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SUMMARY

This report derives the differential equations for optimal thru ►3t trajectories

and the corresponding variational equations for power-limited (and/or thrust-limited)

hybrid propulsion systems operating in a patched-conic N-body dynamical environ-

ment. The paper derives the optimal switch times for engine cut-off, planetary

sphere of influence encounter, and hybrid propulsion systems' thrust exchange.

The method described herein gives an excellent approximation to the problems

of obtaining realistic lsunch windows and overall fuel cost for maximum payload, and

solves the complicated heliocentric, planetocentric interface problem in a direct and

rational fashion.
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INTRODUCTION

It is well known that the patched-conic mode offers a good approximation

to trajectories in precision N-body programs. This study is offered in the ex-

pectation that the Euler-Lagrange equations for the patched-conic dynamical

system will result in a good approximation to the solution of optimal thrust tra-

jectories in an N-body dynamical system. Of importance is the solution to the

problems of

a) optimal switching times for hybrid propulsion systems

consisting of combinations of chemical high-thrust and

exotic low-thrust/high specific impulse engines

b) matching the heliocentric and planetocentric portions of

the trajectory in a realistic and simple manner.

It is felt that these problems are properly analyzed and solved through

the use of optimization techniques.
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I.	 The Patched-Conic Equations of Motion

The theory of the patched -conic is based on the assumption that, in the

neighborhood of a planet, the motion with respect to the planet can be adequately

described by neglecting the gravitational acceleration influences of all other bodies.

This approximation breaks down outside some pre-determined spheres of influence,

where the effect of the Sun again becomes dominant. In this area, we may ignore

the effects of all other bodies and take into account only the influential effects of

the Sun.

Thus in a heliocentric influence region, we have

of	 R	 2p(r )
s.Rs -_ - µs 3 + c m T	 (1)

r
s

2p(r )
where jTj = 1 and	 c	 is the magnitude of the thrust for limited -power sys-

tems where p(rs) may, or may not, be a function of the solar radial distance,

s . For bounded thrust, the power is constant. For all cases, we have the m;^ss

flow given by

2p(r )
m = -	 2 s	 (2)

c

In a planetocentric influence region, we have

R
.5P

= R + P

Rs = k  + P	 (3)

R = R + Pi.
s	 p

0
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where the accelerations are given by

„	 R	 2p(r )
R	 _ µ -^ + _. 8 Tp = p r 3	

cm

p	 (4)

P += -(µp µs ) 3
A

Here we assume the planets are moving in two-body orbits about the Sun. This

is done in order to avoid using an involved ephemeris tape at each integration

step.

Thus, at the sphere of influence of each planet ( p ), we have a. jump

discontinuity in the gravitational portion of the acceleration. The thrust is con-

tinuous across the planetary influence sphere intercept. At the first instant of

time, t , for which

r= ^Rs	 p(t) - P(t) -	 = 0	 (5)

we have for t > t

Rs(t)+= Rs(t)

Rs(t)+ = Rs(t)

Rs ( t )	 µp ^ - (µs+ µp) 3 +	 Tc mr	 p
A

_	 R	 2p(r )
_	 r	 s

Rs(t)	 - As 3 + cm Trs

0



A similar discontinuity occurs at the exit time of passage out w the planetary

sphere of influence back into the heliocentric phase.

Before proceeding, we require the derivation of the jump discontinuities

of the variations in the stal-e at a point of discontinuity in some derivative of the

state. This is done in the next section.

► ..
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II.	 A General Approach to the Variational Problem with a Discontinuity

Let r be the lowest integer corresponding to the lowest derivative of

the state, in which a discontinuity first occurs. All the lower derivatives are

continuous. Let the discontinuity occur at time t , which may itself be a func-

tion of the state. Then, for

t1 s t

xr-1(t) = xr-1(t1 ) + x r ( tl ) (t - t l )

for t2	t and (t - t1 )- (t2 - t)

xr-1 (t2) ` x
r-1(t ) + xr(t) ( 

t2 - t)

Since the r-1 derivative is continuous at 1, we have

xr-1 (t2) = xr-1(t1) 
+ Ex (t- xr(t) 1(t - t1)

Taking the variation of Eq. (8) and passing to the limit as t - t 1 = t2 - t -0 0

we have

bxr-1(t j =bxr-1(t) + [xr(1) - xr(t) 181

If the discontinuity time, t , is a function of the state, say

r-1f(x,x, ,x ,	 •,x	 ) = 0

then,

D f [x(r)] = 0=	 bxl + f 8t
ax

(7)

(8)

(9)

110)

(11)
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and

a= i
^x

bx
r-1(t )+ = 

bxr-1 ( t) + [xr(t)+- x
r(j 3 ex_	 (12)

f

This is the final derived result.

