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COMMENTS ON LINEAR' FEATURE EXTRACTION*

T. L. Henderson and D. G. Laintotis
Department of Electrical Engineering

and
Electronics Research Center

The University of Texas at Austin
.Austin, Texas. 78712

ABSTRACT

The problem considered is that of finding the best linear transformation

to reduce a random data vector z to vector of smaller dimension. It is assumed

that the original data are Gaussian under either of two hypotheses, and that

one wishes to use the transformed data to distinguish the hypotheses. The

Bhattacharya distance is used to measure the information carried by the

transformed data. A compromise solution is obtained for the case in which the

data has both different means and different covariances under the alternative

hypotheses.

*Supported by Joint Services Electronics Program Grant AF-AFOSR 766-67

and by NASA Research Grant NGA 44-012-066,and by the Air Force Office of

Scientific Research, Office of Aerospace Research, USAF, under Grant AFOSR

69-1764.
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COMMENTS ON LINEAR FEATURE EXTRACTION

We consider the problem of choosing a KxN transformation matrix to

extract as much information as possible from an Nxl data vectorz. The integer

K is assumed to be fixed by practical considerations, and is taken to be less

than N (since otherwise an invertible transformation could be found which

preserves all of the information) . It is further assumed that z is a Gaussian

random vector under each of two hypotheses H g and H 1 , .and that we wish to

extract those features which will enable us to best distinguish between the

hypotheses. Specifically,

z — Il (0, R0) under hypothesis HO

z— q (m, R 1 ) under hypothesis H1

where the assumption of zero mean under the null hypothesis is made with no

loss in generality since we could always subtract the mean before applying

  L	 ,.i+.... ..^,.,v,s. p	 Vve a e .s uMe that R is positive definite.the transforma tion .  i yr Vi.J11V2 111G 11VG, ♦.Avv .dVwa+...v	 o - 1------

The 'ansformed data vector is

Ir = Az

where A is the KxN transformation matrix. Thus y has the following statistics:

Y — 1 (0, PO) under hypothesis HO

Y — I (u, P 1 ) under hypothesis H1,

where PO A AR OAT , P 1 4 AR 1  T, and u ® Am.

As a measure of the information carried by y we shall use the Bhattacharya

distance *1 , which in this case reduces to *2
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B = 8 uTP 1u.+ 1 log (detPt Pd TtP)	 v^•here P4j (PO + Pl)
0	 1

We shall not here discuss all of the justifications for using this

measure, except to say that it provides an upper bound on the probability of

error in distinguishing the hypotheses and in many special cases becomes

related to the probability of error '^ 1, 2 , 3monotonically	 p	 y	 We do, however,

remark that it obeys most of the rules one would expect from an information

measure: (1) It is non-negative (2) It becomes very large if y ceirries

enough information to permit almost-perfect discrimination (3) It goes to

zero if y is useless for distinguishing between the hypotheses (4) It will

never decrease when the transformation matrix A is augmented by the addition,

of an extra row (S) It has the same value for choices of A which are equiva-

lent (evquivalent In the sense that would give y' s which are related by In-

vertible transformations) .

The problem of choosing A to maximize B becomes straight-forward in

a couple of spacial cases, for which the results are fairly-well known:

Case I: If R O=R 1 ( ® R) , then the quantity sTz is a sufficient statistic

for distinguishing between the hypotheses 4 , where s is an 1x1 vector

defIned by s -R 1 m. Thus in this case we could actually take A to be the

row vector s  and retain all of the relevant information with 1xN transformation.

It is not difficult to show that, in fact, B attains its maximum whenever s  is

in the space spanned by the rows of A, and the maximum value is B _ 8 MT m.

Case II: If m= 0, then the maximum value for B will be attained if we

take the rows of A to be the first K eigenvectors id, , J62 , 0. , , d
K 

(transposed) of

3



the matrix equation *3 R 1 X^ = AR O^S , where the eigen -solutions (^i , A i) N 1
are ordered so that A l + l A l a A 2 + 1/A 2 k ......k A N + 1 A N . It is easily

shown that there exist N eigen-solutions which satisfy the "orthonormality"

condition 161 R0 
= 6ij 5 . Moreover, with this choice of A, the components of

y will be statistically independent under either hypothesis.

