to match that available 

with PM tubes without optics. The noise signals due to dark current of 

the PM tubes are not severe and are rejected by the three-channel coinci-

dence circuitry incorporated in the system. 

Since the flash duration phenomenon is of the order of 0.2 to 5 

microsecond duration, the system requires wide band circuitry. The PMs 

would operate in the linear pulse mode, and a minimum emission of four 

electrons per 200 nanosecond period (during the flash) has been adopted 

as a lower limit for acceptance as a true signal. This emission rate 

results from an equivalent light level at the photo cathode of approxi- 

mately 1.4x10.4 microwatts. (ASCOP 541A-05M or EMI 9601B). 
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The figure just quoted sets the minimum effective flash inten-

sity at the PM cathode of 3x10 5 microwatts per square cm. The minimum 

flash actually detectable depends on target geometry and distance from 

target to PM photo cathode. 

3.2	 Target 

The original concept suggested the use of a cadmium layer on an 

aluminum plate. It has since báen pointed out by the NASA Technical 

Monitor that cadmium sublimates rather rapidly in vacuum. A target of 

different material may eventually have to be selected.. The system des-

cribed herein is for a cadmium target since extensive data has been 

collected with cadmium in the course of the impact flash study. 

The configuration proposed is that of a sector of an annulus 

subtending a maximum angle limited by Interference filter transmission 

band shift. See Figure 11. Two areas are considered, one square meter 

and ten square meters. Two identical impacts on any two points on the 

target surface should not differ in intensity at the detectors by more 

than a factor of about 2. Then for a one radian subtended angle the ten 

square meter target requires maximum and minimum radii of 6. and 4.4 

meters and the one square meter requires 2.0 and 1.4 meter dimensions. 

The target area selection affects both the minimum detectable 

impact flash intensity and the frequency of recorded events. From the 

NASA data on sporadic meteoritic flux (Reference 3) one square meter will 

experience 0.1 impacts per hour average rate for partcles of 10-12 grams 

or larger: a ten.square meter area will therefore show ten times this 

rate.

Due to theinverse square law applying along the radii of the 

two targets, identical impact flashes occurring at corresponding locations 

on the two targets will have an intensity ratio of 10 to 1 at the PM 

photo cathodes. 'Consequently the minimum energy flash detectable on the 

ten square meter target will be higher by an order of magnitude relative 
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to the one square meter figure. This factor reduces the number of 

detectable events for the ten square meter target to 5 times that of the 

one square meter area. This point is discussed further in a following 

paragraph.

The minimum particle size whose impact flash would be detected 

anywhere on the target plate may be determined by use of Figures 12 and 

13. Figure 12 shows predicted flash intensities for various particle 

masses and velocities; Figure 13 is taken from Reference 4, and shows 

flux rates for the spectrum of particle sizes. 

From the PM tube data and geometry, the minimum detectable flash 

energy corresponds to particles of 1.8x10 9 grams impacting at 12 kin/sec 

and 10_11 grams at 30 km/sec, on one square meter target. Corresponding 

minimum sizes for the ten square meter target are 1.2x10 
8 
and 7x1011 

grams respectively. 

The event rates for these sizes are .013 and 0.07 events per 

hour respectively for impacts at 12 and 30 kin/sec on one square meter 

targets, and 0.007 and 0.04 events per hour,per square meter on the 

ten square meter target. The net event rate ratio is better than .five to 

one for the ten square meter target area. If problems of storage -andde-

ployment are not too severe a ten meter area is the obvious choice. 

The •thickness of the target material has been suggested as equal 

to the radius of the largest particle which might reasonably be expected 

to impact within a one year period. For example, with aluminum as target 

material, a particle of 10- 3 grams having density of 3 indicates a thick-

ness of 0.2 mm. A thickness of 0.4 mm of aluminum would weigh about 10 

kilograms - support structures and other components extra. 

3.3	 Sensor Package 

There are nine PM tubes in the package. Four carry filters which 

accept cadmium lines: these tubes provide flash intensity (I) and flash 

rise time (al/at) data, Three tubes carry speqific filters to accept 
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iron, magnesium-silicon, and calcium lines: these provide the data for 

classification of the type of meteoroid. The two remaining tubes provide 

signals from carbon lines and background radiation level. 

The physical disposition of the tubes Is outlined in Figure 11. 

The target plate would necessarily be given an optical polish to provide 

a highly specular surface to minimize the level of stray light reaching 

the tube cathodes. 

Since the average current supplied by the PM tube anodes would 

be very low, the necessary dynode bleeder currents could be reduced to 

a few microamperes. The charge storage for heavy pulse currents would be 

provided by adequate dynode bypass capacitors: since the frequency of 

events is very low, the capacitor charge depletion due to one event 

would be restored before the next flash would be likely to occur. 

3.4	 Signal Treatment 

Since the impact flash is of such short duration, any attempt 

to store and transmit the flash signal pulses directly would require cir-

cuit bandwidths of the order of 30 to 40 megacycles per channel and impose 

excessive demands in terms of storage and telemetry. The alternative is 

to convert dI/dt and I data into quasi-static voltages, quantize, and 

store in digital form. The stored data may then be read out by any 

standard telemetry technique. A proposed flash intensity channel block 

diagram is given in Figure 14. 

The intensity sig nals channels would each comprise a charge 

amplifier, charge pump, rate meter circuit, quantizer and two coincidence 

circuits. The rise time circuits for each of the four channels would 

comprise a differentiating circuit driven by the rate meter. Since very 

low intensity flashes would provide only a few chrge pulses during the 

200 to 400 nanosecond period, the rise time data In such cases would 

reflect rise times of individual pulses: such data would be 'rejected. A 

minimum of twenty pulses would be required to provide an intensity signal, 
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whose derivative would be accepted. Suitable filtering would be incor-

porated to limit the maximum rise time to 15 to 20 nanoseconds; a two 

or three pole low pass filter should suffice. 

The identification channels would employ only the intensity 

signal circuits, and could be operated in peak reading or integrated 

signal mode. In the latter mode an integration period of ten microseconds 

would provide accumulation of charges due to both spike and tail of the 

flash: the scientific reasons for selection of this mode are discussed 

in another section of this report. A block diagram of one identification 

channel is given in Figure 15. 

3.5	 Quantizing 

The target geometry Is such that for a given flash intensity 

located at the near and far edges (radially) of the target plate, an 

intensity ratio of 2 to 1 would be experienced. Consequently the 

quantizing levels have been set to provide signals corresponding to the 

following table.

QUANTIZED SIGNAL LEVEL RATIOS 

Level	 Range Limits 

•	 Ql 1 3 

Q2 3 10 

Q3 10 30 

Q4 30 100 

Q5 100 300 

Q6 300 1000 

Q7 1000 Open

The range of seven levels may be expressed in binary form by 3 

bit coding. 

Since flash intensities may range over a 10 8 to 1 ratio, and 
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only about lO ratio can be accommodated by linear operation of the PM 

tubes, operation of the sensor array at stepped levels of PM gain would be 

required. To cover the lower energy higher flux events the system may be 

operated for perhaps a one month period at maximum gain, and the remainder 

of the year at reduced gain to acquire the higher energy lower flux rate 

data.

In the case of channeltrons, a given tube would carry up to six 

multiplier strips operating at different gains and thereby cover the full 

signal range simultaneously. The penalty paid for this advantage is the 

need for collection optics and more circuitry to accommodate the added 

number of signal sources. This approach will be examined further. 

3.6	 Storage 

Since the use of PM tubes limits the number of Q levels to 7, 

a 3 bit code per channel would be sufficient to uniquely code a given 

level. In the case of multi-strip channeltrons 15 Q levels would be re-

quired to cover 8 decades: a 4 bit code would then be required. 

The four intensity and four rate channels thus require storage 

for 40 bits per event (including parity): the five identification channels 

require 25 bits for intensity data and parity, plus 3 classification bits. 

Total storage, allowing for other data storage, should therefore total 80 

bits per event. 	 .	 . 

Assuming a ten square meter target and minimum detectable 

particle size of.10	 grains, the average 4inpact rate per 6 hour period 

for sporadic flux is given as 0.25.. According to Reference 3, stream 

flux during showers maybe an order of magnitde higher, or 2.5 events 

per 6 hours period.. Storage capacity for 12 to 16 events would there-

fore appear to be adequate, assuming data ,would be readout every six 

to ten hours during stream periods and every 24 hours for the strictly 

sporadic environment. 
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3.7	 Coincidence Logic Functions 

Since all multiplier devices experience noise pulses of random 

distribution, some measures must be taken to reject charge contributions 

accruing from such pulses. The PM tube types suitable for this system 

are specified to have 10 amps or less dark current. This corresponds 

to an electron low rate of 6300 electrons per second at the photo 'cathode 

for a PM gain of 1o 6 . PM electron ballistics and circuitry bandwidth 

would provide a pulse width of the order of 15 nanoseconds for a single 

electron pulse into the first dynode. Since the intensity data channel 

gate is only open for one microsecond, the probability of a false pulse 

occurring during the gate period is about 0.7%. 

