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I . INTRODUCTION

Investigations of periodic solutions near'an equili-

brium point for an autonomous differential sys tem (i.e., the

differential equations do not Explicitly contain time as an

independent variable) are of special interest to the mathe-

matician working in the field of dynamical astronomy.

Lagrange, for examcle, established the existence of certain

periodic motions about the equilibrium points (called the

Lagrangian points) of the equilateral-triangle solution of-

the restricted three-budy problem. The actual existence of

-,periodic motions of this tyre was verified with the discover-y

that the Trojan asteriods have periodic orbits about the

Lagrangian points of the Jupiter-Sun system.

In 1955, Siegel [4] wrote a tract on celestial mechanics

in which he developed a criterion for o-stab1ishing the exis-

tence of periodic solutions of autonomous Hamiltonian systems

near an equilibrium point. Ile went on to describe a method

for obtaining an approximate, Periodic solution of the autonomous

sSst^IT1 Z:ouEh the us..c:"a periodic solution of the associated

linear system. The usefulness of his method was dramatically

lemonstratjd by Pars [3] who applied it to Lagrange's equi-

lateral -triangle solution of the three-body problem to

establish new periodic solutions about the Lagrangian points.
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An English translation of Siegel's work appeared in

1966, but its circulation is so limited by publication .rights

that individual copies are difficult to obtain. The National

Aeronautics and Space Administration who prints the transits--

tion has so restricted its distribution list that it does

not abstract or record it in its bi-monthly publication
1	 . , •

Scientific and Technical Abstract Reports'.

Siegel's text is based upon a series of lectures on

celestial mechanics which he gave at Gottingen in the winter

of 1951-52. The emphasis in his lectures was on the elabora-

tion of ideas and results, attendant to the three--body problem,

which had arisen in the 70 years preceding his lecture series.

Since his audience was largely composed of people who were

quite knowledgeable in celestial mechanics, little motivational

detail is included in the text. Thus, it is quite difficult

for the nonspecialist in celestial mechanics to read with any*

degree of real understanding.

In Chapter II of this paper a systematic description of

Siegel's criterion and method is given. It is intended for

the nonspecialist in celestial mechanics who may be interested

in the subject or concerned with orbital problems. The

material. in Siegel has been rearranged somewhat so that the

continuity of -thought can be more readily appreciated by a

reader who may not be familiar with dynamical astronomy.

Additional detail has been supplied whenever its inclusion

would make for easier reading.

P,
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The method consists of expanding the Hamiltonian of a

system of canonical equations in a Taylor series about an

equilibrium solution of the system. The constant term of

the expression can be ignored and all first order terms are

identically zero as will be seen later. if the expansion

is truncated after the quadratic terms, an associated linear

canonical differential system can be formed from the quadratic

Hamiltonian. The associated linear system is used as a basis

for studying periodic solutions of the original differential

system. If a periodic solution of the linear system exists

then, Siegel establishes that in general, a periodic solution

exists for the original canonical system. By applying a

device suggested by the idea of the variation of parameters,

Siegel also shows that a periodic solution of -the linear

system is either an actual or approximate periodic solution

of the original canonical system.

Matrix notation is used throughout the study of the

linear system. In this regard two interesting types of matrix

arise in the development. One of the two matrices is referred

to as a symplectic matrix and the other is referred to as a
ti

Hamiltonian matrix. Relatively little information about

either of these two types of matricesis available and what

little is found is scattered throughout the literature. In

fact, Diliberto points out [3] that there does not appear to

be any reasonably complete source givin g an adequate account

of these matrices. For this reason a treatment of some of
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of their more important properties is given in Chapter I-1.

In Chapter IV, three example problems are presented

which illustrate the use of Siegel's method and some of the

properties of symplectic and I3amiltonian matrices.
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II. SIEGEL' S METIiOD

We consider a system of m first-order ordinary

differential equations

X = F (X)	 (2.1)

 1where X represents a column matrix ^ x l , x ? , .. , , % 3* whose

elements x i , (i = 1,2, ...,m) are the independent unknown

variables. The symbol	 repreuents a column matrix

:mil	 ... ^ti. ►  where Yi (i = 1,2,... m) is the time derivative

of x,	 The symbol F (X) rep resents a column matrix
i

f 1 (X) , f 2 (X) ,... I f (X) # , whose elements f i (X) (i = 1,2,...,m)

are assumed to be autonomous (i.e., they do not explicitly

contain time as an independent variable) functions of the

independent variables x1,1: 2 ,• • • ,^`m.

We shall assume also that Eq. (2.1) has an equilibrium

solution, X(t) = X (Q) (t:^Q) , defined by

F(X (0) ) = U
	

(2.2)

where 0 represents the column matrix 10 , 0 ,. . . : ,O j of m zero©

and each of the m functions, f i (X), is analytic in a neigh-

L-orhood of the equilibrium solution. It will be sufficient

h`re to consider only equilibrium solutions of the form

X` Q)Iz I s..nce other equilibrium points in state space

*For economy of space, the elements of an r x 1 column
`	 matrix will be displayed as ar. ordered r-tuole enclosed in

braces.
5
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can be translated to the origin by simple coordinate trans-

formations.

