@ https://ntrs.nasa.gov/search.jsp?R=19700006333 2020-03-12T01:54:43+00:00Z

llSﬂ 4-05-68-7 « OCTOBER 1969

llSC-!-ﬁﬁ-ﬁ!-'I

ELASTIC AND PLASTIC STRESSES AT WELD
SINKAGES AND OTKER DISCONTINUITIES
IN PRESSURE VESSELS

). SKOGH and A. M. C. HOLMES

N?@'l%eaz

T ; -~ 7/ o CONTRACT NASS-8303
. ')/ “R) t

§
x

Lrckhrod

\(7q;q7L
PALO ALTO RESEARCH LABORA‘*\*’O’"RY

LOCKHEED MISSILES & SPACE COMPANY » A GROUP DIVISION OF LOCKHELI AIRCRAFT CORPORATION
PALO ALTO, CALIFORNIA



opr/pA07/

WS g~ ¥303

ELASTIC AND PLASTIC STRESSES AT WELD
SINKAGES AND OTHER DISCONTINUITIES
IN PRESSURE VESSELS

By
J. Skogh and A.M.C. Holmes

IMse/b-05-69-7 October 1969

Lockheed Palo Alto Research Laboratory
Palo Alto, California



FOREWORD

The research described in the present report was performed under
Contract NAS9-8303 with the NASA/Manned Spacecraft Center, Houston,
Texas, with Mr. H. C. Kavanaugh as Contract Monitor.

The following persons made significant contributions to the work:

Mr. J. Skogh
Mr. A.M.C. Holmes
Dr. C. R. Steele
Mr. P. Stern

Mr. M. Karal

Mr. S. Jenseca

i1

Project Leader
Experimental Program
Consultant, Asymptotic Solutions

Consultant, Elastic-Plastic Computer
Programs

Methods
Programming

e
i

AL UL G AR

e



ABRSTRACT

Two problems of geometric discontinuities in pressure vessels are
treated in detall: mismatch and weld sinkage. Design graphs are given
for elastlic stresses in such discontinuities for arbitrary materials and
4 wide range of geometiries. Nonlinear pressure coupling effects are
accounted for. Design graphs for plastic stresses, including residual
stress, are given for cylindervs and spheres with weld sinkage type dis-
continuities. These graphs are applicable to materials with stress-
strain curves resembling that of titanium 6A1-hV. Failure criteria

for static and cyclic loadings are discussed.

The methods employed in generating the data required for the design
graphs consisted of a synthesis of asymptotic, closed forﬁ solutions
and parametric computer studies. The theoretical resulis weie checked
vith a test program using cylinders and spheres with weld sinkage type
discontinuities. Excellent correlation between theory and test was

achieved.

In addition to the soluticns of mismatch and weld sinkage problems,

recommended engineering solutions for a large number of discontinuity
problems are given in a matrix with systematically classified discontinuities.
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Section 1
INTRODUCTION

The present work is an effort to apply state-of-the-art knowledge
to the soclution of certain problems relating to discontinuities in
rotationally symmetric shells subjected to internal pressure. While, of
course, an elementary aspect of the design of a pressure vessel is to
avoid discontinuities in thickness, radius, and slope, such discontinuities
are the rule in the manufactured product. A typicsl example is weld
sinkage, another is mi:match. Both these problems are being considered in
this work., and design curves are glven, as follows
¢ Elastic stresses in undercut and/or mismatched shells
for arbitrary shell configurations
@ Elastic stresses in weld sinkage type discontinuities
for arbitrary shell configurations
¢ Plasticity effects, including residual stresses and
strains, in cylindrical and spherical pressure vessels

with weld sinkage type discontinuities. Material:
Titanium 6A1-4V, or similar.

In addition, a method for the approximate determination of low-cycle fatigue

is given.

The discontinuity problem is here treated from the theory of tlin
shells point of view. Thus, local stress concentrations in the sense of
the theory of elasticity are not being considered. This is in keeping
with current praxis and does nov introduce any limitations on the results
glven, except for high-cycle fatigue, where the elastic stress concentraticns
can be important. However, this latter problem is not .art of the present

study.




While one of the discontinuities treated here in detail is referred
to as "weld sinkage", and another is "mismatch and/or undercut", this
nomenclature should not be conatrued as to imply that the complete problem,
inciuding stresses introduced duriug the fabrication process, has been
solved. Rather, only the geometric aspects are being considered; the
discontinuities are assumed to be frec of residual stresses arnd strain at
the application of the first pressurz load. However, residual stresses
and strains which result from this (and subsequent) icad cycles can be

determined from the information contained here.

The results given in this report have been obtained by the application
of beth analytical and direct numerical methods. The numerical methods used
consists of two computer programs, BOSOR [ljr for elastic, and EPSOR {2 ]
for elastic/plastic analyses. While the direct numerical methcds can be
used to very good advantage for the analysis of virtually any geometric
shape, the disadvantage of the numerical analysis is that the proper
grouping of the many physical variablesg of the problem into a few significant
parameters is very difficult to discover. On the other hand, the simplif.ed
analytical methods of asymptotic integration give such groupings directly.

In the present investigation the two approaches proved most complementary,
and rather than a duplicetion of effort an interaction of disvovery was
evident at several points of the investigation. The asymptotic results
would give the significant parameters, which were confirmed by numerical
results. On severél occasions the numerical results would suggest a
simple general behavior, thus motivating an analyvical effort in that
direction. Where analytical investigations wald appear to be toco
cumbersome, or difficult, corrections to a simpler analytical result would
be generated by the numerical methods. Examples of this is the nonlinedr
behavior in the elastic region and the discovery of identical behavior for
cylinders and spheres with weld sinkage**‘ Another example is the considerable

*Numbers in square brackets indicate references in Section 8.

**However. both these problems have since been dealt with in considerable
analytical detail by the consultant, C. R. Steele.
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difficulty ia tresting the elastic/plastic problem analytically.

A small experimental program, comsisting of measurements on titanium
spheres and cylinders with carefully machined-in weld sinkage type discon-
tinuities was also a part of the present work. While the experimental study
of shells with discontinuities is made very difficult by the rapidly
varying stress distributions, and the virtuai impossibility of making
measurements &t the point of maximum stress, the results of the tests do
verify the analytic and numerical results, both elastically and plastically.
During the tests care was taken not to collapse the test specimen, the
reason for this being the possibility of using the same specimens for
low-cycle fatigue experimentation at a future date.

The main goal in the present investigation has been the establishment
of the design curves in Section 5. Typical uses of these graphe would Yte

0 Determination of acceptable drawing tolerances for weld

sinkage and/or mismatch for pressure vessels

e Determination of internal p..o.sure capabilities for shells
with manufacturing defects in the form of weld sinkage

While the design curves have been derived specifically for two types of
discontinuities (meridional slope discontinuity, and mismatch/undercut) for
two shell types (spherical and cylinarical) they shou’d be applicatle, at
least approximately, to shclls with arbitrary discontinuities. This
statement is warranted oy the high degree of uniformity of shell behavior
found in the present study, which indicates that the sigpnificant aspect
about a discontinuity is not its shape, or geometry, but only the degree

to which induced forces are added to the basic wembrane forces. Thus, a

discontinuity can be cheracterized solely, or practically so, by the

moments and sliears which are induced by it.




Section 2
ELASTIC ANALYSIS

Determination of discontinuity stresses is an important problem in the
design of pressure vessels. Discontinuity stress can arise from three

baslic sources:

8 Geometric discontinuity. (Abrupt change in radius of curvature
and/or thickness of the shell.)

e Material discontinuity. (Abrupt change in mechanical properties.)

o ILoad discontinuity. (Abrupt change in load intensity of static
loading - "line load".)

In an actual structure these causes may, of course, appear singly or in any

combination.

The linear elastic analysis of thin shells of revolution is at the present
well founded and prediction of stresses in such structures can be made with
relatively high accuracy. For simple shell geometries, solutions to the
discontinuity problem have been obtained in closed form. For more complex
geometries, numerical techniques have been employed, and a number of computer

programs are available.

At the start of the present investigation a survey of existing methods
of ana ysis was made. As a result of that survey the matrix of Appendix A
was developed. This matrix lists available methods (other than computer
programs) for a number of systematically classi’ied discontinuities. Most
o° these may be thought of as intentional discontinuities, necessitated by
design. Accidental discontinuities arising from the manufacture process
are poorly represented - actually only methods for elastic analysis of

cylinders with mismatch and undercut are available. Consequently, the
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present investigation has been directed to fill this gep: the discontinuities
treated here are mismatch/undercut and weld sinkage in cylinders and spheres

(and, by extension, in arbitrary shell configurations).

Both closed form solutions and computer programs were used to develop
the methods ot analysis presented in Section 5. The derivation of closed
form solutions for the linear elastic problem are shown in detail in
Appendices B and C. The solutions given there, and used throughout the

present work, are based on the following assumptions:

a) Normals of the undeformed middle surface are displaced into

normals of the deformed middle surface;

b) Transverse shear strains and stress normal to the

shell midsurface are negligible;
c¢) The thickness~-to-radius ratio is small;
d) The material is homogeneous and isotropic;
e) Deformations are small;
f) Hooke's law applies;

Similar solutions together with numerous results, graphs, charts and tables
useful in design situations can be found in references by Timoshenko {3] ,
Flilgge (4], Novuzhilov (5], and Tsui (6], among others. Asymptotic
solutions for the nonsymmetric loading of elastic shells can be found in
recent. works by Steele [T & 87.

Most of the closed form solutions suffer from one or more of the
following limitations:

o They are applicable to celastic analysis only;

o The range of geometries covered is rather limited;

o With few exceptions only uniform thickness shells may be analyzed;

o

They assume implicitly, through the use of the principle of super-
position, a linear relationship between load and deformation.

These limitations seriously restrict the applicability of closed form
solutious. However most of these limitations have been removed by the use



of numerical methods in conjunction with the use of high speed digital

computers.

The importance of nonlinear elasticity appears to be largely un-
appreciated, even though Nachbar {9] in 1959 showed that stiresses comruted
on the basis of the classical theory may be unconservative, depending on
loading and geometrical parameters. Briefly, the deficiency stems from the
assumption that the principles of superposition are valid; 1.e., the
influence coefficients are independent of the pressure acting on the shell.
This assumption is implicitly stated in the derivation of these methods by
writing the shell equilibrium equations in terms of the undeformed shell.
Nachbar's investigation, which takes into account the nonlinear interaction
of membrane and discontinuity stresses, shows that as the membrane stresses
become "large" there is an appreciable decréase in the influence coefficients;
the shell becomes apparently stiffer under pressure. In the present work
the norlinear effects have been determined numerically by application of the
computer program BOSOR [1]. This program, being thoroughly checked out in
about two years of operation, was also used to check out the nonlinear,
elastic, portion of the computer program used for the plasticity analyses
(see Section 3).

The BOSOR computer program solves the Reissner nonlinear shell equations
[.0] for the thin shell of revolution by the method of finite differences:
the nonlinear differential equations are reduced to a set ~f nonlinear
similtaneous equations, which are solved by iterating a suitable set of
linear equations until the desired convorgence has been achieved.
Reference [1] contains a detall discussion of this method of solution.

2.1 Stress Factors

In the present report the term stress factor is used to relate the
stress at a particular point to an easily determined reference stress,

the meridional membrane stress.




The meridional membrane stress in the basic shell is

N
4 PRy
< ° Bt (2.1)

o, = 5t

“

This equation is valid for all axisymmetric, closed, shells with pressure

loading. The uniaxial stress factors are defined in temms of the hasic

meridional stress:

o
w, pa
%
(2-2&,b)
c
= -8
°e o
@n

According to the von Mises yield criterion the equivalent stress §

is related to the uniaxial stresses by the equation

g =-\/Zé + 02 -g o (2.3)
o e o ©

An equivalent, or effective, stress factor is defined similarly to the

uniaxial stress factors

b’ :i
o p
By
or o =Va2 + 012 -a @ (2.4)
(0} 8 o ©

Further, a reduced stress factor is defined, as follows

(2.5)

o

SQIIQ:

where Eh is the equivalent stress factor in the membrane region of the shell.
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For the sphere the reduced stress factor becomes
a=& (sphere)

and for the cvlinder
a=8/ ﬁ (cylinder)

The stress factors are, by definition, a function of the particular shell
geometry under study. They are also a function of the applied loading, i.e.
they are nonlinear. This elastic nonlinearity is a relatively recent
develcpment in the theory of shells with dlscontinuities; the first thorough
investigation of the subject was made by Nashbar [9], who found that the
influence coefficients of thin . .clis are a function of a pressure parameter

p = > P " 5 {2.6)
:73(1_v2) E (“ﬁe)

Thus, since the stress is a function of the influence coefficients, the stress

factors o » ao » @ » and o are also function of the pressure parameter g
®

1
acp = rxv(p)
ae = ae (p) s (2.7)
@ = & (p)
o = o (p)




2.2, Mismatch and Abrupt Thickness Change

Bizon [ 11] has already investigated the elastic stresses in a cylinder
with mismatch and/or thickness change for several joint configurations,
including lap filleted and unfilleted butt joints. The unfilleted butt
joint (see Fig. 2-1) was selected in the present work as a subject for
studying the behavior of any shell with such a discontinuity, and if possible,

for developing a universal design graph for such shells.

Bizon's results are presented in the form of charts showing an
effective, blaxial, stress factor as a function of the geometry and the
pressure parameter o . For the purposes of the present investigation,
however, the individual uniaxial stress factors are required. Consequently,
these factors were computed using the BOSOR [1] computer program. Complete
design graphs showing the maximum stress are presented in Section 5.1.1.

The primary effect of a mismatch is that a moment equal to W AR 1is
introduced into the shell. If the thickness on eilther side is theq;ame one
half of this moment will be absorbed by the left shell and one half by the
right shell, resulting in an antisymmetric stress and deformation situation.
The maximum stress occurs at the point of application of the moment. Since
this moment is of the nature of an externally applied line load, and not
affected by the influence coefficients, no nonlinear effects will occur at
the discontiruity, however, the attenuation length will be slightly changec and
consequently the lower stresses at some distance from the discontinuity behave

in a slightly nonlinear way.

When the thicknesses in the two joined shells are unequal the external
discontinuity moment will be distributed between the two shells in proportion
to their thicknesses. Secondary forces in the form of shear and moments
caused by the restraining effect of the shells on each other are also
induced, resulting in stresses at the discontinuity which are highly dependent
on the influence coefficients and thus nonlinear. In the extreme case, where
the thickness ratio of the shells is zero, the thinner shell becomes fully
clamped and is prevented from rotation at and in the vicinity of the

<oy
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Unfilleted Butt Joint

(a) GEOMETRY

(b) PRIMARY
FORCES

(C) DISCONTINUITY
FORCES,
ta/tb - O



discontinuity (see Fig. 2-lc). 1In this case, however, the stress variation
at the juncture is linear. The reason for this is the absence of rotation at
thirs point; an examination of the nonlinear equations indicates that the
dominant term for nonlinear effects is (rotation) x (axial stress resultant).
Figure 2-2 shows results from computer computations for spheres and cylinders
with a clamped edge (cr ta/tb = 0). Unexpectedly, the stress factor for the
sphere increases as the thickness ratio R/t decreases.. The explanation for this
probably lies in the fact that the thicker shell has a longer boundary

zone, which extends sufficiently for it to be affected by the shell curvature.
This explanation seems to be backed up by the curves for the cylinder which
is rot affected in this way. However, the cylinder shows a slight bon-
linearily with increasing loads (higher p) which probably is accountable

to higher-order effects (rotations close to the clamped edge are roughly
twice as large for the cylinder as for the sphere).

For cases intermediary to the two extremes a definite nonlinear behavior
is evident, as shown by design curves in Section 5.1.1., Further illustrations
of this are provided by Figures 2-3 and 2-4 which show deformation and
stress resultant curves for cylinders and spheres, respectively. The plots are

made for two values of the nonlinearity parameter, 0.5 and 5. The values

- for the lower load have been multiplied by a factor of 10 so as to offer a

direct comparison between the two loads. If . aonlinearity effects were
present the curves for the two loads would have been identical. The
maximum streés always occurs in the thinner shell. The similarity between
the cylinder and sphere curves and the well known fact that in the vending
analysis of nonshallow shells any shell can be approximated by an equivalenc
cylinder* suggests the possibility of using the results for cylinders with
mismatch feor any shell.

Consider any one of the design charts in Section 5.1.1, for example the
one oun page 5.20. At m = ) the only cause for the bending moment which

*See, for example, Ref. [12], p. 68 ff.
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exists there is the differential radial displacement which occurs in the

membrane solution (the thinner shell expands more thar the thicker one).

If, for any reason, this displacement is changed, the bending moment will
change in proportion. Thus,

or y = (-%—) AS+ 1

where p § = differential expansion

As a mismatch, m, is introduced, an additional moment is introduced into
the structure. This moment is of the nature of an exfternally applied load,
and is not affected by the differential expansion A § . Thus, by simply
moving the family of curves up or down (or displacing the intercept at m = O
in proportion to A §) the graph should be applicable to any shell geometry
that fits the category mentioned in the beginning of this chapter. A

conversion formu:la which describes this parallel displacement is

(@) = (@) -(--R)(@ -1) (2.8)
© gR ? cyL Scyr, %

for meridional stresses. For the hoop stresses the following formula is

derived

) 8
SR SR
(ae) = 1+ (ae) - (o) (2 - yo. ) - 23 (2.9)
SR CYL o) CYL CYL
vwhere '
N - v N
= O S
6 -2
CYL PR, (1 2)
R2 = Radius at the discontinuity measured
normal to the shell meridian (hoop radius)
Ne = Membranz hoop stress resultant
m
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N = Membrane meridional stress resultant
B

o » @& ¢ Intercepts (m = Q)

%o 8

Subscripts SR = Shell of Revolution

CYL

"

Cylinder

The intercents g and qe are taken from the appropriate curves. Note,
that in the cases(?\?here ‘the Qurves have the following shape

(s 4

(]

there are two intercepts, one for the branch of the curve with negative

slope (ao) » and one for the branch of the curve with positive slope (q:) .

Applying the formulas to the sphere, for which Nm = Nm = _p;. ,
one gets the following conversion formulas: 8 ®
(a@) = (orv) - .588 (% - 1)
SR cYL (o] Sphere
(ag) = (o) - .588 o + 277 (v = 0.3)
SR CYL (o]

These formulas were used to calculate stress factors for a sphere with
ta/ t’b = .4 for varying mismatch and ncnlinearity factors p + The results,
compared with independent computer solutions, are shown in the table

below:
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Meridional Stress Factor, a§ Hoop Stress Factor, %
4] m = 0)4' m=1 m= 0,4' m = 1
Eq. 2.8|Computer|Eq. 2.8{Computer Eq. 2.9)jComputer|Eq. 2.9|Computer

01 1.49 1.45 2.68 2.62 1.02 1.01 1.64 1.54
11} 1.60 1.56 2.83 2.79 1.02 1.02 1.58 1.52
2| 1.66 1.61 2.91 2.87 1.02 1.03 1.54 1.50
31| 1.69 1.64 2.96 2.91 1.02 1.03 1.52 1.49
41 1.73 1.67 3.00 2.94 1.02 1.03 1.51 1.48
51 1.76 1.68 3.04 2.96 1.02 1.03 1.50 1.47

These results show very good agreement between the two methods.

