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ABSTRACT

The dynamic and static behavior of a gas lubricated bearing,

consisting of stretched foil sectors, is analyzed. General equations

describing the fluid film and valid for shaft excursions of the order of the

clearance, are derived on the basis of planar motion and negligible fluid

inertia. The analysis is then specialized to the case of a bearing con-

sisting of three equally spaced foil sectors. For the static equilibrium

condition, tensions azd gaps are calculated and graphs are presented.

For the dynamic case, the basic equations are linearized, and equations

for the in-and out-of-phase steady-state response to sinusoidal excitation

are derived. This serves as an illustration of foil-bearing dynamic behavior

as well as for stability investigation. For the case of zero radial load,

the effects of speed, rotor radius, foil thickness, wrap angle and initial

tension on the coefficients of dam?ing and stiffness a-e graphically

presented.

Within the range of parameters investigated, the following

distinct characteristics of the foil bearing have been found:

a. The bearing is stable.

b. The stiffness coefficient is not sensitive to half

frequency excitation nor to excitation at any other

frequency.

c. The damping coefficient assumes nearly zero values

whenever the ratio of frequency of excitation to

frequency of rotation is an integral multiple of 1T/E),

where O is the wrap angle.

d. In contrast with other fluid-film bearings, the increase

in mass has no unstabilizing effect.
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NOMENCLATURE

a Distance between rotor center "O" and line connecting points

of tangency with the guides (Fig. 2)

Aik' Aek Zeroth approximation of the perturbations of otik' Of
	

(Eq. 11)

from their no load, zero-velocity values.

A.
l

Arbitrary integration constants

b Distance between points of tangency of foil guides (Fig. 2)

B Normalized form of 0; B = S
/E1/3

c Damping coefficient

C Compressibility parameter of k th foil sector, C 	 = pa/(Tk/ro)

d Foil thickness

D Out-of-phase component of tension transfer function (Eq. 31)

E Young's modulus

e Subscript referring to the exit region; 	 also eccentricity

f Frequency of excitation

f,_
r.

Clearance perturbation of k 
th

foil sector (Eq. 23a)

f 
Laplace transform of f 

fik ,	 fek Perturbation of asymptote displacement of k th foil in the inlet

and exit regions

F	 ,	 F Components of resultant force of foil support system on the
x	 y

rotor
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NOMENCLATURE (Cont)

h	 Foil-bearing clearance

h  (e, t)	 Clearance distribution of the k th foil segment

hik' hek	 Distance of k th foil asymptote to rotor in inlet and exit

regions

h* k 	Clearance in uniformity region of k th foil sector

H (^)
s	

Steady state dimensionless clearance

H 	 T)	 Dimensionless clearance of k th foil sector H  = hk/ro

(64U/Ts)2/3

Hik' Hek	 Dimensionless distance of the k th foil asymptote to rotor

H* k 	Dimensionless clearance in uniformity region of k th foil

sector

i	 Subscript referring to the inlet region

j	 Integral number of perturbation wavelengths in central region

k	 Bearing stiffness per unit width. Also subscript referring to

kth foil sector.

K	 In-phase component of tension transfer function (Eq. 31)

Lik'Lek'Lk Zeroth order approximation of perturbations in i 	 ek'
respectively

k	 Total foil length between points of tangency with foil guides

t,0 	 Magnitude of foil length 
t  

when tension is To.