If we expand each fi (X) about an equilibrium point

corresponding to an equilibrium solution of Eq. (2.1), we

obtain expressions of the form
M

fa, (x) ` f  (0) + ^- ^ f i1	 X +...	 (L-1,2.. ^ ..m). (2.3)
a xj ..l( 0, 0.... 9 0)

Since the first term on the right-hand side of each equation

in Eq. (2.3) is zero, the matrix F(X) can be written in the

form

F(X)	 AX + ° ° •,	 ( 2.4)

where A is ccz m x m matrix in which the entry a i .y in the i--th

row and j-th column is the constant 	 a fi	 if
(0,0P ...,0}

quadratic and higher degree terms in -the elements of X are

dropped, Eq. (2.1) reduces to the linear system

X = AX.	 (2.5)_

We shall refer to Eq. (2.5) as the linear system associated

with the original system of Eq. (2.1).

Siegel's approach to finding periodic solutions of

Eq. (2.1) is to first find the periodic solut.^ons of the asso-

ciated linear system, if any exist. If we assume that Eq. (2.5)

has a periodic solution which satisfies certain conditions,

to be given later, then we can use this periodic solution

of the associated linear system as a basis Lor constructing

a periodic solution of Eq. (2.1) .

For an arbitrary system of first--order ordinary differ-

ential equations satisfying the conditions stipulated for

1
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Eq. (2 . l) , the fact that the .associated linear system has

a periodic solution does not quarantee that the original

system has a periodic solution. But if Eq. (2.1) represents

a Hamiltonian system, Siegel shows that it is generally

possible to construct either an exact periodic solution or

at least an approximate periodic solution of Eq. (2.1) if

a periodic solution of Eq. (2.5) is known.

Cary assume that Eq. (2.1) .represents a Hamiltonian

system and we let m = 2n, where n is the number of degrees

of freedom of the system. The canonical equations are

qiH	
and pi	 3 H	 a	 ( i -- 1 ^ ?, ... , n)	 (2.6)

i	 i

-,,here the Hamiltonian, II = FI (gl ,g2,... gh ,pl ,... ,pti ) , is

understood to be a function of the generalized coordinates,

qi , and the generalized momenta, p i , alone. Time does not

appear in H as an independent variable. Equations (2.6)

can be combined and expressed as a single equation if we

set 'Xi = q i and xi+n	 pi' (i = 1,2,... ,n) , and write

X = JHx ,	 (2.7)

where R represents the column -matrix 	 l,g2 I& •'•'gn,pl'• • • pn

and IIx represents the column matrix aq , - • • r 9H , aH , ... , PH

•	 2qn )pl ,	 apn ' •

if In and O n represent the n x n identity and the n x n zero

matrices, respect:ively,then J is defined by the matrix equation

	

l On	 In
J = 

f
i	 (2.8)

	

1 -in	 'fin
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Since the matrix J will play an important role in the

de`relopment to follow, we note, at this point, certain of

its properties. It is readily verified that

JT = _J,	 (2.9a)

JT = J-1 ,	 (2.9b)

J2 = J • J = -=?.n 	 (2.9c)

det (J) = 1,	 (2.9d)

where the superscript notation T and -1 is used herein to

designate the transpose and inverse, resp:ectively) of a given

matrix, I 2 is the 2n x 2n identity matrix and the operator

det( ) represents the operation of forming the determinant

, of the matrix indicated inside the parenthesis.

To obtain the linear system associated with Eck. (2.7)

expand the Hamiltonian in a Taylor series about an equilibrium

solution and then form -the column matrix, Hx , by carrying

out the necessary partial derivatives of the expandeCa Hamil-

tonian. The Taylor series expansion has the form
2h

H(xl,x2,... ,X2n) = H (0, 0.,	 0) +	 a H	 X.
2xi.

+	
T_ r X . ate.	 xixj + •. (2.10)

The first term on the right--hand side of Eq. (2.10) is a con-

stant which may be set equal to zero since we are concerned

only with forming partial derivatives of H. Furthermore, the

coefficient of x i in each term of the first sum appearing on

the right-hand side of Eq . ( 2.10) is zero for each 1 since the
point of expansion is an equilibrium point. In matrix
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notation, Eq. (2.10) can be written

H= I XTSX+...,	 (2.11)

where S is a real symmetric matrix of constant coefficients
02H	 If we neglect terms of third

aXi 0x j 	(0,0, g . . ,0)

degree and higher, Eq. (2.11) may be replaced by

H = 2 XTSX.	 (2.1)

If Eq. (2.12) is used a.s a basis for forming the column

matrix HX we find that

Hx = SX.	 (2.13)

Thus, the linear system associated with Eq. (2.7) may be

written in the form

X = UX,	 (2. 14 )

0.

where the matrix U = (uij ) = JSt and uij is -the entry in

the i-th row andj-th column of U. The matrix U is called

a Hamiltonian matrix (for an alternative definition, see

Definition 3, Chapter 111) .

If U is a diagonal matrix the linear system can be

integrated :immediately to yield the solution
i

X^. - 4c ic	 , (i = 1,2, o.:,2n)	 (2.15)

where Ai = viii and the &i are constants of integration

determined by the initial conditions.

