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I. INTRODUCTION

Investigations of periodic solutions near an equili-
brium point for an autonomous differential system (i.e., the
d%fﬁqrential equations do not explicitly contain time as an
independent variable) are of special interest to the mathe-
matician working in the field of dynamical astronomy.
Lagrange, for examrle, established the existence of certain
periodic motions about the equi}ibrium points (called the
Lagrangian points) of the equilateral-triangle solution of
the restricted three-body problem. The actual existence of
periodic motions of this type was verified with the discovery
that the Trojan asteriods have periodic orbits about the
Lagrangian points of the Jupiter-Sun system.

In 1956, Siegel [4] wrote a tract on celestial mechanics
in which he developed a criterion for establishing the exis-
tence of periodic solutions of autonomous Hamiltonian systems
near an equilibrium point. He went on to describe a method
for obtaining an approximate, periodic solution of the autononous
syst2m tirough the us.cfaperiodic solution of the associated
linear system. The usefulness of his method was dramétically
demonstrated by Pars [3] who applied it to Lagrange's equi-
later2l = triangle solution of the three-body problem to

establish new periodic solutions about the Lagrangian points.
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An English translation of Siegel's work appeared in
1966, but its circulation is so limited by publication rights
that individual copieé are difficult to obtain. The National
Aeronautics and Space Administration who prints the transla-
tion has so restricted its distribution list that it does
n?tiqbstract or record it in its bi-monthly publication

Scientific and Technical Abstract Reports.

Siegel's text is based upon a series of lectures on
celestial mechanics which he gave at thtingen in the winter
of 1951-52. The emphasis in his lectures was on the elabora-
tion of ideas and results, attendant to the three-body problen,
which had arisen in the 70 years preceding his lecturc series.
Since his audience was largely composed of people who were
quite knowledgeable in celestial mechanics, little motivational
detail is included in the text. Thus, it is quite difficult
for the nonspecialist in celestial mechanics to read with any
degree of real understanding.

In Chapter II of this paper a systematic description of
Siegel's criterion and method is given. It is intended for
the nonspecialist in celestial mechénics who may be interested
in the subject or concerned with orbital problems. The
material in Siegel has been rearranged somewhat so that the
continuity of thought can be more readily appreciated by a
reader who may not be familiar with dynamical astronomy.
Additional detail has been supplied whenever its inclusion

i

would make for easier reading.
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The method consists of expanding the Hamiltonian of a
system of canonical equations in a Taylor series about an
equilibrium solution 6f the system. The constant term of
the expression can be ignored and all first order terms are
identically zero as will be seen later. TIf the expansion
i§ truncated after the quadratic terms, an associated linear
canonical differential system can be formed from the quadratic
Hamiltonian. The associated linear system is used as a basis
for studying periodic solutions of the original differential
system. If a periodic solution of the linear system exists
then, Siegel establishes that in general, a periodic solution
exists for the original canonical system. By applying a
device suggested by the idea of the variation of parameters,
Siegel also shows that a periodic solution of the linear
system is either an actual or approximate periodic solution
of the original canonical system.

Matrix notation is used throughout the study of the
linear system. In this regard two interesting types of métrix
arise in the development. One of the two matrices is referred
to as a symplectic matrix and the other is referred to as a
Hamiltonian matrix. Relativély little information about
either of these two types of matrices lsavailable and what
little is found is scattered throughout the literature. 1In
fact, Diliberto points out [3] that there deces not appear to
be any reasonably complete source giving an adequate account

of these matrices. For this reason a treatment of some of
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of their more important properties is given in Chapter III.
In Chapter IV, three example problems are presented
which illustrate the use of Siegel's method and some of the

properties of symplectic and Hamiltonian matrices.
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II. SIEGEL'S METHOD

We consider a system of m first-order ordinary
differential equations

X = F(X) {2.1)

’ v 0

where X represents a column matrix{'xl,xz,...,xm}* wiiose
elements xi,(i = 1,2, 44s,m) are the independent unknown
variables. The symbol i repr2sents a column matrix
{&l,iz,...xgh where ii (1L =1,2,esem) is the time derivative
of xi. The symbol F(X) represents a column matrix
{E10X) ,£5(X),uee £, (X)§ , whose elements £, (X) (i = 1,2,004m)
are assumed to be autonomous (i.e., they do not explicitly
contain time as an independent variable) functions of the
independent variables xl,xz,...,ﬁm{

We shall assume also that Eq. (2.1) has an equilibrium

solution, X({t) = X(O)

(t>0), defined by

rx(0) = ¢ ‘ (2.2)
where 0 represents the column matrix {0,0,...,0} of m zercs
and each of the m functions, f; (X), is analytic in a neigh-
rorhood of the equilibrium solution. It will be sufficient

here to consider only equilibrium soluticns of the form

x(0) - Q s.nce other equilibrium points in state space

*For economy of space, the elements of an r x 1 column
matrix will be displayed as ar ordered r-tuple enclosed in
braces.

