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I. 

TECHNTCU MEMORANDUM 

INTRODUCTION 1 

Anderson' has developed a method to determine dynamic 
response of finite Timoshenko beams which involves the use of 
the Laplace transform for both space and time variables. For 
arbitrary boundary conditions, this technique is very attractive 
since, in general, the eigenfunctions sf  the beam are composed 
of sines, cosines, hyparbolic sines, and hyperbolic cosines, 

2 making the application of finite: spatial transform techniques 
inordinately difficult.' HQW~VW, for the case of simply sup- 
ported, f i n i t e  Timoshenko beams, the eigenfunctions are sines 
and cosines an@ finite Fourier transforms lead to a fairly 
straightforward solution far the most, general kind of load inputs, 
It should be emphasized that the method to be shown is applicable 
only to simply supported Timoshenko beams. 

11. STATEMENT OF PROBLEM 

Consider a Timoshenko beam o f  length 1, shown in 
Figure 1, The beam is acted on by a concentrated Eorce $(t). 
The force distribution per unit length, q(z,t;c) is therefore 
given by 

JI (t) being any general time dependent function and 6 ( z - e )  being 
the Dirac delta furnation defined by 

6 ( z - c )  = 0, + r 

s ( 2 - C )  -f m ,  2 = 3 

and 
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such that 

- 2 -  

X 

FIGURE 1 - BEAM CONFIGURATION 

The magnitude of the concentrated force acting on the beam is 
recovered by integrating the distribution of force per unit 
length over the span of the beam. Thus, from (1) arid the 
definition of the delta function, 
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The lateral (x) displacement of the beam for the problem with 
the concentrated load is denoted by w(z,t;<); the rotation of 
the cross section is represented by $(z,t;<). The variable z 
indicates the position at which the deflection is measured, 
while the variable r indicates the point of application of the 
concentrated load. The terms w and $ are consistent with the 
notation of Anderson and Cowper . For convenience the argu- 
ments (z,t;<) will be dropped except where it is felt to be 
necessary. The equations of motion for w and @ are, after 
Cowper : 

1 3 

3 

and 

2 2 

az 
- -  a2@ b2 2 + c 2 a w + c @ = o  - az 2 at 

(4) 

where p is mass density of the beam, A is the cross section area and 

with K being the shear coefficient, E, the modulus of elasticity, 
G, the shear modulusl and I, the second moment of area. The 
bound'ary conditions for a simply supported beam are: 

w(O,t;<) = w(L,t;<) = 0 

and 



- 4 -  

Zero initial conditions are assumed, 

The problem described in this section is concerned 
with the response of the beam to a concentrated load. However, 
a solution of Equations ( 3 )  and ( 4 )  with a delta function 
input can be used as a Green's function to generate a solution 
to a problem with the most general kind of spatially dependent 
input * 
111. Ml3THOD OF SOLUTION 

The Laplace transform - Finite Fourier transform method 
is not, in general, suitable for solving Equations ( 3 )  and (4) 
with arbitrary boundary conditions. However, for the simply 
supported case, the eigenfunctions are such that the Fourier 
transform method is easily executed. 

The following transform and transform pairs are 
defined e 

(i) Laplace transform: 

co 

f*(p) = f (t) emPtdt 

(ii) Finite Fourier Sine transform pair; 

n.rr z - 
f ( 2 )  = - 2 . f (n)sin(T) L S 

n= 1 

*See Appendix B, 
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(iii) Finite Fourier Cosine transform pair: 

L 
dz naz f(z)cos - L 

- 
f (n) = 
C 

0 

m 

- 
f (n) cos 1 -  2 f(z) = E fC(O) + f; naz 

L 
- 

n=l 

It is generally known that the Laplace transform of a quantity 
2 - a 
at 

where f has zero initial conditions is 2 

The following relationships concerning finite Fourier transforms 
may also be proven : 2 

L 

0 

2 2  
- a% sin - zdz = - ?;-[f (L) (-1) -f ( 0 )  I - - 

L 
na na n n r  - 

fs L L2 2 az 
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n-rr - - af cos %. adz = [f (L) (-=-l)n-f (O)] + 7 fs 
az L 

where the prime denotes derivative with respect to z ,  It should 
be noted that the expressions in the brackets of Equations (13) 
through (14) are simply the boundary conditions on the function f. 
Indeed, w ( 0 )  w(L) I $ R  (0 )  $ G  (L) are precisely the boundary 
conditions known in Equations (6) and ( 7 )  and requested by 
Equations (131, (14) and (15). 

