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TECHNICAL MEMORANDUM

I. INTRODUCTION

Andersonl has developed a method to determine dynamic
response of finite Timoshenko beams which involves the use of
the Laplace transform for both space and time variables. For
arbitrary boundary conditions, this technique is very attractive
since, in general, the eigenfunctions of the beam are composed
of sines, cosines, hyperbolic sines, and hyperbolic cosines,

making the application of finite spatial transform techniques2
inordinately difficult.' However, for the case of simply sup-
ported, finite Timoshenko beams, the eigenfunctions are sines

and cosines and finite Fourier transformg lead to a fairly
straightforward solution for the most general kind of load inputs.
It should be emphasized that the method to be shown is applicable
only to simply supported Timoshenko heams.

II. STATEMENT OF PROBLEM

Consider a Timoshenko beam of length 1, shown in
Figure 1. The beam is acted on by a concentrated force y(t).
The force distribution per unit length, q(z,t;z) is therefore
given by ,

g(z,tiz) = v(t)s(z-¢) (1)

p (t) being any general time dependent function and §(z-z) being
the Dirac¢ delta function defined by

§(z-z) =0, z % ¢
and

§(z=-g) » =, 2 =7¢
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f f(z)s (z-z)dz = £(t)

such that

¥(t) LBS.

Z¢

FIGURE 1 - BEAM CONFIGURATION

The magnitude of the concentrated force acting on the beam is
recovered by integrating the distribution of force per unit
length over the span of the beam. Thus, from (1) and the
definition of the delta function,

L
F =f q(z,t)dz = y(t) (2)
0
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The lateral (x) displacement of the beam for the problem with
the concentrated load is denoted by w(z,t;z); the rotation of
the cross section is represented by ¢(z,t;z). The variable z
indicates the position at which the deflection is measured,
while the variable ¢ indicates the point of application of the
concentrated load. The terms w and ¢ are consistent with the

notation of Andersonl and Cowper3. For convenience the argu-
ments (z,t;z) will be dropped except where it is felt to be
necessary. The equations of motion for w and ¢ are, after

Cowper3:
2 2
3w 237w _ 2 3¢ _ p(t) 5.,
5 > a® = oA (z-t) (3)
at 3z
and
2 2
34 _p2 29, 2,2 (4)
2 2 0z
ot 0Z

where p is mass density of the beam, A is the cross section area and

a® = ke/p (a) )

b = B/o () ) (5)
2

c” = KAG/pI , (c)

with K being the shear coefficient, E, the modulus of elasticity,
G, the shear modulus, and I, the second moment of area. The
boundary conditions for a simply supported beam are:

w(0,t;z) = w(L,t;z) =0 (6)

and

2 (0,t50) = ¢ (L, ti0) = 0 (7

az
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Zero initial conditions are assumed.

The problem described in this section is concerned
with the response of the beam to a concentrated load. However,
a solution of Equations (3) and (4) with a delta function
input can be used as a Green's function to generate a solution
to a problem with the most general kind of spatially dependent
input.¥*

ITI. METHOD OF SOLUTION

The Laplace transform - Finite Fourier transform method
is not, in general, suitable for solving Equations (3) and (4)
with arbitrary boundary conditions. However, for the simply
supported case, the eigenfunctions are such that the Fourier
transform method is easily executed.

The following transform and transform pairs are
defined.

(i) Laplace transform:

£x(p) = | f£(t)e Ptat (8)

(ii) Finite Fourier Sine transform pair;

L

£ (n) = £(z)sin 9{-?- dz (9a)
0

f(z) = % Z . _f_s (n)sin(ngz) (9b)
n=1

*See Appendix B.
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(iii) PFinite Fourier Cosine transform pair:

1
- _ nrz
fc(n) = f(z)cos 5 dz (10a)
0 ﬂ
£(z) =L E_(0) + 2 ) F_(n)cos 2IZ (10b)
n=1

It is generally known that the Laplace transform of a quantity
2

i—g where £ has zero initial conditions is

ot .