To reduce the probability of false signals being accepted, 

four three-input AND gates would be incorporated to require simultaneous 

signals in at least three of the four channels before the signal would be 

transferred as valid data storage. The probability of a false event 

under these conditions Is improved to about 2xl0 4% in a one second 

interval or about 4% in a 6 hour interval. 

The first Q level would be set to trigger only for pulse counts 

of four or more electrons in each channel. This requirement improves the 

false signal probability to better than 102% for Interval PM noise 

sources over a six hour period. 

In addition, in each channel a separate-coincidence arrangement 

is proposed in which any single pulse will fire a 50 to 100 nanosecond' 

gate. If pulses follow sufficiently rapidly to hold the gate open 'for 

two hundred nanoseconds, the three-input AND gates arearmed and will 

accept data provided the three channel coincidence rquiement is ful-

filled.

High stray light levels may also result' in t false readings. An 

extra PM sensing the background light level, and having a 50 to 100 kc 

circuit bandwidth would perform two functions. At low light levels due 

to stray illumination a signal would be generated to reject data going 
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out of Qi levels or Q2 levels, depending on ambient light intensity. A 

separate coding would be entered in storage any time an event occured, 

the coding indicating the ambient light intensity. 

In the event ambient light reached a level dangerous to the PM 

tubes in the array, the background sensor would generate a control 

signal to reduce or shut off the high voltage power supply while the 

excessive level persisted. 

3.8	 Readout of Stored Data 

Since the data would be etored in binary form the telemetry 

bandwidth requiremente are quite ordinary, and would be fulfilled by 

tanderd digital linke, 

The data format can be arranged to cuit NASA PM T@lemetry 

Standarde ( ference	 i the flaeh inteneity and rate codee ean be 

contained in one 32 bit words and other data (ohut down counte, program 

§tatu, operating mode) in a third 32 bit word, Three 32 bit worde per 

event would thrOfO@ be	 uired ? With	 l	 to 'P@ §@d 

in any one ra.out eyee 

The §piit phase type of binary eodin8 would appear to offer ad= 

vantagee for ocrial readout, in that oimpler gating qfid . §t@Fag@ readout 

are 

iure l ohowe a block diagram of the overall electronic 

cycteffi that it ic propoced for retrieval of the photometric data for 

opace application, 
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4.	 PARAMETRIC EXPERIMENTAL STUDIES 

	

4.1	 Launch Techniques 

The launch techniques.are in most respects similar to those 

used in the previous phase of. this research program and were fully des-

cribed In Reference 1. A few mechanical modifications have been made. 

With the use of friable meteoritic material for projectiles, the Mylar 

diaphragm mounted between the dump tank and the travelling section had to 

be removed. Special precautions were taken to keep the gun gases from 

reaching the target prior to the projectile. Baffle plates were installed 

along the path taken by the projectiles. The evacuation of the whole 

firing range, including dump tank, to a pressure of 5x10 5 Torr was 

achieved by a more efficient installation of the 6" diameter diffusion 

pump and by the addition of two liquid nitrogen cold traps. Except for 

the study of ambient pressure effects on flash intensity, all the firings 

reported herein were conducted in an evacuated range of 5x10 5 Torr or 

better. To insure the value of the pressure readings at the impact area, 

cold cathode vacuum gauges were occasionally calibrated relative to a 

standard gauge. The data points which have been collected in the course 

of this program are listed in Table 1. 

	

4.2	 Meteorite Materials 

A large portion of the firings were conducted with projectiles 

made from meteoritic material. The materials used fQr this program were 

representative of meteorites collected on earth. The iron type is a 

piece of Canyon Diablo meteorite. Its composition and structure have 

been studied by the Center of Meteorite Studies in Arizona (Reference 6). 

The stony-iron type is a fragment of the Brudrheim meteorite whose 

composition and structure. were studied and reported in Reference 7. The 

Bruderheim meteorite is a hyperstene chondrite, and proved most difficult 

to launch. The specimen used consists primarily of a very friable aggre-

gate of ground.mass made of remnants of shock, fractured chondrules. The 

cohesive forces of this material are very weak. For this reason, this 
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material has been very difficult to launch, the impact success rate has 

been very low and only a few data have been collected using it as a 

projectile in spite of the very special precautions taken in the selection 

of the samples. The meteoritic projectile diameters ranged from 0.3 mm 

to 4.8 mm.. 

4.3	 Pressure Effects on Flash Intensit 

We had shown in the previous phase of this research program 

(Reference 1) that the spike intensity is a function of range pressure. 

Our results at that.time indicated that the effect was quite small, and 

could be ignored compared to other sources of error.' Larger variations 

Qf spike intensity experienced due to the range modification led us to 

wonder if the pressure , effect could really be ignored. As a result, we 

conducted a series of experiments to determine the magnitude of the ef-

fects of range pressure on impact flash intensity after proper baffles 

have been installed. We launched 3.2 mm mild steel spheres at 5.2 km/sec 

at range 'pressures ranging from 4x10 Torr to one atmosphere. Results 

of the firings are shown in Figures 17 through 19. Figure 17 shows the 

variation of tail intensity with range pressure, where the tail is defined 

as the broad, slowly rising pulse of radiation following the initial spike. 

The shape of the curve can he explained as follows. Below about 10_i 

Tcrr, the radiation in the tail was produced by interaction of the jet 

of material produced by the impact (shaped-charge theory) and the sur-

rounding atmosphere.. There was little interaction with the target face 

since highly polished targets were used. As the range pressure decreased 

the interaction between the jet and the surrounding atmosphere decreased, 

and thus the intensity of the tail decreased. From the figure, the 
-i approximate relationship is I(tail) .o P 2 .

 Above about 10	 Torr, effects 

such as ablation of the projectile and shock waves ahead of the projectile 

could possibly affect the impact to give the results shown in the figure. 
-1	 -.135 Above 10	 Torr, the approximate relationship . .s I(tail) c%P 

As a result of these studies, we re-affirm our belief stated 

previously (Reference 1), that the tail intensiti7 will not be a useful 
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parameter for a satellite experiment for velocity and size determination 

in the high vacuum of interplanetary space (since its peak will depend 

in a random way on the local target surface finish), except as a possible 

means of material identification. 

Results for the variation of spike intensity with range pres-

sure are shown in Figures 18 and 19. In both figures, the intensity is 

normalized to a velocity of 5.2 km/sec by multiplying by (5.2/V) 8 . The 

variation of the spike intensity at a wavelength of 3261 (cadmium line) 

is shown in Figure 18. The variation with pressure is not large, and 

unlike the. tail intensity, the spike intensity increases with decreasing 

pressure, the relationship being approximately I(spike)	 p'6. This 

means that a 100% error in pressure measurement (factor of 2) will result 

in an error in the intensity measurement of 16%. 

The broadband spike intensity shown in Figure 19 exhibits a 

similar dependence on range pressure. We conclude that the spike 

intensity will continue to be a good parameter in the high vacuum of 

space. 

4.4	 Parametric Studies of Meteoritic Projectiles 

Data have been collected on the impact flash characteristics 

influenced by the velocity, size and shape of projectiles made from 

meteoritic material when impacting a cadmium target. The impact flash 

spike intensity and rate of change of intensity at different wavelength 

bands centered at emission lines of cadmium and at 4900k in the background 

have been measured. The diagnosis was conducted with the impact flash 

analyzer described in Section 2. 

4.4.1 Vlocity Dependence 

The variation of the peak spike flash, intensity with projectile 

velocity for projectiles of various sizes made from Canyon Diablo iron, 

and copper, is presented in Figures 20 through 23 showingthe pertinent 

data which have been collected during the course of the present program. 
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Because of the structure of the Bruderheim stony material 

Canyon Diablo iron has been used most as projectile material. By the 

end of the program the effort has been concentrated mainly on 1.2 milli-

meter diameter spherical projectiles in order toestablish the relation-

ship between flash characteristics and projectile velocity. No more than 

7 data points have been collected for a diameter of 1.2 millimeters at 

the four selected wavelength bands. Projectiles of any other diameter 

each. have less data accumulated. In Figures 20 to 23 a power law trend 

can readily be observed. The scatter of the data allows a visual choice 

of slopes in the log-log plots between 7.5 and 9 for the different wave-

lengths. This is atvariànce with the conclusion of Reference 1, but 

whether this variation is real or due to a poor statistical sample in 

data collection will have to be demonstrated in further experiments. In 

the figure, a slope of 8 has been drawn across the points as a reference. 