If U is not a diagonal matri)C-, we seek a canonical

linear transformation

The reason that we demand a transforination which is
both canonical as well as linear is sirn?ly that Siegel's method
of finding periodic solutions of Eq. (2.7) requires that they
new variables must satisfy canonical equations of motion.
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X = CY
	 (2.16)

where C is a constant matrix and Y is a column matrix

Q1, 9 2 , ... , Qn ,P l -'P2 , . " ,P n i, such that the equations of

motion in the new variables, QI Q.,,...,QrjPl,P2,. 	 ,Pn,

have the form

i' = DY,	 (2.1.))
where D a_s a diagonal matrix. If -the eigenvalues

(i = 1,2,.9.,2n), of U are distinct we can be sure that a

matrix C exists which will diagonalize U. That is to say

there exists a matrix C such that

C-1UC = D,	 (2.18)

where 'J is a diagonal matrix whose diagonal elements are

the eigenvalues of the Hamiltonkn matrix U,

The eigenvalues of U are the 2n roots ^2 , , .., ^2 n

k

of the 2n-th degree characteristic equation

det (xl 2n-'U) v 0.
The matrix C is determined by the conditions

Di I 2n-U)C (7) = 0, (j = 1 1 2r,, a .,2n)
(')

(2.19)

(2.20)

where C denotes the j-th column of C. Since the eigen-

values of U are assumed to be distinct, the matr.i.x

( ?kj 12n-U) = C (lj I2n-D) Cwl

is of rank 2n-1. It is possible, therefore, to express 2n-1

elements of C (j) in -terms of any remaining nonzero element,

!0j . For any arbitrary choice of ti e j is a matrix will be

determined which will diagonalize the matrix U. Our task

is to choose the	 is such that the transformation in Eq.

(2.16) is canonical.

OW

4^y7—'C..`"r.'-mq,^^.c''.'^"'^t, ^,	 ...r,^^^	 T°nM^yAp1'gw°n"#t7.'.-. 	
_..	 ^-+..^,p^,d"SIC"^+^.n^+`^,'t+'^.4.-a^v^a..o^.:.^,.,,.^ w'!"""'':Y3C.`?_.=.k[xsa"«v:^a„w:^p.r.Ea.. ^-n.»•-.•..-n••,^+-r 	..	 _l.•	 -.	 "'M'^",ry.
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In the next chapter we show that if the Jacobian matrix

of a 'transformation, M,..satisfies the equation

MTJM = J,	 (2.21.)

the transformation is canonical. Any matrix which satisfies

Eq. (2.21) is called a _ayr o1q_ct j.,c matrix. The constantj_

matrix C in Eq. (2.16) is the Jacobian matrix of the trans-
0,	 .' &

formation. If we now require the matrix C to be symplectic,

we obtain n equations in the 2n unknowns, 	 of the form

ai	 (j = 1 j,2., .,,n),	 (2.22)

where the C i are known constants. If the /p, (J' = 1,2, . ..,,n))

are chosen arbitrarily, then the values of 
A-4n 

are fixed

by Eq. (2.22). The canonical linear transformation is

thus determined.

If we apply the canonical linear transformation of

Eq. (2.16) to--the Hamiltonian system, Eq. (2.7), we obtain

the new Hamiltonian system

JH*Y-	 (2.23)

	

*	 H*The symbol Hy is the column matrix	
a5"..2'
OH

q YJ 	 2nI 

and the new Hamiltonian, H*, is obtained from the old

Hamiltonian by -transforming to the new variables

(j	 l,2,.--,,2n). Explicitly, we have

H*	 YTCTSCY+*,*. 	 (2.24)2

If we apply Theorem 9, which is discussed in the next

chapter, the first term on the right-hand side of Eq.(2.24)
n

may be written in the form. 	 L , y jy j+n' so that Eq. (2.24)

can be written in the form
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H* — La^	 y	 +...	 (2.25)J.1	 , j +n	 •
If Eq. (2.25) is-used as a basis for forming the

column matrix. Hy, Eq. (2.23) takes the form

Y	 .Yi + g 
	 Q = 1,2, ...,2_n), 	 (2.26)

where for 1 < j < n
^	 n

g j _

	

	 (H* -	 Ky^,yk+n)	
(2.27)

YJ+n

and for n / 4 4 2n

g-
	

_ nay _n (I3*	 ^tty} y^ `hn ) •	 (2.28)

To obtain periodic solutions of Eq. (2.26), we adopt,

a device suggested by the idea c-f variation of parameters.

Let two of the eigenvalues , say `̂1 and1+1' be pure

imaginary numbers such that 1l = -;'n+1. We assume that a

solution exists in which each yj can be represented in a

multiple power series of two new variables ;' and 	 . The

solutions are to have the form

Jl = ^ + z if	 (2.2))

yn+1 = + n+l '	 M.30)

and
_ zJ (	 2r3j... n,n+2,...12n),	 (2.31)

where	 w
z3 =	 a 6j ^	 Q = 1,2,.../2n).	 (2.32)rs

..	 The superscript j on a coefficient S.s is used to identify

the series to which the .rs belongs.

Since each of the variables, fir,, is a function of 9 and

Is
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only, the time derivative	 has -the form
Ty.
V	 (2.33)

D

If, -"or	 1,. Eqs. (2.29) and 2.32) are substituted into

Eq, (2.33) in the expressions for the partial derivatives

of yj with respect to ^ and	 the equations of motion,

Eck (2.26), may be writ-ten as

+	 Z Z
4

(2.34)

where hi is a multiple power series in ^; and ^ obtained

by replacing the variables y j (j = 1,2,'-,,2n) with the

appropriate series from Eqs. (2.29-2.31). The coefficients

in the series hl , determined by the substitutions, are known.

If	 and	 are expressed as a power series in	 and P

r 
S ,	

--- iriak^ewe ot-:.n determine the coefficients of je^	 11OW

the additional assumption that the auxiliary variables

and 7 are functions of time satisfying the differential

equations

O

u	 (2.35)

and
V (2.36)

where u is a power series in w 	 which has the form
U uj'w	 (2.37)

k=O

a -id

V
k
	(2.38) I
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for suitable choicer of the coefficients uk and Yk . In

par ticular, we shall require that up = >` 1 and vo = An+*l•

The difficult problem of establishing the convergence of

these series, Eqs. (2.37-38:) , has been examined by Siegel.

