@ https://ntrs.nasa.gov/search.jsp?R=19700006283 2020-03-12T01:57:39+00:00Z

General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



-1558%

(ACCESTION HUMBER)

N70-

ITHRW)

T i

EATEGORY)

(PAGES)

S 77
ST G/

fk

{NASA CR OR TMX OR AP NUMEER)

Wi

200 WHOJS ALMIDYVY

El

"ﬂ

— — NT

University of Pittsburgh
Department of Electrical Engineering

Pittsburgh, Pennsylvania

by

Chia-Ven Paw.
Ph. D., University of Pittsburgh, 1968

Prepared for the
Nationa' Aeronautics and Space Administration

under

Grant Number NGR 39-011-039

January [5, 1969



. . -
B .
v [ .
N -
- : .('
B T T T P - P teme . A aI g . e -

STABILITY THEORY OF NONLINEAR OPERATIONAL DIFFERENTIAL

EQUATIONS IN HILBERT SPACES

By

Chia=Ven Pao

B.S, National Taiwan University, Taiwan, 1959

M.S5, Kansas State University, Manhattan, 1962

Submitted to the Graduate Faculty of
Arts and Sciences in partial fuifillment
of the requirements for the degree of .

Doctor of Philosophy

University of Pittsburgh

1968

st g

W R e ST e iy

e IR 2

SR

2 ey e s i A R R



i1
FOREWORD

The author wishes to express his sincere gratitude to his
disgertation advisor Dr. William G, Vogt for the opportunity to work
on this research problem and for his enlightening counsel, constant
support and many hours he spent with the author. He also wishes to
express hils gratitude to his major advisor Dr. George Laush for his
interests in this research problem and for his advice and help.

The author is indebted to his former advisor Dr. Martin M. Eisen
for giving the background on this research problem and for his guidance
and valuable advice during the initial stage of this research, My
thanks also to Prufessor Allan Bryson, Drs. James P. Fink and William
S. Hall of the Department of Mathematics, who reviewed the disserta-
tion as members of the committee and made many valuable suggestions,

The author would like to acknowledge the support of the National
Aeronautics and Space Administration for this rezearch under Grant
Number -NGR~39=011~039 with the University of Pittsburgh.

Thanks 1s also extended to Miss Carol Johmston for her excellent
typing of this dissertatiomn.

Finally the @uthor would like to ewpress his appreciation to
his wife Mei~Shan for her continuous help iﬁ typing the manuscrizt of
this dissertation and for het forbearance and encouragément, without

which this study could not have been completed.



TABLE OF CONTENTS

FOREWORD ] ] 0 -] o 9 o Q ] L -] ] L -] e o 9 o Q o L] o -] o L] 9 o a

ABSTRACT L) L] [ Q -] L] [} -] ] o -] ] o [ o ] 0 L o [ ] o -] -] ] a o [}

L,

11,

I1I,

1V,

Ve

INTRODUCTION -] ] (] a ° ] Al a -] ] a Q L] a o L] a 1] o o 1] -] o
' #

A. Recent Developments on Linear Equations . « o o ¢ o o

-]
o
Q
-]
-]

B. Nonlinear Operational Differential Equations
C. Area for Extension aﬁd New Development . o o o 2 o o o
STATEMENT OF PROBLEM ¢ o 5 o o o 2 o 6 o 0 o 0 a 0 o v a o
A, Linear Time-Invariant Differential Equations . ¢ « o »

B, Development of of Nonlinear Operational Differential
Equationsonooooeooneunonnooenoe

C. Summary of Results and Contribution to the Problem .
A PRELIMINARY ON FUNCTIONAL ANALYSIS . o » o ¢ o o o o o «
A. Banach and Hilbert Spaces ¢ o o o o o o © 6 o ¢ o o o
B. Linear and Nonlinear Q0peratoXs® o - s o o o o o o o o o

C. Linear Functionmals, Conjugate Spaces and Weak
convergenceaooooooooanooaoooeeoa

D, Spectral Theory, Semi—=groups and GEOUPE o o ¢ » o o o
E. Distributions and Sobolev Spaces 5 o o ©o 6 & ©6 8 6 © ©°

STABILITY THEORY OF LINEAR DIFFERENTIAL EQUATIONS IN
BANACH SPACES [} ] o ] [} o ] -] a -] -] o o -] -] o a a a a8 -] -]

AgBaCkgtoundOnouooooe a 0o 6 8 o o 5 © © @ o 8
B, Conétruction of Lyapunov Functionals o o« s ¢ o o o o o«
C. Stability of Linear Operationsl Equations ., o o s o o

STABILITY THEOR{ OF NONLINEAR TIME~INVARIANT DIFFERENTIAL
EQUATIONS IN HILBERT SPACES a -] [ o 0. .0 @ L ] ] _9 2 L] -] 2 -]

A, Nonlinear Semi-groups and Dissipative Operators . . «

B, Stability Theory of Nonlinear Time=Invariant Equations

C. Stability Theory of Semi-linear Stationary Equations .

-]

111

i1

12
15
15

19

22
28
31

36
37

43

48

61
62
74
91



VI. STABILITY THEORY OF NONLINEAR TIME-VARYING DIFFERENTIAL
EQUATIONS IN HILBERT SPACES . ¢ 2 ¢ o« o o o o © 6 o o o o

A Background . o ¢ o o o e 0 @ 5 0 ¢ o 0 ° & o 5 5 & o
B, Stability Theory of General Nonlinear Equations . . .
C. Nonlinear Nonstationary Equations s . « o o o © o o o
D. Semi-linear Nonstationary Equations « o o o o o « o o
1, General Semi-linear Equations - o s s« o o « o o o
2, Some Speclal Semi-linear Equations . o o o o o «

3. Ordinary Differential EQuations . o o o o o o o o
VII. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS . o o o o

A, Elliptic Formal Partial Differential Operators . » .

B, Semi-linear Partial Differential Equations . . . - .

VIII. CONCLUSIONS o o o o o o o o o o o o o o 6 6 o o o o o o a
A, The Objective of the Research o s o o o o 0 s o ¢ o o

B, The Main Resuits 6 © 90 8 6 6 v © o o & 6 0 & o & o

1, The Existence of A Lyapunov Functional . . . . »

2. Nomlinear Time~Invariant Operational Differential
EquﬂtiOﬂsaeeoeeauoeoeeeoeaaoe

3. Nonlinear Time~Varying Operational Differential
Equation39aaoeaoaaee_aeaeeaoeee

aoApplicatioﬁsaoa-oeeaaeooeeuaoo
C. Some Suggested Further Researeh . o o ¢ o o o oo o o

BIBLIOGRAPmuaeaoaeooéaao'ecaoonoaeeeeo

iv

o 164

o 166
o 157
» 167
. 169

R O S T s i St o PV R i LT I R BT T e

G

b

e e o )



Abstract

STABILITY THEORY OF NONLINEAR OPERATIONAL DIFFERENTIAL

EQUATIONS IN HILBERT SPACES
Chia-Ven Pao, Ph,D,

University of Pittsburgh, 1968

The object of this dissertation is to establish some criteria
for the existence, uniqueness, stability, asymptotic stability and
etability region of a solution of the linear or nonlinear, time-
invariant or time-varying operational differential equations (i.e.,
equations of evolution) of the form

dx(e)
dt

in Banach spaces and in Hilbert spaces, fro.. which criteria for the

= A(t)x(t) (¢ 2 0)

same results of a solution of the corresponding type of partial differ-
ential equations can be deduced. In the case of linear time-invariant
equatioﬁs of evolution, linear semi-group theory ;s used; and by the
introductiqn of an equivalent semi-scalar product on a Banach space,'

necessary and sufficient conditions on the limear operator A(t) = A for

the generation of a Semi=grdup in a real Bapach space are obtaimed., By

using the semi-group property, the existence, uniqueness, stability or

asymptotic stability of a étrong solution can be ensured. In the case

of nonliﬁear time=invariant equations, tﬁe concept of nonlinear semi-
group is introduced. Besed or sunme y?opeZties-of'a monb;one operator'
(or, a diséipative_OPe;ator ia 2cr.términclogy of this dissertation),
heceééary aﬁd’sufficiént -anricionsvbn thé qgnlinear:bﬁefétbr Atﬁ) = A

for the géneration of a nonlipeu> seni-group in a.cbmpIEx:Hilbéft épace

are‘estéblishgd, £rom which the éﬁ.sttncé;wuniquEness and stability°orﬁ :
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asymptotic stability of a weak solution are guaranteed by the nonlinear
semi-group property. The introduction of an equivalent inmer product im
a complex Hilbert space makes it possible to develop a stability theory
in terms of a Lyapunov functional which is defined through a defining
sesquilinear functional. It is shown that such a functional defines an
equivalent inner produect and that the existence and stability property

of a weak solution are invariant under equivalent inner products. 1In |
case of a Banach space, the defining seasquilinear functional is replaced
by an equivalent semi-geclar produet; The investigation of the existence,
uniqueness and stability of weak solutions is extended to nonlinear time-
varying operational differential equations. Under some additional res-
trictions on the nonlinear operator A(t) which is time-dependent, criteria

for the existence, uniqueness, stabllity or asymptotic stability of a weak

SR Y G
'

solution for the general nonlinear time-varying equation of evolution in

a complex Hilbert space are obtained. Several special types of mnonlinear

R X | T R

equations which are more suitable for a class of nonlinear partial differ-

ential equations are'deduce&.with particular attention on the class of

e

nonlinear nonstationary equations of the form ;;

SO o px(e) + £(e,x(0) (£ 2 0)
where A is a linear or nonlingax timenindépendent.opéiégor mapplag part
of a real Hilbert spage‘ﬁ into itseif_and;f is a given (in general
nonlinear) function defined on gt % H iato H. Applicatiﬁns ére given
toa class of secbnd'order n~dimensional parabolic-elliptic type of.
partial differentiél equations with a détai1¢d description of the_forﬁu=

lation of an abstract operator having the desired property from a partial

differential operator,
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I. INTRODUCTION

in the year of 1892, A. M. Lyapunov {16]* published in Russian
his famous memoire om the stability of motiom which originally received
very litti: attention. About forty years later, the work in Lyapunov
stability theory was resumed by som: Soviet mathematicians and since
then the so called "second method” or “direct method” of Lyapunov has
been widely vsed as & mathematical tool in the iavestigatiom of linear
and nonlinear stability problems governed by ordinary differential equa-
tions. The "direct method” of Lyapunov consists of a means for answering
the question of stability of differential equations from the given form
of the equations, including the boundary conditions, without explicit
knowledge of the solutions. The central E;oblem of the direect method
in the investigation of stability of ordiﬁa;y differential equations is
the construction of a "Lyapunov funetion" v(x) having the propertv that
v(x) 2 0 for x in a finite dimensional space and the derivative of v(x)
along solutions of the given equatiom is megative. The development of
the Lyapunov method has been moved toward the investigation of partial
differential equations in recent year:z. This advance seems to be natural
since many physical problems can be best described or must be represented
by partial differential equatioms. LIt is also natural that tﬁe idea of
constructing a Lyapunov function in f£inite dimensional spaces is extended
to the construction of a "LyapunOV'fﬁnctional“ in infinite dimensional
spaces, This extenéian leads to ﬁhé use of function sﬁaées Onhwhich a
topology can be defined. A firast step toward applyiag':hgigygpunov direct

method to partial differemtial eQuations-waS the study of a denumerably

#*Numbers in brackets designate'tefezences at the-énd of this disgsertatien.
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infinite system of ordinary differential equatfons (e.g., see Massera [17]).
A general stabllity theo:, by using a sealar functional was established

by Zubov [24] who conecidered equations of the form

Ju(t,x) _ 3u
o £(x, u, o | (I-1)

However, the existence of solutions of (I-1) was proved onlv for the case
when f is linear in 3u/3Xx and for the gemeral form of (I-1), the exist-
ence of solutions was assumed, Moreover, the requirement that the system
of partial differential equ :ions define a dvnamical system (i.e., the
solutions possess the group property) excludes a large class of differen-
tial equations whose solutions possess only the semi-group propertv. Since

the stability problem of partial differertial equations occurs in many

e T A e e i e e e

fields of science such as reactor physics, control process, fluid mechanics, £
chemical process, etc. the study of stability behavior of solutioms to é
partial differential equations has been accelerated by engineers, physicists é
and mathematiclans in recent vears as can be seen from a literature survey ,E'
made by .Wang [22]. However, ﬁost of the work listed in [22] deal with a
specific partial differential operator, and iﬁ some of them the existence

of a solution is either assumed or not mentioned. On the other hand, there

AR L HATSIR 1 E et Fe

are many works in the area of partial differemtial equations and in particu- i

lar those works on operational differential equations (i.e., equations of

S TR s

evolution) in which only the existence and uniqueness are discussed., It

should be mentiomed that in some Russian literature, the stability problem

il Reseadld

o€ semi-linear operational differential equations has been investigated.
Some earlier literature by Khalilov and Domshlak are described in a survey

book edited by Gaﬁkrelidze [7] in which numer&us references concerning

it b R L o
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operational differential equations are also given, In the studv of periodic
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solutions of the semi~linear operational differential ecquations of the form
g%égL = Ax(t) + P(t, u, i) (1-2)

Taam [20] also investigated the stability properties of solutiomns to

(I=2). He assumed A either as a bounded linear operator or as the

infinitesimal generator of a semi-group and egtablished criteria for the

existence and the asymptotic stability of a periodic solution.

A, Recent Developments on Linear Equations

The difficultyof the direct extension from ordinary differential
equations into partial differential equations by the Lyapunov direct
method lies in the fact that the existence of a solution to a given
partial differential equation must first be established because to
ensure the stabllity of a solution the derivative of the "Lyapunov func-
tional” is taken along the solutions of the given equation. More recently,
in the study of stabllity problem of a system of linesr partial differ-
ential equations, Buis [3] applied the semi-group and group theory to

operational differential equations of the form

45CE) o px(e) (1-3)

where A, which may be considered as an extension of a partial differemtial
operator, is a linear operator with domain and range both in a real Hilbert
space. By using semi-group er group theory, the solutions of (I-3) camn

be represented by a semi-group or 2 group in the sense that if a solution
of (I-3) with initial condition xeD(A) (the domain of A) is denoted by
¢(t,x), then under suitable conditions the operator A generates a semi-
group'frt; c 2 0}oragrouw {T ;3 -=«<tc< ©w} of bounded linear opera-
tors such that the solution of (I-3) exists and is given by

p(t,x) = T % (e2 0



for any xeV(A). Thus tlie stability property of solutions to (I-3) is
related to the property of the semi-group or group generated by A,

Based on the known properties of the seml-group or group, Buis established
sufficient conditions for A to generate a nepative gemi-group (of class
Co) and necessary and sufficient conditions for A to generzte a negative
group (see definitions II1I-9 and III-=10) so that a solution of (I-3)
exists and is asymptotically stable, All these conditicns refer to the
axistence of a Lyapunov functional which is defined through a symmetric
bilinear form., Following the same idea as in [3], Vogt, Buis and Eisen
{21] considered a closed linear operator from a Banach space into itself
and established the necessary and sufficient conditions for A to generate
a negative group by using a semi-scalar product, Their results are, in
fact, an extension of [3] for the case of a group from a Hilbert space

into a Banach space.

B. Nonlinear Operational Differential Equations

In recent years, most of the investigations of differential equa-
tions (both ordinary and partial) are centered on nonlinear ecquations.
This is perhaps due to the fact that many physical problems must be formu-
lated by nonline;r differential equations as well as that nonlinear equa-
tions possess many properties of theoretical interest. In the case of
operational differential equations, many results on the existence and
uniqueness of semi-linear equations of the form similar to (I-2) have
been established (e.g., see Browder [1], Keto [9]). Just recently (1967),
Komura [13] studied an equation of evolution of the form

dx(t

28 o Ax(e) t > 0) (1-4)



where A is, in general, a nonlinear operator with domain and range

in a Hilbert space H and x(t) is a vector=valued function defined on
R* = [0, =) to H. In his work, a general theory for nonlinear semi-
groups of contraction operators in a Hilbert space is developed. How=
ever, Komura considered A of (I-4) as a multi-valued operator which
makes his theory rather complicated. Motivated by the work in {13],
Kato [11] refinmed and extended considerably Komura's results by con-
sidering a single-valued operator A(t) with domain and range both in a
Banach space X where the operator A of (I-=4) is also extended to A(t)
which depends on the wvariable t. Following [13] and {11], Browder [2]
furtiier extended (in some sense), among others, Kato's results by includ~
ing an additional functicn f(t,x) on the right of (I-4) with the sim-
plification that the underlying space X is a real Banach space. All
the above works are mainly concerned with the existence and uniqueness

of solutions.

C. Area for Extension and New Development

It is seen in [3] that necessary and sufficient conditions for
the operator A in (I=3) to generate a negative group (of class Co)° and
that sufficient conditions for A to generate a semi-group were established
by assuming the existence of a Lyapumev functional. Conversely, 1f A
generates an equibounded or negative semi-group, is it possible to construct
~ Lyapunov functional as in the case for a group? Since the extension in
[21] to a real Banach space of the above mentioned results in [3] was
accomplished only for the case of a group, the investigation for a similar

extension 7or a semi-group is also necessary. On the other hand, the class



of nonlinear differential equations, either time-invariant or time-
varying, are more importamnt from both the applications and the theoretical
points of view. All of these meed further investigation. The intro=-
duction of the concept of nonlinear semi-groups cpens a new road to the
problem of nonlinear operational differemntial equations. The importance

of the study of the stability problem by using the semi-group or non—
linear semi=group theory lies in the fact that the important problem of
establishing the existence of a solution is an intrinsic part ef the theory

developed.,
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sl T g S




7
I1, STATEMENT OF PROBLEM
Many systems of partial differential equations can be
written in the form of
22%%;&; = Lu(t,X) XeR, t2>0 (LI=1)

where u(t,X) iz an m=vector function and L is a matrix whose elements
are linear or nonlinear partial differential operators defimed on a
subset 2 of an n-dimensional Euclidean space R, In more gemeral
cases, the coefficients of the elements in L are both space and time
dependent (linear or nonlimear). To specify solutions to the equation
(I1I-1), a set of boundary conditions are given which can be put inte
the form |
B u(t,x') =0 x'edq, (11-2)

where B is a matrix whose elements are limear or nonlinesr partial
differentcial opzrators and 3 is the boundary of . In additiom, an
initial condition is give. as

| u(0,%) = u_(0) (11-3)
where uo(x) is a given space-dependent function., If all the elements
of L and B are linear differemtial operators, (II-1) and (1I-2) can be

reduced to the form

E%éél.. Ax(t) (IIw@)
where x(t) is a vector=valued funection (im the sense of a linear function
space) defined on R* to a suitable Banach spacaz or Hilbert space X and A

is a (in general unbounded) linear operator from part of X to X; if one

or more elements of L or B is nonlinear, then A iz a nonlinear operator

from part of X to X; in case one or more elements of L or B is space-

time dependent, the systems (II-1) and (II-2) are reduced to the f-rm

R A e b
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(11-4) with A replaced by A(t) which is a linear or nonlimear operator
depending on t, In all cases, (II-1) and (II-=2) can be considered as
special cases of abstract operational differential equations which can

be parabolic equations and certain hyperbolic equations etc. The object

of this research is to establish some stability criteria which intrinsically
iuclude the existence and uniqueness of solutions for the types of differ-
ential equations described above in an abstract setting, from which the be-
haviors of the corresponding type of partial differential equations can be
deduced, The first two sections in the following introduce the tvpes of
operational differential equations (i.e., equations of evolution) to be
investigated and the final section summarizes the resvlts obtained in this

investigation.

A, Linear Time-invariant Differential Equatioms

It has been seen in Chapter 1 that by using the semi-group or
group theory, a Lyapunov stability theory for the limear operational differ-
ential equations of the form (II-=4) in a real Hilbert gpace was established
in [3]. There, a Lyapunov functional is defined through a symmetzic bilinear
functional. The main results concerning the equation of the form (II-=4) is
that if the domain of A is dense in H and the range of (1=A) is B (I is the
identity operator) then A is the infinitesimal generator of a negative semiw
group (of class C;) 1f there exists a Lyapunov functional satisfying certain
properties and it is the infinitesimal generator of a negative group (of class
Co) if and only 1if there exists a LyapunovV functional satisfying some addi-=
tional properties. Unlike a group, however, a semi=grqup_1acks the preperty
of having a lower bound (in some éenée) which makas the construction of a

Lyapunov functional through a bilinear functiomal rather difficult.

o Tt MR E s e MG DT R LR st e s
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Because of this difficulty the results given in {3] for the case
of a semi-group do not parallel the case of a group, that is, the necessary
condition for the existence of a Lyapunov functional having the desired
property is not shown. To overcome this, an equivalent semi-scalar pro=
duct is introduced., If the operator A in (II-4) is the infinitesimal
generator of an equibounded or negative semi-group, a Lvapunov functional
can be constructed through an equivalent semi-scalar product which gives
the converse statement in [3] as described above. Moreover, by using the
same idea in defining a Lyapunov functiomal, necessary and sufficient comn-
ditions for A to generate an equibounded or negative semi-group in the
case of a real Banach space can also be established. This later extension
to a Banach space is in amalogy to the one in [21] for the case of a group,
It is seen that with these additional extemsions, the stability study of
linear operational differential equation (II=4) by using semi-group or
group theory would be, in a sense, completed (there iz no difficulty in

extending the above results to complex spaces).

B, Development of Nonlinear Operational Differential Equations

Owing to the importance of nonlinear differential equations in
both pure theory and its applications, the investigation of the nonlinear
operational differential equations is the main concern of this disserta-
tion. The first stage in the development of nonlinear operational differ=

ential equations is to study the equa:ions of evolution of the form

928 o ax(e) (¢t > 0) (11-5)
where %(t) is a vector-valued function defimed on Rt = [0, =) to a Hilbert
space B (in general, E is a complex Hilbert space) and A is a nonlinear

operator (which ia independent of t) with domain and range both in H,
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Based on the results obtained by Kato imn [11] i:. which the operator (=A)
is assumed to be monotone (i.e., A is dissipative in the terminology of
this dissertation) and by using the nonline.r semi-group property, a
stability theory as well as the extence and uniqueness theory for the
equation (II-5) can be developed. Moreover, by introducing an equivalent
inner product, the same'results hold 1if the operator A is dissipative with
respect to this equivalent inner product., This fact motivates the con-
struction of a Lyapunov functional through a sesquilinear functional which
under some additional conditions defines an equivalent inner product, Thus
a stability criteria can be established through the construction of a
Lyapunov functiomal,

As a specia}l case of (1I-5), the semi-linear equations of evolu~
tion of the form

d:;tt) = A_x(t) + £(x(t)) (t > 0) (11-6)

is discussed to some ektent where Ao is an unbounded linear operator with
domain and range both in a real llilbert space H and f is a (nonlinear) func-
tion defined on H into H. The purpose of doing this is that by utilizing
the results established on the linear equation (II-=4) (i.e., for £(x) £ 0
in (1I-6)), the existence, uniqueness and stabi1ity or asymptotic stability
of a solution to (II-6) can be ensured by imposing some additional conditions
on the function f. Notice that (II-6) is a direct extension of the linear
equation (II=4).

In case the elements of the partial differential operator L inm ' :
(II-1) or the elements of B in the boundafy cqnditions {(1I=2) possess
timeodependent coefficients; equation (II=5) is not suitable éé an abstract -

extension for this type of partial differantial equation. The second stage
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in the development is to extend equation (II=5) to a more peneral type

of operational differential equation of the form

&) - aw)x®) (20 (11-7)
where A(t) is, for each t > 0, a nonlinear cperator with domain and

range both contained in a Hilbert space H. It is seen that this exten-
sion 1s a further advance in the generalization of nonlinegy equations

of evolution., In parallel to the case of the equation (II-4), criteria

for the existence, uniqueness, stability and, in particular, asymptotic
stability of a solution as well as the stability region are established,
The concept of equivalent inner préductlis similarly iﬁtFoduced, and it

is shown that stability property remains unchanged under equivalent inner

product.

In the case of semi=-l1linear equations of the form

o

28) L g (ox(e) + £(E,x(E) (23 O) (11-8)

de
where Ao(t) is, for each t 2 0, a linear unbounded operator with domain

=ind range both in H and £ 18 a Gnonlinear) function defined on R*x H into
H, stability criteria are deduced from the results for the general equation
(II-7). For the sake of applications as well as theoretical interest in
certaln partial differential equations which occur often in physical prob- -
lems, some special equationg of (II-7) are imcluded. These equations can

be written in the general form

%2 = ax(e) + £(e,x(t)) (20  (11-9)
where A, which is independent of t, is a linear or nonliﬁea: operator
with domain and range both in a real Rilbert space H and f is a (nonlinear)

function defined on R¥x M into H. The idea for considering equations of

the form (II-9) is to transform and to simplify the conditidns imposGd on
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the general operator A(t) into the conditioms on A and on £ so that
the existence, uniqueness and stability or asymptotic stability of a
solution as well as the stability region can be guaranteed. In case
A is linear and is the infinitesimal generator of a semi-group of
class C, or is a self-adjoint operator, the results are particularly
suitable for applications to certain partial differential equationms.
When A is a bounded operator on H into H, (II-9) can be put into the

form

4x(E) . £(e,x(t)) (t > 0) (11-10)

dt
which is, in fact, an ordinary differential equation. Criteria for

the existence and stability of a solution are also given for this case.

C. Summary of Results and Contributions to the Problem

The object of this research is to establish a stabilitv theory
so that a solution of a given operational differential equation (i.e.,
equation of evolution) not only exists and is unique but also is stable
or asymptotically stable. This given operational differential equation
is, in general, an abstract gemeralization of a class of partial diffex-
ential equations such as'heat conduction equatioﬂé and wave equations etc,.
The contribution of this dissertatiomn is the establishment of criteria
for the existence, uniqueness, stability, asymptotic stability and stab-
ility region of a solution om several types of monlinear (including
linear) operational differential equationse This contribution can be
stated as four_stéges which'gre discuséediin chaptefé iV, V,:VI and. |
Vi1 respectively. The results oﬁtained in these chapteré.aresummarized

as follows:

e St P P S o
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(a) In chapter 1V, the cemtral idea is to show the existence
of a Lyapunov functional and to show the necessary and sufficient
conditions for the operator A to generate an equibounded or negative
semi-group in a Banach space from which the existence and stabilitv or
asymptotic stability of a solution are ensured. This is done in
theorems V=7, IV=8, IV-11, IV~12 and IV=13,

(b) The central idea in chapter V is to establish a stability
theory for nonlinear operational differential eguations by extending the
theory of linear semi- zroups to nonlinear semi-groums with the hope that
this theory can be applied to some nonlinear partial differential equations,
Results on general nonlinear equations are given in theorems V-2 through
V=9 and on semi=linear equations are given in theorems v=11,'v-12, V=15,
V=16 and V=17, g,

(c} Tie object in chapter VI is to extend the stabilitv theory {
for time=invariant nonlinear equations in chapter V to time=varying
nonlinegr equations with the hope that this theory might be used for a
larger class of non-stationary partial differential equations. Parti-
cular attention has been given to several special cases which are easier
to apply for certain paftial differential equations., Resuits on general
nonlinear equations are given in theorems Vi-2 through Vi=5, those on !
nonlinear nonstationary eéuations are given in theorems VI-6 and VI-7 o
and those on semi-linear equations are given in theorems VI-8, VI-9,
VI-13, VI-14 and VI-15, S "

(d) Finally, the applicationé of the results developed for

operational differential equations to partial differential equagions

are given in chapter VII in which stability critexia for a class of
parabollic-elliptic . partial differential equations are established and : :

are given in theorems VII-2, VII=4 and VII=6,
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It is seen from this summary that the results of this disser-
tation cover several types of differential equationms, and to the
knowledge of this author, most of the above results on the part of
stability theory have not been previously shown, It is thought that
these results contribute to the stability theory of operational differ-

ential equations as well as of partial differential eguations,

g
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I1I., A PRELIMINARY ON FUNCTIONAL ANALYSIS

Because of the importance of functional analysis in the study
of operational differential equations (i.e., equations of evolution),
it is desirable to give some of the basic definitions and properties
that will be used in the stability analysis of operational differential
equations. The following sections give an outline of some of the
necessary topics. Puoofs and further details may be found in most
standard books on this subject (for example, references [5], [8], [10],
{12] and [23]), in particular, most of the materials in this chapter can

be found in [23].

A. Banach and Hilbert Spaces
A set X is called a linear space over a field K if the following
conditions are satigfied:
(1) X is an Abelian group (written additively);
T (i1) A scalar multiplication is defined: to every element
% € X and each ¢ ¢ K there is assoclated an element of X, denoted by
6 X, such that
a (x+y) = ax + ay (i, e K3 %,y € X),
@+B)x =ax +Bx° (e,B e K; x € X),
@B)x = a(Bx) (6,8 e K; x e X),
lex = x (1 is the unit element of the field K).
Let X be a linear space over the field of real or complex numbers., If
for every x € X, there is associated a real number ||x]], the norm of

the vectoxr %, such that for any ec K and any x,y € X
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1y x| > 0, and ||x|]| = 0 1if and only if x = 0,

A1) eyl 2 Hxl] + [yl]
| = laf Jlx]

(1ii) ||ax

| i called a normed

L

Then the linear space X together with the norm |

!> or simply by X. A sequence

linear space and is denoted by (X, |
{xn} in a normed linear space ¥ is called a Cauchv sequence if for any

€ > 0, there exists an integer N=N(eg) > 0 such that llxm"xnll < e for

all m,n > N. If every Cauchy sequence in X converges to an element x € X,
the space is said to be a complete normed linear space or a Banach space
(or simply a B-space). The convergence is said to be a strong convergence
(or norm cenvergence) and is designated by lim X *X as n > ® or simply by
X X X is said to be a real or a complex Banach space according to
whether the field K is the real or complex numbers. A complex linear
space 1is called a complex ipner product space (or a pre-Hilbert space)

if there is defined on X x X a complex-valued function {x,y), called the

inner product of x and y, with the following properties:

(1) (x+y,2) = (x,2) + (v,2)

(11) (x,y) = (y,%x) (the bar denoting complex conjugate)

(i1i) (ax,y) =a (x,y)

(1v) (x,x) 2 0, and (x,x) = 0 if and only if x = 0,
A real linear space is called a real inner product space if the properties
(i)-(iv) arec satisfied except that (ii) is replaced by (x,v) = (v,x). By
defining Hx|]=(x,x)1/29 an inner prcduct space is a normed linear space
and the norm is maid to be induced by the inner product (es¢), The con~

verse is, in general, not irue. However, if the norm in a normed linear



17

space X (real or complex) satisfies the parallelogram law:

2 2 2
2+ =y 1S = 200 =% [v[1% %,y € %

| et
then an inner product can be defined so that X is an inner product
space, If an inner product space H (real or complex) is complete with
respect to the norm ‘nduced by the inner product (-»s°), it is called a
Hilbert space or an H-space and is denoted by (H, (-s¢)) or simply by H,
B is called a real or complex Hilbert epace if K is the field of real
or complex numbers respectively. A Hilbert space is a special Banach
space, By the properties of (1), (ii), (iili) of an inner product, it
1s seen that an inner product is bilinear for a real Hilbert space and is
sesquilinear for a complex Hilbert space. The sesquilinearity means
that:

(aqx + a2y°z)a ql(xnz) + az(_v,z)9 Gllnaz e K, x,v,z € B)

(x,Bly + Bzz) = El(x,y) + Ez(x,z) (Bl,,B2 € Ky X,v,z € H),

1f El and Ez in the above equality are replaced hy B, and B, respectively,
the inner product is said to be bilinear,

Examples of Banach space and Hilbert space:

(1) (Rp), 1 < p < = The set of all sequences x = (xl,xz,,un)

-]

of complex numbers auch that | |xi|p < = constitutes a normed linear

1=1 o
space (4P) by the norm ||x|| = g Ixilp)llpo (2P) is a Banach space;
i=1

in particular 22 is a Hilbert space with the inner product defined by

(XQY)m Zx§o
1o1 i’

(2) Lp(ﬂ)B 1 < p <=z The set of all real valued (or complex-
valued) measurable functions f(x) defined a.e. (almost everywhere) on &,

where { 1s an open subset of Rn, such that |x(s)|p is Lebesque integrable
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over §i coustitutes a normed linear space LP(Q); it is a linear space by
(F+p) (x) = £(x) + g(x) and (of) (x) = af(x)
and the norm :s defined by

Hx]] = ¢ é [f(x)[pdx)llp (dxadxldxzooodxn).

LP(Q) is a Banach space whose elements ake the classes of equivalent
pth-power integrable functions. In particular, LZ(Q) is a Hilbert space
with the inner product defined by

(£,8) = JE(x) g(x) dx.
£

Let X be a normed linear space. A point x € X is sald to be a
limit point of a set D=X if there exists a sequence of distinct elements
{xn}éaD such that X, *Xxasmn> e The closure of a set D, denoted by D,
is the set comprised of D and all the limit points of D. A set D is said
to be closed if D = D and is said to be dense in X if D = X. Hence if

D is c¢losed and dense in ¥X then D = X,

o L}

Definition III-1. Let X, = (X, |

|1), X, = X, | |2) where

o

X is a linear space. The two norms | and | |- are said to be

R 1,
equivalent if there exist real numbers 8, y with 0 < §

A

Y < © such
that

S I|XI|2 s |!x,|1 hal ||x||2 for all x € X,
Thus, if Xl 1s a Banach space so is X2°

Definition III=2. A normed linear snace is uniformly convex if

for any € > 0, there exists a § = 6(e) > 0 such that ||x]|| <1, 2k <1
and ||x-y|| > € implies | [x+y | 2 2(1-68).
A Hilbert space is uniformly convex, for by the parallelogram

law 1f ||x|| = 1, |ly|] £ 1 and {|x-y|| 2 € then

2 2 2
[Tty |12 = 2] ]x[ 1% + 2[|y[1? = ||=-y|}? 5 4=¢

which implies that ||x+y|| < 2(1-8) for some § = 6(e) > O.
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and in this case, A 1s said to have an inverse and is denoted by AT,
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B. Linear and Nonlinear Operators‘
Let X and Y be linear spaces on the same field of scalars K.