The unfilleted joint is, of course, an abstraction and in reality
there vwould always be a fillet or a radius between the two mismatched shells.
If the fillet is relatively small, say of the order of the shell thickness,
the effect on the maximum stress is surprisingly small. In Fig. 2-5a
comparison between the unfilleted joint and a 45° filleted Joint* is made for
the case where the thicknesses are equal on either side of the shell. The
figure shows that the effective stress factor o is quite insensitive to the
fillet, except for the very high nonlinearity parameter value of p = 10.
(It is doubtful that much higher values than p = 1 will be experienced for
metal pressure vessels.) The geometry selected for Fig. 2-5 shows the
largest difference between the filleted and the unfilleted joints. As the
thickness ratio .ta/tb decreases the differences become progressively
smaller, and at ta/tb = 0 the resulis for filleted and unfilleted Jjoints

are identical.

*Date taken from Bizon [11]
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Fig. 2-5 ©Effective Stress in Filleted and Unfilleted Butt Joints

2-15




2.3 Weld Sinkage

The term weld sinkage is here used to describe a meridional slope
daisc~ntinui*y of the general shape indicated by Fig. 2-6. The discontinuity
is symmetric around the circumference of the shell and also symmetric with
respect to its lowest point. Discontinuities of this type frequently occur
during welding. However, in the present report only the geometric effects
of the discontinuity are studied; residual stresses which could have been
introduced during the welding process are neglected and the shell is
considered stress (and strain) free before the application of the first

pressure loading.

The geometry of a shell of revolution is fully determined by two
quantities: +the meridional radius of curvature, r) s and the hoop radius

of curvature, r These two quantities, in turn, are functions of the

meridional geomgtry, and are variables within the zone of discontinuity, L.
For the purposes of parametric investigations it is convenient to be able
t0 express the radii of curvature analytically. Any number of equations
may be used to describe the general shape of the discontinuity zone "L"

in Fig. 2-6, however, the equation
r(s) = R(L - ¢ e~ KIsl/R) (2.10)

is particularly useful since it, as shown in Appendix C, permits a closed form
solution. The main sinkage geometry parameters, length, depth, and angular
change become, for this representation

L - o
2 arc sin (¢ X)

Ao

The fact that the sinkage length is infinite means, simply, that L is not a
*
parameter for this particular geometry . However, by manipulation of the

*As is shown later, I has no influence on the maximum stress.
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arbitrary constants ¢ and K , values of L which for all practical
purposes are finite may be simulated. For example, the geometries shown

ia Fig. 2-7 result from verying K.

Fig. 2-8 shows typical stress and deformation curves for a cylinder with a
slope discontinuity defined by Eq. 2.10 as computed by the use of the computer
program BOSOR. Nonlinear effects are shown by the difference in the curves
for p =0.5 , and the curves for p = 5. (The abscissas pertain to the
higher load; the curves for p =0.5 have been multiplied by a factor of 10.)
For the higher load the maxinum stresses exceed considerably the strength
capabilities of existing metals and this high load is used only to
illustrate the trend of the nonlinearity effects.

The stress factors developed in Appendix C for cylinders with dis-
continuities described by Eq. 2.10 are

1/2 1/
=1 3 ) R 1+ Ve u 11
a = 1+ ( 5) ex(%) e

1-v 1+ u? +
i R 1/2 1
@ = 2+eK("2‘5) T -« ole, 1) (2.12)
where o (cRK2 )1/2 1)
R — (2.14)

N /121 - 8)

It is interesting to note that while Eq. (2.11) is derived for small and
relatively gentle deviations from the nominal geometry, it still is
. capable of yielding correct results over a wide range of gecmetrical
variations. Consider the following: When the parameter K approaches
infinity the shell becomes a cylinder with radius R everywhere except
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Fig. o7 Sinkage

Geometr.y Possibilities According to Eq. 2.10
with ¢ = 0.01
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at the crease, where the radius is R - R ¢ . thus creating a pure
eccentricity of the magnitude R ¢ . The eccentricity moment is then
N Re and the resulting bending stress 6N Rc/‘t;2 . Thus, the stress

factor 1is 1 + é%! + Now, from Eq. 2.11
1/2
C
1/z 20 R )1/2 Ve )
Up o = 14 (=2p) e (——-Kz 2z
Koo @ 1-v 2c (£
R
1/2 [ (. 2
. ¢ R V].2t(l v)
1..
Also -
lima =1
K-o

Thus, the equation gives correct results at both limits (K - O and K - =).

The geometrical variables appearing in the formulas above can easily
be expressed in terms of fundamental quantities, as follows

ek = sin Aw
2
eR = A (2.15a-c)
2 . _1__t 2
H R (

Vlz(l- Plt““ Azp

where py and  are defined according to Fig. 2-6, and 1/ p, 1s the meridional
curvature at the crease. Inserting these quantities into Eq. 2.11 and 2.12

one gets
( (Bin M) (2016)
—lﬁ-,-_- Vi g

R
"
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= 2 4 / sin Lo - .
@ = 3(1- -v%) (sin 5‘/[‘ . u N Wf_” ] + v(aw 1) (2.17).

In this form the stress factors are expressed only in fundamental quantities

of the sheli geometry and could thus be applied to any cylindrical shell

with a slope discontinuity. That this is not only possible but also

permissible will be shown later in this section. It will also be empirically

shown that while the above Fformulas are derived for a cylinder, they also
can be applied, with accurate results, to a sphere, if the curvature l/p1 is
taken to mean the deviation from the nominal curvature,
curvature itself.

rather than the

Nonlinea: pressure effects are not accounted for in the derivation

described above. It is, however, evident from the details of the derivation

shown in Appendix C that any modifications due to geometrical deviations

caused by the pressure should only be applied to the terms containing the

w parameter. Thus, the nonlinear effects should be a function only of the

geometric parameter , , and, of course, the pressure parameter p. By applying
the computer program BOSOR (1] to a series of shells with systematically
varied values of y and o the nonlinear effects were investigated,

resulting in the design graphs of Section 5.1.2. In the development of these

design graphs a series of checks were made on the validity of the results
and the allowable range and combination of invidivual values of the
various parameters. These checks included the followlng:

Check of Applicability to Relatively Thick Shells

The design graphs are based on computed data for cylinders with
a radius-to-thickness ratio of 100. A comparison between
stress factors obtained from the design graphs and computed
directly, for R/t = 10 was made. Results are as follows
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p?' 0.1 5
beo 10.k° 65.8°
Graph Computer Craph Computer
aw 1.63 1.49 2.82 2.77
p=0 o | 243 2.32 2.79 2.81
o 1.51 1.41 2.68 2.57
p =,5 q)
oy 2.33 2.26 2.72 2.7

The agreement is good, especially for the more severe (large Am)
discontinuities. The graphs will, apparently, always give
slightly conservative results for the thick shells.

Check of Applicability to Arbitrary Meridians

A series of computer runs were made on a discontinuity con-

fiouration in a cylinder. and a series for the same discontinuity
configuration in a sphere. In both cases the meridian was

represented by an eguation of the form

o~ ¢ ml 9" ¢ m2
) B ) 2.18
w o aTa (2:18)

Rp = R + A(

(see Fig. 2-9), rather than the expounential equation

(2.10). The total sinkage and the sinkage length were kept
constant. The change in meridional curvature, p, , was identical
for the two shell configurations. To accomplish'this the
meridian for the sphere was represented by

m

o~ ¢ L
R =R+A
TRy
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NOMENCLATURE

S/R

My A(b

T 472"

2 | 9.44° CONTOURS FOR
-0.0t L 4 |18.7° A= -00522

8 |364° L/R=0.3

12

Fig. 2-9 Sinkage as Represented by Eq. 2.18
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and for the cylinder by the formuia
2 1
2 (%" 9 "N
P - + A -
%2 % 2

By varying the exponent m the angle Ap vas varied between

R =R
D +

ol

about five and fifty degrees. Figure 2-Q shows the discontinuity
contours used in both series of runs. The radius-to-thick-
ness ratio was 106.3. Table 1 shows the pertinent data for
both the spheres and the cylinders, taken from the computer
output. The primary parameters - sinkage angle pAg and
radiuswto-thicknesé yatio - are ildentical for the spheres and
cylinders. The curvature l/p1 should ideally also have

been identical; the small differences noted in the table below
are due to the fact that these quantities are evaluated
numerically, not analytically, in the program. The parameter
42 1s calculated using the definition sccording to Eq. (2.15¢).

The table below shows very good agreement between the maximum
meridional etress in the spheres and the cylinders. Thus the
conclusion is made that there is no difference in the stress
increase for the two types of shells, regardless of the non-
linearity parameter o .

Exponent my 1 2 3 4 8 12
sphere he.72| 9°.ul)1ke.14] 18°.7 |36°.5 |52°.7
Angle, Ao cylinder| 4°.72] 9°.hbfike.1k 36°.5
1 |sphere |.001613|.06604].1930 |.3775 |[1.585 |3.279
Curvature,= | .v1inder|.00372 | .06421] .1915 1.71k
2 sphere |.00032 1.1325 |.507 ([1.080 k.75 |9.08
b cylinder| .00169 |.1250 |.500 5.56
p = .0373 sphere | 7237 | 9536 {10940 |11900 {13900 }14790
: cylinder| 7216 9530 |10920 13900
p = 615 sphere 105100 |137900]159900{175300 212h00|230500
cylinder| 104900 |137800]159600 212600
p = 1.193 sphere |188800 |246000§286500|317100 | 390900] 429700
. cylinder] 188600 |245800]286000 391400
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Similarly, the change in maximum hoop stress, compared to the

undisturbed shell, is remarkably similar for the two types of

shells,

as shown in the table below

Exponent m 1 2 3 4 ! 8 12
sphere |4°.72 [9°.hk4 "~ °.14]18.7 {36°.5] 52°.7
Angle, Ag cylinder|s®.72 [9°.4k * "o 36.5
1 sphere |.001613].066C .1930 . .377%1.585} 3.279
Curvature, T | cylinder|.00372 |.06421[.101> [~ |1.71k
2 sphere |.00032 {.132% |.507 {i.C_.;+.7519.08
b cylinder| .00169 |.1250 | .500 5,06
N sphere [401.9 [402.8 [393.8 |383.2] 348.5{ 327.2
) cylinder| 673.5 [675.5 |666.4 621 .4
p=-0373 N - N |sphere ]129.9 [130.8 |121.8 1111.2)76.5 | 55.2
@ 60 {cylinder{129.5 |131.5 jl22.4 77.b
N sphere | 6023 60k2 |s5947 5830 |5ke6 |s5167
8 cylinder| 10510 |10540 | 10450 9938
p=-615 - |senere |1535 155k k5o i3z {938 679
® 6w | cylinder| 1534 1564 | 1474 962
N sphere | 11060 |11090 | 10950 |10780] 10170| 9773
¢} cylinder| 19760 [19810 {19680 18940
p=L-193 N - §. |sphere [235% 12384 joohh 12074 | ke |1067
8 6= | cylindex| 2342 2398 |[2268 1528
Ne = total hoop stress resultunt
Ne = hoop stress resultant for undisturbed shell
(<]

A comparison between stress factors for spheres computed by the
BOSOR computer program, and by the graphs in Section 5.1.2 is

given below.

2
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my 1 4 8 12
e ,000318 1.080 4,75 9.08

& be.r2 18°.7 36°.5 52°.7
b'§'i"'e'i'f:'ﬁ'‘compufer graphjcomputer|graph]computer| graph] computer

o 1.99] 2.13 3.72| 3.50 h.32) 4.08 L.90] 4.35

p=.0373] ¥
qe 1.83] 1.82 2.41] 2.7 2.49] 2.23 2.65) 2.24

@ 1.69] 1.713 | 3.12] 2.91 | ».10} 3.59 | .75} 3.95

0=1.193| @
@, 1.54) 1.49 1.96] 1.81 2.20f 1.96 2.45) 2.04

This table shows a reasonably good agreement, comsidering that the
geometrical representation is quite different from that for which
the method of Section 5.1.2 is derived. Almost total agreement
occurs for values of m; in the range 2-3, but even for such
extremes as m = 1 (Juncture of two cones) and m = 12 (extreme
curl) the results are in fair agreement (maximum deviation

is 20% overestimation). Results similar to the above were
obtained for other conbinations of the parameters by and p .
Thus, the method may be considered ueable for a wide range of
geometries outside of the one for which the method is derived.
Thus the usage of the fundamentsl parameters (2.l5a-c) is
Justified for any sinkage configuration for which these
quantities can be determined.

The question arises as to how to determine the fundamental parameters.
The sinkage A and the angle pp can he determined relatively easily by
measurements, but the curvature change Y cannot be measured directly. The
value of the curvature does, however, only appear in the parameter ( , which
has a rather mild influence on the maximum stress and which, therefore,

does not need to be determined with exactness. If it is assumed that the
sinkage contour is according to Eq. 2.10 simple algebra gives the following
expression for
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" =-0—'%2(sin-ég) VRt (2.19)
for y = 0.3

Thus, p can be determined with sufficient accuracy from measurements of only

o and pp (and, of course, Rt).

° i
i
:
i
.
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Section 3
PLASTICITY ANALYSIS OF WELD SINKAGE

Due to the difficulty of the problem, the analysis of plasticity
effects was made almost entirely by the use of the computer program
EPSOR [2j*. This program uses a finite-difference approach where the
equilibrium and competibility equations are solved in an iterative manner.
In its original form the program was not suitable for solving discontinuity
problems. However, after suitable modifications (introducing the elastic
nonlinear effects discussed elsevwhere, and providing for a meridional geo-
metric discontinuity) the program was successfully applied to the weld
sinkage problem. With these changes the capabilities of the computer
program EPSOR are a3 follows:

Shell Geometry - General shell of revolution, definezd by two principal
radii .f curvature. The thickness is permitted to vary in the meri-
dional direction. Thin-shell theory is used, i.e., the thickness is
small in comparison to both radii of curvature.

Stress-Strain Relations - Because of axial symmetry, and the thin-
shell assumption, the only non-zero stress components are the prin-
cipal stresses ¢ and de. which ceincide with the meridional and hoop
directlions. The stress-strain relations used pertain to a temp-
erature-rdependent work-hardening material with the von Mises yleld
function. The loading possibilities are:

o For small initial changes in loads the shell rzsponse is
elastic, provided that no previous plastic straining hasg
taken place.

o As the loads are increased, stresses at certain points of
the shell reach values corresponding to initial plastic
yielding.

*However. a simplified closed form solution is shown in Appendix D.
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o Further increase in load results in the development cf

specified elastic and plastic regious.

0 At some further time during load history, unloading from
a plastic to an elastic state may take place. (Residual

stresses upon unloading are computed.)

o Reloading from an =lastic region which had been plastic
constitutes the final possibility for formation of elastic

and plastic regions.

Equilibrium Equations - The equilibrium equations are written in

terms of the deformed shell, thus giving a nonlinear behavior in

the elastic range.

Governing Differential Equations - The governing differential

equations arv analogous to those given in Ref. 3.

Metinods of Solution - The governing differentiai equations and

boundary conditions are transformed into & set of algebraic equa-
tions by finite difference approximations. At a given time In
the load history thc solution is advanced an increment in time

t by solving these equations in conjunction with the flow rules
associated with the loading function to deltermine the implicit
plastic strain increment. This is accomplished by an iterative
scheme. Finally, the complete solution for a specific load
history is glvep by an integration with respect to time by a

step=-by-step procedure.

The program EPSOR was used to develop numerical solutions for a family
of sinkage geometries as i1llustrated in Fig. 3-1. This particular geometry
conforms closely to the one¢ represented by BEq. 2.18, and is also the one
used (with variations) in the experimental program. Both cylinders and
spheres with this sinkage geometry were investigated, elastically and

plastically. The elastic solutions were compared with those obtalned from
N the BOSOR [1] program with excellent agreement. Maximum stresses computed
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by the two progra. s agreed to three or four significant figures.

3.1 Stress-Strain Relations

The use of EPSOR for plastic anulysis requires that stress-sti:uin
curves in terms of =2ffective stresses and straing are available. The defl-

initions are (see Ref. 13, p. 89)

. RS RY- Y- RV
Effective Stress o 5 v&ol 0,)" + (o) = 03)" + (o, - 03)° (3.1)

=

Effective Strain - ¢

3 Véel - eg)g + (el - 83)2 + (e, - 91)2 (3.2)

where indices 1,2, ar. 2 indinate the direction. Applying these nquations

to a uniaxia' <tress-~train curve (o] V5. gl);

o, = 03
Uniaxial

1
<

o
]

n
™
W

Then

& Uninxial  (3.3)

o
1]

B
3

V/ (1 + v, + e (L + J) +0 = % el(l +v) )

Thus, given a uniexial stress-strain curve (o V8- 31). the last two

equatlons define an eiffective siress- slrain curve.
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The toval effecsive strain is divided into a plastic and an elastic
part (Ref. 13, p. 91)

E: ; +‘_?.‘.1__+_P.la (3,!;)

p 3E

After some manipulation the following equations for effective strains result

N

(¢
ep=§(1+v) (el-gl-)
}t= % (L + v) €

> (3.5)
5.3 =2 g
Ct cp 3(l+u)nE_J;
=g_
3G J

where indices p and t stand for plastic and total, respectively. Plots
of a/36 vs. Ep and Ep VS. Et for titanium 6A1-4V STA are shown in
Fig. 3-2. The curves labeled Tita #i and Tita #6 were obtained from coupon
tests on two test specimens used in the experimental part of the present
study (see Section 6), while the curve labeled NASA was obtained from
stress-strain curves used in the Apollo program. Due to the similarity of
the curves (the only significant difference belng the ultimate strength)

it was decided toc use the NASA curve in the plasticity studies made in the

program.

3.2 Preliminary Analyses

The curves of Fig. 3-2 label=d NASA were used to perform an initial
plastic analysis of u standard test cmase {sphere with weld sinkage as in
Fig. 3-1). Results from this analysis are shown in Fig. 3~3a where the

*
But the analyses made for te3t result verification used the appropriate,
experimental. etress-stralu curves.
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effective stress 1s plotted versus surface coordinates and compared with

the nonlinear elastic analysis. As expected a large stress reduction occurg
at the point of maximum stress, and a minor stress redistribution occurs in
adjacent areas. In order to evaluate the total effect of the nonlinear terms
appearing in the elagtic part of the analysis, these terms were removed and
the analysis carried out without them. PResults of this analysis, compared
with results from the analysis with retalned elastic nonlinear terms, Aare
shown in ¥Fig. 3-3b, where maximum effective strains are plotted versus apnlied
pressure. The difference between the two curves is quite large: the collapse
pressure would have been underestimated “y a substantial amount had the non-
linear elastic terms not been included. The reason for this is, of course,
that the elastic nonlinear terms, which ess.ntially relate to changes in the
shell geometry dufing loading, are retained in the plastic part of the anal-
ysis where, due to the change of slope in the stress-strain curve, the geo-

metrical changes are accelerated.

