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ABSTRACT

The growth of a crack in a viscoelastic solid is considered
within the limitations of linear continuum mechanics. Starting from
the local stress and deformation field at the tip of a crack and the
first law of thermodynamics 4 non-linear differential equation is
derived for the crack tip velocity in dependence on an arbitrary
history of the crack tip stress intensity factor, Conditions for the
simplification of this differential equation are discussed.

The case of cyclic loading (fatigue problem) is discussed
in detail and sample calculations are given to illustrate the relative
effect of maximum and minimum load during a cycle. Some experi-

mental data is given for comparison with these calculations.
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INTRODUCTION

The fracture of viscoelastic materials is as yet only poorly
understood.  With the increased use of polymers in engineering
designs, an estimation of fatlure in viscoelastic solids becomes
more and more tmportant. This is true whether one is concerned
with fiber reinforced materials, including aircraft or automobile
tires, or particulate composites materials such as solid propellant
rocket fuel.

For a large class of materials failure occurs by crack growth
rather than material flow and it is clear that for such solids an under-
standing of crack growth is nandatory if one wishes to examine the
failure of engineering destgns constructed with them.

Theories for predicting crack propagation in linearly elastic
solids (brittle materials) have been advanced by Griffith [ 17,
augmented by Irwin (27 and by Barenblatt [3 7. In all these works,
which today ire considered fundamental in understanding the fracture
of solids, the prime question to be answered is: Will the crack
propagate or not? The problem of crack tip speed is usually only of
importance 1n those cases when the high crack propagation rates
invoke the inertial response of the material at the crack tip. For
many engineering problems the high speed crack propagation is of
little practical relevance since a rapidly spreading crack will
quickly caunse a structural failure, while the question of initial
crack instability is much more important.

For viscoelastic solids it is, of course, also important to
know whether or not a crack propagates. However, several problems
arise in such materials which require a better understanding of crack

growth behavior. On the one hand, cracks may propagate at such a
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slow rate that an observer may judge it stationary,; thus interpretation
of test information may be erroncous. On the other hand, it is highly
desirable to know one's margin of safety in designing a structure
containing inevitable cracks. Should the crack propagate, how much
time remains before the structure fails totally? For very slowly
propagating cracks a major portion of the structural life mav contain
crack growth. Itis thus very important with regard to fracture of
viscoelastic matertals to determine the velocity of crack propagation
and not only the stability condition as one normally does for brittle,
rate insensitive materials.,

In two previous papers crack propapation in viscoelastic solids
his been considered under special conditions. One was concerned with

~

the steady propagation of a crack in a strip ~ 4] and the other with the
monotonic growth of a crack in a large sheet {57, In both cases the
applied load was held constant to keep the problems conceptically
simple and the analysis to a minimum. The main objective of this
past work was to explore the feasibility of a crack propagation concept
for a viscoelastic material. Having (lcmongtratO(l that the calculations
for these special and simple cases were well corroborated by experi-
ment, 1t 1s natural to remove some of the assumptions pertinent to
the sp(.-cific nature of these problems. We shall thus consider now
the problem of co-linear crack growth in an arbitrary two-dimensional
geometry which is subjected to an otherwise arbitrary history of
boundary loading.

The only restriction to be placed on these developments are the

retention of quasi-static conditions (slow crack growth) and that the

material may be approximated by a linearly viscoelastic solid possessing
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long time elastic behavior. This material assumption excludes from
consideration those solids which exhibit »me sort of tirne or : *

dependent ductility reminiscent of metal y- 'd.