It ' ek Partial foil length, defined in Fig. 2

RR 69-12	 ix
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NOMENCLATURE (Cont)

m	 Rotor mass, per unit width of foil; also root of characteristic

equation

M	 Critical rotor mass (Eq. 45)
c

M k	Moment of k th foil on shaft

n	 Number of foil sectors of multisector foil bearing

n	 Position of rotor center at zero speed and no radial load (Fig. 2)

RR 69-12

Local film pressure, absolute

Ambient pressure, absolute

Speed parameter (Eq. 38a)

Radius parameter (Eq. 38b)

Length parameter (Eq. 38c)

Tension parameter (Eq. 38d)

p

pa

Pu

P
r

PA

PT

Pc

Ph

P 

Pk

P

Qk

k

r
0

Dimensionless damping per unit width (Eq. 38g)

Dimensionless gap (Eq. 38e)

Dimensionless frequency (Eq. 38h)

Dimensionless stiffness per unit width (Eq. 38f)

Frequency ratio Wo _ 180

Tangential force

Radial force of 1

Radius of rotor
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NOMENCLATURE (Cont)

rk (9,0 Polar radial coordinate from shaft center referred to k th foil

sector

s Subscript referring to steady state; 	 also, complex circular

frequency (Laplace transform) of k th foil sector (subscript k

omitted for simplicity) .

t Time

T Initial tension per unit width of foil
0

T Steady state te:lsijn per unit width of foil
s

T 
Tension per unit width of k th foil segment

T Dimensionless tension (Eq. 10c)

U Surface velocity' of rotor

X 1 y Components of displacement of rotor center (Fig. 1)

xk , y  Component of displacement of rotor center in the kth

auxiliary coordinate system (Fig. 2)

Xk , Y k Dimensionless coordinates (Eqs. 10f, 	 10g)

Inlet angle, defined in Fig. 2, referred to the k th foil sector
aik

a Exit angie , defined in Fig. 2, referred to the k th foil sector
Pk

B Arbitrary angle at which solution of foil bearing equation is

matched with a straight line (Fig. 2)

Foil bearing number 
Ek = 

6µU/'T sk for k th foil sectorC 
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NOM1-,NCL4TURE (Cont)

F3	 Angular polar coordinate of k th foil sector. The subscript

k is emitted for simplicity

Aik	
Poiar coordinate of inlet foil support referred to the k th foil

sector

0 e	
Polar coordinate of exit foil support referred to the k` h foil

sector

U	 Angle of wrap

µ	 Viscosity
2r W

v 
	 Dimensionless circular frequency of the kth 

foil 
o	 Ekl/3

U
7T	 Dimensionless pressure (Eq. 10b)

Tension perturbation of k 
th

foil sector (Eq. 23b)

t)x , 0y 	Perturbations of resultant force componei.Ls on shaft

p	 Density of lubricating fluid at ambient pressure

T	 Dimensionless time of k th foil sector. The subscript k is

omitted for simplicity (Eq. l0e)

"Stretched" coordinate E- — 
e	 --- of k th foil sector.

(64U/Ts)1/3

Subscript k is omitted for simplicity.

C	 Shaft position perturbation in x direction

C k	 Shaft position perturbation in x  direction

77	 Shaft position perturbation in y direction

77 ^	 Shaft position perturbation in y  direction

W	 Circular frequency of excitation

RR 69-12	 xii



t

-	 ---- - AMPEX	 j1

1 .0 INTRODUCTION

In many applications, in which thin webs are transported over

guides, it has been found advantageous to support the web over a thin fluid

film. Several analN ,tical and experimental investigations have been devoted

to gaining an understanding of associated phenomena. References [1 - 8]*

describe representative works in this area. These works have largely

been motivated by problems arising in the computer and tape recording

industries.

The converse problem of supporting a high speed rotor on

flexible foils has not received, however, much attention. At a first

',bought, such a bearing may perhaps seem impractical for not providing

sufficient shaft restraint. Further considerations, however, reveal that

in certain applications the foil bearinc; offers potential advantages over

the usual solid-surface gas-bearings, while shaft confinement can be

brought within acceptable limits. Two anticipated advantages motivated

the undertaking of research in this area. First, it was intuitivEly expected

that "half frequency" whirl, which generally plagues gas bearings, would

be absent in foil bearings [9 ]. Second, self aligning characteristics,

resulting from the flexibility of the surface, were envisaged. The absence

of half frequency whirl in a weightless environment would offer the all-

important advantage of stability while the self-aligning and distortion -

accommodating properties of 'he foil bearing would make it particularly

useful as a support for high-temperature, high-speed turbomachinery.

