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ABSTRACT 

B i s t a t i c - r a d a r  echoes from Explorer  XXXV have been rece ived  a t  

S t an fo rd  us ing  t h e  S tanford  Research I n s t i t u t e  150' d i s h  antenna.  Analog 

t a p e  r eco rd ings  a r e  used t o  p re se rve  narrow band r e c e i v e r  o u t p u t s  for 

subsequent  d i g i t a l  s p e c t r a l  a n a l y s i s .  With a proper  choice  of system 

parameters  dynamic ranges i n  excess  of 60 db a r e  achieved.  

Cooley-Tukey a lgo r i thm i n  a r e a l  t i m e  computer program permi ts  t h e  

computation of F o u r i e r  c o e f f i c i e n t s  f o r  a s l i g h t l y  g r e a t e r  t han  1 KHz 

d a t a  bandwidth w i t h  1 hz r e s o l u t i o n .  A subsequent ope ra t ion  combines 

sets of these c o e f f i c i e n t s  t o  form r e l i a b l e  s p e c t r a l  e s t i m a t e s .  

U s e  of t he  
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1. I n t r o d u c t i o n  

During t h e  l a t t e r  h a l f  of 1967 t h e  l u n a r  Explorer  XXXV s p a c e c r a f t  

and t h e  S tan fo rd  Research I n s t i t u t e  170' d i s h  antenna were used a s  t h e  

t r a n s m i t t i n g  source  and r ece ive r ,  r e spec t ive ly ,  i n  a b i s t a t i c  r a d a r  

experiment t o  s tudy  t h e  s u r f a c e  of  t h e  moon. Th i s  experiment w a s  

c a r r i e d  o u t  a s  p a r t  of t h e  Explorer  XXXV f l i g h t  program conducted by 

Goddard Space F l i g h t  Center .  O f f i c i a l l y ,  t h e  experiment i s  known a s  

t h e  S tan fo rd  Telemetry Monitoring Experiment. Transmissions from t h e  

s p a c e c r a f t ,  which i s  i n  a roughly e q u a t o r i a l  l u n a r  o r b i t ,  were rece ived  

on t h e  e a r t h  a f t e r  r e f l e c t i o n  from t h e  l u n a r  s u r f a c e .  The r e f l e c t e d  

s i g n a l s  c o n t a i n  informat ion  regard ing  t h e  phys ica l  shape and v e r t i c a l  

e l ec t romagne t i c  s t r u c t u r e  of  t h e  l u n a r  su r face .  Two o t h e r  r e p o r t s  des- 

c r ibe  t h e  des ign  and o p e r a t i o n  of t h e  r e c e i v i n g  system (Tyler  - 9  1968b) 

and t h e  computer programs f o r  p r e d i c t i n g  t h e  s t r e n g t h  and Doppler s h i f t  

of t h e  r e f l e c t e d  s i g n a l s  (Ty le r  -7 1968a).  

b i s t a t i c  r a d a r  concepts  may be  found i n  F je ldbo  (1964) and T y l e r  (1967). 

Pre l iminary  r e s u l t s  from t h e  Explorer  XXXV experiment appear  i n  T y l e r  

Complete d e s c r i p t i o n s  of t h e  

(1968~, d and 1970). 

a n a l y s i s  techniques  used i n  t h e  r educ t ion  of Explorer  XXXV d a t a  f o r  t h i s  

Th i s  r e p o r t  d e s c r i b e s  t h e  ( d i g i t a l )  s p e c t r a l  

experiment . 

2. General  Experimental  Cons ide ra t ions  

Explorer  XXXV c a r r i e s  a 6 wa t t  t e l e m e t r y  t r a n s m i t t e r  which ope ra t e s  

i n  con junc t ion  w i t h  an omnid i r ec t iona l  antenna system, and thus  r a d i a t e s  

equal  power toward t h e  e a r t h  and t h e  moon. The downlink t e l eme t ry  

spectrum c o n s i s t s  of a 136 MHz c a r r i e r  phase modulated by e i t h e r  te lemet ry  
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d a t a  from t h e  on board experiments  and engineer ing  f u n c t i o n s  or 

ranging  tones  de r ived  from an up l ink  s i g n a l  t r ansmi t t ed  from t h e  

ground. The index  of  modulation i s  chosen so t h a t  about 2 w a t t s  of 

t h e  t o t a l  r a d i a t e d  power remains i n  t h e  c a r r i e r  whi le  t h e  remaining 4 

w a t t s  a r e  symmetr ical ly  d i s t r i b u t e d  among t h e  modulation s idebands.  