THE POWER EQUATION

Let us consider a contour C1 which encloses the crack tip
as in Figure la. Its shape is arbitrary except that for co-linear
crack growth 1t 15 convenient to choose one which is symmetric
about the crack axis. If one permits the stresses to be singular
at the crack tip and the displacements bounded then the traction
'I‘i(t) and displacements rates l.li([) on this contour are uniquely
related to the tractions on the boundary of the solid. Inertial ef-
fects are ignored. The first law of Thermodynamics requires
that the rate of work done by these tractions equals the rate at
which free energy inside the contour increases; plus the rate at
which energy dissipated inside Cl against viscous forces; plus the
rate 1t which the work done against molccular forces of.cohesion,
a d(:/"dt, while the crack advances. Here dc/dt = ¢ isthe rate of
crack growth or crack tip velocity and [ is the specific surface
energy. The latter is conceived as a rate independent quantity and

insensitive to temperature changes. We have thus

(1)

=3
[ax
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c

[f we replace the lower half of the material in Figure la by the

cquipollent (normal) tractions over the surface C2 (cf. Figure 1b)

the power balance becomes

3 [Tads + [ Ta,dx= $(D+ W) | (2)
Qy G



Upon comparing (1) and (2) one finds readily

2 [T () Gty dx = 1C (3)
G,
It should be pointed out that if the normal traction vanishes on
CZ where the normal displacement is not zero and if the normal dis-
placement vamshes on the remainder of CZ then the integral in (3)
gives, formally, zero contribution, We should therefore consider,
in principle, a stress distribution on the axis as proposed by

Barenblatt £ 3 1 such that there exists a section of C, say of length a

2

on which both T and u do not vanish simultancously (cf. Figure lc).
The physical nature of these tractions has been discussed previously
by one of the authors [ 6] and with regard to the related subject of
rate dependent peeling in detail by Kaelble r7z,80.
In the absence of an extension of Barenblatt's solution to visco-
elastic solids we shall use the classical singular solution with some
appropriate modification. Two approaches arc open to us: they are
both explored in references (4] and [57. Either one appears to give
equally good results. In this paper we follow the approach of
reference 1 and modify the power equation so that we may use the
classical, singular stress distribution at the crack tip.
We consider the crack to grow trom size ¢ at time t1 to
size c+a at trat t4 a/¢, & being considered constant and different
from zero in that time interval. For the simple problems considered
previously o turned out to be a constant, independent of the rate o

crack growth and on the order of 10-7cm for the polyurethane rub-

ber considered [4,5]. During the time interval At the tractions are



to decrease at a constant rate from their maximum value to zero

according to

t-t.

T, (e) = Tooe[— ] (4)
At the end of the time interval the process starts over again. This
step wise process is valid as long as the amonnt of crack advance «

is very small. Experiments indicate that this is true [4,5] .

Equation (3) may now be re-written as

o t+at
" v dt N (5)
ff"l;(x,t) U, (x o(,t)At dx = = TIc
o T,

where fxn(x,t) is the crack boundary displacement rate corresponding to
Tn(x,t) as given by equation (4). The evaluation of the crack propagation
equation (5) hinges on determining this crack boundary displacement rate

from the prescribed traction Tn(x,t).

"This equation duplicates, on a per-unit-time basis, the relation for
crack growth given by Iriwn for brittle solids [ 2],
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EVALUATION OF THE POWER EQUATION

Let the distribution of normal stresses ahead of the crack and

on the line of crack propagation be given by the singular form

-V
Txt) = K)[awx] (6)

so that (4) becomes

- ) .
T.xt) = K(®) [1- tA:'}[er] (7)

This classical stress distribution (6) applies to a large class of
three-dimensional problom.s involving infinite domains [ 97, with the
two-dimensional sheet containing a central crack as a special case (5].
It applies also if one assumes the material to possess a constant
Poisson's ratio, an assumption which is valid only near the lower and
upper extremes of the spectrum of relaxation times, For a more
general material representation and geometries solutions for cracks
growing in a viscoelastic solid are not available, There appears to
be no reason to doubt the validity of the representation (6). In view
of the approximation of the actual stress field by the simplier one,
the possible difference is probably of little conscquence.