5




6
can be translated to the origin by simple coordinate trans-
formations.
If we expand each £; (X) about an equilibrium point
corresponding to an equilibrium solution of Eq. (2.1), we

obtain expressionsof the form

n
£, (%) = £4(0) + > 21| ver  (i=1,2,7- 2.3
”Jl v 35:; axj‘_‘]'(oié:' 'll C’O) Xj+ (l 1,2’ m)' ( )

K

Since the first term on the right—hand side of each equation
in Eq. (2.3) is zero, the matrix F(X) can be written in the
form
F(X) = AX + °°°, (2.4)

where A is cnom x m matrix in which the entry aj 4 in the i-th
Afi]

BXj] ‘
. . . (O-’?O.’ooo’O)
quadratic and higher degree terms in the elcments of X are

If

row and j-th column is the constant

dropped, Eg. (2.1) reduces to the linear system
X = AaX. (2.5)

We shall refer to Eg. (2.5) as the linear system associated
with the original system of Eg. (2.1).

Siegel's approach to finding periodic solutions of
Eg. (2.1) is to first ind the periodic solul.ons of the asso-
ciated linear system, if any exist. If we assume that Eq. (2.5)
has a perindic solution which satisfies certain conditions,
*o be given later, then we can use this periodic solution
of the associated linear system as a basis for constructing
a periodic solution of Eg. (2.1).

For an arbitrary system of first-order ordinary differ-

ential equations satisfying the conditions stipulated for
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Eq. (2.1), the fact that the .associated linear system has
a periodic solution does not quarantee that the original
system has a periodic‘solution. But if Eg. (2.l) represents
a Hamiltonian system, Siegel shows that it is generally
possible to construct either an exact periodic solution or
at least an approximate periodic solution of Eq. (2.1) if
a periodic solution of Eg. (2.5) is known.

We assume that Eg. (2.1) represents a Hamiltonian
system and we let m = 2n, where n 1is the number of degrees
of freedom of the system. The ganonical equations are

. . JH -9H

i = 1}2 s e
N s 2 eessn) (2.6)

where the Hamiltonian, H = H(ql,qz,...qﬁ,pl,.;.,pﬁ), is
understood to be a function of the generalized coordinates,
qi, and the generalized momenta, pj, alone. Time does not
appear in H as an independent variable. Equations (2.6)

can be combined and expressed as a single equation if we

set ¥; = ¢; and §i+n = py, (1 =1,2,,..,n), and write

X = JH,_, : (2.7)

where X represents the column matrix {él'qz"“;én’él""én}

and H, represents the column matrix§'%§~ geserdd ,OH ;o0 ,9H
4. odn IP1. Py, -

if I, and 0, represent the n x n identity and the n x n zero

matrices, respectively,then J is defined by the matrix equation

[ o0 I
J = ( o | | (2.8)

TR e e A T S e S Yo g, 7
¥

TR TR T e <

.
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Since the matrix J will play an important role in the
- development to follow, we note, at this point, certain of

its properties. It is readily verified that
T

J = "'Jr (2.9&)
gl = g-1, (2.9D)
2 _ .
Y [ J bl J J - I?‘n’ (2.9C)
det (J) = 1, ~ (2.9d)

where the superscript notation T and -1 is used herein to
designate the transpose and inverse, respectively,of a given

matrix, I, is the 2n x 2n identity matrix and the operator

n
det( ) represents the operation of forming the determinant
0of the matrix indicated inside the parenthesis.

To obtain the linear system associated with Eq. (2.7)
expand the Hamiltonian in a Taylor series about an equilibrium
solution and then form the column matrix, Hy, by carrying
out the necessary partial derivatives of the‘expanded ﬁamil—
tonian. The Taylor series expansion has the form |

2h
H(Xl,xz,oo- ,in) = H(0,0,ooo,O) + Z JH

T 9%y
§__PH ]
L o X5 Xz ' .
- * J (0505 44.50) .
The first term on the right-~hand side of Eg. (2.10) is a con-

X.
1

] (0305 40.50)

1
+ 5 Xi%j + ec. (2.10)

l3a?

stant which may be set equal to zero since we are concerned
only with forming partial derivatives of H. Furthermore, the
coefficient of x; in each texm of the first sum appearing on
the right-hand side of Eq. (2.10)(35 zero for each i since the

point of expansion is an equilibrium point. In matrix
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notation, Eqg. (2.10) can be written

T

H = X*8X + vueu,y (2.11)

D=

where S is a real symmetric matrix of constant coefficients

- a3°%m

s AL A . If we neglect terms of third
3 y
QXi DXj (0,0,:‘0-,0)

N
e

degree and higher, Eqg. (2.11) may be replaced by

H = % xTeX. (2.12)

If Eg. (2.12) is used as a basis for forming the column
matrix Hy, we find that

H, = SX. | (2.13)
Thus, the linear system asscciated with Eg. (2.7) may be
written in the form

X = UX, (2.14)

where the matrix U = (uij) = J& and uij is the entry in

the i-th row and j-~th column of U. The matrix U is called

a Hamiltonian matrix (for an alternative definition, see

Definition 3, Chapter III). .
If U is a diagonal matrix the linear system can be
integrated immediately to yield t?e sclution

AL
. = &.e” , (i =1,2,,.,2n) (2.15)

where Ay = {;; and the &; are constants of integration
determined by the initial conditions.
If U is not a diagonal matrix, we seek a canonical

linear transformation*

*The reason that we demand a transformation which is
both canonical as well as linear is simply that Siegel's method
of finding periodic solutions of Eq. (2.7) reqguires that the.

new variables must satisfy canonical equations of motion.