With t h e  except ion  of a t e l eme t ry  synchroniza t ion  tone  a t  +275 Hz from 

t h e  c a r r i e r ,  t h e  t e l e m e t r y  t ones  occupy t h e  s p e c t r a l  reg ion  between 400 

- 

and 1000 Hz above and below t h e  c a r r i e r  s ig ,na l .  I n  t h e  ranging mode 

t h e  t e l e m e t r y  modulation i s  suppressed and t h e  s idebands a r e  d i sp l aced  

900 kHz from t h e  c a r r i e r  s i g n a l .  

The p r i n c i p a l  component of t h e  echo, or carom, s i g n a l  comes from a 

smal l  r eg ion  about t h e  c e n t e r  of t h e  f i r s t  F re sne l  zone on t h e  mean l u n a r  

s u r f a c e  (Fjeldbo,  1964). S ince  t h i s  po in t  cont inuous ly  changes w i t h  t h e  

motion of  t h e  s p a c e c r a f t  about  t h e  moon, a Doppler e f f e c t  i s  a s soc ia t ed  

wi th  t h e  carom path,  and may be  c a l c u l a t e d  from t h e  r a t e  of change of  t h e  

r e f l e c t e d  pa th  l e n g t h  t o  and from t h e  mean su r face .  

I f  t h e  moon were p e r f e c t l y  smooth, t h e  echo s i g n a l  would be an un- 

d i s t o r t e d ,  a l b i e t  t i m e  delayed and Doppler s h i f t e d ,  r e p l i c a  of t h e  

t r ansmiss ions  t h a t  propagate  d i r e c t l y  t o  t h e  e a r t h .  However, t h e  

roughness of t h e  l u n a r  s u r f a c e  modulates and s p e c t r a l l y  broadens t h e  

echo. S ince  t h e  t e l eme t ry  s idebands a r e ,  a p r i o r i ,  randomly d i s t r i b u t e d  

over  t h e i r  range only  t h e  r e f l e c t i o n  of t h e  c w  telemetry c a r r i e r  could be 

- 

u t i l i z e d .  The e x t e n t  of t h e  echo broadening i s  c o r r e l a t e d  w i t h  t h e  

roughness of t h e  s u r f a c e  and v a r i e s  between about 0.1 Hz and about 

230 Hz,  wh i l e  t h e  d i f f e r e n t i a l  Doppler s h i f t  between t h e  d i r ec t  and 

r e f l e c t e d  s i g n a l s  v a r i e s  between approximately - +lo00 Hz. Both of t h e s e  

2 



quantitites depend upon the spacecraft, moon, earth geometry and the 

velocity of the spacecraf -i! . 
The power in the carom signal varies with position in orbit and 

with the properties of the lunar surface, A maximum value for the 

total power in the echo was about 1/400th that of the direct. 

several orders of magnitude weaker were detected in the course of the 

experiment . 

Signals 

The experimental problem then is to detect a weak, randomly 

fluctuating echo signal in the presence of the much stronger, directly 

propagating telemetry carrier and sidetones. Spectral analysis was 

chosen as the method. Observations were of necessity restricted to 

those times when the echo was separated from the directly propagating 

telemetry signals by Doppler effects. Digital techniques were required 

to achieve the necessary dynamic range (-60 db) stability. 

3. Receiving System Characteristics 

The details o f  the Stanford Explorer XXXV receiving system have 

been described in the references given in the introduction to this 

report. For purposes of data reduction the receiving system may be 

modeled as a narrow band tracking filter which maintain a fixed phase 

relationship with the telemetry carrier. The receiving system contains 

two identical coherent channels for each of orthogonal polarizations 

(right and left circular). 

and quadrature components of the filtered passbands, heterodyned to 

zero frequency. System design permits the filter passbands to be offset 

from the carrier frequency by fixed amounts. Filter passbands of 10, 

The system output consists of in-phase 
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50, 100 and 200 Hz were available. Frequency offsets could be 

set to a precision of 1 Hz. 