The convergence criterion which is given in his book is

not ,.presented here because additional background material,

which is included in the proof of convergence, is required

to understand the criterion.

If we use Eqs. (2.35) and (2.36) to replace 9 and

in Eq. (2.34) and then substitute the appropriate power series

given in Eqs. (2.37-28) for u and v, we obtain the equation

Lt

Sit",. s F^^ S ^I	 V S 	 r /^,	 -a - ( 2 .39)
}-i ssr	 k :e	 r.r $ai a rl

The expressions for j = n+l and j = 2,3," .,n,n+2,s°•,2n which

we find in a similar manner are

t	 VK 
K /

K^r l + ( 
Z	 r^ry, ĵ r ^ s

)
t L_ arj^ 9k)lco	 (	 l :i ^wr	 K:o	 (2.40)

^^	 5anrrrhsa /	
Vk' ^

k 17K, ¢	 tf--	
Qn^r}y^i^ _ L

^, _y 
S;r	

hs	 (	 l ^:o	 (	 ^	 fir S=e	 }S 
	f	 ^lH+^

and

	

F.2}5 `^hI S ^^L U k ^ k, ¢	 SQ}S h^ t J (	 VJC4k^^^

	

haJ S:r	 A ao	 h sr

	

ja i 	 fico

}nr Uzi

k

^'.`^-^t.^,°'^=,=,=a'̀ ;.'*'̂-P„l>+__ n--.^..<,. .-:....,.., ......^•.;^c.m,	 .,	 ^..:.._	 ...	 .^	 ,^, .^',..^=5.- .	 ..	 _..	 . two—^h-..tee:.	 °a*^-''"	 a .r
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where hn+l and hi are defined in an analogous manner to hl.

If we now assume that when r 	 s+l

and when s r+1 the coefficients an 1rs
able to find all the coefficients uk,Vk

like powers of r ^ s on both sides of E

the coefficients a rt = 0

0, then we will be

and ars by equating

Is. (2.39-41) .

Since ars = 0 for r = s-Fl, the only terms of the form

^k+l 7 k in Eq. (2.39) appear in the first s am on the left

and since a +1 = 0 for s = r+l, the only terms of the formrs
k k+l

in Eq. (2.40) appear in 'the first sum on the left.,
r

Thus we can determine all of the coefficients u k and vk which

appear in the series for u and v.

If all the coefficients ars ( = 112, ... . 2n) have been

found for r< r' and s < s ' , and the coefficients u k and vk for

k equal to the larger of s' and r', then the coefficients

ar , s , can be found by equating the coefficients of g r	 s

Except for the cases r = s+l with j = 1 and s = r+l with

j = rj+l, for which all the ars 's are zerc, we have

sres^ [ (r--s) ?L1 --	
j

] = p,	 (2.42)

where p is a function of the coefficients a rs , uk and vk,

already detormined. If ar V S4 is to exist we must require

that none of the ratios ;^ 2 , ;^3 , s A a ,'An
X1 a^	 al

be an integer. with this additional restriction on the

eigenvalues,each of the coefficients a rs (j = 1,2,...,2n),

uk and vk can be computed in such a way that the series in

Dqs. (2.29-31) are solutions of Eq. (2.26). The only task
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remaining is 'to determine the functional dependency of

and 7 on time.

The new Hamiltoni,-,nformed by substituting Eqs. (2.29-32)

into Eq. (2.25) will be denoted by K. Since K is independent

of time and therefore a constant of the motion

dK = aR+	 K '	 (2.43)
dE. 

+	 3
P^ 

2	 = 0.

Using Eqs. (2.35-36), we can -rite

dK - u	 3 K + V ?	 K = 0	 (2.44)
at

Both u and are functions of w, alone and by some tedious

algebraic manipulation which will not be reproduced here it

is possible to show that K is also a function of w alone.

By applying the chain rule 'or-'partial derivatives, Eq.
A.

(2. 49) becomes

	

(U + V) W dK	 0,	 (2.45)
dw

Since Eq. ( 2.45) is to hold for all values of rS on an interval,

we infer, that
U + V = 0 .	

1	
(2.46)

Now
dw	 d	 (u + V) ?	 0,
T-E- dt

therefore w is a constant of the motion. Froin Eqs. (2.37-38)

it is apparent that u and v are constants also; therefore,

Eqs. (2.35-36) immediately integrate to yield the solutions

	

S = ^, e- Ut	 (2.47)

It
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where	 a	 and	 2o	 are constants of integration. By a

separate long proof, included in Siagel's work, he has shown

that ii and v are conjugate complex numbers, and since

u +	 0, then for some constant,/L

(2.49)

and., •
(2.50)

where i	 If we substitute Eqs, 	 (41 .49-50) into

Eqs.	 (2.47-48), we obtain

e iut (2.51)
and	

e'-iut (2.52)

In essence then, if two eigenvalues say and ^n+l'

of -the associated lin ­:ar system are pure imaginary complex

conjugates and if none of -the ratios 	 2:	 3r,"'I A n	 are
1 Al

integers, then for sufficiently sinall values of and

we have exhibited a method of generating a family of periodic

solutions of the Hainiltoniansystem, Eq.	 (2.7).



III. HAMILTONIAN AND SYMPLECTIC MATRICES

Since the amount of information on symplectic and

Hamiltonian matrices which one finds in the math,:-!matics

literature is quite limited, a treatment of the more

important properties is given in this chapter. The goal

is to make available to the reader those theorems which

I	 are fundamental to the understanding of the properties of

these important matrices. Although there is little original

material inthe theorems and proofs given here, the theorems

have been restated and the proofs expanded in the hope of

achieving greater clarity.