m?mww:’ﬁ T GO s niin oy T T T — oo S P g ey ;;Wﬁ
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X = CY (2.16)
where C is a constant matrix and Y is a column matrix
{erQz,...,Qn,Pl,Pz,...,Pn}, such that the egquations df
motion in the new variables, Q1,Q?,...,QWP1,P2,.;;,Pn,

have the form

¥ = Dy, (2.17)
w@egg D is a diagonal matrix. If the eigenvalues li,
(i = 1,2,04e,2n), of U are distinct we can be sure that a
matrix C exists which will diagonalize U. That is to say
there exists a matrix C such that

c"tuc = p, (2.18)
where O is a diagonal matrix whose diagonal elements are

the eigenvalues of the Hamiltonis matrix U,

A

The eigenvalues of U are the 2n roots zr...,'én

of the 2n-th degree characteristic equaticn
det (AI,,-U) = 0. (2.19)

The matrix C is determined by the conditions

(25T55-0c3) =0, (5 = 1,2,...,20) (2.20)
where C(j)denotes the j-th column of C. Since the eigen-
values of U are assumed to be distinct, the matrix

(A3Tp,-U) = C()j12n~D)c“1
is of rank 2n-l. It is possible, therefore, to express 2n-1
elements of C(j) in terms of any remaining nonzero element,
/%._ For any arbitrary choice of the/ﬂg's a matrix will be
determined which will diagonalize the matrix U. Our task
is to choose the/ﬁg's such that the transformation in Eq.

(2.16) is canonical.

T ——— . N O P . " —— s » N . - e " s et o 10 L e 4 i g
AN e ST A G s St badung chiasl prs IR ) it # TR e TREE Sy S A H TP S T T o
; . N g
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In the next chapter we show that if the Jacobian matrix

of a transformation, M, satisfies the equation

MTam = 7,

the transformation is canonical.

Eq. (2.21) is called a symplectic matrix.

matg@x C in Eg. (2.16) is the Jacobian matrix of
formation. If we now require the matrix C to he

we obtain n equations in the 2n unknowns,/% . of

The constant

/’j-/Oj«+n = c”:j (] = 1121""11'1)1

where the Cj are known constants.

If theﬁj‘ ,(F =

(2.21.)

Any matrix which satisfies

the trans-
symplectic,

the form

(2.22)

1,2’ L] wOln))

are chosen arbitrarily, then the values Of'/%+n are fixed

by Eq. (2.22). The canonical linear transformation is

thus determined.

If we apply the canonical linear transformation of

Eq. (2.16) to:the Hamiltonian system, Eg. (2.7), we obtain

the new Hamiltonian system

*.
Y = JHy,

} *
he symbol Hy is the column matrix

and the new Hamiltoniar, H*, is obtained

(am*
R

r

aI‘I* - o'y BH*
Py 4 AN
35 ¥ om

from the old

Hamiltonian by transforming to the new variables

ja(j = 1,2,se9,2n). Explicitly, we have

H* = % YreTsoy+- - - .

If we apply Theorem 9, which is discussed in the next

(2.23)

(2.24)

chapter, the first term on the right-hand side of Eg. {(2.24)

n
may be written in the form 'Z:%j
J:-l

can be written in the form

Y59 54n”

so that Eg. (2

.24)
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n
H* =5§% ¥y
i -J J+n

e (2.25)

If Eq. (2.25) is-used as a basis for forming the
column matrix H;, Eq. (2.23) takes the form

= A.y,+9g, (J=121,2,7"",2n), (2.26)
J J J

73 3
where for 1 < jJ 4 n
o g . >
T H* - 2.27
i Sy & AT ) (2.27)
Jn
and for n < j¢2n
e n
T3T Tyt - 2 A gy ). (2.28)

To obtain periodic solutions of Eg. (2.26), we adopt.
a device suggested by the idea ¢¥ variation of parameters.

Let two of the eigenvalues, say Al and }h be pure

+1'
imaginary numbers such that A = “An+1‘ We assume that a
solution exists in which each yj can be represented in a
multiple power series of two new variables <§ and 7 . The

solutions are to have the form

y = £ +2 ., ' (2.29)

Yl = 0 Y7 ppp (2.30)
and ) .
:j;}‘ = Zj (j - 2"3’--.'n,n+2'..-,2n)’ (2.31)
where - .
= o 3" r, s — e e 0
2, ~;>:_‘§f_.rssg P5(3 = 1,2,7"",2n).  (2.32)

The superscript j on a coefficient 2, is used to identify
JoD

the series to which the 8.4 belongs.

S

Since each of the variables, yj, is a function of g and

S R R s S e T SEPE——-

)

ol g N
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Q‘only, the time derivative 7. has the form

3
3 — 9\7 . E’ %

y-.- = -——--u,-j- S + 3 J.' v
3 dE j§7¢

If, for j = 1, Egs. (2.29) and 2.32) are substituted into

(2.33)

Eq. (2.33) in the expressions for the partial derivatives
of y1 with respect to § and % , the equations of motion,

P

Eq,‘(2.26), may be written as

(1w FLra), €08 (25 saf §77)]

(2.34)

where hi is a multiple power series in 15 and 7 obtained
by replacing the variables yj(j = 1,2,***,2n) with the
appropriate series from Egs. (2.29-2.31). The coefficients
in the series h;, determined by the substitutions, are known.
If g and ! are expressed as a power series in 5 and 7

: . .. kS
we can  determine the coefficients of g /). . We now make
the additional assumption that the auxiliary variables §

and 7 are functions of time satisfying the differential

equations

¢ = ¢ (2.35)
and |

=) (2.36)
where u is a power series in w = 57, which has the form

u= F et (2.37)
and

v = g; vy | (2.38)
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for suitable choices of the coefficients up and wg. In
particular, we shall require that vy = Al and v = An+1'
The difficult problem of establishing the convergence of
these series, Egs. (2.37-38), has been examined by Siegel.
The convergence criterion which is given in his book is
not presented here because additional background material,
which is included in the proof of convergence, is required
to understand the criterion.

