General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

COMMENTS ON LINEAR FEATURE EXTRACTION

By
T L Henderson
D. G Lainiotis

Technical Memorandum No 8 April $15 \quad 1969$

INFORMATION SYSTEMS LABORATORY

CLEARINGHOUSE Tor Feeder Scientific \& Technical

ELECTRONICS RESEARCH CENTER THE UNIVERSITY OF TEXAS AT AUSTIN

Austin Texas 78712

1. This document has been approved for public release and sale; its distribution is unlimited.

AF:AFOSR-67-0766E

By

T. L. Henderson
D. G. Lainiotis

Technical Memorandum No. 8 April 15, 1969

INFORMATION SYSTEMS LABORATORY

ELECTRONICS RESEARCH CENTER
THE UNIVERSITY OF TEXAS AT AUSTIN
Austin, Tezas 78712

BLANK PAGE

COMMENTS ON LINEAR FEATURE EXTRACTION*

T. L. Henderson and D. G. Laindotis Department of Electrical Engineering and
Electronics Research Center The University of Texas at Austin Austin, Texas. 78712

Abstract

$\AA B S T R A C T$

The problem considered is that of finding the best linear transformation to reduce a random data vector z to vector of sinaller dimension. It is assumed that the original data are Gaussian under either of two hypotheses, and that one wishes to use the transformed data to distinguish the hypotheses. The Bhattacharya distance is used to measure the information carried by the transformed data. A compromise solution is obtained for the case in which the data has both different means and different covariances under the aiternative hypotheses.

[^0]
COMMENTS ON LINEAR FEATURE EXTRACTION

We consider the problem of choosing a KxN transformation matrix to extract as much information as possible from an Nxl data vectorz. The integer K is assumed to be fixed by practical considerations, and is taken to be less than N (since otherwise an invertible transformation could be found which preserves all of the information). It is further assumed that z is a Gaussian random vector under each of two hypotheses H_{0} and H_{1}, and that we wish to extract those features which will enable us to best distinguish between the hypotheses. Specifically,

$$
\begin{aligned}
& z \sim \eta\left(O, R_{0}\right) \text { under hypothesis } H_{O} \\
& z \sim \eta\left(m, R_{1}\right) \text { under hypothesis } H_{1},
\end{aligned}
$$

where the assumption of zero mean under the null hypothesis is made with no loss in generality since we could always subtract the mean before applying the transiomation. lor conventence, we assume that R_{0} is positive definite,

The i ansformed data vector is

$$
Y=A z
$$

where A is the KxN transformation matrix. Thus y has the following statistics:

$$
\begin{aligned}
& y \sim \eta\left(O, P_{O}\right) \text { under hypothesis } H_{O} \\
& y \sim \eta\left(u, P_{1}\right) \text { under hypothesis } H_{1},
\end{aligned}
$$

where $\mathrm{P}_{\mathrm{O}} \triangleq{ }_{A R} \mathrm{O}^{\mathrm{T}}, \mathrm{P}_{1} \triangleq \mathrm{AR}_{1} \mathrm{~A}^{\mathrm{T}}$, and $\mathrm{u} \triangleq \mathrm{Am}^{\wedge}$.
As a measure of the information carried by y we shall use the Bhattacharya distance * ${ }^{*}$, which in this case reduces to *2

$$
\left.\mathrm{B}=\frac{1}{8} u^{T} \mathrm{P}^{-1} u+\frac{1}{2} \log \frac{\operatorname{det} P}{\left(\operatorname{det} P_{0} \cdot \operatorname{det} P_{1}\right.}\right)^{\frac{1}{2}}, \text { where } \mathrm{P} \stackrel{\Delta}{=} \frac{1}{2}\left(P_{0}+P_{1}\right)
$$

We shall not here discuss all of the justifications for using this measure, except to say that it provides an upper bound on the probabllity of error in discinguishing the hypotheses and in many special cases becomes monotonically related to the probability of error ${ }^{* 1,2,3}$. We do, however, remark that it obeys most of the rules one would expect from an information measure: (1) It is non-negative (2) It becomes very large if y carries enough information to permit almost-perfect discrimination (3) it goes to zero if y is useless for distinguishing between the hypotheses (4) It will never decrease when the transformation matrix A is augmented by the additior. of an extra row (5) It has the same value for choices of A which are equivalent (evquivalent in the sense that would give $y^{\prime} s$ which are related by ln vertible transformations).