Some spherical Bruderheim projectiles have been successfully 

launched. It has been possible to fire projectiles, up to 1.6 mm in 

diameter, to a velocity of 6.0 km/sec. The peak spike intensity behaviour 

for the points obtained follows the trend observed for the Canyon Diablo 

iron projectile. For projectiles of equivalent size, the Bruderheim 

flash is slightly more intense than the Canyon Diablo. The data obtained 

are given in Figures 24 to 27. A power law trend similar to the one 

observed for copper or Canyon Diablo can be observed, but the scarcity of 

data does not allow a confirmation of the exponent. A reference line 

with a slope of 8 has been drawn across the data points. 

The variation of rate of change of intensity with velocity is 

presented in Figures 28 to 31, for the Canyon Diablo and copper material 

and in Figures 32 to 35 for the Bruderheim stone material. In previous 

work involving the impact of copper spheres on cadmium (Reference 1) it 

was found that dI/dt varies as the 6th power of the velocity. In the 

present case a power law trend has been observed but the value of the 

exponent is surely larger than the previously obtained value. A reference 

line with a slope of 7.6 has been drawn across the collected data points. 

This slope has been obtained by averaging the four best visual fit slopes 
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which could be drawn at the four wavelengths measured, 

4.4.2 Diameter Dependence 

Intensities, and rates of change of intensities, have been 

normalized to an arbitrarily chosen velocity of 5.2 km/sec by multiplying 
8	 7.6 

the results by (5.2/V) and (5.2/V) 	 respectively in accordance with the 

power trend law described above. 

A strong dependence on diameter can be concluded from the best 

visual fit line drawn across the data points as seen in Figures 36 to 43. 

There is an average tendency for the intensity to vary as the fourth 

power of the diameter and for the rate of change of intensity as about 

the third power.. One notices however, an important data spreading at-

• single diameter and in some cases a tendency for the point to lie on 

• curve of decreasing slope rather than a straight line. This tendency 

could be the result of scatter, which in turn depends stronly on the 

normalizing velocity power; or it could be physical. The limited Bruder-

helm data obtained are shown in Figures 44 to 51. The small number of 

data collected do not allow any conclusions to be drawn. A best visual 

fit of the data obtained may be indicative of a trend which in some 

casesresembles the data observed for the Canyon Diablo. The general 

behaviour observed will thus have to be clarified by the collection of 

more data when the projectile diameter is the only parameter permitted 

to vary.

4.4.3 Shape Effects 

The,lnfluence of. the shape of the projectiles on the Intensity 

has been evaluated In the. firing of polyhedron, oblate spheroid and 

prolate spheroid shaped Canyon Diablo ironprajecçiles with a mass of an 

equivalent 1.2 mm diameter sphere. The results are presented in Figure 

52. These results have been normalized to the same velocity and their 

relative variation of intensity and rate of change of intensity are shown 

at the four monitored wavelength bands. Both prolate and oblate show very 
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large variations in flash intensity at all wavelengths. This behaviour 

actually confirms the correctness of the theoretical model used to des-

cribe the origin of the impact flash. In this model the radius of the 

impacting surface is the governing factor in the flash and jet generation. 

Thus the oblate spheroid, which presents a large radius of curvature at 

the impact point, will produce a flash whose intensity corresponds to that 

radius. The situation is reversed for the prolate spheroid. The observed 

intensities correspond to those anticipated fot the radius of curvature 

of the impacting surfaces in each case. 

In the case of the polyhedron shaped projectiles, if the number 

of facets is large the projectile will behave more like the corresponding 

sphere. The number of facets that can be filed on a projectile will 

increase with the projectile diameter, consequently smaller variations 

will be expected for polyhedron shaped projectiles of larger size. This 

effect is observed with 3.2 mm copper projectiles as reported in Reference 

1, and presented in Figure 53. This experiment is aimed to evaluate 

the amount of intensity fluctuation which may arise from actual micro-

meteorite impacts. It is to be expected that a spherical projectile is 

the most probable if the micrometeorite has been produced in the. melted 

form, or will be made of facets if it is broken fragments of a larger 

parent; oblate or prolate spheroid are statistically the least likely 

shapes. 

4.5	 Material Identification 

In the course of our research on impact flash, the time 

integrated radiation energy has been spectroscopically examined from the 

near infrared to the ultraviolet region of the electro-magnetic spectrum. 

Time and space integrated spectrograms have revealed that the radiation 

is characterized by line emission of the elements involved in the col-

lision, or their ions. If the spectrum is space resolved, continuum is 

also observed at the impact point peaking at spectral regions where 

persistent line emissions are recorded. Consequently, from the experi -

mental observation of the spectrograms, it appeared possible to uniquely 

R134/FR1	 26



identify the presence or absence of certain emission lines which could 

lead to an identification of the composition of the projectil, and this 

could be achieved electronically monitoring those wavelength bands where 

the presence or absence of the selected emission could be observed. 

Spectrograms of the radiation emitted at impact for copper, Canyon Diablo 

meteorite iron, Bruderheim stone and carbon are presented in Figure 5. A 

schematic representation of the filter bandwidth location in the spectrum 

is also given. 

Thus a second cluster of flash sensors has been installed at 

the experimental area, to test the feasibility of meteorite type identifi-

cation by monitoring the radiation at specified wavelength bands. The 

filters have been selected following the description given in Section 2. 

The bands have been chosen such that no or very little contribution from 

foreign elements should be observed at the selected band as seen on the 

spectrogram of Figure 5. 

In order to test the concept, a copper projectile was launched 

against cadmium. The spectrogram shown in Figure 54 shows that, as 

expected, no radiation is recorded at the 3 7 35L 2866, and 2480 bands. 

A weak presence of aluminum and calcium can be detected at the 3966A band 

and the CD II 2748k transition in the 2707 band. According to this 

picture of the phenomenon, no or very little signal should be received 

from the photomultipliers monitoring these bands. The experiment, however, 

has clearly demonstrated the contrary, as seen in photomultiplier records 

shown in Figure 55. Similar results have been obtained for Bruderheim and 

Canyon Diablo impacts. The results are tabulated in Table 2. A comparison 

between all the material used, Figure 56 shows that the intensity of all 

wavelength bands follows a pattern which is independent of the material 

involved.

Since the short duration pulse is unexpectedly seen at all wave-

length bands, regardless of material, this suggests that the pulse is 

caused by phenomena other than line emission or line broadening. Two 

possibilities are that the radiation in the pulses arises either from 
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ionized species which happen to radiate briefly in these bands, or from 

a high temperature plasma radiating as a black.body. The reason why the 

spectrograms do not show signs of emission other than the line and line 

braodening of certain transitions,is associated with the fact that the 

spectrogram responds to radiation, whereas the photomultiplier observes 

the intensity amplitude of the very short duration initial pulse. In the 

case of the spectrogram the short duration pulse may be completely missed 

by the emulsion, in spite of its large amplitude. 

The above interpretation would not be at odds with our theore-

tical model of the flash, which suggested that the short duration pulse 

of radiation originates in high temperature material, radiating only as 

the angle between the projectile and target surfaces passes through the 

"critical angle". The presence of ionization has indeed been spectro-

scopically observed for a projectile of magnesium-lithium impacting a 

cadmium target at 9.9 km/sec in an in-house experimental program, Figure 

57. Due to the impact energy involved at these velocities, the ionization 

is very well observed. The distribution of intensities in Figure 57 also 

tends to suggest the presence of continuum radiation. If continuum 

radiation is the major contributor to the observed spike intensity at 

higher impact velocities, then this will lend weight to the expectation 

that a power law relationship between Intensity and velocity will exist 

even at velocities much higher than those achieved In our experiments. 

The peak intensity will in this case depend on black body temperature 

which will increase with impact velocity. Line emission, on the other 

hand, which depends on the concentration of the atomic species will 

decrease with the appearance of ions at higher impact velocities. The 

atomic emission will re-appear with decreasing temperature as the impact 

proceeds. The possibility of material identification still remains 

since spectrograms of the flash have repeatedly been recorded which 

uniquely defined the elements involved in the collision. The information 

recorded on the spectrogram will have to be retrieved electronically. This 

can possibly be achieved by replacement of the time integrating emulsion 

by a time integrating photomultiplier circuit. This could be adapted to 

the existing sensor package. 
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4.6	 Carbon Identification 

Firings have been conducted to determine experimentally if an 

impact of a carbon projectile on a cadmium target at velocities of 6 to 

7 km/sec will be sufficient to excite some of the carbon transitions. 