3.3 Details of Plasticity Effects - Cylinders and Spheres

It may be remembered that the elastic analysis (Section 2) showed no
fundamental difference betwern the behavlior of cylinders and spheres with
weld sinkage; the similarity of the two shell types is so close that the
same design graphs (Section 5) can be used both for spheres and cylinders.
Based on this fact the thought ozcurred that the plasticity effects also
would be similar for the two shell types. Accordingly, spheres and cylinders
with similar reduced stress factors o {i.e., with similar elastic behavior)
were analyzed and compared., 'The comparison included plasticity ¢ ffects dur-
ing repeated loading, and residual stresses and strains. Figs. 3-4 through
3-10 show aome of the results of this work, all of which was carried out by

using the EPSOR program {2].

in Fig. 3-4 are shown the meridicnal (o ) and hoop (06) stresses at
the outer shell surface at the creass (center) of the weld sinkage. As the
presgure is increased the g vsa. ae curve approaches the final yield surface
(assumed Lo be an ellipee, Kq. 2.3), curves around and follows it. In the
exemple shown in Fig. 3-h the pressure 2400 psi has resulted in an effective
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stress which is close to the ultimate, or maximum stress (F u 160 ksi.).

Increasing the pressure to 3100 psi develops the tull mﬂximﬁm possible
stress, both at the outer and inner shell surface. Upon unloading from
this point to 2eru pressure the shell will retain a plastic deformation
resulting in the residual stressee indicated by the point "0" in the

figure. Repeated loading and unloading from thie point to the maximum
pressure (3100 psi) will take place elastically, with no plastic strains

or resldual stress being added to the ornes developed during the first load
application. Had the residual stress at O psi been in the nonlinear pari

of the stress-strain curve, there would be a continual devalopment of plastic
gtrain during each successive load cycle. The develovment of plastic re-
sidual stresses 1s, however, a very remote possibility in this type of prob-
lem, requiring either an extremely severe geometrical stress riser outside
of the range dealt with in the present work, or very large pressures pro-

ducing strains beyond the ultimate capability of the material (aee also

the design graph for residual stress, Flg. 5-30 in Section 5).

Fig. 3-5 shows calculated stress variations through the thickness for the
same cylinder as in Fig., 3-hk. The curves are dsfined by five points through the
thickneas. The top part of the figure shows conditions during the first load-
ing cycle; the bottom shows conditions during subsequent cycles. Note the vre-
stdual stress variation (the dashed curve) is unaffected by the repeated loading..

-
-

Fig. 3-6, Tinally, shows applied pressure versus strain at the outer
surface durlng the repeated loading. This figure is included because it ls

suitable for comnarisnn with results from the experimental program (aee

Section 7).

Figures 3-7 through 3-9 show an analysin asimilar to tne one made for
tie cylinder Just described, but made for a aphere with a simllar reduced
strese factor (g = 1.979% which is close to the value 2,13 used ir the cyl-
inder analysia). Comparising Fig, 3=7 with {tas cylinder counterpart, Fig.
3<h, it ip immedistely clear thut the details of the stress variation are
rather diff=cent (during touding the sphere 1a atressed in tension through-
out the thickness, while the inner surface of the cylinder i in compresaion).

However, the general behavior is similar: After loadings into the plaagtic
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Fig., 3-5 lepeated Loading on Cylinder with Weld Sinkage:
Jtress Variation through Thickneas
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region the sphere responds elastically upon renewed loading to tne previous
high loading. The through-the-thickness stress variations ip Fig. 3-8 are
quite similar to the ones for the cylinder in Fig. 3-5. Note, .owever,
that the reloadings on the sphere are made to successively higher maximum
loads, and that therefcre the residual stresses are increasing with each
cycle. Fig. 3-9 shows the same general behavior as the corresponcing

figure for the cylinder (3-6).

The above discussion has been concerned with the individual stress
components ¢ and oe. The analysis 1s, however, based or. the equivalent,
Ar effective, uniaxial stress ¢ and the effective strain g (see definitions
in Section 3.1), which gquantities are assumed to be the sole measure of the
behavior (including failure) of the shell. A comparison on the basis of
effective stress and steain ls shown in Fig. 3-10 between spheres and cylinders
with exactly the same reduced stress factor a*. The figure shows, in nor-
malized form, that the shell response in the elastic region is identical for
the two shells, bui that the plastic region exhibits differences, which for
the smaller stress factors are not great, but increases with the larger
stress factors. Slmilar results are obtained for the residual stress, as

shown in Section 5.

*T‘v curves are taken from the design graphs of Section 5.
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Fig. 3-10 Comparison of Cylinders and Spheres with Weld Sinkage
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3.4 Design Graphs for Cylinders and Spheres

The design graphs shown in Section 5 were derived from z series of EPSOR
computer runs made for the weld sinkage configuration shown in Fig. 3-1 with
material properties as in Fig. 3~2. The development of these graphs is based
on the obsu:rvation that for both the spheres and the cylinders the shape of
the stress distribution curve in the vicinity of the discontinuity iz roughly
triangular, both in the elastic and the plastic regions (see Fig. 3-3a). Thus,
there appears to be a high degree of similarity (and continuity) in both the

elastic and the plastic regions.

The height of the triangular spike in the stress distribution is pro-
portional to o - 1, and the width at the base is somewhat dependent on
the characteristic shell length, 3J§€. Thus, it would be expected that
the main parameter of the problem is o  and that 3V§g might be a secon-
dary parameter. Accordingly, the parametric computer runs were made for a
series of @ values by varying the radius RT' The radius-to-thickness ratio
used in generating the design graphs was 100. 8Spot checks on other thickness
ratios were made; no deviations from the design graphs was found for R/t values
as low as 10. No analysis for R/t values larger than 150 was made, but it
seems unlikely that for moderately thin shells, say up to R/t = 500, any signi-

ficant deviations should occur.

The quaatities used to normalize the design graphs are the ultimate

pressure for a pressure vessel without a discontinuity, Pp? and the corres-

ponding strain, ey » as illustrated in the sketch below

P
)

oAb, v -

Sdan ek e irets



The normalizing parameters are calculated as follcws:

.
Pn = 2 R Fru (Sphere) (3.6)
B, -2 _;‘ Fo (Cylinder) (3.7)
)
- 2 Ftu
€, =3 (1 + ”)'15' (General) (3.8)

The design graphs are derived for the following values pertaining to the
titanium 6A1-4V STA stress-strain curve (see also Fig. 3-2, curve marked
NASA):

Fty = 120000 psi

Ftu = 160000 psi
. 6

E =17 X 10" psi

However, through the use of the normalizing parameters other materials with
stress-strain curves resembling the one used may be used, at least for am

approximate analycis.

3-19
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Section 4

FAILURE CRITERIA

A proper development of failure criteria for shells with discontinuities
requires a testing program where a number of pressure vessels would be taken
to failure. This is particularly truc for repeated loadings. Such a test-
ing program ic beyond the scope of the present work, but, nevertheless, an
attempt at recommending suiteble criteria, based on the analytical arnd ex-

perimental results presented here, will be made.

4,1 Static Failure

Conslder the stress-strain curve of the material used here, titanium
6A1l-4V. Whether in the annealed or the heat treated {STA) condition, this
material has a practically horizontal progression after the relatively low
strain ¢/ &'y s 2 has been reached:

Fiu ”’/",—37““

- Q|

0 1 5 3 =€/&

At this point the material is rather unstable and a very slight increase in

pressure will cause c large increase in strain and the shell will collapse.

Consider now the pressure versus strain curves for the weld sinkage

provlems

b1

G RN B 1t

W — S AR D



St e
T A Sy, e

]
F/R,
- a=1
I
: w>1
|
I
!
]
2 ,1 L - c/C
0 1 2 3 €/

The curve marked o = 1 pertains to a shell without discontinuity,
while the curve marked o > 1 1is for a shell with discontinuity. The
main difference between the two curves (from the point of view of the cur-
rent discussion) is that in the g« = 1 case no additional pressure can be
sustsined after a strain of E/Ey;g 2 has developed, while in the o > 1
case the pressure can increase beyond this particular strain level. However,
the material cannot withstand more than a particular measure of strain.
From coupon tests (see Section 6) on titanium 6Al-4v the uniaxial ul-

timate strain is of the order 3 to 4 percent.

Using Eq. (3.3) and (3.8) the normalized strain may be expressed as

B
= « (k.1)
Yy Ftu

aion
H
®
—

where is the uniaxial (coupon) strain. Taking the ultimate value of

€
! * 6 * *
1 equal to 0.03-, E = 16 X 10" psi , and Ftu = 185,000 psiy the ultimate

value of the normalized strain is, for this material

€

*
The values are selected to give a conservative value for the ultimate strain.
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Thus, this value may be used as an upproximate fallure criterion for a shell
with a vweld sinkage. Using this value, and taking points from the design
graphs in Section 5, this criterion can be illustrated as in Fig. 4-1. In

the figure the closed form solution for the cylinder, as described in Appendix

D, is also shown.

4.2 Repeated Loading

The repeated loading to be ccusidered here consists of an internal pres-
sure which cycles between zern and some maximum pressure. For loadings in
the elastic region the stress will then fluctuate between zero and some
value proportional to the maximum pressure. For loadings in%o the plastic
region, however, residual stresses will develop so that the stresses fluc-
tuate between negative (compressive) and positive (tensile) values. As is
shown in Sections 3 and 5, the residual stresses are not large enough to
cause & hysteresis loop during repeated loadings into the plastic range, so
that cycling subsequent tc an initial load into the plastic range ("shake
down") will be entirely elastic, at least for the geometries and materials
considered here. (It seems, however, possible to develop sufficiently large
residual stresses for repetitive plastic strains if the material
is sufficiently ductile.) Thus, the cyclic loading for the weld sinkage
problem is characterized by a relatively large plastic prestrain followed
by cyclic elastic straining with a mean stress which is not zero.

In the book "Thermal Stress and Low Cycle Fatigue", [13], Manson dis-
cusses in detail the behavior of materials in stress and strain cycling.
Manson relates the number of cycles to failure Nz to plastic strain per

eycle ep Ly the simple equation

a

¢, Ny = Cp (h.0)

k-3
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where a and C_ are constants. A similar equation govern: the elasti.

strain-to-1life dependency:

€, N=C (4.3)

where b and Ce are constants. Both equations refer to completely reverscd,

uniaxial loadings.

Employing Equations (4.2) and (4.3) Mattavi, [1], suggests the follow-
ing form of the strain versus life equation for biax.al strain distributions

- b - -
€, Ny = (28, - 28 )/4 (4.b)

where the strains are "effective" strains as defined in Eq. (3.3). Ef is

the rracture strain and Ew is the mean strain as indicated in the sketch
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Tests performed by Mattavi on strain cycling involving an initial strain
into the plastic zone followed by elastic cycling, as shown in the figure
above, indicate that the expunential relationship expressed by Eq. (%.ht)
does, indeed, represent actual behavior. The constants a and b are

gimilar to Manson's valnes for the complete stress reversal cycling:

b
Manson 2 8
Mattavi 3.2 9.2

Manson's values are recommended for a general material (including titanium);
Mattavi's valuies are for SAE L340 steel. Manson's curves for stress re-
versal cycling show very similar behavior for titanium and SAE 4340 steel
(Figures 4.16, %.20, 4.21 of Ref. 13).

Jn the basis of the foregoing it is suggested that Eq. (4.4) be used

for an approximate evaluation of cyclic loading on shells -:itn weld sinkage

in the following form

P R 3
€ Ni— (af - em) Kf (1#.5)

where Kf is a material constant. Making use of the following relations

i

3
r 1fz TR :
BE) 6
= y - ,u'
Ny = 5 (& Kf) (4.6)

vhere the constont (ey-6 Kf) is found from the condition that §2= 1 when

e-ef-

4-6
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Using the stress-strain curve of titanium 6A1-4v STA {see Fig. 5-31), Eq.
(4.6) was evaluated, resulting in the curve labeled "Best Estimate" in
Fig. 4-2. The curve marked "probable Lower Limit" was evaluated in a simi-
lar way, bu. using the Manson values of the coufficients 2 and b. Ob-
viously, the life sensitivity to these values is rather high, so Fig. h-2

should be used with caution, as long as no reliable test data exist.

(5.7)
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Section 5

APPLICATION

This section has been prepared fcr the practicing engineer. It contains
solutions in graphical form for the following types of geometric dis-
co .Inulties:

o Elastic Stresses

¢ Mismatch and/or Thickness Change
{Example Problems- pages 5-7 and 5-11)

o Weld Sinkage
(Example Problem: page 5-35)

o Plastic Stresses in Weld Sinkage

(Example Problem: page 5-41)
The information given is sufficient for accurate solution of these problems

in cylinders and spheres, and may be used for other forms of shells to

provide approximate results, as indicated.
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5.1 Dosign Grapns: Elasuis Stresses

5.1.1 lfiscmaten and Abrunt Thicvness Cnange

Most pressure vessels are fabricated from segments of shells and then
joined to form the complete structure.

The segments are sometimes of different
thickness, and m.smatch is nften intro-
duced during the joining process. A X
typical example is shown in Fig.5-1. Axis Of ——m

This section provides information to Revolution

calculate stresses arising from these

geometric discontinuities when the

vessel is subjected to uniform internal

pressure. The method is based on the Fig.5-1 Mismatch and Thickness
nonlinear elastic theory which incorporates Change in Shells of
Revolution

pressure coupling effects (see Section 2).
Stresses include membrane and bending effects
but exclude stress concentrations due to sharp corners. The information

is applicable only to axisymmetric discontinuities involving long shells.

A shell element is considered long when there is no coupling betweea the
discontinuity effects at A and B {see Fig.5-2).
This condition is satisfied when the meridional
length L is approximately equal or greater
than the characteristic length LC of the
sheil. Lc is defined as the decay distance

of discontinuity stresses. Linear theory

predicts this distance to be approximately
equal to 3\’R2t . However the results
obtained by nonlinear theory (10] indicate

. s Fig.5-2 Shell of Revolution
that the characteristic lengths of shells Geometry

vary with the amount of pressure., This
relation is shown in Fig.5-3. The
pressure effect is a function of aonlinearity parameter  which is

expressed as

p (for v = 0.3)




where
pressure (lb/inz)

p =
{negative pressure indicates external pressure)
2
B = modulus of elasticity (1b/in’)
Observe that at P = 0 , LC = 3\’R2t which corresponds to the linear

theory solution,

2.4

Le . «1f2 /

20 3—\[5?-3(1 P)
L
—
3VR,t 5 \ %

1 02 / T ] -1/2

—3—,\-{-—‘;‘;__‘;-:: [2(p - \‘pg-‘l )]
0.8 \

-1 0 1 2 3 4 5
p

Fig.5-3 Characteristic Lengths of Shells of Revolution

The present work is based on the further assumptions that the shell
segments are thin and steep. A shell is sufficiently thin when the

quantity ——
. t 2°10
1.8 \[-Rz/
and sufficiently steep when the quantity (Ref.15)

1.8 sin g Rz/t 210

>-3



While the information given here ﬁé based on axisymmetric discontinuities,

it can also be used for disccntinﬁities extending only partially around

the circumference, provides thai this length is more than about five times

the characteristic length Lc . For shorier distances, the prevent results

are usually conservative, but sometimes slight underestimation may occur (see

Ref. 47, Appendix A).

5.1.1.1 Cylindrical Shell Junciures

Stresses at the juncture region of two cylindrical segments (see Fig. 5-b)
can be found by the use of Figs. 5-7
through 5-21 provided that the loading

is internal pressure and the geometry

satisfies the requirements given in the

previous section. The stresses are

given in terms of stress factors which

are defined as follows:

Fig. 54 Juncture of Two
Cylindrical Shells

G c
Meridional Stress Factor o = L = 9
¢ (e PR
o a
2t
a
%% %%
Circumferential Siress Factor @, = — =
¢} c PR
ot a
2t
a
Effective Stress Faclor d = g = g
o“m PR
2t
where
ow = total meridional stress (lb/ina)
o, = total circumferential stress (1b/1n2)
g = total effective stress (lb/ine)

54



The total stress is composed of membrane and discontinuity stresses.
All stresses correspond to the thinner shell where the stresses are

largest. The total effective stress is defined as

- 2 2 N
(o3 JZGQP + Oe O‘wde)

This relationship is based on the energy of distortion theory which is

used to predict the limit of elastic behavior. The theory states that
yielding in a biaxial field will occuxr when the effective stress

becomes equal to the uniaxial yield stress of the material.

Note that Figs.)>-5 through 5-<21 also include stress information away from
the discontinuity when stresses are not naximum at the discontinuity.

For such cases, the effective stress 8 should be obtained directly
from the figures. Usage of the expression o = cq? + 06 - o#FG)

could yield erroneous results since for a given problem the maximum value

of om and 0y may occur 3t different locations on the cylinder.

PROCEDURE TO OBTAIN STRESS FACTORS

1, Obtain parameters required for the solution. ‘These include the

following:

@ Internal pressure - p (1b/in2)
Dimensions of shell segments in inches - Ra,Rb,ta,tb,La and Lb'

Note that subscript "a" should correspond to the thinner shell.
@ Modulus of Elasticity - E (1b/in°)

(Other material properties such as F

tu and Fty and weld properties

are required for stress analysis).

2. Determine nonlinearity parameter p for each shell

5-5



3. Check of applicability of curves

The cylindrical shell segments must satisfy the following criteria:
Thin shell:
(1.8 \,R /t) 2 10
a,b

Steep sheli:
(1.8 sin 0/

(o= 90° for cylinders)

Long shell:

L=z 1L
c

Lb is obtained from Fig.S5-3

4, Determine mismatch factor n

2(* - R)

a + tb

5. Determine thickness ratio ta/tb and select the appropriate

figure. Stress factors o ;, o and g are found hy

(]
entering the figures with m found in step 4 and reading the
value of o for the particular nonlinearity parameier p

found in step 2 .

5-6




EXAMPLE PROBLEM

Two cylindrical shell segments are welded 10 .T‘ 12
together as shown. The structure is sub-
Jected tec an internal pressure of 40.8 psi. { ‘
Both segments are made of Titanium alloy ————g— g
Ti-6A1-4v. oaso.’_ % 0.060
Pressure I T} T T je~Pressure
Bulkhead j@-WEL D Bulkhead
———————f
Determine:
o Stresses at the weld
o0 Maximum stresses in the thinner chell
Solution:
1. Parameters required for the solution:
[ !
P Ra Rb ta tb Lza. Lb E > Ftu2 Fty 2
{pst) | (in) (in) (in) (in) {(in) | (in) |(20/in®) | (1v/in%) | (1b/in%)
40.8 59.98% 59.925 0.060 0.1501 12 10 17x1067 160,000 { 120,000

2. Determine nonlinearity perameter ¢ for each shell:

5 ho.i — = .0 B, ° l#0.86 — 5 = 0.32
0.060 .
(1.2)(17.0x10 )(59.9 5) (1.2)(17.0x10 )('557555'

3. Check applicability of curves

Requirements g, Segment a Segment b
Thin & Steep Shell 1.8 (59.985/0.06)% = 56.9 1.8 (59.925/0.15)% = 36.0
Tong Shell From Fig.3-3,L_/3VR;t = 1.38 From Fig.5-3,L /3/RF = 0.87
- 1
Lc-(1.38)(3)(59.985x0.06)!5=7.85 L,=(0.87)(3)(59.925%0.15) ?=7.8:

Results indicate that curves are applicable for this case.

hef



Determine mismatch factor m

(2)(59.925-59.985) _ - 0.571

m = =5.060 + 0.150

Determine ta/tb , a¢ ' o and ¢

o vweld | o max | g, weld | . max | & weld | & max
. 9 (v 0
-—2_0.06_02+
tb ©0.15 Value 2.64 2.64 1.71 2.00 2.32 2.3¢
Fig. No. | 5-12 | 512 | 5-13 | 5-13 | S-14 | s5-10

Stresses at the weld

oq’ (2. 62*'(%(1(‘8 2%%59 985) _ = 53,840 1b/in

0, * <1°7};§%8;2%§~9 -983) - 34,880 10/1n?