The problem oi choosing A to maximize B becomes straight-forward in a coupie of special cases, for which the results are fairly-well known:

Case I: If $R_{0}=R_{1}(\Delta)$, then the quantity \overbrace{z} is a sufficient statistic for distinguishing between the hypotheses ${ }^{* 4}$. where s is an Nxl vector defined by $\mathrm{s} \stackrel{\wedge}{R}^{-1}$ m. Thus in this case we could actually take A to be the row vector s^{T} and retain all of the relevant information with $1 x N$ transformation. It is not difficult to show that, in fact, B attains its maximum whenever \mathcal{S}^{T} is In the space spanned by the rows of A, and the maximum value is $B=\frac{1}{8} m^{T} R^{-1} m$.

Case II: If $m=0$, then the maximum value for B will be attained if we take the rows of A to be the first K eigenvectors $\phi_{1}, \phi_{2}, \ldots, \phi_{K}$ (transposed) of
the matrix equation ${ }^{* 3} R_{1} \phi=\lambda R_{0} \phi$, where the eigen-solutions $\left(\phi_{1}, \lambda_{1}\right){ }_{1=1}^{N}$ are ordered so that $\lambda_{1}+1 / \lambda_{1} \geq \lambda_{2}+1 / \lambda_{2} \geq \ldots \ldots \geq \lambda_{N}+1 / \lambda_{N}$. It is easily shown that there exist N eigen-solutions which satisfy the "orthonormality" condition $\phi_{1}^{T} R_{0} \delta_{j}=\delta_{1 j}{ }^{* 5}$. Moreover, with this choice of A, the components of y will be statistically independent under either hypothesis.

In the general case the problem is much more difficult. Gradient techniques could be used to find the optimum A, but such techniques would prove extremely impractical when N is large. We shail develop here a slightly sub-optimal solution to the problem, which is relatively easy to find in a given practical problem.

If we write $B=B_{I}+B_{I I}$, where $\left.B_{I}=\frac{1}{8} u^{T} P^{-1} u ; B_{I I}=\frac{1}{2} \ln , \frac{\operatorname{detP}}{\left(\operatorname{det}_{0} \cdot \operatorname{det} P_{1}\right.}\right)^{\frac{1}{2}}$, then we can note the following facts: First we note that $\mathrm{B}_{\text {II }}$ is completely independent of m, and is simply the value of B that would have been obtained under the assumption $m=0$. Thus we must have $B_{I I} \leqslant B_{I I}^{*}$, where $B_{I I}^{*}$ is the value of $B_{I I}$ attained when A is chosen as in Case II. Furthermore, B_{I} is just the value of B that would have been obtained if we had assumed equal covariance matrices, taking the average value $R=\frac{1}{2}\left(R_{0}+R_{1}\right)$. Therefore, $\mathrm{B}_{\mathrm{I}} \leq \mathrm{B}_{\mathrm{I}}^{*} \triangleq \frac{1}{8} \mathrm{~m}^{\mathrm{T}} \mathrm{R}^{-1} \mathrm{~m}$, and equality will be acheived whenever the row space of A contains the vector $s^{T}=m^{T} R^{-1}$.

At this point we should mention one special case: if it should happen that s^{T} is contained in the row space of the matrix A chosen as in Case II, then both equalities will obtain and the maximum B will have been achieved. (This may actually occur, at least approximately, in some practical cases.)