The most persistent line of carbon is a transition at 2478, which cor-

responds to 5.0 e.v. According to energy and momentum conservation, as 

described by Clark (Reference 8), a minimum velocity of 9.4 km/sec is 

required to excite a 5.0 e.v. transition in a carbon-cadmium impact. 

However, in early impact flash experiments it was proved that transitions 

of 5.2-e.v. in aluminum-aluminum impacts could be observed at velocities 

of 6.5 km/sec. From the conservation laws, such a transition should 

theoretically require an impact velocity of 8.6 km/sec minimum. The ob-

servation of ionization at the impact point at 5 km/sec is a good indi-

cation that the hard sphere conservation rule does not hold. •A similar 

agreement has been given to evaluate the chance of exciting the 2478k 

transition in carbon by the hypervelocity impact process. 

Sintered carbon projectiles were launched. This material turned 

out to be too friable to resist the launching accelerations. Cut diamond 

specimens were used and again launch difficulties were experienced. A 

diamond projectile with its culet set in the sabot stuck to one of the 

launching sabot fragments and flew off line. Reversing the projectile 

such that the specimen rested with its table on the sabot face, the 

projectile impacted on its culet. No flash was observed for reasons which 

can be explained by the shaped-charge theory. 

A blunt nosed full calibre Zelux po1ycabonate projectile was 

also fired at 6 km/sec. The spectrum obtained shows the 2478R carbon 

emission line among all other lines associated with the impurities and 

elements used in the formation of Zelux. 

Still better results have been obtained with a 3.2 mm sphere of 

"electro graphitic" carbon launched against cadmium at 7 km/sec. The 

spectrum obtained is reproduced in Figure 58. It shows among impurities 

the presence of highly excited cadmium and the presence of carbon emission 
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at 2478k, singly ionized at 2846k and a faint line at 2296k corresponding 

to a doubly ionized carbon transition. 
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5.	 CONCLUSION 

In the course of the present program a meteoroid impact flash 

analyzer was constructed. It consists of a package containing nine 

photomultipliers monitoring, through specially selected narrow band 

interference filters, nine different wavelength bands of the electromag-

netic spectrum in order to provide information on the characteristics 

of the meteoroid size, velocity and composition. 

The laboratory verification of the concept has been conducted 

by monitoring the radiation emitted by the impact of a projectile on a 

target. The first phase of the experimental research has proved the 

validity of the concept for copper impacting cadmium. In the present 

program the verification of the concept was extended to actual samples 

of meteorite material impacting a cadmium target. 

Prior to the meteorite analysis experiments, firings were 

conducted to evaluate the influence exerted by the ambient range pres-

sure on the flash characteristics. This influence, which predominates 

in the recorded tail of the flash, can be neglected for the spike if the 

pressure is maintained below 	 Torr. 

Profiles of the cadmium emission lines to be monitored by the 

photo-sensor have been studied in a series of firings in order to properly 

select the bandwidth of the filters. The profile thus obtained led to a 

choice of a filter bandwidth of 80 to lOOk. 

The determination of the meteorite projectile velocity and size 

from a measure of its impact flash characteristics is a feasible task. 

A strong influence of the projectile parameters on the flash intensity 

and rate of change of intensity has indeed been observed and measured. 

However, the data which have been collected in the course of the present 

program for meteorite materials do not yet fully confirm the empirical 

relationships which related the impact flash characteristics to the 

projectile parameters for copper (Reference 1). The variation of I and 

dI/dt as respectively the 8th and 7.6 power of the velocity is still 

R134/FR1	 31



subject to uncertainty due to the too large a spread over several para-

meters (diameter, velocity, material and shape). This could be clarified 

by data collected in fixed diameter Canyon Diablo ironspheres launched 

at various velocities, in order to have a better distribution of data. 

The dependence of the flash intensity and rate of change of 

intensity with projectile diameter for Canyon Diablo is still open to 

discussion for the same reason. In a. log-log presentation of the 

empirical law the linearity of the variation of the logarithm of the 

intensity and rate of change of entensity with the logarithm of the 

projectile diameter may be subject to question. A deviation from 

linearity seems to be present at large diameters in some cases but 

whether this effect is real or simply due to the spread of the data 

remains to be determined. This could be clarified by the firing of 

Canyon Diablo iron projectiles at constant velocity. 

In the case of Bruderheim material, the results generally 

follow those previously obtained for copper, and Canyon Diablo. However, 

as yet only few data are-,available. 

Results have been obtained from the unit of the analyzer built 

to provide information on the meteorite type from the Impact signature. 

It has been observed that the spike peak intensity at different wavelength 

bands has the same relative amplitude irrespective of the elements present 

at impact. This unexpected observation reopens the question of the exact 

nature of the radiation emitted in the spike and calls for a series of 

controlled experiments to define it. The existence, however, of a unique 

spectral distribution recorded photographically for each type of projectile 

material suggests that a time-integrated photomultiplier signal may be 

used to identify the emission of specific'elements in a given wavelength 

band. 
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Shot No. 151 154 155 160 161 162 163 164 166 171 173 

Velocity, km/sec 5.29 5.16 3.78 5.22 5.00 5.08 5.11 5.19 5.24 5.88 5.98 

Pressure, Torr 101 9.0 760 4x10'5 3.5x10'5 1.5x10 2 2.5x10 4 2x10 3 4x105 3.8xl05 4x105 

Projectile Material Fe Fe Fe Brud. Fe Fe Fe Fe Cu Cu Cu 

Projectile Dia.	 (mm) 3.18 3.18 3.18 1.0 3.18 3.18 3.18 3.18 3.18 3.18 3.18 

Exit Slit (microns) 2000 2000 2000 2000 2000 2000 2000 2000 2000 500 8000 

Broadband Intensity 201000 11,400 6,450 500 1000 3000 

3261	 I, j.iw/cm	 @ 17' 119, 6,4 93. 83. 110. 67. 1370. 

dI/dt, uw/ cn 2 fsec @ 111 1850. 178. 1320. 1270. 245. 172. 1340. 

3610R	 I,pw/cm2 @ 1M 29.8 445. 433. 3390. 

dI/dt,	 iw/cm2 /sec @ 1M 

4900k	 I, uw/c	 @ II'j 42.2 86.5 

dI/dt, uw/c 2fsec @ 1M 

5085k	 I, ,uw/cIU2 @ :ui 13.7 470. 409. 3790. 

dI/dt, u/c1 2/8ec @ 12i

Table 1A
	 Table lA. Record of Firings 
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Shot No. 

Projectile Material 

Projectile Velocity km/sec 

Projectile Diameter (mm) 

Projectile Mass (mgr.) 

Range Pressure Torr (10) 

Broadband Spike Relative 
Intensity. 

Broadband Rate of Change of 
Intensity

189 190 193 196 

Brud. Brud. Brud. Brud. 

6.01 6.21 7.20 6.85 

1.0 1.0 1.0 1.5 

1.5 1.4 1.7 6.1 

2.1 2.6 4.0 3.8 

45 77 100 200

1.2xl03	 l.lxlO3	 2.6x103	 4.4x103 

Table lB. Record of Firings 
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Shot No. 202 203 204 206 208 209 211 212 

Projectile Material Cu Diamond Cu Cu Cu Cu Cu Cu 

Projectile Dia. 	 (rum) 1.2 1.8/2.0 1.2 .6 .6 .6 .3 .3 

Projectile Mass (mgr) 6.4 5.9 8.4 1.1 1.3 .7 .25 .3 

Velocity (km/sec) 6.7 6.31 6.36 6.33 6.99 7.2 5.95 7.04 

5085.	 I, uw/cm	 @ Dl 34.6 15.84 48.44 31.4 .204 16.28 

dI/dt, .uw/cm2 /sec @ 1M 945.7 177 1097 717.6 5.56 281.4 

I (5.2/V) 8 6.9 3.3 4.5 2.3 .069 1.4 

dI/dt (5.2/v) 7 ' 6 204.7 39.7 115.8 60.5 1.9 28.1 

3610	 I, Awl= 2 @ DI 6.58 13.45 1.795 24.95 .26 7.83 

dI/dt, )lw/cm /sec @ DI 111.6 404 19.16 357.7 6.53 92.95 

I (5.2/v) 8 1.31 2.82 .172 1.84 .088 .693 

dlfdt (5.2(V)	 ' 24.2 90.6 2.02 30.2 2.34 9.30 

4904	 I, .uw/cm	 @ DI 21.09 77.2 21.15 16.38 10.66 

dI/dt, ..uw/cm 2 /sec @ DI 280.5 995.0 407.6 285.0 220. 