This particular arrangement permitted certain economies in the 

data reduction which will become evident later. The data are preserved 

for subsequent reduction on frequency modulation tape recordings of 

the filter outputs with appropriate timing information. A schematic 

representation of the receiving system functions and recording 

process is given in Figure 1. 

4. Formation of Spectral Estimates from Fourier Coefficients Use 

of the Cooley-Tukey Algorithm 

A .  Computational Efficiencies 

The statistical relations between gaussian random processes, linear 

operations such as filtering, and Fourier coefficients are well under- 

stood (see Middleton, 1960) and it is assumed that the reader has a 

knowledge of the elementary concepts of such processes from statistical 

communications theory. It should be clear that the output spectrum of 

the Explorer XXXV receiving system consists of the telemetry signals in 

the selected passband, a random background component made up in part 

from the receiver noise and in part from the galactic background noise, 

and a weak narrowband component due to the reflection of the telemetry 

transmissions from the lunar surface. 

We are concerned here with the digital formation of estimates 

It will be (in the statistical sense) of this composite spectrum. 

assumed that the data have been sampled at the Nyquist rate. In the 

past, the computationally most efficient method for obtaining these 
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estimates was to compute the autocorrelation function of the data, 

and then use the fact that autocorrelation functions and power spectra 

are a Fourier transform pair to obtain the spectral estimates using 

only a single Fourier transform calculation (Blackman and Tukey, 1958). 

If one considers a collection of N data samples, then approximately 

N T multiplications and additions are required to compute the 

autocorrelation function for T lags. Using brute force techniques 

an additional T~ multiplication and additions must be performed to 

calculate corresponding Fourier series, assuming that the maximum 

number of independent frequency bins obtainable from this data is 

desired. If the number of degrees of freedom of the estimates is K, 

and the number of independent frequencies desired is M, then for this 

case K - N/M and the number of calculations for a given K is proportional 

to KM , where it has been assumed that K>>1 is desired (see Blackman 

and Tukey). Precise arguments leading to the number of calculations 

are quite complex, and depend upon the details of the estimates 

formed. However, the results given here are good approximations for 

estimating the calculations required. 

2 

The Gooley-Tukey (1965) algorithm provides a method for computing 

complex Fourier series from a set of M complex data points with only 

M I) log M complex multiplications and additions. That is, one computes 
2 

with considerably less than the M2 operations required by brute force 

techniques. Since the Fourier coefficients a are independent random k 
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variables, spectral estimates with K degrees of freedom may be formed 

by summing successive (am)2 with respect to m, where each (a ) is 

calculated from a successive set of M data samples, x The number 

of multiplications and additions to obtain estimates with K degrees 

of freedom is about K 0 M * log2 M, since the successive additions to 

form the sums of (am)2 are negligible with respect to calculating the 

a themselves. Thus, for a given K, the ratio of computations required 

to form spectral estimates via the autocorrelation function and direct 

Fourier transform using the Cooley-Tukey algorithm approach is M/log M. 

The direct Fourier transform was chosen for this work because for 

large M it is the computationally much more efficient method. 

m 
k k 

m 
j' 

k 
m 
k 

2 

B. Data Weighting Functions and Spectral Estimates 

Fourier series, i.e., the set of Fourier coefficients, calculated 

directly from a sequence of unmodified data samples may be interpreted 

as the output of a set of filters with a frequency response such as 

sin 5 f At - - sin 5 f T/N 
sin 5 f . T H(f) N _  sin 5 f T 

here N = total number of samples in the data set 

T = time in which the N samples were taken 

f = frequency with inverse units of T 

At = interval between samples 

and it is assumed that the data samples are taken at a uniform rate. 

A continuous representation of frequency is used for convenience. 