r® 2
j 8L ePat = pex (p) (11)
0

The followihg relationships concerning finite Fourier transforms
may also be provenzz

L
3f . nmz - _ hm =
[ 3z Sin = dz = T fc (12)
0

2 sin ELE zdz = - I}J—ﬂ[f(L) -1)-f(0)] - 21 F (13)
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L
[ g—g— cos P-E- zdz = [£(L) (~1)2~£(0)] + -r-’Ll 'f‘S (14)
0
I
) 2 2 2
j 9--% cos ELE zdz = [£'(L) (-1)®~£7(0)] - 5—2?— £ (15)
92 L
0

where the prime denotes derivative with respect to z. It should
be noted that the expressions in the brackets of Equations (13)
through (14) are simply the boundary conditions 6n the function f.
Indeed, w(0), w(L), ¢ (0), ¢° (L) are precisely the boundary
conditions known in Equations (6) and (7) and requested by
Equations (13), (14) and (15).

Iv. SOLUTION

For the purposes of clarity, the Laplace and Fourier
transformations of (3) will be illustrated on a term by term
basis. Only those terms containing time (t) will be affected
when taking the Laplace transformation.

Term 1l: The Laplace transform of the first term of (3) is
from (11)

® 2
[ 2 W o"Ptar = pus (i)
0 ot

Term 2: Since a2 and the operator iLi are independent of
92
time, the Laplace transform of the second term of (3) is, from

(8),

oo o)

2 2 2
a’ Jiy (w)e Ptat = a? jL? we Ptar = a2 3—2;- (ii)
0 9z 4 0 o2z ’
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Terms 3 and 4: The remaining terms transform exactly as

term 2; thus .
2 3¢ _—pt _ 2 2¢* L.
a” 5o e dt = a Sy (1ii)
0
and

y(t)s(z-z) _-pt., _ ¥v* _ =

A ° dt = R §(z-¢) (iv)
0

Substituting terms (i) through (iv) into the corresponding
positions in (3) gives the Laplace transform of (3) in the

form

2 d%w* _ 2 d¢* _ p*
a a” F- = vy 8§ (z-z) (v)*

(Note that (v) contains ordinary derivatives. Since time has
been transformed out of the equation, partial derivatives are
unnecessary.) We now take the finite Fourier sine transform
of (v) on a term by term basis. Only those terms dependent
on z (w*;¢* and §(z-z)) will be affected.

*The argument of w*, for example, is now (z,;p;z); the same
is true for ¢*. y*, being originally a time dependent function

only, has the argument (p).
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Term 1l: The finite Fourier sine transform of the first

term in (v) is from (9a)
L L
[ p2w*sin -I—I-Ll zdz = pzf w*sin %‘1 zdz = pzﬁg (vi)
0 0

Term 2: From (13), the finite Fourier sine transform of
the second term of (5) is

L
2 *
[ a2 SWX o5 D72 g5 = - a2 BT rux(L,piz) (1) P-w* (0,p52) ]
0

d22 L . L
2
20 1§ A
a (L W

or noting boundary conditions (6),

w*(0,p;z) = w¥(L,pizg) =0

it follows

f a? $¥2 sin B2 4z = - 2 (BD)" T (vii)
0
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Term 3: From (12), the third term of (v) is transformed
according to

L
2
f 2 d¢* sin BTZ g, = - &nr —-; (viii)
0

Term 4: Finally, the finite Fourier transform of the
fourth term of (v) is from the definition of the delta function

L

y* _ . Nz - ¥* L. nng .