I (5.2/V) 8 2.77 0 15.4 2.00 1.21 .944 
dI/dt (5.2(y)7 ' 6 40.8 w 215.4 43.0 24.0 22.0 

3261k	 I, .uw(c 2@ DI 

dI/dt, ,uw/ci 2 /sec @ Di 
I,(5.2/y)8 

dI/dt (5.2(Y)7'6

228 254 255 

Cu Cu Cu 

1.2 .6 .6 

8.13 1.2 1.2 

5.93 5.31 5.17 

84.7 No Spike No Spike 

1377.1 U U 

29.6 

507.0 

125.5 

2148.5 

43.9 

791.6 

115.9 

1692.6 

40.5 

623.6 

150 

6500 

52.4 

2395.

Table 1C
	

Table 1C. Record of Firings 
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Shot No. 257 258 268 270 289 285 296 

Projectile Material Brud. Brud. Brud. Brud. Brud. Cu Cu 

Projectile Dia.	 (turn) 1.2 1.2 .6 1.6 .3 1.2 1.2 

Projectile Mass (mgr) 3.18 3.22 .41 6.9 5.8 7.3 

Velocity (km/sec) 5.5 4.14 5.98 5.44 6.03 5.97 5.66 

5085k	 I, .uw/cxu2 @ iN 183.6 16.08 7.31 227.01 1,065 32.5 157.4 

dI/dt, ..uw/crn 2 /sec @ 1M 2595.4 266.9 179.3 1005.3 28.25 631.8 947.5 

I	 (5.2/V) 8 117,2 99.61 2.38 158.2 .325 10.76 79.89 

dI/dt (5.2/V)7 
.6

1694.6 1509.2 61.98 713.4 9.167 221.2 497.5 

3610	 I, jiw/crn2 @ Di 161.5 24,7 11.32 224.8 .997 134.1 

dI/dt, i.1w/cIu 2 /sec @ Di 855.9 618.4 227.2 6161.5 25.3 979.4 

i (5,2/V) 8 103.1 153.0 4,35 156.6 .304 68.10 

dI/dt (5.2/V)7.6 558.8 3496.9 78.54 4379.9 8.20 514.2 

4900k	 I, uw(crn2 @ Di 65,5 7.95 4,09 .68 37.6 1261.7 

2 dI/dt, uw/cu/sec @ iN 1251.6 126.6 930.0 13.0 865.9 1.265 

i (5.2/y) 8 41.81 49.24 1.33 .207 12.45 640.4 

dI/dt (5.2/y 7 ' 6 817.2 715,9 321.4 4,21 303.1 .664 

3261X	 J,	 1w(c 2 @ 17 135.9 12.9 5.45 220.6 .385 34 139.5 
dlfdt, pw/cx 2 1sec @ iN 4520,8 302,9 168.4 22307.3 6.81 319.8 2961.9 

I (5.2y) 86,76 79,91. 1,781 153.7 .117 11,26 70.8 

dX(dt	 (5.2jy) 7 ' 2951.7 1712.8 58,21 15831,4 2,209 111,9 1555

T&ile lC
	

Table lC. Record of Firing3 (continued) 
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Shot No. 306 320 322 325 312 318 323 328 332 333 

Projectile Material Brud. Brud. Brud. Brud. CanDi CanDi CanDi CanDi CanDi CanDi 

Projectile Dia.	 (mm) .6 .6 1.2 1.2 3.2 1.2 4.8 .3 2.4 .6 

Projectile Mass (mgr) .81 .73 3.7 3.25 152.9 7,35 505.1 61.9 1.14 

Velocity (kn/sec) 4.16 7.33 7.51 4.97 4.98 7.29 5.35 5.32 6.12 6.15 

5085k	 I, .uw/cm	 @ iN ,459 5.77 468.9 440.9 1.45 326.6 2.44 
dI/dt, uw/cm 2 /sec @ 1M 3.7 255.7 4054.4 3644.5 23.05 6640.5 47.03 

I (5.2/v) 8 2,735 .370 662.6 29.54 1.2 88.72 .637 
d]:/dt	 (5.2(y) 7 ' 6 20.17 18.81 5631,3 279.5 .002 1928.2 13.13 

3610	 I xiwlcm2 @ 1M .435 26.05 224.9 18.71 1649 504.4 963,5 1.61 695.9 3.13 
dI/dt, )iw/cm2 (sec @ l 3.93 964.7 12152.4 443.1 19838.5 11762. 11389.9 47.9 11310.1 109.9 

8 I	 (5.2/y) 2.6 1.67 11.88 26.86 2330 33.8 767.4 1.34 189.04 .817 
dI/dt (5.2/v) 7 ' 6 21.4 10.99 279.3 624.91 27554.4 902.3 9176.0 .041 3279.29 30.702 

4900R . I, .uw(cii2 @ lfl .531 71.88 10.89 158,4 368.8 339.0 .881 421.5 1.32 
dItdt, )w/ci2 (sec @ ]i 4.95 1784.8 226.1 1541.7 4489.9 5726,9 11.68 6837.4 37.59 

I (5.2/fl8 3,16 3,79 15.63 224.7 24.7 270.02 .701 114.5 .344 
dI/dt (5.2/V 7,6 26,984 109,23 318.87 27554.4 344.45 4613.7 9.409 1982.46 10.50 

3261	 I: uw/cm2 @ ifl .246 11,34 81.05 12.85 394.2 303.3 .583 .568 
dI/dt, uw/cii 2/ec @ 1M 4.57 180,5 1623.8 338.9 6975.4 8562.1 19.32 9.138 

I	 (5.2(y) 8 1.466 .727 4.28 18.45 26.426 239 .464 .148 
d]:/dt (5.2(y)?' 6 24,913 13.283 99.37 477.9 535.13 7100 15.56 2.552

Table 1C Table 1C. Record of Firings (continued) 
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Shot No. 216 217 

Projectile Material CanDi CanDi 

Projectile Dia.	 (mm) 1.2 .6 

Projectile Mass (mgr) 7.0 1.0 

Velocity (km/sec) 6.3 6.16 

5085 I,	 iw/cm2 @ 1M 194 5.27 

dI/dt, uw/cm2 /sec @ 111 2641 83.47 

I	 (5.2/V) 8 41.79 1.35 

dI/dt (5..2/V) 76 614.5 23.0 

361O I, )lw/cxu	 @ 1M 308.5 1.22 

dI/dt, uw/cm2 /sec @ lM 3643. 27.2 

I (5.2/y) 8 66.4 .314 

dI/dt (5.2/V) 76 847,5 7.50 

4900R 1,	 @ lM 121 3.22 

dI/dt, Uw/cJ(sec @ 14 2334 52.66 

I (5.2/y) 8 26.06 .830 

dI/dt (5.2/y)? 6 543.0 14.53 

3261R I	 .u/ci 2 @ 111 165.3 .859 

dlfdt, uw/cw2 /sec @ ],1 1099. 13.3 

I (5.2(y) 8 35,6 .221 

dlfdt
21J.6

255,7 3.67

Table lC 
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220 223 230 237 247 225 

CanDi CanDi CanDi CanDi CanDi z elux 

2.4 2.4 1.2 1.2 2.4 12.7 

61.2 53.2 6.77 6.2 56.7 1750 

6.04 4.09 3.59 7.04 5.2 5.85 

337 17.1 .945 212 298 

9200 323.3 29.3 3376. 3180.2 

101.7 116.7 18.31 18.78 298 

2948.0 2005.0 489.5 337.6 3180.2 

748 14.11 .566 259.9 389.1 

14934 331.1 22.7 7463.7 5306.2
z 

225.7 96.3 10.9 23.0 389.1 

4785.4 2053.4 379.2 746.4 5306.2 

497 19.3 1.04 127.2 225.2 

9176 439.4 14.72 2295.5 3200.9 

150 131.9 20.15 11.2 225.2 

2940.3 2725.9 245.9 229.5 3200.9 Z 
0 

394.2 8.72 .48 66.9 212 

2791 84.3 15.37 2768.4 3782.7 

118.9 59.5 9.3 5.93 212 

894.3 522.8 256.7 276.8 3782.7

Table 1C. Record of Firings (continued) 
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Shot No. 260 278 279 280 282 283 284 295 263 293 

Projectile Material CanDi CanDi CanDi Can1i CanDi CanDi Canili CanDi Carbon Carbon 

