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ABSTRACT

The GEOS-II spacecraft is the first satellite to be
equipped with a heat pipe as an integral part of the thermal
Jdesign. The heal pipe, a device of extremecly liigh effeclive
thermal conductivity, is employed to minimize the tempera-
ture differences between transponders located in opposite
quadrants of the spacecraft. Measured heat transfer rates
through the pipe of as much as 64 watts, together with small
temperature gradients on the outside of the heat pipe, are
evidence of proper operation. Based on a 145-day observa-
tion period, transponder maximum and minimum tempera -
tures show significant improvement over those of GEOS-I.

This work was supported by the National Aeronautics

and Space Administration Office of Space Science and Appli-
cations under Task I of Contract NOw 62-0604-c.
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I. INTRODUCTION

The heat pipe, a device of extremely high effective
thermal conductivity, was invented by Gaugler (Ref. 1).
Later, Wyatt (Ref. 2) and Grover (Ref. 3) patented applica-
tions of the generic device, and Cotter (Ref. 4) gave a
theoretical explanation of its operation. Recently, Deverall
and his associates uesigned an experimental heat pipe
module that was orbited on the Atlas-Agcna vehicle used for
the ATS~A satellite. The results of this experiment indi-
cated that the absence of gravitational forces does not affect
the performance of a heat pipe (Ref. 5).

A program to develop a heat pipe for spacecraft
temperature control has been in progress for several years
at the Johns Hopkins University Applied Physics Laboratory.
When it became apparent during the early design stages of
GEOS -II that large temperature differences could exist
among the various transponders, it was decided to connact
the transponders by two heat pipes to minimize these temp-
erature differences. The GEOS-II spacecraft is the first
satellite to have a-heat pipe incorporated as an integral part
of the thermal design. This report describes the design of

the heat pipe system and its performance during test and in
orbit.

This work was supported by the National Aeronautics
and Space Administration Office of Space Science and Appli-
cations under Task I of Contract NOw 62-0604-c.
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II. SYSTEM DESCRIPTION

A HEAT PIPES

Two heat pipes, identical in fu:rction and differing
only in length, were fabricated and installed. As shown in
Fig. 1, the heat pipe consists of a section of 6061 T -6
aluminum tubing (1 inch OD and 0. 065 inch wall) that is
sealed at the ends by welded caps. A wick structure con-
sisting of an annulus of six layers of 120-mesh aluminum

TUBING /
-~

|~

END CAP

WICK

Fig. 1 SCHEMATIC TF HEAT PIPE

wire cloth is in contact w.th the inside diameter of the tub-
ing. The heat pipe is evacuated by a vacuum pump and
charged with slightly more than enough Freon-11 to wet the
wick. Freon-11 was chosen for the working fluid because
of its low freezing point and because its nonflammable
characteristic made it safe to use in a welded structure. A
further advantage was its low pressure at the expected
operating temperature range. After charging, the pipe is

-.o-
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hermetically sealed by a double seal welded closure to in-
sure the integrity of the pipe. This operation is the most
critical of all during the fabrication process. Any leakage
path, however small, will ultimately result in leakage of all
the working fluid from the heat pipe in the hard vacuum con-
ditions to which it is subjected.

During operation, heat enters one end of the heat
pipe and vaporizes some of the fluid. The Freon vapor
travels to the cooler end of the pipe, where it condenses.
The condensed fluid is returned to the hot, or evaporator,
end of the heat pipe by the capillary action of the wick. The
result of this closed cycle operation is that large amounts
of heat can be transmitted with a very small axial tempera-
ture gradient along the outer surface of the isothermal sec-
tion of the heat pipe.

B. GENERAL ARRANGEMENT

Figure 2 shows the arrangement of the components
of the system. The heat pipes, shown by dashed lines, are
arranged in a horizontal plane parallel to the XY plane and
below the library floor. (The arrangement of the heat pipes
in a horizontal plane allows the system to be tested in a 1g
environment.) The short heat pipe connects the SECOR
(sequential collation of range) unit with the C-band tran-
sponders, and the long heat pipe connects the C-band tran-
sponders with the range and range rate transponder.