Definition 1: A real 2n-square matrix M is called

symplectic if and only if

	

M T JM = J,	 (3.1)

where J is defined in Eq. (2.8).

	Definition 2: If ql,q2,00 *f q	 are anynrPlrP2r- ­rPn

2n distinct functions of -the two variables (uv)(and possibly

of any number of other, variables) , the expression
n	 )qk )pl^-	 DPk Jqk

k=l	 DU dv	 1.1 d
V,

is called a Lagrange ® s bracket and is denoted by

Theorem 1: Let q1,,,q2#**o',,qn represent a set of n

generalized coordinates and pl,p 2 r ... tPn represent the corres-

ponding set of conjugate generalized moments of a Hamiltonian

18
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system. Let qi = qi (Ql,Q2 , :.. 1 Qn 1 P 11 P12,9.. r P n ) and pi =

pi (Qlr Q2 r... rQn r p 1 , P 2 ,... ' Pn), (i = 1,2,...,n), repres-ent

equations of transformation to new variables QlrQ2,,..rQnr

P a , P 2 , ... , P n . The Jacobian matrix, M, of -the transforma-

tion which can be written

r ''	 A	 B

C	 D ),

where A = ( aij )	 qi	 B _ (b ) _ ^qi	
C = (clj)U	 i^	 )Pj

a Pi and D = ( dij ) = a pi 	 (i, j = .1, 2. ,,'.'. ,n), is a symplectic
D Q 	 aP 

matrix if and only if the transformation is canonical.

Proof: If we form the product MTJM, we can write

MTJM = 
ATC-CTA ATD-CTB	 ((ei j) (fij )"

--
BTC-DTA	 BTD-DTB - ( g i .) ( h ij )

where e,. = (Q•rQ.j r f. -	 =	 and h,, =

[ Pi , P j l	 (i r j	 1, 2 , .' .. , n) . But there is a well-known theorem

of analytical dynamic-3 [5] which assures us that a transforma-

tion is canonical if and only if [Qi,Q3 = 0, 
[Pi,j ] 

= 0,

[Qi,P j I	 bij and [t?i,QJI

is the Kronecker delta. T

(ATC,-CTA

BTC-DTA

and M is symplectic if and

w'bij (i,j - 1.2r."..n) where Sij

hus

ArD-CTB
.J

BTD-DTB

only if the transformation is

canonical.

T1	 ,^ 2,: If a matrix M is symplectic, then it is

nonsingular.

up
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Proof: Since MTJM = J, det (J") = 1 and the determ:ina at of

product of matrices is the product of the determinants of

the matrices, the result is immediate.

Theorem 3: if a matrix M is,symplectic, then so is M_l

and MT .

.,.Proof:  Since M is symplectic

MTJM = J.

Multiplying from the right by M -1 and from -the :left by

(MT ) -1 , we obtain

J = (MT )_ 1 JM`l

But the inverse of the transpose of a matrix is equal to the

-transpose of the inverse, therefore

(Mrl ) T J M-1 == J	 (3.2)

and M-1 is symplectic. Taking the inverse of each side of
Eq. (3.2), we have

MJ 1MT = J 1.

If we use the fact that J-1 =-J, then we have

MJMT = J

and MT is symplectic.

'theorem 4: Symplectic matrices of order n under the

operation of matrix multiplication form a group.

Proof: (a) Matrix multiplication is associative on all

square matrices. it is therefore associative on all 2n-square

symplectic matrices.

(b) Symplectic matrices are closed uncLer matrix

multiplication. Let M and R be two symplectic matrices. The

W
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transpose of a product of two matrices is equal to the

product of the transposes in reverse order, therefore we have

(MR) TJMR = RTMTJMR	 (3.3)

But, since M is symplectic,

MTJM = J	 (3.4)

Introducing Lq . (3.4) into Eq . (3.3) , we have

(MR) TJMR = RTJR •

But R is symplectic, therefore we may write

(MR) TJMR = J.

The product MR is symplectic and we have the closure property.

(c) The identity matrix I 2n is the identity

element of the group, since

I 2 TJI2n = j

ar 3 I2n is symplectic.

(d) A symplectic matrix is nonsingular, there-

fore- each such matrix has an inverse and the inverse. is

symplectic by Theorem 3.

Definition 3: A real 2n-square matrix H is called

Hamiltonian if and only if

(JTI) T	 (JH)	 (3.5)

Theorem 5: A matrix H is Hamiltonian if and only if

there exists a real symmetric matrix S such that

"	 H = JS.

Proof: If H is Hamilton lan, then.

(JH) T = JH .

Let JH -S. Then it follows immodiately that

i
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ST = S,

i.e., S is symmetric.	 Now

JS = J(-JH),

Where J 2 = -I 2n , i-herefore

JH = H,

and,.H has the desired rrp7:csentation.

If Ii = JS, where S is symmetric, then

(JH) T =	 (JaJS)T

z,nd, since J 2 -- --I 2n and S is symmetric,

(JH) T = -S.

If we use the fact that J 2 = -I2i , we may write

(JH) T = J2S,

which may be factored to-yield

(JH )T = J(JS) .

But, since JS = H, we ha've

(J")
T
 = JI?

and H is Hamiltonian.

Theorem 6:	 If. M is symplectic and H is Hamiltonian, then

K = M-11UM is also Hamiltonian.