If we write $B^{\text {opt }}=B_{I}^{\text {opt }}+B_{I I}^{\text {opt }}$ to denote the values attained when A is chosen to maximize B, we must have $B_{I}^{\text {opt }} \leq B_{I}^{*}$ and $B_{I I}^{o p t} \leq B_{I I}^{*}$. But suppose we choose A as in Case II. Then we would have $B=B_{I}+B_{I I}^{*}$, where, excepting the special case, $B_{I}<B_{I}^{*}$. Now suppose we use the $(X+1) \times N$ matris $A^{\text {aug }}$ formed by adjoining s^{T} onto A as its $K+1$ row; i. $\ldots A^{\text {aug }} \underset{\Delta}{\Delta}\left[\begin{array}{c}A \\ \dot{s} T\end{array}\right]$. Then $B^{\text {aug }}=B_{I}^{*}+B_{I I}^{\text {aug }}$, since the row space now contains s^{T}. Furthermore, it must be true that $\mathrm{B}_{\mathrm{II}}^{*} \leq \mathrm{B}_{\mathrm{II}}^{\text {aug }}$ since we know that (in Case II) adding a new row to the matrix transormation never decreases the information. Hence $B^{\text {aug }} \geq B^{\text {opt }}$.

The result can be summarized as follows: Although we cannot easily find the best $K \times N$ matrix $A^{\text {opt }}$, we can always use the $(K+1) \times N$ matrix $A^{\text {aug }}$ to extract just as much (and possibly more) information at the cost of requiring that we be permitted to use one extra component in the transformed data vector y.

It should be noted that another interpretation of this resuli: is provided by simply identifying $\mathrm{J}=\mathrm{K}+\mathrm{l} ; \mathrm{J}-\mathrm{l}=\mathrm{K}$, and stating that although $\mathrm{A}^{\text {aug }}$ may not be quite as good as the best JxN matrix, it certainly yields as much information as any ($j-1$) xN matrix, and may be therefore regarded as a slightly suboptimal solution to the problem of finding the besi JxN matrix.

In many real problems this jompromise solution should je good enough, provided that increasing or decreasing K slightly does not drastically affect the amount of inforr tion we can extract. This condition would be met if N were quite large and K had been predetermined by a law of diminishing returns, (i.e. If K had been selected to be large enough so that further increase would
yield relatively little additional information).
In order to find $A^{a u g}$ we must find s, and determine the first K eigenvectors ϕ_{1} described under Case II. Finding s is not too difficult, and is actually analogous to finding the matched filter in a problem with continuous (rather than discrete, i.e. vector) data. For finding the ϕ_{1} 's we first note that

$$
R_{1} \phi=\lambda R_{0} \phi \Leftrightarrow R_{0}^{-1} R_{1} \phi=\lambda \phi \Leftrightarrow R_{1}^{-1} R_{0} \phi=\frac{1}{\lambda} \phi\left(\text { if } R^{-1} \text { exists }\right) .
$$ Matrix iteration techniques can be used to find the eigenvectors ${ }^{*} 6$. However, when N is extremely large such techniques are unreasonable (and it becomes impossible to invert the matrices). For this reason a practical method has been developed for finding the eigenvectors under the fairiy general assumption that the components of z can be regarded as the output sequence of discrete linear dynamic system excited by a "white" Gaussian noise sequence (with a different model for each hypothesis). The details are too involved to be presented in this correspondence*5.

In closing we remark that these resuits apply equally well to the case of continuous data $z=z(t), t \in(a, b)$, provided a complete set of elgenfunctions $\phi_{1}(t)$ exist for the integral equation ${ }^{*} 3,7$

$$
\int_{a}^{b} R_{1}(t, \tau) \phi(\tau) d \tau=\lambda \int_{a}^{b} R_{0}(t, \tau) \varnothing(\tau) d \tau,
$$

where R_{0} and R_{1} are the hypothesis-conditional covariance functions of $z(t)$. (State variable techniques have been developed for solving this integral equation) ${ }^{*}$.