IV B SOLUTION 

Far the purposes of clarity, the Laplace and Fourier 
transformations of ( 3 )  w i l l  be illustrated on a term by term 
basis. Only those terms containing time (t) will be affected 
when taking the Laplace transformation, 

Term 1: The Laplace transform of the first term of ( 3 )  is 
from (11) 

2 
and the operator 5 are independent of 

time, the Laplace transform of the second term of-(3) is, from 
( 8 )  

2 Term 2: Since a 
az 

W W 

2 a 2  
2 az 

we-ptdt = a 2 - a2w* 
2 a z  

a2 (w)el'ptdt = a a -2 az 
( i i'3 
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Terms 3 and 4: The remaining terms transform exactly as 
term 2: thus 

and 

0 

Substituting terms (i) through (iv) into the corresponding 
positions in ( 3 )  gives the Laplace transform of ( 3 )  in the 
form 

2 

dZ 
p w * - a  2 2 - - a  d w* - - -  a* - +* 6 ( Z - < )  

dz pA 

(iii) 

(Note that (v) contains ordinary derivatives, Since time has 
been transformed out of the equation, partial derivatives are 
unnecessary,) We now take the finite Fourier sine transform 
of (v) on a term by term basis. Only those terms dependent 
on z (tu*;.@* and ~ ( z - c ) )  will be affected, 

*The argument of wfl for example, is now ( z , p ; c ) ;  the same 
is true for @ * *  + * r  being originally a time dependent function 
only, has the argument (p)  
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Term 1: The finite Fourier sine transform of the first 
term '-0 is from (9a) 

(vi 1 na w*Gin - z4z = L 
i," p2w*sin na zdz = p 

Term 2:  From (131, the finite Fourier sine transform of 
the second term of (5 )  is 

or noting boundary conditions (6) , 

w*(O,p;c) = w*(L,p;c) = 0 

it follows 

2 2 nn a (TI'' w"* ,-z' sin - dz = - 
d z  

2 d2w* naz a L S (vii) 
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Term 3: From (12), the third term of (v) is transformed 
according to 

(viii) 

Term 4 :  Finally, the finite Fourier transform of the 
fourth term of (v) is from the definition of the delta function 

nn 5 - d ( 2 - g )  sin= dz = - '* sin - I XH L PA L 

Substituting terms (vi) through (ix) for the corresponding terms 
of (v) gives the doubly transformed equation ( 3 )  in the form 

2 By dividing through equation (x) by a , we obtain the desired form 
of the transformed equation ( 3 )  as shown in (16) below. Taking 
the Laplace transform and finite Fourier cosine transform of (4) 
and noting boundary conditions (7 )  yields in a similar fashion 
the doubly transformed equation (4) as shown in (17) below. The 
resulting set of transformed equations of motion are grouped for 
convenience. 

and 

c 2 n.rr - 1 2 2 n l r b 2 -  - w* + 2 (p +c +(-I ) + E  = 0 (E) L L s  b 
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Equations - (16) and (17) are now two linear algebraic equations 
in w* and (9*. The determinant of (16) and (17) is 

S C 

D =  

2 2 2  n n  + -- P 
a 
- 2 L  2 

2 c n.rr ZL 

nn/L 

2 2 2  1 2 2 n 7 r b )  
b L 
-+P +c + 2 

a b  4 2 2  2 2 n n  +p [c +(a +b ) - 1 
2 2  a b  

= -  

The solution for Kg is given by 

-1 w* = - 
S D 

- 

or 

nn 
L 
- nr 5 '* sin - 2 L PAa 

2 2 2  - 1 2+c2+n 7~ b 0 
b2 L2 

2 2 2  2 2 n r b  
(p  +c +-I 
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Simi la r ly ,  

- 11 - 

L e t  

and 

2 n l r  2 2  2 2 2Tl(n) = [c +2 ( a  +b ) I  
L 

4 4 4 2 2  n l r a b  
T2(n)  = 

L4 

The bracketed po r t ion  of t h e  denominator i n  ( 1 9 )  and ( 2 0 )  may 
then be w r i t t e n  

o r  upon f a c t o r i n g  
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where 

- 12 - 

2 
a (n) = Tl(n) - 

Equations (19) and (20) may then be written 

and 

2 2 In Appendix A it is shown that a (n) and B (n) are real positive 
numbers. This guarantees real frequencies (see ( 3 3 )  and ( 3 4 ) )  (. 