Let A be an operator (or function or mapping) which maps part of X

into Y, The domain of A, denoted by D(A), is the set of all x e X

such that there exists a y ¢ Y for which Ax=y. The ranpge of A, denoted
by R(A), is the set {Axi x € D(4)}. The null space (or kernel) of A is
N(A) = {x; Ax = 0}, If D(Al)éiv(ﬁz) and Ajx = A,x for all x ¢ D(Al),
then A2 is called an extension of A, or Ay 1is called a restriction of
= A

A; and this is denoted by A If D(Al) = D(AZ) and Ayx = Ayx for

1 "2°

all x € D(Al)’ tien A; = Ay, The operator A is called one-to-one if

1
distinct elements in V(A) are mapped into distinct elements of R(A)

1

An operator A with domain P(A) a linear subspace of X and range R(A)
in Y is called linear if for all x,y € U(A) and all ¢,B8 e K,
A(ex 4+ By) = @AXx 4+ BAy, and is called nonlinear if it is not linear.
A linear operator A is one~-to-ome if and only if N(A) = {0},

tf X and Y are normed linear spaces and T is a linear operator
with V(T)e ¥ and range R(T)e Y, the following statements are equivalent:
(a) T is continuous on D(T), (b) T is bounded, i.e., there exists a
number M > 0 such that for all x € D(T), ||Tx]| < M| |x]| (note that the
two norms of the inequality are, in general, not the same), If T is
bounded, the norm of T is defined by:

21| = supchizl |5 fIx]] 5 1, x € Dem).

With this norm, the space of all bounded line2ar operators with dqmain
X and range in Y denoted by L(X,Y) is a normed linear sﬁace if we

defiue addition of operators and multiplication of operators by scalars
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in the natural way, namely
(T+S)x = Tx+Sx. (aT)x = afx T,S € L{(X,Y) and x £ X,
If, in addition, Y 1s a Banach space, so is L(X,¥).
Let X, Y be normed linear spaces on the same scalar field.
Then the product space X x Y is a normed linear space of all ordered

pairs {x,vy} x € X, v € Y with addition and scalar multiplication de¢ .2y

by
{xlayl} + {xz,yz} = {x1 + X5, yq F yz}
a{x,y} = {ax, ay}
and with norm given by

f ey | = L lxl 1%+ vl 1DY2,

A If X and Y are Banach spaces, sc is X x ¥, If T is a linear operator
with D(T)e X and R(T)e Y, the graph of T, G(T), is the set ({x,Tx};
x € V(T)). Since T is linear,'G(T) is a subspace of X x Y. A linear
operator T is said to be =losedin X if the graph G(T) of T is closed

in X x Y. A useful criterion to test whether a linear operator is closed

is the followings A linear operator T is closed if and only if x ¢ (1),

1

x, * X Tx >y dmply x ¢ D(T) and Tx = y. The above criterion is

sometimes used as the definition of a closed operator. If T is closed

PR A N L T ]

then the inverse T=1, if it exists, is closed. It is to be noted that
j a continuous (or bounded) limear operator need not be closed and a closed
operator m?y be unbounded. However, if T iz continuous and ¥ is a Banach
space, T has a unique extension T to D(T) such that T} - || and T
is closed; if in addition, V(T) is dense in a Banach space X, then Te L(XY).
The following theorem is known as the Banach Clqsed;Graph_Thearema

Theorem III-1. A closed linear operator T defined on a Banach'space

X into a Banach space Y is continuous.

v e e Th
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A linear operator T is said to be closable if there exists a
linear extension of T which is closed in X. When T 1s closable, there
is a closed operator T with G(T) ==E?¥?; T is called the closure of T
and is the smallest closed extension of T, in the sense that aﬁy closed
extension of T is also an extension of T. A linear operator T is closable
if and only if X € D(T), X 0 and Tx, + y imply that y=0. In such

cases, the closure T of T can be defined as follows: x ¢ D(T) if and

only if there exists a sequence {x_}< U(T, such that x +x and 1im Tx_ =y
n n @ TTh
exists; and we define Tx = y. It can be 8h wm that v is uniguely defined

by x and T is closed. Let X and Y be normed linear spaces on the same
scalar field and T be a one~to-one operator with D(T)e X and R(T)e ¥,
The inverse of T is the map from R(T) into X given by Tgl(Tx) = ¥, If

1 =1

T 1is linear, then T — is linear with domain R(T) and range D(T)., T

exists and is continuous if and only if there exists an m > O such that
|{Tx[| > m||x|| for x € D(T). If this is the case, ||Tmlll < mt, 77l
is cIOSgd if and only 1f T is closed.

Definition III-=3., Let H = (H,(cs0)) be a Hilbert space and 8

be an operator with domain dense in H and range in H, The adjoint
operator of 5, denoted by S*, is defined as follows: y € H is in the
domain of S* if and only if there exists a y* € H such tha;

(8%,¥) = (x,y*) for all = e D(S)
and we define S*y = y*, S* exists if and omly if D(S) is dense in H
and in this case, S* is a closed linear operator. S is called gymmetric
if 8= 8%, i,e,, S* is an extension of S, and is called selfwadjoint if
8=5%, Thus, a self-adjoint operator is closed, S is said to bé positive
definite if there exists a § > 0 such ;hat

(Sx,%) > Gl‘xllz' for all x ¢ D(5). .



w e AR P et e BT e e, e

L e wermr R

22

let X and Y be normed linear spaces. Suppose T is a linear
operator with domain X and range in Y, T is said to be completely
continuous (or compact) if, for each bounded geauence {xn} in X,
the sequence {Txn} contains a subsequence converging to some limit
in Y. Compact operators possess many interasting properties (see, e.g.,
[23]). Since these properties are not needed in the present dis-

cussion of stability analysis we shall not state them here.

C. Linear Functionals, Conjugate Spaces and Weak Convergence
A numerical function f(x) defined on a normed linear space X
is called a functional. A functional is said to be linear if for amy

X,y € X and a,8 ¢ K (real or complex number field)

flax + By) = af(x) + Bf(Y)3

and it is said to be continuous if for anv € > 0 there exists a 6 > 0
such that

[{x=y|| < 6 implies |f(x)-£(¥)] < €.
f 1s said to be bounded if there exists a comstant M such that

|£(x)| < Mj|x|] for all x € X,

The following statements are equiﬁalents (a) f is continuous at any
fixed element X € X; (b) f is continuous on X; (c) f is uniformly
continuous on X; (d) f is bounded on X,

Let X,Y be normed linear spaces on the same scalar field of
real or complex numbers and let L(X,Y) be the class of all bounded
linear operators on X to Y. If Y is the.real or complex number field
topologized in the usual way (i.e., the absolute value Ja| is taken as

the norm of a in ¥), L(X,Y) is called the conjugate spacz (or dual space



23

or adjoint space) of X and is denoted by X*. Thus X* is the set of
all continuous linear functionals on X. The pairing between any
elements x of X and £ of X* is denoted by f(x) or by <x,f>, If we

define the norm of £ € X* by

1] = fab) <y 1£G0)]

then X* is a Banach space., Note that X is not necessarily a Bamach
space. For a given normed linear space X, the existence of a non-
trivil continuous linear functional on X can be ensured by thc Hahn-
Banach extension theorem which is stated as follows for the case of
a normed linear space,

Theorem I1I=2 (Hahh=Banach theorem), Let X be a normed linear

space, M a linear subsﬁace of X and f a continuous linear functional
defined on M, Tﬁen there exists a continuous linear functiomal F
defined on X such that F is an extension of £ (i.e., F(x) = £(x) for
all x € M) with |{F]| = ||£]].

'A direct consequence of the Hahn-Bamach theérem is tae following:

Theorem III-3. Let X be a normed linear space and X, # 0 be any

element of X. Then there exists a continuous linear functional f om X
such that f(x ) = onH2 and |[1E]] = llxollb'.

Corollary, If £(x) = 0 for every £ ¢ X* then x = 0. In parti-
cular, if f(x) = f(y) for évery f € X* then # = Y, B

In case X is a Hilbert space, X* can be.identified with X as can
be seen from the Riesz representation theorem.

Theorem III-4 (Riesz rep:esentation_theorem)._qu any linear

functional £ on a Hilbert space H = (H, (?oo)), there exists an element

b e s syt Lt
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Ve € H, uniquely determined by the functiomal £, such that

£(x) = (x,yf) for every x € H,

Moreover, ||f]] = ||yf 0
Corollary. Let H be a Hilbert space. Then the totality
of all bounded linear functionals H* on H constitutes also a Hilbert
space, and there is a norm-preserving, one-to-one correspondence
f < Ve between H* and H.
It should be remarked here that by the correspondence in the
above corollary, H* may be identifie& with 0 as an abstract sety but

it 1s not allowed to identify, by this correspondence, H* with ¥ as

linear spaces, since the corresponderce f ++ Ve is conjugate linear:
(alfl +-32f2) > &xlyfl + mzyfz)

where al, a, are complex numbers. However if we define the space H*

to be the set of all bcunded semi-=linear forms on H (i.e., by defining

(fl + fz) (x) = fl(x) + fz(x) and (af)x = af(x) for any x ¢ H, f ¢ H*
and o € K, the complex field) then H can be identified with H* not
only as én abstract set but also as a linear space,

Let X be a normed linear space and X* itg conjugate space.
The conjugate space of X*, denote by X**, is called the second con-
jugate (or second dual or bidual) of X; Obviously, X** is a Bapach
space., It can be shown that each X, € X defines a continuous iinear
functional fo(x*) on X* by fo(x*) = <xosx*>; Thé ﬁappimg.

X, fo = Jxo

of X into X#* éatisfies the conditioms

3(31 + gz) = 3#1°+ NE J(ax) = aJ(x), and |'33'|“||x|'°

The mappipn_, J is called the canonical mapping of X into X**,
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Defipnition ITI=4, A normed linear space X is said to be

reflexive if X may be ldentified with its second dual X** by the
correspondence x <+ Jx above.

In general, a Banach space X can be identified with only a
subspace of its second dual space X*%, However, under the condition
of local compactness of X, it mav be identified with X**, The

following theorem is important in view of its applications.

Theorem 1II-5 (Eberlein-Shmulyan). A Banach space X is
reflexive if and only if every.stronély bounded sequence of X
contains a subsequence wnich converges weakly to an element of ¥
(i.e., locally sequentially compact).

For a proof of the above theorem see, e.g., {231,

Theorem I1I=-6, A uniformly convex Banach space is reflexive.

In particular, a Hilbext space is feflexive.

It is known that, for 1 < p < =, the spac=s 1P and 2P are
uniformly convex (see Clarkson [4]) and thus are reflexi—e.

In the developmgng of stability theory in Chapters V and VI,
we have introduced the concept of equivalent inner product., The
following theorem which was formulated by P. Lax and A, N, Milgram
plays an important role in the construction of an equivalent imner
product.

Theorem ITI-7 (Lax-Milgram). Let H be a Hilbert space. Let

V(x,y) be a complex-valued functional defined on the product space
H % H which satisfies the conditions:
(1) Sesqui-linearity, i.e.,
V(alxl + 8,%,,¥) = oy Ty 3¥) + ayV(x,,y) and

V{x, 8,7, + B59,) = §1V(x,yl)-+ EZV(Xsyz)o

i
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(ii) Boundedness, i.e., there exlsts a positive constant vy
such that
vy | < vl Hyll
(ii1) Positivity, i.e.,, there exists a positive constant §
such that
V(x,x) > 6||x||2o
Then there exists a uniquely determined bounded linear operator S with
a bounded linear inverse S=1 such that
V(x,v) = (x,Sy) whenever x,v € H
and S]] s v, 1I1s7H 5 67%

A proof of the above theorem can be found in [23].

Definition I1I-5, A sequence {xn} in a normed linear space X
1im

[{ans

iz said to converge weakly to an element x ¢ X if f(xn) = f(x) for

every £ € X%, In this case, x is uniquely determined in virtue of

w=1im

Hahn=Banach theorem; we shall write -

R =X or simply X ¥ x in the
sense of weak convergence. It is to be recalled that ;ig X, =X or
X, > X denotes convergence in the strong topology (i.e., norm topologv).

Theorem II1-8, Let {x } be a sequence of elements in a normen

W
linear space X. (a) 1f X, *x then X, *x but not conversely, (b) If

w .
x, > x then llxnll < » for all n and ||x}] < ﬁ%% ||xn . (e) X 3 x
if and only if (1) ::g ||xn]| < o, and (11) iiﬁf(xn) = f(x) for every

f ¢ D where D is a dense subset of X* (in the strong topology of X*)
As an example of a weakly convergent sequence which is not
strongly convergent, we take the sequence of vectors

el = (19090935&0)9 32 = .(Oglgogooo)g 000

in the Hilbert'space (ﬁz)o This sequence converges weakly to zero since
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by theorem III-4, given any f € (22)* there exists an x = (xl,xz,non)
2
e(2”) such that f(en) = (en,x) = x> 0. However, {en} does not
converge strongly to zero since |]xn|| = 1 for every n = 1,2,¢¢09,

In a Hilbert space H, if the sequence {xn} of H converges

weakly to x € H and lim||x || = |{x]|, then {x_} converges stronglv
n>e' [ Tn ? n T

to x. In the case of a finite dimensional space, weak convergence

coincides with strong convergence. Weak convergence is related to the

weak topology of X, as strong convergence is related to the strong

topology. In the development of our results, there is no need of the

deeper notion of weak topology; the use of the simple notion of weak

convergence is sufficient for our purpose .

Definition I1I-6, A sequence {fn} in the conjugate space X*

of a normed linear space X is said to convarge weakly* to an element

1lim wr=11im

n-+e noo fﬁf
wk

or simply fn -+ £,

f g X¥ 1f fn(x) = f(x) for every x € X. We shall write

Theorem 1I1I-9, Let {fn} be a sequence of elements in the con-

W
jugate space X* of a normed space X. (&) If fn -+ f then fn + £ but
wk
not conversely. (b) If X is a Banach space and if fn + f then ||fnl| <
lim
for every n and ||f}| < n+w||fn|l°

The weak continuity and weak differentiability are defined similarly.

Definition II1-7, Let x(t) be a vector=valued function defined

on [0, =) to X, x(t) is said to be weakly continuous in t if <x(t), f>
is continuous for each f e€ X*; it is said to be weakly differentiable in
t 1f <x(t), £> 1s differentiable for each £ ¢ X*, If the derivative cf
<x(t), f> has the form <v(t), f> for each f ¢ X*, y(t) is the weak deri-
vative of x(t) and we write dx(t)/dt = y(¢) weakly., Similar terminoclogy

applies if x(t) is defined on (==, =),



28

Theorem II1-10. For any interval (a,b), if x(t) s weakly

differentiable for t € (a,b) with weak derivative identically zero,

then by using the corollavy of theorem III-3 x(t) is constant.

D. Spectral Theorv, Semi-groups and Groups
Let T be a linear operator with domain V(T) and range R(T)
both contained in a normed linear space X. The distributions of values
A for which the linear operator (AI=-T) has an inverse and the properties
of the inverse when it exists are called the spectral theory for the
operator T,

L

Definition III-8, 1If Ag is such that R(A,I~T) is dense in X

and X,I-T has a continucus inverse (AOI-T)"ID A, is said to be in the
resolvent set p(T) of T; the inverse ()LC'I---T)”1 is denoted by R(},:T) and
is called the resolvent of W at X,. All complex numbers A not in p(T)
form a set o(T), called the spectrum of T,

Theorem III-11, Let X be a Banach space and T a closed linear

operatof with D(T) and R(T) both in X. Then for any X ¢ p(T), the
resolvent R(X; T) is an everywhere defined continuous linear operator.
The resolvent p(T) of T is an open set of the complex plane,

The above theorem implies that for anv X € p(T), R(AI-T) =
= V(R(X; T)) = X, and that the spectrum o(T) of T is a closed set of the
complex plane. Further details on spectral theory can be found in [5] or
[23].

In the study of stability of solutions to linear operational
differential equations in the following chapter, we have used extensively

the semi-group and group theory developed by Hille and Yosida. Much
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about this basic concept can be found in their respective books
[8], [23]. However, we shall introduce some of the basic notions
and theorems in the remainder of this section. The concept of
nonlinear seml-gi-ups, which is used in the study of nonlinear
operational differential equations, will be introduced in a later
chapter (see Chapter V). In the following, X is assumed to be a

real Banach space,

Definition II1-9, For each t € [0, =), let Tt e L(X,X).
The family {Tt;t > 0}€ L(X,X) 1s called a strongly continuous semi-
group of class Co or simply a semi-group of class Co if the following
conditions hold:

(1) TT, =T for s,t > 0,

s+t
(11) T, =1 (I is the identity operator).

lim

(111) 7

Tx=T =x for each t > 0 and each x ¢ X,
o t to 0O ™

Definition II1-10. The family {'rt; == < t < =}&€ L(X,X) is

called a strongly continuous group of class Co or s8imply a group of
c1as88 Co if the following conditions hold:

(1) TSTt = T for == < g,t < @

s+t
(11) TD m T
(1i1) ii? Ttx = Tt % for == < to < « gnd each x & X,
0 o

It is clear that if {Tt; =® < t < »} 1g a group, then both
{Tt; t > 0} and {Ttg t < 0} are semi-groups. If {Tt; t >0} is a
semi-group, its norm satisfies for some M > 1 and B < =

[T, || < u e

for t; 0.
If 8 can be taken as B = 0, {Tt; t > 0} is said to be an equibounded

semi-group of class Coa if in addition M=1l, it is called a contractiom
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semi-group of class C_. If 8 can be taken as § < O, {Tt; t > 0} 1is
said to be a negative semi-group of class Cc and 1f, in addition, M=l,
¢ is called a negative contraction semi-group of class Coo If

{Tt; -@ < t < w} 15 a group then the above inequality is replaced by

Blt[ for == < t < =»

T <
Hr [l cme
Similar terminology applies for a group,

Definition III=11. The infinitesimal generator A of the semi-

group {Tt; t > 0} is defined by

o=

py o lim TR
h+0 h

for all x € X such that the limit exists.
For the infinitesimal generator A of a semi=-group of class Cog
the fcllowing properties of A are known (e.g., see Yosida [23]).

Theorem III-12, Let A be the infinitesimal generator of a

semi-group {Tt; t > 0}. Then (a) A is a closed linear operator with
domain U(A) dense in X and the zero vector 0 € V(A), (b) if x ¢ V(a)

then Ttk e D(A) for all t > 0 and d/dt (Ttx) = AT x = T Ax, and (c)

t
if ||Tt|| <M eBt9 then all X with Re(}X) > B is in the resolvent set
o () of A,

The following result is due toF, ﬁille ;gd K. Yosida indepen-
dently of each other around 1948 and is called the Hille-Yosida theorem.
We state it w'. X as a Banach space rather than the more general

locally convex linear topological space.

Theorem I1II-13 (Hille=-Yosida theorem). I.et A be a closed

linear operator with domain D(A) dense in X and range R(A) in X. Ther A

is the infinitesimal generator of a semi-group {Tt; t > 0} satisfving
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et with M > 1 and 8 < = if and only if there exists real

[T [ sMe
numbers M and B as above such that for every integer n > B, n € p(A)

and

R[] = [[I-8)""] 5 M@=B)T"  (m=1,2,-°).
Notice that in the above theorem, 8 can be positive as well as negative.

Definition 11I-12, Let A be a linear operator with domain

D(A) and ranpe R(A) both contained in a Hilbert space H., A is called
dissipative with respect to the inner product (ess) of H if
Re (Ax,x) < 0 for x ¢ D(A)
and is called strictly dissipative if there exists a 8 > 0 such that
Re(Ax,x) < =B(x,x) for x e D(A),

Theorem I1I-14, Let A be a linear operator with domain D(A)

dense in H and range R(A) in H. Then A is the infinitesimal generator
of a contraction semi-group of class Co in H 1if and only if A is
dissipative and R(I-A) = H; and A\;é\the infinitesimal generator of a
negative contraction éemi-group of class C° in H if and only if A is
strictly dissipative and R((i-B)}I-A) = H where B is the constant in
definition III=12,

Corollary. Let A be a denselv defined closed linear operator
from a Hilbert space H into H. If A and its adjoint operator A* are
both dissipative, then A is the infinitesimal generator of a contraction
semi-group of class Coe

£. Distributions and Sobolev Spaces

In this section, we shall introduce some of the fundamental

definitions and theorems on the theory of distributions and on the

class of Sobolev spaces.
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A real-valued function q(x) defined on a linear space X is

called a semi-noxm on X, if the following conditions are satisfied:
(1) a(x +y) 2 q(x) + q(y)

(11) qax) = |2]| a(x).
It follows directly £vom the definition that q(0) = 0, q(x=y) >
> |q(x) = a(y)| and q(x) > 0, Let f(x) be a complex-valued (or
real-valued) function defined in an open subset f of the Euclidean
space R®, The gsupport of £, denoted by supp(f), means the smallest
closed set containing the set {x ¢ Q; £(x) ¥ 0} {or equivalently, the
smallest closed set of { outside of which f vanishes identically).

Definition I1I-13. By Cm(ﬂ), 0 < m < =, we denote the set

of all complex-valued (or real-valued) functions defined in @ which
have continuous partial derivatives of order up to and including m
(of order < » {f m = @), By CE(Q), we denote the set of all functions
of Cm(Q) with compact supports, i.e., those functions of Cm(ﬂ) whosge
supports are compact subsets of Q. (A subset of R" 1s compact if and
only if'it is closed and bounded). In the case of m = = the linear
space C:(ﬂ) defined by
(£, + £,)(x) = £1(x) + £,(x), (2f) (x) = af(x)
is of particular importance, |
For any compacf subset K of 9, let DK(Q) be the set of all
functions f ¢ C:(Q) such that supp(f)e K, Define a family of semi-
norms omn DK(Q) by
qK,p(f) = |“l§:?§ e K !Dmf(x)l - (p < f)

wheinz

o= (a1, 05y *°° @) with a, 20 (321,2,.00,0),
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3 Ccl+m2+a ° o+0.n

Oll Q

axl 3x2

p% =

[+)
znaoax n
n

DK(Q) is a locally covex linear topological space. The strict
inductive limit of DK(Sz)"sB where K ranges over all compact subsets

of @, is a locally convex lirear topological space., Topologized in

fl:i'.mf - f

n+= n

this way, C:(Q) will be denoted by B(R). The convergence
in D(Q) means that the following two conditions are satisfiled: (i)
there exists a compact subset K of & such that supp(fn)é.K
(n=1,2,...), and (ii) for any differential operator Da, the sequence
Dafn(x) converges to Daf(x) uniformly on K.

Definition III-=14, A linear functional f defined and continuous

on D(2) is called a distribution or a gemeralized function in 93 and
the value £(¢) is called the value of the distribution f at the testing
function ¢ ¢ D(R). The set of all distributions in Q is denoted by
D(R)* since it is the conjugate space (or dual space) of D(R). It is
a linear space by
(£ + g)(9) = £(¢) + g(d), (af)($) = af(¢).

Concerning the eriteria for a linear functional to be a

distribution, the following twe theorems are useful,

Theorem IIl=15, A linear functional f defined on D(Q) is a

distribution in @ if and only if f is bounded on every bounded set of

D(2) (in the topology of D(R)).

Iheorem III-16, A linear functional f defined on C:(Q) is
a distribution in 2 if and only if f satisfies the condition: To
every compact subset K of 2, there correspond a positive constant C
th : - Sup % -
and a positive integer m such that If(¢)l S clu|§mgx c KID ¢(x)! whan:

ever ¢ é DK(R)a
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Definition 11I=15. The derivative of a distribution £ is

defined by

EB-?_ f(p) = =£( 'Aﬁ ) (i=l,2,°°°9n), ¢ € D(R),

Thus,a distribution in Q is infinitelv differentiable and

n
(0%£) (§) = (-l)la|f(Da¢) o =(a1,m2, °°°’an)' o] lzjzj_ajg

Sobolev Spaces W '’ (R), Let Q be an open subset of the

Euclidean space Rn, and m a positive integer, For 1 < p < =, we
denote by Wm”p(ﬂ) the set of all complex~valued (or real=valued)
functions f(x) = f(xlgxzseeo,xh) defined in 9 such that f and its

n
distributional derivatives D”f of order la] = z 3 m all belong to

y=1 3

A

1Pe). w™P(R) 1s a normed linear space by
(f +g)(x) = £(x) + g(x), (of)(x) = af(x) and

= @ P o 1/P
Hme’,p (|£|§m £|D £ |7 dx)Y,

where dg=dxldx2

vention that two functions f and p are considered as the same vector

ooodxn is the Lebesgue measure in Rn, under the con=-

of WP(Q) if f=g a.e. in 2. Thus W™P(R) is a subspace of LP(Q).
It is easy to see that wm'z(n) is an inner product space by the inner

product

[ D) D g(x) dx.
<m § .

(fag)maz = |§I

In fact, the space Wm’p(ﬂ) is a Banach space. Im particular,

wm(n) z wm°2(9) is a Hilbert space by the norm ||f||“ls ||f||m 2 and
]
the scalar product (f,g)uls (f,2)m,2.

The spaces Hm(a) and Hﬁ(ﬂ)o Let 2 be an open domain of 2 |

and 0 <m <o, Then the totality of fumctionc f ¢ c™(Q) for which
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the norm ||fHm is gilven by the form as for Wm’z(ﬂ) constitutes

an inner product space ﬁm(ﬂ) by the inmner product

(f,8)_ = Z f D*f(x) D% (x) dx f,g € C"(R).
m ajsm

The completion of ﬁm(ﬂ) is g Hilbert space and is denoted by Hm(ﬂ)o
Similarly, the totality of functions f ¢ cﬁ(n) with the norm ||£}|
and the inner product (f,g)m defined as for f e C™(R) ccnstitutes an
inner product space %E(Q) whose completion is a Hilbert space denoted
by u’:(m o

The above definition implies that C:(Q) is dense in HE(Q)°
In fact, we have

Theorem III-17. The subset C:(Q) of Lp(ﬂ)D 1 < pge,is

dense in Lp(ﬂ)o
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IV, STABILITY THEORY OF LINEAR DIFFERENTIAL EQUATIONS

IN BANACIH SPACES

This chapter is concerned with the stabllitv as well as
the existence and uniqueness of a solution of the operational differ-

ential equation

LE) - px(e) (23 0 (19-1)

where the unknown function x(t) is a vector-valued function defined

on [0, =) to a real Banach space X and A is a given, in general un-
bounded, linear operator with domain D(A) and range R{A) both in X.

It is well known that some linear systems of differential equations,

both ordinary and partial, can be reduced to the form as in (IVw15 and

in such cases A may be considered as an extension of a linear differen-
tial operator. In order to examine the stability of solutions to (IV-1),
it is only necessary to characterize their properties without actually
constructing the solutions, This is done by considering the properties
of a semi-pgroup because if A is the infinitesimal gunerator of a semi-
group {Tt; t > 0} of bounded linear operators on a Banach space X then

a solution to (IV=1) starting at 2 0 from X, € V(A) is glven by

x(t; Xg0 t)) = T x, for all t > t, with x(tog X to) = x o Thus it is
important to impose conditions on the operator A so that it is the infin-
itesimal generator of a semi-group from which the existence of a solution
is ensured. Then, the stability criteria can be established from the

semi-group properties.
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A. Background

It was seen in Chapter II that by using semi-group or group
theory, a Lyapunov stability theorv for the linear operational differ-
ential equation (IV=1) in a real Hilbert space was egstablished in [3]
and the extension to a real Banach space for the case of a groun was
accomplished in [21]. 1In order to describe these results and the
further developments, it is convenient to state some fundamental defini-
tions and known results.

Definition IV=1. A solution x(t) of the ecuation (IV=1) with

initial condition x(0) = x € D(A) means:

(a) =(t) is uniformly continuous in t for each t > 0 with
x(0) = %

(b) x(t) ¢ D(A) for each t > 0 and Ax(t) is continuous in ¢
for each t > 0;

(¢) the derivative of x(t) exists (in the strong topology)
for all t > 0 and equals Ax(t).

Definition IV=2. An equilibrium solution of (IV-1) is a

solution x(t) of (IV=1l) such that
| x(e)-x(0)|] = 0 for all t : O,
and is denoted by xn(t) = X0

Definition IV-3, An equilibrium solution x_ of (IV-1) is said

to be stable (with respect to initial perturbacioms) if given any €> 0,

there exists a § > 0 such tha:i
|lx=x_[| < 6 4mplies |[|x(t)=x_|| < ¢ for all ¢t > 0;

X is saild to be asymptotically stable if
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(1) 41t is stable; and
lim

(i) . ||x(t)—xe|| = 0

where x(t) is any solution of (IV=1) with x(0) = x € D(A). If there

exists positive constante M and B such that

) xe-x || g M e [ix=x_||
then Xg is called exponentially asymntotically stable,

It is clear from the above definition that if 0 € U(A) then
x=0, the null solutlon, is an equilibrium solution of (IV-=1). Suppose
that an equilibrium solution x, exists. By letting y(t) = x(t)=xe,
equation (IV-1) becomes dy(t)/dt = Ay(t) (t > 0) which is the same form
as the original equation with initial comdition y(0) = x(0)=xeo Since
the domain of the operator A which we are concerned with contains the
zero vector, it follows that the stndy of the stabilitv problem of an
equilibrium solution of a linear system is equivalent to the study of
the stability property of the null solution., Throughout this chanter,
the null solution is assumed as the underlying equilibrium solution
which implies that definition IV=3 for stability or asymptotic stability
of an equilibrium solution can be simplified by taking X, = 0. It
should be remarked that the stability theory developed in this and the
following two chapters is not limited to equilibrium solutioms; in fact,
it is valid by starting from any initial element g in D(A) with
solution x(t; Xy to) which is not an equilibrium solution (such as a
periodic solution or any unperturbed solution),

The following three theorems are from [3].

Theorem IV=1, Let H. = (H, (°’°)1) be a real Hilbert space.

1
An inper product (ega)z defined on the 1linear space H is equivalent to
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the inner product (°'°)1 if and only if there exists a svmmetric
bounded positive definite linear operator S € L(Hl° Hl) such that
(y,y)z = (x,Sy)l for all x,y € H,

Remarks., (a) The above theorem is stated in a slightly
different way from the original form for the sake of definiteness:
prcof of the above result remains the same., It is to be noted ghat
if S € L(Hl,Hl)9 the terminologies of symmetry and self-adjointness
of S are the same, (b} Theorem IV=1 has been extended in Chapter V
to the case of a complex Hilbert space where the symmetricity condi-
tion is not explicitly needed.

A Lyapunov functional on a real Hilbert space Hl is defined
in [3] through the symmetric bilinear form

V(x,y) = (x,8y); = (y,8x); =%y ¢ B
where S € L(H1°Hl) is a self-adjoint (symmetric) bounded positive
definite linear operator., The Lyapunov functional is defined by
v(x) = V(x,X) X € Hlo
it folléws from the above definition and theorem IV=1 that V{x,y)

defines an equivalent inner product with respect to (e.5-), (see

1
definition V=7).

Theorem IV=2, Let A be a linear operator with domain D(a)

dense in H1n range R(A) in Hl and R(I=A) = H Then the null soilution

10
of (IV=1) is asymptotically stable if there exists a Lvapunov func-
tional v(x) such that

Yo = Wkoax) -2 8 |xl12 x e D).

It has been shown in [3] that under the hypothesis of theorem
IV=2, A generates a negative semi-group so that the null solution of

IV=1 is asymptotically stable.
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Theorem IV-3, Let A be a linear operator with domain U(A)

dense in Hl and range R(A) in H, such that R(al=A) = H1 for real o

1
with |o| sufficiently large. Then A is the infinitesimal generator
of a negative group (i.e., a group of exponential tvpe) if anu _nly

if there exists a Lvapunov functional v(x) = V(x,x) such that for

some constant §, vy with 0 < § <y <=

-2yVix,x) < v(x) = 2V(x,A x) < =28V(x,x) x € V(AY.
Remark., H#y the definition of a Lvapunov functional, (x,y)2£V(x,y)
defines an equivalent inner preduct and thus the above inequalitv is the
same as

2 2
12 s b, 5 =] 1] 12

where (°»0), is equivalent to (.,-.)., (see definition V=7).
1

2
In order te extend theorems IV-2 and IV-3 to a Banarh space,

the notion of semi-scalar product, introdyced Py Tumer and Phillips

[15] in the study of contraction semi-groups, is used. Thz following

two theorems are from [15] and their proofs can also be found in {23].

Theorem IV-4 (Lumer). To each pair {x,y} of a complex (or

real) normed space X, we can associate a complex (or real) number [x,vy]
such that
(1) [x+y,2] = [x,2] + [y,2];
(11) [ex,y] = alx,y];
(111)  Ix,x] = i} }?;
1) Jieylf g xl] |yl

[x,y] is called a semi~scalar product of the vectors x and V.
Because the copstruction of a semi-scalar product is essential

in our later development, we give a brief proof of this theorem.
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According to the Hahn-Banach theorem (theorem IIY=3), given any X, € v
there exists at least one (let us choose exactlv one) bounded linear
functional f, € X*, the dual space of X, such that ||fx0]] = | Ix, 1

o
and £ (x ) = |]|x |]2, This is true for any x_e¢ X, It is clear that
Xg O o o

{x,¥1 = fy(x)
defines a semi-scalar product.,

Definition IV~-4, Let a complex (or real) Banach space X be

endowed with a semi-scalar product [x,vi. A linear operator A with
domain D(A) and range R(A) both in X is called dissipative (with
respect to [*+¢]1) if
Re[Ax,x] < O x = D(A):

and is callrd strictly dissipative (with respect to [ecs5.]) if there
exists a real number 8 > 0 such that

RefAx,x] < = Blx,x] = =S||x||2 % ¢ D(A),
The supremum of all the positive numbers B satisfving the above inequal-
ity is called the dissipative constant of A.

+e o -+ - Thaokem TV-5 (Phillips and Lumer). Let A be a linear operator

with V(A) and R(A) both contained in a complex (or real) Banc:h space
X such that V(A) 1s dense in X. Then A generates a contraction semi-
group in X if and only if A is dissipative (with respect to any semi-
scalar product) and R(I-A) = X,

Corollaxy. Let A be a linear cperator with D(A) and R(A) beth
contained in a real Banach space X such that D(A) is dense in X. Then
A penerates a negative contraction semi-group in X if and only if A is

strictly dissipative with dissipative comstant 8 and R(I-=(8I + A)) = X,
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The extension of theorem IV-3 from a real Hilbert space to a
real Banach space has been accomplished in [21] where an important
lemma which 1s aiso useful in the case of a semi-group is proved,
Before stating these results, we introduce one more definition of
equjvalent semi-scalar product,

Definition IV=5. Let [-.s:] be a semi-scalar product on the

o1 ]1) with fx,x] = ||x|lzn Then the semi-scalar

Banach space (X, |
product [e,.], with [x,x]. = ||x 2 is sald to be equivalent to [¢s.]
1 1 1

on X if and only if

]1 and ||:|| are equivalent on X.