It has been shown elsewhere [ 4,9 ] that the crack boundary

displacement corresponding to (6) is, for constant Poisson's ratio v

W, (x,t) = 47([x/21r] M%)D /D(t -T) a&m d’t (8)



where

l plane stress

2 .
1-v~ plane strain

D{t) = creep compliance in extension of the viscoelastic solid

The function K(t) is related to the stress intensity factor

K(t) ' l-(t—tl)/At] as follows. The traction Tn(x, t), equation (7),

is made up of two contributions, the tension K(t) (211')()_1/2 and a
pressure -K(t) (t—tl)/at (2.1\'}()-1/2 which causes the crack to open at
the tip. It is only the latter component which enters equation (8) for

the crack opening displacement. Thus

Lv) = K@) =% (9)
at

Since the displacement u, is zero for points immediately to the right of

the crack tip until t =.t,, one finds

]

t
Wa(,t) = 43fesen) [k(t.)b(t—tl-ﬂfb(tﬁ)a—gg) ar] (10)
t,

t2t,

and upon substituting (9) and neglecting the first term in the brackets

t
Wt} = 4x[x/ar)® [ Die-T) K+ k@)= t,)]

T, ‘ (11)
1, 7t

the dot signifying differentiation with respect to T, Denote the term in

brackets by

t

F(t,T) = K@)+ K(T)(T-t,) (12)



and expand F(t, ;1) in a Maclaurin's series about t1 to obtain

F(eT) = K(t()+2k(t.)(’('-t.')+-Z—k'(ﬁ,)('(-t,]z«*—23—.1'.(.(1.)(1'—’(‘)3'*"' (13)

Now (11) becomes

' v 2] e 31
UL (x,t) =4 -}{[x/?rr]’/z{K(t‘) DU+ ZK“,)D[ . % KEND . }
: (14)

y o Ml (m) [ms+1]
< 4Z’%D</2n12 Z poy K, D
m=o0

where we have defined

(m+1]

t
el m e
- ~ty= [{r-t) D{-T) d=r
D D (t-t,) t/( )

and

(n) A"K
\ at“

t,

We may now use the displacement (14) along with the crack tip
stress (7) to evaluate the power equation (5). These calculations are
facilitated 1f we integrate (5) by parts with respect to time, taking

into account that un(x-a, tl) =0 and Tn(x,t +4t) = 0. One obtains

1

then
ol trat )
[ [0t wobew, ) dt dx = — L réat (15)

0 at



which becomes, using (7) and (14)

& ¢,4at o

,/1r eI ge)f1- £8)]$0met Dt dxe S st (16)

or, after performing the integration with respect to x and noting

that ¢at ~n

[Z l (MVDE""“J]M (17)

We now expand the first bracket in the integrand in a Maclaurin

series in t-t, and affect the multiplicdtion of the resulting two series

to obtain
"At
2L K e et D
;; [m ( ] f t-t) t (18)

Let us define the functions

Bt s f f'/(s-ru”’bm de dr Y

Then (18) may be written as
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(n) (ne)
o @ 4 K (nu)A{K At K ]
g Sy

Recalling that, At = o /& and that t1 was an arbitrary time
signifying the onset of a small amount of crack propagation we may
replace Y by the gencral time t to obtain a differential equation for

the crack tip velocity ¢ as a function of the time history of the

stress intensity factor K(t):

[l K -0 K@)

m! ot (mwu 2)

B, (%) @

Nn=0

2% 53

where we have let Em-: 1/D{) denote the long time or equilibrium
relaxation modulus. This equation may be cast into a different form
by re-arranging the summation so as to sum the same orders of dif-

ferertiation on K(t}). One obtains then

ms+2

2, Z(/c {K({ B )+ b

(n«\)(%)nK('(‘){) (‘_ n{mMmen+2) ]}

nH(Mm+«n+2) {1 (pad(mener)

Ny
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ANALYSIS OF THE CRACK PROPAGATION EQUATION

‘Liet us first examine the functions

B ('t) — %ﬂ-ﬂ)m*ﬂ-&i)/ /({ ’7 )(7’> d dl (19)
nm @ t™ """

It is easy to show that

) tm B () = D(”/D(oo)

t-r0

2) lim Bnm({) = max\ma(ﬁ)\ = 1 (22a)
+ -0

3) BV\M = Bm " as ™ —» OO

Statements 1) and 2) follow from the monotonic behavior of the creep
compliance D(t) and the third statement follows from the observation

that the function f(@,n):(é-n)m has the behavior f(£) = gm

0-n<§f as m-om.