Taking the inverse Laplace trasform, represented by 
-1 L ( ) ,  of (26) and (27) gives 

and 
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where $(t) * F(t) is the notation f o r  the convolution integral 

and 

From tables, 

F2 (t ,n) = A2 (n) sin [a (n) tl + B2 (n) sin [ 8 (n) tl 

( 3 3 )  

( 3 4 )  
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where 

and 

- 14 - 

2 
- d(n) - a. (n) 

2 2 A (n) = 1 
a (n) [ a  (n) - a (n) 1 

( 3 5 )  

Taking the inverse Fourier sine transform (Equation (9b)) of ( 2 8 )  
and the inverse Fourier cosine transform (Equation (lob)) of (29) 
while noting that 

m = PAL = mass of beam (39) 

yields 

and 
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u n= 1 

Equations (40) and (41) represent a formal solution to the problem 
of response to a concentrated load posed in Section 11. To obtain 
a solution to the problem where the loading takes the more general 
spatial. form 

g ( z )  being any well behaved function, it is noted that (40) and 
(41) are Green's functions". Thus, a solution to ( 3 )  and (4) 
where g ( z )  replaces 8 ( z - c )  , is given by 

and 

V. EXAMPLE 

Consider a beam acted upon by a suddenly applied 
concentrated load at mid-span; that is, let 

q(z,t) = PH(t)G(z-L/2) , ( 4 3J 

*See Appendix B. 
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where P is the magnitude of the force, and H (t) is the 
Heaviside unit step function defined by 

0, t < O  

H(t) = 

1, t 2 O  

(44) 

then, +(t) = PH(t) , and combining (441, (34) I (33) with (30) gives 

and 

Substituting 5 = L/2 (from (43)) into (40) and (41) and noting 

0, n = 0, 2, 4, ... 
(47) 

nT 
2 n-1 

2 
sin - = - 

, n = 1, 3, 5,... (-1) 

gives 
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The summation over odd integers insures a symmetric w deflection 
pattern about mid-span; this is to be expected since the load is 
applied at mid-span. These results are in agreement with the 
resulzs o f  R. A.  Anderson. 4 

Another interesting check for this solution (and, 
indeed, for the entire fwmulation) may be accomplished by an, 
application o f  the Abel-Tauber "final value" theorem. This 
theorem states that if f*(p) is the Laplace transform of f(t), 
the the final value of f(t) (steady state value) is 
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For this example, the final value or steady state solution 
should reduce to the static solution* of a concentrated load 
at the beam mid-span. If it is noted from (1) and (43) that 

and, therefore, 

then (51) and (26) give, after setting 5 = L/2 

From (52) and (50) 

*See Appendix C. 
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Equations (25), (24) and (22 )  give 

Substituting (54) and (23) into (53) yields 

+ nr sin - 2 lim Ws = - 
t-t w PA 

or from the definitions (5), 

L2 + 2 2  1 nr lim W = P sin - 
E1 n TI KGA S 2 t-- 

Taking the inverse Fourier sine transform (9b) of (56) and 
noting (47) yields for the deflection at mid-span 

W 

L L  lim w ( - , t ; T )  = P 
t-tw L 

n = l  I 3,5 

(55) 

(56) 

W 
2 

( 5 7 )  
n-1 1 + 

n 
- 

4 2 (-1) 
2 = p -  
L ' n=1,3,5 
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Then (57)  becomes 

Equation (58)  is the correct stat ic  so lu t ion  for a simpZy supported 
beam loaded a t  mid-span by a concentrated force P. 
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APPENDIX A 

2 The o b j e c t  of t h i s  s e c t i o n  i s  t o  show t h a t  01 (n )  
f3 ( n ) ,  def ined  i n  ( 2 4 )  and (251, are real p o s i t i v e  numbers 
a l l  n. From Equation ( 2 1 )  