*Numbers in parentheses refer to list of references.
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With the impetus given by these expectations, an experimental

and analytical effort to study the characteristics of a foil rotor support was

carried out and reported in [10 ]. The analysis in [101 , however, was

limited by certain approximations, the most important of which was the

assumption of quasi-static film behavior. It is the purpose of the present

paper to present a more fundamental analysis, which includes the dynamic

behavior of the fluid film.

The analysis will be restricted to the planar case, and it

will be assumed that the conditions for the validity of Reynolds' equation

exist. This implies, as is well known, the neglect of fluid inertia effects.

The foil will be considered perfectly flexible and massless, and the foil

tension will be taken as time-dependent, but spatially uniform. The

problem will first be formulated in general terms and then simplified by

retaining only terms of the order of magnitude customarily kept in lubrica-

tion studies. The derivation will be carried to its completion only for the

case of a rotor supported on three, equally spaced foil sectors, with wrap

angles the order of unity. This seems to be case of greatest practical

interest. The static characteristics of the system will be investigated

on this basis, and the relation between steady-state gap, tension, and

shaft position will be found. Then, the dynamics of the system will be

studied by means of a lineariz•3d small perturbation theory, from which

stiffness, damping, and stability characteristics will be deduced. Numer-

ica l results will be presented for the zero-gravity case only.

RR 69-12	 2
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2.0 FORMULATION

Consider n "infinitely wide" foil sectors, spaced at equal

angular intervals and supporting a shaft (Fig. 1) . In the absence of foil

tension, radial load, and fluid film, the shaft center will be located at O.

1f a tension To per unit width of foil is introduced in all foils, the position

of the shaft will remain unchanged because of symmetry. The foil length

between the supports, at this tension is denoted by 4,0 . Next, suppose

that the shaft is brought up to speed and that air films form between the

supporting foils and the shaft. When steady state is reached under

rotational conditions , the shaft center-position does not change, but a

new foil tension T s is established. Under load, or unsteady conditionF,

however, the journal position may shift. Assume that at some instant t

the shaft is located at a point x, y (Figs. 1, 2) in terms of a fixed Cartesian

system centered at O. Consider, further, a set of n auxiliary coordinate

systems xk , yk , with an origin at O, such that y  is directed along the
i

bisector of the k th foil arc away from the foil, and xk is normal to it. The

radial clearance distribution between the k th foil and the shaft will be	 I

denoted by

k
k fie , { ) — ro 	 (1)

RR 69-12
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2nd Foil
Sector

1st Foil
Sector

-	 AMPEX

Point O is the
No-Load, No-Rotation

3rd Foil Sector	
Equilibrium Position

Fig. 1 Schematic Diagram of Foil Bearing Configuration
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b	 _I

I

Shaft at Origin O. No-Rotation Condition

-hek^`

h

Shaft Displaced From O to (xk,yk)

Fig. 2 Schematic Diagram of a Single Foil Sector
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where (r, 6 )are nonrotating polar coordinates with an origin attached to

and translating with the shaft center. The reference for measuring 6 is

the bisector of the wrap angle of the foil sector under consideration.*

In the following, the problem of finding the bearing forces

on the shaft for a given position x, y and for a given clearance distribution

hk (6, t), will be formulated. This system of equations will then be

supplemented by the relations necessary to find x, y, and h, i.e., the

equations of motion and Reynolds equation.

The angle between the k th and first support sectors is

The coordinates xk, 
Y  

can be expressed in terms of x, y by the relations

X k = Y'
	 ^k + / 

s. N 
Yk 	 (3a)

)/k = -X Sl K tl^ + y Cos t	 (3b)

* To simpl ify the notation only dependent variables will be subscripted with

k. It should be understood that the independent variable e.g. 6, corresponds

to the same foil sector.