Lemma IV-1, Let A be the infinitesimal generator of an equi-

bounded (negative) semi-group {T_; t > O} in a real Banach space

£

(X, l|o| ). Then there exists an equivalent semi-scalar product [o5.]
inducing an equivalent norm i|o||1 with respect to which A is dissipa-
tive (strictly dissipative).

This lemma implies that there exist constants B, v, & with

0 < § Sy <= and 0 < B < « such that

112 < v||x] |2

sl 1x112 < | 1x
and
[Ax,x] 2 0 ([Ax,x] < -B|IX|[§) x € D(A).

Theorem IV-6, Let A be a linear operator with domain D(A)

and range R(A) both contained in a real Banach space (X, |]|.||) such
that U'/A) 1is demse in X. Then A generates a group {Tt; -2 < g < o}

in X suvh _.at {Tt; t > 0} is a negative contration semi-group with

L]

respect to an equivalent norm | if and only if

1

- Y1||x||§ < [Ax,x] < =61||x||i x e D(4),
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where 0 < 8§, < Yy < © and [c».] 1s ap equivalent seml-scalar product

consistent with ||°I|l” and

R(I(1-6,)-A) = X, R(I(L + v;) + &) = X,

B. Construction of Lvapunov Functionals

In a real Hilbert space, a Lyapunov functional can be defined
through a bilinesr functional V{x,y) on the product space H x H which
satisfies the conditions of symmetry, boundedness and positive definite-
ness. In case of a general Banach space, it can be defined through an
equivalent semi-scalar product which possesses most of the properties
of the above bilinear functional, (e.g., bilinearity, boundedness and
positive definiteness). We shall give a formal definition of a Lyapunov
functional in this chapter.

Definition IV-6. Let X = (X, ||¢||) be a Banach space, and let

[e9-] De an equivalent semi=scalar product inducing an equivalent norm
||o||l on X, The scalar functiomal v(x) defined by
v(x) = [x,x] for all x ¢ X
is called a Lyapunov functional,
It follows from thrn above definition that there exist constants
§ and v with 0 < § S ¥ < = such that

§
6||x||2 g v(x) s Y||X||2 fer all x € X

since ||-|| and || are equivalent,

1,
In order to prove the main results, we show the following lemma
which plays an essential role in the comstruction of a Lyapunov functional,

Lemma IV-2, Let A be the infinitesimal penerator of a semi=group

{T 3 t 2 0} in a Banach ~pace X with norm |||, and let {e5.] be any

R 1K o ol B 5 .
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semi-scalar product on X. Then
2[AT x, T x] = —S- |1t x||2 (t > 0, x € D(a)) (1V=2)
S de t = O F o

Proof, Let t > O be fixed. Choose h with |h| < t go that

T _,,.x is defined for any x € D(A). By the property of semi-scalar

t+h

product, we have

[T, *~Tox Tox] = [T ., x, T x] - [T,x, T,x] 2

2
< Mgl | Nl | =zl 1? = izl | (rgppsl) = Tl D,

Hence for h > 0, the above inequality implies, on dividing both sides
by h, that

T, . X=T, X NTpaxl | = 11T x|
e+ Te t+h
= o Tox1 g T x| ¢ —t ).

As h + 0, this becomes
d d 2

since the differentiability of T,x implies the differentiability of

||Ttxl » For the case of h < 0, we have on dividing both sides by h
T, X = T.% Nz pxl] = [T x|
t+h K - _ t+h t .
(——— Tx] 2 HTx|| ( = )o

=1 =1 3 '
Since h (T, x~T x) Igl (TthTt=|h|x), i follows by taking h.+ 0
in the above inequality that |

d d iy
(AT, x, T x] 3 ||Tx]] ¢ T x|l = 172 = 7%

2
H

Comparing the iwo inequalities iuvoiving the same term 1/2 dlthx||2/dt
yields |
ZEATtx, Ttx] =% IITgx|| |

‘which proves the lemma for t > O. The validity of (IV=2) for t = 0
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follows from a theorem which will be shown in a later section (see
theorems IV-10 and IV=-11) where the derivative of Ithxllz at te=0
is taken as the right side derivative,

Remarks. ‘2) By following the same proof as above, it can
be shown that if A is the infinitesimal generator of a group {Tt;

w2 < t < o} then

d 2
Z[ATtx, Ttx] adler I]TtxH - < t < o,
{b) The requirements in lemma IV=2 camn be replzccld by a weaker assump=

tion: Let x(t) be a vector valued funct.ion defimed on [a,b] to a
Banach space X. Suppose that v(t) is strongly differr-.ciable with
respect to t (and so ||x(t)|| is also differentiable in t), then for

any semi=scalar product [cso]

2[*%? x(t), x(t)] = =%?’|ix(t)|l2 a<t<b,.

The proof is the same as in lemma IV-2 by replacing T&x by x(t).

The application of the "direct method” te stability problems
consists of defining a Lyapunov functional with appropriate properties
whose existernce implies the desired type c¢f stability., In this chapter,
we are particularly interested in the stable and the exponentially asymptet-
ically stable type. In case the operator A of (IV-1) is an infinitesimal
generator of an equibounded or negative semi-group, them the existence of a
Lyapunov functional having the desired property can be constructed as is
seen in the following.

Theorem IV=7. If A is the infinitesimal generator of an egui-

bounded semi=group {Tt; t > 0} (of class Co) in a real Banach space X,
then there exists a Lyapunov functional v(x) such that

¢ &) S0 (22D
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where x(t) = Ttx is an arbitrary solution of (IV=1) with x ¢ D(A).
Proof., By lemma IV=1, there exists an equivalent semi-scalar
prc .ct {e50] inducing an equivalent norm |]°||1 with respect to which

A is dissipative., Define v(x) = [x,x] = ]|x||2, then by the equi-=

| and |

o

valence relation of | there exists constants &, y with

L

B
0 <6 <y <« such that

8| 1x]1% g veo =[xl < vllxl 1% (1V-3)
Moreover, by lemma IV-2 and the dissipativity of A, for any x € D(A)

o 1i =1 lim -1 2 (12
V(T x) = h-:{lJ‘ h 7 (v(Ty,x)=v (T x)) = oo N ¢ ITeanxl 17 = TlTexl 1D

il

d 2
= = Ithx||1 = Z[ATtxB Ttx] 20 (t20)

since T x € V(a) for all t > 0. Hence the theorem is proved.
In c7:e A is the infinitesimal generator of a negative seml-
group, we have an analogous theorem.

Theorem IV=8. I1f A is the infinitesimal peperator of a negative

SEm&wgréup {Ttg t > 0} (of class Co) in a real Banach space X, then
there exists a Lyapunov functional v(x) such that for some B > 0
Fx(e) < -8 [lx@)[|* (¢ 32 0

where x(t) = Ttx is an arbitrary solution of (Iv=1) with x € 0(A).

Proof. By lemma IV-1, A is strictly dissipative with respect
to an equivalent semi=scalar product {c:;o]. By lemmsz IV=2 and the
strict dissipativity of A we have, following the same reasoning as in
the proof of theorem iv=-'»?§

¥(T,x) = 20AT,x, T x] g -2 B, ]TtxH‘;_

> 0 where ||o]]

for some B 1s indueed by [e5-]. The equivalence

1 1
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between ||.|| and ||- implies by usinp (IV-3) that
1

o . 2 2
Y(T, x) < =2 Blal |Ttx|| = 4| ITtxH (¢ 2 0)
where B = 2816 > 0, Thus the theorem is proved.
In case X is a Hilbert space with norm ||x]| = (x,x)llz9 the
existence of a Lyapunov functional is still valid although the space

X with the induced norm l|x|il = [x’x]1/2 is not mecessarily a Hilbert

space., lowever (X, °||1) is at least a Banach space since these two
norms are eduivalent and so the completeness of one space implies the
completeness of the other,

The purpose of constructing a Lyapunov functional with the
propetty as in theorems IV=7 and IV-8 can be seen from the follewing
considerations: Suppose that a Lyapunov functional v(x) = [x,x]
satisfying

Fx(e)y < =8| |x(e) || (t > 0)
for some 8 > 0 can be constructed. Regarding v(x(t)) = v(t) as a
functioa of t, we have
(o) < - 8l1x®1]° g = 8y |x®) ]2 = -8,9(e)
since le(t)lli = [x(e), x(t)] = v(x(t)) where B, = B/y. Upon
integrating the above ineqrality yilelis

£

v(t) < v(o) e~P1F (t > 0

which implies that
sllxe) 1% 5 1xte) |13 = vex(e)) 5 vex(0)) &1

Ol RO R
Thus | .
e ] s a0t SV2ERE Juo) )t 6, 2 0)
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which shows that the null solution is stable for B = 0 and ¥~
exponentially asymptotically stable for 8 > 0,

It is to be noted that the construction of a Lyapunov
functional having the desired property as in the above consideration
is based oﬁ the assumption that solutions to (IV~1l) exist. Thus the
existence of a Lyapunov functional alone is not sufficient for solv-
ing the stabilit» problem of a partial differential equation unless
the existence of a solution is assured. The assurance of the exist-

ence of a solution requires further restriction.

C. Stability of Linear Operational Equations

As seen in the previous sectior the existence of a Lyapunov
functional and the satisfaction of cert;in conditions by its deriva-
tive evaluated along solutions if they exist imply rertain stability
properties., Thus, to investigate the stability behavior of the
solutions of (IV-1) by the Lyapunov’s direct method, it is im;oreant
to kncw that a Lyapunov functional exists. In this section, the
necessary and sufficient conditions for the existence of a Lyapunov
functional is established. This relation is valid for a Banach space
gs the underlying space as well as for a Hilbert space. Throushout
thiz section, X denotes a real Banach space and H denotes a real
Hilbert space, It has been seen that in the case of a real Hilbert
space H, a Lyapunov functional can be defined through a symmetric
bilinear form

V(x,v) = {x, Sy) =x,y ¢ H

where S € L(H,H) is a self-adjoint boundad positive definite linear
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operator. The boundedness of S implies that

Ve | = [yl g TSI Txd |yl] Goy €

which ghows that V(x,y) is continuous in both x and y; that is,
for any sequen-. 28 {xn} and {yn} ip H such that x *x and y >y

then
1im

b e

Vix ,¥,) = V(x:¥).

In the case of a real Yanach space X, a Lyapunov functional is
defined through an equivalent semi=scalar product by V(x,v) = [x,vy]
which, as is seen in theorem IV-4, is defined through the choice of a

continuous linear functional fy e X* for each fixed v € X. This

semi-scalar pruduct has the property that [x,y] = fy(x) for each x € X

and ||fy|| = ||ly|]. Although the linear functional fy(x) is continuousr
in %, it is not clear that fy(x) is also continuous in y since we

know only that Ilfy|| = ||ly]]l. From the Lyapunov stability point of
view it is desirable to know whether or not

1im
t+0

where A4 1s the infinitesimal generator of the semi-group {Tt; t 2 0},

[AT x

X Ttx] = [Ax,x] x € D(A)

If this iast can be verified, them solutions need not be constructed.

We shall show that the answer is affirmative by first establishing a
geries of lemmas which are essential in the proof of the above convergence
relation. Before proving these lemmas, it is convenien: to give the
following notations: Let x(t) be a vector=valued function defined on

[0,%) to a real Banach space X such that x(t) is continuous in t wich

1im

¢40 x(t) = x(0) = x in the strong topology. For each fixed t > 0, let

M, = {m; m =a x(t), @« real}l and

T, ={ysy=m+Bx,m e'Mtf B reall



where xo is a fixed element in X but not in Mt° It is clear that

MeY

= Lpo Wig! this notation, we have the following.

Lenma IV-3. (a) For any fixed t > 0, the functional ft on

Mt defined by
ft(m) = a||x(t)||2 for m = ax(t) € M,
is a continuous linear functional on M, with ||ft|| = ||x(e)] ],
(b) For the same ¢ as in (a) and for any nurbur c, the functional °°

t
Ft on Yt defined by

F.(y) = £ (m) + Bc, for v = m+ Bx € Y,
is a continuous linear functional on Yto
Proof. Part (a) of the lemma is obvious, for if Myp My € Mt’
2
then ft(yl‘m1 +yymy) @ £ ((yg0y + v,0,) x(8)) = (vjo, + yzaz)llx(t)||
YiE () + v, (m) and £, )] = la| Hx)[]12 = [[x(®)]] ||n]| for
all m € M, which implies that ||fti|=||x(t)||° To show that F_ 1is a

linear functional on ¥

e® let Yis ¥y € Yt with Yy = my + leo and

Yy = @2 + Bzxo9 then
Folypyy + 795> = Fllyymy + yomp) + (vy8) + voB)x ) =
£ Orgm + vomy) + (g8 + vpBp)e, = v f (my) + v 8yc, +
Frafe(my) * vaBy e = YiF ) + Vo ()

This shows part (b) of the lemma,

Lemma iV-4. TFor the same fixed t > 0 as in lemma IV-3, there
exists a number ¢, in defining the functioral Ft such that
HE T = [1gdl = llx@l] (3 0).
In particular, for t -~ 0 there exists an number c such that the func-
tional Fo on Yo defined by
Fo(y) = fo(mo) + R ¢ for y=m  + Bx e Yo with m, € M
is a continuous linear functional on Y with ||FO|| = [lfoll = |lxl].
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Proof. It suffices to show that ||Ft!| < ||ft|! since F, is
an extension of f which implies that ||ft|| < HFtH° To accomplish
this, we show that there exists a number €, in the definition of Ft
such that
P | s £ ]y} ferallye Y. (1V-4)
Since IFt(y)| = |ft(m) + B ctl for y=m+ 8 X, (IV=4) 1is
equivalent to
“lE 1 [lm+ 8 x| <€, 5 8 e 5 1E,[] Hm+ 8 x| i=£, (.
(Iv-4)"'
Now 1f B = (j, then y = m ¢ Mt and Ft(y) = ft(m) which implies that (IV=4)
is satisfied for arbitrary fixed t. We assume that 8 # 0. Hence for

B >0 (Iv-4)' 1s equivalent to
e HE+ = I £, s e 2 He ] T+ x |1 -£,6 av-0)"
and for B < 0 it 1s equivalent to
1 1 1 1
AR AT SR PR ITATNIETERIE EXC

which can immediately be reduced into the same form as in (IV-4)". Thus

it ig sufficient to chicose c, satisfying

IR IR e TR I EN IR EERTE O
(Iv=5)
The choice of ¢  is possible since for any m', m" € M
£.m') + £ () = £ @) 2 [[E 1] [nn®[| = [{£]] ||n"x tn"=x ||
< NeI1 Hmveg ]+ e 0] 1] e 1]

which implies that

AN XS AT RIEE NI EXCUP
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The arpitrariness of m" in Mt implies
m..iﬁ‘;[“llftll x|+, @1 g 1€, 1] mtox |1=£, ') = e M,;
and the arbitrariness of m' in Mt vields
i inf
e =g 1 g 1o 61 5 G020t ) || £ 01,
(IV=5)°
In order to satisfy (IV=5), we need only to choose . satisfying
inf
mﬁtelglt[nl £ 11 Tntexp i+, (™) 5 ey < m'::IMtH £ 11 Hm" x| 1-£, ],
(IV=5)"

It follows that (IV=5)" reduced to the form (IV-5) by letting m" = -m' for
any m' € M, o With this choice of Cpo (IV=4) is satisfied and from which
IIFtII < [|ft!|o Since F_ is an extension of f , lIFt|| > HftHe There-
fore, ||Fttl = |{£,]]. The above is true for each fixed t > 0 and, in
particular for t = 0, F, is a continuous functional on Yo where ¢ corres-
ponds to cye

In general, C. depends on t and there may be infinitely many of
them for any t. The object in the following lemma is to select a number
. satisfying (IV=5) such that c, is a continuous function of t with

c, +cas t + 0,

Lemma IV=5, The constant c. in lemma IV-4 can be choosen as a
continuous real-=valued function of t for t [0, tO] with t, a fixed posi~-
tive number such that c. +cas t ¢+ 0,

Proof, Since if m € M, then m = ax(t) and £ (m) = a\]x(t)||2

for some real o, it follows from ||ft|| = ||x(e) ]| that (IV=5)" becomes

*Pl-lx® 1] lox@=x )| + allx®|}*) s ¢

8] |x¢e) | 121

. S 1Zf[Hx(t)H ||Bx(t)*xol|=
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Since the continuity of x(t) in t in the strong topology implies the
continuity of }|x(t)|| in t, and since the product or the sum of two
continuous functions is continuous, it follows that the real-=valued
scalar functions
£(a,0) 2 -|jx(®)|| ||ax(®)=x ||+ al{x(®)||* and
g8ty = |lx(e)]] |]8 x(e)+x |- 8] [x(e)]|®

are continuous functions in t and ¢, and in t and B res-

inf
B

continuous function of £t in the interval [O,to] such that

pectively. From Szpf(g,,t) < g(B,t), we car rhoose c_ as a right

t

P f(a,t) ge, & pE(B,t) for ¢ e (0,2 ]
It follows that
fla,t) < ¢, 2 g{B,t) for all a, 8.
The continuity of c_ implies, as t + 0, that
£(a,0) S ¢ g(B,0) for all o, 5

which, by the same reasoning as in cbtaining (IV=5)°, vields

UL x| | |laxxg || + allx]1%) £ e, g *RE01Ixt] |lemex | 181 1x11%1,

By choosing e=e the above imequality implies that for each B
2 2
=Pl ] Bt (1= [ 1x[1% < e g Vx|l ] | 1-8] |xi]

that is
=i|f°|| ||m°+x°||=£°(mo) <eg ||fo|| ||mo+x°|l=fo(mo) for all m_eM .
Therefore, with this choice of ¢ the funiétional Fo defined by
Fo(y) = Fo(mo + on) = fo(mo) + Bec
is a continuous linear functional om M_ with ||F°|| = |l£}] = 1EN

such that ¢, > cast 0 which proves the lemma,

As we have mentioned before, if thzre is a sequence {yn} in

X such that Va7 Y strongly, one can not draw a conclusion that



54

[x,y_1 > [x,y] since [xgﬁ;]a fva(x) where ||fynl| = |lyn|| does not
ensure that {fyn(“)} converges to fy(x) for every x ¢ X. However,
by using the above iemmas the following theorem can be shown

Theorem IV=9, Let A be the infinitesimal generator of an equi-

bounded (negative) semi~-group {Tt; t > N} (of class Co) in a real Bamach
gpace X. Then there exists a semi-scalar product such that
lim ;
40 [Ax, Ttx] = [Ax,x] x € D(A),
Proof, By lemma VI-4, the functional Fos with t fixed, is
a continuous llinear functiomal on Yt with llFtll = |lftll = ||x(e) |},

It follows from the Hahn=FEanach theorem that there exists a continunous

o Since

/ ,
linear extension G, on X such that llctll = IIFt|| = ||x(t)

x(t) € M
o, (e | = £, eN] = |[x(0)|]® .

It is clear that for arbitrary fixed t > 0

G . ¥) = [y, x(e)]
defines a semi-scalar product (see theorem IV-4), In pevticular, when
t = 0, then
6, (y) = [y,x]

defines a semi-scalar product. For fixed x € D(a), let Ttx e x(z) and

let X = Axemo where m

o = aoTtx £ Mt with o, fixed, We choose this X,

as the fixed element in the defin‘tion of Yt (if X, € Mt’ we consider
ft in place of Ft)o Hence Ax = m + X, E Yt’ and

2
[Ax,T, x] = G, (Ax) = 7 (Ax) = F @ +x) = £ (m) +c, = af|Tx||"+e,
On the other hand,
= = = 2
[Ax,x] = G (ax) = F_(Ax) = £ (m ) + c = a_||x]|" + ¢ .
Therefore, by lemma IV=3

i ‘ ‘ 2 2
oo Hax, T x] = (ax,x]| g fip o 1Tl 12 = a llx]1%]+

and the theorem is proved.

1lim

t+Oict=e| @ 0,
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Corolilary, Let x(t) be a vector-valued function defined en
[0, =) to X such that x(t) is continucus in t in the strong topology,
and let A be a linear operator with U(A) and R(A) both contained in X
with x(0) 2 x ¢ D(A), Then

Hin [ax,x(6)] = [Ax,x] x £ D(A).

Proof. By the same argument as in the proof of the theorem,
the result follows.

Theorem IV=10, Let A be the infinitesimal generator of am equi-

bounded (negative) semi-group {Tt; t > 0} (of class Co) in X, then
1lim _ —u
t+O[ATtxB Ttx] = [Ax,x] x € V(A).

Proof.,

I[ATf:x,Ttx] - [Ax,x]| | [T, Ax-Ax,T x] + [Ax,T x] - [ax,x]} <
b |[TtAX=AxsTtx]l + |[Angtx] - {ax,x]]| < I!TtAx=Ax|| IITtx||+

+ |[ax,T x] = [Ax,x]|
since AT x = T Ax for x ¢ D(A). Thus, by theorem IV=9

1im

1i 1im,
ml[ATtx,Ttx] = {Ax,x]| 0 t+0

£40 S te0!
which implies the desired result.

Ry

Corollary. Let x(t) be a solution to (IV=1) with x(0) = x where

T ax=ax|| |{T x|+ ol (ax,T %) - [Ax,x]|=0

x € D(A). Then

1im
t+0

Proof. Since x(t) * a solution of (IV=1), it is differentiable in

[Ax(t), =(t)] = [Ax,x].

t and satisfies

Ax(t) = % x(t) (t > 0)

with x(0) = x € D(A). Hence Ax(t) is continuous in t in the strong topclogy.

By the corollary of theorem IV-9 and the continuity of Ax(t) in t, we have
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U0 (Ax(e), x(0)] - [Ax,x]] g

iig(|[Ax(t) =Ax,x(£) ]| + |{Ax,x(e)] = [Ax,x]}]) <
ceo |1ax@=axl| x|+ 5 |laxx(©) - [x,x]] = 0

and the result follows,

1t is known [15] that the infinitesimal generator of a contrae-
tion semi=group 1s independent of the choice of semi-scalar product. It
follows that an operator A with dense domain and R(I-A) = X which is
dissipative with respect to one semi-scalar product defined on a Banach
space X, is also dissipative with respeet to any other semi-scalar pro-=
duct compatible with the norm of X since under the given conditions A isg
" the infinitesimal generator of a contraction gemi-group., This fact enables
us to choose any semi-scalar product on X consistent with the norm of X
such as the one constructed in the proof of theorem IV-9 without affecting
the dissipativity cf A. The following two theorems give the nece2ssary
and sufficlent conditions for A to genmerate equibounded and negative semi-
groups respectively.

Theorem IV=11, Let A be a linear operator with domain V(A) dense

in X = (X, ||°-}|) and range R(A) in X. Then A is the infinitesimal gener=-
ator of an equibounded semi-group {Tg; t > 0} if and only if there exists
a Lyapunov functional v(x) = [x,x] such that

¥(x) = 2{Ax,x] < 0 x e D(A) (1V=6)
and R(I-=A) = X where [+5.] is an equivalent semi-scalar product on X

consistent with ||°|‘10
Proof. Let A be the infinitesimal gemerator of an equibounded

semi-group {Ttg t > 0}. By lemma IV-1, there exists an equivalent semi-

scalar product [°s¢] inducing an equivalent norm ||oH1 such that
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[Ax,x] < 0. Define v(x) = [x,x], then by lemma IV-2 and theorem 1V=10

_lim 1 lim 1 2 2
¥ F ot WER-ve) = g 1Tl =TIkl -

d 2 1im
= "'é'E( HTtx||l)t0+u2 £+0 [ATtxs Ttx] - Z[Axsx] : 0.

By theorem III-12, moreover, for any A > 0, A € p(A) (the resolvent set

of A), it follows by theorem 1I11-11 that R(I-A) = D(R(13A)) = X. Com-
versel&, if there exists a Lyapunov functional v(x) = [x,x] satisfying
(IV=6) where {-5-] i an equivalent semi-scalar product inducing an
equivalent norm ||°||1, then A is dissipative with respect to [cs-],

By the equivalence relation between the two norms ||-|| and ||°|l19 D(a)
is dense in xla(x,||°lll) and R(I-A) = X, since D(A) ie dense in

X = (X,||°|]) and R(I-A) = X by hypothesis. It follows by theorem IV-5
that A generates a contraction semi-group {T 3 t > 0} in X; with l[Tt||1§1
sincc the dissipativity of A 1s independcnt of semi-scalar product om Xlo

It iz known that semi-group properties are invariant under equivalent

norms and the equivalence between ||-]| and ||°||1 implies that ||Tt||§M
for some M > 0, hence {Tt; t > 0} is an equibounded semi-group in X.
Therefore, the desired result is proved.

For the case of a negative semi-group, we have the following

results.

Theorem IV-12, Let A be a linear operator with domain D{A) dense

in X and range R(A) in X. Then A is the infinitesimal generator of a

negative semi-group (T ;3 t > 0} if and only if there exists a Lyapunov

c®
functional v(x) = [x,x] such that
¥ = 2[ax,x] g =28][x|12  (x € D(a), B > 0)

and R(I=(BI+A)) = X where [c¢sc] 18 an equivalent semi-scalar product on

115

X consistent with
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Proof. The pruof is essentially the same as for theorem IV-1l,
The "only if" part follows from lemma IV-1 with ¥#(x) = 2[Ax,x] < =28llx|li,

and the "1f" part follows from the corollary of thecrem IV=5 with ll?tlllé

< éﬂBt B

for gsome B > 0 so that ||Tt|| M e "t with M > 0 (¢t > 0).

B

The above two theorems just proved can be applied to 2 Hilbert
space H although the linear space H with the norm [{||, imduced by the
semi=scalar product [-.»-] may no longer be a Hilbert space. Howeveyr if
[c9°] 15 an equivalent semi-scalar product on H; then the space (H, ||°||1)
ie at least a Banach space, and the semi=scalar product cawn still be used
to define a Lyapunov functional,

Based on the results obtained im the above two theorems, we can
define a pair of functionals v(x) and w(x) in X such that if certain cemn-
ditions are satisfied by these two funeticnals the stability or asymptotie
stability of the null solution are emsured. These two functionals, which
in 2 sense are .n parallel to those used by Zubov in [24]), are defined by

v(x) = [x,x] (x ¢ X) and w(x) = [Ax,x] (x € D(A))
where [;901 is an equivalent semi-scalar product and A is the linear
operator in (IV=1), Thus, v(x) is in faut a Lyapunov functional on X as
defined in definition IV=6. The following theorem stated in terms of
these two functionals is an immediate consequence of theorems IV=11 and
1V=12,

Theorem 1V=13, Let A be a linear operator with D(A) dense in X

and R(I=(£I+A)) = X where 8 > 0 and X i8 & Banach space or a Hilbert
space. If there exist two functiomals v(x) and w(x) defined by
v(x) = [x,x] xeX

wix) = [Ax,x] x ¢ D(A)
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such that
(1) ¥(x) = 2w(x); and

(11) w(x) < - B Hxlli x € D(A)
where [°s.] 15 an equivalent semi-scalar product on X. Then the null
golution of (IV=1) is stable if B = 0 and is asymptotically stahle if
g > 0,

Proof. Under the assumption of (i) and (i1),

§x) = 2(ax,x] g 28 ||x|1} o« e D),
Thus by hypotheses all the conditiens in theorems 1IV-11 and IV=12 are
satisfied for 8 = 0 and B > 0, respectively. These imply that A generates
an equi-bounded or negative semi-group depending on 8 = 0 or B > 0, The
stability oxr asymptotie stabilicty of the null solution follows from the
equibounded or negative property of a semi-group respectively.

Remark. Under the assumptions of the above theorem; the condition
R(I=(BI+A)) = X in the theorem :an be weakened by assuming that R{ @ I-A)=X
for some o > 0, This is due to the fact that the condition R(I=(BI+A))=X
can be réplaced by R(A\I = (BI+A))=X for sufficiently large A (e.g., see
[23], p. 250) and thus for any 8 > 0 a number A, > B can be chosen such
that R((AO=B)I=A) = X. This will be satisfied if R( cI=A) = X for some
o > 0 since by lemma V-1 in the next chapter the condition R(@I-A) = X
for somea > 0 and the dissipativity of A imply that R(ai-A) = X for
every a > 0,

Thus in case of a Hilbert space, the Lyapunov functional v(x)
can be constructed from an equivalent semi-scalar product other than an
equivalent imner produzt. The importance of theorems IV-11 and IV-12

lies in the fact that the existence of a Lyapunov functional alone does
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not necessarily ensure the existence of a solutiom to (IV=1), and in

fact the proof of the existence of a solution to (IV=1) is, in generai,

racher complicated, However, under the additional conditions U(A) = X
and R(I-A) = X the existence of a solution with any initial element

x € V(A) is assured. This assurance makes the stabilitv of a solution

meaningful,
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V., STABILITY THEORY OF NONLINEAR TIME~-INVARIANT

DIFFERENTIAL EQUATIONS IN HILBERT SPACES

Many physical and engineering problems are formulated by
differential equations, often, by nonlinear partial differential
equations. Since the stability problem of solutions to partial
differential equations occurs in many fields of science the study
of the stability behavior of solutions to partial differential
equations has been extensively investigated in recent years. How-
ever, most of this work is concerned with specific partial differ-
ential operators and sometimes the existence of a solution is assumed,
In order to unify a theory for a class of partial differential equa-
tionse and to develop a stability theory on this class, it is desirable
to consider a gemeral nonlinear operator from a function space into
itself. In this chapter, Hilbert spaces are taken as the underlying
spaces, and only in some special cases (section C), real Hilbert spaces
are considered,

Consider the nonlinear operatiomal differential equation

42} o ax(e) (t > 0) | (v-1)

where the unknown x(t) is a vector-valued function defined on {0, «)

to a Hilbert space H, and A is a given, in peneral, nonlinear operator

with domain D(A) and range R(A) both contained im H., The object of

this chapter %3 to develop criteria for the stability and the asymptotic

stability as well as the existence and uniqueness of solutions to (V=1).
The stability and the asymptotic stability properties of the

solutions of (V1) are developed in terms of nonlinear contraction and

negative contraction semi-zroups. By the introduction of an equivalent
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inner product, these properties are related to the existence and the
construction of a Lyapunov functional which is a direct extension of
the linear case due to Buis [3]. Finally, the semi-linezr differential
equation

dx

3t on + £(x) (V=2)
is discussed as a special case where A, is a linear closed operator

and £ is a nonlinear function defined on & real hilbert space H, It
turns out thac if Ao is a self-adioint operator in H or in a toprlogi-

cally equivalent Hilbert spzoce Hl’ the conditicns imposed on Ao

are particularly simple.

A, Nonlinear Semi-groups and Dissipative Cperators
In order to describ-. une results in this and the following
sections, it is necessary ro give some basic definitions.

Definition V=1. Let H be a Hilbert space. The family

{Tt; t ; 0} is ecalled a continuous semi-group of nonlinear contraction
operators on Il or simply (nonlinear) contraction semi-group on H 1if
and only if the following conditions held:
(1) fer any fixed t > O, '1‘t is a continucus (nonlinear)

operator defined on H into H;

(11) for any fixed x € H, T.x is strongly continuous in t;

(111) TSTt = TS+t o 8, t > 0, and TozI (the identity operator);

{iv) I\Ttqutyll < | |x=y|| for all %,y, € H and all t > O,
If (iv) is replaced by

(iv*) |thx=Ttyl| < e58t||x=y|| (8>0) for all x,y £ K and

all t > 0,
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then {Tt; t 2 0} is called a (nonlinear) negative contraction semi-group
on H, The supremum of all the numbers B satisfying (iv') ie called the
contractive constant of {Tt; t 2 0}. PFor a subset U of H, the family
{Tt; t > 0} is sald to be a nonlinear contraction (negative contraction)
semi—group on U 1if the proverties (i)=(iv) ((1)=(iv’)) are satisfied for
all x,y ¢ D,

Definition V=2, The infinitesimal generator A of the nonlinear

semi-group {Tt; t > 0} is defined by

_welim X

Ax="rvo Th
for all x ¢ H such that the limit on the right-side exists in the sense
of weak convergence.

Definition V-3, An operator (nonlinear) A with domain D(A) and

range R(A) both contained in a Hilbe:t space is said to be monotone [18]
if
Re(Ax = Ay, x~y) > 0 for x, v € D(A), (V=3)
The operator A is called dissipative if -A is monotone; and A is called
strictly dissipative if there exists a real number 8 > 0 such that
- (A + BI) is monotone.
It follows fiom the above definition that
Re(Ax = Ay; x=y) £ 0 for x, y e D(A) (V=4)
if and only if A is dissipative; and
Re(Ax~Ay, x=y) < = B (x=y, x=y), 8 > 0  x,y € D(a) (V=4)°
if and only if A is strictly dissipative., The supremum of all the numbers
8 such that (V=4)' holds 1is called the dissipative constant of A. Note
that these conditions coincide with the usual definitions of dissipativity

when A is a linear operator (see defimition 1II-12),
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The definition of a monotone operator has been extended to
the case when A is an operator in a Banach space X. In this case, A
is said to be monotone if

| |x=y + a (ax = Ay)|] 2 ||x=y|| for all o« > O and x,ve D(A). (V-3)'
Let X* be the set of all bounded semi-linear forms on X; that is, the
pairing between x € X and f € X* denoted by <x,f> ig linear in x and
semi-linear in £ (If X is a Hilbert space, X* 1is identified with X and
<op°> with the inner product in X)., For any fixed x € X, define
F(x) = (f e X*; <x,6> = ||x||2 = |5, .
Then it can be shown that [11] (V=3)' is equivalent to
Re <Ax - Ay, f > > 0 for some £ ¢ F(x-y), x,y ¢ D(A). (V=3)"
Note that the inequality (V-3)" is not required to hold for every f ¢
F(x=y). Hence if X is a Hilbert space, (V=3)" is reduced to (V-3),
since in this case F(x-y) = {x=y} consists of a single element and
Re <Ax=Ay, £> = Re(Ax~-Ay, %=¥).

The condition (V-3)" implies that (I + aA)=1 exists and is Lipschitz
continuoﬁs for all ¢ > 0, where I + oA is an operator with domain D(A)
which maps x into x + aAx. As to the domain of (I + aA)“l9 we have the
following lemma (see [11]) which was proved essentially by Komura [13]
(see also [191).

Lemma V=1, Let A be monotone, If the domain of (I + mA)=1 is
the whole of X for some ¢ > 0, then the same is true for all a > 0,

Hence for a monotone operator A, the operator (I + aA)=1 has
domain X either for every « > 0 or for no a > 0.