- = {2 3?%%?8 gg§59 :283) - 47,320 1v/1n?

Maximum stresses

53,840 1b/in°

H

(o)

pnax

2.0)(40.8)(59.985

3 . 2
Ogmax 21(0.06 = 40,790 1b/in

5 = 47,320 1b/in®

Pomtes 1o e o e



5.1.1.2 Juncture of Other Shells

The stress factor curves for cylinders (Figs. 5-5 through 5-21) may also
be used for other shells of revolution to determine the stress factors

o and o
/]

at the discontinuity. Conversion formulas are given below:

Formulas for any Shell of Revolution (at discontinuity)

6
SR
(o Ve, = () -(1-——*-)(01 -)
'SR o Sy /o
) )
SR SR
(o))gr = 1 + (o) -(a)(l- )-2(--~)
6°SR 9/CYL 6o GCYL GCYL
where
) = membrane deflection of shell in inches at the discontinuity
due to internal pressure (measured normal to the shell meridian)
68R _ Nem - vam
6 1 .Y
on " mod
R = 1alius in inches at the discontinuity measured normal to
the shell meridian (hoop radius) - see Fif. 5-2
Nan = circumferential membrane stress resultant (1b/in)
Nq}m = meridional membrane stress resultant (1b/in)
v = Poisson's ratio

Subseripts: SR

Shell of Revolution
Cylinder

CYL

= Intercepts at m = 0 (cylinder)

The intercepts ¢« and @ o are taken from the appropriate curves.

0

Note that in the cases where curves have the following shape,

5=9



NEGATIVE SLOPE REGION ==t =merw= | oeg» POSITIVE SLOPE REGION

there are two intercepts, one for the branch of the curve with negative
slope ( ab(°)), and one for the branch of the curve with positive slope
( ao<+)). For convenience both intercepts are given on the charts.

The .elationship between the stress factors and stresses are given in

section 5.1.1.1 .

Formulas for Spherical Shells (at discontinuity)

(a"o )SPHERE = (c'm)cvl, - 0.588 (oqu - 1)

for v = 0.3

= - . |
(oy dsprpre = (og JoyL = 0-5%8 g, * 0-177

r-i,.; 5"' 1u

ARG Wor P bt WL e % bl K5



EXAMPLE T7NBLEM

Two spherical shell segments

are welded

together as slown

The struciure is subjected to

an internal pressure of 81.06 pri.
Both segments are made of
Titanium Alloy Ti~0AL-bv.

Determine:

(o]

stresses at the weld

Solubion:
1. Parameters required for the solution
1 E F F
p Ra Rb ta tb La Lb 2 tu 2 ty 2
(psi)} (in) {in) (in) (in) _jin) {(in} }1b/in 1t/in 1b/in
Pl.ﬁ 59.985 } 59.963 G.060 | 0.075 194.2 282.7] 17x106| 160,000 | 120,000
2. Determine nonlinearity parameter p for each shell
o= 81.6 = k.0 = 81.6 5 = 2.6
Y et 0x106)( 0.06 )2 K (1.2)(17.0x000) (2:912 ¥
it 55.935 ’ U \59-953
3. Check applicability of curves
Requirements Segment a Segment b
. 1 i
Thin Shell 1.8(59.9385/0.06)% = 56.9 1.8{59.963/0.075)<% = 50.9
1 -
Steep Shell (1.8)(sin45°)(59.985/0.06)é= 40.2 (1.8)(sin135°)(S9.963/b.075)%=35.9
Long Shell From Fig.S-B,Lb/3JR2t = 1é98 From Fig.S-B,Lb/3‘R2t = 1.6
LC=(1.98)(3)(59.985x0.06) = 11.3 Lc=(1.6)(3)(59.963x0.075)%= 10.2,

Results indicate that curves are applicable for this case.

5-11



k., Determine mismatch factor m

. (2)(59.963 - 59.985) . .
m= L'Lo. ¥ 0.075 ©.33

5. Determine ta/tb, aq) and o

9

n'q) Q’e
1 m
_a _ 0.060 _ 0.8 Value 1.96 2.08
Y, 0.075 Fig. No.| 5-18 5-19

6. Stresses at the weld

(1.96)(81.6)(59.985) _ 49 950 1b/1n2 (max)

Q
|

o (2,(0.05)
. . . ) .
Gy = 2 og 21 6)(5 2l = 84,840 1b/in2 (me

1/2
5= [79.952 +  8h.au® - 79.95x8h.8h] x 103 = 82,500 1v/1n®
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o MAX. AT DISCONTINUITY

S

MAX. AWAY FROM DISCONTINUITY

AT DISCONTINUITY

K

- — -

ta+ iy

2(R, - Ry)

O

-0.2

-06

-0.8

102 -

0.8
-10

/%, = 0.k)

a8t the jurction regiom of two cylindrical shells (ta

3

St-ess facior

Fig. 5-14



Ol

. B .
A.m 0= n.p\ %) STTOUS TBOTIPUITAO oM~ JO woTdax orgounf ayg 48 O J03.08F 883138 GI-6 BT

&

w
0 90 70O bALS] 0] cO- O - Q0 - g0 - OotL-
i 1 1 i | \\\w///, LB 1 1 1
N i P
\ 19°i
*
S oﬂﬂ 10°¢
174
£ 9
& y by
l ve
0 _
: J
7 ¢ 48°¢
174
™~ e $6'0 9071 & &5
o €6'0 L0 ¢ /
260 804 £ -1C°E
68°0 [ALR A \
4 .y $8°0 Sin L /
—egt= s W 9.0 b2t o ‘
(CH-"H)e ey °g - NO°E :
?..VVO m...vVO l.& .M
ALINNILNODSIO LY *XVYIN &.vo SidIDYILNY ’
o'y




(9'0 = Qp\wpv STT9YS TBOTJIPUTITAO oag JO wotdax uwotgounf syz 4@ m.a 207087 983198 9T-¢ 314

w
o) 30 30 4® AS 0 c’O- 4ok 90- 80 - OL-
| — T T i T \.w%w T T 7 Y o
\WWN\N&.IUHIN.;WW&/?
$ SR
,;/I,’/lll ] m F
N

5-24

/ 09°t 29% §
.\\ 65"t €91 ¥
7 . ay . ey 651 ¥t €
\ — 5 zw 6s'L s9oL 2
(d-7d)e 9G'L 991 &
{2~ N" 89°t [e]

ALINNILNODSIA LIV €30 =e=w - 4g2
ALIONILNCDSIA WOHA AVMY XVYIN O30 ememm +° (P d

ALINNILNOZSIG ¥ XV O mee SLdIDNILNI




(9°0 = pp\mpv STTAYS TBOTAPUITAD Ong JO woTHaz uotsounf ayj 48 XL J0308F ssanyg LT1-6 -B1d

cO- t7'O- S0~ 80- otl-
T T T T ol

o't

o<¢

v°c

8¢

ce
5
e . q -
(C8 -"Y)e
ALINNILNODSIQ 1V )0 —==-= 19°¢
ALINNILNODSIA WON3 AVMY XYW X =—=---
ALIANIINODGIQ AV XVN X o=

le]

525

I
I
3



&
(g'0 = o#\.mpv STToUS TBOTIPUITAD OM] JO UWoTBax uwollounf{ ags 48 © JO}0BI SS3IqS o1-G6 *3Td

i
g0 90 0O AS) 0 cO- 0 - 90 - 80 - ov-
1 I T \ ] 1 [ 1
1c°t
1971
-~0°¢
O
<
-1v’¢
- th
%0
—C°€
q e
JMWHnipil W 660 L0 S
(7Y -7d)e 860 201 O
o o& Q @cm
ALINNILNODSIG LV Py ——=- »® (P
ALINNILNODSIG WOMH AYMY XYN P00 —-— S1d3OUSLNI .
ALINNILNODSIA LV XVIN Py =

oy




B
(g 0 = pp / %) STTeUS TBOTIPUTTAO OMg JO woIBax uopyounf a4y 3® 6o J03083 SSaxXqS  61-6 *BTd

wl
o'l 80 90 0 40 0 c0- 'O~ 90- 80- O'L-
T T T T T T ] T T c’L
- o.—‘
10¢
7
<@
0 e ©
A
G
d 18¢
aQy , ¢ QHu
17y
TE L Oy - M
(8 -7d)e 18°t 281 S 5E2>
08t €81 &
ALINNILNODSIA 1V €20 ~=-= o8t €81 O
ALINNILNODSIA WOHH AVMY XVIN ©30 —-— % [
ALIANILNCDSIQ Lv XV 850 —no @ (H° d 19% i
SLdIDHILNI I
Jov 1

t
4
N
Y



% %) st
(8°0 = 3/ %) ST[SUS TBOTIPUTTAD OM3 JO WOTASX uoToun{ Y3 38 & JI0308F £S3XyS  o2-§ *FTd

w
80 90 148 A O ¢0O- 'O - S0- Q0- O'-

T T T T T T T ] AL
- @o_‘
10°¢
§
1v°2 o
Go1:=0 18°C
.9
a, ,© )
(e -"d)e
ALINNILNODSIA LYV 0 === .
ALINNIANODSIG WOHS AVMY XYIN O == =mm M 9€
ALINNILNODSIA 1V XYW 7O er—e—m




g. &

(1=% \.mpv STT9YS TBO[IPUFILS Os3 JO wordsz uwopzounf gz 38 X PUB ® ¢ O 810908y 893338 12-$ ‘BTd
9V
o) g0 90 4] A o) 20- #O- 90~ g80- (0) By
i L 1 I 1 I | 1 LI
c't
9
O’¢c
v'c
8¢
A
oz d

a . u.... o't

TEy, _Gyig - W 00’2 ©00% SO

"y - %)z e

80 P d

ALINNILNODSIA LV XVIN 30 SL43DNILNI ot

5-29

TUEN.L I
i



5-1.2 Weld 3inkage

Weld sinkage is another form of geometric discontinuity which may occur
during the fabrication of pressure

vessels, A typical example is

shown in Fig. 5-22.

This section provides information
to calculate maximum stresses
arising from this type of geometric
° P 9 SINKAGE
discontinuity in cylindrical and
spherical 1s bjected
pherical pressure vesse subjec WELD
to internal pressure. Similar to
mismatch and abrupt thickness change
problems the method is based on the

nonlinear elastic theory which

.incorporates pressure coupling

effects (see Section 2). Stresses

include membrane and bending effects but

exclude stress concentrations due to Fig.5-22 Weld Sinkage in
Pressure Vessels

shaxrp corners. The information is

applicable only to axisymmetric

discontinuities. The shells are assumed to be thin, steep and long.

The limiting conditions to these assumptions as well as exceptions

are discussed in section 5,1.1.

Elastic stresses due to weld sinkage may be obtained from Figures

5-2t  and 5-25, provided that the loading is internal pressure and the
shells fall within the bounds of the theoretical assumptions. The
curves are applicable to both cylindrical and spherical shells. Details

of shell geometry are shown in Fig. 5-23.
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Fig.5~-23 Weld Sinkage Geometry in Spheres and Cylinders

Observe thst the discontinuity in both cases are represented only by
two geometric parameters, the angle (Ay) and the sinkage {A). These
parameters are found to be the dominant factors affecting the stress

distribution. The shape of the sinkage is relatively unimportant.

Figures 5-2% and 5-25 reflect this simplification. The sinkage parameter

This is an approximate expression which involves only the basic shell

is represented by

parameters and the sinkage geometry as described above. The curves
however are based on mathematical models of typical weld sinkage geometry
in cylindrical and spherical pressure vessels. If the exact geometry

of the sinkage is known it is suggested that the sinkage parameter

be calculated using the more exact formula:
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T"?I;?,_-

or, with v = 0.3

where

Meridional radius of curvature at the discontinuity

Rip

Rls = Meridional radius of curvature of the basic shell
R]S = « for cylinders
Ry~ = R for sphere

15

The stresses are given in terms of stress Jfactors ortp and ae which are

defined as follows:

g (¢
Meridional Stress Factor o = % = 2
 O,n EBRE

g et

o] )
Circumferential Stress Factor o, = £ - 0
(] oq’m R

2t
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where

total maximm meridional stress (lb/ine)

o- -4

¢
gy = total meximum circumferential stress (1b/in2)
p = uniform internal pressure (1b/in2)

All stresses are given at the point of discontinuity (crease) wheve the
stresses are maximum. The total stress is composed of membrane snd dis-

continuity stresses.

The effective stress ¢ wmay be found by the expression

- > _ "
o -'\/?ocp +0y2 ocpce)

as explained in the previous section.

PROCEDURE TO OBTAIN STRESS FACTORS

1. Obtain parameters required for the solution. These include the following:

Internal pressure p - 1b/1n2
Dimensions in inches R, t, §j
Angles in degrees o, My
Modulus of elasticity E - 1b/in®

o O 0O ©

(Other material properties such as Ftu and Fty and weld properties

are required for stress analysis).

2. Determine nonlinearity parameter p

0= m——fees
(&)
1.28 'ﬁ)

3. Caneck of applicability of curves
The shells must satisfy the following requirements:

5=33
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Thin Shell:
1.8 R/t 210

Steeg Shell:
1.8 sin ¢ R/t 210

(¢ = 90° for cylinders)

Long Shell:

Lz2L
c

Lc is obtained from Fig. 5-3
4. Determine

Bo= 03?5 (sin Ag—)\j;;:?

Enter Fig. 5-2k with y (step 4) and read 6&¢ using the proper o
(step 2).

The meridional stress factor a¢ is found from the fcllowing expression:
= . Aq
@) = 1+2.33 8¢ (sin SYNR/t

The circumferential stress factor ab is obtained from Fig. 5-25.

Using Fig. 5-25, read 6e + Then,

A
5o + 1+29 Ge(sin -és’)\/R/t

where
= 1 for spheres
0@9 |4
o, = 2 for cylinders

6o




EXAMPLE PROBLEM

0.040
HE
Ivc spherical shell segments are Ny *
welded together end at the Joint \23/”‘—- 20
sinkage formed as shown. The T =\
structure is subjected to an in- SHELL b * A\\
ternal pressure of 400 psi. Both "'140
segnents are made of Titanium Alloy o=
T1-6A1-by, ' IR
. ) 1
0.015 S/
/
"

NDetermine:

0 Maximum stresses

Solution:

1. Parameters required for the solution

La L Ftu F

R t A E t
(pss) | (n) {(an) | () |1om) | (am) | ojin®) | (afg) [ (de)] (1b/10°) | (15/102)

Loo . 10 j0.05 {0.040} 1k kg l'(.Ox].O6 Lo - 20° } 160,000 120, 000

2. Determine nonlinearity parameter p

koo

p = —5 = 0.78%
6 .
(1.2)(17.0x10°) (9-1—8—5-)
3. Check applicability of curves
Reguirenents Segment a Scgment b
Thin Shell 1.8(10/0.05}/2 = 25.4 Same as S2gnent a
Steep Shell 1.8 x sin ho"(lo/o.ofgl/g = 16.3 Same as Segment a
i

Long Shell From Fig. 5-3, L,/3 JRt = 0.7 Same a5 Segment a

L = (0.71)(3)(10%0.05)Y/2 = 1.51

Results indicate that curves are applicable for this case.
5=35




Determine

0. . 20 - - &
wo T3 (otn ;‘3-)-\/(10)(0.05)' = 1.69

Determine o« and ae
LY

\ 2C -
from Fig. 5-24, &g = 0.475, o= 1+ (2-331(o.h75)(s1n -g- 0/0.05 = 3.69

20 -
from Fig. 5-25, 8, = 0.365, oy = (1.29)(0.365) (sin =Nofo.05'+ 1 = 2.16

Determine maximum stresses

_ (3.69)(k00)(10) _ . 2 _ (2.16)(k00)(10) _ c
O(P - ‘?Eyzzé._o_s%"l - 1&‘7;600 .Lb/in 09 -~ (2T (0.05)) - 86,’4’00 lb/iﬂ

1/2
G = [1!;7.62 + 86.42 _ 1&7.6::86.&] x 103 = 128,400 1b/in°

Since ¢ is greater than Fty’ the material will yieid.

5-36
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Figo 5"2‘-'

1.2

1.0

06

‘ 12
1.4 (Xe = CXGO« 1.29 Se[sin %é] [—%]
i | | | J
OO 1 2 3 4 5

Stress factor ue for spherical and cylindrical shells with
weld sinkage
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5.2 Design Graphs: Plastic Stresses

5.2.1 Weld Sinkage

This section provides information to calculate plastic stresses and strains
for cylindrical and spherical with & weld sinkage as described in Section
5.1.2. The material is arsumed to be titanium 6Al-4LV, but any material with
a similar stress-strain curve, i.e., with a smooth transition between the
elastic and plastic regions, and with a practically horizontal plastic region,

can be used.

To*al strainrs aazd collapse pressures may be obtained from Fig. 5-26 (cylipders)
and Fig. 5-29 (spheres), residual stresses from Fig. 5-27 (cylinders) and

Fig. 5-30 (sphere:), and maximum stress and residual strain from Fig. 5-28

(all shells).

PROCEDURE TC OBTAIN PLASTICITY SOLUTIONS

1. Obtain parameters required for the sclution. These are identical to
the ones needed for the elastic solution (see Section 5.1.2). Note:

Plasticity curves are probably not applicable for R/t,> 500.

z. Determine the stress factors o and @, for zero pressure {p = 0), as

6
outlined in Section 5.1.2.

3. Determine the effective stress factor

L. Determine the reduced stress factor

a /3 (Cylinder)

=1
]

o= o (Sphere)

5-39




5.

Determine coliapse pressure for shells with no weld sinkage

2 t
p = —-—= = F (Cylinder)
t
m 6‘ R u
P
Pp=2F% Feu (Sphere)

Determine normalizing strain

Ftu

£ (1 + v) E

Sy"

wir

Enter Fig. 5-26 (cylinder) or Fig. 5-29 (sphere) with p/pm and g@. and

read strain E/Ey. (Or enter with strain and a, and read pressure

2/3,°)

Enter Fig. 5-28 with strain E/iy and read stress S/Ftu and residual

strain eR/%y.