(2)

RR 69-12
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At time t, the resultant force of the k th foil sector on the

shaft may be resolved into two components Rk in the radial direction (yk)

and Q  in the tangential direction (xk ) . In addition there will be a frictional

torque M k . These components are expressed in terms of the tension

T  (t) by

Sin c-,/ } S el^^	 (4a)

Qk (t) = Tk (^)(Co s o/' 1. _ GoS CC'
 k )	 (4b)

Mk ^k) = Tk (t )^'^ L ^ 	 ^ek^	 (4c)

Here the subscripts i and e denote the inlet and exit regions. The

resultant force and torque of the whole system on the shaft can be expressed

in terms of the individual foil forces and torques, as follows:

	

lk) = — R  ^k) Si g 	+ L Q k (f) COS r	 (Sa)

n
Fy (t) _	 ^k (^) cos k̂ t	 Qk (tl S^^ ^k	 (sb)

IM I t^	 ^^ M^ 1 {^	 (5c)

RR 69-12
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The length of the k th foil can be given in terms of the

corresponding clearance distribution by

De k (t)

^k 
=	 L V + k̂
 (19
	 l ^^	 °^B	(6)

where 6 ik (t) , 6ek (t) are the instantaneous polar coordinates of the inlet

and exit points of support of the k th foil (Fig. 2) .

The instantaneous tension in the k th foil is given by the

stress-strain relation

T (4) -T 	 ^Ck —,CO

where E is the modulus of elasticity and d denotes the foil thickness.

Finally, the following geometrical relations will complete

the formulation

	

Ak CoS D4 ik + ( o + .I S10 0^"k	 (8a)

	

b + xk =.^^4 cos 
e, 

+ ( -. + Jine ^^ Soh e^	 (8b)

k
	 ,QLk Si K 

0(	 - fir° + 	 k ^ cos CV' , k	 (8c)

RR 69-12
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Q - y ° ,eek 5 ""	 k - (l
—
o +. 

ek
) Cos	 (8d)

k

To summarize, for a given shaft position x, y, (either

prescribed or found from the equations of motion) and for a given clearance

(found from the elasto-hydrodynamic equations) the set of lln + 3

equations (3 - 8) can be solved for the unknowns F x , Fy , M; 
xk' yk' k'

Qk' M k' Tk' aik' aek' tik' 
t,ek' tk' where k = 1...n.

RR 69-12
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3.0 SIMPLIFICATIONS

It is well to recall at this point certain aspects of previous

foil-bearing studies. The most important foil-bearing characteristic is

the small parameter E  = 6µU/T sk , in which the subscript s refers to the

steady state cor.litions. In reference [11 ], equations were derived, of

which the following constitute the zeroth order terms of expansions in

power of E k2
/3

^1HkTfk = k ( I — a 1)	 (9a)

C)t HL
	 1

T 	 H.
_k [ Tk I I - .-̂ ) + C k^ F =

a ^k f
Tk 

(1_ 7`1Ni +C
k +-7-c E{ 6N0 - 7rHL )^ CkJ"=A^

where Hk , 17k , T  denote the zeroth order approximation of the dimensionless

clearance, pressure and tension.

1^k(e1t)
1. - Hk( ^ 2 ) + O (C Is)	

(10 a)

r k

JD^le ^t )	 q

S k / ro

RR 69-12
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T(^)	 7 + o Ekl^

	

T" 	 (lOc)
sk

(1 Od)

t U E1/^

The above equations describe the clearance and pressure dis-

tributions in the planar, perfectly flexible foil-bearing and will be applied

to the foil sectors k = l...n. In the following derivation, shaft motions

the order of the clearance will be allowed. Here, it will be consistent

to define dimensionless shaft perturbations of order unity and to expand

them in powers of E 2/3 , Whep Xk , Y  denote zeroth order approximations:

	

%	 -2 /3	 Z/3

	

r E ^ = X^+ 0(E k )	 (10f)
a

Yk	 2^3 
= Y

k+ 
o E (lOg)

r k 	
k

0

The next step is to make similar expansions in powers of E, 
2/3 

for the
K

deviations of the foil angles and foil length from their values under no-load,

zero velocity conditions. Again, capital letters refer to the zeroth order

approximation.