If we use Egs. (2.35) and (2.36) to replace § and ?

in Eg. (2.34) and then substitute the appropriate power series

given in Egs. (2.37-28) for u and v, we obtain the eqguation

o

(E we )t (FF val €9)(5 4 &%)
P (L L sate g )L v 1) -2 (1L ay 6" 7)) 2 b (2.39)

rxl §=i

The expressions for 3 = n+l and j = 2,3, ",n,n+2,***,2n which
we find in a similar manner are
o0

(Eve )™ v (L5 ral €95 ud )

P (S L a8 0V (S e A (L L Ay e = by,

LA 1Y

*

(2.40)

and

gl

(.

«©

Loral é:"']")(g‘o U EXD*) + (,5_”; ;‘i sad g’y‘)(go v &*9¢)
| - (B E ), €)= by 2.41)

k=t 8$=4

-
"

G e (% s Trnrre K R ek saa s = PR Lo R e
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where h,,; and hj are defined in an analogous manner to hj.

If we now assume that when r = s+l the coefficients a = 0

rs
n+1l

and when s = r-+l1 the coefficients 2,

= 0, then we will be
able to find all the coefficients Uy sV and ags by equating
like powers of gr,7s on both sides of Egs. (2.39-41).

; 1

L, Since arg
k+1 k . N . . :
g n” in Eq. (2.39) appear in the first sum on the left

= 0 for ¥ = s+l, the only terms of the form

/

and since aggl = 0 for s = r+l, the only terms of the form
kK k+ : :

gﬁ ok 1 in Eg. (2.40) appear in the first sum on the left.,
U {

Thus we can determine all of the coefficients e and vy which
appear in the series for u and v.

If all the coefficiants arg (j.== 1,2,++¢,2n) have been
found for r<r' and s<s', and the coefficients u, and vy for
k gqual to the larger of s' and r',’then the coefficients
ar.g. can be found by equating the coefficients of gr'¢7s'.

Except for the cases r = s+l with j = 1 and s = r+l with

j = qi+l, for which all the ars's are zerc, we have
SprgTllr=s) A = A41 = p, ~ (2.42)

where p is a function of the coefficients arg, Uy and Vier

¢
-

already determined. If a iis to exist we must require

r's
that none of the ratios fg, 3

AL A A1
be an intsger. With this additional restriction on the

eigenvalues ,each of the coefficients arg (3 = 1,2,...,:2n},

u, and Vi can be computed in such a way that the series in

k
Bgs. (2.29-31) are soluticns of Eq. (2.26). The only task

, . —— B - b B s LGy« ol g 4+ e e et
Dt s S R gl g 2 ) e Qbiesveel kasts LD i v T RATERG S es T A T e o o L e D NSyl
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remaining is to determine the functional dependency of
£ and » on time.
The new Hamiltonien formed by substituting Egs. (2.29-32)
into Egq. (2.25) will be denoted by K. Since K is ihdependent

of time and therefore a constant of the motion

, - @& = 3R 4 + 3Ky =0. (2.43)
| dt o€ > 99
Using Egs. (2.35-36), we can write
d¥k = u ¢ 9K-+V’7 dK = 0 (2.44)
at A El

Both n and ¥ are functions of w alone and by some tedious
algebraic manipulation which will not be reproduced here it
is possible to show that K is also a function of w alone.

By applying the chain rule for'vartial derivatives, Eq.
(2.49) becomes

U +v)w dK =0, (2.45)
dw

Since Eg. (2.45) is to hold for all values of & on an interval,

we infer that '

Now

dw_=d_(§9 ) =(@+v)§7 =0,
dt dt :

therefore w is a constant of the motion. From Eqé. (2.37-38)

it is apparent that v and v are constants also; therefore,

Egs. (2.35-36) immediately integrate to yield the solutions
£ = 5oe ut (2.47)

and

N =ne VE, (2.48)

T S N A e o A R eSO o ST T e AR s e
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where §° and 7/ are constants of integration. By a

scparate long proof, included in Sicgel's work, he has shown

that w and v are conjugate complex numbers, and since

ua + v = 0, then for some cnnstanp/#

1_1-_:5;}1
and. - .

v o= -ap

(2.49)

(2.50)

where 1 = V-1. If we substitute Eqs. (2.49-50) into

Egs. (2.47~-48), we obtain
g - gde iut

and —iut
?°=70elu a

In essence then, if two eigenvalues

of the associated lincar system are pure

P

D ]

Al

conjugates and if none of the ratios

2

(2.51)
(2.52)

say A , and Al

imaginary complex
A3:.,”, ;ﬁg are
1 A1

integers, then for sufficiently small values of 5 and 7 ’

we have exhibited a method of generating

solutions of the Hamiltoniansystem, Eq.

a family of periodic

(2.7).