Enter Fig. 5-27 (cylinder) or Fig. 5-30 (sphere) with @ and ER/Ey and

read residual stress OR/Ftu'
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EXAMPLE PROBLEM

The spherical shell in the Exampie Problem of Section 5.1.2 (page 5-35) was accldentally
subjected to an internal pressure of 800 psi.

Determine:

o Residual stress
o Collapse pressure
Solution:

1. Parameters required for solution: See page 5-35.

R/t = 200

2. Determine ah and aé for p = 0]

from Fig. 5-24, 5(9 = 0.550, Q(p =1+ (2.33)(0.550) (Sin %Q iO/O-OS = k.11
from Fig. 5-25, 6, = 0.h55, &y = 1 + (1.29)(0-h55)(s1n %9) J10/0.05 = 2.h5
- 2 2 \/2
3. o= [l;.n 4 2.45° - 411 4+ 2-#5] = 3.59
b, o= 3.59
5. p, = (2) (?i%é) (160,000) = 1600 psi
p/pm = 800/1600 = 0.5
6. o = % (1+0.3) X200 - o.00817
17 X 10

7. From Fig. 5-29, with p/pm 0.5, & = 3.59: E/Ey = 1.76

Assuming collapse at s/ey 2.6 (see Section 4), Fig. 5-29 gives (p/pm)collapse

= (0.63) (1600) = 1010 psi

5=kl
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From Fig. 5-28, with E/’ey = 1.76:

&/Ftu = 0.99, g = (0.99)(160,000) = 158,400 psi,
Tf:R/Ey = 0.78.
From Fig. 5-30, with ;R/Ey = 0.78, a = 3.59:

aR/Ftu = 0.35,

ag = (0.35)(160,000) = 56,000 psi.

Thus, after & pressure of 800 psi, the weld zone has developed a residual

compressive stress of 56,000 psi.

5=b2
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Section 6
EXPERIMENTAL PROGRAM

6.1 Introduction

Five titanium specimens having simulated weld sinkages were instrumented
and then pressurized to determine how closely the theory piredicted the

pressure~strain relationships.

The stress gradienus in the vicinity of weld sinkages are very steep,
s0o it was understood from the outset that exact numerical correlation at
any iiven strain gage site would be impossible. But an array of gages along
& meridian would show the characteristic peaks and oscillations of stress
near the sinkage. /P rthermore, it was imperative that the geometry of the
sinkage should be clean and well defined, or cerrelation between theory and
experiment would be difficult. For this reesson, the sinkage was simulated

by careful machining rather than by actual welding.

Table 6.1 summarizes the salient aspects of the five tests. Three speci-
mens Jere spheres, and two were cylinders. Some were an.aealed titanium

(6A1-47), others were in the Solution Treated and Aged ("STA") condition.

Fourteen strain gages were installed on each specimen, and a special
gomputer program was set up for processing the data in a way that would
make it easy to determine the onset of plastic (i.e.‘ permsnent) strain oy

inspection of the tabulated data.
Section 6 is divided into the following subsections:

6.2 Description of Specimens and Their Manufacture

6.3 Instrumentation and Test Details

6.4 Data Pracessing

6-1




Tvpe

L

STA
Condition

Weld bead

Failure
pressure

{psi)

Max Press.

a. last
strain
reading
(psi)

TABLE 6.1

SUMMARY OF TEST CHARACTERISTICS

Tita #2 Tita #+ Tita #6
liemisphere Hemisphere Hemisphere
No Yes Yee
Yes No Yes

- 805 --
1050 800 1000

6-2

Tita #7

Cylinder

Yes

No

1550

1500

Tita #8

Cylinder

No




6.2 Description of the Spacimens and Their Manufacture

6.2.1 Material

All five specimens were made of 6Al-LV titanium. Cylindc i weire
machined from forged rings. Hemispheres were machined from drawn blanks.
The titanium rings were forged by Coulter Steel and Forge Company, Emeryville,
California, and received ultrasoaic inspection to a 3/64" standard flat bottom
hole, The hemispheres were drawn by Brocks and Perkins, Inc., Detroit, Mich.
and were not inspected by ultrasonic methods. The hemisphericsl blanks were
drawn from flat plate stock and had a pronounced cval condition {the major
diameter being perpendicular to the rolling direction of the original plate,
and .060 larger than the minor diameter, as received from Brooks and Perkins).
This oval condition increased to ( yout a quarter inch (discrepancy between the
two diameters) upon heat treating. Fortunately, the .ZQ0-inch thick wall was
thick enough to allow machining of a true sphere of .04O thickness despite
the initial oval of the blank. These problems did not arise ia the case of
the forged cylinders.

The blank for the hemisphere called "Tita 2" was “ound to have a
bump or mtward spherical protrusion which resulted in a thin spct in the
finish machined hemi. This thin spot (.OlS incheg thick vs. the reguirec
.040 membrane tnickness) was successfully reinforced by a tapered steel disc,
machined te conform to the internal concavity of the bump, and bonded in
place with epoxy. The location of this patch was more than one inch from

the test zone and it was deemed to have no adverse effect on the latter.

6.2.2 8olution Treatment and Aging

The STA procedure was done before final machining, after it was found*
that the 8TA procedure could not be pertormed on thin machined shells without
producing excessive distortion. The £TA procedure consisted of soaking at
1700°F for one hour, followed by a water guench (solutlon treatment), then

aging at 950°F fur four hours

*
on Tite f1, which was discarded due to bad equatorial warping

6-3




Tita 2, which did not receive STA, was stress relieved at 1LOO°F for
one hour prior to machining (it was this process which increased the diam-

eter discrepancy from .060 inches to 0.25 inches).
5.2.3 Weld Beads

As shown in Table 6.1 specimens #2 and #6 received a weld bead at
the site of the sinkzge, before machining. The intent of this was to pro-
duce the heal affected zonc in the vicinity of the sinkage. In each case,
tre electron beam welder was set to produce a .050 inchk high weld ridge
on the back surface of the piece receiving the weld (see Fig. 6-1 and 6-2).
Tais flash, along with the bead cn the near {outer) surface was completely
remced in the machining, though nugget material (in an "annealed" con-
dition) remained at the center of the machined sinkage. Fig. 6~ shows
the appearance of the weld bead on tne ocuter surface of Tita #2. The {ix-

ture visib’2 in this picture was used to measure the unmachined spacimens.

6.2.4 Closures

Two hemispheres, designated Tita #3 and #5, served as closures and
were left in their "as received" condition except for a narrow width of
machining required at their equator to bring them te the correct inrer
and ou.er diameter for welding onto the various test pleces. This machin-
ing included a short {(.200 inch) length of cylindrical section beyond the
closure hemispheres equator to allow for the cut-off and remachining r -quired

on each subsequent testi, pee Fig. 6-2.

6.2.5 Cylinder Machining

In the case of the cylindrical specimens, machining to the {inal con-
tour was first done on the inner surface (after the STA treawment). Two
close-fitting mandrels were then introduced from each end (and Joined by
through bolting). The outer surfaces were then machined to their final
desired contours. The contours shown in Flg. 6-4 were obtalned on a lathe
equipped with a can follower. Tt should be added that the dimensions and
tolerances given in this figure (and others in this report) were the de-

sired rather than the achieved dimensions. Thickness on Lhe cylinders
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varied over a six mil range, with a mean that was 3 mils below the desired

+050 thickness (on both cylinders, Tita #7 and #8).

6.2.6 llemisphere Machining

In the case of the hemispheres, the outer surface was machined first,
and then fitted into a close fitting "pot" (or outer mandrel) for the final
inner surface machining on the cam follower controlled lathe. On Tite #2,
which was machined (and tested) in the annealed and stress relieved con-
dition, the mean thickness was .0kl versus the desired .040, and the range
of thickness variation was only three mils. On Tita #4, the same values as
Tita #2 apply in the immediate test zone (within a half inch of the center
of the sinkage) but the thickness dropped to .032 inches on a clircle .60
inches from the center of the test zone, giving a range of thickness varia-
tion of ten mils. Tita #06, 1ike Tita #4, a hemisphere in STA condition at
the time of machining, the mean thickness in the test zone was .033 inches
(vs. the desired .O4O) with a total varlation of five mils, and a drop to
.026 inch thickness at a circle .60 inches from the sinkage centerline.

The machinist described the titanium in STA condition as "having a
tendency to walk", meaning that the material's toughness caused it to bulge
slightly ahead of the cutting tool, rather than pema;n a close fit on the
mandrel. It is believed that this conditlion resulted in the poorer thick-

ness tolerances on the two hemispheres in STA condition.

All three hemispheres tested (Tita #2, #+ and #C) had nominally the

same outline as shown in Fig. 6-5.

6.2.7 Closure Welding

After machining the cylinders or hemispheres and taking thickness
measurements, the closures were welded on by an electron beam welder. For
this operation, the test piece was hrnded to a Jig which wmade it possible
to rotate the plece about its axis inside the electron beam welding chamber.
This jlg permitted alignment and concentricity with the rotating axia to
aboutl .005 inches T.I.R. precision. The mating piece was held on by a large
stainless steel hose clamp drawn up tightly over the junctlon of the two

6-1
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pileces. A socond hose clamp roughly perpendicular Sc the first one, kept
the two pileces pressed firmly together. The first hose clamp (or steel
bind) had half-inch diameter holes at about four inches on c. nters along
its length, permitting the two test pieces to be tack w:lded together (at
the hole sites) by T.I.G. welding. The hose clamps were then remcved and
the weld joint completed by the electron beam welder.

Considerable difficulty was experienced in establishing the correct
setting for the welder, since there was no reliable method of determining
the weld penetration. Two hydrauiic fittirgs (at each "pole") were installed
prior to welding, one for pressurizing, the other for strairn gage leads,
but their .125 inch diameter apertures were useless for vicual Inspecticn.
While the ultrasonic inspection method could have given a weld penetratica
measurement, such measurements are only reliable afier an elaberate sec of
control (i.e., calibratica) specimens have been made availsble, and this
was obviously out of question. X-rays were tried and found inconclusive (as
to depth of weld penetration). Adding to the problem was tne material
thickness (.O70 inches) whic.. mede it very easy for a weld "blow-through '.

As a result of these welding dirficulties, two pressure tests ended pre-
maturely and had to be re-run (on Tita #4 and Tita #6) because of inmsufficiert
veld penetration at the closure Jjoiat. "Blow-through" occurred on Tita #7
(see Fig. 6-6), and the whole weld zone had tc be re-machined and rewelded.

In each of these cases, the weld failure (or blow-through) resulted in ac

damage to the test zone {which was at least three inches from the source or

trouble).

6.2.8 Machining Repcir on Iita #

In the last stages of machining, the machinist accidentully allowed
the cutting tool to travel beyond the range of ..s controliing cam, resui.t-
i{ng in a concentric hole being cut ia the crown of Tita #4. A disc mat:hing
the hole was ~ut from the crown of Tite #1 (which had been discerded due to
bad warping at its equator), and welded into the crown of Tita #4. The weld
in this repair wac more than two inches from +),. center of the test zone, and
it was therefore clear that a rormal test could be run. Also, being in a

region thickened for the hydraulic fitting, the repair world cause no
Aifficultiers. Such, however, was not tie case. AC mentioned before, Tita #h

6-11




6-6

Fig.
"Blow-through" on Tite #7
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failed prematurely at the closure weld (Just below 500 psi}. Upon repair-
ing the closure weld, and repressurization, a crack and slow ieak developed
a2t 805 psi -- at the site of the cite of the crown repair weld. The failure
vas diagnosed, by the metallurgicel staff, as due to hydrogen embrittlement
and as such, wae not considered repairable. The data (up to 800 psi) had

‘shown no inelastic behavior (as contrasted with Tita #2 which had marked

inelastic bek- tor at 700 psi) and is inciuded in this report as being
valid and pertinent. - \

6.2.9 Test Coupons

Test coupons were milled from the ends of the cylinder and from the-
"flash" on the open ends of the drawr hemispherical blanks. In each case,
the coupon cutting was not performed until the part had receigéd its finai
heat treatment, so that coupon heat treatment coincides with that of the

test article from which it was cut.

In each case, it was possible to cut a small p.ate 2.6 inches long
oy 0.50 inches wide. The thickness of the finished plate ranged from .017
to .060- inches, depending upon the availability of material. These plates
were then milled to a "dog-bone" outline as shown in Fig. 6-7.

The radius leading to the narrowed section was 1.00 inches in all
cases. The holes used to attach the specimers to the testing machine'(by
clevises) were 0.250 in diameter and great care was taken to have these
holee fall on the centerline through the narrowed section. The narrowed
section was .060 inches wide which permitted the use of 1/32 inch (square)

strain gages.

Strain gages were installed in back-to-back pairs to read the average
strain st the minimum cross section.” These strain gages recorded strain up
to about two percent. The approximate maximum elongation #as calculated
by correiating tesﬁing‘machine platen motion with strain measured by the
strain gage in the plastic range. The coupon was too small and did not
possess a constanf cross section of sufficient length to permit the in-
stallation of an extensometer (which could have given a more accurate

6-13

Yo SRR SRR s




Fig. 6-7
Tensile coupons Tor Tita #2
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maximum elongation measurement). Aand f aourse, the coupon wag 4dg large
au could be, and still be taken from the same blank ag final remispherical
or cylindrical gpsciaeti.

The stresg-strain surves ohusined for coupons taken Irom Tits #2,
#, #5 and 47 are shown in Figa. 6«8 through 6-10.

6.3 Instrumentation and Test Details

6.3.1 Strain Gagee

Fourteen strain gages were installed on each specimen tested. Three
of these were installed on the inner surface prior to welding on the closure. .

On Tita #2, #4 and #7, the numbering system and locations of the gages
(relative to the center of the sinkage) were identical. These locations are
shown in Fig. 6-11 and Table 6.2, and for Tita #6 and #8, in Fig. 6-12 and
Table 6.3 and 6.4, respectively.

Gages used were epoxy-backed constantan folil, having six parts per
million per degree F temperature compensation and 1/16 inch gage length,
whether rosette or single element. The surface of the titanium was first
degreased with successive acetone swabbings. A quick wipe with a dilute
etchant (1.5% EF, 30% HNOS, 68.5% H20) vas followed by swabbing with an
amnoniated neutralizer. The cement used for bonding the gages was William
T. Bean's epoxy "RIC Fix-Mix" which requires an hour's cure at 1L4O°F.

The gages were shunt calibrated, with the usual corrections applied
for lead resistance and for any shunt resistors needed to balance the br@dge.

The strain gage signals, along with that of the pressure transducer,
were measured and recorded by a Hewlett Packard 2ul5 Series Data Acquisition

System (DAS). The DAS congists of a cross-bar scanner which selects the
gage to be read, an integrating digital voltmeter (reading to one microvolt
accuracy), asnd two recording devices in parallel: One, a printer which puts
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Fig. 6-13
Detail of strain gage installation
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the data in digital form on a tape for test monitoring purposes, and two, a

perforated tape punch so that the data can be processed on a computer.

To obtain strain data in engineering units, the DC bridge voltage is
set at approximately two. The exact voltage is set with a finely adjustable
control to produce the desired number of digital counts upon application of

a precision calibration shunt to the gage.

The largest source of inaccuracy in the system is the manufacture:r's
stated precision of the gage factor (plus/minus half & percent). The re-
solution and repeatability of the system is one microstrain. This fact is

made amply eyident from the strain tables which are discussed further on.

A close~-up of the strain gages installed on Tita #2 is shown in Fig.
6-13. The larger (main) leads to the gages are not yet connected, but a light
£ilm of Gagekote 2 has been applied, partially obscurring the gages. The

line across the top of tue scale is the center of the crease.

6.3.2 Pressure Measurement

Pressure vas measured by two independent devices ir parallel with
the pressure line into the specimen. One of these was a Teledyne Model
206-SA straln gage bridge pressure transducer with a range from zero to 2000
psi, and the other was a Heise precision dial gage with the same range and
a resolution of 2.5 psi. The Teledyne gage was connected to the above men-
tioned DAS, and the bridge excitation was adjusted to produce cne count per
psi of pressure. Thi: transducer was also connected to a strip chart re-
corder for recording peak values and the time-pressure history of tae test

(in case needed for diagnosis).

6.3.3 Pressurization Device

Hydraulic pressure was obtained from an electrically driven hydraulic
power supply, and controlled by a Research Inc. "Servac" unit which in turn

controlled a Moog Series T3 servovalve with a two gpm capacity.

A ramp voltage generator also capable of holding a constant voltage
at any desired level,was used to supply a command voltage to the Servac, thus
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assuring smooth pressure increase with no overshcot at the pressure plateaus.,

6.3.4 Test Proc=dure

Priovr to welding the closure, the specimen thickness was uniformly
napped (in the vicinity of the tesc regicn). Gages were installed in a
cluster in the thinnest region located. Thicknesses were measured using a
sheet metal micrometer with a resolution of .CO05 inches, at approximately
two-inch intervals circumferentially and at 0.20 inch intervals longitudinaily
for three intervals on either side of the crease centerline. Circumferential
measurements at one inch intervals were added on eitier side of the longi-
tudinal section determined to be the thinnest, and destined to be the loca-
tion of the strain gage cluster. The thicknesses were recorded directly on

the specimen as shown in Fig. 6-1h.

After closure welding, strain gage instaliation, and conmnection to
the hydraulic power supply,; all e2ir was bled from the system through a T-fitting
right at the gpecimen connection, and the specimen was installed inside a
section of thick-wallied pipe for personnel protectiocn. Tita #2, fully geged
and ready for test (but not yet enclosed) is shown in Fig. 6-15.

Pressure was applied in a series of steps, with the pressure increase
between the plateaus being smooth and gradual (about 100 psi per minute).
Tne plateaus (on the pressure vs. time record) were set at nominally 100 psi
increments (50 psi for Tita #2 and ;7). Strain and pressure readings were
taken at these plateaus while the pressure was being held constant. After
reaching the third (ascending) plateau and teking readings at this level,
the pressure was returned to zero, at which time a full data scan was again
taken. On the next cycle, the first (lowest) plateau was set at the level
of the second plateau of the previous cycle, so that the highest plateau of
each cycle was one pressure increment higher than the highest pressure of
the previous cycle. Each cycle thus consisted of taking strain readings at
three pressures, fcllowed by a return to zero. The pressure increments be-
tween each reading (on each cycle) were nominally equal. The reason for
this loading pattern was to identify the onset of yielding and will be more
apparent after reading the section on Data Processing (Section 6.4).
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Fig. 6-14

Typical thickness mapping (Tita #7)
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Tita 42 ready for test
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The cycling was continued until the peak pressure indicated in

Table 6.1 was reached. Real failure occurred on only one specimen, Tita #T,
which failed at 1550 psi. The tailure is shown in Fig. 6-16. There was
strong evidence that in this case the failure originated in one of the
closure welds at the site of a small inclusion in the weld. The sinkage
zone in this specimen (which had intentionally been taken well into the
plastic stress range), showed considerable "straightening out". Tita #4
failed gradually (800 psi) at a cap closure weld. The hairline crack which
formed was too fine to photograph, and is not really pertinent test informa-

tion.