RR 69-12	 12
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°(`^ fit) — Q/2	 (11 a)
E L/^	 - A ; k ('r^ +	 CE k

k

k

Analogous relations can be used for the exit region, denoted with th -

subscri p t e. In addition

(llc)
0

In the above relations, 
Atk' Aek' Lik' Lek' L

k denote zeroth order approx-

imating terms. Substituting Eqs. (11) into Eqs. (8) and collecting terms

of equal powers of 
Ek2/3 

one finds (coefficient of Eko):

L - J./r. 
O CoS^ +S,n ^

2ro 	 2	 2	 2	 (12a:

a	 ,^o ^^o - o

ro	 2
SIN © .. COS D_

2	 2 (12b)

and (coefficient of E2/3)

-Xk Lek ``` O + 
A. LO S ^ _ '^^ r̂° - ^ sl^^+N^ks;n ^ (13a)

z	 z

RR 69-12
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Xk ` Lek c..oS 
2 + fie^C CCob S _ ^0 ° ^ ^s Q1 + NQ ^S1N z

	 (13b)J

— Y e) ^. SA N ©+	 k CS^N	
^r,— Coi	 H k Co	 (13c)

k	 L- k 	 2	 L	 iA + 	 Z	 2 -
	 S 2

Y Lek s^^ + R^^ CSi„ t 
^olro2— C.oSl _ Ntk

	

Cos ©	 (13d)
k	 //	 z

Using Eq. (i3) one can deduce the relations:

- 2Yk Cos ^ + H Lk N ek

A ik + Ae k =	 (14a)

L`^	 Lek = -2Yk s^^ © - (A^k	 AeL)	 (14b)

Given the exact expression of 1^( 6, t) , Eq. (6) represents

accurately the foil length. In attempting to expand Eq. (6) , however,

one must face the fact that what is known as the clearance distribution is

merely the principal term of the expansion of h k ( 6, t) . Furthermore,

even this representation is valid only in part of the range of the integral

in Eq. (6) , namely the lubrication zone (sea Fig. 2)

^	 1

RR 69-12	 14
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AMPEX

where the magnitude of S is elaborated upon later. Actually, in the exit

region of the k th foil, for example, the clearance is described asymptotically

by the equation of a straight line:(

Y—. + ' n e' C

4k
(6 1-) =

On the other hand, the clearance in the lubr:.cation zone is described by

the solution of Eq. (9) . This solution, however, being the principal term

of an expansion in powers of Ek2/3, does not approach asymptotically

Eq. (16), but rather, the first term of the expansion of Eq. (16) in powers

of Ek2/3. The boundaries of the region defined in Eq. (15) consist of

the somewhat arbitrary matching points chosen in the common region of

validity of Eq. (16) and Eq. (9) .

In the evaluation of the foil length from En. (6) , one must,

therefore, take account -)f different representations of the function h k ( 6 't)

in the asymptotic parts of the inlet and exit regions and in the lubrication

zone. Expanding the radical in Eq. (6) , one obtains:

ra	 ro	

Zk
 

f
Yo 2 L ^6

r,
	 r,

RR 69--12
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Using the E- expansion in Eq. (17) and making use of Eqs . (11) and (14) ,

Eq. (17) becomes:

+TS

k

- 2Y (T
1/11	 D 

	18,

k

ll
	 ,3	

E /5
C

wherein tan ^ was expanded in a power series and B = 0// E
1/3
	 It is inter-

esting to note that to the order of approximation considered here, Lk (T) is

independent of the distance of the guide posts from the shaft. Furthermore,

the :magnitude of Lk ( T) is quite insensitive to B, provided B is chosen

judiciously. This may be seen from Eq. (18) by considering the effect of

increasing B. Bearing in mind that fo:- large ^, the first terms of the

asymptotic representations of H k (^, T) 
[5 i 

are of the form

it follows that adder: contributions of the integral for large B are cancelled

by the last two terms of the equation.