IITI. HAMILTONIAN AND SYMPLECTIC MATRICES

Since the amount of information on symplectic and
Hamiltonian matrices which one finds in the mathematics
l}ﬁé;atnre is quite limited, a treatment of the more
important properties is given in this chapter. The goal
is to make available to the reader those theorems which
are fundamental to the understanding of the properties of
these important matrices. Although there is little original
material in the theorems and proofs given here, the theorems
lhave been restated and the proofs expanded in the hope of
achieving greater clarity.

Definition 1l: A real 2n-square matrix M is called

symplectic if and cenly if
‘MTam = g, (3.1)
where J is defined in Eg. (2.8).

Definition 2: If ql,qz,...,qn,pl,pz,...,pﬁ are any

2n distinct functions of the two variables (\Lv)(and.possibly

of any number of cther.variables), the expression
B/ Jax Ik ek Ak )
k=1 Ju dv du 3T

is called a Lagrange's bracket and is denoted by [u,v].

Theorem 1l: Let gy,dp,.s.,q9, represent a set of n

generalized coordinates and P1¢Psre+e+,Py represent the corres-
ponding set of conjugate generalized moments of a Hamiltonian

18
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system. Let qi = qi(Ql,Qz,:..,Qn,Pl,Bz,...,Pn) and p; =
Pi (R1:,92/0004Q /B /PysevesPy)y (A = 1,2,..,,n), represent
equations of transformacion to new variables Q1/Q2s0eerQn»
Pl’PZ""VPn' The Jacobian matrix, M, of the transforma-

tion which can be written

o A B
M = ’
cC D
where A = (ay.) = )94 B = (b..) = 99 C o= (cis) =
30 Sor ij 5= ¢ C = (eij) =
]
o Pi and D = (dij) = JPi (i,7 = 1,2,s.%,n); 18 a symplectic
éQj 9 P.
]
matrix if and only if the transformation is canonical.

T

Proof: If we form the product M"JM, we can write

aTc-cTa  a"p-c¥s (e5.4) (£,.)°
MTay = = | BRI
Ty T T _nT
B°c-D'A  BTD-D"B (g34)  (hyy)
where 53 = Q; 941, fiy = [Qi'Pj]' iy T [Pi’QjI and hy 4 =

[?i'Pj]' (i, = 1,2,+..,n). But there is a well-known theorem
of analytical dynamiecs [5] which assures us that a transforma-
tion is canonical if and only if [Qi,Qj} = O,[Ei,Pj] = 0,
[Qier] = éij and [’Pl’Qj] = “""bij (il,j.:: 1,2,4s..n) where Sl]
is the Kronecker delta. Thus

T

Alc-c*a ATD-c

Ty
BTc-pTa BTp-pTR

il
(o

and M is symplectic if and only if the transformation is

canonical.

Theorem 2: If a matrix M is symplectic, then it is

nonsingulax.
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Proof: Since MTJM = J, det(J) = 1 and the determine t of
& product of matrices is the product of the determinants of
the matrices, the result is immediate. |

Theorem 3: If a matrix M is symplectic, then so is M1

and MT.

...Proof: Since M is symplectic

MTagM = J.

4

Multiplying from the right by M"l and from the left by
(MT)_l, we obtain

J = (MT)"l gm~1 -
But the inverse of the transpose of a matrix is equal to the
transpose of the inverse, thercfore

wmHT g ul =g (3.2)
and M~1 is symplectic. Taking the inverse of each side of

Eq. (3.2), we have

mo~inT = g7t
If we use the fact that Jml ==-J, then we have
MaMT = g3

and MT is symplectic.

Theorem 4: Symplectic matrices of order n under the

operation of matrix multiplication form a group.

Proof: (a) Matrix multiplication is associative on all
square matrices. It is therefore associative on all Zn-square
symplectic matrices. |

(b) Symplectic matrices are closed under matrix

multiplication. Let M and R be two symplectic matrices. The
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transpose of a product of two matrices is eqnal to the
product of the transposes in reverse order, therefore we have
(MR) TIMR = RTMTYMR (3.3)
But, since M is symplectic,

MT

JM = J ' (3.4)
Int;qducing Eg. (3.4) into Eg. (3.3), we have
| (MR) TgMR = RTJR -
But R is symplectic, therefore we may write
(MR) TaMR = 7.
The product MR is symplectic and we have the closure property.
(c) The identity matrix IZn is the identity
element of the group, since
TopdT, =3
ar? I, is symplectic.
(d) A cymplectic matrix is nonsingular, there-
fore each such matrix has an inverse and the inverse is
symplectic by Theorem 3.

Definition 3: A real 2n-square matrix H is called

Hamiltonian if and only if
)T = (JgH) (3.5)

Theorem 5: A matrix H is Hamiltonian if and only if

there exists a real symmetric matrix S such that
H = JS.

Proof: If H is Hamiltonian, then.

(T ¥ = Jgu.

Let JH = -S. Then it follows immediately that

BB eSO S T TP S ety e T



sT = g,
i.e., § is symmetric. Now
JS = J(-JH),
where 32 = ~I5,s therefore

JH = H,

s

and,.H has the decsired representation.

If H = JS, where S is symmetr

()T = (3.99)7T

—
—

cnd, since J2

(JH)T = -5.
If we use the fact that J2 = "IZn’
)T = a2s,
which may be factored to yield
T _
(JH) = J(JS).
But, since JS = H, we have
wm T = gr

and H is Hamiltonian.

Theorem 6: If M is syamplecti

K = M 'EM is also Hamiltonian.
Proof: Since M is symplectic
Mtom = J.