-

Definition V=4, If A iz a monotone operator such that ‘D((Iﬂ-uA)’l)E

=R (I+aA) = X for every @ > 0 (or for some a > 0), then A is said to be

— _Trmonotone,
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Because of the generality of the problem considered in [11],
the theorems developed in that paper are somewhat complicated. How-
ever, in case the operator A in (V-1) is independent of t, as in this
chapter, those theorems are relatively simple and can be stated in
terms of non-linear contraction semi-groups. Now we restate the main
theorems in [11] when A in (V=1) is independent of t.

Theorem V=1. Let X and X* be both uniformly convex spaces, and

let -A be m—monotone. Then A is the infinitesimal penerator of a non=
linear contraction semi-group {Tt; t > 0} on 7(A) such that for any
x € D(a), T,x is the unique solution of (V-1) with the initial conditioum
Tox = %X, A solution x(t) of (V-1) satisfies: (I) For each x(0) ¢ V(A),
x(t) € D(A) for all t > 0; (11) =x(t) is uniformly Lipschitz continuous
in t; (4ii1) the weak derivative of x(t) exists for all t > 0 and equals
Ax(t): (iv) the strong derivative dx(t)/dt = Ax(t) exists and is st ong-
ly continuous except at a countable number of values t.

Through out this chapter, conditions (i)=(iv) of the above theorem
specify what is meant by a solution of the differential equation of the
form (V=1), It should be remarked here that except for the assumption
of m—monotonicity, the operator A is arbltrary. This is different from
much of the work on nomlinear evolution equations in Hilbert spaces or
in Banach spaces in which only semi=linear equations of the form (V=2)
were considered (cf. Browder [1], Kato [9]). Thils latter type of equa=
tion will be discussed in a later section by applving the results for
the general form (V=1).

It is clear from the above theorem that if A is dissipative in

the sense of (V=4) and X and X* are uniformly convex, then an equilibrium
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solution (or a periodic solution) if it exists, would be stable by

the contraction property of the semi-group, However, it is not

trivial to relate exponentially asymptotic stability directly to

such a property. If A is linear and is the infinitesimal generator

of a contraction semi-group {Tt; t > 0} of class C,» then the family
{eeBtTt; t > 0} for some 8 > 0 is a negative contraction semi-group
with the infinitesimal generator A - BI., But when A is nonlinear,

the contraction semi=group {Tt; t > 0} generated by A is nonlinear

and so the family {enetTt; t > 0} is not, in general, a semi-group since
property (iii) in definition V-1 does not hold, However, with a slight
modification, necessary and sufficient conditions for the exponentially
asymptotic stability analogous to the linear @ase still holds. This

can be achieved by using the negative contraction semi-group property.
Before doing this, we show in this section some basic results which
will be needed in the later sections. We leave the development of
stability and asymptotic srability to ssetion B of this chapter in which

we introduce the concept of equivalent inner product,

Theorem V-2, Let A be a nonlinear operator with domain D(A)

and range R(A) both contained in a Hilbert space H such that R(I-A)=H,
Then A is the infinitesimal generator of a nonlinear contraction semi-
group {Ttg t > 0} on D(A) if and only if A is dissipative (i.e. -A is

monotone).,

Proof. Sufficlency: suppose A is dissipative, (i.e. -A is
monotone). Then =A is m—monotone, for by hypothesis, R(I+(=A)) =
R(I~A) = Ho Since H* is identified with H, it is also a Hilbert space,
Thus H and H* are both uniformly convex., The sufficiency follows from

theorem V=1,
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Necessitv: Let A be the infinitesimal generator of a non=linear

contraction semi-group {T_; t > 0} on D(A), Then for any x,y & D(A)

£?
Re(h™ (T, xex)=K (T, y=y) s %=y} = BT IRe[(Tx-T,¥, %-y) = (x-y, x-y)]

BN n - Tyl ] xey ] = Hney 1123 = 073 ey |1 ety |-

=l lx=y||1 2 0
for all h > 0 since {Tta t > 0} is contractive. Letting h+0 in the
above inequality, we have, by the continuity of inmner product and by
definition V=2
Re(Ax = Ay, x=y) < 0 for any x,y € D(A).
Hence the theorem is proved,

It should be notad that in the above theorem, it is not assumed
that the domain of A is demse in H, However, 1f A is a lineaxr operator
in a Hilbert space, the m—monotonicity of =A implies that V(-A) is dense
in H (cf. [11]1), and the above theorem is reduced into the well-known
results due to Lumer and Phillips {[15]. But it is not known vet whether
or not Q(A) is dense in H if A 1s a m=n_.aotone nonlinear operator. It
will be shown that the nonlimear contraction semi-group {Ttg t > 0} can be
extended by continuity to a nonlinear contraction semi-group onlﬁTKT, the
closure of D(A). Hence if D(A) is dense in H, {Ttg ¢ > 0} can be extended
to the whole space H which is a direct generalization of a stronglv con-
tinuous semi-group of class C_. The condition R(I=A) = H can also be
weakened by assuming R(I-aDA) = H for some 6, > 0 since the monotoniecity
of -A implies: (i) the existence of (I—aA)=1 for all o > 0, and (ii)
if D((I~a_A)"') = H for some a_ > 0, then D((1-af)"Y) = H for all a > O,

The nonlinear contraction semi-group {Ttg t > 0} generated by A

in Theorem V-2 can be extended to the closure D(A) denoted by D(A), In
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order to do this, we consider the approximate equation of the form

dxn(t)
dt

= Anxn(t) xn(O) =xecH ne=s 12,000 (V=5)

where A = A(I=n=1A)=1, and show the following lemma which 1s proved
based on some of Kato’s work in the comstruction of a solution to (V=1).
Lemma V=2, Let A be a dissipative operator, and let R(I-A)=H.
Then for any x € H there exists a unique solution Tt(n)x of (V=5) which
(n),

is continuously differentiable in the strong topology such that T,
= x for each n=1,2,°°°, Moreover, for any x € 3(A)9Tt(n)x converges
uniformly in t as n + =, and for x, ¢ D(A) such that x, X as keteo

Um () _ lm lim (n)_ _ lim lim (n)
n=e Tt T e kow Tt T T koo g Tt Fe (V=6)

Proof. The operator An = A(I=n=1A)w1 is defined everywhere on
H for each n since =A is monotone and by lemma V-1 D((I=A)51) = R(I=A)=H
implies D((ImnalA)el) = H for everv n. An is dissipative for each n and
satisfies ||Anx=Any|| 2 n||x=y|| (cf. Kato [11]). Hence for each n, An
satisfies the following conditions:

(i) Ah is continuous and carries bounded subsets of H into
bounded subsets of H since ||Anx|| < llAhY°|| + n||x=y|] < ||Ahyo|| +
+n[|x||+n||y0|| where y_ is a fixed element in H,

(11) For each fixed m, (A x-A y,%=y)S n|]x-=y|[2 since IIAnwaﬂy|| <
< nll=xyl]. The above conditions imply that for amy x € H there exists

(n)

¥ which is continuously differemtiaple in the

(n)

a unique solution Tt
strong topology such that TR = x for each n (cf. Browder [1] or Kato [2]).

It can be shown by the dissipativity of A that

N1, @, Myl| 2 |layll  xy e B (v-1)

uniformly in t and n (see lemma V-5 with TZx = x(t)). Since the solution
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(n)

Ttx of (V=1) is constructed as the limit of Tt x as n + ® and for

lim (n)

e Lg ¥ converges uniformly in ¢t

()

y € D(A) the strong limit Tty =
(cf. [11]), it follows by (V-7) that T """x converges uniformly in t

for x € D(A). Moreover by (V-7) for X € D(A) and X, > x as k + o

lim HTt(n)K - Tt(n)ka < lim

Lin < MM fxex || = 0
uniformly in t which is the same as

r @, lm o (2)

¢ X% e Tg Fg unifczmliy im t.

This last equality relation and the fact that

1im 1i im 14 '
Hm dm gy Wy op @y | g B0 ke l] = 0

imply that

Hm  (n), _ lim lim o (n)_ _ lim lim (n)
nre Tt = poo koo Tt i T koo o Tt e

Thus the lemma is proved.
Following the results of lemma V-2, it is natural to extend

the nonlinear contraction semi-group {T_; t > 0} to the closure of

£
D(A) by the relation (V=6), More precisely, we have the following
Lemma V=3, Let {Tt; t > 0} be the noniinear contraction
(negative contruction) semi-group generated by A on P(A) in theorem
V-1, Then it can be extended to a contraction (negative contraction)

semi=group {Et; t > 0} on D(A) by defining

= 1im e e
Ttx = oaw Ttxk for x € V(A) (V=8)

where x,_ ¢ D(A) and X 7 X as k + o,
Proof. The limle defined by (V-8) exists and is independent
of the choice of x in D(A). The first assertion follows from the fact

that for fixed t > 0

I|Ttxk - Ttle{ < ||xk - lel +0 as Kk,j >
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which shows tiat {Ttxk} is a Cauchy sequence and so it converpges to

an element in H. To see that (V=8) is unambiguously defined, let
Vi € P(A) such that ¥y * Xo Then

11
k":: HTtxk:' tka = y.w, “xk Ykll = 0

p lim lim y
which implieg that T.X = e Ttxk Koo Ttvk Next we show that

{Et; t > 0} is a nonlinear contraction semi-group from U(A) into
U(A). For anv fixed t and any pair x, y € D(A) with Xes Yy € D(a)
and X TR Ty -+ y, we have

o 11 ii
Tx - Tyl = B oo - 1,9, ]] 5 147

- - i 11 1i =Bt . =

Thus T is9 for each t > 0, continuous and contractive (negative

contractive} on PITSY Ttx is continuous in t for any fixed x € D(A).

To see this, let X € D(A) and:ck + %X, Then

g 7. o lm o lim 1im {n) L lim (n)
Ttx K-voo Ttxk Lo e Lg - Tt X

by using lemma V=2, Since Tt(“) is contilnuous in t and converges

uniformly in t in the strong topologv, we have

e
2
&

limz _ _ Um lim , (0)_ _ lim lim . (@) _
: 040 Te* T €40 nro Tt F T e g40 g X T %o
H Hence for any t > O
lim lim lim lim 1lim

[T LT

t+h® = Tt"” = 10 ko | Tedn¥K T k” = h0 ke HTh"k”‘kH

- 11“' || %-x|| = 0

since T . x = T T x and T, is contractive on P(A). (Similarly for a
negative contractive semi-group). The continuity of Ttx in t is proved.

To show that ?s?t = %s+t° we first show that Tt maps D(A) into D(A).

L
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Thie follows directly from definition since for any x € D(A) with
e V(A) and + %, then T e D(A) for all k which implies that
*x = ™k

= 1im - -
Ttx Krco Ttxk € A, Now if x ¢ E?Ai theu Ttx E va; and so

= = 2 o lim o 1im o F
TsTtx is defined, Moreover TS(Ttx) - Ts(Ttxk) oo Tadt*K T!+tx
since the limit is independent of the choice of any sequence which

lim

T

converges to Ttxa Note that Ttxk -+ Ttx° Furthermore, Tox ® Toxkax,
that 1is To = I on D(A), Therefore {Tt; t > 0} is a nonlinear contractionm

(negative contraction) semi-group, and the lemma is proved,

Owing to the importance of asymptotic stability in the study
of the stability theory of differential equations, it should be desir-
able to extend theorem V=2 to the case where A is the infinitesimal
generator of a nonlinear negative contraction semi-group. For this
purpose, we first prove the following lemmas which will be used in the
proof of the next theorem and which will play an important role in the
construction of a Lyapunov functional,

Lemma V=4, Let {xn} and {yn} be two sequences in H such that
x 2 % aud vV, Ty amn>e where ¥ denotes weak convergence. Then

tll_jf (% 59,) = (x,5) X,y € Ho,

Proof. Since 2 weakly convergent sequence ig strongly bounded
t.e0, ||xn]| < = for all n (theorem III-8), it follows by the strong
convergence of {y_} that |

1im < 1im

which implies that
1im iim
e (xn’yn) T poe (xn°y)°

"By the weak convergence of X o We have

;i?: (xn’yn) = :‘&E (xnsY) = (%,¥),
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Lemma V=5. Let x(t), y(t) be any two solutioms of (V=1) (im
the senge of theorem V=1), Then le(t)=¥(t)|l2 is differentiable

in t for each t > 0, and is given by
L | |x(0)=y ()1 = Re(Ax()-Ay(£), x(t)=y(£)) for esch t 3 0,(V-9)

Proof., For any fixed t > 0, let h ¥ 0 and |h| < t so that

- W
x(t+h) and y(e+h) are defined By hypothesis, h 1(x(t+h)=x(t)) + Ax(t)
and h=1(y(t+h)=y(t)) 3 Ay (t) we have by the continuity of inner product

and by lemma V-4 that

Lm0 2e] e ern)=y (etn) |12 = | [x(0)=y(0) ] 121w P20 07 {GeCesh)-y (640) % (e4h) -
lim

y{(t+h))=(x (£)=y(t) ,x(£)=y(£))] = 0 h’l[(x(:+h)=y(t+h)=(x(t)=v(t)),x(t+h)=

- =y (t+h)) + (x(e)=y(t), (x(t+h)=y(t+h)) = (x(t)=y(t)))]

[}

%ﬁg h=1[(x(t+h)=x(t).X(t+h)=y(t+h))=(y(t+h)=y(t)sx(t+h)=v(t+h)) +

x(£)=y (£) ;x(tH)=x(t)) = (x(t)=y(t),y(t+h)=y(£))]

(Ax(t£),x(e)=y(t)) = (Ay(t),x(t)=y(t)) + (x(t)-y(e),Ax(£)) - (x(r)-y(t),Ay(t))

(Ax(§)=Ay(t),x(t)y(t)) + (2(t)=-y(t) ;Ax(t)=Ay (L))

= 2 Re(Ax(t)=ay(t),x(t)=y(t)).

Hence, le(t)=y(t)||2 is differentiable and (v=9) holds for t > 0. For

t = 0, the above is still valid by taking h > 0 and h + 0 in place of

h + 0 and by defining %’E | {=(e)=y ()| | at t = 0 as the right-side limit.
The following theorem is ar. immediate extension of theorem V-2

and is fundamental for the construction of a Lyapunov functional from

which the asymptotic stability of solutions to (V=1) can be ensured.

Theorem V-3. Let A be a nonlinear operator with domain U(A)

and range R(A) both contained in a Hilbert space H such that R(I=A) = H,

Then A is the infinitesimal generator of a nonlinear negative contractien
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semi-group {Tt; t > 0} with contractive constant 8 on D(A), that is

||Ttx~Tty|{ < e Pt | |~y | | x, vy € D(A) (v=-10)

if and only 1f A is strictly dissipative with dissipative constant B,
that is
Re (Ax-Ay, x~-y) < = B(x=y, x-¥) x,vy € D(A). (V-11)
Proof. Necessity: Let A be the infinitesimal generator of

{Tt; t > 0} such that (V-10) is valid. Then

171,y 12 g 728 Cllney||* forallt 30 (V-10)°
since both side of (V=10) are pesitive. Subtracting ||x=y||2 and then

dividing by t > 0 in the above inequality, (V-10)' becomes

L R e | Lo B Ca s DR AP T X

As t + 0, we obtain

2 2
=0 é ZBHX‘*YH ]

T %-T vl
Since for any x, v € V(a), Ttxﬂ T,y are solutions of (V=1), it follows
by lemma V-5 that
Re(Ax-Ay, %-y) < =B(x-y, x-y) x, v € D(A),
Sufficiencv: Let (V=11) holds. Then A is dissipative and by theorem

V=2, it is the infinitesimal generator of a nonlinear contraction semi-

group {Tt; t > 0} on D(A)., Moreover, by lemma V-5

d 2 2
r lthx-Ttyll = 2Re (AT x-AT y,T x-T.y) £ =2B||Ttx=Tty|| t20
since T, x, I.y are solutions of (V=1)., By integrating the above inequal-
ity, we have
2 =2R¢t 2
120t y112 5 & 2PE | |xoy]|

and the result follows,
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Theorem V-3 is a direct generalizatien of theorem 1' iu [21]
when X is a Hilbert space, for the strict dissipativitvy in theorem
V=3 is a generalization of the strict dissipativity ia the sense of
[21]. Moreover, it cawn be shown (for instance, see [23]) that the
condition R{(1=8)I-A) = H in theorem 1' of [21]} can be replaced by
R{(A~B)I=A) = H for sufficiently large * > 0. Hence for any 8 > O,
we can choose ) such that A - 8 > 0 which implies that the condition
R((1-8)I-A)= K can be replaced by R(I-(A=B) 1A) = H for A-8 > O,
However, the latter condition is equivalent to R(I~A) = H in virture
of lemma V=1, since under the assumption of (V-10) or (V-11) in
the theorem, -A is monotone. The equivalence between R(I-(A-B)A)=H

and R(I=A) = H follows directly from lemma V=1,

B, Stability Theory of Nonlinear Time=invariant Equations
The object of this section is to develup some criteria in

terms of the operator A so that the stabilitv or the asymptotic
stabilit& as well as the existence and uniqueness of solutions to
(V=1) is assured, In the particular case of partial differential
operators, these criteria are in terms of the properties of the
coefficients of the original system of differential equations and
possibly include the giver boundary conditions. The results obtained
in the previous section serve as the basis for the development of
a stability th-ory which can be applied to certain classes of nonlinear
partial differential equations. Before showing these results, it

would be appropriate to give some definitions of stability amnd

asymptotic stability of an equilibrium solution.
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Definition V=5, An equilibrium solution of (V-1) is an element

x, in D(A) satisfying (V=1) (in the weak topology) such that for any
solution x(t) of (V-1l) with x(0) = X,
l]x(t)wxell = for all t > O,

It follows from the ahbove definition that if x(t) is a solution
to (V-1) with x(0) = %, then it is an equilibrium solution if and only
if Ax(t) = 0 for all t > 0. To show this, let Ax(t) = 0 where x(t) is
a solution of (V=1), Then by theor m V-1 the strong derivative dx(t)/dt
= Ax(t) = 0 exists and is strongly continuous except at a countable
number of values t. This means x(t) = X, {a constant vector) except at
a countable number of values t. But x(0) = x and since any soclutionm of
(V=1) is strongly continuous it follows that x(t) = x for all t > O
(see also theorem I1II-10). Conversely, let x(t) be an eauilibrium sol-
ution of (V=1)., Then

(ax(e),2)= (@x(t)/dt, 2) = 0 W Hx(t+)-x(0),2)= 110 h1(0,2) = 0
for every z € Il and every t > 0, Since x(t) is a solution of.(V=1),
x(t) ¢ U{A) and Ax(t) € H for each t > 0; thus the orthogonality of
Ax(t) to every z in N implies that for each t > 0, Ax(t) = 0. Hence
the existence of an equilibrium solution is equivalent to the existence
of a solution to (V-1) satisfying

Ax(t) = 0 for every t > 0

Definitions of stability, asymptotic stability and expomentially
asymptotic stability of am equilibrium solution are the same as given
in definition IV=3. However, we introduce here one more definition of
stability region.

Definition V-=6. Let x(t) be a solution to (V-1l) with x(0) = x.

A subset U of H is said to be a stability region of the equilibrium
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solution X, i for any € > O there exists a § > 0 such that
x e D and iix=xe|l <6 imply |{x(t)=xe|| <e¢ forallt>0

The dissipativity in theorems V=2 and V=3 are defined with
respect to the original inner product of the space. Since the semi-=
group property is invariant under equivalent norms, the possibility
occurs that by defining other inner products inducing equivalent
norms, the semi-group could be made contractive and the infinitesimal
generator dissipative. This follows from the fact that stability
and asymptotic stab lity are imvariant under equivalent norms and
may be verified by the dissipativity of A with respect to an equi-
valent inner produet.

Definition V=7, Two inner products (¢ s o) and (o » n)1

defined on the same vector space H are said to be equivalent if and
only if the norms floll and ||o||1 induced by (- 5 ) and (o » o)1
regpeciively zre equivalent, that is, there exists comstants §, v
with 0 < 8 < y < » such that
8| |x|| < ||x||1 < vl x|l for all x € H, (V-12)

The Hilbert space H; equipped with the inner product (. , ») is said
to be an equivalent Hilbert space of H and is denoted by (H, (- » o)l)
or simply by Hlo

Under the equivalen: inner product (o » 0)1, the vector space
(H, (o » °)1) is a Hilbert space 1f and only 1f the original space
(H, (- » *)) i, since the complesteness of one space implies the
completenesz of the other. This fact enables us to weaken the dissi-
pativity condition on the operator A in theorem V=2 and V-3,

Theorem V=4, Let A be a nonlinear operator with domain D(a)

and range R(A) both contalned in a Hilbert space H= (H;, (c » °)) such
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that K(1I-A) = H. Then A is the infinitesimal generator of a norlinear
contraction (negative contraction) semi-group {Tt; t > 0} on D(A) in
an equivalent Hilbert space (H, (- » n)1) if and only if A is dissi-
pative (strictly dissipative) with resrect to (°°°)1° In this case
the family {Tt; t > 0} is a nonlinear (nonlinear negative) semi-group

{Tt; t > 0} on D(A) in H, (i.e. conditions (iv) and (iv') are replaced

='6tl|:=:-=yf|| respectively

by [T x=T y|| g Ml|x-y[| and ||T x-T v[| g Me
for some M > 1),

Proof. Since the inner product (s » =), is eauivalent to (o s <),

1

the space H, = (H, (- » °)1) is a Hilbert space and R(I-A) = Hln Hence

1

by considering 1, as the underlying space, all the conditions in theorem

1
V=2 (theorem V=3) are satisfied implying the first assertion is proved,
To show the second part of the theorem, let A be the infinitesimal gen-

erator of a nonlinear contraction (negative contraction) semi-group

{T,3 t 2 0} on V(A) with respect to the norm ||-||,, that is

. =Bt -
et s eyl dlrgetelly s eyl %y e D).
By the equivalence relation (V=12), we have

~1 -1 -1
gt ] g 67 1Tt olly g 67  Ixmy 1g 5 8™ Ixey]|

(l[TtxaTty|| < yo~L &8t =y 1) x, v € D(A).
Since the properties of a semi=group in definition V-1 remains unchanged
under equivalent norms except for possibly the contraction prope v, it
follows that {Tt; t > 0} is a nonlinear (nonlinear negative) semi-group
on D(A) with respect to the origina. norm (with M = 7651)o

The application of the "direct method" to the stability problem

congsists of defining a Lyapunov functiomal with appropriate properties
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whose existence implies the desired type of stability. In order to
give the definition of a Lyapunov functional on a complex Hilbert
space, we first introduce the following:

Definition V-8, Let ll be a Hilbert space, and let V(x,v) be

a complex-valued sesquilinear functional defimed on the product space
HxH (i1.e, V(ulx1 + uzxz,y) = a1V(x1,y) + a2V(x2,y) and V(x,Bly1+Bzy2)ﬂ
=§1V(x,y1) + EZV(x,yz))o Then V(x,v) is called a defining sesquilinear

functional if it satisfies the following conditions:

(1) V(x,¥) = V(y,x) (symmetry)
(i1)  |vx,y)| < yilx!! vl for some y > 0 (boundedness)
(i11) V(x,x) > 6||x||2 for some § > 0 (positive definiteness)

Note that condition (1i) implies that V(x,v) is continuous both in x and

in v,

Definition V=9, Let V(x,y) be a defining sesquilinear functiomal,

Then the scalar functional v(x) defined by v(x) = V(x,x) is called a
Lyapunov functional,

.By applying a theorem due to Lax and Milgram, we show the
following.

Lemma V=6. Let {xn} and {yn} be two seaquences in H = (H, (c3°))
such that X 3 x and Yy, T vasmn-+ Then

1im

n

v(xn,yn) = V(x,¥) x,¥ € H,

Proof. By definition of V(x,y), all the conditions (i.e.
gsesquilinearity, boundedness and positivity) in the Lax-Milgram
theorem (see theorem I1I=7) are satisfied., Thus, there exists a
bounded linear operator S with a bounded linear inverse Swl guch that

V(x,y) = (%, Sy) for all x, v € He (V-13)
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Since a weakly convergent sequence is strongly bounded so that

l|xnl| < » for all n, it follows by the sesquilinearity of V(x,y)

and by the relation (V-13) that
lim lim 1im
il EC/C SRR IR {00 DY il A (SR D) i L CIRLT RO DU B

0 e 1) sy ~vll =0

<
= -+

which shows that

lim
o V(KBBY) o

lim _
n+e V(xn° Yn) -

Again, by the relation (V-=13) and by the weak convergence of {xh}

lim lim :
e VXYY = o (x, 8Y) = (x, Sy) = V(x, ¥).
Therefore, the lemma is Proved by the above two equality relatioms.

It follows from the above definitions and lemma V=6 that the

following results can easily he shown,

Lemma V=7. For any x € H.
s l1xl12 g ve g vy lix||? (V-14)

and for.any pair of solutions x(t), v(t) of (V-1)
v(x(t) = y(t)) = 2Re V(Ax(t) - Ay(t), x(t) = y(t)) (V=15)

where ¥(z(t)) denotes the derivative of v(z(t)) with respect to t,

Proof . (V=-14) follows from the definition of V(x,v). To

show (V=15), note that by the sesquilinearity of V(x,v) it is easily

seen that
for any x%,v ¢ H,

V(x=y, xty) + V(xty , x=y) = 2(V(x,x) = V(v,v))
and by the symmetry of V(x,v), the above equality implies that
v(x) = w(y) = V(x,x) = V(y,y) ==%(V(x=vgx+y) + V(x=y,2ty)) = Re V(x=y,xty),

Hence for any fixed t > 0 and for any number h
v(x(t+h)=y (e+h))=v(x(£)=y(£)) = Re V(x(t+h)=x{t)=y(t+h)+y(t),x(t+h)+x(t) -

= y(t+h)~-y(t)).
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Dividing both sides by h in the above equality, and by the sesauilin-

earitv of V{x,y), this becomes

™3 v (% (e+h)=y (c+h) )=v (x(£)=y (£)) ] = Re V(R (x(t+h)=x(t))=h"* (y (t+h)=y (£)),
x (e+h)+x(t)=-y(t+h)-y(t))
Since h~1 (x (e+h)=x(t)) 5 Ax(t) and x(t+h) + x(t) as h > 0, (similarly
these two limits hold by replacing x by y) we have by lemma V-6, as
h-+0
%? v(x(t)=y(t)) = Re V(Ax(t)=-Ay(t),2x(t)=2y(t))=2Re V(Ax(t)-Av(L),
x{t)=y(t)).
Thus (V=15) is proved for t > 0, For the case of ¢t = 0, we take h > 0
and let h + 0. Therefore (V-15) helds for all t > O by defining
¥(x(0)=y(0)) as the right=side limir at t = Q.
It is easily seen from the above lemma that 1if we define
V(x,¥) = (x,y) where (os°) is the inner product of the liilbert svace
H, then ¥(x(t)=-y(t)) < O along any two solutions x(t) and y(t) if A
is dissipative, This follows from (V=15) that ¥(x(t)=-y(t)) =
2Re (Ax (t)-Ay(t), x(t)=y(t)) for all t > 0 andx (£), y(t) € D(A).
Conversely, 1f ¥(x(t)=-y(t)) < 0 and ¥(x(0)-y(0))=2Re(Ax(0)-Ay(0),
x(0)=y(0)) where x(0) = %, v(0) £ y are any two elements in D(A), then
A is digsipative. The above argument holds true fcr the strict dissi-
pativity of A and the relation V(x(t)=y(t))Z =28||x(t)-y(t)|lz where
B is the dissipative constant of A, Henece we have the following
theorem which is equivalent to theorem V=2 (theorem V=3).

Theorem V=5. Let A be a nonlinear operator with domain U(A)

and range R(A) both contained in a Hilbert space H such that R(I-A)=H,

Then A is the infinitesimal generatqr of a nonlinear contraction

dli
k)
o &*,.*"‘—'4_“



81

(negative contraction) semi-group {Tt; t > 0} on D(A) if and only
if the Lyapunov functional v(x) = (x,x) satisfies
9(x-y) = 2Re(Ax-Ay,x-y) < 0 (¥(x=y) = 2Re(Ax-Ay,x-y) g =28||x~y||%)
(V=16)
where x 2 x(0), v 8 v(0) are any two elements of V(A),
Proof. Let A be the infinitesimal generator of {Tt; t > 0}
then for any x ¢ D(A) there exists a solution T x of (V=1) with Toxﬂx,
and by theorem V-2 (theorem V=3) A is dissipative (strictly dissipative).
Applving lemma V-7 for t = O
¥ (x(0)=y(0)) = 2Re(Ax(0)~Ay(0), x(0)=y(0)) (x(0)=x, y(0)=y),
and by the diasipativi;y (strict dissipativity) of A, it follows that
¥(x~y) = 2Re(Ax-Ay, x-y) < 0 (¥{x-y)=2Re(Ax-Ay,x-y) g =23‘|K“Y||2)
where B is the dissipative constant of A. Converselv, let the Lyapunov
functional V(x) = (x,x) satisfv (V=16)., Then A is dissipative (strictly
dissipative) and theorem V=2 (theorem V-=3) implies that A is the infinite=
simal generator of a nonlinear contraction (megative contraction) semi-
EEOUp.
Lemma V=8, Let V(x,y) be a defining sesquilinear functional
defined on the product space H x H. Then
(x,¥); = V(x,¥) X,y € H
defines an inmner product (°9°)1 whieh 1is equivalent to (cse).
Proof. By the symmetry and the sesquilinearity properties of

V{x,y)

(%,¥)1 = V(x,¥) = V(y,%x) = (y,%)y for any %,y € H
and

(alxlmzxz,y)l = V(alxlﬂzxz,y) - QIV(xlsy)-q-aZV(xz,y) = al(xlgy)l'mg(xzsy)l
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for any X)9%0sY € H; by the positivity of V(x,y)
(xsx); = V0x,%) 3 6} 1x]]?
so that (x,x), # 0 1f x ¢ 0.
Hence (oae)1 is an inner product, The boundedness of V(x,y) implies
that
(x,%), = V(x,x) £ Y||x||2°
Therefore, G\\xllz < ||x|l2 < y||x||2 which shows that (s:); is
equivalent to (cs9)o
Lemma V=9, Let S be a bounded linear operator on a complex
Hilbert space H. I1If (Sx,x) is real for any % € H, then S is self-
adjoint., In particular, 1if S is positive definite (i.e. there exists
a real number § > 0 such that (Sx,x) > 6||x||2 x € H), then S is
self-adjoint.
Proof, Since S is a linear operator, it is easily seen that
for any x, ye U
(S(xty), xty) = (S(x=y),x=y) = 2((Sx,y) + (8y,x)), (V=17)
and on feplacing y by iy in (V=17) we have
(S(x+iy), xtiy) - (S(x=1y), x=iy) = =21((Sx,v) = (S5¥,x)).  (V=17)°
By multiplying (V=17)° by i and adding te (V-17) yields
4(Sx,y) = [(5(xty),xty)=(S(x=-y),x-y)] + L[(S(xtiy),xtiy)=(S(x=1iy),x~1y)].
Since the above equality holds for arxbitrary x, y € H and by hypothesis,
the exﬁressions in brackets are real, we have en interchanging x and vy
4(5y,x)=[ (S (y+x) ,y4+x)=(S(y=%) ,y=%) ] +1 [(S(y+ix),y+ix)=(S(y=ix),y=1x)]
= [(S(xty),m#y)=(S(x=y), x-y)] + i [(S(x=1y) ,x51y)=(S (x+ly) ,x+iy))
= 4(Sx,3) = 4(y,5%),
Thus (%,5y) = (Sx,y) which shows that S 15 gelf-adjoint. In particular,

if S is positive definite then (Sx,x) is real and so S i self-adjoint,



83

From the above two lemmas, the following theorem can easily
be showm,

Theorem V=6, Let Hl = (H, (090)1) t2 a complex Hilbert space.
An inner product (ogo)2 defined on the same complex veetor space H
is equivalent to the inner product (°s°)1 if and only 1f there exists
a positive defini:e operator § ¢ L(H1°H1) such that

(x,y)2 = (%, Sy)1 for all x,v € H, (V=18)

Proof. Suppose that (oso)l and (090)2 are ~quivalent, then
by definition there exists constants 6§ and vy with 0 < § 2y <= such
that

s11%/1, s llxll, s vllxll,  for a1l x ¢ H.

Define V(x,y) = (x,y)29 then by definition of imner product, V(x,y) is

a sesquilinear functional defineda on H, % H, and that V(x,y) = V(y,%x).

1
Moreover, by the equivalence relation between I‘e

|, nd 1],
ey | = 1 @amdyl 2 Hxliy Hylly g ¥2lxlly Hyll;  and

? V(ngK) = (xsx)z 62‘ lx' Ii o

Hence b§ the Lax-Milgram theor.m there exists a beunded linear operator

S on H. such that

1 .
(x,y)2 = V(x,y) = (x,Sy)1 for all x,v € H,
f;; The operator S is positive on Hy since
; 2 2
(x,Sx)1 = (x,x)2 > 8 ||x||1 for all x € H,

Conversely, let S e L(“19H1) be a positive definite operator satisfving
(V-18), then the functional V(x,y) defined by V(x,v) = (x,y), = (x,5y) 4
is a sesquilinear functional on Hl p Hl since S is lirear., The positive
definiteness of S implies that

V(x,x) = (%,5%); Z 61||x||§ for some &, > 0

and that by applying lemma V-9

V(%,y) = (x,8y); = (stv)l - (Yssx)l = V(¥,%).
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Moreover, since S is a bounded operator we have

VG | = [ (xo8y)y 1 g LSt [Hxlly Hvllge
Hence V(x,y) is a defining sesquilinear functional. BRy lemma V-8
(x,y)z = V(x,y) defines an equivalent'inner product (°s°)2 of (o»o&
which proves the theorem,

Theorem V-6 1s, in fact, an extension of theorem 1IV-1., It
should be noted that the condition of self-adjointness of § is not
recuired since the positive definiteness of S in a complex Hilbert
space implies tnat it is self-adjoint.