Using Eq. (7) , the instantaneous tension can now be found:

RR 69-12
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o 41^
zEki^

+
k

k	 l

(20)

--	 --- - A M P E X-

T (T) _ o	 r 2/3

Col	 Q ^^	 2 Y (-c^ S ^^
0 2.

^ ik^^^ } µ ek LT^ 3 

EI. 

343,C	 ^

In addition, the steady state tension T sk can also be found from Eq. (20)

by substituting the steady state values of the clearance distribution Hsk(^)

and the equilibrium shaft position Ysk'

Equations (4) therefore become

z	 4 3 )
k̂ (L) = 

k ^T^z	 Si h	 +COS 
E [A,^(-C) + Aek + Q I E k 

(21a)
z

Z ^^

Q^ (2)= k (z^ Sim ^I Aek(z) -'^^^1 	 C^	 OCEk /	 (21b)

RR 69-12
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When the shaft is displaced toward a foil sector, the radial

force R  is increased by three contributions, namely, increased tension,

	

changes in the angles tr ik , at	 and tension differentials due to fluid shear.

The first two contributions are included in Eq. (21a) . The third contribution

has been neglected by virtue of the assumption of spatially uniform tension

Henceforth, the discussion will be limited to the most important case, i.e. ,

that of O ^-O (1) and n = 3. In this case, the first term of R k (T) is dominant,

and the tangential force (Q k (T) is negligible in comparison. Upon substitu-

tion of Eq. (21) into Eq. (15) and retaining first order terms only, one finds:

L	 (2'la)

0 f ^^ T Cz^ T^ ^z)F `'^) = 2 Sim 
ir	 Z	 ^-	 (22b)

To summarize, given the shaft position X (T) , Y(T) (either prescribed or

obtained by solving simultaneously the equations of motion) and given

Hk (^ , T)I T_ 0, the set of equations (9) and (20) is used to solve for the

clearance distribution H  (^ , T) and for the tension T k (T) in each foil.

The total forces on the shaft can then be found e.t each instant of time

from Eq. (22) .

*In reference [10 ] the shear term was found to be of order

Tk ('T) t? si n ©E ^ 3

	

if 	 z	 !

RR 69-12	 18
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4.0 LINEARIZED ANALYSIS

The problem described by Eqs. (9a) and (20) can be solved

numerically for specific cases. Considerable insight can be gained,

however, from a linearized treatment, which is the subject of the present

section.

Let it be assumed that a steady state has been established

with a given Tsk' H sk (^) ' Ysk' Ysk for each foil sector k = 1 , 2 , 3 .

Now consider small perturbations from this state

Hk (t z) — H S k (c + ^ (t,z)	 ^k 4,-c) « ^4 	 (23a)

Tk (^c^ = T k C ^ -t `Pk ^^^^

	
Tk<< 1	

(23b)

Xk ^^ - Xs1^ } ^k(T)

5^	 k

k<< Xs	 (2 3 c)

^k« V(23d)

^x << t 	 (23e)

Fy (T) = F 
	

^r « FrS	 (23f)

RR 69-12
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Equation (9) was linearized by Barnum and Elrod [121. The following

equation, which is different in form but not in essence, has been used in

the present work.