Jr 5 §(z-z) sin T dz R sin — (ix)
0

Substituting terms (vi) through (ix) for the corresponding terms
of (v) gives the doubly transformed equation (3) in the form

2 2
(p*+a® (BT) ir + 20T (x)

3* = K sin
S pA L

By dividing through equation (x) by a2, we obtain the desired form
of the transformed equation (3) as shown in (16) below. Taking
the Laplace transform and finite Fourier cosine transform of (4)
and noting boundary conditions (7) yields in a similar fashion

the doubly transformed equation (4) as shown in (17) below. The
resulting set of transformed equations of motion are grouped for
convenience.

e *
(p/a)? + ED%)wr + BT 3% = Lo gin DI (16)
pAa
and
S B wx o+ L %t AR 5Fx = 0 (17)
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Equations (16) and (17) are now two linear algebraic equations
in W; and ¢é. The determinant of (16) and (17) is

2 2
P _,nm nrn/L
2 2 -
a L
D =
c? ng 1, 2 2n%r%?
2T “z(pTHeT )
b b L
2 2 4 4
= —— {p +p’Ic’+(a%p®) 211 + BT azb%} (18)
ab L L
The solution for Wg is given by
i
Y* _ gip BEFEZ  AOT
5 sin =% T
pAa
W o= 2
s
2 2, 2
0 LZ p2+02+n 1r2b
b L
or
2 2.2
(p2+02+n T b )
— p* . nwg L (19)
w*¥ = — gin .
s pA L . 2 2 4 4
(p4+[c2+n 5 (a%+p2)1p° + -r—l—%— azbz}
L L
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Similarly,
2
c
T3 nm
— * K3
o* = i—- sin nre b (20)
c pA L 2 2 4 4
4 2 n"w 2. .2 2 nT 2. 2
p +[cT+—— (a"+b") Ip"+—7F— a’b
L L
Let
2 2
- 2, n"7 2.,2

2Tl(n) = [c +—]-:.—2—- (a“+b )1 (21)
n41r4a2b2

T,(n) = (22)

L
and
2 2 2
d(n) = [P P (23)

The bracketed portion of the denominator in (19) and (20) may
then be written

4 2
p + 2Tl(n) P+ Tz(n)

or upon factoring

{(p%+a? (n) (p2+8% ()}
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where

|1

2 =1, M - V1,20 - 7,m (24)

T, (n) + '\/le(n) - T, (n) (25)

82 (n)

Equations (19) and (20) may then be written

2
— _ y* . nrg p +d(n)
w* = L= sin (26)
s pA L (p2+a2(n))(p2+82(n»
and
2
ny &
— p* . nng L b
¥ = X— g1n (27)
cC pA L (p2+q2(n))(pz+82(n))

In Appendix A it is shown that az(n) and Bz(n) are real positive
numbers. This guarantees real frequencies (see (33) and (34)).

Taking the inverse Laplace trasform, represented by

L‘l ( ), of (26) and (27) gives

nwg
L
pA

sin

Gs = y(t) = Fl(t,n) (28)

and
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g C

< nng
L b

2
) L

sin
(29)

<

= y(t) =* Fz(tln) oA

where y(t) = F(t) is the notation for the convolution integral

t
p(t) « F(t) =[ p(t)F(t-1)dr (30)
0
and
F. (t,n) = L7t [ __piram ] (31)
1 (p>+a? (n)) (p%+8° (n))

fi

-1 1
F,(t,n) L (32)
2 [(pz+u2(n))(p2+62(n))]

From tables,
Fl(t,n) = Al(n)sin[a(n)t] + Bl(n)sin[B(n)t] (33)

Fz(t,n) = Az(n)sin[a(n)t] + Bz(n)sin[B(n)t] (34)
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where
_d(n) - a?(n) (35)
Ay () = 7 3
a(n) [ (n) - o (n)]
- ~[d(n)-g%(n) ] (36)
By (n) = 3 5
B(n) [B" (n) ~ o " (n)]
-1
A,(n) = = (37)
2 o (n) [o?(n)-82 (n) ]
and
B, (n) = L (38)

8 (n) [a® (n) -2 (n) ]

Taking the inverse Fourier sine transform (Equation (9b)) of (28)
and the inverse Fourier cosine transform (Equation (10b)) of (29)
while noting that

m = pAL = mass of beam (39)
yields
. _ 2 ._ nwg _._ nhnz .
w(z,t;z) = = 2: w(t)*Fl(t,n)51n <= sin == (40)
n=1

and



BELLCOMM, INC. - 15 -

[=2]