Proof:	 Since M is symplectic

M JM = J.
c

(3.6)

If we multiply from the left by J-1 and then from the right

by M--1 and note that J-1 = -J, then we have

-JMTJ (3.7)

If we write

(JK)T ==	 (JM- 1 IIM) T , (3.8)

moor
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and then replace M_ in Eq. (3.8) by Eq. (3.7) we obtain

(JK) = (-Jim JIIM)r^.

If we use the fact that J2 =-I 2n'  then we may write

(JK) T = (MTJHM) r .

Since H is Hamiltonian and the transpose of a product is equal
•

to the product of the transposes in reverse order, we may write

(JK) T = MTJHM.	 (3.9)

If we multiply Eq. (3.6) from the right by M-1 and then from

the right by J_ .we have

MT = JM-1J-1 .	 (3.10)

Replacing MT in Eq. (3.9) by its equivalent expression from

Eq. (3 .10) , we obtain

(JK) T = JM-lI-IM.

But K = M_ 1FIM, therefore

( JK ) T = JK

and K is Hamiltonian..

Theorem 7: If a is an eigenvalue of a Hamiltonian

matrix,then so is •- a

Proof: Let H be a 2n--square Hamiltonian matrix with

eigenvalues A i P (i=1, 2 1 ... , 2n)	 By Theorem 5 there exists

a symmetric matrix S such that

H = JS.

It fellows that the characteristic polynomial,
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( ,^ } = det ( "k 1 2n-H) ►

may be written

( A) = det( AI 2n-JS) .

The determinant of a matrix is equal to the determinant

of the -transpose of the matrix, therefore we can write

det ( a 1 2n-JS) T = det ( A I2n-SJT ) .

But JT = -J, so we may write

( A) = det ( A 12n+SJ) .

Since I 2 _ -J2 , then

r ( ,1) = det (° ,2 J 2 -J2 SJ) = det (J [- /J I2n-JS1 J) .

The determinant of a product of matrices is equal to the

product of the dctarminants of the matrices and det (J) = 1,

so that

f ( ^ ) - det (- /il 2n-JS) = Y (- 11 )

and the characteristic polynomial is an even function. The

theorem follows immediately.

Theorem 8: If there exists a matrix C with the property

that C-1HC = D, where D is a diagonal matrix whose diagonal

elements are the eigenvalues of the Ham i ltonian matrix H,

then there exists a symplectic matrix E CP, where

Q ®n
.p 

1On In
and Q is a n--.square diagonal matrix whose diagonal elements

are nonzero scalars, gi, (i=l , 2 , . o . n) , such that

E-1HE = D.

Proof: assume that there exists an invertible matrix

w

,c•
rr®sum-^^ao^	 -- rr
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C such that

C-111C = D,	 • (3.11)

where H is a Iiainiltonian matrix and D is a diagonal matrix

whose elements are eigenvalues of H. It follows from Theorem

7 that we way write

L OnD =	 I
On -L

where L is an n-square diagonal matrix whose diagonal elements

are the n positive eigenvalues of H. If we multiply Eq.	 (3.11)

from the left by C and then transpose, we obtain

C rrHT = DCT . (3.12).

But, since H is Hamiltonian, H = JS for S a symiietri.c matrix.

Equation (3.12) may be rewritten then, to obtain

CTSJT = DCT,

and if we use the fact that JT = J-1

CTS = DCTJ. (3.13)

Now

DJ-1- =	
On	 -L

(-L On
is symmetric, therefore

DJ-1 = (DJ--1) T = (J-1 ) TD.

But (J -1 ) T = J, hence it follows that

DJ- 	JD.

Consider the product (J-1CTJ)JS. Since J 2	-I 2nand

J-1 = -J, we may write

(3.14)
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(J- CTJ)is = JCTS.	 (3.15)

If Eq. (3.13) is introduced into Eq. (3.15), we can write

(J-1CTJ)JS = JDCTJ.

It now follows from Eq. (3.14) , that

(J 1C rJ) JS = D (J-1CTJ) .	 (3.16)

r	 If weset B = (Jr1CTJ) -1 , since H = JS E	 3.16) may,..	 ^q	 (	 y

be written as

B-1HB = D.

It is a straight forward matter to show -that 	 the two

matrices B and C	 diagonalize H if and only if C - BF,

where F is a diagonal matrix whose diagonal elements are

nonzero scalars which c,-n be written in the partitioned form

G On

F -

(On K

MlA;eve G and K are n-square diagonal matrices. From the

definition of B, we ca-i write

FC_
1 = J-1CTJ

of

CTJC = JFe	 (3.17)i
where, explicitly ,	

0	 Kri
JF =	 (3.18)

_G 0
\	

n

If we transpose Eq. X3.17) and use -the fact that JT - -Jr

we obtain

TC JC	 - (JF) .	 (3.19)

r

k
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From Eq. (3.17) and Eq. (3.19) we find that

JF = - (jF) T,

which means the matrix JF is skew-symmetric. It t1ien follows

from Eq. (3.11) that G = K.

If we lei:
/G	 On

P

	

On In	'

then we have

P-1JP = JF.	 (3.20)

If we equate the left--hand sides of Eqs . (3.17) and (3.20)p

we find that

CTJC = PTJP

or

(CP^l)TJ (CP -1 ) = J.

If we set E = CP -1 , then E is symplectic and

E-lHE D.

Theorem 9: If C is a 2n-square symplectic matrix which

diagonalizes the 21-i-square matrix JS, where S is symmetric,

then	 0 L
C TSC =	 e

L 0

where L is a diagonal matrix whose elements are those eigen-

values of JS which are positive.