As a practical matter it should be observed that when n,m> 1

the difference between Bn m and B 1s less than one percent so

that Bnm may be considered symmetric in n and m. Furthermore,

if one defines, from physical considerations a time tm such that

D(t) = (=) whenever t>tm then it can be shown that

4) [lm ma(t ) = 1

t>t,, (22b)
NneLEM -0
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More specific limit behavior can be established rigorously
only if more detailed behavior of the creep compliance is specified
in the transition-time zone t(’tn‘. It appears however that there
exists a linit function BUD OO(t) such that Bnm(t) > Boo (D(t) for all t.
Figure 2 shows several functions Bnm(t) along with the creep
compliance of a polyurcthane rubber [107.

It follows from the upper limit on Bnm and the finiteness of ¢
that the double series in the crack propagation equation (21) converges
always. Furthermore, because of the factorial functions,convergence
i1s very rapid.

Immediate simplification of the crack propagation equation(21)
may be achieved for some special stress histories if we interprete
physically the integral (11) for the crack opening displacement and the

subsequent series expansion. If during the time interval 4t, the

stress intensity factor does not change significantly, then K(t) £ 0

and K(T) may be taken outside of the integral (11); the nced for the
series expansion (13) does then not arise. It follows that the higher
derivatives of the crack tip stress intensity tactor are necessary only
if the stress intensity factor changes appreciably during each time
interval 4t.  Such would be the case primarily if the applied loading
changes rapidly while the crack propagates slowly, i.e., under
strongly transient conditions. It would appear, therefore, that if the
boundary loading and the geometry is such as to produce a fairly steady
stress intensity factor while the crack propagates through a length on

the order of a micron the differential equation (21) can be very much

simplified. Such would be the case in many monotonic load histories,
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but not in certain cyclic load histories, as we shall discuss later,
(and not for cracks which are initially on the order of a micron or
smaller).

Specifically, for slow changes in the stress intensity factor

one would have

AlEe o Py B, (%) (23)

R

which is the same as derived in [ 4] for the growth of a crack in a

viscoelastic strip under constant strain. To the extent that

s

Boo(t) = DCr (at), a=3 as may be seen from Figure 2, this
result is also the same as that obtained in 157 for the growth
of a single crack in a large plate under constant load.

It has been shown earlier [ 4,57 that if the stress intensity

factor K(t) is less than or equal to a lower critical value K* given by

y
K* = 2lrea/w]” (24)

crack propagation is not possible, i.e., then ¢ = 0. In this event
the expansion leading to (21) is not valid and hence the full
equation (21) cannot add any new information. Thus the crack

propagation equation applies only if K(t)>K™*,
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CRACK PROPAGATION UNDER CYCLIC LOADING

We wish now to exemplify some characteristics of crack
propagation under cyclic variations of the stresses at the tip of the
crack, In general this requires the solution of a mixed boundary value
problem for the viscoelastic solid, in order to deduce the dependence
of the crack tip stresses on the boundary loading. However, we
assume the stresses at the crack tip known and of the form (6).

For illustrative purposes we choose a simple geometry, the
semi-infinite crack in an infinite sheet (cf. Figure 3). This geometry
has the advantage that a change in crack length does not change the
stress intensity factor, so that the only time dependent changes
result from the cyclic loading. If the boundary displacement uo(strain s
cf. Figure 3) is sinusoidal then the stress intensity factor will chahgc
in a sinusoidal fashion except that the displacement and stress intensity
factor will be out of phase. Under the assumption of a constant
Poisson's ratio for material response near the rubbery or long time
domain, the displacement loading and the crack tip stresses will be
nearly in phase. In particular, for the material represented in
Figure 2, this condition will be reasonsbly satisfied up to 100 cps.