Since the analysis made for the test specimens does not consider local
variations in thickness, and must operate on the assumption of a mean th.ck-
ness, it was at first considered appropriate to supply only the mean thick-
nesses in the vicinity of the strain gage clusters. It was then decided
that in case more elaborate analyses should some day make it desirable to
review these tes. results, the actual thicknesses at each gage site are

furnished in Tables 6.2 through 6.h.

6.4 Data Processing and Presentation

6.4.1 Data Normalization

The dats was processed in the same way on nll tests except the first
test on Tita #2, and here the variation is slight. The general procedure
will be described, then the departures from this (on Tita #2) will be pointed

out.

The basic purpose of the lnading sequence and data processing was to
recognize and emphasize the onset of ylelding, and to make it possible to
differentiate between nonlinear elastic behavior and nonlinearity due to
plastic stress. The key to this lies in being able to measure strain at
exactly the same pressures on successive loading cycles, where each cycle
progresses to some pressure level higher taan the preceding cycle. The

problem was to take measurements et exactly the same pressure, for purposes
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of comparing strain. The solution was to take strain readings at several
pressures on each cycle, anu to set these pressures so that their values
overlapped and gradually increased from one cycle to the next. If the in-
crement of pressure between successive strain measuremenis (on the same
cycle) were not too large, it would then be pogsible to interpolate to some
"exact" v 'essure value for each cycle. Because of the overlapping of actual
pressures in the data taking on successive cycles, there could be or<rlapping,
or more correctly, coincidence, of the interpolated "exact" pressure values

from one cycle to the next.

For example, on the first test on Tita #4, full scans of strain data
were taken at 194.1, 245.3, and 298.3 psi on the first cycle of the test.
On the second cycle, data scans were mede at 248.3, 298.7 and 350.2 psi.
By interpolation it is possible to obtain the strains that would have been
measured at 200, 250 and 300 psi on the first cycle, and at 250, 300 and 350
psi on the second cycle. After doing this it is then possible to compare
strains at 250 and 300 psi pressures for cycles #1 and #2. The pattern can
be continued throughout the test to the failure pressure. It should be added
that it was sometimes necessary to extrapolate insiecad of interpolate. Also,
that upon return to "zero" pressure at the end of each cycle, the pressure
wvas not quite at zero, and so it was necessary to extrapolate the strain
that would have been measured at zero pressure. In this case, the strain/
pressure slope used to extrapolate to zero was that measured to the first

pressure station on the first cycle, for the strain gage in question.

This interpolation process must of course be performed for each strain
guge. The process, which was set up for handling by Tymshare computer was
incorrectly called "Data Normalization", dbut the name was retained since it
appeared on numerous printout shects. A more correct name would be "Data
Interpolation”. This has the drawback of not sounding so impressive or

"accepted".

That the technique leads to usefully accurate results is amplv evident
from the strain tables which are found in Appendix E. At the lower pressure
readings (where plastic flow is unlikely) there are several gages where
strain is repeated on successive cycles to within one microstrain (a "micro-
strain" is one micro-inch per inch strain). On most gages, the repeatability
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at low pressures is within plus/minus three microstrain. The few cases
where repeatabilivy is outside this range are believed to be gages where

some plastic behavior was present even at low pressures.

The data is presented in three separate tables explained in the

following sections.

6.4.2 Summary of First and Last Readings

Towards the end of a test, usually on the las’ cycle (when it was
known to be such), readings were taken at every nominal pressure level used
in previous cycles, the idea being that a strain vs. pressure relationship
for the "initial pressurization" could be obtained by listing the strains
corresponding to the peak pressure of each cycle. T.is can then be com-
pared to the strains obtained at the corresponding same pressures om the
last cycle (where readings are taken at every pressure station instead of
only three). The columns of "First Strain" were used extensively in com-
parisons with the analytical work. While the "Last Strain" columns were
not used, they may be of value in comparisons with future analytical work
dealing with plastic behavior. The data in the "First and Last Readings"
is normalized data as explained in the previous subsection. All values

are listed in microstrain, with positive values representing tension.

On Tita #4, which was tested twice, once to 495 psi (with the highest
strain readings at 450 psi), and again to 810 psi (with the highest read-
ings at 800 psi), the two tests are included on the same sheet and marked
as such. Note that Test #2 starts at 400 psi so that there is an overlap
of data at 400 and 450 psi (on "Filrst" readings). The column of "Last”
readings are not continuous because i1 both tests (on Tita #4) the failures
were not anticipated; it was not known that any given cycle was the last
cycle, and so readings were not taken at each pressure increment as needed

for a full column of "Last" readings.

6.4.3 "Normalized Strain on Successive Cycles"

The data in these tables is the basic normalized strain data, each

rolumn representing a1 pressure, eacu row a given cycle. The tabulated values
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are microstrain, with positive values being tensile.

The "zero" pressure column 1lists the strain upon return to zero
pressure after the previous cycle. For cycle #1 this strain should ~b-
viously be zero. This is not the case for Tita #2 which was "pre~cycled"
to 200 psi before taking the cycle #1 readings, {cee 6.4.6).

6.4b.4h  Zeros and Other Aspects of the Strain Tablcs

The single zeros in all experimental data tables of this report sigai-
fy that no data was taken at that pressure on {hat cycle. The only exception
to this is in the case of the zero pressure column where a zero does in fact
irdicate zero strain (readings were taken at zero pressure after each cycle

except the last).

The gaps in the diagonal patterns of these tables where strain read-
ings appear to be missing are where they were inadvertently not taken. The
procedure is unforgiving in this respect, since any attempt to correct such
an oversight would be meaningless. Rut the overlapping of three cycles pro-
vides a redundancy which makes an occasional oversight only a minor short-

coming.

It will be noted that when the pressure increment was 50 (or 100)
psi, the first pressure listed in any table is not 50 (or 100) psi, but
some multiple of this value higher. Readings were not taken at very low
pressures because they would not have added useful data to an already

voluminous listing. The reason is then strictly economic.

In general, the computer program was set up to operate with any one
preselected pressure increment, and then to perform interpolations (or
extrapolations) whenever two succeeding data scans fell within a pressure
intervel twice the size of the preselected pressure increment. Inter-
polations weire then made to pressures which were integral multiples of

the preselected pressure increment.

6.4.5 The Effective Strain Tables

It was originally felt that it would be helpful to calculate the
effective strain for each "First" and "Last" reading and for each Tee-rosette.
6-33



R T L A LT

K
3

(See 6.4.2 for "First” and "Last" reading explanation, and Section 3.1
for definition and explanation of "effective strain".) This data was
subsequently found to be not as useful as originally anticipated, and
was not used in compariscas with analysis. Since others may feel differ-

ently, and since the w~rk of calculation is done, it is included.

6.4.6 Procedure on Tita #2

The classical load-strain test prccedure usually calls for some
cycling at very low loads to "vieak-in" tiie structure, the strain gages
and their cement layer. In the case of the structure this was a velled
reference to yielding of the high zpots, tight fits, etc., so that con-
centrated loads become distributed properly. Iu the case of strair gages
and cements it is probably more superstition than fact, and possibly the
older vire gages and Duco cement had some initial creep or rachetting
problems that wers improved with a little "cold working"”, or some such
effect. Be it as it may, the procedure was fcllowed in the case of Tit- #2,
which was "precycled” to 200 psi before cycling began in earnest. Sinc
the strains, even after this low a pressure, did not return to zerc, some
yielding was occurring (at some point in the structure if not at che gage
site). It was then realized that strains on this precycle would not have
been the same as on the subsequent "first" cycle. The precycling procedure
was therefore deleted on subsequent tests. The strain repcrted for zero
pressure, cycle #1, (Tita #2 only) is then the residual strain following

a preliminary pressure excursion tc 200 psi.

6.4.7 Onset of Yielding

There are two vays to recognize the onset of yielding from the
“"Successive Cycles" table. The first is non-repeatability of strain at
any given pressure. The writer feels that plus/minus five microstrain
non-repeatability is a suitable criterion becsuse it is distinctly greater
than the resolution of the instrumentation system and the subsequent pro-
cessing procedure. If most gages will repeat to within a total span of

four microstrain at three different pressurizations, it is reasonable to

claim a resolution of plus/minus two microstrain. This claim can, of
course, only be made with the knowledge that the system is inherently
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very stable and the test set-up basically free from typical disturbances
such ~s fluctuating "ambient" temperature, large sources of electrical
noise, etc. In addition, the integrating voltmeter is a very stable
device, electrical shielding was used on all leads and a "guard system" is
incorporated in the scarner. The absolute strain readings may not be
accurate to plus/minus two microstrain, but certainly the relative measure-
ments (on any one gage) have this accuracy on repeatability. This accuracy
begins to deteriorate after very large sbtrain excursiors (over 2500 micro-
strain or 0.25 percent strain), but the resolﬁtion allowance is multiplied
by 2.5 for the eriterion, and the criterion is usually applied before 2500
microstrain is attained.

The second sign of plastic strain is the build-up residual strain
upon-reilurn to zero pressure (after each cycle). Here, the writer feels
the discrepancy or resolution allowarce should be increased to plus/minus
ten microst.ain. The reasnn for the larger allowance is two-fold: First,
the extrapnlation to zero operation uses a less reliable "correction slope™
than those used at the highe} pressure increments. Secondly, strains upon
return tc zero pressure have been found (on other testing programs) to be
less repeatable than strains at some well defined load. This may be be-
cause the stresses that induce a given strain st the higher loads are large
enough to overcome certein ! riction mechanisms that pvlay a role in the
strain magnitude, whereas at zero load/pressure levels the stress drops
below a threshhold level; and fricticn prevents the last deformations to
from being "cleanly terminated". The gravity supports of the specimen it-
self may be gignificant in this respect. At high pressures, the force
of the specimen's own weight at its support pointe is negligi™le compared
to the force sustained by any comparable cross-section area under tension

due to the pressure.

It should also be emphasized (for the benefit of the reader who may
feel he is only concerned with the experimental aspects of this report).
that a nonlinear pressure-strain relation at any gage is not necessarily
an indication of plastic stress. The structupf®iis inherently nonlinear
in the elastic range. This is discussed moreﬁlly in the snalytical por-

tion of this report.
o - '*@
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Anotuer caution which should be mentioned is that a strain gage
can give the indication of plastic strain (as defined above} even though
plastic stress has not occurred at the site of the gage itself. If plastic
strain has oceurred in the vicinity of a gage (but nct at the gage), it
will cause stress redistributions which break the normal pressure-strain
pattern for the gage (and thus have the appearance of plastic strain).
Furthermore, the plastically strained region will not return to its zero
strain datum (upon return to zero piessure), so that adjacent regions nust
"balence" out the resulting geometrical anomaly. Any gage in the zone
vhere the anomnaly is "being balanced” will then show a residual strain.
This explains why some "plastic strain occurrence” is evident at relatively
low strain levels in some gages. The extent to which this occurs at a gage
is. of course a function of how near it is to a region under plastic strain

and how severe the plastic strain is in that region.

6.4.8 Tita #(, Strain-Pressure Anomaly

In reviewing the summary of "First and Last" readings for this speci-
men. one observes & drop off in strain for gages 1, 2 and 5 as the pressure
goes from 900 tc 1000 psi. Although not apparent in the "First and Last"
table, a similar anomaly exists for gages 4, 6, 7, 8, 9 and 10, and can be

seen in the "Successive Strain" tables for those gages.

Lrd

For gages 1 and 2 the center of anomaly is in cycle T where the strain
cascades dramatically downward as the pressure rises from £00 to 1000 psi,
but on cycle 8 {the last one), the values although diminished by the drop of
cycle 7, resume éu upward trend with increasing pressure. For gage 5, the
downward trend (with increasing pressure) was evident (only slightly) even
in cycle 6, and continues, though less dramatically, in cycle 8. In gages
4, 5, 7, 8, 9 and 10, the strains never decrease with increasing pressure

(within each cycle) but do show a lower range of values on succeeding cycles
after cycle 6. For gage 10 this is an almost negligible trend, but since :
this gage is 1.25 inches from the anomaly and is virtually a "membrane" gage, :

this is fully understandable.
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The anomaly just pointed out is a vivid example of stress redistribution
resulting from plastic flow in a region near the gage cluster. In effect,
the structure is being altered, slightly in cycle 6, drastitallr in cycle
7, completelyin cycle 8 except for some minor tapering off of the alteration
process in cycle 8. But in cycle 8, the majority of the gages nre "on a new
structure" and behaving according to new rules. GCage 5, probably the closest

to the disturbance is still in a region of change.

As discussed earlier, the gage cluster was placed on the thinnest
region along the crease line. It is then highly probable that the yielding
made evident by the above described anomaly is confined to a small zone along
the circumferential crease. Under these circumstances, the membrane forces
are being channeled around the yielded zone, and gages on either side would
mostlikely have registered upward surges on cycle 7.
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Section 7
CORRELATION BETWEEN THEORY AND TEST

A series of analyses using the elastic/plastic shell analysis program
EPGOR was carried out for each one of the five test specimens used in
the experimental program. These analyses were made using the appropriate
stress-strain curve for each of the specimens, as developed from the coupon
tests. The geometry was held as close to the measured data as possible, but
in all cases a constant equivalent thickness was used, cather than the ran-

domly variable one measured on some of the specimens.

-~

Some data for the test specimens which are pertinent to this discussion
are given in the table below. (For a more detailed description of the tests

and the test specimens, see Section 6.)

o Specimen | Geometry | Material] Thickness Discontinuity Data

'i (1) (2) % %y | by
Tita #2 | Sphere A 0.040 4,15 | 3.15 14.9°
Tita #4 | Sphere STA 0.040 h.15 3.15 14.9°
Tita #6 | Sphere | A/STA 0.034 h.43 | 3.38 14.9°
Tita #7 | Cyl. STA | ©€.050 2.89 3.28 10.2°
Tita #8 | Cyl. STA 0.050 3.86 3.93 15.3°

(1) A = Aonealed, STA = Solution Treated & Aged
(2) Used in the analysis

Note: The analysis of Tita #6 was made using material data
for the annealed (A) condition.

The analyses made'for the test specimens have been compared to strain

. gage readings, and plotted in the figures of this section. When making the
-
) 7_1

P2 I

[



comparison between theory and test the following points should be remembered:

o The strain gages could not be positioned at the point of

maximum strain, i.e., at the center of the crease.

o In the area of interest the svrains are varying very
rapidly (sometimes doubling in 0.1 inch of surface length)
making the accurate determination of the position of the
strain gage relative to the crease critical. However, the
center of the crease is somewhat undeterminable due to the
fact that the profile is not a sharp V, but rather a smooth
U caused by the small finite radius required by the machine

tool (see machine drawings in Section 6).

o The analysis used points (stations) spaced about .05 inch
in the discontinuity area. Thus, in general no exact corres-
pondence between analysis stations and strain gage stations
exist. Rather than interpolate between analysis stations,
analysis stations on either side of the strain gage stations

have been plotted in the comparison figures.

As is evident from the figures of this section, there exists a high de-
gree of correlation between the tests and the analysis. This correlation
is both qualitative and quantitative and includes both the elastic and the
plastic regions. The rather pronounced elastic nonlinear effects in some
parts of the shell are very nicely reproduced in the tests. The comparison
between residual strains will have tuv be considered good, remembering that
these strains are rather small compared to the total strains and that they
therefore cannot be determined with as high a precision as the total strains,

numerically and experimentally.

It is thought that a study of the ~ccompanying figures will be more
fruitful than a lengthy discussion. Therefore, only a few comments will

be made on these ligures.




L7

ke

o VTS T e L S
ST or

Tita f#2 (Figures 7-1 through 7-k)

Fig. 7-1 shows strains for the relatively low pressure of 400 psi,
vhere the entire shell is in the elastic region. Both meridional
and hoop microstrains*. inside and outside surfaces, are plotted
as a function of the meridional surface coordinates. The center

of the discontinuity (the crease) is at s = 3.84 inch.

Fig. 7-2 shows strain versus pressure rlots for a number of strain
gage locations. Note that gage 2, located at s = 3.47 inch, very
accurately depicts the elastic nonlinearity followed by the plastic
strain increase at higher pr-:>ssures, resulting in an s-shaped curve.
The hoop gages (the lower part of the figure) show a very close
agreement with the analytical results, even without making allowance

for the possibility of inaccuracies in the location of the strain

gages.

Fig. 7-3 shows residual strains after 1000 psi pressure. Due to
the very narrow zone of plasticity the correlation is not very
conclusive. However, taken in the context of other tests (Tita
#6, 7 and 8) where higher (and therefore more accurate) residual
strains were encountered, Fig. 7-3 does, indzed, back up the the-

oretical analysis.

Fig. T-4 shows the effects of repeated losdings into the plastic
region. The reloadings are definitely =lastic, though nonlinear,

as predicted by the analysis (ccmpare Fig. 3-9).

Tita #4 (Figures T7-5 and 7-6)

These figures are similar to the Tita #2 ones and the same comments
apply. This test did not go into the plastic region.

Tita #6 (Figures 7-T through 7-9)

Fig. 7-7 shows strains at the low pressure 400 psi, which does not

*10000 microstrains = 1 percent strain
T-3
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produce any plastic straius.

Fig. 7-8 shows strains as a function of pressure. Note the
extreme nonlinearity at the gage 5 location which agrees very
well with the predicted behavior: The strain first increases,
while after having reached a maximum at about 600 psi it de-

creases with higher pressures.

Fig. T-9 shows residual strains after loading to 1000 psi.
The agreement between theory and test is almost exact.

The analysis for Tita #6 was carried out by using material
properties for the annealed condition, even thiough only the
area in the weld zoue is in the annealed condition (the shell
outside this zone is in the STA condition). The reason for
using these properties throughout the shell is that cnly a
very narrow zone will be in the plastic region, and th-t the
surrounding area will be elascic. Since both the annealed and
the STA stress-strain curves are practically identical in the
elastic region the way in which the analysis was made is both
Justifiable and desirable. The accuraczy is well borne out by
the test results.

Tita #7 (Figures 7-10 through 7-13)

Tita #7 is a cylinder and has the mildest dis:ontinuity of all

tests.