2
i-z% Z ny (£) *F, (t,n)sin —*= cos —¢ (41)

n=1

g

¢(z,t;z) =

Equations (40) and (41) represent a formal solution to the problem
of response to a concentrated load posed in Section II. To obtain
a solution to the problem where the loading takes the more general
spatial form

g(z) = v (t)g(z) (42)

g{z) being any well behaved function, it is noted that (40) and
(41) are Green's functions*. Thus, a solution to (3) and (4)
where g(z) replaces 6§(z-g), is given by

L
w(z,t) = jr w(z,t;z) g(g)dg .
0

and

L
¢ (z,t) =[ ¢(z,t;z) g(g)dg .
0

V. EXAMPLE

Consider a beam acted upon by a suddenly applied
concentrated load at mid-span; that is, let

q(z,t) = PH(t)S§(2-L/2) , (43)

*See Appendix B.
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where P is the magnitude of the force, and H(t) is the
Heaviside unit step function defined by

0, t<0

H(t)

il

(44)

1, €20

then, y(t) = PH(t), and combining (44), (34), (33) with (30) gives

t
w*Fl(t,n) =-{i/r H(t—r){Al(n)sin[a(n)t]+Bl(n)sih[B(n)t]}dt
0

(45)

Al(n) Bl(n)
=_;{_a(_r_17 [cos[a(n)t]-1] + ) [cos[B(n)t]—l]}

and

{"2(“) B2(n)
xp*Fz(t,n) =-PTz—n—)— [cos[a(n)t]-1] + @) [cos[B(n)t]—l]} (46)

Substituting ¢ = L/2 (from (43)) into (40) and (41l) and noting
sin ZL = (47)

gives
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2p - E%l A;(n)
wz,e) = - 2N Loy [cosla(n)tl-1]
n=1,3,5,,.
B, (n)
+ _%THT [cos[B(n)t]~l{} sin ngz (48)
2 il n-l 2 (n)
p(x,t) = - % l%) % P z: n (-1) 2 ~§7§7 [cos[oa(n)t]-1]
n=l,3:5. -
B, (n)
+ "%TBT [cos[B(n)t]-l]} cos i"-g-i (49)

The summation over odd integers insures a symmetric w deflection
pattern about mid-span; this is to be expected since the load is
applied at mid-span. These results are in agreement with the

results of R. A, Anderson.-4

Another interesting check for this solution (and,
indeed, for the entire formulation) may be accomplished by an
application of the Abel-Tauber "final value" theorem. This
theorem states that if f*(p) is the Laplace transform of f(t),
the the final value of f(t) (steady state value) is

lim £(t) = lim pf* (p) (50)
T p>0
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For this example, the final value or steady state solution
should reduce to the static solution* of a concentrated load
at the beam mid-span. If it is noted from (1) and (43) that

v(t) = PH (t)

and, therefore,

y*(p) = P/p (51)

then (51) and (26) give, after setting ¢ = L/2

: 2

-, _ P . nm p- + d(n) ]

wk¥ = —— sin — (52)
s pRp 2 Lip%+a?(n)) (p2+8° (n))

From (52) and (50)

lim w_ = lim pw* = ;% sin %} > d(g) ] (53)
tro S prg S P a“(n) 8 (n)

*See Appendix C.
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Equations (25), (24) and (22) give

4 4
s2me?m = 21 a%p? (54)
L

Substituting (54) and (23) into (53) yields

4 2 2
. P nmw Lc L
lim w_ = — sin — + (55)
oo pA 2 n4n4a2b2 n2w2a2
or from the definitions (5),
4 2
lim w_ = P sin 30 [ 20— 4 0o (56)
t>e nnt ET n v KGA
Taking the inverse Fourier sine transform (9b) of (56) and
noting (47) yields for the deflection at mid-~span
z 4 2
treo ~ n o EI n 1 KGA
n=l’3,5
4 z 2 =
-p 2 (L R CE L Y ooen™t Ay sy
R P n* 2kea 2
§ n=1,3,5 E n=1,3,5 "
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From Sommerfeld,5