Let us, therefore, consider the crack tip stress intensity

history
12 .t \
K(t) = Re { Eolb/(-vH] e fI-Ate ], (25)
where Re .denotes the real part of the complex expression
A = some non-negative number
b = strip width (cf. Figure 3)
v = Poisson's ratio, equal to 1/2 for our purposes.
€= boundary strain (cf. Figure 3)
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Substitution of (25) into (21) yields for plane stress (¥=1) and v= 1/2

o - {\ +' A[ZSiW(ut —("“"/C)(OSwt] + AZ[SW‘Z(O)\- -~ (o(w/c)(%b)t] } Boo(M/C)
€XELD

eiwt_ A e2(ut(‘_ iuw/é)

"‘QQAZ (|dw/c) = m! (m+2) BO m(d/c)

l(.)t_Aeli(.)t (26)

RS (e e

n=<t

I (%) B, ()

nt(vn+2)

men 2iwt

_Reﬁii(‘“%\ —E—— e -(4% )] B, (% )

min!(mens2)

We observe that if A— 0,K(t) becomes constant and the
equation for steady crack propagation in a strip results 747, The
same is true if w— 0. If neither A nor @ vanish it is clear from
examining only the dominant term in equation (26) that the expression in
curly brackets is not in phase with the applied strain, the phase shift
depending on the frequency v and the crack velocity ¢. The same will
be found true upon closer examination of the summands in the series.
We should therefore expect that the crack tip velocity is not in phase with
the stresses at the crack tip; furthermore since the phase shift
depends inversely on the crack tip velocity, the phase shift will vary
during each cycle so that for a sinusoidal strain superposed on a
constant strain the crack tip velocity will not be a sinusoidal function of

time superposed on an average velocity. If A is close to unity or
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greater, there are positions of the cycle during which K(t) < K’.
During these portions the crack tip will remain stationary.

Thus if we think of the strain as an input to a process
and of the crack tip velocity as the result (output) of this process,
then the process -- equation (26) -- acts like a highly non-linear
rectifier.

Let us substitute some realistic values into (25) and (26) to
calculate the time history of crack propagation. We would be
interested in studying the effect of varying N A and v, In order
to facilitate the calculations we observe from Figure 2 that the Bnm for

n, m<> fall all in a narrow range, a reasonable average being

Bomt) = D(3t)/ D) (27)

We shall therefore approximate (26) by using the simplification (27) and
terminate the scries after n= m = 5, For the surface energy [ we use

the value determined on the polymer swollen in toluene [ 117, T'=0.1 1b/in.
Solution of equation (26) for the velocities was achieved by Newton's

method on a digital computer. Because of the automatic nature of these
calculations computation of veloc‘itics under conditions of high or very

low strain met with some difficulty, which are, however, not of a
fundamental nature.

For this reason the results shown in Figure 4 are more
indicative of crack growth behavior than complete. Nevertheless, it is
clear from this figure that amall sinusoidal lad variations superposed on a
constant load produce nearly sinusoidal velocity variations about a

mean. As the variation in load increases, the sinusoidal character
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of the velocity history changes, the velocity history becomes less
and less sinusoidal in character, Frequency has three obvious
effects; it changes the shape of the velocity-time cycle as illustrated
in Figure 4c; it causes a phase shift (lead) of the velocity cycle and
an increase in velocity increases the peak velocity at higher
frequencies. Responses to frequencies of 10 and 1 cpm gave
virtually identical results as would, presumably still lower
frequencies as long as € and A remains constant. It seems,
therefore, that for these low frequencies (1/n greater than the
maximum relaxation time) the simplified equation (23) is adequate,
For large variations of the strain about the mean (A=0.5,1)
the crack will temporarily stop because the stress intensity factor
drops below the critical value K*, equation (24). In this case the
full non-linear character of equation (21) comes into play in
producing a crack velocity history, the characteristics of which are
displayed in 4c and d. Note that the increase of frequency in 4c
causes a change in the asymmetry of the velocity-time cycle, The
characteristics of the behavior near small strains for A=1 are
quite the same as those observed in an experiment, as recorded in
Figure 5. Closer comparison of theory and experiment meets
primarily with instrumentation difficulties at this time. Cyclic
crack propagation velocities at small strains are difficult to
measure since they are on the order of one hundredth of an inch per
minute. On the other hand, large strains produce higher velocities,
but they are difficult to calculate and require more careful numerical
work than this study seems to warrant. In addition, larger strains
introduce non-linearities which are not accounted for in these

calculations.
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Fig.3 Cracked strip geometry for crack propagation study.
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Fig.5 Experimental crack velocity as a function of
time (w=360cpm, €5=12%, A=1).