Theorem V=7, Let A be a nonlinear operator with domain D(A)

and range R(A) both contained in a Hilbert space H = (H,(cs°)) such
that R(I=A) = H, Then A is the infinitesimal generator of a nonlinear
contraction semi=group {Tt; t > 0} on V(A) in an equivalent Hilbert

space li, = (H,(oso)l) if and only if there exists a Lvapunov functional

1
v(x) = V(x,x) such that

¥(x-y) = 2Re V(Ax-Ay, x=y) < 0 x,v € V(A) (V=19)
where V(x,y) is the defining sesquiline~r functional of v(x) on H x K,
Proof. Let A be the infinitesimal genmerator in the Hitbert

space H. as given in the theorem. Then by theorem V=4, A is dissi-

1
pative with respect to (090)1, that is

Re (Ax-Ay, x=y)1 <0 x,v € V(A).
Define V(x,y) = (x,y)lo Then V(x,y) 1s a defining sesquilinear funce
tional defined on H x H. To see this, note that V(x,y) is sesquilinear,
Y(x,y) = V(y,x) and by the relation (V-12)
[vxoy) | g 1=l vl 2 Y=l Hyll  for all x,y ¢ H

and
vix,x) = [[x]]3 3 6%|[x|1?  for all x,v ¢ H,
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Hence the scalar functional v(x) = V(x,x) = (x,x)1 is a Lvapunov
functional on the space M. By lemma V=7, for any x, v € P(A)
= = - = N
%(Ttx Tty) 2ReV(ATtx ATty, Ttx Tty) (t > M),
In particular, for t = 0
V(x=y) = 2ReV(Ax=Ay, x-y) x,v € V(A).

Thus the dissipativity of A with respect to (0»0). implies that

1

¢(x=v) = 2ReV(Ax=Ay, x=y) = (Ax=Av, x=-y)1 < 0,

Converselv, suppose that there exists a Lvapuaov functional
v(x) = V(x,x) such that (V=19) holds, where V(x,v) is a defining
sesquilinear functional defined on H x H, Bv lemma V=8, the func-
tional (xgy)1 = V(x,y) defines an equivalent inner product of (ese),
Hence, by the hypothesis (V=19)

Re(Ax-Ay,x=y); = ReV(Ax-Ay, x-y) 2 0 x,v € D(A)

which implies that A is dissipative with respect to (°s°)1o The

result follows by applying theorem V=4,

Theorem V=8, Let A be 2 nonlinear operator with domain U(A)

and rangé R(A) both contained in a Hilbert space H = (H,(-s°)) such
that R(I-A) = H. Then A is the infinitesimal generator of a nonlinear
negative contraction seml-group {Tt; t > 0} on D(A) in an equivalent
Hilbert space H1 = (H, (090)1)%if a~d onlv if there exists a Lyapunov
functional v(x) = V(x,x) such that
V(x-y), = 2ReV(Ax-Ay, x-y) < -2B[lx~y||2 x,¥ € V(A) (V=20)

for some B > 0 where V(x,y} is the defining sesquilinear functional of
v(x) on H x H,

Proof. The proof is essentially the same as for theorem V=7,

To show the "onlv if" part, define V(x,y) = (x,y)1 then V(x,v) 18 a
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defininpg sesquilinear functional defined on H x I as has been shown
in theorem V-=7. Since A generates a nonlinear negative contraction
semi-group, it is strictly dissipative with respect to (os-)1 with

the dissipative constant Bl (theorem V=-4), Thus bv lemma V-7 and

the equivalence relation between ||:|| and ]|o|]1
H(xoy) = 2ReV(hx-Ay,x-y) = (Aw-Ay,x-v); ¢ =268 ||x-y|1] ¢
-28,8% | [x=y||?
for any x, v € V(A) where we have used the relation (V-12). The result
follows by letting B=8162. Conversely, let a Lyvapunov functional
v(x) = V(x,x) exist and satisfy the relation (V-20), then by lemma V=8
the functional
(x,,y)1 = V(xX,v) for all %,y € H
defines an equivalent inner product (oao)ln Hence by (V=20) and the

relation (V-12), we have for any x,y € D(A)

Re(Ax—Ay,x—y)l = ReV(Ax-Ay;x-y) £ 'Bllx=Yl‘2 s
< =81 {lxeyl1d

which shows that A is strictly dissipative. Hence the result follows
by applying theorem (V=%4),

In theorem V-5 the Lyapunov functional v(x) is defined by the
original inner product and in theorem V=6 v(x) is defined by an equi-
vanent inner product (“9“)10 If the defining sesquilinear functional
V(x,y) of v(x) satisfies (V-16) and (V-19) respectively, then together
with the assumption R(I-A) = H, A is the infinitesimal generator of
a contraction semi=group on D(A) in the respective space H and #;. The

contraction semi-group {Tt; t > 0} generated by A in the H1=Space
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satisfies for any x € V(A) and t > 0

thx
&Tﬁ?.” z)1 = (ATtx, z)1 for every z e Hy,

However, 1f is not obvious that the same equalitv holds for the inmer
product (e¢50), In other words, if Ttx is a solution of (V=1) in an

equivalent li,-space, does it imply that it is also a solution of (V=1)

1
in the original li-space? The answer is affirmative as can be seen from
the following.

Lemma V-10. Let A be the infinitesimal generator of a nonlinear

contraction (negative contraction) semi-groupr {Tt; t > N} on P(A) in an
equivalent Hilbert space Hl = (H,(oeo)l)° Then A is the infinitesimal

generator of a nonlinear {negative) semi=group {Tt; t 2> 0} on the same

domain P(A) in the original Hilbert space H = (H, (es°)).
Proof. by the equivalence relation between the two inner pro-—
~ducts (-s°) and (nso)la the sesquilinear fumetional V(x,v) = (%X,v)

defined on the product space H, x Hl satigfies all the hvpotheses in

1

the Lax-Milgram theorem. Thus there exists a bounded linear operator

S with a rounded inverse Sgl defined on all of H, such that

1
(%,9) = V(x,y) = (x,Sy)l for all %x, v € H, (v-21)

By hypothesis, A generates the semi-group {Tt; t > 0} in Hy so that

lim
t+0 1

It follows from (V-21) and (V=22) that for each z € H

t_l(Ttx=x, z)l = (Ax, 2) for every z £ H. (V=22)

Jim
e+0

iim

-1
t ('I.‘tx=-xB z) = ev0

=1
t (Ttx=x9 Sz)1 = (AngZ)l = (Ax,2z)
which shows that A is the infinitesimal generator of the semi-group

{T_ s t > 0} on U(A) in the space H. The fact that {Tt; t > 0} remains

£?

as a semi-group in H is that seml-group property is invariant under
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equivalent norms except for possibly the contraction property. Since

{T_;

¢s t 2 0} is a contraction semi-group in H, and [1]] and ||o||1

are equivalent, we have by the relation (V-=12)
Tt yll s v/6 llxeyl]l %0 y € D@

(lITtx=Ttyl| < y/8 e=8t||x-y|l x, v € V(A))
and the lemma is proved.,

Corollary. Let the operator A appearing in (V=1) be the
infinitesimal generator of a nonlinear contraction (negative contrac-
tion) semi=group {Tt; t > 0} on D(A) in the space Hy
that for any x e D(A), Ttx is the unique solution of (V=1) with Toxaxu

= (H, (090)1) S0

Then Ttx is also the unique solution of (V=1) with Toxsx in the space

H=(H, (cs0)) where (cy.), and (os¢) are equivalent,

1
Proof. Since (V=21) and (V=22) in the proof of the above lemma

hold for any %,y € H, we have for any x € U(A) and ¢t > O

lm -1 _ lim -1 -
10 h (Tt+hx-Ttxﬂz) = b0 h (ThTtx=TzF” Sz)1 (A’I‘txB Sz)l
= (ATtx9 z) for every z € N

which implies that Ttx is a solution of IV=1) in the space (H,(¢5°))
since all the other properties listed in theorem V=1 remain unchanged
under equivale.it norms.,

Theorem V=9, Let the nonlinear operator A appearing in (V=1) be

such that R(I-A) = H, If there exists a Lvapunov functional v(x) = V(x,x),
where V(x,y) is a defining sesquilinear functional defined on H x H,
such that for any x, y € V(A)

(1) ¥(x=y) = 2ReV(Ax-Ay, x=¥)

BA

0 or

(11) ¥(x~y) = 2ReV(Ax-Ay, x-y) < =28/ |x=y| |2 (B > 0)



89

Then, (a) for any x & V(A) there exists a unique solution x(t) of (V-1)
with x(0) = x, (b) any equilibrium solution x, (or periodic solution),
1f it exists, 1s stable under the condition (i) and 1s asymptotically stable
under the condition (i1), and (c) a stability reglon of x_ is D(A) which
can be extended to fo?, the closure of V(A), in the sense of lemma V-3,
1f, in addition, 0 € D(A) and A0 = 0, then the zero vector is an equili-
brium solution, called t¢he null solution, of (V-1) which is stable or
asymptotically stable according to (i) or (11), respectivelv.

Proof. By hypothesis and applying theorem V=7, A is the infinite-
simal generator of a nonlinear contraction semi=group on P(A) in an

equivalent space H, = (H, (°n°)1) under the condition (i) and is the

1

infinitesimal generator of a nonlinear nepative contraction semi-group

on P(A) in k. under the condition (ii), where the norm ||°]]1 induced
by (oao)l satisfies
S‘IXlI < l‘x‘\l < Yllx]l for some 0 <6 cy<=,

By lemma V=10, A is the infinitesimal generator of a nonlinear semi=group

{Tt;

t 2 0} on D(A) in H such that under the condition (i)
Tt yll s v 670 leeyll xyy e V)
and under the condition (i1)
lthx=Tty|| <y s~ Bt } {x=v || %,y £ V(A) (2 > 0).
Since for any x € U(A), T x is the unique solution in H, with T _x=x,
it follows from the corollary of lemma V-10 that Ttx is also the unique
solution in H with T_x=x. By the semi-group property of {Tt; t > 0} in
H, we have under the conditions (i) or (i1i)
[ x=x, || g v 67 x| (t > 0)
or

5=1eth

LAl

[EE=NIEY x| (e 2 0,
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which shows that the equilibrium solution L) if it exists, is stab!l
and asymptotically stable, respectively. Note tliat Ttxeﬂxe for -1.

t > 0. Since by lemma V-3, the contraction semi-group { T.s t} N ot D(A)

in the space Il can be extended to D(A) in the |].

1
same is true for the semi-group {Tt; t > 0} on V(A) in the space H

|1=topolo;4yB the

because the closure of D(A) in the

-]

|1~topology is the closure of
P(a) in the || ||-topology by the equivalence relation of these two
norms. Hence the results of (a), (b) and (c¢) are proved, The stability
property of the null solution follows from (b).

The purpose for tlie construction of a Lvapunov functional can
be demonstrated as follows: Let v(x) = V(x,x) be a Lvapunov functional
such that for somez > 0

Fx(£)=y () < -a ||x(e)-y()]]? (t > 0) (v-23)
for anv two solutions x(t), v(t) of (V-1), where V(x,v) is a defining
sesquilinear functional. By lemma V-8, the functional
(x,¥); = V(x,v) x, v ell

defines an equivalent inner product of (c5¢). Since

v(x) = V(x,x) = (xnx)l < Y||x||2 for all x e H,
it follows from (V-23) that
T(x(e)=y(t)) 2 =aly vix(t)=y(e))==2av(x(t)=y(t)) (2 =a/y),
Integrating the above inequality with respect to t, we have
v@x(£)=y(£)) < v(x(0)-y(0))e 2 " (t > 0)
which is equivalent to

[x(®)=y(®) |2 5 [|x(@)-y(0)] 12 ™

(t 2 0)

since v(x) = (x,x)l = ||x||i (for all x € H). By the equivalence

relation of ||-|| and ]}o!ll, there exists constants &, y with 0<8<y<e
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such that (V=12) holds. Thus the above inequalitv implies that
xe-y(0) 112 ¢ /62 |lx(0-y@)||3 ¢ /62| [x)-v(0]1] &

=2 | g (0)-y (0 ]2

(v/8)%e
which is the same as
|x(e)-y(e) || < v/6 e % ||x(0)=y(0)||  for £ > O,
Hence, if an equilibrium solution x_ (or any unperturbe . solution) exists,
then by choosing y{(0) = X, in the above inequality, we have
||x(t)*xe|| < y/8 eEAtllx(0)=xe|| for all t > O
which shows that the equilibrium solution X, is exponentially asymptot-
ically stable if o > 0, and is stable ifa = 0,
The importance of theorems V=5, V=7, V=8 and V=9 is the fact
that the existence of a Lyapunov functional satisfying (V-16) or (V=20)
alone does not guarantee the existence of a solution to (V=1) and in
general, it is rather complicated to prove such solutions exist. However
under the additional assumption that R(I=A) = H the existence of a

solution with any initial element x ¢ D(A) is assured. This assurance

makes the stability of solutions of (V=1) meaningful,

C. Stability Theory of Semi-linear Stationmarv Equations
In this section, we consider the operational differential equa-
tions of the semi-linear form

dx

I - Ax + £ (x) X € D(Ab) (V=24)
where Ao is a linear operator with domain ﬂ(Ao) ard range R(Ao) both
contained in a real Lilbert space H, and f is a given function (in
general, nonlinear in x) defined on H to H. By considering the operator

A+ f(-) as the nonlinear operator A in the previous sections, (V=24)



92

becomes a special case of (V-1) and hence all the results developed
in the prewious sections are applicable to this case. 1In particular,
if Ao is the infinitesimal generator of a linear contraction semi=
group of class Co, it is natural te ask that under what conditions
on £ the operator AO + f(o») is the infinitesimal generator of a non-
linear contraction semi=group, or eauivalently under what conditions
on f a solution of (V=24) exists and is stable (or asymptotically
stable), One simple answer to this question is that (£(x)=£f(y), x=y)<0
and R(I=Ao=f(o)) = H since under these assumptions A=Ao + f(°) is
dissipative and the result follows by applying theorem V-2, However
the requirement R(ImAOnf(o)) = H by itself is not easy to verify since
it is equivalent to the functional equation
X = Ax - f(x) = =

having a solution for every z € H. In order to eliminate this assump-
tion and to refine some assumptions on the operator Ay we shall make
use of some results due to Browder {l1], [2] for the case of a Hilbert
space. .The results obtained in this section include:

(a) The existence and the uniqueness of a solution of (V=24),

(b) The stability or asymptotic stabllity of an eouilibrium
solution as well as the stability region with respect to the equilibrium
solution,

In order to show the following results, it is convenient to state
a theorem due to Browder [2].

Theorem V=10 (Browder)., Let X be an uniformly convex Banach

space with its conjugate space X* also uniformly convex, and let T and
To be two accretive mappings with domai- and range in X. Suppose that

(1) The range of T+1 is all of X. UV(I) is dense in X,
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(11) T0 is defined and demicontinuous (i.e. continuous from
X in the strong topology to the weak topology of X) on all of X and maps
bounded subsets of X into bounded subsets of X.
(111) The mapping T+T defined with domain D(T) satisfies the
condition that
||Tx+Tox|| ++ oo as ||x|] >+ (x € D(T)).
Then, the ranpe of (T+T0) is all of X, 1.e,, for each z in X, there
exists an element x in D(T) such that
T + Tox = 2z,
It is to be noted that in the case of a llilbert space X, both
X and X* are uniformly convex since X#* is also a Hilbert space. More-
over, the dufinition of accretive operator coincides with monotone

operator when X is a Hilbert space. Now we show the following:

Theorem V-11. Let Ao be the infinitesimal pgenerator of a
(linear) contraction semi-group of class Coo Asgume that f satisfies
the following conditions:

(1) f is defined on all of ¥ ints H such that it is continuous
from H in the strong topology to the weak topologv, and is bounded on
every bounded subset of H,

(11) (£(x) - £(y), %x=y) 2 O for all x, v € Ho
Then,

(a) For any x € D(Ao)9 there exists a uniaue solution of (V=24)
(in the sense of theorem V-1) with Tox = x such that Ttx is strongly
continuous and iz weakly differentiable with respect to t.

(b) Any equilibrium solution x_ (or any umperturbed solution),

if it exists, is stable.
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(¢) A stability region with respect to the equilibrium solu=-
tion X (or any unperturbed solution) is D(Ao) which can be extended
to the whole space H in the sense of lemma V=3,

Proof, Let A=A+ £(-) with D(A) = D(Ao)a Since an infinitesi-
mal generator of a contraction semi-group of class C0 is densely defined,
dissipative and R(I=Ao) = H (see theorems I1I=12 and 1II-=14), it follows
by the dissipativity of AO and by the assumption (i1) that

(Ax=Ay,x=y) = (onery9 x=y) + (£(x)=£(y), x=y) < 0 for all x,y ¢ D(a)
which shows that A is dissipative. To show that R(I-A) = H, we apply
theorem V-=10. Note that the operator =Ab is mcnotone and the range of
=A_ + I is all of H with U(=Ao) = U(Ao) dense in H, Thus the operator
T = -A_ is accretive (or monotone’ and satisfies the condition (1) of
theorem V=10, To show the conditions (ii) and (1iii) of theorem V-10,
let To = I-f(o). Then from assumption (i) T, is defined on all of H
and is continuous from H in the strong topology to the weak topology
and maps bounded subsets of H into bounded subsets of H which shows (ii)
of theofem V=10, To is monotone, for

(T x-T y, 5=3) = (x=ys x=y) = (EG-£®, =y z ||=y]1® xyen
where we have used assumption (ii1). Moreover, by letting y=0 in (ii)
glves

(£&x), x) < (£C0), x) 2 ||£CO |1 |]x]| for all x ¢ H, (V=25)
It follows by the dissipativity of Ao and by (V=25) that

| |-agetT x| | 2 (=A_x+T xx) /| |xl] 2 (T %20 /] %] |=Cxym)= (£ (x),)) /| ]|
> x|} - [1£¢0) || for all x e V(A)) (x ¢ 0) .

Thus ||Tx+Tle| + 4+ » ag ||x]|| » =, that is, condition (iii) of theorem

V-10 is satisfied. Hence by applying that theorem we have R{I-A) = R(T¥To)aﬁa



95

This later condition and the dissipativity of A implv that A is the
infinitesimal generator of a nonlinear contraction gemi=group

{T_.; £t >0} on U(Ao) by applying theorem V=2, Therefore, for any

£?
X € U(Ao)9 Ttx e D(A) and 1 s the unique solution of (V-24) with
Tox=x and such that Ttx is strongly continuous and weakly once
differentiable with respect to t. Since

||Ttx=Tty|| < | lx=yl] for allt > 0 x,v € V(A))
it follows that by taking v as the equilibrium solution Ko if it
exists, then it is stable, Ncte that Ttxe = Ko The above ineaual-
ity holds for any x, v ¢ U(AD) which implies that a stability region
is U(Ao)D and by lemma V=3 this region can be extended to the whole
space H since U(Ao) is dense in H, Therefore, the theorem is proved,

The above theorem can be extended to the asymptotic stabilitwv

of an unperturbed solution. This can bte achieved Ly making use of

theorem V-3,

Theorem V-12, Let A be the infinitesimal generator of a

ﬁa (linear) negative contraction semi-=group of class C, with contractive

constant B, Assume that f satisfies the following conditions:

RCIP I PR

(i) f is defined on all of H into ¥ such that it is contin-
ucus from H in the strong topology to the weak topologv and is bounded
on every bounded subset of 1,

(14) (£(x) - £(¥), x=y) < kl]x=y]|? with k < £ for all x,y ¢ I,
Then,

() For any x € U(Ao)9 there exists a unique solution T x to
(V=24) with Toxwx such that Ttx is strongly continuous and is weakly

differentiable with respect to t.
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(b) Any equilibrium solution (or any unperturbed solution), if
it exists, is asymptotically stable.

(¢) A stability region with respect to anv unperturbed solution,
including an equilibrium solution, is D(Ao) which can be extended to the
whole space 1! in the sense of lemma V-3,

Proof. Let A = AD + f(¢)., Since Ao is the infinitesimal genera-
tor of a negative contraction semi=-group, it is densely defined, dissipa-
tive and R(I=Ao) = H. Applying theorem V-3 for the linear case, AO is
strictly dissipative with dissipative constant B, that is

(on,x) < —B|lx||2 for all x ¢ U(Ao)n
Thus the operator A is strictly dissipative with dissipative constant
=k for

(Ax=Ay, x=y) = (A x=A_y, x=y) + (£G)=£(y), x=y) & ~(8=K)]||x=v]|?
for all x,y ¢ 0A). To show that k(I=A) = H, we prove K(I-aA) = H for
some o > 0, since the monotonicitv of =-A implies that (I.-»oaA)m1 exists for
everv o > 0, and by applying lemma V=1 f R(I=cA) = H for some o > O
then R(i=A) = ]I, The reason for doing this 1s that if the same argument
as in the proof of theorem V=11 is used it will lead tec the unnecessary
requirement k < 1. Let I—aA==aAo+(I—uf(-))=T+TO where T = ~aA0 and
ToﬂIsaf(ﬂ)a Since =Ao is monotone and is denselv defined so is T===cmoD
and since Ao is the infinitesimal generator of a semi=group, o € p(AO)
(the resolvent set of Ao) for all o > 0 (theorem I1I-12) which implies
that R(I+T) = R(I=aAo) = 1, ‘Thus the condition (i) of theorem V=10 is
sati-fied. The mapping TO=I—af(°) is monotone for a < k”l since by
the assumption (ii)

(T x=T_y,%=y) = (x=y,%=y) = a(£G)=-£(y),xy) 2 (1-ak) | |-y ||% > 0.
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It is obvious by the assumption (1) that T0 is continuous on H and

is bounded on every bounded subset of H, which shows that To satisg=

fies the condition (1i) of theorem V-10. Finally, the relation

I|Tx+Tox|| + @ as ||x|| » » is also satisfied. This is due to the

fact that the dissipativity of oA and the relation (V-25) implv that
||Tx+Tox|| = ll—aon+Tox|l > (-aon+Tox,x) AREIR > (Tox,x)/HxIlE

ixl | 2-al TE@ 11 =l D/ =] =11x] =] [£€0) ]

v

((x,x)=al(f(x),x))/||x]]| >
where a > 0 is a fixed number. Hence by choosing a < k—l9 all the
hypotheses in theorem V=10 are satisfied and the result R(I-GA)=R(T+T0)=H
follows. It should be noted that k > 0 so that 0 < a < kL exists,

(1f k £ 0, then T, is monotone by taking, for instance, a =1 and the

other conditions remain unchanged)., PRy theorem V-3; A is the infinitesimal
generator of a nonlinear negative contraction semi-groun {Tt; t > 0} on
U(Ao) with the contractive constant B-k. Therefore the results listed in
(a), () and (c) follow directly from the negative contraction property

of the semi-group {Tt; t 2 0} and by lemma V=3 for the extension of the
stabilify region.

Remark., If Ao is the infinitesimal generator of a contraction
semi-group instead of a negative contraction semi-group,any unperturbed sol-
ution is still asymptotically stable provided that the constant k appearing in
the condition (ii) is negative, since in this case, we may take B=0 and
the operator A=Ao+f(°) remains strictly dissipative with dissipative

constant =k. The proof of R(I-A) = I remains the same.

Corollary 1. Under the hypothesis of theorem V=11 (theorem V=12)

and in addition, if £(0)=0, then the null solution i{s stable (asymptoti-

cally stable) with the stability region the whole space H.
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Proof. If £(0) = 0 then x{(t) = 0 is an equilibrium solution
(called the null solution) of (V-24), Hence by theorem V-1l (theorem
V-12), the null solution is stable (asymptotically stable) with the
stability region extended to the whole space H.

Corollary 2. Let AO be the infinitesimal generator of a (linzar)

negative contraction semi-group of class C0 with contractive constant B,
and let f be Lipschitz continuous on H with Lipschitz constant k < B,
that is

HEG)-E) || 2 k||x=y]]  for all x,vy ¢ U, (V-26)
Then for any x € D(AO) +here exists a unigue solution Ttx to (V=24)
with Tox=x such that any equilibrium soluticn X, to (V=24) is asymptot~
ically stable. 1In particular, if £(0)=0 the null solution is asvmptoti-
cally stable. Moreover, a stability region is U(Ao) whicli can be
extended to the whole space H.

Proof. By the Lipschitz continuity of ¢ on l; it follows that
condition (i) in theorem V-12 is satisfied. This 1s due to the fact that
strong éOntinuity implies weak continuitv, and by (V-26) with x a fixed
element in B

HEG [ g HEG) [+ [lx=x |1 2 TG ]+ {x]] K |x ]
which is bounded whenever ||x|| is bounded. Moreover, by (V=26)
(E)-£@)ox=y) < [[EG)-E@ ] ||x=y]| 2 k| |x-y] |2
and so condition (ii) in theorem V-~12 is satisfied. Hence, by theorem
V-12 the existence and the uniqueness of a solution as well as the
stability property of an equilibrium solution are proved. In particular,
if £(0) = 0 then corollary 1 implies that the null sclution 1s asymptoti-

cally stable.
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Theorem V=13, Let the linear operator AO appearing in (V-24)

be such that 0 € ﬂ(Ao) and that for some finite number B8 (i.e., |b|<m),
(on,x) s B8(x,x) for all x e V(A)).
Let f be dafined on U(AO) to H such that f(0)=0 and such that for some

finite number k (L.e., |k| < =)

(E(x),%) < k||x||? for all x € V(A ).
If B8 » k then the null solution of (V-24) is the only equilibrium solution.

Proof, It is obvious that the zero vector is an equilibrium
solution of (V-24), Let X, be any other equilibrium solution, then
X, € U(Ao) and by the statement following definition V-5, one+f(xe) = 0,
It follows that

0= (A x_ + £x),x) = (A x_,x) + (E(x),x) g ~(8=k)| |x_||?

which implies that xe=0 since by hypothesis =k : 0, UHence the unigque-
ness of the equilibrium solution is proved.

Corollary. Under the conditions of theorem V=12 and in addition
if £(0) = 0, thern the null solution is the only equilibrium solution,

.252250 Since A is the infinitesimal generator of a negative
concraction semi-group with contractive constant B, it is strictly dissi-
pative with dissipative constant 8 and O € T)(Ao)° By the assumption (ii)
of theorem V-~12 we have, by letting y=0 in the condition (i:.

(£(x),x) < k||x||? with k < B, x € H

A

since £(0) = 0. Hence the uniqueness of the equilibrium solution follows
from the theorem,

Most of the theorems developed in this section up to now assumed
that the linear part Ao of (V=24) is the infinitesimal generator of a

contraction semi=group of class Con A necessary and sufficient condition
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for Ao having this property is that Ao is dissipative, 57327 = H and
R(I—Ao) = H (see theorem 1II-14), Again the requirement R(I-AO) = H
means the existence of a solution of the functional equation

X - on = z
for every z € H which by itself needs further justification. However
in case AO is a self-adjoint operator which occurs often in physical
applications, this requirement can be eliminated in these theorems,
In order to show this, we first state a theorem from [1] by Browder and
then we consider a densely defined closed operator and take a self-
adjoint operator as a special case.

Theorem V-14 (Browder). Let X be a reflexive Banach space, T

a mapping from the dense linear subset V(T) of X into X*., Suppose that
T=1+G where L is a densely defined closed linear operator from X to X%,
G a hemi-continuous mapping from X to X* with ¥(G) = X and G taking
bounded subsets of X into bounded subsets of X*. Suppose thats
(i) There exists a completely continuous mapping C from
X to X*.5ucn that T+C is monotone ;
(i1) L* is the closure of its restriction to D(L)n D(L*)
(1ii) There exists a real=valued function c(xr) on Rl with
c(r) - @ as r + » such that
(Tx,x) 2 ¢ (||x]]) |1x]] for all x € D(T).
Then R(T), the range of T, is all of X*,
Remarks, (a) G is said to be hemi-=continuous if G is con=
tinuous from evervy line segment in V(G) to the weak* topology of X%,
(b) A Hilbert space 1s reflexive,

Theorem V=15, Let A be a densely defined closed operator from

H into H. Suppose that:
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(1) Ao is strictly dissipative with dissipative constant 8,
that is

(on,x) < -8[|x||2 for all x € U(Ao)g

(ii) Ag is the closure of its restri.tion to U(Ao)ﬂ D(Ag)
where Ag is the adjoint operator of Ao;

(iii) f is defined on all of U into !l such that it is con-
tinuous from the strong topology to the weak topology and is bounded
on every bounded subset of Ii;

(iv) (- £(y),x=y) Y kl]x—yilz with k < B for all x,vy € H ,
Then

(a) For any x ¢ U(Ao) there exists a unique stronglv contin-
uous solution Ttx to (V-24) with T0x=x;

(b) An equilibrium solution Xys if it exists, is asymptotically
stable., In particular, if f(0)=0 the null solution exists and is
asymptotically stables

(¢) The stability repion can be extended to the whole space in
the sense of lemma V-3,

Proof. Let A=A+ £(-), then A is strictly dissipative, since by
hypothesis

(Ax-Ay jx-y) = (A_x=A_y,x=y) + (£(0)=£(y),x=y) ¢ ~(B=K)||x-y] |
for all x,vy ¢ D(Ao) = D(A). To show that R(I-A) = H, let T=I=A==A°+(I=»f(o))9
then D(T)=U(Ao) is densely defined, Since -A_ is densely defined, Ag
exists and is closed, and by the assumption (ii) ~Ag is the closure of
its restriction to U(-Ao)n‘D(=A3)° By (iii) the operator G=I-f(:) is
continucus from all of I to H in the strong topology to the weak topology
which implies its hemi-continuity from H to H with D{(G)=H. The bounded-

ness of G on bounded subsets of H also follows from (iii). Moreover
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(Tx=Ty,x=y) = (x=y,x=y) = (Ax-Ay,x-y) 2 (1+B=k)||x=yl|2 x,y € D(T)
so that T is monotone. In particular by letting v=0 (0 € U(AD)ﬂU(T))
in the above inequality and since T.0 = 0=A-0 = =-f(0), it follows
that

(Tx,x) > (1+8=k) | |x] |2 (£(0),x) > ((1+8=k) | |x||=|[£CO) | )| Ix|],

for all x e U(T)
and since B = k > 0 the real valued function c(]||x||) defined by
c(flx|]) = (48-k) [{x| -] £¢O) ]|

has  the property that c(||x||) » = as ||x|| + =. Hence all the
conditions in theorem V-14 are satisfied if we take, for instance, the
completely continuous mapping C=0 (the zero operator which maps all
x € H into the 0 vector in H)., Therefore R(I-A) = R(T) = H, By
applying theorem V-3, A is the infinitesimal generator of a non-linear
negative contraction semi=-group on D(A) = D(Ab) with the contractive
constant 8-k. Thus, the stated results in the theorem follow directly
from the negative contraction semi-group propertv as in the proof of
theorem.V=11.

Remarks, (a) The above theorem can also be proved with B=k=0,
in which case the equilibrium solution is stable with a stability region
D(Ao)o The proof is exactly the same by letting B=k=0 and by applying
theorem V=2, (b) If Ao is dissipative (i,e. B8=0 in (1)) and k < 0 in
(iv), then the theorem is still valid. In this case, Ao+f(o) is the
infinitesimal generator of a nonlinear negative contraction semi-group
with the contractive constant =k.

Since an unbounded self-adjoint operator Ao is a densely defined

closed operator having the property that D(Ao) = D(Ag) (in fact AoBAg ;
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see definition 111-3) we hLave, with a stronger assumption on the func-
tion £, the following result which i1s stated as a theorem because of
its usefulness in applications.

Theorem V=16, Let Ao be an unbounded self-adjoint operator

from I! to Il and assume that it is stvictly dissipative with dissipative
constant R, that is
(onﬁx) < =B (x,x%) for all x € D(Ao)o
Let f be Lipschitz continuous on H with Lipschitz constant k < 8,
that is
HE@=-£W || 2 kllx-y||  for all x,v ¢ H,

Then for any x ¢ U(Ao) there exists é unique strongly continuous solution
Ttx to (V=24) with T0x=x° Moreover any equilibrium solution X, of (V-24),
if it exists, is asymptotically stable with D(Ao) a stability region, and
this region can be extended to the whole space H, In narticulawx, if
f(0) = 0 then the null solution is asymptotically stable.

Proof, The self-adjointness of Ao implies that Ao is a densely
defined closed operator and U(Ag) = D(Ao)° By the Lipschitz continuity
of £, £ is continuous in the strong topology and is bounded on every
bounded subset of H, This assumption (Lipschitz continuity) also implies
that

(EG-£(3),xy) < [1EG-£ ]| [lx=vl] < k|lx-y[]?® for all x,y € H.
Hence, all the conditions in theorem V-15 are satisfied, and the zesult
follows bty applying that theorem,

Remark. The Lipschitz continuity of £ in the theorem can be weak-
ened by using the counditions (iii) and (iv) in theorem V=15,

In section B, it has been shown that stability and asymptotic

stability are invariant if the inner product (-»-) 1s replaced by an
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equivalent inner product (ﬂaﬂ)l with respect to which A is dissipative,
In the special case of A!=A°+f(o)n where Ao and f(.) are defined as in
(V=24), theorem V-11 (also theorem V-12) remains valid if A, is the
infinitesimal generator of a contraction (negative contraction) semi-
group of class CO in the Hilbert space (H,(ago)l) and the inner product

(ese) in condition (i1) is replaced by (°”°)1 (in theorem V=12, (os5¢)

and ||e

and ||.|| in (i1) should be replaced by (o5:) respectively).

1 l1

Because of its usefulness in applications (for instance, a non-self-
adjoint operator in a Hilbert space (H;(°»-)) can sometimes be made

self-adjoint in (H(es°),) where (.;.), is an equivalent inner product)
s 1

1
we show one theorem, which is an extension of theorem V=16, as an
illustration.

Theorem V=17, Let Ao be a densely defined linear operator from

H=(H, (c5°)) into 1!, and let £ be defined from all of H into H such that
it is continuous from the strong topology to the weak topology of H and
is bounded on every bounded subset of H, If there exists an equivalent
inner pfoduct (090)1 such that Ac is a self-adjoint operator in Hl =
(H,(ooo)l) satisfying
(on,x)1 < wBllxlli X € D(Ao)

and if

(EG)-£(y),%-¥), 2 k|\x=ylli with k < 8, X,y € H,
Then, all the results stated in theorem V=15 are valid.