Proof: By Theorem 5 the matrix JS is Hamiltonian. It

follows from the hypothesis and Theorem 7 that

C- 1JSC = D	 (3.22)

k



where D is a diagonal matrix whose elements are the (Agen-

values of JS. The matrix D may be written

L On
D - - •

0n -L

where L is an n--square diagonal matrix whose diagonal

elements are the n positive eigen v-&lues of JS- Since C is

symplecti.c we may write

CTJC = J.	 (3.23)

If we multiply Eq. (3.21) from the left by J- 1 and from

the right by C-1 , we obtain

T-1 = J-1CTJ.	 (3.24)

Substituting Eq. (3.24) into Eq. (3.22) and taking note

of the fact that J2 = I and J-1 = -J, we obtain

CTSC = -JD.

But, if we form the product -JD, we can write

0	 L,

-JD -

L 0

and the theorem follows.

Definition 4: A real m-square matrix A is called

orthogonal if and only if AT = Ail.

Definition :5,, If A = (aij) is a complex m-square matrix,
y

then the matrix AT = (aj i), where a] i is the complex conjugate

of aji (i,j = 1,2,' ,m) is called the conjugate transpose

of A.

k
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Dofinit ion 6: A complex m--square matrix A is called

unitary if and only if TT = A-1.

Theorem 10: Lot A be a 2n-square matrix of real
._....aY... _	 _	 _	

Y

numbers. Then A is both orthogonal and symplect-ic if and

only if there exist real n-square matrices U and V such that

U V

--v	 u

and the matrix (U + iV), (i = Fl) is unitary.

Proof: Since A is symplect.ic then.

JA -, AJ.	 (3.25)

If we partition A into the n-square blocks

All Al2

A21 A22

the right and left--hand sides respectively of Eq. (3.21)

may be written explicitly as

_Al2 A11

AJ

-A 22	 A21
and

A21	 A22
JA --

-A11 _Al2
I
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But, then Eq. (3.21) is valid if and only if A21 = Al2 and

All = A22 Setting	 V = Al2 and U All , we write

U V

A =

-V U

Since A is orthogonal

UUT + VV T VU T UV T
T

AA 
	 = =

I 2n'
UVT _ VU 

T
VV T + UU T

so tha'-- AA 
T = I 2n if and only if U'U T + VV T In and VUT	 UVT

= On-	 But these are precisely the necessary and sufficient

conditions for the matrix (U + i'V)	 to be unitary.



IV. EXMIPLES

Example 1: For a particle of unit mass moving in the

(X,Y) plane under the action of a uniform gravitational field

(0,-g), we have the Hamiltonian
1	 2

H = 2 (',)X + py2 + gy,

where px and p 
y 

represent the momenta along the x and y axes,

respectively. The canonical equations are

A px/	 = p y

0"	 =-Px	 y	 9-

To find an equilibrium solution of Eq. (4.1) we have to

find values for x, y, p and p so -t 	 yhat k = " = bx = by = 0.
X	 y 

since by = .-g, a constant, there is clearly no equilibrium
solutionsO that Siegel's method cannot be applied.

Example 2: The Hamiton fun- • ion for a simple harmonic

oscillator is

H = 1(P2 + n2 q2	 (4.2)2
where q is the generalized coordinate, p is the generalized

momentum and n is a nonzero constant. The equations of motion

are

P
2	 (4.3)

The equilibrium solution is q p = 0. It is trivially

true that the expansion of the polynomial, Eq. (4.2), in a

31
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Taylor series about an equilibrium point corresponding

to the equilibrium solution is -the polynomial itself honce,

In ma tri.x no tati on, the oxpanw.1c ,3 IIami.ltonian can be written

n2	 0	 q

H = 2 ( q r p )	 (4.4)

•	 ^0	 1	 p

If the column matrix	 aII, 013 ,s determined from Eq.
)q a-i; ^

(4 4) , the equations of motion are

q	 0	 1	 q

(4.5)
_n2 0	 P

where the constant matrix in Eq. (4.5) is Hamiltonian

The eigenvalues of the Hamiltonian matrix are computed

from Eq. (2 . J.9) . 'We find the eigenvalues to be /Al = in

and ^2 =-in. Since we have a pair of pure imaginary

eigenvalues such that /\ a 2 and there are no other

eigenvalues, the requisite conditions on the eigenvalues are

satisfied. We know, therefore, that there is ` a periodic

solution of Eq. (4.3).

The columns of the transformation matr.ix C in Eq.

( 2.16) are computed from Eq. (2.20) and in -terms of the 
/lic 

f' is

(in this case /l and 
//-"2, 

are the elements of the first

row of C), C may be written

Pl /°2

C —	 (4.6)

in,01. -- 11P2
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Requiring C -to be symploctic, we obtain the condition

i n//O 1/0 2 = I, which leads to

2n
C	 (4.7)

in

when 	 choose /Ol

If we insert Eq. (4.7)	 into Eq.	 (2.16)	 we obtain the

canonical linear transformation,

Iq in
(4.8)

(P)P/	 in	 2/

to new variables Q and P.	 When we insert the transformation,

E'q.	 (4.8),	 into Eq. (4.4), we obtain -the new Hamiltonian H*.

In -the summation form of Eq.	 (2.25), we may write

H* = -inQP.	 (4.9)

The equations of motion in the new variables may be written as

Q	 inQ,
(4.10)

P	 --inP.