The elastic behavior shown in Fig. 7-10 is very similar to the
spheres, as predicted by the analytical results, as are the
nonlinear, s~shaped curves of Fig. 7-il. Figures 7-12 and T7-13
show the progression of residual strains development as the

pressure is increased. (Note the change in scales between the

two figures.)
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Tita #8 (Figures T-14 through 7-16)

This test - = cylinder (ith a relatively large stress factor -
shows excellent agreement between analysis and test. Particu-
larly the residual etrains, Fig. 7-16 show u high degree of'

varrelation.
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APPENDIX A

SYSTEMATIC CLASSIFICATION OF SOLUTIONS TO
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This appendix lists a number of reforences which are recommended for
the colution of various discontinuity problems. The listing is arranged

in the following manner:

Page
Part 1: Common Middle Surface Discontinuities A-1

Part 2: Eccentric Middle Surface Diecontinuities A=l
Part 3: Intersecting Shapes A-6

Relerences




e, Pem

PART 1 - COMMON MIDDLE SURFACE DISCONTINUITIES

AND/CR TORISPHERICAL
HEAD ty

ta

LINEAR NONLINEAR
, ELASTIC ELASTIC | ELASTIC-PLASTIC
DESCRIPTION SOLUTION SOLUTION SOLUTION
(REF.) (REF.) (REF.)
). LONG CYLINDER - (39) (20), (40) @n, (42)
HEMISPHERICAL HEAD
t
- 5’"
2. SHORT CYLINDER - (39) (41
HEMISPHERICAL HEAD
to
t,t"————"—, 713
3, LONG CYLINDER - ELLIPSOIDAL | (39)
HEAD N
t2
4. SHORT CYLINDER-ELLIPSOIDAL | (39)
HEAD
V)
t '3
5. LONG CYLINDER - TORICONICAL (43)

NOTE: Blank space indicates no recommendation.
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PART 1 - COMMON MIDDLE SURFACE DISCONTINUITIES (Cortinued)

LINEAR NONLINEAR
ELASTIC ELASTIC ELASTIC- TLASTIC
DESCRIP
CRIPTION SOLUTION SOLUTION SOLUTION
(REF.) (REF) (REF.)
6. LONG CYLINDER - CONICAL (39)
AND ELLIPSOIDAL HEADS
\J)
__’____ t;
N
7. SHORT CYLINDER - CONICAL 39)
AND ELLIPSOIDAL HEADS
t
{. t
z I
1 /)
8., SHORT CYLINDER - (39)
HEMISPHERICAL AND CONICAL
HEADS 4
t ‘ . ‘
) ;37' 3
9, LONG CYLINDER - SPHERE (44)
\J
10, CHANGE IN THICKNESS - (39) (20)
CYLINDEK
§1 !tz

NOTE: Blank space indicates no

recommendation.
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PART 1 - COMMON MIDDLE SURFACE DISCOWTINUITIES {Continued)

LINEAR NONLINEAR
. ELASTIC ELASTIC ELASTIC - PLASTIC
DESCRIPTION SOLUTION SOLUTICN SOLUTION
(REF.) (REF.) (REF.)
19, CHANGE IN THICKNESS - (44) (40)
SPHERE
t2
12. CHANGE IN THICKNESS - (44)
CONE t
2
%{3
13, CONE SPHERE (44)
4
< ? 2
14, JUNCTION OF MULTIPLE (45) (46)

SHELLS

4

-
]

ty

NOTE: Blank space Indicates no recommendation.
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PART 2 - ECCENTRIC MIDDIE SURFACE DISC(NTINUITIES

LINE AR NONLINEAR
DESCRIPTION ELASTIC ELASTIC ELASTIC - PLASTIC
° SOLUTION SOLUTION SOLUTION
(REF.) (REF.) {REF.)
1. CYLINDER - HEMISPHERICAL (18) {20); («0)
Axisymmetric
HEA
RAD Mismatch
{(Method);

' ) (18) Method

2. CYLINDER-ELLIPSOIDAL HEAD | {(18) Method

\

)

: 3. CYLINDER - CONICAL HEAUD {18) Method
:;
6:———/

s 4, MISMATCH - CYLINDER (39) (20)

Lo UNFILLETED BUTT JOINT Axisymmetric | Axisymmetric
S Mismatch; Mismatch ;
A Y ‘2
R (47) Local {48)

A Mismatch Experimental;
L (49) Local
L : . Mismatch

S, MISMATGH -CYLINDER (20)
FILLETED BUTT JOINT Axisymmetric
Mismatehy
(48)
4 to Experimertal

NOTE: Blank Space indicates no recommendation.
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PART 2 - ECCENTRIC MIDDLE SURFACE DISCONTINUITIES (Continued)

LINEAR NONLINEAR
ELASTIC ELASTIC ELASTIC - PLASTIC
RIPT
DESC ION SOLUTION SOLUTION SOLUTION
(REF.) (REF.) (REF.)
6. MISMATCH - CYLINDER (20)
LAP JOINT Axisymmetric
Mismatch
t
1 tp
7. MISMATCH - SPHERES (15) (40)
Axisymmetric | Infiuence
Mismatch Coefticients
(Method) } Only

‘h{jﬂe

(18) Method

NOTE: Blank space indicates no recommendation.
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PART 3 - INTERSECTING SHAPES

LINEAR NONLINEAR
ELASTIC ELASTIC ELASTIC - PLASTIC
DESCRIPTION SOLUTION SOLUTION SOLUTION
(REF.) (REF.) (REF.)
. SPHERE .CYLINDER (50} (42), (St to S6);
(57), (58)
& Exgerimental
2. NONRADIAL NOZZLE IN
SPHERE
: 3. REINFORCED OPENING IN (58), (59)
! SPHERE Experimenta’
s 4. MULTIPLE HOLES IN (60)
ol SPHERICAL SHELLS
L
A 4
; 8. CYLINDER-CYLINDER (61 to €4) (65);
(s7), (58), (66),
ﬂ (67)
& L b Experimental
NOTE: Blank space indicates no recommendation.
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PART 3 - INTERSECTING SHAPES (Continued)

LINEAR NONLINEAR !
T AST) ELASTIC-PLAST)
DESCRIPTION ELASTIC ELASTIC LASTIC-PLASTIC
SOLUTION | SOLUTION SOLUTION
(REF.) { REF.) (REF.)
6. LONG CYLINDER - FLAT HEADL (3% (63)
6- +t2
7. SHORT CYLINDER- FLAT HEAD (39)
§2
t‘+ ' -+bg3
8. CYLINDER - FLANGED ENDS (69)
t
—
L e
1
9. CYLIRDER - RING (39}
10. CYLINDER - EQUIDISTANT RINGS (39) {70)
1. NONRADIAL. NOZZLE N (7)
CYLINDER Theoretical
and
i Experimental

NOT::

Blank Space mdicates ne recommendation.
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AX\S OF
ROTATION

—=

y
]

MERIDIAN

NORMAL

i

Cartesian coordinates
meridional radius of curvature

hoop radius of curvature

(r = x)

“"horizopta'" radius

meridiornal angle

2 sing
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SHELL ELEMENT

rds = I‘l d¢

dr = ds cos 9

dy = dssing

L]

cos8 gp’

sin P

“4

g

et e 1y

A s U (2 ke S Som s ot

(BL.2)

(81.3)

'V(Bﬁ'..u)
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2. Suriace loads

Unit for

Vertical

Pz' PQ. PH shown positive
Pv shown negative

surface loads: force/unit arca .

= normal PH = horizortal

) components

= tangential Pv = vertical

and horizontal componenta:

= Pwsinq,-Pz cos @

=VP¢cosEp+stinQ o

B-3

(B2.1)

(B2.2)
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3. Internal Forces R
N Unit Normal Forces
{
PARALLEL i
SClRCLE NG = hozn stress resultant |
N = meridional stress

‘ N¢ ? resul tant

Unit Normai Shear

Q = shear stress resultant

o Unit Bending Moments

K

e Bt A (Y STAR  aNATE aenn e e ORI 8 ALTA 2wt eI 3 o 7 ARSI A N
" o~ an et (BN o et et o . A AR | AT AN e

Mm = meridional stress
' resultants
M 0 =  hoop

Note: The above figures refer to rotational symmetric ) roblems, hence
‘central shears and twisting moments are omitted.

B-h




0 Meridfenal cut showing
/ internal forces, positive

Mﬁ‘.\j\lj sense

aTnwey oy aetes

Resolving forces shown above into horizontal and vertical componeri ts:

All forces shown in
poeitive directions

¢ —p-H

Q = Hsing-Vecos g
, (B3.1)
N =Hcos ¢+Vsinq,} .
or
V = N .sin ¢ - Q cos '
, ° 7 M (83.2)
M H ='N¢coa o+ Qsing
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Equilibrium

For the rotutionnl symmetric problem the aguilibrium conditions are .

-

ool lesws
o Vertical force equilibrium
o Horizomtal force equilibrium
o Moment, equilibrium with respect to the tangent of the
parallel circle
SHELL ELEMENT

Iengths of element sides:
in hoop direction: rde@
in meridional direction: rld¢ = ds

aren of element (rde)xds
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R

ki1 Yertical Equilibrium

vrde
Vertical components

of forces on elsment
' R,r de ds

‘Vrde . %s; (Vrde )ds

an

et vertical load on annulus: >Evrdeds X 35

iy

d
Net verticel internal force on annulus: ~§— (vrde) ds

sum of all forces is zero:
*

aVr 2r) + Pyrds2n = 0

Integrate,
V=~ frP, ds + C

vhere ¢ is constapt of integration.

Thus vertical equilibrium is statically determinate.

* ,
Sign rules for lower edge pertain

BT

(B4.1)
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4.2 Horizontal Equilibrium

Horizontal components

. of loads on element ‘
SIIE VIEW Hrdo = i
C —eP,(rde )ds é
= Hrde * %g (Hr de )ds %
Ngds ) , %
TOP VIEW B\ .%2 7
l Horizontal component
. of hoop forces:
3 ! dJ
’ aﬂeds X3
t
/N ods = N fsdo
* /
Adding all horizontal components: !
-2 - =
PH(rde)ds * 5 (#irde)ds N,dsde o
or §
& (pi) - K =
Py + 35 (rH) K, =0
using the common symbol of differentiation | S ﬁ
7d _ 7
. (rﬁ) - Ny + Py =0 , (Bh.2) ‘

*
8iegn rules for lower edge pertain

B-8
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/
§
: 4.3 Moment Equs librium
7
§
' Bending moments
and shears on
sliell element
|
i
l
-~ H
)
Lh Ml = M rde }
4 | meridional
; Y / monents
5 M, = Mrde + (M rae)us
£ 2 7 Mg e Bt )
Q, = Q(rae) }
L } shears
! Q, = erd+ %E (Qrdg)as ‘
< :
M3 = Meds
hoop i
= moments
% Mu Meds
The moment caused by the sheur, about the lower edge, 1s
MQ = - Q(rdg)ds _ .-
The contribution of the hoop nomerit to equilibrium sbout the lower edge is
now calculated. ‘
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M

Resoive M_ into axial and vertical components

0
SITE VIEW \Me ds
TOP VIEW ' Mgdscos ¢
>~

Mg ds cos @
*
Adding all moments

- - - =
33 (Mmrde)ds Qrdeds - M, cosg 4sde = 0

Divide by dsdg anda use common differentiation symbol.

'?'1'; (rM(p) -rQ - Me cosg = 0

Replace Q by Eq. (B3.1):

%'3' (rMcp) - Mg cosg - rH sing = -1V cosg

*Sign rules for lower edge pertain

B-10

Mg ds cos ¢

Mg ds\\& Me ds sin cﬁ

<~

Horizontal component
of hoop moments:

dae
EMads cos ¢ 3

A A | = oty a s

(compare page B-8 for Ne)

(Bh.3a)

(B4.3)
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h.h gSummary of Equilibrium Equation:s

The equilibrium equations as derived above ﬁreﬂL

( V= - frpvds +C (8%.1)
d -
{ i (rH) - Ne + 1P, =0 (B4.2)
d _ ,
\ & (er) - Mecos<p - rlising = -rVcosg (B4.3)
These three equations contain the five unknown quantities V, H, Ne. M(p'
d .
an Me
Note that the only unknown in the first equation is V , which is solved
explicitly.

5. Deformations

The deflection of a point on the mid-surface is defined by the normsl

component w apd the tangential ¢_aponent u , meesured positive as shown
in the figure below:

*Compare equations (312) In Timoshenko, “Theory cf Plates and Shells”, 2nd ed.,
vhich wvere derived in a similar way, but considering equilibrium in the nomal
and tangential directions.
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Resolvin, into horizontal and vertical components

POSITIVE

=
]

ws:l.nq, + acosg

<
|}

= -wcosg + usinq,

The rotation of a point on the mid-surface is

(B5.1)

ke ot s e
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N

un'
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b

O VIS Y st

Element of length ds

Rotation of lowe‘r edge due to
displacement u:

- ~ u
= 4 ——
xu r

1

Qb

&
,\?

R s IR
NS o vy s ) tredbiares L Aad by s e s €

FAR o

E H Rotacion of lower edge due to
displacement w:
- ~ . dw
Yo T A
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Total rotation X = Xu + Xw due to displacements u and w:

=9 _ W (85.2)

)
ey b 8 Vapder S

6. Strain

X |
‘ AFTER DEFORMATION

BEFORE DEFCRMATION

A bkl 1L

—r
PR S A QI

Original length ds = rldgp

Length after deformation: (Jrl + W)de + av

) _ Change in Length -
Straln = G iginal Length :

Meridional Strain
(r1 + w)dg + dv - r dg

[4 =

=
e
!i
g

_v du
€T, Y 36 (B6.1)
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Hoop strain

Original length of parallel circle 2nr
Length after deformation 2n(r + h)

. = 2n{r + h) - onr
0 2nr

h _ wsing + ucosg
r

o
{

Change in meridional curvature (definition)

= 8
u¢ ds

Change ik hoop curve.ture

w = X cosg
(%] r

7. Strain Compatibility

All the strains (¢ » g

\B6.2)

(86.3)

(86.4)

s K3 ne) are functions of only the two dis-

placements w and u. It !s, thevefoie, possible to express their inter-

relation in two equations.
Solve Eq. (B6.2) for the quantity reg
ree = W sinq,-r U CO8em

Differentiate with respect to s:

d(re ) -
9’ _ dw d 4a
"3 “Sing | -u '&-3] + cose (" '&_g +

314

du

ds
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But Lo - L (Eq.Bl.2)
1

gw = u: =-yx (Eq.B5.2)

ds ry

w du _ -

;I + 3 ev (Eq.B6.1)
Thus

d(re,)

3s - eq’cos p+xsing=20

Solve Eq. (B6.4) for

r®
_&.::X

COS(p

Differentiste witk respect to s:

a Thy oo
ds {cosg

or (ség Eq. B6.3)

a rne
EE COS(p) = "b

8. Stress-Strain Relations

The following relations are given without proof:

B-i5

(B7.1)

(B7.2)

(B7.3)
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{Stress Resultants)

(Stresses)

(Struins)

‘
Nz EE (e + vey)
? 1-p 5
Et
N = =—=—_ {e¢, + ve )
9 1“”29 Q
>
3
M = Et 5= (n + vne)
? 12(1-v°) @
Et {
My = 5 (ne +u% )
12(1-v°)
P
N\
- iﬁ 6M
% T * T2
o = Ny , OM
o ¢ 3
t
P
Solving (B8.1) for the strains:
l A
€ = ET (N¢ - o)
= 1 -
€ = Bt (Ne qu)
?
x = —2 M - vM))
¢ g3 ® ®
. o~ 12 (
Bg T —< (M, - vM )
® g2 9
4
In the above equations vy = Poisson's ratio
t = ghell thickness

B-16
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9. Shell Equations

The three equilibrium equations (34.1, B4%.2, B4.3) and the strain com-

patibility equation (B7.1) a

= - C
rv f erds +C

— (rH) - Ny + Py,

In this system of equations,

0 =g (“q,’Ne) =

3

= N »N,)
¢ ecq(<99

®
also X =X (Mq;'Me)
but Mcp =M (n, ne)
"o ) (ne)
thus M= M‘p (ng)
8imilarly M, = M, (ne)

Thus, the unknown in Equation (B9.l) may be expressed by the following

quantities:

Vs H, Neo ue

i (rMcp) - Me cosg ~ rH sing = ~rV cosg

- (ree) T, cose + X sing = 0

re

=0

Ge(H:V:Ne)

= GQ(H.V’NQ)

B-17
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The four equations (B9.1) are reduced by substitution to a system of two

equations containing the unknowns H and ¥.
Substitute the stress-strain relations (B8.3, a,b) into the compatibility

equation (B9.1d)

1 d

£ |ds ["(Ne i va)_! i (Nv = wNy) cos g | + %X sing=0

Replace NG by

a
N = 35 (rH) + Py (Eq.B9.1b)
and N by
P
N, = Hoos g+ Vaeing (Eq.B3.1)

1 fa { fa
& |3 lr [a-s- (rH) + Py - v (H cos ¢ +V sin (P)B-

- [H cos ¢+Vsinq;- v (%—s- (rH) + rPH] cos (p) + X sinqa:O
Collecting terms containing H and X on the .left hand side

E_% -gfs [r %’5 (rH) - v(rH) cos cp] -H coszq; + v(cos q,)%g (rH)}+ Xsin g

1]

1 [a | .
% |3 [- rgPH + vrV sin cp] + cos ¢ [V sin % vrPg
Perform the differentistion %-; (~yrH cos q,)

-g-g (~vrH cos ¢) = -v g—s (rH) cos ¢ + vrH(sin q,);-J-'-
N
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Thus

1 e d sin cos _
5T Eg[r,&_s (rH)J+(v rlf? - 22 9y (ru) |+ X sin g =

=

.1 d 2 -
= &= |- @ [+ r"PH - prVv sin q,] + cos ¢ (V sin ¢ - vI’PH) (89.1)

b A A S A Y F £ 4 i s et

Substitute the stress-straia relations (88.1¢, d) in the equilidrium
Equation (B9.lc)

Et3 ( d

il bl )] -{cos ¢)(n, + vn )|- rH sin ¢ ==V cos
12(1-v°) \ds[ P ) 9) 9 () P ¢

Repiace by
9

and u. by

r
Then

Et—3 d ax Xcos dx
_E—_e) T r 3 + yXcos w] - cos ¢ [__r—m +UE]-I‘H sin¢=~rv cos ¢
12(1-v
But - (vX cos @) = d. (x) cos g - v X@Ein ).‘l@

ds \WA SR 9 V as =V ®/ as
Thus
Et3 d dx sin c082
I—z-i—“-e—)‘ B |Fas -vrm-i- rmx-rHsin¢=-eros¢(B9.2)
2(1-v 1

At this point,.Equations (B9.l) and (B9.2) are a palr of second-order eque-
tions with the unknowns rH and ¥. / :

B-19




Multipl!y Eq. (B9.2) by -ik"l » where k = constant.

1 J&% d -1 -1 sin
T{ = ag r a5 (-LK x)] 1k oy =Ry

V12 (1-5°) 1 ( )
B9.2a

2
+ ikt S X+1klri{sinq,=ikercosw

T R S e, 45, s e
TEECEEI S NRR IR B e

Acd, term by term, Equaticns (B9.l) and {BS.2a):

/
i (4
t tds

=

w2, b ) 2.4 .
[r g—sr (r}i LEL 5 ik'l X)] 4 =20 si:n Q@ {rH + ix -1 -—-———-E 12 X} -
12(1-v°) 1 12(1-v ) -

2 2,k
-2t (‘r!{ -kt EX x) + 1K (stn w(r}{ o x)
12(1-v ) ik

A=
S

= 1x! v cos o+ = Et (— -g-é- [r21>H - vV sin o] +(cos ¢)[V sin ¢ - vrPu], (B9.3).

The constant k 1is chosen to be

k = Bct (B9.4)
where
t ,!
C T ompem—— (39.5)
V12{1-p2)
: giving
i 2 I-l-
~Er - k2 (89.6)
2
12(1-y%)

The last term on the left hand side of Eq. (B9.3) is

1x"Y(sin ,,)(rn b= x) = 1k stn g (rH - 1KK)
1K

B~20
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Substituting this and Equation (B9.6) in Equation (B9.3):

1 {d d X v sin . x) .
T a-g[r e r(ﬂ-ikr)] + Tl—-—w I(H-fik?.)