C. CONDUCTION HEAT TRANSFER PATHS

Because of a design requirement to keep GEOS-II as
similar to GEOS-I as possible, it was necessary to use long
conduction heat transfer paths to and from the heat pipes.
These conduction paths represent the greatest portion of the
overall thermal resistance of the system. The design ap-
proach is illustrated schematically in Fig. 3. A 0.5-inch-

thick heat sink plate of aluminum alloy 2024 is mounted to the

library wall. The transponder is in turn mounted to the heat
sink plate. A thin insulating film between the transponder

-4
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Fig. 2 GENERAL ARRANGEMENT OF HEAT PIPE SYSTEM
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and the heat sink plate provides electrical insulation, which
slightly increases the thermal resistance. A clamp assem-
bly, bolted near the bottom of the heat sink plate, holds the
heat pipe for a distance of 5 inches. Indium foil is used to
‘insure good thermal contact between the heat pipe and the
clamp and between the clamp and the heat sink plate. The
transponder, clamp assembly, and heat pipe are covered
with a rnultilayer, reflective-type insulation. As shown by
the figure, heat generated in the transponder may either be
radiated to other parts of the spacecraft or be transferred
by conduction to the heat sink plate. Part of the energy
reaching the heat sink plate is transmitted to the library
wall by conduction, part is radiated to other parts of the
spacecraft, and the rest is transferred by conduction to the
heat pipe via the clamp assembly.

D. INSTRUMENTATION

Six telemetry channels were allocated specifically
for the heat pipes. Four of these channels werc used for
temperature measurements along the length of the long heat
pipe, and one was used for a temperature measurement mid -
way between the extremities of the short heat pipe. Cali-
brated thermistors were used as the temperature sensors.

The remaining telemetry channel was used for a heat
flux measurement. The sensor in this case was a thermo-
pile manufactured by Hy-Cal Engineering Co. that had a
rated output of 100 mv at 500 Btu/hr ft2 thermal input. The
sensor is rectangular, approximately 2.25 x 0.5 x 0.080
inches thick. A slot was milled into the flange of the range
and range rate clamp assembly to receive the component.
Again, indium foil was used for good thermai contact. The
output of the thermopile was connected to a specially de-
signed amplifier (Ref. 6) to ensure that the telemetry signal
would be adequate in amplitude. The flux sensor/amplifier
system was bench-calibrated as a unit. A known amcunt
of electrical power was supplied to a cylindrical heating
element held by the clamp assembly, and the heat was re-
raoved through that area of the heat sink plate that was in

-7-
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contact with the range and range rate transponder.

The out-

put of the amplifier was read on a digital voltmeter, and
heat flux was plotted versus amplifier output to obtain the

calibration.
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III. PERFORMANCE

A. BENCH TESTS

Bench tests were conducted using the equipment illus -
trated in Fig. 4. The main pieces of equipment are a refrig-
erator unit, a cooling tank, and a 24-point temperature re-
corder. An absolute pressure transducer, together with a
wheatstone bridge and voltmeter, measures vapor pressure,
Copper -constantan thermocouples, affixed to the exterior of
the heat pipe, are used to sense temperature. The conden-
ser end of the heat pipe protrudes through a seal in the cool-
ing tank wall; the evaporator end of the heat pipe is heated
by means of a concentric heating element. The heat pipe is
completely insulated, with the exception of the condenser.

The refrigerator unit is equipped with a compressor
that constantly circulates refrigerant through two evapora-
tors. The main evaporator is located in the cooling tank,
and the auxiliary evaporator is in the cabinet. A sensing
bulb and a bellows assembly control the temperature of the
coolant, which is a mixture of water and antifreeze. When
the temperature reaches the control setting, a solenoid
valve is energized, diverting the reirigerant from the main
to the auxiliary evaporator.

At the conclusion of the start-up transients, the heat
pipe exhibits a steady-state behavior in which the section of
the pipe between the condenser and evaporator is nearly
isothermal. This temperature can be varied by changing
the power level, changing the cooling bath temperature, or
changing the evaporator or condenser areas. Conditions
may also vary if the pipe is not fully evacuated prior to be-
ing charged with the fluid or as a result of a lezk that allows
the fluid to escape or air to flow into the pipe. Figure §
shows the mean heat pipe temperature as a function of input
power level. The mean temperature increases linearly with
power level. The effect of bath temperature is also shown.
For the conditions of the experiment, a change of bath temp-
erature of 6. 5°F resulted in a mean heat pipe temperature
difiererice of about 6°F.