Proof. Consider AO as an operator from the space Hl = (H°(°°°)1)
into Hln Since Ao is self=-adjoint in the space Hl” it iz a densely defined
closed operator and U(Ao) = 'D(Ag)° The continuity and the boundednesg

of £ with respect to the ||-||-norm topology implies the same property

|

of £ with respect to the l1=norm topologv since these two norms are
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equivalent, By assumption, Ao is strictlv dissipative and the condition
(iv) in theorem V=15 is satisfied with respenrt to (ono)l° lence all

the hypothesis in theorem V-15 are satisfied by considering “1 as the
underlying space which implies that the operator AEA°+f(°) is the
infinitesimal generator of a nonlinear negaiive contraction semi-group

{T ; £ > 0} on U(AO) with contractive constant 8=k in the space H;. By

¢?
lemma V=10, A is the infinitesimal generator of a ncnlinear negative
semi-group {Tt; t 2 0} or D(AO) in the original space H, Therefore

all the results in theorem V~15 hold good in this case (The proof 1s the

same as in the proof of theorem V=9),
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VI. STABILITY THEORY OF NONLINEAR TIME-VARYING

DIFFERENTIAL EQUATIONS IN HILBERT SPACES

A large class of physical problems are des~ribed by a system
of nonlinear partial differential equations *"..ch can be reduced to the
form (V-1) but wacl either tim---Zopendent coefficients of the partial
differential operator or time-dependent boundary conditions. In a
more general case both the coefficients of the differential operator
and the boundary conditions are time-varying. In order to investipate
this type of differential equation in the abstract setting, it is
necessary to extend the operator A in the previous chapter to a more
general type of operator A(t) which depends on the variable t. The
object in this chapter is to extend the prinmciple result in Chapter V
for the case of nonlinear time=varying operaticansl differential equations

of the form

L) a()x(e) (t > 0) (VI-1)
where the unknown vector x(t) is a vector-valued function defined on

R+ = [0, ) to a Hilbert space H and A(t) is, for each t > 0, a given

nonlinear operator with domain V(A(t)) and range R(A(t)) both contained
in H, In the first section, we give a formal definition of a solutien
and state the main results from [11]. Imn section B, we present some
results on the general operational differential equations of the form
(VI-1), and in section C we consider, as a special case of (VI-1),

operational differential equations of the form

dztt = Ax(t) + £(t,x(t), {t 2 0) (VI=2}

where A is a nonlinear operator as in Chapter V and f is a given funmction

from Rf x H into H. It is seen that equatiop (Vi=2) is a direct exten=
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sion of equation (V=1)., In section D, we first discuss briefly another

speclal case of (VI-1) the equations of the form

22 - (e)x(e) + £(E,x(0)) (t > 0) (VI-3)
where Ab(t) is, for each t > 0, a linear operator with domain D(Ao(t))
and range R(Ao(t)) both contained in a Hilbert space H and f is a

given function from R* x H into H, The object of thisg section is to
deduce a number of theorems from the results obtained in section C on

a special form of (VI-3) where Ao(t) = A which is independent of t.

We discuss in mnre detaii this type of equation which 1s a direct exten-
sion of equation (V=24) with £(t,x(t)) = £(x(t)). Finally, a few results

on the ordinary differential equatioms of the form

dx(t)
dt

with the same f as in (VI=3) are included in this section since it is

= £{t,x(t)) (t > 0) (V.=4)

a special form of (VI=3) with Ao(t) = 0,

A, Background
Ag in the case of Chapter V, the stability theory developed in
this chapter is again based on the recent paper by Kato {[11] in which
the exlstence and uniqueness of a solution to (Vi=1l) are established,
In order to state the results in [1l1], we give a formal definition of a
solution of (VI=1) and according to some additional properties of the
solutions, different terminology is used as given in the followings

Definition VI-1, By a solution x(t) of (VI-1) with initial condi-

tion x(0) = x € V(A(0)) in a Hilbert space H (real or complex), we mean
the following:
(a) =x(t) is uniformly Lipschitz continuous in t for each t > 0

with %(0) = x,
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(b) =x(t) € D(A(t)) for eac.. . > 0 and A(t)x(t) 1s weakly
continuous in t,.

(c) The weak derivative of x(t) exists for all t > O and
equals A(t)x(t).

(d) The strong derivative of dx(t)/dt = A(t)x(t) exists and
is strongly continuous except at a countable number of values t.

(e) For any x(t), y(t) satisfying (a)-(c) with x(0) = x,

y(0) = y both in V(A(0)), there exists a positive constant M such that

|lx(t)=y(t)|| <M lx=y 1| for all t > 0.

The above definition of a seotution x(t) is in the sense of a 'weak
golution” since x(t) satisfies (VI-=1) in the weak topology of H. How-
ever, by the condition (d), x(t) is an almost everywhere strong solution
in the sense that x(t) satisfies (VI-1) for almost all values of t € R*

in the strong topology of H.

Definition VI-2, Let x(t) be a solution of (VIi=1) with x(0)=x

(in the sense of definition VI-1)., If M < 1, where M is the positive

constant appearing in (e), then x(t) is called a contraction solution;

Bt or by e=‘Bt

if M is replaced by Me for some B > 0, then x(t) is called
a negative solution and a negative contraction solution respectively.

It follows from the condition (e) that the solution x(t) of (VI=1)

with x(0) = x € V(A(0)) 1is unique, and if y(t) = X, is an equilibrium solu-

tion of (VI-1) then the condition (e) implies that x is stable,

On setting x(t) = T.X for any x € V(A(0)) where x(t) is the contrac-

tion salution of (VI-1) with x(0) = x, it can easily be sghown that the
family {Tt; t > 0} forms a nonlinear contraction semi-group on DA (D)),
However, in this chapter, we do not follow the semi-gioup property as inm

Chapter V, but rather use directly the properties (a)=(e; of a colution

g e
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given in definition VI-1l, Yet, if we set x(t) = T _x, then by lemma V-3
{Tt; t > 0} can be “xtended to the closure of U(A(0)) which implies that
the existence of a contraction solution can be extended for any initial
element x € ﬁ?KTETTn Hence we can state the following:

Lemma VI-1l, If for any x ¢ V(A(0)) there exists a contraction

(negative contraction) solution x(t) of (VI-1) with x(0) = x, then for
any x € D(A(), we can define a "solution" x(t) of (VI-1) with x(0) = x
by

x(t) = 2% x (t)
where xn(O) =x € V(A(0)) for each n and X > xasn> =, The "solution"
x(t) is also a contraction solution (negative contraction solution).

It has been shown in the proof of lemma V-3 that the limit defined
above exists and is independent of the choice of any sequence {xn} (in
P(A(0))) which converges to x. l!Moreover, x(t) € T(a(0)) for all t >0
and the condition (e) in definition VI-1 with M=1 (with M replaced by

-8t .
e for a negative contraction solution), is satisfied for any "solution"

y{t) with y(0) =y € D(A(D) ).
For convenience, we introduce the following basic assumptions on
the operator A(t) and refer to them thereafter as the condition I or the
conditions I, II etc, to mean that A(t) satisfies the respective assumpthins.
I. The domain UV of A(t) is independent of t.
II, For each t > 0, there is a real number & (t) > 0 such that

R(I - (£)A(t)) = H,

I1I. There exists a positive, nondecreasing function L(r) of r > 0
such that for all x € U and any s,t 2 0

lae)x-a(s)x|| < LClixl D [e=s| @ + |ja)=xl]D
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where the norm ||.!. is induced by the inmner product (.s.) of the Hilbert
space H=(11, (29¢)),

In the development of the stability and the asymptotic stahility
properties nf the solutions to (VI-1), we have used some of the results
obtained in [11]., Bezause of their importance in the development cf our
stability theory, we state the main results from [11l] as the following
theorem wherz we take a Hilbert space as the underlying space.

Theorem VI-1, Let the nonlinear operator A(t) appearing in (VI-1)

satisfies the conditions I, II, III. Assume that for each t > 0, A(f)

is dissipative (i.e. =A(t) is monotone). Then for any x ¢ D, there exists
a unique contraction solution x(t) (in the sense of definition VI-1) with
x(0) = x.

It follows from definition V-4 that for each t > 0, the dissipativity
of A(t) and the condition II imply théf =A(t) is m—monotone which 1s one of
the hypotheses in the main theorems of [11]}. It is to be rnoted that if the
initial time is not at t=0 but at k=t > 0, then the result of the above
theorev remains valid in the sense that for any x € U(A(to)) = U there
erists a unique contraction solution starting at x(to) = x, Here defini-
tions VI-1 and VI=2 of & contraction solution should be modified by re-
placing 0 bv ts whenever it a;pears; and in the case of a negative solution

=lt =
or a negative contraction solution, Me B or e B

—B (t=— =8 (e
Me B(t-ty) and e (¢ to) respectively.

t should be replaced by

B. Stablility Theory of General Nonlinear Fquations
The contraction property of the solution of (VI-=1),obtained in
theorem Vi-1 implies that any equilibrium solutiomn Xgs if it exists, is

stable, However, in many physical ard engineering problems, it is important
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to know the asymptotic behavior of solutions of the differential equa-
tions describing these systems. In order to extend theorem VI-1 to show
the asymptotic stability of solutions to (VI=1), we first show the
following:

Lenma VI=2. For any pair of strongly continuous and weakly

differentiable functions x(t), v(t) which satisfy (VI-1) in the weak
sense, then the real-valued function ||x(t)=y(t)||2 is differentiable

in t for each t > 0 and is given by

'%?llx(t)wy(t)llz = 2Re(A(t)x(t)-A(t)y(t), x(t)=y(t)) (VI-5)
where d/dt ||x(t)=y(t)||2 at t=0 is defined as the right-side derivative.
Proof. For any fixed ¢t > 0, let h # O be such that Ih| < e,
Then t+h > 0 so that x(t+h) and y(t*h) are defined. Following the same
proof as for lemma V=5, we have
h™L | |xCerh)-y (e+h) | 2= ] 12 Ce)=y (£) | [Z1=h™ [ (e (e4h)=x () sx(£+h) =y (£+h))
= (y (t+h)=y (£) gx (t+h)=y (t+h) J+ (x (£)~y (£) yx (t+h)-x(t) )= (x (L) -y (%),
y{t+h)=-y(t)) ]. -
By hypothesis h~1 (x(t+h)-x(t)) 3 A(t)x(t) and x(t+h)=-y(t+h) -+ x(t)=y(t)
as h - 0 (Similarly, h=1(Y(t+h)ﬂy(t)) M A(t)y(t)), we have on applving

lemma V-4 as h = 0

‘%§|lx(t)=yit)|\zﬂ(A(t)x(t),x(t)=y(t))-(A(t)y(t)sX(t)ﬂy(t)) +
+(x(e)=y () ,A(t)x(t)) = (x(t)=v’e), A(L)y())=(a(c)x(t)~
=A(t)y (£) o x(£)=y (£) )+ (x(e)=y(t), A(£)x(t)=A(t)y (L)) =
= 2Re(A(t)x(t)=-A(t)y(t),x(t)=y(t))
which shows that ||x(t)-y(t)||® is differentiable and satisfies (VI .)
for t > 0, For t=0, (VI-5) is still valid by taking h > 0 and h + 0 in
place of h + 0, whore we define d/dt ||x(0)-y(0)|1% ae the right-side

derivative.
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Theorem VI-2. Assume that the nonlinear operator A(t) appearing

in (VI-1) sacisfies the conditions I, I, IIT and that there exists a
positive real-valued continuous function B8(t) defined on R* such that
for each t > 0, A(t) 1s strictly dissipative with dissipative constant
B(t), 1.€s,

Re(A(t)x=A(t)y,x-y) & =B(t)(x-y,x=y) for all x,y e U,
Then for any x € U, there exists a unique contraction solution x(t) of

(VI=1) with x(0)=x, and for any solution v(t) with y(0) =y e D
t

| |x(e)=y(t) |} < e=£ B(S)ds||x=y|| for all t > O, (VI-6)

In particular, if B8(t) = B which is independent of t then x(t) is a
negative contraction solution.

Proof. For each fixed t > 0, the strict dissipativity of A(t)
implies the dissipativity of A(t) (see definition V=3) and thus
the existence and the uniqueness of the solution x(t) with x(0)=x e ¥
follows from theorem VI-1l., To show the inequality (Vi=6), let y(t) be
_any soiution of (VI-1) with y(0)=y € V. Since by definition VI-1 x{t)
a7 v {t) are strongly continuous, weakly differentiable and satisfy
{v.~1), 1t follows by lemma VI-2 and by the strict dissipativity of A(t)

that

*%?||x(t)=y(t)||2 =2Re (A(t)x(t)=A(e)y(t) ,x(t)=y (L)) <

< =28(t)||x(t)=y(t)||2
for each t > 0. Note that the function ||x(r.)=-y(t)||2 is a positive

real=valued function defined on R = [0, =j, Wrlting the above inequal-

ity in the form

a(} ==y () |14 U Ix(ey -y |1 ¢ -28()ar
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and integrating on both sides, we have

x(0)=y(0) |12 ||x(0)-y (0|2 &2 B4
which 1s equivalent to
£
| 1x(e)-y () |] < e_£ B(s)dSHx-y[I for all t > 0,
In particular, i1f B(t) = 8 then
| x(e)=y(£) | | < e-Btllx-Yi| for all t > O

and thus x(t) is a negative contraction solution. Hence the theorem

is proved,

Lemma VI-3, Let H1=(Hn(°»o)l) be an equivalent Hilbert space
of the space li=(li,(ss:)). For any x € ¥, let x(t) be the solution of
(VI-1) with x(0)=x in the equivalent space H. ‘i,e., the underlylng space
in definition VI-1 is Hl)o Then x(t) is also the solution of (VI-1) with
x(0)=x in the original space H.

Proof. The equivalence relation between (s90) and (090)1 implies
that there exist constants &§, v with 0 < 8§ <y <= such that

silx|| < lelll <y |lx]] for all x ¢ H (Vi-7)

a

where ||o|]| = (-02)1/?% and I]olll = (°”°)i/2° By hypothesis, x(t) satisfies
the conditions (a)=(e) of definition VI=1 in the Hlmspace, we shall show
that the same is true for x(t) in the H-space. The conditions (a) and (d)
are obviously satisfied with x(t) in the H-space, for strong continuity in
the norm topologv is invariant under equivalent norms, By the relation (VI=7),
the condition (e) is satisfied for some N > 0 since

| x¢e)=y() || < 6=1||x(t)=y(t)||1 < 6”1M||x=y||1 < v/6 M||x=y|]| (VI-8)
where N = y/§ M. To show that the conditions (b) and (c) are satiefiled
in H, define V(x,¥) = (x,¥). Then V(x,y¥) is a sesquilinear functiomal

defined on the product space Hy x Hl and satisfies the following zonditions:
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(4) Snequilinearitys V(alxl + azngy) = alv(xl,y)+a2V(x2,y)

(xl’XZ’Y € Hl)

V(x,B3; + 855,) = BV G,y 4B,V (x,y,)
(xay]_sYz > Hl)
which follows from the definition of inner product defined on a complex

vector space.

A

(11) Boundedness: [V, | = |G| g Hxll [yll s 672 1xl1;HIvll,
(111) Positivity: V(x,x) = (x,x)sl\x][2 > Yﬂzllxilin
Hence by the Lax=Milig.am theorem (I1I-=7), there exists a bounded linear
operator S with a bcunded inverse S“1 defined on all of Hl such that
(xgy)av(x,y)u(x,SY)l for all x,y € H. (V1=9)
Thus for each fixed t > 0, the relation (VI-9) and the weak differentiability

of x(t) with its derivative equals A(g)x(t) in H; imply that

13 b e (erh)-x(2),2) = 10 0T e (ern)-x(e),82)
=(A(t)x(t),Sz)1 = (A(t)x(t),2) for every z € H (V1=10)

which shows that x(t) is weakly differentiable for t > 0 and equals
A(t)x(t)., For v20, we take h > 0 with h + 0 in place of h -~ 0 so that
(V1-10) is valid by definlug the weak derivative of x(0) as the right
side weak derivative., This proves condition (c) in the H-space. The
condition (b) in the space ¥ follows from (VI-9) and the weak continuity
of A(t)x(t) in H, since for each t > O

Lo (A(t+h)x(e+h) yz)=iog (ACE+h). (4h) ,S2) = (ACE)%(E),52) 1= (ACE)x (8) , 2)

for every z € H
where for t=0 the limit in the above relation is taken as the right-side
limit. Therefore, all the conditions of definition VI-1 are satisfied in

the space H and thus the lemma is proved.




-

115

It should be noted that if the solution x(t) of (VI=1) is

contractive in H,, it 1s not necessarily contractive in the space H

19
since the comstant N = y/8 M in the relation (VI-8) is, in gemeral,

not less than 1 even though M < 1.

Theorem VI=3. Let (H,(°»°)) be ¢ Hilbert space and assume

that the conditions I, II, III are s¢_.isfied in H, If there exists
an eq.ivalent inner product (cno)1 with respect to which A(t) is
dissipanive for each t > 0, then for any x € U there exists a unique
solution x(t) of (VI=1) in the space (H,(<s¢)) with x(O)ax;

Proof., Consider A(t) as an operator with domain D and range
R(A(t)) both contained in the equivalent illlbert space Hl-(HB(ago)l)9
we shall show that conditions I, 1), IT{ avre satisfied with Hl as the
uadexrlying space., The conditions I, II remain valid in H1° To show
that the condition 171 is satisf’ed with respect to ||oH19 note that
(il 1D g L(Iilel) if ||x;1] g |lx,|| since L 1s nondecreasing. By
hypothesis the condition III holds with respect to ||e||  we have on

using the relation (VI=7)

|lace)x=ae)x| |, g v]l1AaCe)x=ate)x|| g YLU [x]]) [e-s] (tilat)x| ) <
£ v L6 Il Je-sl ™ | aG)x] 195 v 2 16T Ix] | [ems| [ |atox] | )

where A= max(1,6 1). Let Ll(l|x|ll)syAL(6'1||x|:1), then L,(r) as a
function of ¥ > 0 is positive since L(r) is; it is alsc nondecreasing,
for given any pair of positive numbers 2] with ¥, < ¥, which is egui~

valent to 6=1r1 < Snlrz, then L(G-lrl) 2 L(Gnlrz) which shows that L1(||x||1)s

is non-decreasing, Hence on replacing L(||x||) by L1(|]x||1)s the conditiom
111 is satisfied with respect to ||°||1° By hypothesis A(t} is dissipative
with respect to (osn)l, it follows by theorem VI~l that for any x ¢ D

there exists a unique contraction solution x(t) in H1 with %(0) = %, There-
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fore by lemma VI-3, x(t) is also the colution of (VI-=1) in the space H with

x(0)=x (in general, x(t) is not contractive), Thus the theorem is proved.
Following the same proof of the above theorem and applying

theorem VI-2, we can prove the following theorem for the existence

of a negative solution.

Theorem VI=4, Let H=(H,(°»°)) be a Hilbert space a' d assume

that the conditions 1, IZ, III are satisfied in H, If there exists
an equivalent inner produc: (we)1 with respect to which A(t) is
strictly dissipative with dissiaptive constant 8(t) for each t > 0
where 8(t) is a positive continuous function defined on R*, then
for any x € U there exists®a uitifué "solution x(t) of (VI=1) in H
with x(0) = x, and for any solution y(t) with y(0)=y € V there is a
finite number M > 1 such that

:
| [x(e)=y (&) || £ M£“£ 8(s)ds

| |x=y}| for all ¢ > O, (VI-11)
In particular, if B(t) = B which is independent of t, x(t) is a nega-
tive solution.
zggggo Since all the hypotheses of{ theorem VI-3 arvre fulfilled,
the existence of a unique soluticn follows. To show that the solution
is nepative, let x(t),y(t) be any two solutions with x(0)=x, v(0)=y
both contained in V., From the proof of theorem VI-3, A(t) satisfies
the conditions I, II, III in Hl” and by hypothesis A(t) is strictly

dissipative with dissipative constaat £(t) with respect to (“9")19 Hence

by applying theorem VI=2
4

x=y@ 1, s & EE% eyl (& 2 0),

It follows by the ecuivalence relation (VI=7) that
t
-y || g 67 Inry(er ||, 5 67%] B8 juy| | <

t t .
< (oyel 8Oy e BN gy ey 0)
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where Mwy/d > 1. If B8(t) =8 which is independent of t, then

Hx(e)=y ()] g Me°8t||x=Y|| for all t > O
which shows that the solution is negative. This completes the
proof.

An immediate consequence of the relation (Vi-1l) is that

inf

under the hypotheses of theorem VI-4, and i f £20

B(e) > 0, then
an equilibrium solution X (or a periodic szlution) of (Vi-1), if
it exists, is asymptotically stable since £ B(s)ds + » as t + = ,
In particular, 1f B(t) = B then the equilibrium solution Xg is
exponentially asymptotically stable.

By an equilibrium solution X, of (VI-=1), we mean the same
thing as in definition V=5 except with the words "x_ in D(A)" replaced
by ”xe in D(A(t)) for all t > 0", It can easily be shown that (see
the proof following definition V=5) the existence of an equilibrium
solution is equivalent to the existence of a solution to (VI=1)
satisfying

A(e)x(t) = 0 for all t > 0 » (Vi~12)

Theorem vI-5., Assume that the conditions I, II, III are satisfied,

If there exists a Lyapunov functional v(x) = V(x,x) such that for each

t 0

v

ReV(A(t)x-A(t)y, ®~y) < O for anv x,v € 0 (Vi=13)
where V(x,y); is a defining sesquilinear functional defined on H x H. Thens
(a) For any x € D , there exists a unique solution x(t) of (VI-1)
with x(0)=xg
(b) An ezuilibrium solution e (or a periodic solution), if it

exists, is stable;
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(c) The stability region of x, 1s V which can be extended to
5, the closure of !, in the sense of lemma VI-1,
If the relation (VI "3) 1is veplaced by

Re V(A(£)x-A(t)y,x~y) < =B(t)llx=y]|2 for any x,y € D (VI-13)°

inf

where B8(t) is a positive continuous function on R with >0

B(t) > 0,
then (b) can be replaced by:

(1)' An equilibrium sol-+tion X, (or a periodic solution), if
it exists, is asymptotically stable.

Proof. Since V{x,y) is a defining sesquilinear ’unctiomal defined
on Il x H, it follows by lemma V=8 that

(x,y)1 = V(x,y) x, v € H
defines an inner product (=s°)1 which is equivalent to (es°). By the
assumption (VI-13), for each t > 0
Re (A(t)x=A(t)y,x=-y)1 = ReV{A(t)x=A(t)y,x-y) < O K, v €V

which snows that A(t) is dissipative witk respect to (nao)l for each
t > 0, Hlence, by applying throrem VI-3, for any x ¢ D there exists a
unique éolution x(t) of (Vi=1) in the original space H with x(0)=x,
By definition VI-1, for any solution y(t) with v(Q)=y ¢ V

Hx(e)=y ()] < M||x=y]|| for all t > 0, (VI=14)
It follows by taking y=x, (if it exists) in the above inequality aand

noting that vy(t)

b

X
e
Hrled=x i1 g Ml |eex || for all ¢t > O (VI-14)°
which shoss that the equilibrium solution X, is stable, Since (Vi=14)
holds for any solution x(t) with x{0)=x% ¢ U, thz stabiliiv region is thus
the whole domain U. The extension of D into its cicsure ¥ follows from

lemma Vi-=1, In case (VI-13) is replaced by (VI=13)', then

Re (A(£)%=A(£)y,%=y); & = B(t)||x-y| 12 < -B(t) /v |lx=yl|§ (%,v € &)

S T (R TRt LS SR
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and so for each t > 0, A(t) is strictly dissipative with dissipative
constant B(t)/y with respect to (°9°)1o Thus by applying theorem
Vi-4, for any x € U there exists a unique solution x(t) in the space
(Hy(c9°)) with x(0)=x, If an equilibrium solution X, exists, then
by the relation (VI-11) t

||x(:)=xe|| < MQEY'IO B(s)dsl|x-xe|| for all t > 0,

Therefore the equilibrium solution X, is asymptotically stable since

inf 1im

€20 B(t) > 0 implies -

t
| B(8)ds = =,
o

Corollary 1. Assume that the cunditions I, II, III are satis-
fied and that (VI-13) is valid. Then for any two sclutions x(t) and y(t)
of (VI-1) with x(0)=x, yv(0)=y both in D o -
v(x(t)=y(£)) 2 0 for all t > 0.
If (Vi=13)' is satisfied, then
¥ (x(e)=y(t)) < =28(t)||x(t)=Y(t)l|2 for all t > 0,
Proof, It can easily be shrwm by following the proof of lemma
V-7 that for any two solutions x(t),y(t)
T (x(t)=y(t))=2ReV(A(e)x(£)=A(E)y(E) ,x(t)=y(L)),
The results follow directly from (VI-13) and (VI-13)' simce xu(t),v(t) € ¥
for all t > O,
A direct consequence of theorem VI=5 is the following?
Corollary 2. Under the assumptions of theorem VI=5, and in
addition if 0 € D and A(¢)-0=0. Then the null solution is stable under
~he condition of (VI-13) and 1is asymptotically stable under the condition

of (v1“13) ' o

e B et SN



e
-

SRR

AP L R N Kt

120

C. Nonlinear Nonstationary Equations
Based on the theorems developed in th- previous section, we shall
develop some results on the nonstationary differential eauations of the

form

B o ax(e) + £(t,x(E)) (VI-15)
where A, which is independent of =, is a nomnlinear operator with domain
D(A) and range R(A) both contained in a real Hilbert space H and f is
a given (nonlineax) function on RY x H into H. OUn setting A(t)=A+f(t,),
the equation of the¢ form (VI-15) becomes a special case of the general
nonlinear equation (VI-1l) and thus the results in section B can be applied
to this type of equation. Cn the other hand, equaticns ¢” the form
(VI=15) are direct extensions of the nonlinear differential equations of
the form (V-1) where f can be regarded as identically equal to zero. The
purpose of this sectlon is to modify the basic assumptions I, II, III of
section A so thatr the existence, the urniijucness, the stabilicyv and the
asymptotic stability of a solution can ‘e investigated, For the sake of
convenience in the statements of our results in this and in the remaining
sections of this chapter, we state some basic assumptions on the function

fo These basic assumptions are:

(1) £ is defined on RY x H into il and for each t

v

0, £ is
continuous from the strong topology to the weak topology of H and is
bounded on every bounded subset of H;
(1i) For each t > 0,
(£(eyx)=£(t,¥)s %=y) < O for all x,y € H;
(i1)’ There exists a continuous real-valued function k(t) on

rF sup

£20

such that for each t 2 0

such that k(t) < 8 where B is the dissipative constant of A, and
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(£(t,)=E(t,3) ,x=y) < K(t)||x=y!|® for all x,y ¢ Hj
(111) There exists a positive nondecreasing function L(r) of
r > 0 such that for all x € ¥ and any s,t > O
||£Ce,x)=E¢8,x) || < L]l ]) s | (2] |AxtE (s, %) | ]) e

Theorem VI=6, Let the operator A of (VI=15) be densely defined,

dissipative and R(I-A)=H, Assume that f satisfies thg,condbidone (i), oy
(11), (11i). Then

(a) TFor any x £ D(A), there exists a unigue contraction solution
of (VI=15) with x(0)=x;

(b) An equilibrium solution x_ (or a periodic solution), if it
exists, is stable;

(c) A stability region of the equilibrium solution X, is U(A)
which can be extended to the whole space H.

Proof. Let A(t)=At+f(t,-). We shall show that A(t) satisfies
all the conditions in theorem VI-l. Since A is independent of ¢t and f
is defined on all of t ¢ RY, it follows that D{(A(t))=D(A) which is
independent nf t and thus the condition 1 iz satisfied. By the conditien
(1ii), for each x ¢ V(A)

|aCe)x=a(s)x| |=] |€(t,x)=£Cs, x) | < L(|{x|])|e-s](1+]|AxtE(s,x} | ])
which shows that the condition III is satisfied. To show the condition II,
we shall apply theorzm V=10 as in the proof of theorem V-1l, Let T==A
and for each t > 0 let TtHI=f(tao)u Then both T and Tt are monotone since
the dissipativity of A implies the monotunicity of T and by the condition
(11), for any x,v ¢ H
(T x=T y,x=y) = (x=¥,x-y) = (£(t,x)=£(t,y),x=y) 2 llX=Y‘i2

which implies that Tt is monotone. By hypothesis, R(I+T)=R(I-A)=H and

U(T)=V(A) is dense in H, For each t > 0, T, is, by the condition (1),
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defined and demicontinuous (i.e., continuous from the strong topology
to the weak topology of H) on H and is bounded on every boumded subset
of H since the identity operator I also possesses this property. On
setting y=0 in the condition (ii), we have

(£(t,x),%) < (£(£,0),x) < [1£¢e,00 ][] |lx]]. (VI-16)
Hence the dissipativity of A and the relation (VI-16) imply that

| |Txe+ x| | = |l=Ax+Ttx|| > (=antT x,x) /| |x]] 2 (Ttx,x)/||x||=

= (%) = (£Ce,x),x))/ [ |x]] 2 |ix||-]]£(e,0)]]
which shows that
||Tx+Ttx|| + oo as ||x|| adi I
Therefore, 211 the conditions in theorem V=10 are satisfied. It follows
by applving that theorem that R(I=A(t))=R(T+Tt)5H for each t > 0 which
shows cond.tion II with o (t) = 1. Finally, the dissipativity of A and
the condition (ii) impls that for each t > O
(A(t)x=A(t)y,x=y) = (Ax=Ay,x~y) + (£(g,x)=f(t,y),x-y) £ O
for all x,y € V(A). Thus A(t) is dissipative for each t > 0 and so all
the conditions in theorem VI-=1 are satisfied, Hence for any x € V(A)
there exists a unique contraction solution of (VI-15) with x(0)=x. The
contraction property of sclutions of (VI-=15) implies that if an equilibrium

solution X, exists, then for any solution x(t) with x(0)=x e D(A)

[x(e)=x || g ||x=xe|| for all t > 0
which shows that the equilibrium solution iz stable with a stability region
V(A). Since V(A) is dense in H, the extension of the stability region to
the whole space H folliows from lemma VI-1. Hence the theorem is completely

proved,
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The above theorem has a counter part for the asymptotic stabiliity
of an unperturbed solution (e.g. equilibrium rolution or periodic solu-
vion), we shall show this ir the following.

Theorem Vi-7. Let the operator A of (VI=15) be demsely defined,

strictly dissipative witk dissipative constant B and let R(I-A)=H,
Assume that f satisfiles the conditions (i}, (11)', (iii). Then:

(a) Tor any x £ U(A) there exists a unique contraction sclution
of (VI-15) with x(0)=x and for any solution y(t) vith y(0)=y € V

t
x(e)=y(©) || = o7f B-EEND |15y

for all t > 0; (VI-17)

(b) An equil .brium solution X, (or a periodie solution), if
it exists, is asymptotically stable:

(c) A stability region of the equilibrium solution X, is 0(A)
which can be extended to the whole space U,

Proof. Let A(t)=A+f(t,-), we shall show thar A(t) satisfies all
the conditions in theorem VI=2, As in the proof of theorem VI-6, the
conditions I and III are satisfied. To show the condition II, note that
the dissipativity of A and R(I-A)=H imply that K{I =a A)=H for all a > O
(see lemma V=1), Let 'J.‘te= I - a(e)f(t,°). For each t > 0, choose a real
number a(t) such that 0 < a(t) g k(t:)'#1 (if k(t) £ 0, choose, e.g., a(t)=1)
then Tt is monotone, for by the condition (ii)'

(Ttx=TtyQXay)=(x=y,x=y)=a(t) (£{t,x)~£(t,y),x=y) > (1=d(t)k(t))1‘X“Y||2;00

With a(t) so choosen for each t > 0, the operator T=—o(t)A is monotone with

R(I+T)=R(I-a(t)A)=H and with v(T) = D(A) = H. By the condition (i), Tt is

defined and demicontinuous on all of H and is bounded on every bounded

s i

subset¢ of H, and by the dissipativity of o(t)A and the relation (VI=16)
|| TebT x| =] [-o(e)antT x| | 2 (o(e)ax+Tx,x) /| |x]] 2 (T, %,%)/| |||

= (| |x}|%0(t) (£¢t,2),x0)/1|x1] 2 [1xl|-a(e) | |£Ce30) ||
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which implies that llTx+Ttx[[ + +» ag |lx|] » 4= . It follows by applying
theorem V-10 that for each t > 0 we can choose an a(t) > 0 such that
R(I-a(t)A(t))ER(T+Tt)ﬂH which shows the condition II., Moreover by the
strict dissipativity of A and the cendition (11)', for any %,y € V

(A(t) x-A(1) Y, %=y )= (Ax=Ay , %=y )+ (£ (£, x)=£ (t,¥) ,x-¥) & - (3=k(£)} | |x=y] |?

for each t > 0

which shows that A(t) is strictly dissipative with dissipative constant
B=k(t) for each t > 0. It follows by applying theorea VI-2 that (a) is
proved and the relation (VI=€) holds with 3(s) replaced by B=k(s). lence
if an equilibrium solucion LR exists, then for anv solution x(t) with x(0)=
=x ¢ V

-/t {8~k (s)ds)
0

[x(t)=x |1 g e | [x=x,| | for all t > 0

t
which proves (b) since f(8=k(s))ds; (B=2:gk(s))t for any t > 0., Note that
o =

8-3UP 1 (s) > 0, It alse proves that a stability region is V(A). The

>0

ext;nsion of D(A) into D(A)=H follows from lemma VI-1 which completes the
proof of part (c).

Corollary. Let the operator A of (VI-15) be denmseiy defined,
strictly dissipative with dissipative constant B and let R(I-A)=H, Assume
that f(t,x) is uniformly Lipschitz ccutinuous in » with Lipschitz constant
k < B8, that is

| 1£C¢e,x)=£(t,y) || < k| |x=y]| for all x,v € H (Vi-18)
and let there exist a positive nondecr2asing function L(r) of ¥ > 0 such
that for all x e D(A) )

HECe,®x)=£(s,x) ]| < L(|[x]]) |t=8] for all s,t > 0,

Then the resulets (a), (b), (¢) in theorem VI-7 are valid,
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Proof. We shall show that £f(t,x) satisfies all the conditions
(1), (i1}, (111). For each t > G, the condition (VI-18) implies that f
1s continuous from the setrong topology to the strong topology and that
for any fixed Yo € i

£, x) ]| < Ilf(t,y6)||+ k||x||+k||y°|| for all x € H
which is bounded whenever ||x|| is bounded. Thus the condition (1) is
satisfied., The condition (ii)'also follows from (VI-18) since for each
t >0

(£(t,x)=£(E,¥) px=y) & [{ECe,x)=£Ce, )] |Ix=y|] g kllxey!lz x,y € H,
Finally, the condition (1ii) follows by hypothesis. Hemce all the hypotheses
in theorem VI-7 are fullfilled and the result (a), (b), (c) follows immed-
lately,

Remarks., (a) In theorem VI=6, theorem VI=7 and the Corollary of
theorem VI-7, the condition R(I=A)=H can be weakened by the condition
R(I-0A)=H for some @ > 0O since by lemma V-1 R(I-aA)=H for some a > O
implies R(I-A)=1l. (b) In theorem VI=7, if A is dissipative rather than
strict1§ dissipative and if the function k(t) appearing in the condition
(i1)° is such that i:g k(t) < O, the results still hold. (¢} The contin-
uity of the real=val§ed function k(t) can be weakened to some extent, for
example, k(t) can be discontinuous at a finite numher of points on Rt with
the values of k(t) properly defined at these points of discontinunity
(eomoy k(e ) = k(t  + 0) or k(t )}=1/2 (k(t, + 0) + kit - 0)) where t is

a point of discontinuity of ¥ ,).