Projectile Dia.	 (jnxn) .6 1.2 1.2 1.2 1.2 1.2 1.2 1.2 3.15 3.2 
Polyhedron Prolate Oblate Polyhedron 

Projectile Mass (mgr) .7 9.73 6.42. 7.92 6.01 6.72 6.7 28.1 32.8 

Velocity (km/sec) 7.27 4.72 4.66 5.14 4.71 4.58 5.94 5.66 7.57 7.13 

5085k	 I, .uw/cm2 @ 1M 32.2 .555 74.6 17.05 8.11 32.6 22.1 

dI/dt, ,uw/cm2 /sec @ 1M 896.5 13.7 1016, 261 197.0 538.4 190.3 

I (5,2/V) 8 2.20 1.33 81.8 33.0 22.6 11.2 11.2 

dI/dt (5.2/V) 7 ' 6 70.2 31.6 1499. 550 223.9 195.8 99.9 

3610X	 I, ,uw(cm2 @ 1ij 45,8 33.5 .870 117 15 5.8 19.55 

dI/dt, uw/cm2 fsec @ iN 1528.9 755.5 13.0 . 1812. 142 249. 240.0 

i (5.2/y) 8 3.13 72.7 2.09 128.3 33,1 16.1 9.92 

d1/dt (5.2/y)7 ' 6 119,7 1577. 29.9 1979. 301 653.0 126. 

4900R	 ,	 @ 1l' 6.58 24 .423 51.4 16.65 7,26 37.7 16.6 

d1/dt, uw/ci 2 (sec @ iN 128.3 291.3 16.7 818.3 206 .149 1171. 102.4 

I (5.2/y).8 .45 52,1 1.01 56.4 36.7 20.0 13.0 8.42 
dI/dt	 (5.2(y).7'6 10.1 608,1 38.4 893.7 437, 391. 426.2 53.76 

iN 30 9.34 47	 . 48.0 4.74	 . 1.26 37.3 10 
dI/dt, uw/c 2 /sec @ iN 1175. 205.9. 14.6 851.6 62.5 43.9 823.8 137.8 Pk PL. 

(5.2(y).8 2.05 20.3 1,13 52.7 10.4 3.49 12.86 5.07 
ddt (5.2/y).7'6 I./ 92.1 429..	 . 33.,3 930.1 132,6 115. 299.6 72.3

Table 1C	 Table 1C. Record of Firings (continued) 
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WAVELENGTH (X) 5085 3610	 4900 3261 2707 2866 3735 3942 2478 

Shot No. 289 - Bruderheiin (.3-mm din. - 6.03 kin/sec) 

I, )Jw/cm	 @ 1M 1.065 1.07	 .68 .385 6.86 2,12 1.325 .494 3.31 

1(5.2/v) 8	 (1.2/d) 4 83 83.4	 53 30 535 165,3 103.3 38.5 258 

Shot No. 284 - CanDi (1,2 nun dia.	 - 5.94 kin/see) 

r,	 @ IN 32,6 37,7 38.1 193,5 143.4 39 20.1 414 

1(5.2/v) 8 (1,2/d 4 11.2 12.96 13.2 66.5 49.3 13.4 6.91 142.2 

Shot No. 285	 Copper, (1.2 nun dia. 5.97 km/eec) 

I, uw/cm2 @ 1i 32.7 37.6 34 194 143.5 39.1 18.4 451 

1(5.2/v) 8 (1,2/d) 4 10.73 12.33 11.15 63.6 47.4 12.82 6.04 148

	

Table 2	 Table 2. Intensities at Different Wavelengths for Different Materials 
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Figure 1. Spectral Distribution Around 3610A Line 
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Figure 2. Spectral Distribution Around 5085A Line 
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Figure 8.	 Figure 8. Detailed Construction of a Photomultiplier Sensor Package 

59	 R134/FR1	 60



o	 0) 
—

U 

0 

LU	 +.I 

LU

co 

.0 

— 
<

L) 
(I 

0) 

.2 
In	 0 

tko	 04 

0) 

1'3

6 

CD
0 

(sIoA) 1VNDIS lfldlflO 

Figure 9. 

R134/FR1

61



/ 

/ 

QUARTZ WINDOW 

(6 inch diameter) 

SENSOR PACKAGE 

Figure 10. Schematic of the Impact Flash Sensor Package Mount 

R134/FR1
62



LU 

CL

(Li 
I-
-j 

p I-

cl

.9 
2E 

CL 
C-) 

LU 
= 
U,

0 

0 

U 

0 

CrJ 

-4 
Q) 

0.4 

a) 
bIJ 

('3 

H 

-4 
—4 

Q). 

".4 

LU 

U, 

-j 

>-

V 
LU 
-J 
LU 
I-. 

Figure 11, 
R134/FR1

63



0 
Q 

0 

C

0 

0

4-

N
E 

I 
LL 

0 

c) 
Cl) 

0 
Q) 

bb 

En 

Cd 

Ob

Figure 12. 

R134/FR1
64



C, 

0 

C, 

Q

N 

C

bo

Figure 13. 

R134/FR1
65



wU.'	 ' 
> 2 0 

U.' 
4,)
z

.J 4,, U)
I-

LI.'	 v 
(n O'

U.'
O'

C) 
UJO' 

J0 -. ...Jo 
LU 

w
Cy 

_J 
0' CO 0' 

UJU.' L&. 
U. 

---
I-. 

'C 

I— 
0 

U.' 
> w 0 U.' 

I—
UJ 

<Z
o 
i_

z 0 
0 

le It x 
UJO

C) — 
I-

U.' 0 
CL

'C 'C 

a, 

C, 
a	 C) 

4,,	
(a 

0 
I-	

[J3 
E 

a) 
(a 

C, 

C 2 
C)

_J _J 
.	 .
	

(Ti 

cd 

C

U 
0 

-4 

—4 

(Ti 

U 

(a 

1) 
4..' 

r. 
-4 

lrl 
(a 
'Ti 

'-4 

a) 

IwI IIh Il 
L_J

Co 

- CL 

.ao 
E 
'C

Figure 14. 

R134/FR 1
66



U 
a 

LL 
LL 
0 

I—

U, 

0 
Ui 

I-

ci) 

Cd 

0 
0 

(Ti 
U 

".4 

ci) 

t.fl 

ci) 

• U 

C) •3

0 

.0 

C 

U, 
0' 

0'C'

C.) 

)	 ) 
C 

•	 C	 = 

0
(	 ( 
.0 
C)	 C)

c1
Ui 

-
Iz 

C	 I Ui 
I v' 

> 
Ui 
—j 

0 
I-
C.) 
Ui 
I-
Ui 
0 

U 
CU 
CA

co

'U 

I—

U 

E 

Figure 15. 

R134/FR1

67/68 



2: 

Figure 16.	 Figure 16. Sensor Data System/Block Diagram 

69	 R134/FR1	 70



10- 6	 102	 100	 10 	
10 4
	 10  

10 

10 

10

Tzj 

CO 

0 
4 

PQ 

4.J 

OD 

cTj 

CO 

w

Pressure - Torr 

Figure 17. Pressure Dependence of Tail Intensity - Broadband 

R134/FR1
71



10 3 

E 

E 
C) 

o 

Cn 

10 

U) 

a) 

Q) 

r1

10

10 -2	 10_1	 100	 10 

Pressure - Torr

0 
Figure 18. Pressure Dependence of Spike Intensity, 3261A 

R134/FR1

72



10	 102	 10_1	 100	 101 

tt 
0

10 

10

Pressure - Torr 

Figure 19. Pressure Dependence of Spike Intensity - Broadband 

R134/FR1
73



4.8 mm 

Z-4 mm 

© l.Zmm(copper) 

© 1.2 mm (polyhedron) 
100 0 0.6 mm 

0.3 mm 

Slope = 8.0

1-4

	

° 

V

10 

.4

1

0.2
	

0.4	 0.6
	

0.8	 1.0	 1.2 
1

Log Velocity (km/sec.)
0 

Figure 20. Spike Intensity Variation at 3261A for CanDi and 
Copper Projectiles Impacting Cadmium 

R134/FR1
74 



o 

3.Zrnni  

A 2.4mm I 
o1.2mm I 0, 

1.2mrn(copper)
 

100	 0 1.2 mm (polyhedron) 

00.6mm I © 
0.6mm (copper)	 / I 
0.3 mm	 / 1	 3 

0.3mm (copper) 

Slope =8.0

V 

0.2	 0.4	 0.6	 0.8	 1.0	 1.2 

Log Velocity (km/sec)
0 

Figure 21. Spike Intensity Variation at 5085A for 
CanDi and Copper Projectiles Impacting Cadmium 