-9-
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B. THERMAL VACUUM TESTS

The GEOS-II spacecraft was subjected to three basic
types of thermal vacuum tests: maximum Q, corresponding
to the hottest expected conditions to which the satellite
would be exposed; minimum sun, corresponding to the cold-
est expected conditions; and hang-up, which simulates the
maximum expected thermal gradients across the satellite.
The maximum Q case occurs 10 days after transition from
less than 100% sunlight exposure to 100% sunlight. The
solar constant, albedo, and power generated by the solar
array were assumed to be maximum for this case. The
minimuam sun case simulates the resultant solar exposure
when the orbit normal is perpendicular to the earth-sun
line. The solar constant, albedo, and power generated by
the solar array were assumed to be minimum for this case.
In the hang-up case, the orbit normal is parallel to the
earth-sun line, and the same side of the satellite is always
facing the sun.

Figures 6, 7, and 8 show heat pipe system perform -
ance during thermal vacuum testing of the three cases.
Note that the modes of satellite operation are slightly dif-
ferent: all three transponders were on for the hang-up
case (Fig. 8), whereas only the SECOR was on for the mini-
mum sun and maximum Q cases (Figs. 6 and 7). The
small temperature gradients along the outside surface of
the long heat pipe are evidence of proper operation.

In Fig. 6, heat flows toward the C-band transponders

from both the range and range rate and SECOR transponders.

The temperatures of the transponders and heat pipes are
relatively low as a result of the simulated low exposure to
sunlight. The SECOR temperature is largest owing to the
fact that this component was energized and was, therefore,
generating heat.

Figure 7 shows the results ior the maximum Q
case, again with only the SECOR energized. The tran-
sponder temperatures are the maximum of the three cases.
In this test, heat was transferred from the SECOR through

-12-
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the short heat pipe to the C-bani iransponders and thence
through the long heat pipe to the rangu: and range rate tran-
sponder. A total of 18. 1 watts of heat flux was measured
by the flux sensor.

Figure 8 shows the hang-up case with all transpon-
ders on. The maximum amount of heat was transmitted in
this case, and a maximum temperature difference of 57. 4°F -
between the SECOR and the range and range rate transpon-
der occurred.

A series of tests was also conducted to show the
effect of heat pipe failure on thermal performance. To
accomplish this, the spacecraft was tilted 10° about the
x-axis to defeat the action of the heat pipe. The tests were
conducted in such a manner that the C-band transponders
were always hotter than the range and range rate tran-
sponder. The C-band transponders were at a higher ele-
vation than the range and range rate transponder, and the
capillary pumping action was insufficient to overcome the
gravity head. Therefore, the heat pipe fluid collected in
the lower end, and all heat transferred by the pipe was by
conduction through the wick and tubing.

Figure 9 shows the temperature gradient along the
‘long heat pipe while the spacecraft was in the tilted config-
uration. At 0521 the temperature difference between the
sensors that were farthest apart was about 30°F. At this
time, the range and range rate transponder was interro-
gated, causing heat to flow in the opposite direction. In
this case, gravity aided the return of the condensed fluid.
The temperature profiles taken at 0615, 0732, 0900, and -
1103 show the rate at which the initial large temperature
gradient was reversed as the heat pipe attained steady
state. It is interesting to note that the measured heat flux "
increased from an initial value of 14. 8 watts to 75. 5 watts
at 1103. This resulted from the fact that, initially, the
Freon vapor condensed very close to the range and range
rate clamp. As the outside of the heat pipe was warmed by .
this condensation, the vapor traveled farther and farther
before the slight vapor superheat was removed ana conden-
sation occurred. As a result, more of the fluid near the ..

-1a¢- P
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range and range rate end of the pipe, which had flooded this
(evaporator) portion of the pipe, vaporized. The evaporator
area therefore increased and the heat transfer rate improved
until, finally, normal operation was restored.

C. PERFORMANCE IN ORBIT

As mentioned previously, the purpose of the heat
pipe system is to minimize the temperature differences
among the transponders. Although the temperature differ-
ence may be made smaller by energizing the coldest tran-
sponder or by not energizing the hottest transponder, such
a scheme imposes a constraint on satellite operations.
Further, it is even possible that the transponder might get
so cold that it could not be operated. For these reasons,
the heat pipe system was installed on the spacecraft.

‘Table I compares the extreme temperatures and
temperature differences between the SECOR and range and
range rate (R/RR) transponder covering the latter part of
1965 and all of 1966 for GEOS-I and for the 145 day period
between days 16 through 160 of 1968 for GEOS-II. (The
C-band transponders were not included in this comparison
since GEOS-I was not equipped with them.) Based upon
this limited sample size for GEOS-II, considerable im-
provement is noted in all respects.