D. Semi=linear Nonstationary Equations
Another application of the results obtained in rection B is
for the differential equations of the form

dﬁtt) = A_()x(E) + E£(t,x(t)) (VI-19)
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where Ao(t) is, for each t > 0, a linear umbounded operator with D(Ao(t)) and

R(Ao(t)) both contained in a real Hilbert space H and f is a given
function from R* x H into M. Again, on setting A(t)ﬂAo(t)-i-f(t,o)D the
equation of the form (VI-19) becomes a special form of (VI-1l). DNifferen=
tial equations of the semi-linear form (VI-19) have been investigated
rather extensively (e.g., see Browder [l] or Kato [9]), and in [9] it
gives a survey of the results obtained for this type of equation by using
seml-group theory. The object in this section is not to prove anv new
theorems on the existence of a solution but rather to deduce some results
from the general theorem developed in section B and to extend these
results for thea investipation of the asymptotic stabllity property of
a solution. In part 1, we introduce some theorems based on the general
results of section B, and in Parts 2 and 3, which are the main object of
this section, we shall discuss some special equations of the form (VI=13).
Because of the hypothesis in these special forms is relatively simple,
it is expected that these resulte wouid be more convenient for applications
on certain physical problems, that is, on some concrete partial or ordin-
ary differential equations.
1. General Semi~linear Equations

Consider the operator differential equations of the form (VI=19),
we first show the following:

Theorem VI-8, Assume that Ao(t) satisflies the conditions I and

I1 (given in section B) and that for each t > 0, Ao(t) ie dissipative with
D(Ao(t))av dense in H. If the operator A(t)@Ao(t)+f(t9°) satisfiesz the
condition III and f satisfies the conditions (i) and (i%) {(given in

section C). Then all the results (a), (b), (c) of theorem VI=6 hold.

e e A i b e, 50 a0 o e i
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Proof. Consider the operator A(t)!Ao(t)+f(t,o) as a nonlinear
'g; operator in the equation (VI-1), we shall ghow that all the hypotheses
_.%; in theorem VI-1 are satisfied. Since V(A (t))=0 1s independent of t
and that f 4s defined on all of R* x H, it follows that D(A(t)) =
ﬁD(Ao(t))av is independent of t and thus A(t) satisfies the conditiern
I. by hypothesis for each t > 0, Ao(t) is dissipative and by lemma V-1,
the condition II implies that R(I=Ao(t.))-Ho It follows from the same
pro&f as in theorem VI-6 that R(I=A(t))=H since for each fixed t 2 O
’ we may take Ao(t) as the operator A in theorem VI=6. Note that all the
fﬁ' hypotheses for the proof of R(I-A)=H in that theorem are fullfilled if
we replace A by Ao(t) where t is fixed, Since this is true for each
t > 0, the condition II is satisfied. The condition IIL is given by
i hypothesis. By the dizsipativity of Ao(t) and by the condition (ii), we
have for each t > 0

(A(t)x=A(e)y,x-y) = (A (£)x=A (£)y,x-y) + (£(t,x)=£(t,y),%-y) 5 O
for all x,vy € V. Hence A(t) is dissipative for each t > 0. By applying
theorem VI-1, the result (a) is proved, The proof of (b) and (¢) is

the same as in that of theorem VI-6,

MRy PR S BT

Remark. The assumptions I and III in the above theorem can be

N

replaced by (I=A0(t))‘='1 is strongly continuously differentiable in t
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and £ is demicontinuous in t. For a direct proof of this theorem see

[9]. It should be noted that the solution obtained im [9] is the so~
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called "mild solution” whieh is the solution of an integral equation

reduced from the differential equation (VI=19).
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Theoxrem VI-9, Assume that Ao(t) satisfies the conditions I and

IT with ¥ dense in H and for each t > 0, let Ao(t) be strictly dissipa-
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tive with dissipative constant B(t) where B(t) is a positive real-valued
continuous ‘unctior on R*. If the operator A(t)sAo(t)+f(t,°) satisfies
the condition III and if f satisfies the conditions (1) and (i1)'with

£
k(t) < B(t) for sach t > 0 and [(B(s)-k(s))ds » +» as t > =, then all the

results (a), (b), (e} of theoreg Vi=7 hold,

Proof, It suffices to show that the operator A(s)ﬁAo(t)+f(ta°)
satisfies all the hypotheses in theorem VI-2, The condition I is obviously
satisfied and by hypothesis the condition III is satisfied. The proof
of the condition II follows the same argument as in the proof of theorem
Vi-7. Since for each fixed t > 0, Ao(t) is strictly dissipative with
dissipative constant B(t), and by hypothesis f satisfies the condition
(ii)z it follows that for any %,y € U

(A(t)x=A(t)y,x=y) =(A (t)x=A (£)y,x=y)+(f(t,x)=L£(t,y),x=y)

< =(B(e)=k(£)) | [x-y||? for all t 3 O
which ghows that for each t > 0, A(t) is strictly dissipative with
dissipative constant (B(t)=k(t)). Note that B(t)=k(t) » 0 for all
t >0, Hence by theorem VI=2, (2) and (c) are proved with the relation

) t
lim!’
o

oo

(B(s)=k(s))ds = =, it follows by the relatiom (VI=17) that i f an

(VI=17) for B-k(s) replaced by B(s)-k(s). Since by hypothesis

equilibrium solution Xy exists, it is asymptotically stable which proves
(b).
2. Sousme Special Semi-linear Equatioms

The results developed in the preceeding sections of this chapter
are not easy to apply for partial differential equations. Hoﬁever, a
number of physical and engineering problems are fromulated by a system
of partial differential equations which can be reduced to the simplier
form

dxgtz

T4 = A x(t) + £(t,%) (VI-20)
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where Ao, which is independent of t, is a linear unbounded operator
with domain U(Ao) and range R(Ao) both contained in a real Hilbert
space H and f is a given function from Rt x H into ., Since (VI-20)

is a special form of (VI-15) with A=A° a linear operator, the results
obtained in section C are directly applicable. Note that the equation
(Vi=20) is an extension of the equation (V-24) where £(t,x)=f(x). The
object in this section is to deduce some results similar to those in
section V~=C, which would be easler to apply for a certain class of nen-
gtationary partial differential equations.

According to theorem 1II-14, if Ao is the infinitesimal genera-
tor of a contraction semi-group of class C09 then Ao is densely defined,
dissipative and R(I=.Ab)-Ho Hence the following theorem is a direct
congeaquence of theorem VI=6,

Theorem VI=10., Let Ao be the infinitesimal generator of a

(linear) contraction semi-group of czlass C,o Assume that f satisfies
the conditions (1), (1i), (iii). Then all the results (a), (b), (e)
of theorem 7I-6 hold.

As to the asymptotic stabiliey of a solutiom of (VI-20}), we have
the following theorem which is a special case of theorem VI=7,

Thevrem VI=1il. Let A be the infinitesimal generator of a

(linear) negative contraction semi-group of class Co'with the contractive
constant 8., Assume that f satisfies the conditions (i), (41)°, (1ii).
Then all the resules (a), (b), (e) of theorem VI-7 hold,

Proof., Since Ao is the infinitesimal generator of a megative

AL Al s s e -

contraction semi-group of class Co, it is densely defined, dissipative

and R{I-A)=H. By applying theorem V=3 for A=A as a special cace, A

is striectly dissipative with dissipative comstant £ since the dissipa-

TRE A T e
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tivity of Ab in the sunse of definition V=3 for a linear operator
coincides with the dissipativity ofi&o in the ordinary sense, Hence
all the results (a), (b), (c) follow from theorem VI-7,

Corollary. Let Ao be the infinitesimal generator of a (linear)
negative coniraction semi-grcup of class Co with the contractive constant
8, and let f be uniformly Lipschitz continuous on R* x H with k <8
where k 1s the Lipschitz constant with respect to x, Then all the
results (a), (b), (c) of theorem VI-7 hold,

Proof, We show that all the hypothesis in the corollary of
theorem VI=7 are fulfilled, As in the proof of theorem VI=1l, Ab is
densely defined, strictly dissipative with dissipative cemstant f§ and
R(I=AO)BHn The uniform Lipschitz continuity of £ on Rt x H implies
that the relation (VI=18) holds ‘.ith k <B) and that there exists a

positive real number L such that ior any x e H

| 1ECe,x)=£(8,%) || < L|t-s] for all s, 4 > O
which implies that the condition (i1ii) is satisfi=¢. rwuus by the
corollagy of theorem Vi-7, all the results in theorem VIi-7 hold,

So far in this section, we have assumed that Ao is the infinite-
simal generator of a contractlion semi-group of class C (The conditions
imposed on Ao(t) in theorems VI-8 and VI~9 imply that for each t > 0,
Ao(t) is the infinitesimal generator of a contraction semi-group of
class Co (theorem I11-14)). 1In the remainder of this section, we shall
consider A  as an unbounded closed linear operator. (The infinitesimal
generator of a semi-group is always closed). Before looking into this
type of operator, let us make Some observationg about the equation (VI=20).

Suppose that there exists an equilibrium solutien Xy of (Vi=20). Let

T TPy et SR VI S TP e e
i SR R T R T T el e e .



131

z(t) = x(t)sxea On substituting x(t) by z(t)+xe in (VI=?%}, we have

4268) o p_z(e) + F(t,2(e)) for all t > 0
where
F(t,z(t)) = Ax, + f(t,z(t) + xe).
Since by (Vi=12)
one + f(t,xe) = 0 for all t > O
it follows that F(t,0) = 0. Moreover, 1if £ satisfies the conditions
(1) (11) (i11) (or (1), (11)', (ii1)), so does F with possibly different
L(}1x]||) in the condition (1ii), To show this, note that the trans-
lation mapping from x to x+xe is a continuous one-to-one mapping from
all of H onto H so that F is defined on R x 1 into H. For each t >0
and any zl(t)B zz(g) e H
(F(t,2,(t))=F(t,z,(t)),u) = (f(t,zz(t)-i-xe)=f(t,zl(t)-!-xe),u)
for every u € H which implies that F is continuous from the strong
topology to the weak topology of H and is bounded on every bounded
subset of H since f has these properties. Note that zl(t) + zz(t)
if and only if zl(t)+xe - zz(t)-l-:xe and that ||z(t)|| 1s bounded if and
only 1f ||z(e)+x_|| 18 bounded where x_, is a fixed element in H. Thus
F satigfies the condition (i). For any x,y ¢ H
(F(tsx)=F(t,y)yx=y) = (E(tyxbx ) = £(t,y4x ), (x+x ) = (y4x))

which shows that F satisfies the condition (ii1) 1f £ does. In case
f satisfles the sondition (i1)’, so does F since the above equality
implies that

(F (6, x)=F(,3) ,x=3) & k() || Grvx )= (yx ) |12 = k(e) |-y 12
Finally, if f satisfies the conditiom (iii), then by the definitiom of

F for any z ¢ D(Ab)

Lo
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|17 (t,2)-F(s,2) || = ||f(taz+xe)=f(s,z+xe)|| < L(||z+xei|)|t=-s|u
(l+l1Ao(z+xe)+f(s,z+xe)||) - L(l[z+xe||)|t=s|(b+1,Aoz+F(s,z)||) <

s L x][+] x 1) [e=s [ {1+ & jz+F(s,2) | )

since L(||z+xe||) is nonducreasing (which implies that L(|iz+xe||) <
s L(|[2||{+[]x_{1)). The function Ll([|z||)aL(||z|l+||xe||) is a positive
nondecreasing function of ||z|| > 0, for if ||zll| < ||22|| then

[z |1+ x| € Flzyl 1+, ]| vhich tuplies that

ORI PR IS PRI PRY
The pesitivity of Ll follows directly from the positivi¢y of L. This
completes the proof,

It follows from the above observation that if an equilibrium
golution of (VI=20) exists, we may assume that £(t,0) = 0 and thus the
investipation of the statil’~v property of an equilibrium seolution is
the same as that of the n.. " solution.

Another ohservation about equilibriuvw sclutions of (VI=20) is
the following theorem.

Theorem VI-12. Let H be a real Hilbert space, and let Ao be

a strictly dissipative operator from H inte H with the dissipative
constant B, i.e.,
(A xs%) & =B||x||2 for all x € D(A_).

Assume that for any x,y € D(Ao)

(£(t,x)=£(t,y) ,x=y) < k(t)]|x-y| |2 for all t > 0
where k(t) is a real-=valued function with k(to) < B for some t, 2 0.
Then an equilibrium solution Xq of (VI=20), if it exists, is unique. 1In
particular, if £(t,0)=0 for all t > 0O, then the null solution is the

only squilibrium solution,
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Proof. Let Ve be an equilibrium solutiom. By (VI=12)
one + f(t,xe) = 0 and Aoye + f(t,ye) =0 forall t >0
which implies that
A (x =y ) + £(t,x) - £(t,y) = 0.
Hence, for all t > 0
0 = (A (x my,) % =y JH(E(e,x )-£(t,¥ )ux_=y,) § -(B=k(e))| |x -y, |1,
By hypothesis B—k(to) > 0 for some t, 2 0, it follows from the above
inequality that \]xe=ye|i = 0 which proves the uniqueness of x.
Remark. The above theorem remains true if A, is dissipative
and the funcrion k(t) is negative for some to > 0 since under this
condition, we have 0 < k(t)llxesye|| for all ¢ > O which is a contra-
diction unless ||xe=ye||=0 since k(ty) < 0.
Corollary. Under the hypothesis in theorem VI-1l (or in theorem
VI-=7) if an equilibrium soluticp existcs, it is unique.
The uniqueness of the er .ilibrium solution in theorem VI=11 (or
in theorem VI=7) is also a direct consequence of the negative contraction
property of the solution., For, if X, and Ye are two equilibrium solutions

then since x(t)=xe and y(t)mye for all t > O

|lxeaye|| < em8t||xe—ye|| for all t > 0
which is impossible unless Ko = Vgo

Now we return to the equation (VI=20) where Ao is an unbounded
closed linear operatcr. Im analogy to theorems V=15 to V=17, the
following theorems may be regarded as their respective ¢xtension,

Theorem VI=13, Let Ao be densely defined, clesed and strictly

dissipative with dissipative constant 8., Assume that Ag is the closure
of its restriction to D(Ab)r}D(Ag) and that f satisfies the conditions
(1), (11)°, (1ii) where Ag is the adjoint operator of Ao° Then all the

results (a), (b), (c¢) in theorem VI-7 hold,
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Prcof, It suffices to show that R(I-AC)BH since all the other
corditione in theorem Vi-7 are fulfilled by hypothesis. Note that
(VI=20) is a special form of (VI-15) with A=A . But is has been shown

in the proof of theorem V=15 that R(I=Ao)nHo Hence the results feollow,

Theorem VI-14, Let Ao be an unbounded self-adjoint operator
from part of H to k and let it be strictly dissipative with dissipacive
constant B, Assume that for each t > 0, f is uniformly Lipschitz con-
tinuwous in x with Lipschitz constant k(t) where k(t) is a positive con=-
tinuous function on R satisfying i:g k(t) < P .d assume that for each
X € D(A,o)D f is uniformly LipschitzzcontinuOUL in t with Lipschitz

constant L(||x||) where L(||x]]) is a positive non-decreasing function

of le]

« Then all the results (a), (b), (¢) of theorem VI=-7 hold.
Proof. Since the self-adjoint operator Ao is densely defined,
closed and equals its adjoint operator A* (in particular, D(Ao)mv(Ag)),
it follows that Al satisfies the requirements in theorem VI-13. By

hypothesis, for each t > 0

| |ECt, x)=£(t,y) i | 2 k() | |x~-v]] for all x,y € H (VI-21)
which implies that f satisfies the conditions (1) and (ii)°', This is
due to the fact that for each t > 0, (VI=21) implies that f is a
continuous in x (from the strong topology to the strong topology of H)

and that for a given Yo € H

Hete, ] g HEGy ) [+ | [xi [+ [y [
Hence for each t > 0, 1£¢t,%)|| is bounded whenever ||x}| is bounded
since k(t) < 8 and llf(q,yo)ll is bounded for each t (see (VI-22) below).
This proves the condition (1). Condition (i1)' follows also from (VI=21)

since for any x, y € H
| (ECe,)=E(e, )59 | 5 11ECE0=-£Ct, 91| |1xy]] 5 k()| |x-y]|?
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for all t > 0. By the assumption of uniform continuity of f in ¢,
for each x ¢ U(Ab)
| |£Ce,x)-£(m,x) || < L(]|x]]|)]|t-8| for all s,t > 0 (VI-22)
which shows that f satisfies the condition (i1ii). Hence the theorem
is proved by applying theorem VI=1i,

Remark, It is obvious that the assumptions on f can be weakened
by assuming that f satisfies the conditions (1), (i1)', (41i). Cn the
other hand, a stronger assumption 1s that f 1s uniformly Lipschitz
continuous om Rt x H, that is, k(t) = k < B and L(]||x||)=L>0.

It can happen that the given linear operator Ao of (VI=20) is
not self-adjoint in the original space H=(H,(°»°)) but it is possible
to find an equivalent inner product (uao)1 such that Ao is self-adjoint
in the space Hln(H,(ose)l)o In such a case, we have the follcwing
theorem which is an extension of theorem VI-14,

Theorem VI-15. Let Ab be a densely defined linear operator from

H= (H,(-50)) into H, and let f satisfy the conditions (i) (ii1i) in H.

If there is an equivalent inner product (csc), such that A is self-adjoint

1
and is strictly dissiaptive with the dissipative constant 8 with respect
to (°ﬂ°)19 and such that for any x,y ¢ H

(ECe0)=E(t,y) pxmy); & k(2D | x| |3 for all t > O (VI-23)
vhere k(t) is a continuous real-valued function on Rt such that z:g k(t)<B,
Then, (2) Por any x € D(AO)B there exists a unique solution x(t) :f
(VI=20) with x(0)=v. (b) If an equilibrium solution X, exists, it is
asymptotically stable, (c) A stability reglom of x_ is D(Ao) which ean
be extended to the whole space H in the sense of lemma VI-1,

Proof. Consider Ao as an operatcr from the space Hlﬂ(H,(ono) 1)

into Hlo Sinece Ao is self-adjoint in Hl’ it is densely defined, closed

b i L i
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and U(Ao)mD(Ag) in H It follows by hypothesis that & satiafice €he

1°

conditions in theorem VI-13 where the underlying space is B,. Tre

continuity of f being invariant under equivalent norms together with

the relation (VI=9) imply that 1if f is demicontinuous in L, it 15

demicontinuous in Hlo Thugs f satisfies the condition (1) in the Hl=-

space since by hypothesis, f possesses this property in the H-space.

Note that the boundedness of f is also invariant under equivalent norms,

Moreover, by the condition (iii) in H and the equivalence relation (VI-7)
!lf(tgx)=f(s,x)||l; v 1E(e,x)=f(8,%) || < yL(|le‘)|t=S](l+!|A°x+f(s,x)tl)

S v LM x| ems (6™ 8 et G0 | | )

since |[x|| < 6-1||x||1 and L(||x||) is nondecreasing. Let )\ = max (1,57 %)
and set Ll(||x||1)=ﬂL(6=1||xl|1)9 then L, is a positive nondecreasing

function since L. is. Hence
[1£¢e,x=E¢e,x) || g Ly CLix|]) [t=g] Q1+ [A_x+E(s,x) | {))

which shows that the condition (1ii) is satisfied with respect to ||-

;-
By applying theorem VI-13, all the results (a), (b), (c) of theorem

VI=7 hold in the space Hy Since for any x = D(A ), there exists a unlque

contraction solution x(t) of (Vi-20) with x{(0)=x in H. , it follows by

1°
lemma Vi=3 that x(t) is also the unique solution with x(0)=x in H. Thus
éa) is proved., Since the relation (VI=17) holds in Hio and by lemma VI-3
if X is an equilibrium solutfon in Hl it is also an equilibrium solution
in H, It follows that for any solution x(t) in H with x(0)=x ¢ U(Ao)

d

=1e=£EB-k(s))dsl

Hxe-x || g 67 [Ix(e)-x |1, 5 6 |x=x_|1; ¢

X |
sCr/sye] BRENas | for all t > 0



137

which shows that the equilibrium solution X, is asymptotically stable

sup

since >0
| -3

k(t)<B implies iii ft(8=k(s))ds= 42, The above inequality
is true for any x € D(Ao) shozing that a stability region is D(Ab)o

By lemma VI-1l, this region can be extended to the whole space since

D(Ao) is dense in H. Hence the theorem is completelvy proved,

It is clear that theorems VI-13 to VI=15 are particularly useful
for the class of partial Jdifferential equations which can be formulated
in the form of (VI~20) where AO is a concrete partial differential
operator defined in a suitable Hilbert space H into H and £ is a (non-
linear) function defined on R*Y x H into H, It happens often that the oper-
ator Ao reduced from a pavtial differential operator is a densely defined
closed operator or its extension is a closed operatoxr (i.e., Ao is elos-
able). Theorem VI-14 and VI=15 suggest that if Ao is self-adjoint in H
or if an equivalent inner pProduct can be found such that Ao is self-=
adjoint in the equivalent Hilbert space ng then the strict dissipativity
imposed on Ao in these theorems is likel] to give some stabllity criteria
for the coefficients of the partial differential operator and possibly
including the parameters involved in the boundary conditions, On the
other hand, in certain design or control processes, the function f itself
or the parameters involved in this function can be varied so that the
conditions imposed on f such as (VI-22) and (VI-23) are also likely to
yleld some criteria among this class of functions or among the parameters
involved in the given function., In practical problems, these criteria
are often in terms of physical properties, dimensional parameters, conirel
functions, etc. which are originated from the derivation of the differen~
tial équations describing this system, Thus they are not only important
for the design or control prupose but also gives some interpretation of

the physical meaning about the system.
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3. Ordinary Differential Equations
In case the operator Ao in the equation (VI=20) is a bounded

linear operator on H to H, we can write (VI=20) as an ordinary differ-

ential equation of the form

) o £(ex(e)) (VI-24)

where f(t,x) is a function from R" % H into H, Since the equation
(VI=24) is also a special form of (VI-15) with A £ 0 which is densely
defined, dissipative, and R(I-0)=H, we have immediately the following

theorems.

Theorem VI-16. Let f satisfies the conditionms (1), (14), (14ii)

{given in gection C), Then, (a) For any x € H, there exists a unique
contraction solution of (VI=24) with x(0)=x, (b) If an equilibrium
solution x, exists, it is stable. (c) The stability region is H,

Theorem VI-17., If £ satisfies the conditions (1), (ii)', (iii)

with B=0 (i.e., ::g k(t)<0), then the results (a), (c) of theorem VI-=16

hold, and in addition: (b)' For any solution y(t) with y(0O)=y ¢ H
ey 1] g o X% jy] | gor at1 e 3 o.
Thus, if an equilibrium solution X, exists, it is asymprotically stable,
The abo* : two theorems can be proved directly by considering the
operator A(t) of (VI=1) as f(t,°) and show that the conditions in theorem
VI=1 and theorem VI-2 are satisfied respectively. To see this, we first
note that A(t)=f(t,°) satisfies the conditions I and III Ly the assumption
(1) and (iii) respectively. To show that A (t) satisfies the comdition II,
let T=I and Tt==f(t,o)o_ By following the proof of theorem VI-6, it can
easily be shown that all the conditions in theorem (V=10) are satisfied

which implies that for each t > 0, R(I-A(t))=R(I-f(t,-))=H. The dissipa-
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tivity of A(t) follows from the assumption (ii). Hence all the results
of theorem VI=16 follow by applying theorem VI-1., A direct proof for
theorem VI-17 can similarly be showm.

It should be noted that the existence and the uniqueness of a
solution of (VI-24) do not require that k(t) be negative (c.f. [1], [9]).
However under this condition, the asymptotic stability property of a
solution can not be ensured,

Theorem VI=16 and VI=17 .emain true if an equivalent inner product
(oeo)l can be found such that f satisfies respectively the conditions (ii)
and (i1i)" with respect to (ﬂso)lo In fact, we have the following theerem
whose proof follows that of theorem VI=135,

Theorem VI-18., Assume that f satisfies the conditions (i),

(iii) in the Hilbert space H=(H;(cs°)). If there existz an equivalent

inner product (-s-), such that

)
(£(t,x)-£(t,y) m=y), < k(t)||x=y||§ for all t > O

where k(t) is a continuous real-valued fumction defined on R¥* with

sup

>0 k(t) < 0, then the results (a), (b)’, (c) of theorem VI-17 hold

except the contraction property of the solutions., If k(t)=0, (b)’
should be replaced by (b) in theorem VI-=16,

In theorems V1e17 and VI-18, if an equilibrium solution X, exists,
it is unique., A weaker condition for the uniqueness of an equilibrium
solution can be obtained by applying theorem VI-12. ¥%e show this in the
following,

Theoxem VI=19, Assume that for any x,y € H

(£t 3)-£(t,7),x-y) < k(t)||x-y||2  foraile o0

where k(t) is a real=values function with k(to) < 0 for some to > 0.
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Then an equilibrium solution LI if it exists, is unique. In particular,

if £(t,0)=0 for all t > 0, then the null selution is the only equilibrium
solution.,
Proof. Let Ve be any equilibrium solution. By (VI-12)
f(t,xe) = 0 and f(t,ye) = 0 for all t > 0
which implies that
2
0 = (£Ct,x)=E(tsy)ox=y,) S k()| |x -y ||® for all ¢ 3 0.
But k(t ) < 0, the above inequality is impossible unless |\xe=ye||soa

Thus the unlqueness of X, is proved.

3t BT M B
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VIi. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

The stebility and existence thoery of the operational
differential equations developed in Chapters IV, ¥, VI deals with
unbounded and nonlinear cperators which are extensions of certain
concrete linear amd nonli .ear partial differential operators res-
pectively, Thus the solutions of the operational differential equa-
tione are closely related to the concept of generalized solutioms
{distribution solutions, weak solutions, etc.) of boundary=value
problems for partlal differential equationg. By a suitable choice
of a function space (such as Lz(ﬂ)g H"(R)), the results obtained
in the previous mentioned chapters are directly applicable, In
this chapter, we do not intend to solve general nonlinear partial
differential equations but rather to apply some of the results
obtained in Chapters IV, V, VI to certain semi-linear partisl differ-
ential equations (which occurs often in physical problems) in order
to illustrate some steps in applying the theorems developed for

operational differential equations.

A. Elliptic Formal Partial Differential Operators
It is known that a linear partial differential operator cam

be, under suitable conditions, formulated as a linear operater in a

function space such as Banach space or Hilbert gpace. In this sectionm,

we shall formulate am elliptic partial differential operator as an
unbounded linear operator in the real Hilbert space Lz(n)a Before
giving a formal definition of an elliptic partisl differeptial opera-

tor, it is convenient to use the following conventional notationss:

A

ﬁ[

et

AR

2]
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x-(xlsxzsooosxn) and £ s(&lsE:,ono,gn) denote variable points in R
n

|| ’jél aj where a = (a19a29°°°°mn1 whose components are non-negative
integers; D® = D 1D.2...0%0 where D, = =2==:for 3=m1,2,00,n3 if |a|=0
’ 172 n j 9 x L

|
the operaeor D* is defimed to be the identity operatorg £% denotes the

expression gal gmz 000 gmn and aa(x) denotes the expression aulazoaoun(X)o
With these notations, we first give the following definition of a formal
partial differential operator,

Definition VII-1. Let the operator

L = z aa(x) Dm,

al< p

where p is a positive integer and the coefficients am(x) are infinitely
differentiable functions in an open set QeR", Then L is called a formal

partial differential operator. The differential operator

) o § 1! e
oL

which is also 2 formal partial differential operator is called the
(real) formal adjoint of L. If L=L*, then L is said to be formally
self-adjoint,

Now we give a formal definition of an elliptic differential
operator.

Definition Vil=2, Let

L=] a(x0"
lalgp

be a formal partial differential operator of order p defined in a domain

2 of the Euclidean space R®. If for each non-zero vector £ in R" 1§§
]
I aa(x) E-$ 0 XeQ,
|le|=p

then the operator L is said to be elliptic. Thus, the requirement of

ellipticity for a partial differential operator iz the analogue of the

¥
=
iy
ar
i3

2
&

i



143

condition that the leading coefficient should be non-vanishing.
For the case of second order elliptic partial differential

operator (i.e.,, p=2), the operator L can be written in the form

) =" T b, <+ ~(0)
L= )» a X )—=———— + = (X
174=1 By ¥y 4oy 1y

with the requirement that for any non-zero vector £ in R

n

a ,,(x) 6,40 X e f,
igj-l ij i°)

The elliptic partial differential operator L can be formulated as

an operator in Lz(ﬂ) in different ways, For example, we may define

.the operator T to be the restriction of L with domain D(T)Bcz(g), the

set of 211 infinitely differentiable functions with compact support

in 2, T 1is a densely defined linear operator from Lz(ﬂ) into LZ(Q)

since C:(Q) is dense in LZ(Q) (see theorem III-17), The domain of

T is narrower than necesséry; in the above definition we could replace
C:(Q) by CE(Q) since we need only p-th order derivatives in comnstructing
L, there by obtaining an extension of T, We can also define a larger
extension T1 of T by admitting in its domain all functions u € LZ(Q)

such that u £ CP(2) and Lu € LZ(Q) (here u need not have compact support).
Since T is demsely defined and T¢:T1a it follows that Tl is densely
defined and so both T* and Tf exist, The question may arise that if

the formal partial differential operator L 1is self-adjoint, that is,

L=L*, whether or not T* (or Tg) is also self-adjoint, To answer this
questior for the case of the operator T, we state the following theorem ,Q
whose proof can be found in the book by Dunford and Schwartz [6],

Theorem V1I-1, Let L be an elliptic formal partial di’ferential

operator of even order 2p defimed in a domain Qo in R%, Suppose that L
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is of the form
L&) a (x) p* (VII-1)
la} <2p ©
and that
(-1)P l£|=2pa°(X) £ >0, xe¢ Q0 E € R, E40, (VII=2)

Let @ be a bounded subdomain whose closure ig contained in Qoa Suppose
that the boundary of Q 1s a smooth surface 3 , and that no point in 93 Q
is interior to the closure of Q. Let T andfT‘ be the operators in the
Hilbert space LZ(Q) defined by the equation

D(T)mD(%) = {ue C:(E); u(x) E=avu(x)mooo agglu(x)so, X €230}

Tu = Lu, Tu = L*u, ue WD) = U(%)

where.aﬁ denotes the k=th normal derivatives on 3Q. Let A and g be the
closure of T and ?, respectively. Then (1) A¥* = Q and (g)* = A, (11) o(a),
the spectrum of A, is a countable discrete set of points with no finite
limit point, (i11) If A ¢ o(A), (AI-A)"L is a compact operator.

Corollary. Under the hypotheses of theorem VII-1 and, in additiom,

L is formally self-adjoint so that L=L*, Then (i) the operator A is sgelf-

adjoint, A=A*: (11) The spectrum o(A) is a senuence of points {An}
tending to », and for A £ o(A); R(A;A) 1s a compact operator.

Remark. Suppose that the condition (VII-2) in theorem VII=1 is

replaced by the condition

-1P § a (1) £ <0, xe Q5 € € R, £40 (VII-2)"

A
then =L satisfies tte hypothesis in the above theorem in which =T, =T,
A A A
-A and -A would be the operators associated with =L where T, T, A and A
are the operators defined im the theorem for the operator L. Thus if

L 1s formally self-adjoint so is =L and by applying the above corollary
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=A=(=A)* which implies A=A*, Hence theorem VII-1 and its corcllary,
on the part of self-adjointness of A, remains valid if the condition
(V1I-2) is replaced by the condition (VII=2)',

It follows from the above theorem that under suitable conditions
on “he leadinpg coefficients of L and a smooth boundary condition on 1,
the elliptic partial differential operator L can be formulated as a
linear operator 1 in LZ(Q) such that if L is formally self-adjoint then
the closure of T is also self-adjoint. This formulation enables us to
apply some of the results developed in Chapters V and VI for certain
semi=linear partial differential equations,

It is known that [6] under the conditions of the above thenrem
and if © is a bounded open set contained in f  then the Garding's
Inequality holds, that is there exists constant K < « and k > C such
that

(Lu,u) + K(uyu) > K| |u||;2p ue C(R)

o

where | | 1s the norm of the Hilbert space Hz(ﬂ) o
p

B, Semi-linear Parcial Differential Equations

The formulation of a formal linear partial differential operator
as a linear operator in LZ(Q) in che previous section enables us to
establish some existence and stability criteria among the coefficients
of the formal differential operator for a certain class of stationary and
non-stationary partial differential equations. In this section, we give
some applications of the results obtained in Chapters 1V, V and VI to
a class of linear and sémialinear partial differential equaticns which
can be served as an illustration of some steps in applying the theorems
developed for operational differential equations. In the following, the

first simple example of a linear partial differential equation gives a

o T
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fairly detailed description of the application from which some more
general eguations or nom=zero boundary conditions can easily be obtained.

Example VII-=1, Consider the simple case of the linear partial

differential equation
2

Ju du ou
= = a(x) TXZ'*. b(x) 33+ c(¥u x e (0,1) (VII=3)
with the boundary conditions
u(t,0) = u(t,1) = 0 (t>0), (VII=4)

Assume that the coefficient a(x) is positive (or negative) on [0,1]
and that a(x), b(x), c(x) are all infinitely differentiable functions

in an open interval Io containing [0,1]. Then the linear operator
2

L e a(x) 2=§,+ b (X) %i‘* e(x)
3%

is a formal partial differential operator defined in Ioo Moreover, by

the assumption a(x) > 0 for all X £ [0,1] we have

ea(x)gz <0 for all € ¢ Rl

with £ # 0 and X ¢ [0,1}.
It follows that =L is an elliptic partial differential operator. The

formal adjoint operator of L is given as
2

L*(2) = 2o @0 () = 2= BN + () ()
X

which is also am elliptic partial differential operator. It ig easily

shown by a simple calculation that equation (VII-3) can be reduced to

the form
u L 3 2u _3y"
TITE) % (P(x) ax) + c¢(X)u (V111I=3)
where

X
-1 { (b(E)/a(E))ds
q(x) = (a(x}) = e%o

.
[ (b()/a(E))dE
P(X) = eXo = a(X)q(x).