If we multiply from the left by J

by M~ ! and note that g1 - -J,
vt = —onTs .
If we write ,
KT = (am tmy T

ic, then

"I2n and S is symmelric,

we may write

c and H is Hamiltonian, then

(3.6)

1 and then from the right

then we have

(3.7)

14 | (3.8)

NN s et i e
e T T T R

i
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and then replace ML in Eq. (3.8) by Eg. (3.7) we obtain

T

(JK)T = (-gomtomm) T,

If we use the fact that J2 =~12n, then we may write

JK) T = (MTaum) T,

Since H is Hamjltonian and the transpose of a product is egual
Egléée product of the transposes in reverse order, we may write
(IK) T = MTIHM. (3.9)
If we multiply Eq. (3.6) from the right by M_l and then from
the right by J—lbwe have
MT = gu~tg7L, (3.10)
Replacing MT in Egq. (3.9) by its equivalent expression from
Egq. (3.10), we obtain

1

(JK)T = JM “HM.

But K = M"lHM, therefore
T
(JK)Y = JK

éhd K is Hamiltonian..

Theorem 7: If X 1is an eigenvalue of a Hamiltonian

matrix,then so is = A .

Proof: Let H be a 2n-square Hamiltonian matrix with
eigenvalues Ai Ji:l,Z,...,Zn) . By Theorém 5 there exists
a symmetric matrix S such that

H = JS.

It follows that the characteristic polynomial,

e
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i

PO

may be written

det ( )\ Izn""H) ’

plA) = det( AIzn—JS).
The determinant of a matrix is equal to the determinant
of the transpcse of the matrix, therefore we can write
= A - T -g7L
v pA) = det( A1, ,-JS) det( AT, ~537).
But JT = -J, so we may write
P 2) = det{ AT, +SJ).
Since I, = —J2, then
2n
(1) = det(~ 202-3%87) = det(J[- AT, _-~I513).
The determinant of a product of matrices is equal to the
product of the detearminants of the matrices and det(J) = 1,
so that
PLA) = det(~ AL, ~JS) = F(-A)
and the characteristic polynomial is an even function. The
theorem follows immediately.
Theorem 8: If there exists a matrix C with the property

that C_lHC = D, where D is a diagonal matrix whose diagonal

elements are the eigenvalues of the Hamiltonian matrix H,

then there exists a symplectic matrix E = CP, where

Q 0
e 0%
\op I

and Q is a n-sqguare diagonél matrix whose diagonal elements
are nonzero scalars, qp(i=l,2,...n), such that
g 1HE = D.

Proof: Assume that there exists an invertible matrix

o e -~ i e N g . = oo B e e oS0 SE N o s o s 5 7
or Ve - i G R e B R O

-
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C such that
c™luc = b, © (3.11)
where H is a Hamiltonian matrix and D is a diagonal matrix
whose clements are eigenvalues of H. It follows from Theorem

7 that we may write

4 B ’ L O
R n
D = )
C -1

where L is an n-square diagonal matrix whose diagonal elements
are the n positive eigenvalues of H. If we multiply Eg. (3.11)
from the left by C and then transpose, we obtain

cTyT = pct. (3.12).
But, since H is Hamiltonian, H = JS for S a symmetric matrix.

Equation (3.12) may be rewritten then, to obtain

cTsal = pcT,
and if we use the fact that JT = g1
cts = pcla. (3.13)
Now
_ 0 ~L
DI ] _ n
-L 0
_ n
is symmetric, therefore
bt = (o HT = (571)Tp.
-1.T ' .
But (J ) = J,hence it follows that
pa~t = Jp. | (3.14)
Consider the product (J_lCTJ)JS; Since J2 = ~-I and

g7 = -7, we may write

= 5 rosteni i e ) » mrmer— e T T
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( telayos = ucTs. (3.15)
If Eq. (3.13) is introduced into Eg. (3.15), we can write

- T
(7 1cTa)ygs = gpety.

It now follows from Eg. (3.14), that

1eT3y9s = (3 teta) . (3.16)

(g
. _ -1 7.,-1 . _
If we set B = (J "C°J) ~, since H = JS, Eq. (3.16) may

be written as

3~ 'up = D.
It is a straight forward matter to show that the two
matrices B and C diagonalize H if and only if C = BF,

where F 1s a diagonal matrix whose diagonal elements are
nonzero scalars which canbe written in the partitioned form
G 0

n

0] K

n

wiere G and K are n-square diagonal matrices. From the

definition of B, we can write

FC = J C°J
or
P e
c Jdc = JF. X (3.17)
where, explicitly s o -
n
JE = (3.18)
-G On
\
If we franspose Eq. £3.17) and use the fact that JT = -7,
we obtain
CTJC = ~(JF)T. ' (3.19)

T T

RN

*
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From Eg. (3.17) and Eg. (3.19) we find that

JF = - (JF)7T,

which means the matrix JF is skew-symmetric. It then follows

from Eq. (3.11l) that G = K.

If we let

then we have

If we equate

we find that

or

If we set E =

Theorem

/G 0p
P = ,
0p I,
-1
P ~JP = JF. (3.20)

the left~hand sides of Egs. (3.17) and (3.20),

cTac = pLgp

(cp~1)T7(cp~t

) = J'
cp™l, then E is symplectic and

E"tug = p.