The ratio of sine functions plays the same role in analysis of 

sample data as the sinc function in the analysis of continuous 

functions (Bracewell, 1965). H(f) is simply the envelope of the 

transform of a sampled pulse of length T. From another point of view, 

the result of calculating the Fourier series of a finite set of (band- 

limited) data samples is the discrete convolution of the infinite 

Fourier series with the function H(f). Thus, in the case of a pure 

sinusoidal variation, the resulting spectrum is simply H(f). 

For many applications, H(f) decays so slowly that the presence 

of a strong signal may cause large (compared with the inherent computa- 

tion noise) effects some distance away. For the case of the Explorer 

XXXV observations the carrier and telemetry sidetones frequently have 

3 to 4 orders of magnitude more power than the echo signals we wish 

to detect. The minimum value of the normalized power transfer function 

2 2 H(f) /H(0)2 is 1/N , while for small values of f this ratio goes as 
1 

o r  6 db for every octave of - T' 
T2 

f2 ' 
- 

These unwanted responses at some distance from the carrier may be 

reduced by a multiplicative weighting of the data samples prior to 

taking the Fourier transform. If we let d(nAt) represent the sampled 

data, and w(nAt) be the weighting function, then the resulting Fourier 

series is the convolution of the transforms of d and w. That is 

S(f) = D * W  

where D and W are the Fourier series of d and w, respectively and the 

symbol* denotes convolution. The function W replaces the function H 



- NO WEIGHTING 
--- SINE - SQUARED 

WEIGHTING 

I I 

Figure 2. Comparison of equivalent filter functions for an 
unweighted Fourier transform and sine-squared 
weighting. 
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from the unweighted case as the filter response. 

The choice of W function heavily depends upon the experimental 

situation. A number of "standard" choices exist and have been dis- 

cussed elsewhere, For the Explorer XXXV data we chose 

2 w = sin (t) 

both because of its simplicity and because it represents a good com- 

promise between convolutional broadening of the analysis bandwidth and 

sidelobe response. This is equivalent to a "hanning" window. The power 

transfer function of the equivalent filter is IW/ . 
functions corresponding to the sine-squared weighting.and the unweighted 

transform are compared in Figure 2. It is clear that an improvement 

of approximately 20 db in side lobe response is achieved through use of 

2 The two filter 

the sine-squared weighting. 

5 .  The Spectral Analysis Computer Programs 

A. Quantization, Data Weighting, and Calcul 

Coefficients 

ti ns of Fouri r 

Analog-to-digital conversion of the Explorer XXXV data tapes and 

computation of weighted Fourier coefficients was accomplished with a 

single real time computer program run on an SDS 930 computer system at 

the Stanford Research Institute (SRI), Menlo Park California*. 

diagram of the system is given in Figure 3. The Fourier coefficients 

A block 

*This program was written under subcontract from Stanford to SRI by 
A. Larsen, using programming techniques developed in his own work at SRI. 

10 
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are combined into spectral estimates in a separate step which is 

described below in the section 5B of this report. 

There are four separate inputs to the system: 

an arming signal supplied by the operator; 

a start pulse derived from a data time code channel; 

1) 

2) 

3) a timing pulse train; and 

4) a set of four analog data channels consisting of in-phase and 

quadrature signal components for each of two polarizations. 

The program is run by an operator who sets up the analog equipment, 

loads the computer programs and then monitors the equipment and the 

program during its operation. The time code translator provides a 

visual decimal indication of the time at which the data were recorded 

and pulse trains which are synchronized with decimal changes in the 

clock reading (e.g., secs, ten seconds, minutes ...) One of these 

pulse trains (usually one pulse per ten seconds) was used to initiate 

the sampling and computation sequence. When first loaded, the program 

remains in a wait state until armed and a start pulse has been received, 

after which it immediately begins sampling in synchronism with the 

timing pulse train. All four data channels are sampled simultaneously 

in order to preserve phase and the phase relationships between the 

pairs of quadrature components and the two data channels. The complex 

Fourier coefficients corresponding to both input polarizations are 

formated and written on a single magnetic tape. Data weighting, 

computation of the Fourier coefficients and the output operations are 

time-shared with the sampling and with each other, Fourier series of 

512 complex samples were computed for each data channel. The maximum 

12 



rate at which the program could complete the necessary computations 

and output operations before it was time to begin the analysis of the 

next data block was 560 Hz. 

was analyzed with approximately 1 Hz resolution. 