Naturally, since all the lower derivatives are continuous, their variations

are continuous.

bxp(t )+ = 841	 p < r-1	 (13)

We are now in a position to develop the Euler-Lagrange equations and find the
optimum control.
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III.	 The Optimal Thrust TraJectories in a Patched-Conic N-Body Force Field

Ili's consider first the equations in the heliocentric phase. Here, we have

the differential equations which deffne the optimal thrust applicable in a central

force field. The reader is referred to Ref. 1 for details.

The optimal thrust direction is given by

T = a	 (14)

where A is the solution of

..	
A  2

	 «

	

A. Rs	 8rs 
A - AS 

3 + 34s — Rs + H(a) c— m — Rs	 (15)

	

r	 r	 s

	

s	 s

and H(ot) is the Heaviside operator which defines the switching surface,

H(ct :!^ 0) = 0
(16)

H(ct> 0) = 1

where

am
c

and Q is the Lagrange multiplier for the mass variable. The differential

equation for a is given by

2p(r )

	

Q =	 2 - H(cc)	 (17)
cm
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The optimal mass flow is given by

2P( s)
m - - 2— H(tx )

c

In the event the power is constant, ^ = 0 the last term in Eq. (15)

would be omitted,	 s

The terminal condition is given by Q (tf ) = 1. The differential equation

for the heliocentric position vector is given by

R	 2p(rs )	 A
Rs	 - ^ 

s
s 3 + c m H(at)

rs

Within the planetary sphere of influence, again we have

T =

where A now satisfies the variational equation of a two-body problem with the

planetary mass at its center,

..
A= -µp 

r3 
+3µp r5 Rp + H(at) cm s Rs

P	 P

where

R = R  + P	 (20a)

p' -	 (20b)
^r

s

9
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(18)

(19)

(14)

(20)



I

The equations for Q and in are given by Eqs. (17) and (18), and the

optimal equations for the position of the vehicle with respect to a planet are

given by

R	 2p(r )
Rp= - µp —p + = A H( oc )

r
p

We are now ready for the variational differential equations.

(21)
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a2,^ _ ^
p

ar 
2

s

(?5a)

IV.

	

	 The Differential Equations of Variationtion

We have, for the variational differential equations in the heliocentric

phases,

2	 8R	 R • 8R	 2p f  R • 8R

d 2 8 ^ _ -µs 3 + 
3µs— 

s +H(°`) crn 8 A
dt	

s	 s	
s

-H(01) —2- p-3- CA (A • 8A) - a2 8A] - H(a^) ^ Sm
cm)	 0m a

dt 8m = - H(oc)	
s•

 -6R
c r

s

d 
8Q = 2-H(a ^-
	

R -8R + - P A'8A- 2PX6m"dt	 c	 m2 r s s m2 
X	

m3	 f
s

2	 R • 8R	 8A'R	 A•811
d2 

8A = - µs 83 + 3µs ^A + 3µs = s + 3µs 5 s sdt	 s	 s	 s	 s

A
•	

A	
,f R • 8R R

+3µ s 8 - 15µ s(R•8R)R +H(a 22 12 a ss s
I's 5	 s	 s 7	 s s s	 cm	 r	 r

r	 r	 s	 s
s	 s

	

f A 8A - 1 (a 8m+m8Q)	 aebR	 aeR	 acR

	

+ 2H(a^ )p l	
mr	 ^+ mr - 2s 	 8m -	 3 Rs 

-811	 (25)
t	 s	 s m s	 m s

	
S^

where

(22)

(23)

(24)
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y

6

In the planetocentric phase, we have, for the variational differential

equations, the following:

2	 811	 R • SR	 2 n' R - 611
d2 S s= - µp 3 +3µp --p s Rp +H(ar ) - vm

s A
dt	 r	 r	 s

p	 p

- H(a ) 2 L [A (A • SA) - 
)2 

6A - H(a) 2I p Sm	 (26)
me A	 cm X

dt 6m = - H(U) .P? . $. S$	 (23)
c r

s

d SGT _ 2 H(a {	 R . 611 + PA • SA - ^ Sml	 (24)
dt	 c	 m2 r s s m2 a	 m3

s

2	 R •SR 	SA•R	 A'SR
d2 6A= -µp $3 + 3µp --p s A+ 3µp ^Rp + 314 5 s Rig
dt	 r	 r	 r	 r

p	 p	 p	 p

A'R	 A•R	 it R'SR R

+3
5 

 SRs - 15 µp --R ( R,p-611 ) Rp +2c na s' is r H(a)
r	 r	 s	 s
p	 p

!L
A--Â - (v6m+m6a)

+ H(a) c	 m s

a 6R	 a ll	 a 
_s - s	 s

	

s+
ms mg r	 mrSm - 3 R Ss

s	 s

(27)
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V.	 Optimal Staging for Hybrid Propulsion Systems

We assume that we have a hybrid propulsion system consisting of a high-

thrust chemical stage and a low-thrust, high specific impulse, power-limited

stage. The problem is to find the optimal engine exchange time for the mission,

if any exists at all. The method outlined here is based entirely on optimal con-

trol theory and avoids the tedious parameter search usually resorted to.

We start with the general transversality equation which must be satisfied

at the terminals and at intermediate corners, such as might occur at interior

discontinuities in the state.

The trinsversality condition is

t+ 	t+	 t+	 t+

0 s 6S = j 8t	 + A . 8R I _ - A • 8R I _ + (a -1) 6m 1 _ 	 (28)
t'	 t	 t	 t

where j is the Hamiltonian

A
2p(r)(

aj= µ 3 + A• 	R- H(oz) c m \ 	 c	 (29)r

In considering the optimal engine exchange time from an engine with high thrust,

2 pl( s) 	2 p2( ^)
C	 , mass ml , and mass flow ml , to an engine with low thrust, 	 c	 ,

1	 2

mass m2 (note that m2 = ml - staging mass 1), and mass flow rate m2 , the

optimal exchange time is determined by the condition that a switch can be made

only if the Hamiltonian, j , and a are continuous. Unless, of course, we run

out of fuel in Stage 1 and are compelled to switch. In this case, there is no

option and we are forced to take the penalty. Since A, R, R are continuous

0
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already, the optimal exchange time is provided by the time at which

pl( s) _ p2( s) 1	 (^ p2( ^)	 pl( .)
s= X[	 + a L 2 -

2	
= 0	 (30)

M c	 m c J1 1	 2 2	 c	 c1

In the event all the fuel is consumed during a stage and we are forced to switch,

optimal trajectories for this situation are provided by a discontinuity in ar ,

based on the choice of keeping the Hamiltonian continuous.

+	 - c2 pl( s)	c2 pl( s) _ c2 (31)a = a
c
 2 

p 
(r) - a m1 c 1 p2( s)	 m2

1 2 s

In subsequent derivations, we shall use only the optimal engine exchange logic

for hybrid propulsion systems and omit the logic for Eq. (31).

We are now ready to derive the jumps in the variational variables for

the three types of discontinuities

a) a = 0

b) r = 0

C) s = 0
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VI.	 Jump Discontinuities in the Variational Equations

We first compute the variation in the three switch parameters, ci, r

and s. We have for oc ,

= - 
Qm	 (32)c 

and

M = A A - (o'bm+ m8c)	 1,33)

The time derivative of a is given by

d	 Em) A A	 2 p	 (34)1 ^	 ^
at- - c / = a - 2

c m

Since ac =0 at the switch, we have

•

(34a)
dt 	 X

The final result required is

A- SA - x (Q 8m+ m 8Q)
8a =	 c	 (35)
oc	 A•A

-. '	 For the planetary sphere of influence intercept parameter, r , we have

r= I R- PI 	 r	 (36)s	 p
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R 6R
br _ —P—$

r
p

RPr =
r
p

6r = Rp b s
r p - p

and

(36a)