RJ.34 /FR1

75 



4.8min	 / Q 
.4 mm 

0 mm 

© 1 . mm (copper) 

100	 1.Z mm (polyhedron) 

0 
L1 0.6mmcopperI 

V O.3mm 
4) 

4)

	 V 0.3 mm (copper)	 © 

Slope = 8.0	
c:j 

C-) 

Ci)

.10 Ci) 

4)

0 

0 

V 

0.4	 0.6	 0.8	 1.0 
1	 I	 I	 I	 I 

Log Velocity (.kin/sec)- 

Figure 22. Spike Intensity Variation at 3610X for 
CanDi and Copper Projectiles Impacting Cadmium 

R134/FR1

76



4.8 mm 4 3. 1. mm 

Linm 
Q I.Z mm 

mm (copper) / 

mm (polyhedron) 

0 0.6 /cc 0 
-100

min 

0.6 mm (copper)
/	 © V 0.3 mm 

V0.3mm(copper) 

Slope	 8.0 

0

012	
04	 06 o	

112	 114

4) 

4) 

"U

U 
S.-

0 

U) 

6)

Log Velocity (km/sec) 

Figure 23. Spike Intensity Variation at 4900X for 
CanDi and Copper Projectiles Impacting Cadmium 

R134/FR1

77 



0) 

I
1LoJ 

1-10

l.6 mm 

1.2 MM 0 
0.6 mm 

100
0.3 mm 

Slope = 8. 0

0 
0.2	 0.4 0.8	 1.0	 1.2 

Log Velocity (km/sec) 

Figure 24. Spike Intensity Variation at 3261X 
for Bruderheim Projectiles Impacting Cadmium 

R134/FR1

78 



®L6rnm 

0.6mm

 0.3 mm 
100

/ [	 Slope = 8.0

7D 
I-'	 IV 

9 

0.2	 0.4	 0.6	 0.8	 1.0
	

1.2 
I	 I	 I	 I	 .1 

Log Velocity (km/sec) 

Figure 25.. Spike Intensity Variation at 5085A 
for Bruderheim Projectiles Impacting Cadmium 

Rl34/FR1

79 

In 

E 

CI

E 
LI 

In 
4. 4. 

I— 10 

:1. 

(I) 

In 

-t



1.2 mm 

o	 0.6mm 

¶7 	0.3mm 
- 100

Slope = 8.0 Q Q 

'a 

E 
C) 

U)

-1

0.2	 0.4 

I	 I

0.6	 0.8	 1.0	 1.2 

I	 I

Log Velocity (km/sec)	
0 

Figure 26. Spike Intensity Variation at 4900A 
for B rude rheirn Projectiles Impacting Cadmium 

134/FRi

80 



l.6mm / 

o	 1.2mm. 0/ 
0.6mm 

100
0.3 mm 

Slope = 

8 . 0

/ 

0
0 

I
.1• V 

0 
I, 

0.2	 0.4 
1 .	 I

0.6 0.8 1.0	 1.2

Log Velocity (km/sec) 

Figure 27. Spike Intensity Variation at 3610A 
for Bruderheirn Projectiles Impacting Cadmium 

R134/FRJ

81 



•. 4.8 mm 

2.4mm 

1.2 mm (copper) 

- © 1.2 mm (Polyhedron) 
e 10,000

U 
V 0.3 mm 

Slope	 7.6 

I -: .: 1000 
0 

a 
bo 
C 

U 

0 
a) 
(a

I 

0
 0 

0 
100

9 

..,1V. 
0.2	 0.4	 0.6

	
1.0
	

1.2 

Log Velocity (km/see) 

Figure 28. Spike Rate of Change of Intensity at 3261X 
for CanDi and Copper Projectiles Impacting Cadmium 

R134/FRI

82 



' 3.2 mm 

A2.4 mm 

l.Zmm 

1.2 mm (copper) 

10,000	 1.2 mm (polyhedron)• 

00.6mm 

0.6 mm ( copper) 

O.3rpm. 

0.3 mm (copper) 0 
Slope = 7.6	 cD 

ot 

• /i 

•100	 •'	 /	 1• 
0 

0.2	 0.4	 0.6	 0.8.	 1.0	 1.2 
I	 -	 I	 I	 I	 I 

Log Velocity (km/sec) 

Figure 29. Spike Rate of Chaiige of Intensity at 5085A 
for CanDi and Copper Projectiles Impacting Cadmium 

R134/FRI 

Cv 

(

83



4.8 mm 
tZP 3.2 mm 

2.4ntrn 

0 
© 1.2 mm (copper) 

-10,000	 1.2 mm (polyhedron) 

6.6 mm	 I 0 
[	 0.6mm (copper)	 A' 0.3 mm' 	 I 7 0.3 mm (copper)	

/ 0 

Slope = 7.6.

/10 I € 

/90 
.l00

V 

0.2	 0 
I 
.4	 0.6	 0 

I 
.8	 1.0	 1 

I 
.2 

I  

Log Velocity (kxn/sec) 

Figure 30. Spike Rate of Change of Intensity at 3610A 
for Canfli and Copper Projectiles Impacting Cadmium 

R134/FR1

84 

(9 

C



4.8 mm 
3.2 mm 

2.4 mm 0 1.Zmm 

l.Z mm (copper) 

10 , 0000 1.2 mm (polyhedron) 

0.6 mm 

0.3 mm	 - 

Slope =7.6

	 /0 
/oo 

C. 

I- 1000. 
Cl) 
'a 

-4 

Cl) 
Dt 

S

• 	 S	

© 

100

	

/ op 

0.2	 0.4	 / 0.6	 0.8	 1.0 
I	 I. 

Log Velocity (km/sec) 

Figure 31. Spike Rate of Change of Intensity at 4900A 
for CanDi and Copper Projectiles Impacting Cadmium 

R134/FR1 

I-. 

C) 

rn 

U 

Cl) 
4-a 
4-I

1.2 

85



1.6 mm 
-	 Q 1.2 mm 

0 
V 

	

0.3 mm	 0 
Slope = 7.6

0 
- 1000

0/0 

•	
o/o 

- 100 

—10

0.2	 0.4	 0.6	 0.8	 1.0	 1.2 
I	 I	 I.	 I 

Log Velocity (km/se(:) 

Figure 32. Spike Rate of Change of Intensity at 3261A 
for l3ruderheim Projectiles Impacting Cadmium 

R134/FR1 

I-

4. 

w 

V 
4-. 

-4 

0 
V 
Di 

.0 

0 
V 
4J

86



I 
1.6 mm 

Q	 1.2 MM -

-i000 0	 0.6 mm 

() 0.3 mm 

Slope = 7.6 

I 0' 

/ 
0 

to 

0

•10

0 
/ 

0.2	 0.4 0.6 0.8	 1.0	 1.2

Log Velocity (km/sec) 
-	 0 

Figure 33. Spike Rate of Change of Intensity at 5085A 

for B ruderheini Projectiles Impacting Cadmium 

R134/FR1

87



0 
Figure 34. Spike Rate of Change of Intensity at 3610A 

for Bruderheim Projectiles Impacting Cadmium 

R134/FR1

88



0 

2' 

/:.

0 1.2 mm 

a)

	

o 0.6mm 

0.3 mm 
I— 1000 

U 

CC

	 Slope = 7.6 

U 

CC 

'a 

CC 

a) 'a 
-4 I 100 

0 
a) 

U 
4. 
0 
a, 
'a

R134/FR1

0.2	 0.4
	

0.6	 0.8
	

1.0	 1.2 
.1 

og Velocity (km/sec) 

Figure 35. Spike Rate of Change of Intensity at 4900A' 

for Bruderheim Projectiles Impacting Cadmium 

—10 

89



OD

-	 iO4 

-	 103

9/C -	 102
S 

SLOPE =3.8 () 

-	 10'

OS 
-	 101 

0
So 

C) -	 1O_2

T.6	 T.8 
I

0.0	 0.2 
S

0.4	 0.6

1.4	 Log Diameter (mm) 

Figure 36. Dependence of Intensity on Projectile 
Diameter for Canyon Diablo at 3261X 

R134/FR1

90 



-	 104 . 

10 

-	 102 0 SLOPE	 3.8 g	 /7 

-	 10' g 
.0. /. 