Thus in real time an 1120 Hz data bandwidth 

Figure 4 is a block diagram which shows the sequencing and bu ering 

procedures used to manipulate the data and calculate the Fourier coeffi- 

cients. The procedure is quite straightforward and consists of setting 

up buffer areas in core for data input and output while computations 

are carried out elsewhere. At the completion of the computations the 

tape writing sequence is initiated and the program waits for the active 

buffer area to be filled before continuing. Output onto magnetic tape 

procedes in parallel with computation. "Old" and "new" buffers are 

continuously interchanged. The size of core available is the limiting 

factor in the number of Fourier coefficients which can be efficiently 

computed at one time. 

B. Combination of Fourier Coefficients in Spectral Estimates 

Except for the small amount of smoothing introduced by the data 

weighting function w the Fourier coefficients are very poor estimates 

of the power spectrum. The variance of the magnitude squared of the 

Fourier coefficients 

quantity. Therefore some additional smoothing is necessary if meaning- 

ful spectral estimates are to be obtained. 

laI2 is on the order of the mean of the same 

A second computer program is used to read the Fourier coefficients 

from the digital tape and perform the smoothing operation. The 

sums 



T 
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A =  
j 

j = 0,  L, 2L, ... 

a r e  formed, ant t h e  r e su l t s  a r e  d i s p l a y e c  on an on-l ine p l o t t e r  and 

p r i n t e d  ou t .  I n  gene ra l ,  t h e  r a t i o  of va r i ance  of t h e  s p e c t r a l  e s t i m a t e s  

t o  t h e  mean of A w i l l  dec rease  by 

a r e  i n s e r t e d  by t h e  o p e r a t o r  and may be v a r i e d  du r ing  t h e  a n a l y s i s  of 

a s i n g l e  t a p e  t o  accomodate changing experimental  cond i t ions .  

1 
(W)- 2 . The va lues  of  M and L 

6. Comments on D i g i t a l  S p e c t r a l  Ana lys i s  

The techniques  and systems desc r ibed  i n  t h i s  r e p o r t  evolved from 

many a t t empt s  t o  f i n d  a workable method f o r  process ing  a g r e a t  d e a l  of 

d a t a  under r a t h e r  s t r i n g e n t  cond i t ions .  Dynamic ranges of over  50 db 

were f r e q u e n t l y  r equ i r ed  a s  were narrow equ iva len t  f i l t e r  bandwidths. 

For  q u a n t i t a t i v e  ana lyses  i t  i s  necessary  t o  have r e s u l t s  i n  a convenient  

numerical  form. These requirements  could have been m e t  u s ing  analog 

techniques  only  w i t h  g r e a t  d i f f i c u l t y  and a t  cons iderably  more expense 

than  encountered here ,  i f  a t  a l l .  

I n  o u r  expe r i ence  t h e r e  was no need t o  s t o r e  t h e  sampled da ta ,  so 

a cons ide rab le  economy i s  achieved i n  only  w r i t i n g  t h e  Four i e r  c o e f f i -  

c i e n t s  on t h e  d i g i t a l  t apes .  N o  in format ion  i s  l o s t  through t h i s  

procedure s ince ,  i f  necessary,  t h e  sampled d a t a  can be  recovered 

through an i n v e r s e  t ransform.  

The bulk of  t h e  computations occur  i n  t h e  i n i t i a l  c a l c u l a t i o n  of 

t h e  F o u r i e r  c o e f f i c i e n t s .  Once t h e s e  have been obta ined  i t  i s  a very 



simple matter to modify the characteristics of the spectral analysis 

by changing the summation parameters in the averaging program. Although 

we have not done so, fundamental alterations to the analysing filters 

may be accomplished by convolution of the Fourier coefficients with 

appropriate functions and by coherently combining successive sets of 

coefficients. 
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