In the, general case the problem is much more difficult. Gradient

techniques could be used to find the optimum A, but such techniques would

prove extremely impractical when N is large. We shall develop here a

slightly sub-optimal solution to the problem, which is relatively easy to

find in a given practical problem.

If we write B = BI + 
B
II ' where B I = 8 uTl' I  ; B II = ln^, ; detP etP	 )

0	 1

then we can note the following facts: First we note that B II is completely

Independent of m, and is simply the value of B that would have been obtained

*
under the assumption m = 0. Thus we must have B II :5B Ii' where B,II is the

value of BII attained when A is chosen as to Case II. Furthermore, B I is just

the value of B that would have been obtained if we had assumed equal covari-

ance matrices, taking the average value R = (R O + R 1) . Therefore,

BI :9B,g m
TR l m , and equality will be acheived whenever the row space

of A contains the vector sT = mTR 1 .

At this point we should mention one special case: if it should happen

that s  is contained in the row space of the matrix A chosen as' in Case II ,

then both equalities will obtain and the maximum B will have been achieved.

(This may actually occur, at least approximately, to some practical cases,)

4
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If we write B°pt = Bopt + B IZ t to denote the values attained when A

is chosen to maximize B, we must have BI pt s BI and BIZt sBII	 But

suppose we choose A as in Case II. 'Then we would have B = BI + B
IT where,

excepting the special case, B I a BI . Now suppose we use the (K+1)xN' matrix

Aaug formed by adjoining s  onto A as its K+1 row; i. f . , Aaug ®[ 6A.].    Then

Baug =B I + Bit g , since the icow space now contains s T . furthermore, it must

be true that BII s BIZ g since we know that (in Case II) adding a new row to

the matrix transormation never decreases the information. . Hence Baug 
2!

Bopt .

The result can be summarized as follows: Although we cannot easilir

find the best KxN matrix A opt , we can always use the (K+1)xN matrix Aaug to

extract just as much (and possibly more) information at the cost of requiring

that we be permitted to use one ex'. a component in the transformed data vector

y.

It should be noted that another interpretation of this resul.  is provided
e

by simply identifying J=K+1; J- 1 =K, and stating that although A aug may not be

quite as good as the best JxN matrix, it certainly yields as much information

as any (J-1)xN matrix, and may be therefore regarded as a slightly suboptimal
i ^

solution to the problem of finding the best JxN matrix.
	 r.

In many real problems this -,ompromise solution should 'je good enough,

provided that increasing or decreasing K slightly does not drastically affect

the amount of inforr -Rion we can extract. This condition would be met if N

were quite large and K had been predetermined by a law of diminishing returns,

(i.e. if K had been selected to be large enough so that further increase would

5
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yield relatively little additional informat:lon) .

In order to find Aaug we must find s, and determine the first K

eigenvectors $i described under Case II. finding s is not too difficult, and

is actually analogous to finding the matched filter in a problem with continuous

(rather than discrete, i.e. vector) data. for finding the ^i ' s we first note that

R	 = AR
1	 0

 
1R
0	 1

= A$ <_>	 R 1 1 R
0

e 1 $ (if R-1 exists) .

Matrix iteration techniques can be used to find the eigenvectors 6 . However,

when N is extremely large such techniques are unreasonable (and it becomes

impossible to invert the matrices) . for this reason a practical method has

been developed for finding the eigenvectors under the fairly general assumption

that the components of z can be regarded as the output sequence of discrete

linear dynamic system excited by a "white" Gaussian noise sequence (with a

different model for each hypothesis) . The details are too involved to be

presented in this correspondence 5.

In closing we remark that these results apply equally well to the case

^_S^ L^	 '- 
1`

.-l ed	 .ro.+w 	 ` Ofof continuous (chat z = z /101 , 
L6 E %a, Uj , prvvst.acu a t.vxupicLv Qv t. W.L

functions i(t) e:gst for the integral equ^tion *3' 7

t^R 1 (t,T) ^ (T) dT	 A JaR 0 (t, T) $ (T)dT,

where R0 and R 1 are the hypothesis-conditional covariance functions of z(t) .

(State variable techniques have been developed for solving this integral

equation) 8.
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