(xo e [0,X] fixed)
(Vii=5)
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Let us seek a gsolution in the real Hilbert space L2(0,1) in which the

inner product between any pair of elements u, v ¢ L2(0,1) ig defined by

1
(u, v) = [fu(x) v(x) dx, (VI1-6)
o]

Define the operator T in LZ(O,I) as the restriction of L on C:(Osl)
and % the restriction of L* on C: (0,1), that is

(T) = D(%) = C: (0;1); Tu=Lu and %usL*u, ue (D).
Let A and K denote the closure of T and % respectively (T and ? are
closable). Then D(A) is demse in L2(0,1) since D(A)=D(T) = c2(0,1)
which is dense in Lz(O,l)o Thus A* and (2)* both exist. In general, T
is not self-adjoint with respect to the inner product definmed in (VII=6)

as can be seen by "integration by parts" of the integral

1
(u,Iv) = fu(x) T v (x) dx u, v ¢ 0(T)

(o]

which, in general, is not equal to (v, Tu) for all u,v € V(T), However,

by defining the scalar functional V(u,v) by

1
V(u,v) = (u,qv) = fu(x) q(x) vi{x) dx (VII-6)°
o]

where the function q(X) is the known function pgiven in (VII=5) then

V(u,v) defines an enuilvaent inner product (oso)1 such that

(Tu,v)l = (u, Tv)1 for all u, v e D(T),
To see this, define
(u,v) = V(u,v)

then it is obvious that (osn)l possesses all the properties of an iumer
1
product. Since (u,u)1 = (u,qu) = f quzdx, it follows that
o]

(ooxar 9 Ilell? < Hull] 5 (o 900 Tlull®

which implies that (090)1 and (°9°) are equivalent, Notice that q{x)>0
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and is continuous over the closed interval [0,1] so that it actually
attains its maximum and minimum values bounded away from zero and =,
For any u, v € U(T), on integrating by parts and taking notice that
the boundary conditions are satisfied for any u ¢ U(T) we have

1

(,Tv); = (u,qTv) = [ wale™" 3 (@ ) + eviax
Q

1

= j(=p B 3V 4 ¢ q uv)dx = ] v

u
X K (P 3 + ¢ quvldx = (Tu,v),

“Y
which shows that 'I‘=T° It follows by applying theorem VII-1 and the

A
remark following that theorem that A=(A)*=A%* which shows that A is
self-adjoint in the equivalent Hilbert space Li (G;1) equipped with the

inner product (¢s-) Moreover, the above equality implies that for

lo
any u £ U(T)
1
2 2 2
(T, = - [[P(G7)% - ¢ q u'lax = - j la o -c a v’jax .
0
On setting u;= q}/2 u then ||ul||=llu||l and by an elementary calculation
we have
w2 1 1 2 2
3..[21: 1 - ] =&
2q (55 alep) —g a7 Yy (V11-7)

where a' = %; a(x). Hence, integrating by parts and using the well
known inequality
j GH? ax 3 o? j u? ax (VII-8)

which is valid for any u(x) satisfying the condition (VII=4), we have

(u,Tu), = fl[a( S0+ G G'-a") + 7 -3—2-%)3- - o) uilax
< = fl[wz a, += (b'=a") + CEL clu? dx < =g} |ul|?
==/ min ¥ 2 5 a 1 3 1
where
8uin ofi<1 a{x)
B = Ozil (1" &, +3 (b (0-a"(x) + 1-‘*%%—,'(—5-1#’:-- ) 1.
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It follows that if B=0 or #>0 them T is dissipative or strictly dissipa-
tive, respectively, with respect to (°so)1o The dissgipativity or strict
dissipativity of T implies the dissipativity or strict dissipativity,

respectively, of A. To see this, let u € V(A) then by the construction

of the closure of a closable operator there exists a sequence {un}czv(T)
1im

-3
such that u, u and -

Tun exists and equals Au {(see the definition
of closable operator following theorem III=1), Hence by the continuity
of ianer product, we have

lim 1im

)1 = po

(Auyu), = M0y 8l1u 113 = -8]fu| |2

which shows the dissipativity and strict dissipativitv of A, Therefore,
by applying theorems V=17 and V=13 with £ = 0 we have the following results,

Theorem VII-2 . Assume that the eoefficients a(x), b(x) and c(x)

of (VII=3) are infinitely defferentiable over any open interval Io con=

taining [0,1] and that a(x) is positive on {0,1]. If the condition

2
. min 2 L v eyyoat 1 (b(x)=a’(x))" ,
B 0<xs1 [r%a a2 (b (x)-a" (%) )+z 200 e(x)] > 0
(VII=9)
1s satisfied whe min a(x) and a'(x) = 5=’a(x) a"(X)m=£i a(x)
° T€ Zmin © 02xg1 nd 4 ax ’ ax2 g

then for any initial element uo(x) e V(A) there exists a unique solution
u(t,X) in the sense of definition VI-1 with u(O,x)'uo(x)o Moreover, the
null solution of (VII-1) is stable if R=0 and is asymptotically stable if

B > 0 and in the later case the null solution 1s the only equilibrium

solution,
As an example of the above theorem, take a(X) =-% » b(X) jf'xs
c(x) = (x2 +j%0 where R is a positive constant to be determined, then
min 7%, 1,1 a1
3“0;::;1[? I fnﬁx) - +ﬁ)]-i=-=‘,-‘;o
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Hence B > 0 if 0 < R < ﬂh which shows the same result as given in [3].

Remark, The solution u(t,X) in theorem VII-=2 ig in fact a

dugt.x)
dt

norm topology as can be seen by applying the corollary of theorem III-14.

solution of (VII-3) in the strong sense i.e., = Au(t,X) in the

However, in the case of semi-linear equations which are to be discussed
in the following, theorem III-14 and its corollary do not apply. Thus,
we shall assume that any solution in the following discussion is in the
sense of definition VI-=1.

In case a(X) 1is negative instead of positive, then L ig an
elliptic partial differential operator satisfying (VII-2), By defin-
ing (uav)l =(u,-qv) and note that —q(x) > 0 for all x e [0,1], (oso)l
is equivalent to (0s°) and that A remains to be a self-=adjolnt operator
with respect to (°a°)1° Moreover,

1

13 3 2
(ug’l‘u)1 e (u,=q Tu) = = { uq LE--i-(P ?%9 + cq u ]dx

)
1
== f [=P( ) +cquildx = - f[=aq( ) + ¢ q u’ldx,

On setting ul=(=Q) 1/2 u, then HulHaHuH19 and using the identity

(VII=7) and the relation (VII-8) we have

1
(u,Tu)1 f[ea( ai )2=(1(b' a")- l =222=L= =c)ui]dx
o

1
<= [infa) - 20-a")- 1 ‘=‘1a=)=— ~elu} ax g -8]lull]
0

vhere
g = 0<x<1 [ (=a)_, | = Z(b* ()=a"(x))- F (.‘AJ%Z%Q; - (0]
(VII-10)

Hence we have the following results,

Theorem VII=3. Under the hypotheses of theorem VII-2 with the

assumption a(X) positive replaced by a(X) negative and with (VII-=9)
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replaced by (VII-10), all the results in theorem VII-2 hold.

The results obtained in theorems VII-2 and VII=3 can be applied
to the case of semi-linear equations with the same linear part as in
example VII-1, i.e., a nonlinear function f is included in equation (VII=3),
With some additional restrictions on f, the existence and stability of a
solution can be ensured. These conditioms are given in the folleowing.,

Example VII=-2, Consider the partial differemtial equation

22,
-gl_i = a(x) &8 S b(x) S+ e(u + £(w) (VII-11)
3%

with the boundary conditions u(t,0)=u(t,1)=0 where a(Xx), b(x), c(x)
are the same as in theorem VII=2 and £ is a nonlinear function defined
on L2(0,1) to LZ(Osl)o According to theorem V=17, 1if £ is comtinuous

on Lz(Osl) and 1s bounded on bounded subsets of L2(0,1) such that

(E(w)=£(),u=v), < leU“"H?_ with k; <8, u,ve 12 (0,1)

where (°s°)1 is the equivalent inner product defined in (VII-6)wand R

is given by (VII-9), then all the results in theorem VII-2 with respect
to an equilibrium solution, 1if it exists; remain valid. In particular if
£f(0)=0, the null solution is exponentially asymptutically stable,

To 1llustrate the above statement take, for example, the function

2
fu) = k —4—y a2 > 0).
AU

It is obvious that f is continuous on L2(0,1) (in the strong topology)

and 1is bounded on L2(091)o By the definition of (°°°)1 in (VII=6)'

1 2 o2
(£(u)=£ (V) yu~v) k(—— - )q (u=v)dx
'1 £ A2+u2 A2+v2
1
KA [ ey qluen) at g
o (A +u)(A +v
2
< G Ozizl lk(u(x)+v(¥))[ Huev]|? .

(2 +u? (1)) 02w (1))
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It is easily shown that for any real number u,;v
> %‘““’ZL = < - - (VII-12)
(A "4u®) O “4v) | 23]

which implies that
k 2
(f(u)“f(v)SU='V)l < |==A'| Hu-=V| Il o

It follows that if [%I;B then the existence and uniqueness of a solution

for any initial element uo(x) e D(A) are ensured. Moreover the null

solution is exponentially asymptotically stable with stability region D(A),
The above example gives general conditions on the coefficients

of the partial differential operator L and on the nonlinear function £

which depends on u. In case f is a function of both t and u, additiomal

restriction on f is necessary. These conditions are given as an example.

Example VII-3, Consider the non-stationary semi-linear egquation

2
u 3 u v
3¢ = a(x) -;-?-2-+ b(x) % + c(Xu + £(t,u) (VIi-13)

with the same boundary conditions u{¢ ,0)=u(t,1)=0 where a(x), b(Xx) and
c(X) remain the same as in example VII-=1l, Accerding to theorem VI=15,
if £ satisfies the conditions (1) and (iii) given in section C of Chapter

VI and if there exists a coniinuous real-valued function k(t) on ﬁ*ﬁ[ﬂ,m)

sup

with t;O

k(t) < B where B is given by (VII=9) such that for any u,v ¢ L2(091)
(£t u)=E(E,v) umv) | £ K(8) | lu-v]|2 (t > 0) (VII-14)

then for any initial element uo(x) € D(A) there exists a unique solution
u(t,x) with u(O,x)-uo(x), and if an equilibrium solution exists, it is
unique and is asymptotically stable.

Take, for instance, the function

2
f(t,u) =

ku
5 (c,l,c2 > 0).

(x +u2)(c1+c2t)

i

e L T e e ey e Ry gt g e b e St iy LT LRt e
b s R BRI i S R R R S R DR R e i e T
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It is obvious that £ is defined on K' x L2(091) into Lz(O,l) and 1s
such that for each t > 0 it is continuous on L2(0,1) (in the stromg
topology) and is bounded uniformly which implies tliat f satisfies

the condition (1) in theorem VI=15, For any u(x) € D(AO) and any

8,t 2 0
2 c.(s=t)
ku 2
|| £(t,u)-F(8,u)||=}| | 2
4 4 IA2+u2 (c1+c2t)(b1+czsi
|e k| 2 le, k|

2 2
s | |51 |s=t| g |-t |

2 2, 2 2

cl AT+u c1

which shows that f satisfies the condition (iii). Finally, by using

(VII-12) for amy u,v € L2(0,1)

1 2 2
k u v
1 cI+c2t o AZ +u2 A2+v2

k 1 2 2
< I3l eyt [u=v ][] = k(&) | u=v]|]
where k(t) = |%4 31;%;?= is a continuous function on RY with 238 k(t)=
= L » It follows by applying theorem VI=15 that if EL%LT < B
€1 A ¢4 Al =

then all the results stated above are valid. Simce in this particular
case, £(t,0) = 0, which implies that the null solution is asymptotically
stable,

In the examples above, we assumed that the boundary conditioms
were u(t,0) 'u(t,1)=0. In the case of non-zero boundary conditioms, a
suitable transformation of the umknown function can reduce these condi-
tions into zero boundary conditions without affecting the existence or
stability of the originél system. The following example gives such an

i1llwstration,

e A S L R

',Hm‘v.." -

B A R e
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Example VII-4., Consider the same problem as in example VII-=3

except with the boundary conditions replaced by
u(t,O)mho(t) and u(t,l)mhl(t) (t > 0) (V11=15)

where ho and h, are two given continuously differentiable functions of

1
t >0, On setting

vit,X) = u(t,x) - (1=x)ho(c) =xh1(t) (¢ > 0) (ViI-16)

equation (VII-13) is reduced to

2
Eea) L+ F+ ety + £, (t,v) (V1I-13)°

3X .

with the boundary conditions v(t,0)=v(t,1)=0 where

fl(tsv) = f(t,vl) = (1=x)hg(t)exhi(t)+b(x)(hl(t)=ho(t)) +

+ c(x)(xhl(x) + (1=x)ho(t)) (VI1=17)

with vl(t,x)av(tsx)+(lex)ho(t:)+xh1(t)a Suppose that f. satisfies all

1
the conditions in theorem VI-=15, then for any two initial elementsg vl(O,x)
and vz(O,x) e V(A) theorem Vi-15 implies that there exists two solutions
vl(t,x) and vz(t,x)9 respectively, such that

t

= [ (B=k(s))¢s
| vy (g, 0)=vy (£, 0) || g M e © |}v1 €0, %)=v, (0, ) ||

where M > 1, B is given in (VII=9) and k(t) is given in (VII=14) with

f replaced by £ By the relation (VII-=16)

la
uy (£, %)=u, (£, X)=v, (£, %)=V, (£,X) (¢ 2 0, x & {0,1]),

it follows that ¢

=[ (B=k(s))ds
||u1(t,x)=u2(t,x)|| <Meo llul(osx)=u2(0,x)||

which shows that the existence, uniqueness and stability of a solution
of the transformed system with howmogeneoug boundary condtions implies

the same property of a solution of the originalh3§étem with non=homogeneous

Pl



155

boundary conditions. Hence the investigation of the equation (VII-13) with
the non-homogeneous boundary conditionms (VII=15) is reduced to the one

with homogeneous boundary conditions by taking the transformed function

fl as the given nonlinear function.

It is to be noted that if an equilibrium solution Ve exists for
the transformed equation, it does not, in general, imply the existence of
an equilibrium solution u_ of the original equation. In fact, if ho(t)
and hl(t) are not both constant no equilibrium solution of the original
system can exist., (In physical problems, this type of boundary condi-
tions often generates periodic soluticns).

The above examples are given in the one-dimensional space which
serve as an illustration of some needed techaique in formulating linear
operators in a Hilbert space from foermal partial differential operators
and which give an application of some of the results developed fox
operational differential equations to partial differential equations.
Following the same idea as in the one-dimensional case, the extension
of the above results to more general n-dimensional space-dependent
partial differential operators bears no difficulty. For the sake
of simplicity, we limit our discussion to second order partial differ-
ential equations which occur often in physical problems,

Example VII=5., Consider the second order linear differential

equations of the form

Ju
55 = Z i;](x) 2y + e(X)u X g 9 (VII-18)
1,j= 1 j
with the boundary conditioms
u(t,x')=0 x?! € 3 t>0 (Vil-=19)

where xa(xlsx ooa,xn), 2 is a bounded open subset of the Euclidean

25

space R" with boundary 3@ which 1is a smooth surface and no

point 1n 3Q is interior tp 3, the closure of @, Assume
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that aij(x) = aji(x) (1,3j*1,2,..0,n) and together with c(X) are
infinitely differentiable real=-valued functions in a domain Qo which

contains §i and that there exists a positive constant o sueh that

n
2
L 2 (06> o Z £ X e, £ceRY, (VII-20)
13
I e & RN o

By definition VII-2, the operator

n

=
n

(a, . (X) =)+ c(®)
i,jz’l x.i i_'] axJ

is an elliptic partial differential operator in Q, since under the
assumption (VII-20)
4 n
(-1) ) a; () E4€5 # 0, XeQ,EeR, E$ 0
In fact, if the operator L satisfies the condition (VII-=20), it is said
to be strongly elliptic. It is easily seen by definition that the operator

L is self-adjoint i.e., L=L*. Let T be the operator in LZ(Q) defined by

b

(T) = {u e C (@ux')=0, x" € 3 9]
Tu=Lu u e (T,

and let A be the closure of 1. By the corollary of theorem VII=1, A

is self-adjoint. For any u € U(T), integration by parts yields

n
(u,Tu) = fuTudxs= [ [ ] (a 4 (0) ax ) + c(x)u?jax

Q 0 14wl axi j
f E u 3u 2
== [ [ (x) &8 = c(x) u’)dx
D 4,4=1 ij 3 X. Xq ij

where dXw= dxldxzﬂoodxnn By the assumption {(VII-20) and using the well

known inequality {24]

S 2
[ ] & “) ax > vy [ u® ax (VI1-21)
2 1=1 %4 Q
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where v is a positive real number, we obtain
T 0u,2 2 2
(u,Tu) < ~f fo ] GP° - ) v’ldx g =[ (ay = c(x))u” &
R i=l i Q
2 14 2
g =Gy = c)||ul|” = -8[]uj]

where e = ax (x)

xeh © and B=ay-cmn Hence, T is dissipative 1f B=0

and is strictly dissipative if B>0, The dissipativity and strict
dissipativity of A follow from the dissipativity and strict dissipativity,
respectively, of T as has been shown in example VII-1 since A is the
closure of T. Therefore, A satisfies all the hypotheses in theorem V-16.
To summarize, we can state the following theorem by applylng theorem

V=16 with £

]

0,

Theorem VII=4. Assume that all the real=valued functions aij(xJ=aji(x)
(1,321,2,005,n) and c(X) in equation (VII-18) are infinitely differentiable
in a domain Qo containing $}, the closure of 9, where @ is a bounded open

set in R" whose boundary 30 is a smooth surface and no point of 30 is

interior to $. If the condition (VI1I-20) 1ig satisfied and if

B = ay - xof c(X) > 0 (V1I-22)

where a is given in (VII=20) and y is given in (VII-21), then for any
uo(x) é D(A) there exists a unique solution u(t,X) to (VII-18) strongly
continuous in t with respect to theI.Z(Q) norm with u(O,x)ﬂuo(X)n More=
over, the null solution is stable for B=0 and is asmyptotically stable
if 8 > 0 and in the later case the null solution is the only equilibrium
solution. The stability region is D(A) which, in some sense, can be
extended to the whole space LZ(Q)e

It is seen from the above theorem that the major conditions imposed
on the coefficlents of the operator L are conditions (VII-20) and (VII-22),

Notice that if c(X) is a nopn-positive function, then (VII-22) is auto-



158

matically satisfied. As a special form of (VII-18) we comsider the

equation
n
9u 9 Ju - v
=a;t-= izl ﬁi (ai(X) =-a-=i-i) + e(X) u Xe f (V11-18)

with the boundary conditions (VII=19). The following theorem is an
immediate consequence of theorem VII=14,

Theorem VII=5. Assume that the real-=valued functions ai(x)

(1=1,2,¢02,n) and c(X) in equation (VII-18)' are infinitely differen-
tiable in a domain Qo containing Q where 2 is a bounded open set in
R" whose boundary 392 is sufficiently smooth. If, in addition, ai(X)
is positive for each i and c¢c(X) is non—-positive then all the results
in theorem VII-4 hold,

Proof, Consider (VII=18)' as a special form of (VII-18) with

aij(x)=ai(x) for i=j and aij(x)=0 for i#j. Then the condition (VII=20)

min
is satisfied since by hypothesis o =1gi§n (255 ai(x))>0 which implies
n ? (x) 2 f 2
a, . (xX) g, = a, (X)E, > o Ly o
1)1m1 13 - =

The condition (VII-22) follows from the non=positivity of c(x). Hence
the results follow by applying theorem VII=4,

As an example of the above theorem, consider the equation

du 2
it ° A u=c“u (c real)

where 4 is the Laplaciesn operator in Q§:R; with 30 sufficiently smooth,
Then all the conditions in the above theorem are fulfilled since in this
case ai(x) = ] for each 1 and c(X) = =c20

Just as in the case of one-dimensional space case, semi-linear

equations of the form
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du ? 9 3 u
= = = (a,,(%) =) + c(Xu + f(t,u) X e § (VIT-23)
L ax, i3 5%,
with the boundary conditions
u(t, %) |yo = h(t,x") x' € 3 Q (V11-24)

2
can similarly be treated where £ is a function on RV x L () to Lz(ﬂ)o
For the sake of application, we state a theorem which is a direct
consequence of theorems YI-14 and VII-4,

Theorem VII=6. Suppose that the semi=linear equation (VII=23)

with the boundary conditions

u(t,x') = 0 X' e 3R (VI1=24)"
possesses the same linear part as given in theorem VII-4, If for each

t

v

0, £ is uniformly Lipschitz continuous in u with Lipschitz constant

k(t) where k(t) is a positive comtinuous function on R% satisfying

sup

£>0 k(t) < B with B given by (VII=22); and if for each u ¢ DU(A), £ is

uniformly Lipschitz continuous in t with Lipschitz constast g(l|u||)
where g is a positive non-drecreasing function on R*Q Then
(a) For any uo(x) e D(A) there exists a unique solution of
(VII-23) with u(o,x)nuo(x),
(b) An equilibrium solution (or a periodic solution), if it
exists, is stable if igg k(t)=B; and is asymptotically stable if ::g k(e)<B,
(¢) A stability region of the equilibrium solution is D(A?
which can be extended, in some sense, to the whole space LZ(Q)o
Remarks. (a) The conditions of uniform Lipschitz continulty
imposed on f can be weakened by assuming that f satisfies the conditioms

(1), (11) (or (ii)"') and (11i) listed in section C of Chapter VI. (b)

The continuity condition on k(t) can be weakened to allow discontinuous
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at a finite number of points on Rt with k(t) properly defined at the
points of discontinuity (see the remarks following theorem VI-=7).

Example VII-6, As an example of the above theorem, consi '~

the partial differential equation
2

%%-u Au = czu + = Xu (c%k%clac? > 0) (VII=25)

2
(A +u )(c1+c2g)
with the boundary conditions
u(t,x') = 0 x'e 3 Q
where A is the Laplacian operator in a bounded open set £ in R3 and
ueu(t,X) with x=(X;,X,,%y). The coefficients of 4 are a;

3 1,3°
the Kronecker delta, which implies that the condition (VII-20) is

(x)=$

satisfied with a = 1 since

) ) &
a,.(X) E,E.= Ey o
1,921 7 T3 4o

Since c(X) = -c2 < 0, the condition (VII-22) 1is satisfied., Uence
all the phypotheses in theorem VII-4 are fullfilled with Bny-l-cze It

is easily shown that for any u € D(A) and s,t > 0 (see example VII-3)

ekl
E,w-£G,0 || g —5=— |s-t]
c
1
which shows thTt f i uniformly Lipschitz centinuous in t with
c,k
g(flul D= g . By using the relation (VII-12), for each t > 0
€1
2,2 2
k AT {u=v")
|1, u)=-£(e, 0 || = | | 1 k|“
? : e te,t (A2+u2)(lz+v2
= | % |« (u+v)2 (u=v)2 d}t)ll2 <
ci+02t Q_(A2+u2)2(12+v2)2
) L (] e sl [l
ey = U= = =
c1+c2t |;§T' Q A c1+c2t)
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which implies that £ is uniformly Lipschitz continuous with Lipschitz

constant

k

k(t) = |TT§§::;§T .

Hence 1f i:g k(t) = |k/x cll < B, all the results in theorem VII-6 follow.
In this pa:ticular case, £(t,0)=0 it follows that t z null solutiomn is
the only equilibrium solution and is asymptotically stable,

In case the boundary conditions are given by (ViI-24) where
the function h(t;X') is a continuously differentiable functiom of t
on Rt and twice continuously differentiable in X on all the (n=1)=dimen-

sional subspace of f§i. On setting

v{tyX) = u(e,x) =h(e,x*) xel x" €23 Q,

equation (VII-23) reduced to

n

v )

BLA AP = {a,,(X) Y+ e(x) v+ £ (t v) (e Q) (VII=23)°
ot izj=1 3x 1j axj

with the boundary conditions v(t,Xx') = 0 (X' e 23 Q) where

n
e
£,(t,v) = £(e,vhh) + ] = (x) ) + c¢(x)h =
1 1% =1 e 243 j 3t

(Vi1I-26)
which 1s a known function since both f and h are given functioms. It
follows that the nonhomogeneous boundary conditions can be reduced to

the homogeneous boundary conditions as for the one-dimensional case from
which theorem VII-6 may be used for the existence and stability of a
solution. Knowing the property of the solution v(t,X)} in (VII-=23)°, the

property of u(t,X) of (VII=23) with boundary conditions (VII=24) can

be deduced,
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VIII. CONCLUSIONS

A, The Objective of the Research

The objective of this dissertation 1s to establish some
criteria for the stability and the existence and uniqueness of
solutions for some linear or nonlinear, time-invariant or time-
varying operaticnal differential equations (i.e., equations of
evolution) from which stability criteria for the corresponding
type of partial differential equations can be deduced. 1In the
case of linear time-invariant differential equation, a Lyapunov
stability theory for this type of equations in a real Bamach space
is established, By using the linear semi~group theory and by the
introduction of semi-scalar product, the existence of a Lyapunov
functional is shown. In addition, necessary and sufficient condi-
tions for the peneration of an equibounrded or negative seml-group are
obtained from which the existence and stability of a solution can
be ensured,

In parallel to the linear semi-group theory, the introduction
of nonlinear semi=-group theory enables the extension of linear differ-
ential equations to nonlinear operational differential equations, A
stability theory as well as the existence and uniqueness theory for
nonlinear differential equations in a complex lilbert space are estab-
lished. Moreover, by introducing an equivalent inner product, the
same results hold in an equivalent Hilbert space. This fact makes
possible the construction of a Lyapunov functional through a sesqui-
linear functional which under suitable conditions defines an equivalent

inner product and from which a stability criteria is obtained. In the
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special case of semi-linear differential equations, the known results

on the linear part simplifies the criteria on a general nonlinear opera-
tor, Upon imposing some additional conditions on the nonlinear part
which 1is an everywhere defined function, stability and existence of a
solution are guaranteed. This type of equation is particulerly useful
for some physical problems.

The development of the nonlinear time-invariant differential
equation is further extended to a more general tvpe of nonlinear time-
varying operational differential equation. Criteria for the existence,
uniquenegs, stability and in particular, asymptotic. stability of a
solution, including the stability region, are obtained, The invariance
of the existence and stability property of this type of equation in two
equivalent Hilbert spaces is also proved. Particular attention has been
paid to the noniinear non-stationary operational differential equation.
Some special cases of this type of equation possess many possibilities for
applications to partial différential equations,

In order to apply the results obtaiaed for the above mentioned
type of operational differential equations to partial differemtial equa-
tions, some second order stationary and nonstationary equations in one-
dimensional and in n-dimensional spaces are considered. These applications
not only yield results on the type of partial differential equations under
consideration but also illustrate some steps in the formulation of a linear
operator in a Hilbert space from a formal partial differemtial operator.
These steps may be needed in solving more general partial differential equa-
tions, In the following sectlon, a brief description of the main results

in this research are given,
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B. The Main Results

1. The Existence of a Lyapunov Functional

The linear time-invariant operational differential eaquatiomns
are investigated in Chapter IV. Through the use of an equivalent
semi=scalar product, the existence of a Lyapunov functional in a Banach
space is proved in theorems IV-7 and IV-8; and in terms of this Lyapunov
functional, necessary and éﬁfficient conditions on A to generate an
equibounded and negative semi-group are established in theorems IV-11
and IV=12 respectively. With these additional resnults, the stability
study of the linear time-invariant equations by using semi=group or
group theory in a Banach space or a Hilbert gpace is (in a sense) com-
pleted, In addition to the above results, some interesting properties
of semi-scalar product in terms of a semi-group are giver in theorems
IV=9 and IV-10, the proofs of which are based on an useful lemma (lemma
IV-5) which 1s proved through the construction of a continuous linear
functional,
2. Nonlinear Time=Invariant Operatiomal Differential Equations

Linear time-invariant differential equations have been extended
in Chapter V to nonlinear differential equations with the underlying
space a complex Hilbert space. By introducing the concept of noniinear
semi-groups, stability criteria in terms of the infinitesimal generator
of a nonlinear contraction semi-group are given in theorem V=2 and is
extended to theorem V-3 for asymptotic stability. The proof of theorem
V-3 is based on a very useful lemma which is shown as lemma V=5, These
two theorems are fundamental for the development of stability theory.

Moreover, the semi-group on U(A) generated by A in theorems V-2 and V-3
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are extended into the closure of V(A) as 1s shown in lemma V=3, The
inner product with respect to which the nonlinear operator A is dissipa-
tive required in theorem V-2 can be replaced by an equivalent inner
product which is shown in theorem V-4, In this case, the semi-group
generated by A is not necessarily contractive in the original space,
However, from the stability point of view, there is no loss whatsoever
of the stability property. This fact enables one to define a Lyaspunov
functional through a sesquilinear functional so that stabllity property
can be ;etermined by the comstruction of a Lyapunov functional. These
results are obtained in theorems V=7 to V=9, In addition to the above
results which are directly related to stability theory, lemma V-6, lemma
V=10 and its corollary all have their own values, Moreover, theorem V-6
gives the necessary and sufficient conditions for the existence of an
inner product equivalent to the given inner product of a complex Hilbert
space, It should be remarked that theorem V=5 is an alternative form
of theorems V=2 and V=3,

As a special case, the semi-linear equation 1s discussed with
the underlying space a real Hilbert space. If the linear part is the
infinitesimal generator of a semi-group of class Co’ then the existence,
uniqueness, stability or asymptotic stability of a solution are established
in theorems V=11, V=12 and thelr corollaries. Moreover, under some weaker
conditions than those required in theorem V=12, the uniqueness of an equili-
brium solution is established in theorem V=13 and a specilal case of the
null solution is given in its corollary. This theorem is contributed in
a large part by Dr. Vogt duriﬁg the discussion between him and the authorx,
In case the linear part is a cloged operator, a general theorem for the

existence, uniqueness and stability property is established in theorem V-15,
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and in the special case of a self-adjoint operator the results are
given in theorem V=16. Finally, theorem V=17 shows that theorem V=16
remains true if the inner product of H is replaced by an equivalent
inner product,
3. Nonlinear Time-Varying Operatiomal Differential Equations
The nonlinear time-invariant differential equations are further
extended in Chapter VI to the nonlinear time=varying differential
equations, In parallel to the development of Chapter V, a stability
criterion for the gemeral equations of evolution is established in
theorem VI-2., Through the use of lemma VI-3, theorem VI-2 is extended
to an ecuivalent Hilbert space as is shown in theorems VI-3 and VI=4
for the stability and asymptotic stability resepctively. By defining
a Lyapunov functional through a sesquilinear functional, theorems
VI-3 and VIi-4 are, in fact, equivalent to theorem VI=5, Additional
properties are stated as corollaries 1 and 2,
An important special form of nonlinear time-varying equations
is the nonlinear nonstationary differential equation which is also an
extension of the nonlinear equation discussed in Chapter V., Theorems
VI-6 and Vi-7, which are very useful to the applications of concrete
nonlinear partial differential equations, have established general criteria
for the stability and asymptotic stability, respectively, of a solution,
Another special form of the nonlinear time-varying equations is
the semi-linear equations. In the general case where the linear part
is a time=varying unbounded operator, criteria for the stability and asymp-
totic ztability of a solution are given in theorems VI-8 and VI=9 respect-
ively. In case the linear part is time-invariant and if it is the

infinitesimal generator of a2 semi-group of class Cqs theorems VI-10 and Vi-=11
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give conditions for the existence, uniqueness and stability or asymptotic
stability, respectively, of a solution., Theorem VI=12 shows the unique-
ness of an equilibrium solution; if it is a closed unbounded linear operator,
a general theorem 1s shown in theorem VI-13; when it 1is a self=adjoint
operator either in the original Hilberi space H or in an equivalent Hilbert
space ng conditions imposed on it turn out to be particularly simple,
and these results are shown in theorems VI-14 and VI=15 which are very
useful for the application of a class of partial differential equations.
Finally, if the linear part is a bounded operator on ¥, the semi-linear
equations is reduced to an ordinary differential equation. Results on this
type of equations are given in theorems 7I-16 to VI-=19 which are direct
consequences of the semi=1linear equation,
4, Applications

Applications of the results developed for operational differential
equations to partial differential equations are given in Chapter VII in
which stabillity criteria for a class of second order partial differential
equations are established and are given in theorems VII-2 through VII=6,
These applications and special examples also illustrate some steps for
golving the stability problem of certain partial differential equations

through the use of the results f or operational differential equations,

C. Some Suggested Further Research
The stability theory developed in thig research can be extended in
two broader directions, namely; theoretical extensions to some more general
function spaces such as Banach space on the one hand, and applications to
the class of nonlinear partial differential equations which can be reduced

to the form of operational differential equations on the other. As it has
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been shown in Chapter IV, that the stabllity criteria of linear time-
invariant operaticnal differential equations in Hilbert spaces can be
extended to Banach spaces by the introduction of semi-scalar product,
This suggests that through the use of semi=-scalar product it might be
possible to extend the stability and existence theory for nonlinear
operational differential equations from Hilbert spaces to Banach spaces,
It is believed that this extension is possible for some class of Banach
spaces which are not Hilbert spaces, On the other hand, the results
obtained for the operational differential equations can be used for a
large class of nonlinear partial differential equations which are not
limited to semi-linear equations, The formulation of a nonlinear operator
in a svitabie Hilbert space from a given nonlinear partial differential
operator and the as<ocilated abstract operator possessing the desired
property both need further investigation., One of the immediate exten-
sions along this line is the formulation of a nonlinear partial differ-
ential operator of elliptic type as a nonlinear operator in some suitable
function spaces such that this nonlinear operator has tne required pro-
perty to ensure the stability of a solution of the parabolic-elliptic
partial differential equations. Moreover, applications to nonlinear wave

equations and t¢ Schrodinger equations also need additional attention.,
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