1
m=l+ S + L.
26 AL

Then (57) becomes

3
- L .- L, _ PL PL .
lim W(Eptcz)v I8ET + TRGK (58)

tro

Equation (58) is the correct static solution for a simply supported
beam loaded at mid-~span by a concentrated force P,
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APPENDIX A

The object of this section is to show that az(n) and

Bz(n), defined in (24) and (25), are real positive numbers for
all n. PFrom Equation (21)

2 2 4 4
2 1 2 2, 2.2 4...2.2 4
TI(n) = Z’(}4+ nLg c® (a“+b”%) + E;%—-(a +2a“b“+b J (a-1)

The term T2(n) may be written, after noting (22),

4n41r4{;12b2

T,(n) =
2 4L

(A-2)

Subtracting (A-2) from (A-1l) gives
2 22 4 4
2 _ 1 4 2n"nr"¢c 2.2 nw 4 4 2, 2
Tl(n) - T, (n) = T E: +——Lz——— (a”+b )+—L—4— (a"+b " -2a"b )] (A-3)
Since

a® + b* - 2a%2% = @%b,

(A-3) may be written

2 2 2 4 4 2
2 (n) - T,() = % [c4+2_f££§_c_ (a%+b?) + _THL“ (a2_b2)] (A-4)
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It is clear that every term on the right hand side of (A-4) is
positive; thus

Ti(n) - Tz(n) > 0

and the radicals in (24) and (25) are real. Furthermore, it is
clear from (21) and (22) that Tl(n) > 0 and T2(n) > 0. Hence,

T, () > ‘\/T'i(n) -, (n)

and the quantities az(n) and Bz(n) are always real and positive.
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APPENDIX B

The solution to any linear differential equation
where the non-homogeneous term (input or forcing function)
is a point source (Dirac delta function) is a Green's function.
The Green's function may be used to generate a solution to

more general types of input. The following heuristic argument
will illustrate how this is accomplished.

Consider the beams shown in Figure B-~l. The solution
to the concentrated load problem for the beam of Figure B-1

l ¥(t) LBS.

| ' - — 7,

£ ——'{ (a) ‘ 7

XT§>

. ¥(t)g(¢)dt LBS v(t)a(2) LBS/yL

R ————

-y
>
s

= | 17777

(b)

P I .
,7¢|‘;7 Z,§

FIGURE B-1
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(a) was obtained in Section IV; the solutions for displacement,
w(z,t;z) and rotation, ¢(z,t;z), are shown in equations (40)
and (41). Consider the beam of Figure B-1 (k) acted upon by

a general distributed force per unit length y(t)g(z). At any
point ¢, the quantity ¢ (t)g(z)dz, where dr is an increment of
length, may be considered a concentrated force by making dg

as small as we wish. Since the equations of motion are linear,
the displacement and rotation due to a concentrated force
p(t)g(z)dr are w(z,t;z)g(g)dr and ¢(z,t;z)g(g)dz. Summing up
the effect of all the concentrated loads y(t)g(z)drz gives the
solution to the general load input per unit length, y(t)g(z),
in the form

L
w(z,t) =[ w(z,t;z)g(g)de
0

and

L
¢(Zrt)v=]' ¢(th;‘;)g(§)d‘:
0
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APPENDIX C

The f*(p) of this example is %S*, defined in (52), and

since it contains poles on the imaginary axis it is actually
incorrect to use the term "final value" in applying (50) to (52).
Since all the poles of (52) are simple, a partial fraction
expansion takes the form

. Cy Cy
et ey ) ey o

Application of (50) to (C-~1) thus extracts the contribution of
the pole at the origin omly, and this is the static solution.
Contributions from the remaining terms, representing undamped
oscillations at beam natural frequencies are suppressed. There-
fore, application of the final value theorem (50) in this case
does not give us the complete final value but rather the static
part only. By postulating even a small amount of damping, a
more realistic supposition, the oscillatory terms will damp out
and the true final value will be the static solution.