Thus all the g j l s in Eq.	 (2.26)	 are zero.	 Equation	 (4.10)

immediately integrates to the solutions

Q	
Qpint

0

and (4.11)
-intP = Poe,

which, since the qj 's are zero, is the exact solution of

Eq.	 (4.3)..	 In terms of the variables q, p, the solutions

may be writ•ten
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q = ci co e )t	 + c2sj.rlxis:

p = Cocos li t + cy s in nt

where

c1 _ Qa -i-	 21

C2 = iQo + Po
2n ,

c3 _ inQo + Po

2

c4 = Sion - .iPo

L

Example 3: Consider The Hamiltonian

H = 2n ( ql 2 + p12)	 - n ( q2 2 + p 2 2 )	 +	 `t(q 
2q 21 g 2p l2r 2Pl_p2) .	 (4.12)

where -the q ° s are the generalized coordinates, the P's  are

the generalized moments and n and	 /-are nonzero constants.

The equaticns of motion are

ql m	 p1 -	 (g2p 1 ^- 
glpz)

2 = -2np 2 _ d glpl (4.13;
^l = `nq ,	 d ( g lg 2	 PlP2) ),
P2 = 2ng2	 2 d (ql2 - 

p12)

It is readily evident that q1 = q2 = p1 = P2 = 0 is an

equilibrium solution.

The Taylor series expansion of H about an equilibirum

point corresponding to t.ne equilibrium solution is

H (X)	 = H (0)	 + `	
a H_

(0,0,0,0)Xi
(4.14)

+ 1	 y S'	 ? H
iX^, }

[ • r ,^:r	 aXi axe	 (0,0, 0 ,0)

R

^R
rr^
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where X is the co lumn miatrix tgl ,g 2 ,p l ,p 2 ^ , The constant

and linear terms are zero and if we ignore the -terms of third

dcgree and higher, we obtain the quadratic Hamiltonian

	

I n 0 0 0	 ql

	

0 -2n 0 0	 1 q2H = 2 (gl ,g2 ,pl ,p 2 }	 (4.15)

	

0 0 n 0	 pl

	

0 0 0 -2n	 p2

If the column matrix 2 H ,)H-13H ,a j is determined from
j q a	 al q2 pl p2

Eq. (4.15), the equations of motion may be written

l	 0 0 n 0	 q1
q2	 0 0 0 -2n	 q2

(4.16)
pl 	-n 0 0 0	 q3

152	 1 0 2n 0 0 f q4

Equation (4.16) is the associated linear system of Eq. (4 .1.3) .

The constant matrix in Eq. (4.16) is Hamiltonian with eigen-

values /kl = in, /^2 	 2i.n, ,l3 = -in and A4	 .-tin. Since

we have a pair of pure imaginary eigenvalues ^ 2 and X141 such

that )1 2 	-- L 4 and the ratio ^ l ^ 1 is not an integer, there
a2

is a .periodic solution of the Hamiltonian system

The columns of the transformation matrix C in Eq. (2.16)

are computed from Eq. (2.20) and in terms of the	 °s, C

may be written

/ P'1	 0	 i /0 3	 0
0 'f2	 004

C 	 (4.17)
0	 0

0 /02	 0	 iP4



H	 I

36

If we require C to be symplectic, we obtain the equations

2 ID 1 r- 3	 1 (4.18)

2 /2 /4	 1.

If we choose /'l	 1,  /2	 1, we obtain

1	 0	 i/2	 0

0	 i	 0 2 
C

1i	 0	 05

0	 1	 0	 -i/2)

If we substitute Eq.	 (4.19)	 into Eq.	 (2.16), we obtain the

canonical linear transformation

ql	 1	 0	 i/2	 0	 01

q	 0	 i	 0	 -1	 Q2 
	

2

P2	 0	 i	 0	 - i 2)	 P2

(4.20)
Pl i	 0 2 p

to new variables 0, and P. 	 If we introduce Eq. (4.20)	 into

Eq.	 (4.1-4), we obtain the new Hamiltonian Ti* in the variables

(QlfQ2'PlIP2).	 In the summation form of Eq.	 (2.25) , we have

H* = inQ 1 p 1 + 21nQ 2 P 2 + (4.21)

Since all fourth degree and higher terms in Eq. (4.14)	 vanish,

we may write H* exactly in the form

H*	 inQ,Pi + 2inQ2p2	 1. (9 P 1 2 P22 +	 Ql 2 Q1 p	 i 2

p1 2Q2
	 2P2 Q1 2 )e (4.22)
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The equations of motion in t::e new variables are

Q Z = inQ1	 (!P1P2 -- 1P1Q2)

02 = 2inQ 2 + vC ( 8P1 -Q12)

(4.23)
P l = -inPl + 0c(QlP2 -- 2iQlQ2)1

p2 = ?inP2 'X (4p_ - iQl 2 ) .

The g  's of Eq . (2.26) are the second torms on the right-hand

sides of Eq. (4.22).

If we substitute the appropriate series from nqs. (2.29-32)

into 11--he Eqs. (4.22) , and solve for the coefficients ars

(j = 1, 2 , 3 , 4) , vk and uk , we find -that all of the coeffi-

cients are zero. The equations of motion, Eqs. (4.30-33),

reduce to

Ql = 0,

P, = 0,
.
Q2 = 2inQ2,

and

P2 = -2inP2,

which immediately integrate. to the solutions

Q2	
Q 0 e2int

and
P	 P e2int
2	 l

In ?;arms of the original variables the solutions are

s	
ql = of

q2	c1co s 2n% + c 2 s'J n 2nt,

p	 ®,
l

P2 = c3 cos 2nt + c sin 2nt,

w

ff
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where

,=c1 - i 
Qa

_ 1
2 P
	

.

2 = 2 Po Qo

c3
` QQ ^Po

and

c4 = Qo 2P o.

.	 r
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