REFERENCES

[1] D. G. Lainiotis, "Optimal Feature Extraction In Pattern Recognition," IEEE International Information Theory Symposium Abstracts, San Remo, Italy, September 1967.
[2] T. Kallath, "The Div srgence and Bhattacharyya Distance Measures in Signal Selection," IEEE Transactions on Communications Technology, Vol. 15, No. 1, pp. 52-60, February 1967.
[3] T. T. Kadota and L. A. Shepp, "On The Best Set of Linear Observables for Discriminating Two Gaussian Signais," IEEE Transactions on Information Theory, Vol. IT-13, No. 2, April 1967. [Note: Kadota and Shepp use the Hellinger integral $H=\exp (-B)]$
[4] H. L. Van Trees, Detection, Estimation, and Modulation Theory: New York, John Wiley and Sons, 1968.
[5] T. L. Henderson anc D. G. Lainiotis, "Digital Matched Filters for Detecting Gaussian Signals in Gaussian Noise," IEEE International Information Theory Symposium Absiracts, Ellenville, New York, Januaïy 1969.
[6] A. Ralston, A First Course in Numerical Analysis, (New York: McGraw Hill, 1965) p. 480 ff.
[7] C. R., Baker, "Simultaneous Reduction of Covariance Operators and The Noise-in-Noise Problems of Communication Theory," Ph.D. Dissertation. Department of Electrical Engineering, University of California at Los Angeles, 1967.
[8] D. G. Lalniotis and T. L. Henderson, " Application of State Variable Techniques to Optimal Feature Extraction," Proceedings of The IEEE, Vol. 56, Nc. 12, pp. 2175-2176, December 1968.

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification

1. ORIGINATING ACTIViPY: Enter the name and address of the contractor, Bubcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
2a. REPORT SECUFATY CLASSIFICATION: Enter the over* all security classification of the report. Indicate whether "Restricted Data" is includeci Marking is to be in accordance with appropriate security regulations.
2h. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
2. REPORT TITLE: Enter the complete repost title in all capital letters. Titles in all cases should be unclassified. If a meaningful itle camot be selected without classification, show titfe classification in all capitals in parenthesis immediately following the title.
3. DESCRIPTIVE NOTES: If appropriate, enter the type of reqort, e.g., interm, progress, summary, annual, or final. Give the inclusive dates when e opecific reporting periodis covered.
4. AUTHOR(S): Enter the name(s) of author(s; ab shown on or in the report. Enter last name, first name, middle initial. If ribitary, show rank end branch of service. The name of the principal athor is an absolute minimum requirement.
5. REPORT DATE. Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.
7a. TOTAL NUMBER OF PAGES: The total page court shouid follow normal pagination procedures, i. e., enter the number of pages containing information.
7b. NUMBER OF REFERENCES: Enter the tut al number of references cited in the seport.
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grent under which the report was written.
3b, \&c, \& 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, eqc.
9a. ORIGINATOR's REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this teport.
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or $b y$ the sponsor), aiso enter this number(s).
6. AVAIL ABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those
imposed by security classification, using siandard statements such as:
(1) "Qualified requester may obtain copies of this report from DDC."
(2) "Foreign announcement and disseminution of this report by DDC is not quthorized"
(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users sha! 1 request through
(5) "All distribution of this seport is controlled. Qualified DDC users shall request through

If the report has been furnished tc the Office of Technical Services, Department of Comme ce, for sale to the public, indicate this fact and enter the price, if known.
11. SUPPLEMENTARY NOTES: Use for edditional explanatory notes.
12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (pay ing for) the research and development. Include address.
13. ABPrRACT: Enier an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical re pori. If additional spece is required, a continuation shect shall be attached.

It is highly desirable that the abstract of ciassified reports be unclassified. Each paragraph of the abstract shall end with an indication of the milstary security classification of the information in the paragraph, represented as (TS), (5) (C), or (U)

There is no limitation cn the length of the abstract. However, the duggested length is frum 150 !. 225 words.
14. KEY WORDS: Key words are technically meaningful terms or short phrases that charecterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name. geographic location, may be used as key words but will be followed by an indication of terhnical context. The essignment of links, rules, and weights is optional

[^0]: *Supported by joint Services Electronics Program Grant AF-AFOSR 766-67 and by NASA Research Grant NGR 44-012-066, and by the Atr Force Office of Scientific Research, Office of Aerospace Research, USAF, under Grant AFOSR 69-1764.