2
-89y Iy -1k 2] 4 ik M (etn g)r (0 - 1k E) =
r r ®. r

= 131 k 4 2, o
=ik “cos g r |V 4+ TEtrcosy [ 7o (r"Py - vr Vosin ¢) +

4.((305 w)(v sin o - vrPN)]

=S RIx

The last factor on the right hand side of Equation (B9.T) is

- .k— - d LI ) - 1(: —.—1 .q- e c e
Ve iEtrcose [.EE ] =WV+T Cose [ds ]

This factor is designated V:

...- » ,1 2 .
V=1V + = [cos¢ -a-s—(rPH-uerinq,)—stn¢p+vr}’}{]

Substitute kqualions (B9.8) and (B9.9) into (B2.T7):

Bt |ds

- 2 - }
L d [rg: (rH)] + ”—?ﬂ-ﬂ r H¥* -9%8-9 r H]+ ik l(sin q,)r'i=
o .,L

= ik-](uos w)r ;

B-21

(39.7)

(89.8a)

(B9.8b)

(89.9)

i

B

o e o 3RS

o




s e § ST e T Py

Multiply both sides by -ik , remembering that k = Etc

. d d it v sin * 2 - - .
-le |33 {r = (rH) ]+ ———;——9 ri - Hcos“g| + rH sin ¢ = rV cos ¢ (B9.10

d 1

This equation is the shell equation in complex form with the unknown H
(norizontal force) associated with the real part and the variable X
(rotation) associated with the imaginary part, according to definitions

(89.8).

We note that the term & §}_‘-2__Q ri* drops out when r

cone), or when y-» 0. (Ev%n when v = 0 and rl < o this term may be

*
deleted: the equation then becomes similar to the wellknown Geckeler

approximation, when the actual shell .is locally substituted by a cylinder
icy

-+ o (cylinder or

*% ~ ~ -
or cone .) We also note that, since Ilﬂ = 'H' the term - — rit%sin )

is of the relative magnitude -;’;-9- when compared to the term rH Jéin ¢ and,

thus, may be deleted. 1

The quantity V (see Eq. B9.9) contains only a surface load (PH) and the
statically determinate vertical force (V). In the homogeneous solution
(edge solution, bending solution) these quantities are identically zero,

or V= 0.

In the membrane solution (particular solution) these forces are nonzero

and have to be accounted for. However, we note the following

~

V=V[l+0(m)] ’ %«1

Thus, if the load distribution and geometry are smooth enough so that the
differentiation does not cause an order-of-magnitude change, and if

r cos ¢ # 0, we have Vs-s V. Hoywever, it is not necessary tc pos'tulate. a
priori, that VeV and H*= 0.

*See Timoshenko: Theory of Plates and Shells, 2nd Ed., p. 548
** "
See also Pfluger: Elementary Statics of Shells, p. 72, F.W. Dodge

Publishers, N.Y., 1961
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A particular solution (V#0) to Equation (B2.10) may be obtained by

assuming the series expansion

~ ~

I 2
rd = ri{o + c:rH' + ¢ er t ..

1

If this function and its derivatives are substituted in Equation (B9.10)
it is found that H’ and V-V only occur in higher-order terms «nd that
the familiar membrane formulas for a general thin shell of revolution are,

indeed, obtainable by setting ¥ = 0, VvV =V.

However, the main advantage

0o the complex formulation of the shell equation is its use for the homo-

geneous solution, where V = 0.

lo.

Stresses calculated from the Solution 7rH

With the solution rH the stress resultants are calculated as follows:

Hoop from Eq. (B4.2)

=4
NO =33 (rH) + rl"n

or, since H 1is the real part of H

N =@ & (cH) + rP

-] ds H

Meridional from Eq. (B3.1b)
N =H cos ¢+Vsin¢
(")
where V is according to Eq. (Bl.1)
Shear fréom Eq. (B3.la)
Q=Hsin g~ Vecos o

Note again thct H = Re(H)
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The moments are calculated using the stress-strain relationships:

Meridiornal from Eq. (BS8.1lc)

3
M = "—EL-—Q—' (w + vua)
¢ 12(1-v°) ©

Hoop from Eq. (BS8.1d)

3
Moo= Bt (n, + vn )
@

8 1p(1-4%)  ®

In these equations "y and u_ are defined by equations (B7.2) and (B6.3)s
v
respectively:

E3

t
&g L"
4|8
1]

~

vhere X is associated with the imaginasry part of H (Eq. 89.8a)

X = - ;l(— Im(rH)

11. Membrane Solution

If the surface loads are "smooth" a particular solution to Eq. (B9.10)

may be obtained by éssuming the series expansion

2

A = tHy + o) + 1, + o(cd)

Substitution into Eq. (B9.10) gives schematically

"
Q

(sin o r‘l?o - cosg rV) +e{....) + cz(..-..) + c3(.v...)

B-2h
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The functions r'ﬁ'i are found by equating each coefficient to zero. They are

r'l:fo = cot 9 rV

-

d d -— 2 -~ iV . k7
L [1 L (r & (W) - 1(e0s%) By » 22 vlatn o)

if 1 & ,2 . . -1
+ T cos q’;(cos o & (r Py - YT V sin ¢) - Vsin @ + vrpH) (sin ¢)
, (B1l1.1,

1A (r & (v cot o) - t:os:sg_.V¢ rcosg ] a-b)

N ds ds P " 3in g v ry

+ L (r2 P, - vr V sin @) - V sin @ cos @ + vrp, cos o (sin (p)'l
ds H H
L d d d - 2 o~ - j;‘:‘- A«* 3 —1
rH, :[i i (r 33 (r ;) - i(cos“p) H, I_l(sin ;p‘)rﬁl] (sin o)
P

] Using the result of Eq. (Bll.1), end Section 10,

) : N(p = V sing + V cotyp cosg
= Y \
* Himg _ (B11.2)
. Q = Vcotysing -V cos g~ 0 (B11.3)

XN = a_ (rv cot®) + rP
) ds H
T
= --2N 4 r, P (B11.4)
r, 9

which equations are the known results for the membrane solution to shells of

revolution.
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12. Edge Effect Solution

The edge effect solution *s obtained from Eq. (B9.1Cv) with V cosg = 0:
a a ~ 2 , - \
- ic [EE (r(—lg(r'}?)-ﬂco- ;p]-c-r'ﬁ'sinq, = 0 (B12.1)

The expvansicn for rH is assumed to be
o~ - 1l
rE = exp (c 1/2 §) {*o +C /2*1 + cia + ...] (312,2)

Differentiating

: %—g (rH) = c"l/2 exp (c-l/2§) %5 [00 + cl/aﬁ]_ + ]

2 | 4 exp (c’llag) [*o' + c1/2*1. + ...]

ete., and inserting into Eq. (B13.1)

R

[~ir(§’)2+sin¢] go-i-cl/a(....)-;c(....)+'.... = 0

g A ek, ,
A aLe 3\:-__\45”0_«}“,’4 LR YT P

Setting the leading coefficient equal to zero glves

25)2 w1 f
ds ir sinv-

g vy

1

or gl L
: . 1/2
Similarly, from the coefficient for ¢ ’
_ - -1/4 _ :
§o = C (r sing) (B12.3b
-
B-26




The pert coefficient gives a value for ¥ and so on.

At the edge (s = 0)

W o= g,
‘g'g (rH) = ‘3-1/2'5'# + ¢ '+ 61/21;1' 4+ Cyy’ 4 een

Inserting Eq. (Bl2.38,%...):

-~ ]
g‘g(rﬂ) = == [1—\[:!_.—31+i$’2+...]

‘/i c r2

1/2 r
- 1 ,¢ 2
where 9 i (;;) cote (1 + rl) )

it

R

lec 2 1 r, 2 To To
-é—[cot¢(l-T6(l+'£;)) +E;1(a +-1-_I)>

Ta
T 1
1l 2y
- r. (=) cot g+ .-
E < (rl ? ] j
Rearranging,
a b - - ]
‘d';(rm - l"i"".l‘l'(l"'i)‘z"' ee e
2¢ % oS

i B-27
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-~

where rH =
horizontal edge load H
from Eq. (B9.10), with k = Ect:

¥, = vH - iky , as in Eq. (R9.8a). For a shell with the
and rotation X , the edge moment is obtained

1l o~
EMQ— -Im[%'s—(l:ﬁ')-rvﬂcoscp]
LR R LA o(eotalS) + 3]
cr2 2¢ r2 2

and the edge displacement from

Eth | ’%s-(rﬁ)-vl{cosq,

/
I (1-{:.. +v(cot¢) l J+ ;2) -f: 1-g)

231'2
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APPENDIX C

DERIVATION OF AnALYTICAL EXPRESSIONS
FOR A CYLINDER WITH WELD SINKAGE
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Assume an imperfection which is described by the following equation for
the meridian

r = R(Q - ."Kls VR) (c.1)

For s < O the following geometrical relationships follow:

cosgp = -g—;: = ek eKS/R
1. A (cosg) = Ko cKS/R

r sing ds ‘°°°% R sing

1l

> (c.2)

2. S KefR ) Ke/R,

r 2 ¢

1l sin [
9__ (:._2.) = K3 eKB/R (1 ~ 28 QKB/R + 2x2e2KB/R)

ds rl R (l - €2K2e2KS/R)2

P 4 e s SR T TP ST
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For g¢<<1 and K>> 1:

r = R
cosg =~ - ¢K eKs/ R
sing =~ 1
)
(C.x
T A
;g = ¢ K2 eKB/R
1
L
T2y . &K Xs/R
) = F® ° |
1 s E
]
With the sbove fornule and V = %3 the membrane solution (see Appendix B, é
Section 11) _ Hf p_}f xs/R g '
rHo = 5 cotcp= -5 cKe §
R, = 1r(:H)" + = iﬁr‘f" %
l 0 200 R ‘o §
2 " o i‘
H o~ ig-rH , = (i-ﬁ—) rH

AT

Thus, the variable

_~ g n'~
r{ =rfl +crH +. .4 o H

is a geometric series with the constant ratio {1 ¢ 1(2/R s ‘the sum of which

is, simply

L d Lo d 1

rH = rH
°© 1-1c¢ ¥R

_PR° L JKe/R 1iic KR | | ‘
exe™ 1 + €K2/R)2 -




' The membrane solution, then, gives the edge values (sce Appendix B)

H = -23 e X = (“) (C-5)
2 14 (c ¥R "
2 K
X = PR ¢ K (c JR) = X .6)
ZEC 5 4 (e B/R)? o (c

stress resultants are derived

)

By using Section 10 of Appendix B the membrane

B

N = Hcos¢+Vsinq,~£5
: P
2 Ks/R
Ne=%(rn>+rpnﬁ‘g§ 2_¢K-e/
; " 1 (c ¥/R)?
) M
(c.7)

'_‘...q..'l = - Im[g—g (rH) + v'fl'cos¢]

o~ EB ¢ ,(2 el(s/!? (C Kz)
R (c 1(2/11)2 R

To the above "membrane" solution must be added the complementary edge effect

rolution, which has the edge values -(H)m and -(x)m. The edge moment is
~obtained from Eq. (B12.6) of Appendix B. It is found that the correction

Lerme 5‘i and ?? are small, so that the significan* terms are

qu !'(K)m Etece (x)m

y
-
-

< ‘vra_T;; -\/2“'2

AAn

SRR
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or 1/2 K2
vy = BB .x & 1- cK/R
9 2 2e 1 + (c KB/R)%

Adding the particular solution, Eq. (C.7),» to the edge effect solution,
Eq. (C.8), the total meridional edge stresses are found:

o 1/2 1/2
21 ( 3 eK(?{) 142
R 2 2c 2
12‘—{; 1=v~; L+ p +"/5;
where u2 = ng

The complementary edge effect solution for lowop stress is somewhat
more ccmplicated then the solution for the meridional stresses, due to
the fact that the horizontal force component - (H)m » and the rotation
- (x)m cause an expansion of the radias, thus arfectimg the size orf the

total hoop stresc resultant.

The horizontel force is

- (H) .-.-gg _-.._.-.LL..-
i (cK?/R)2

and the rotation is

- g@f e K ‘cK?[R!

- (x)y = - e 1 + (cKB/R)°

R

SRR

N N N

(c.8)

TP ey

(c.9)

N N M oA dale Wt 5B a5 ek s a S s v

(c.10)
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The borizontal deformation is, from Eq. (B12.7) of Appendix B,

neglecting as before the small correction terms ?l and E"a :

Eth _ rH k x
r - S - ) (0013)
‘/éz P !/acre
or, with k =Ect and with tie hoop radius r, = r/sin ¢ :
Eth_rVslng [, Eet, (C.14)
T 2cr r

Replacing H and X by the edge values, Eq. (C.11) and (C.12),and

noting that g—:h is the homp stress resultant, N 0 '
: c
g <Yesing . 1+ (/R) (cki/ﬂ) (C.14)
€ Ve 1s (cKz/R)
= A 2
But sing = sin (‘é‘Q + %)
‘ = cos -2“9
S = V- (w?
i \/sin =~ 1
Also r = R
Thus Ne = V;—g cl(]""ckaR -é (c.15) .
o 1 + (c¥°/R) »

-
Q
[

S



The total stress resultant is the sum of the particular solution Eq. (C.7)
and the complementary solution Eg. (C.li)

"
=
+*
=

Q1‘0].‘ 9 ec

K2 R 1 cx2 R
IS SN JRY WS B v
B 14+ (<:l(2/R)2 2 “ﬁ;: ) 1+ (01(2/3)2

(c.16) .

but

Thus

R e

o

! . ﬁ'_ 1+c1(2/R¢V2chR

(55) 2¢ 1 +(c I(Z/R)2 (e-17),

Set R = 2 (Eq. C.10}

L <

Then

PSR SIS IR 5 ey oty

K
2
Mor . L, (xE 1+l.uv2 B

_5—3— & 1+

= SRAZIW
PR we

M A L TR, R ek o BN i sy

TR

"

N

+

- g

=
1=

1
14+ p2 +“2_ Ty (c.18)

i
1

The hoop bending moment is

=
]
<
5
e b5 AT Sy

c-6




8o that the total hoop stress is

R x
2c l-i-ua-tﬁu

T Btk (c-19)

Wl
Mk

where is calculated in accordance with Eq. (€. 9).

SETS

Equations {C. 9} and (C.19) give the total meridional and hoop stresses,
regpectively.
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. APPENDIX D

; ELASTIC-PLASTIC BEHAVIOR OF CYLINDER
H
: WiTH SMALL SLOPE DISCONTINULTY
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The following, simplified, derivation for the elastic-plastic behavior
of a shell with a discontinuity is made for the same type of shell treated
in Appendixes B and C, i.2., a8 cylinder with a2 weld-sinkage type slope dis-
continuity. During pressurization, this shell develops a narrow plagtic
region, of length 24, in the center of the sinkage:

ELASTIC

PLASTIC

———I—-— { 21

At the edge of the elastlc region, s = -3, the moment equals the yieid
roment, M . For no plastic zone, the elastic moment at s = OoMés is defined
by Eg. (0.8), Appendix C. When Mé is greater than the yield moment, there

is a plastic zone and the rotation at s = -4 is

o ()

2 J

vhere the curvature at the edgedof the elastic zone is

M @ -
Y Ete® : 12(1-v)

Since the curvature is the derivative of the rotation

ax

A= o
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in the plastic zone we have the condition
-4
Xg = f uds
o

The plastic zone is assumed to be small, i.e., 1,<<J<‘.Y » 80 that the
moment is essentially linear with the arc length for o» s> -4

M

M- B (s+ )+ M =M I 2iste
Y

ecr

Thus Q_(M_,g%lAd .2
ds l\!y y -V'éz; My

80 that the condition on the rotation gives
Mo/My

Me Me (-». M
w——— ——— -} = - d = = A
M, AW j n, M

1l

M,/M, h~ A=
AN

a'K/K,




For a given moment-curvature relation, such as that shown in the
sketch above, an integration provides the relation tetween the actual
moment at the discontinuity, Mo’ and the moment Me that would occur

if the material were linear elastic.

The actual moment-curvature relation for a cylinder involves a complex
interaction of meridional and circumferential force and moment resultants.
For the present, however, we consider only uniaxial meridional effects.

For an elastic~perfectly plastic material, the stress-strain curve is shown

in the sketch below.
o

S

(L o,
)
m
%0

gy For the linear variation in strain across the shell thickness -t/2 < z < t/2

€ = g+ 2z

the stress and moment resultants

- R

M = ] ozdz

-t/2
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give, for the three reg.ons of no yielding, yielding in tension, and yleld-

ing in tension and compression, the results

y o<§<1-ﬁ
M =8 ={7- & (§+§-1)2(2?-f+1) 1-E<F< 33
2 -2 l'ﬁ
Et%e by
h 4 - 1
v Y
[ - =
? 0<TF<1-B
2
N_ .5 - - .(lix_'ll F<F< -
Eeyt a ,{x > i<y < I
2
3 3R+l A
1-=5 T8 <Y
\ 3y

where X = ¢/ €, T = 'lm/zey . Thus the ratio of maximum strain to
yield strain is X + ¥. We assume that the axial force is constant, (i.e..
% = const < 1), and solve for M as 2 function of ¥, with B as the

parameter

, Yy o< ¥ <1h
21?13/2 1
3(l-ﬁ)-—(—7—)-' 12 ¥< =
_ 4 5.,12 I-E
n = .
=2\ nl. 1.
3(1n2;g2-1 ﬁxﬂ'

which provides the desired moment-curvature relation.
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For the elastic-perfectly plastic material, without strain hardening,
there is a maximum area A which gives the load at which the strain becomes
infinite and that provides & simple upper limit on the load capacity of the

shell. For the above moment-curvature relation, we bave

(M, /M) o
- K /M
A = —d \"“)
max / "y My
1

(@)

o max

1 -
(1-)2 [ -

{al

it

F|=
H
&

fa

afl:'
'-
{
(= ]

"

1
>
+

)
e [

M i-n
y

ﬁ:ﬂ—_

EEtey

the equation for the maximum pressure is

dﬁ o
"R I
T |Tm ! R 2




M

[
:
v
K]
)

'

H

This is a difficult equation to solve if the discontinuity parameter
(stress factor) ab is prescribed; however, the inverse relation is

simple

= S .oy LB
a, = 1~4-Jl+2(1_.ﬁ 2) 5

Using this equation the graph in the following figure was prepared. Rather
than using the meridional stress factor & , however, the equivalent, bi-
axial, stress factor « , has been used, with the geometric parameter g
set equal to zero {see Section 2 for definitions and discussions of thege
quantities). Also shown in the figure are results from computer analyses
where the solutions were oscillatory, indicating an unstable situation very
near (above or below) collapse (pressures below collapse result in conver-

gent solutions, pressures above collapse result in divergent solutions).
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Fig. D-1 Comparison of closed form and computer sclution for
the elastic/plastic problem
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APPENDIX E

EXPERTMENTAL RESULTS

NCTE: The data of Appendix E are bound in a separate volume
with limited distribution.
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