100 /0 
07'

T.6	 .	 1.8 
.1	 I

0.0,	 0.2 
I

0.4	 0.6

CID 

r'J 

In

'-I 

10

1.4	 Log Diameter (mm) 

Figure 37. Dependence of Intensity on Projectile 
Diameter for Canyon Diablo at 3610R 

R134/FR1

91 



- 

..102	 8 
SLOPE = 4.3 

rJ 

LA

/ 

=1 - io	 b 

- 100 

C
0 
0 

- b-i 

10-
 2
	 T.8	 0.0	 0.2	 0.4	 0.6 

1. 4	 Log Diameter (mm) 

Figure 38. Dependence of Intensity on Projectile 
Diameter for Canyon Diablo at 4900A 

Rl34/FR1

92



r.J 

CO

1.-I 

10-
1.4	 Log Diameter (mm) 

Figure 39. Dependence of Intensity on Projectile

Diameter for Canyon Diablo at 5085R 

R134/FR1

93



10_i

- 

-.  10

0 
0 

- 103
SLOPE = 3.3 0 

70 •0.

0 

0

Y0 -	 101 

-	 100

1 .6.	 T.8 0.0	 0.Z 0.4	 0.6 
I I	 I I	 I

1.4	 Log Diameter (mm.) 

Figure 40. Dependence of dI/dt on Projectile 

Diameter for Canyon Diablo at 3261X 

R134/FR1

94 



w 

rJ 

Lfl 

10-1 - 

-

105

0 

-	 .	 C 

3 
0	 0 

- 103	
SLOPE 3.3 

- 102	 0	 .	 0 

3 

-	 101	 .	 . 

.0 

- 100

1.6	 1.8	 0.0	 0.2	 0.4	 0.6 
p	 I	 i__ 

T.4	 .	 Log Diameter (min) 

Figure 41. Dependence of dI/dt on Pro.j8ctile

Diameter for Canyon Diablo at 3610A 

R134/FR1
95 



Slope	 3. 1 

.102

0• 

_100

T.6	 T.s	 0.0	 0.2	 0.4	 0.6 
I	 I	 'Li 

7.4	 Log Diameter (mm) 

•	 Figure 42. Dependence of dI/dt on Projectile Diameter for 
Canyon Diablô at 490O 

R134/FR1 

N 

10, 

10-1

96



- lOh 

- iø

Slope 3.2 

- 101 

-10°

1.8	 0 1 .0	 0.2	 0.4	 0.6 
.  

Y. 	 Log Diameter (mm) 

Figure 43. Dependence of . I/dt on Projctiie Diameter for

Canyon Diablo at 5085A 

Ri 34/FRi 

N 

10-1

97



C'-

Th 

- '. 

1 01 

10-1

T.4	 Log Diameter (mm) 

Figure 44. Dependence of dI/dt on Pro tile Diameter 

for Bruderheim at 5085X 

Ri 34/FRi

98



• I 

- 1

Slope = 4.1 

102 

-10-1

1 .6	 1.8	 0.0	 0.2	 0.4	 0.6 
b -2	 I	 I 

1.4	 Log Diameter (mm) 

Figure 45. Dependence of Intensity on Projectile Diameter for 
Bruderheim at 5085X 

R134/FR1

99 

m
fl.



- 1

Slope = 4.4	 0	 -. 

-

/H0 V 
:2/A 

T.8	 0.0	 0.2	 0.4	 0.6 
I	 .1 

T.4	 Log Diameter (mm) 

Figure 46. Dependence of dlldt on Projectile Diameter for 
Bruderheim at 3610k 

R134/FR1

100.	 - 

lot 

100 

10-1



-iø 

—10,

Slope = 3.8 

F 102 

-10,

0 

0 
-100 

0 

10-1

7 
7.6	 T.s	 0.0	 o.z	 0.4	 0.6 

I	 I	 I 

T. 4	 Log Diameter (mm) 

Figure 47. Dependence of Intensity on Projectile Diameter 
for Bruderheim at 3610. 

R134/FR1 

(1 

'- I

101



- 10: 

- 10'

Slope = 2.6

9 
C) 

_102	 0 

0 

1.6 .	 T.8	 0.0	 0.2	 0.4	 0.6 
I	 I

Log Diameter (mm) 

Figure 48. Dependence of dI/dt on Projectile Diameter 
for Bruderheim at 4900A 

R134/FR1.

102 

(0 

N

NJ 

)-I 

101 

100 

10-1



- 10, 

-iø

Slope = 3.3 

- 

m 

Ln

	

.1	 101
 

	

-4
	

0/" C) 

- 

10-1 

/C

1.6	 1.8	 0.0	 O.Z	 0.4	 O.( 
10_2	 •L 

1.4	 Log Diameter (mm) 

Figure 49. Dependence of Intensity on Projectile 
0. 

Diameter for Bruderheim at 4900A 

R 134/FR 1

103



- 10b 

- 1

Slope	 4J

C) 

0	 S 

0 

_102 0 
0 

0 
C) 

101 

fl

1.6	 1.8 
I	 I

0.0	 0.2	 0.4	 0.6 
I	 I___

N
Th 

'5 -

- .-

1 0° 

10-1

1.4	 Log Diameter (mm) 

Figure 50. Dependence of dI/dt on Projectile Diameter 
for Bruderheim at 3261A 

R 134 /FR 1
104 



Slope =4.4

C) 

	

.102	
g 

icc
	

• C 
101 

-1

(.D 

10-1 _100

9 	

0 0	 02	 04	
0 6 1 0

	

1.4	 • Log Diameter (mm) 

Figure 51. Dependence of Intensity on0 Prpjectile Diameter 
for Bruderheim at 3261A 

R134/FR1

105



CD 

-4

o Sphere 

0 Polyhedron 

D Oblate Sphere 

0 Prolate Sphere 

0 
Wavelength A 

Figure 5Z . Shape. Effect on intensity at Different Wavelengths 

for I	 mm Canyon Diablo I run Sphe re s 

R134/FRI
106



U) 

-4 

-4

o Smooth Sphere 

© Scratched Sphere 

o Polyhedron 

D Oblate Spheroid 

Prolate Spheroid

3261 3610	 4900	 5085 
0 

Wavelength A 

Figure 53. Shape Effect on Intensity at Different Wavelengths 
for 3.2 mm Copper Spheres 

R134/FR1
107



2748 

3247 

3273 

Projectile - Copper 

Target - Cadmium 

Velocity - 5.66 km/sec 

Mass - 0.0073 gm

Ca 3933 

Al 3944 

Al 3961 

Ca 3968 

Cd I 3261 

Cd 1 3610 

Cd I 3403 

Cd I 3467 

Figure 54. Spectrogram of the Flash Produced by the Impact of 

a Copper Projectile on a Cadmium Target 

R134/FR1
108



0) 

0) 
E . 

0) c V 

- I	 E 
CL -0
 

m 
c• ç.J•U, 

0)
>. 

Z 
o

1) 

O4 
Q 
co 

U 

cn 

—4 

1) 

In 

U 

0< 

V 
C

0< 

1., 

V 
C 

0< 
I-

I-

V 
=

0< 

N. 

()J 

V 
= 

.0 

0< 
U, 

N.

Figure 55, 

R134/FR1
109

In 

.-1 



2478 2707 2866 3261 3610 3735 3942 	 4900 5085 

'-I 

Cl) 

'-4 

cti

Wavelength 

Figure 56. Comparative Intensities at Different Wavelengths 
for Different Material Impacting Cadmium 

R134/FR1

110



II 2573 

II 2748 r 2790 

I 2795 

1 2797 
I 2852 L 2802 

T92o 

 936 

J3091 
1I 3093 

3097 

Li	 3232 

Cu	 3247 

f 3248 
Cd 1113250 

Cu	 3273 

13330


Mg 11 .1 3332


L3337 

r3829 

- 3832 

L3838 

Projectile -	 Mg-Li alloy 

Target - Cadmium 

Velocity - 9.8 km/sec 

Mass - 0.1 gm

I 4415 

I 4481 

4603 

Cd I 3261 

Cd I 3610 

Cd I 3403 

Cd I 3467 

Figure 57. Spectrogram of the Flash Produced by the Impact 
of a Mg Li Projectile on a Cadmium Target 

R134/FR1	 111



3610 

Cd I 2880.8 

C II 2836 

3261 

Cd I 3252.5 

3133.2 

Projectile - Carbon 

Target - Cadmium 

Velocity - 7 km/sec 

Diameter - 3.2 mm

Cd II 2748 

CI	 2478 

C III	 2296.9 

Cd I	 2288 

Cd Il 2265 

Figure 58. Spectrogram of Radiation Emitted by Carbon Impact on Cadmium 

R134/FR1
112



0 1969 COMPUTING DEVICES OF CANADA LIMITED 
OTT A W
	

CANADA 

Printed and published in Canada by 

ComputhsgDejces or C*ADA LIItID


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109