Table I

Comparison of Transponder Temperature Extremes

SECOR Temp. (°F)

R/RR Temp. (°F) Maximum AT (°F)

Max. Min. | Max. Min. {SECOR-R/RR | R/RR--SECOR
GEOS-I| 110 6 | 138 12 65 95
GEOS-II| 83 34 79 37 36 <

-18-
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Of particular note is the large raximum temperature,
138°F, of the GEOS-I range and range rate transponder and
the maximum temperature difference of 95°F. These data
points were taken during January 1966. Calculations made
for GEOS II predicted a maximum temperature difference of
92°F without the heat pipe system and 32°F with the system
(Ref. 7). Tests subsequently showed that the thermal re-
sistance of the clamp assemblies was somewhat higher than
the value used in the calculations and that, hence, the maxi-
mum temperature difference would exceed the predicted
32°F.

The effect of the heat pipe system on reducing the
maximum temperature among the transponders may also
be seen in Figs. 10 through 13. Figure 10 shows the mean
maximum temperature difference, averaged daily, as a
function of time. The trend, shown by the dashed line, is
seen to be slowly rising. This trend is believed to be
caused by more frequent transponder operation and the en-
vironmental conditions. The environmental conditions for
most of this time period closely approximate the maximum
Q case of the thermal vacuum test (Fig. 8). Figure 11
shows the comparable data for day 100 through day 160.
During this period, satellite operations became more rou-
tine, and the resulting mean maximum temperature diff-
erence was computed to be 7. 4°F with a standard deviation
of 2.5°F.

Figure 12 shows the daily differences between the
mean temperatures of the long and short heat pipes. The
mean was calculated to be +0. 4°F with a standard deviation
of 3.5°F. Good agreement is shown with Fig. 10, since the
mean temperature of a heat pipe lies somewhere between
the temperatures of the transponders that it connects. In-
asmuch as the axial temperature gradient along a heat pipe
is small, this figure also shows that the clamps represent
the largest thermal resistance in the system. Figure 13
shows comparable data for day 100 through day 160. These
data prove the satellite to be quite stable thermally. The
mean and standard deviation of the heat pipe temperature
differences during this period were calculated to be -0. 1°F
and 1. 6°F, respectively.

-19-
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Figures 14 and 15 show the performance of the heat
pipe system in orbit. These sets of data were selected be-
cause they represent the greatest measured heat trancfer
rates during the period of observation. In Fig. 14, all
three transponders were energized, and a total of 43.5
watts was measured at the 11nwx sensor. A temperature
gradient of 1. 7°F was measurea nctween the two most re-
mote thermistore on the long heat pipe; the maximum tran-
sponder temperature difference was 26, 9°F.

Figure 15 illustrates a case where the heat flow is
in the opposite direction, that is, from the range and range
rate transponder toward the C-band transponders. As is
shown, a power level of 64.0 watts was measured by the
flux sensor, with a temperature gradient of 3. 5°F being
measured between the most remote thermistors on the long
heat pipe. The maximum transponder temperature differ-
ence is 25, 3°F.

. It was shown previously in Section III, B that the
beat pipe can act to reverse an axial temperaturc gradient
on the outside of the heat pipe. In orbit, such a condition
ozcurs when the spacecraft orientation with respect to the
sun changes radically or whenever a colder transponder is
energized. Figure 16 is an example of such a temperature
gradient reversal. As a result of the C-band transponders
being hotter than the range and range rate transponder, an .
initial gradient of 1.9°F existed between the two most re-
mote thermistors. The range and range rate transponder
was then energized, causing the external ieat pipe tempera-
{ure gradient to reverse. Approximately 18. 8 watts were
being transmitted through the pipe when the last data were
obtained. .-
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IV. CONCLUSIONS

During the period of observation, both heat pipes
performed normally.

Heat fluxes of as much as 64 watts have been trans-
mitted.

The range between the maximum and minimum
transponder temperatvres for the 145 day period of
GEOS-II observations was considerably smaller
than the range observed for GEQS-1 over a much
longer period. Further observation of GEOS-II is
required before a firmer conclusion may be drawn.

Reversal of the heot pipe axial temperature gradient
has been observed both in thermal vacuunm tests and
Jduring orbit.

The mean difference between the heat pipe tempera-
tures was small during the period of observation.

As a result, it is concluded the heat pipe system per -
formance was not biased either by spacecraft attitude
or by operation of the (ransponuers.
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