(36b)

(37)

(38)

(30)

For the hybrid propulsion engine exchange parameter s, we have

s = X( p1 - p2 \ + o	 - pl
c m	 m	

(P2

	

 2	 21 1	 2 2	 c2	 cl

A - 6A	 pl p2 p18s =	 -C
^	 c m

1	 1

-=—)
c m
2	 2

+ b Q
\	 2

-
2^

c2 c1

rk
(( pl p2 / p2

c
pl 'i1 s 8 s

+ L \c m
1	 1

_

2	 2
m)

+a ,,-2
_

2 JJ	 r
c2 c 1	 s

+ a ` 
p2 6m - pl 6m

	2 	 2

	

c2 m2	 c1 M.

A - 
A

s =	 ( 
pl - p2 `^ + [>,(  pl - p2 

^` + Q p2 - - 1- ^1 s• s (40)•c m c m 	 c m c m	 (-2 	 2. J r
1 1	 2 2	 1 1	 2 2	 c2	

c 
	 s
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a

We are now in a position to describe the jump discontinuities in the

variations of the state said their multipliers for the three critical types.

For a = 0

8R+ = 8R-
6	 s

W = 8R + ?L A IH(at+ ) - H(ot- )] 
bat

s	 s cm X	 .
a

8A+ = 8A

8A+ = bA	 (41)

8m+ = 8m - p CH(cx+ ) - H(U- )] Sot
c	 of

8Q+ = 8v + 
2P 2

[ H(a+ )_ H(ac-)] 6a

cm	 &

For r = 0

8R+ = 8R-
s	 s

.	 r (12
s+ µ )P µ R	 µ R8 +

s ^ 8 s + [	 3p + ^'^ _ s 3s 
	 (R P. 

Hp 1 8r

P	 p	 s	 r

8A+ = 8A	 (42)

+	 AR -A	
A	 s• A 1	 (	 8r8A = 8A + I µp 3 - 3 µp P 5 R

p ^- µs 3 + 3µs 5 s J sue` \ R  • Rp —r	 r	 r	 r	 r
p	 p	 s	 s

8m = 8m

8Q+ = 8Q-

17



For s=G

6R+ - 6R -

	

8	 s

6R+ = 6R + 2 H(a)	
P

A -- 2	
P

- - 1 1$s

	

2 2	 1 1

	

s	 s	 X\c m	 c m 1•
g

bA+ = 6A

b + =
	 + 2 H a X R P2 	 P

	

A	
J-) bs

r	 s c2 m2 cl 
ml s

t

6m = 6m

	

P1	 2P2	 2P12s+ --( -- 2
	2\ 2	 Z

	

c 1 m1 c 2	 c1

P2 2p  2P1
s + - 2 .. 2 )

	c 2 m2 c 2	 c1

(43)

	2H(a) P2 - P
1 \	 A_( P1 ' P2

C2	 2/	 m	 cmJ
c	 cl 1 1	 2 2

P2 

2 

2P2 2	 _	 f (( a _ Q 11 _s^
s +^^(^ - 2) + LP1^ m	 2) - P2^C m	 2)J r

c2 m2 c2	 c 1	 1 1 c 1	 2 2 c2	 s

_	 P	 P

6Q+ = 6c^ + 2H(a)a^= - - 2 bs

c 2 m2 c  m1 s

is



DISCUSSION

Whenever the engine is off and we are in a free-fall coast, closed form

solutions of the equations of motion and the variational equations are available.

Reference 2 contains expressions for these. Thus, it is only during burns that

numerical integration must be resorted to.

A special problem occurs in estimating the time for the planetary sphere

of influence intercept in a free-fall condition. It is recommended that a simple

two-body search be carried out in free-fall to locate the time of r = 0 for the

case of Rp• R p < 0. For the case of free-fall within the planetary sphere of in-

fluence where we seek the planetary exit time, closed form expressions are

available provided, of course, that the engine does not restart for times less

than r( texit ) = 0. It is recommended that simple closed-form two-body solutions

be carried out in the free-fall case and periodic tests be made of a, r and s,

to ensure that the engine remains off and that the important critical crossings

may be determined.
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