2 

2n21T2 c2(a2+b2) + 
L2 

The t e r m  T2(n)  may be w r i t t e n ,  after not ing  ( 2 2 )  , 

4 4 2 2  4 n 7 r a b  T 2 h )  = 
4L4 

and 
f o r  

(A- 1 

Subt rac t ing  (A-2) from (A-1) g ives  

Since 

2 
a4 + b4 - 2a2b2 = (a 2 2  -b ) , 

(A-3) may be w r i t t e n  

(A-4 1 2 2 . 2  

L 
Tl(n) 2 - T 2 ( n )  = - 4+2n (a +b ) + n v  
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It is clear that every term on the right hand side of (A-4) is 
positive; thus 

and the radicals in ( 2 4 )  and (25)  are real, Furthermore, it is 
clear from (21) and ( 2 2 )  that Tl(n) > 0 and T2(n) > 0. Hence, 

2 2 and the quantities c1 (n) and 6 (n) are always real and positive. 
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APPENDTX B 

The s o l u t i o n  t o  any l i n e a r  d i f f e r e n - i a l  equat ion  
where t h e  non-homogeneous term ( i n p u t  o r  f o r c i n g  func t ion )  
i s  a p o i n t  source (Dirac de l ta  func t ion )  i s  a Green 's  func t ion .  
The Green's func t ion  may be used t o  gene ra t e  a solution t a  
more g e n e r a l  types  of i n p u t .  The fol lowing h e u r i s t i c  argument 
w i l l  i l l u s t r a t e  how t h i s  i s  accomplished. 

Consider the beams shown i n  F igure  B-1. The s o l u t i o n  
t o  t h e  concent ra ted  load  problem f o r  t h e  beam of Figure B-1 

X 

(b) I 
X 

FIGURE B-1 
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(a )  w a s  obtained i n  Sect ion I V ;  t h e  so lu t ions  f o r  displacement, 
v ( z , t ; c )  and r o t a t i o n ,  4 ( z , t ; g ) ,  are shown i n  equations ( 4 0 )  
and (41). Consider the  beam of Figure B-1  (b) acted upan by 
a general  d i s t r ibuked  force per  u n i t  l ength  J, ( t ) g ( z ) .  At any 
poin t  T ,  t h e  quan t i ty  $ ( t ) g ( c ) d g ,  where dg i s  an increment of 
l ength ,  may be considered a concentrated f o r c e  by making d g  
as small  as w e  wish. Since t h e  equat ions of motion are l i n e a r ,  
t h e  d i s  lacement and r o t a t i o n  due t o  a concentrated force 

the  e f f e c t  of all t h e  concentrated loads $ ( t ) g ( r ; ) d r  gives  t h e  
so lu t ion  t o  t h e  genera l  load inpu t  per  u n i t  l ength ,  J , ( t ) g ( z ) ,  
i n  t h e  form 

J I ( * )g (c  P dc a r e  w ( z , t ; s ) g ( c ) d s  and 4 ( z , t ; s ) g ( r ) d s .  Summing up 

and 
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APPENDIX C 

The f * ( p )  of t h i s  example i s  is*, def ined  i n  ( 5 2 ) ,  and 
s i n c e  it con ta ins  p o l e s  on t h e  imaginary ax is  i t  i s  a c t u a l l y  
i n c o r r e c t  t o  use  t h e  t e r m  " f i n a l  va lue"  i n  applying ( 5 0 )  t o  ( 5 2 ) .  
Since a l l  t h e  po le s  of (52) are s imple,  a p a r t i a l  f r a c t i o n  
expansion t a k e s  t h e  form 

Applicat ion of (50) t o  (C-1)  thus  e x t r a c t s  t h e  c o n t r i b u t i o n  of 
t h e  pole  a t  t h e  o r i g i n  only, and t h i s  i s  t h e  s t a t i c  s o l u t i o n .  
Cont r ibu t ions  from t h e  remaining t e r m s ,  r ep resen t ing  undamped 
o s c i l l a t i o n s  a t  beam n a t u r a l  f requencies  are suppressed. There- 
f o r e ,  a p p l i c a t i o n  of t h e  f i n a l  va lue  theorem (50)  i n  t h i s  case 
does n o t  give us t h e  complete f i n a l  va lue  b u t  ra ther  t h e  s t a t i c  
p a r t  only.  By p o s t u l a t i n g  even a s m a l l  amount of damping, a 
m o r e  r ea l i s t i c  suppos i t i on ,  t h e  o s c i l l a t o r y  t e r m s  w i l l  damp o u t  
and t h e  t r u e  f i n a l  va lue  w i l l  be t h e  s t a t i c  s o l u t i o n .  