8: If C is a 2n-square symplectic matrix which

diagonalizes

then

where L, is a
values of JS
Progg:

follows from

the 2n-square matrix JS, where S is symmetric,

0 L

cTsc =

L 0
diagonal matrix whose elements are those eigen-
which zre positive.
By Theorem 5 the matrix JS is Hamiltonian, It
the hypothesis and Theorem 7 that

clisc = p (3.22)

e T s "- i ¥ i Ean a vy LR
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where D is a diagonal matrix whose celements are the cigen-

values of JS. The matrix D may be written

L 0
D =

On ~L

where L is an n-square diagonal matrix whose diagonal

elements are the n positlive eigenvalues of JS. Since C is

“ 8
b’ N

symplectic we may write
ctac = g. (3.23)

If we multiply Eq. (3.21) from the left by J“l and from

1

the right by C —, we obtain

1 ~1.T

o J “Ccta. (3.24)

Substituting Eq. (3.24) into Eg. (3.22) and taking note

of the fact that J2 = T and J“l

T

= -J, we obtain
C*SC = —JD.

But, if we form the product -JD, we can write

-JD =

and the theorem follows.

Definition 4: A real m-square matrix A is called

orthogonal if and only if AT = a~1,

Definition 5: If A = (aij) is a complex m-square matrix,
o =T == b : s
then the matrix A~ = (aji), where ajj 1is the complex conjugate

of ajq (1,3 = 1,2,""*,m), is called the conjugate transpose

of A.

Sl Sty Rt e e B
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A complex m-square matrix A is called

= a"L,

Definition 6:

» ' - . hi TII
unitary if and only if A

Theorem 10: Let A be a 2n-square matrix of real

numbers. Then A is both orthogonal and symplectic if and

only if there exist real n-square matrices U and V such that

U \%

>
ti

-V U
and the matrix (U + iv), (i = Q~l) is unitary.

Proof: Since A is symplectic then

PO

JA = AJ. (3.25)
If we partition A into the n~-square blocks

A1 By

A1 By,

the right and left-hand sides respectively of Eq. {3.21)

may be written explicitly as

~A12 11
AT =
"Ry By
and
Ary Ao
JA =
A1l “App

e S e i
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But, then Eq. (3.21) is valid if and only if Aoy = A1z and
A1l = Ayy. Setting v = Ao and U = A4, we write

9) \%

Since A is orthogonal

ol + vt wuT - gyt
,
I\
AA — - Tznl
wvT - vor  wT 4 ool
so that AAT = I, if and only if vu?t + VVT = I, and voT - uv?t

= Op. But these are precisely the necessary and sufficient

conditions for the matrix (U + iV) to be unitary.




IV. EXAMPLES

Example l: For a particle of unit mass moving in the

(x,vy) plane under the action of a uniform gravitabtional field

(0,~g), we have the Hamiltonian

co 1, 2 2

H= 35" +py") + 9y,

where p, and py represent the mementa along the x and y axes,
respectively. The canonical equations are

5<=le 5/’=P:
Y (4.1)

px = OI ?y =—g°

To find an equilibrium solution of Eg. (4.l1) we have to

and py so that X = y = p, = p, = 0.

find values for x, y, p y

X

Since éy = -g, a constant, there is clearly no equilibrium
solutiongo that Siegel's method cannot be applied.

Example 2: The Hamiton fun~tion for a simple harmonic

oscillator is
H = %(p2 + nzqz), . (4.2)
where g is the generalized coordinate, p is the generalized

momentum and n is a nonzero constant. The equations of motion

are
L (4.3)
4.3
. 2
p=_nqo

The equilibrium solution is gq = p = 0. It is trivially

true that the expansion of the polynomial, Egq. (4.2), in a

31

o
R Wy

e S ettt e .



32
Taylor series about an cequilibrium point corresponding
to the equilibrium solution is the polynomial itself hence,

In matrix notatlon, the expanded Hamiltonian can be written

2

n 0 q
- L
H = Z(q,p) - (4.4)
oo \0 1 P
If the column matrix .5@&, JH ) is determined from Eq.
Jd 9P

(4;4), the equations of motion are

g 0 1 q

= , (4.5)

P -n% 0 p
where the constant matrix in Eq. (4.5) is Hamiltonian.
The eigenvalues of the Hamiltonian matrix are computed
from Eq. (2.19). We find the eigenvalues to be A; = in
and 22 =-in. Since we have a pair of pure imaginary
eigenvalues such that Al = - 32 and there are no other
elgenvalues, the requisite conditions on the eigenvalues are
satisfied., We know, therefore, that there is 'a periodic
solution of Eg. (4.3).

The columns of the transformation matrix C in Eq.

(2.16) are computed from Eg. (2.20) and in terms of the‘gkjs

(in this Case/ﬁi and /B are the elements of the first

row of C), C may be written

/ﬁ /@
e = . (4.6)

\ingy -inp,

s hy, S A AR :
o,

R T
v
/
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Requiring C to be symplectic, we obtain the condition

in/Ql/Oz = 1, which leads to

i
L 2n
C = (4.7)
~ 1
in 5

when we choose//ﬁ = L.
If we insert Eq. (4.7) into Eq. (2.16) we obtain the

canonical linear transformation,

1
q 1 P Q
= ; (4.8)
1 1
p/ in 5 P

to new variables Q and P. When we insert the transformation,
Eg. (4.8), into Eq. (4.4), we obtain the new Hamiltonian H¥.
In the summation form of Eg. (2.25), we may write

H* = inQP. ' (4;9)

The equations of motion in the new variables may be written as

é = 1nQ,
. (4.10)
P = ~inP.

fhué all‘the gj“s in Eq. (2.26) are zero. IEguation (4.10)
immediately integrates to the solutions

Q = Que

and (4.11)

-int
P = Poe,

which, since the gj's are zero, is the exact solution of
Egq. (4.3). 1In tcrms of the variables g, p, the solutions

may be written

IR | s Ry ’ﬁ:;ﬁf.
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q = ¢cjcosnt  + czsﬁjnt

p = c.cos nt + c,sinat

O Yy
where
Cy = QA + 1P
1 o «EQ,
Cy = lQo -+ PO
y 48 -—Z‘H '

Cy = inQ, + Po
c4 = Qon i

Fxample 3: Consider the Hamiltonian

%)

1 2 2 2 1 2 2
B = 3n(q” + p1%) - nlap® + py*) + 54a,%qy - a,p7-2pypy) . (4.12)
where the g's are the gencralized coordinates, the p's are
the generalized moments and n and « are nonzero constants.

The ecquaticns of motion are

qp = npy - et{dppy *oAgP,)

i

4y = =2npy = o q1P,

2 2 1 , (4.13)
Py = —nq, - d(qlqz = plp2? ’

. ! 2 _ 2

Py = 2nq, - 5 d&lq, P17

It is readily evident that 9y = dy =Py TP, = 0 is an
equilibrium solution.

The Taylor series expansion of H about an equilibirum
point corresponding to tne equilibriﬁm solution is

H(X)

H(Q) +§ QH_
o 2% (0,0,0,0)%1

y oy
+ - 2 |
2y L L 2 H KX,
¢ J=! Qxl QX] (6,0,0,0) 17

(4.14)

LI
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where ¥ 1s the column matrix {ql,q2,pl,p2}' The constant
and linear terms are zero and if we ignore the terms of third
degree and higher, we obtain the quadratic Hamiltonian
yjn 0 0 O /ql
1 0 -2n 0 O o p)
H = 5(q1:9,/Py/P,) 0 0 n o o (4.15)

0 0 0 -2n |py

If the column matrixg'aH ;0H ,3H ,3H } is determined from

.99y 99y 9Py 9P
Eq. (4.15), the equations of motIon may be written

a; 0 0 n 0\ jap
q J 0o 0 0 -2n|lqg
2l 2 (4.16)
1 S 1-n 0 0 0 || g3
By 62n 0 0/ |q,

Equation (4.16) is the associated linear system of Eg. (4.13).
The constant matrix in Eg. (4.16) is Hamiltonian with eigen-
values Ay = in, A = 2in, A3

we have a pair of pure imaginary eigenvalues )2 ~and )4, such

= -in and A4 = ~2in. Since

that )2 = - )4 and the ratio Al _ 1 is not an integer, there

BRI
is a .periodic solution of the Hamiltonian sysitem .

The columns of the transformation matrix'C in Eq. (2.16)
are computed from Eg. (2.20) and in terms of the /&’s, C
may be written
/’/i 0 if>3 0
c = ERAC TR (4.17)
%ﬂl 0 f% 0

Y

R R

it
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If we require C to be symplectic, we obtain the equaltions

21 Py =1 (4.18)
22 s = 1.

If we choose/ﬁi = l,/°2 = 1, we obtain

1 0 i/2

0 i 0 ,~%
C = ° (4019)

0 1

o

~-i/2
If we substitute Egq. (4.19) into Eqg. (2.16), we obtain the

canonical lincar transformation

a5 1 0 i/2 0 /Ql
' . 1
95 0 1 0 - Q
| = . 2, (4.20)
3 e \
Py 1 0 2 C Pl

to new variables & and P. If we introduce Eqg. (4.20) into
Eq. (4.14), we obtain the new Hamiltonian U* in the variables
(Ql’szpl'PZ)‘ In the summation form of Eg. (2.25), we have

H* = anlPl ~+ 2i.nQ)P2 + sow’ ’ (4»21)

Since all fourth degree and higher terms in Eg. (4.14) vanish,

we may write H* exactly in the form

H* = inQP; + 2inQyP, + a’\(% P12P2 + iQ12Q7
- i, 2, _1 2
Epl Q2 5P017) . (4.22)

HET R AR T T AR AR ey e ol g BN
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The cquations of motion in ti:e new variables are

- . (ip
N s 1, 2 _ 1, 2
) (4.23)
P, = ~inPy + «(Q1Py = 21070Q,),
. s 2
o o ru(ip? ~ 0.2
o P, = 2inP, 14(431 iQq%).

The gj's of Eq. (2.26) are the sccond terms on the right-hand
sides of Eq. (4.22).

If we substitute the appropriate series from Bgs. (2.29-32)
into the Egs. (4.22), and solve for the cocfficients arg
(3 = 1,2,3,4), Ve and W, we find that all of the coeffi-
cients are zero. The equations of motion, Egs. (4.30-33),
reduce to

Ql = 0,
P, =0,
0, = 2inQ,,
and
which immediately integrate . to the solutions

Q, = Qoe2int

and

In herms of the original variables the solutions are

qlz(j’

q, = €yc0s 2nt -+ Co sin 2nt, .
p =20,

1

Py = czcos Znt + 9+ sin 2nt,

e e P\ W T R ¥ A L S T e T o s g, R
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C2
C

and

Hi
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