4	 ^	 7c

F «+ 
^3

^ ( llam 
^k

Fzo^^)	 `` F D^^^+a	 40 ) '^ 30J a

(24)

^k goo (^)	 ^^ ^z X11() + a t ^o I () _

dz 1
where (with the subscript k omitted)

F4J l^) _ - HS ^ 1 - µ 1S -t c.)

1,1

F3,(^) _ —3 Hiµs^I—Hs+cl+ 2. Hs Hs + HS

_	 a ^y	 1
rzo ^) = 3H5 ^S HS Ns Hs + H

Flo ^^^ _-^ It 34sF^s 1 ^^^ - H S +^i

z-	 1	 111	 L	 I V	 1	 y	 Ih	 111

Foo	 µsC	 _ ^6 ^+5 HS 3 HS 
)(

 i - N S f C-) +3 HS ^i S 	 H`

r11 (^) _ ^ S

Fol ^^ _ - ^ I — Hs +c)

1.. L
	

11	
iV

^p ^ l = 
NHS HS (I - H^ + i) his - 21s H S t L F1s (^ _ 

H S 2-

III	 11	 I

N 5 Hs + 0 Hs^ HS

i
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With the boundary conditions

lk	 	̂ ---V^ O	 as	 _-,, ± o4

It ) De-

Eq. (20) becomes	
6 *(:^

1Ek'

TSk r 2/3	 ^ l^ ^ ^ N5^ ^
l o^^k	 -- Ek -2^ sih = +Ek ^ +	 a JEol	 Q o	 k	 L Olt k

t	 1

k

X13

Eqs. 22 become

^X	 S Z (^ 35	 I L 25 )

L	 Ts	 2	 2Y

(25)

(26a)

(26b)
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5.0 SOLUTION

The problem will be attached by the frequency response approach.

This technique was previously used for obtaining stability thresholds in

solid-bearing problems by Pan [13 1, Castelli and Elrod [14 ] and others.

The following notation will be used for the Laplace transform

of f
N	 r

0

Transforming with zero initial conditions, Eqs . (24) - (26) become

F	 + s
F	 +	 Fro	 Z 2. (^)	

F	 +^ )]

	

oc	 c	 Cd ^ v 4 

	

O^Tk	 N	 +s	 (27a)

+ ^' ^ ^- (4) 	 0 L(ol

With the boundary conditions that for	 t -

r-

(27b)
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N Tk	
E k ^- 2^ S O H Z +

(28)

f	
C ^ + ^

^^
^ rk d
	

B('̂ + i^ ?ek Ek

k

^X	 VJSIH 2- 	 - — ' L 	 Si')

	
(29a)

N	 ^Nj
r3 T3 )z	 (29b)

It may be observed that Eq. (27a) , subject to the boundary conditions (27b)

can be solved independently of Eqs. (28) and (29) in terms of the clearance

transfer function (clearancef k as output with tension c3 as input)

N

(30)

It is also to be noted that since h, depends upon the physical parameters

pa/(Tsk
/r O ) and O/E k l/3 

h  varies in general from one foil sector

to an-ether (hence, the subscript k).
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When R  (^ , s) is available, the tension transfer function

(tension 
K 

as output with component of journal displacement 
7k 

as

input) of the k th foil to the shaft excursion can be found from Eq. (28):

Grp
T k ^ s^	 1 Sih

z

k	
Ed V 

Ek t Ek	 -
 
	k	 k	 +^E Aik{^+ ^
l kJ (31)

- [el(L Ek + 61)

Finally, by substituting Eq. (31) into Eq. (29) , the transformed bearing

forces ta x , y can be found in terms of rl (s) ,	 (s) and the physical

parameters. Bearing in mind the zero initial conditions assumed for the

film in conjunction with Eq. (27a), one may use the formulation to solve

the initial value problem of a rotor released from a state of equilibrium

(i.e. zero initial values of C, rl, ^, 77) . Alternatively, one may solve

for the asymptotic steady state response of the rotor to periodic excitation.

In the latter case it is assumed that the film transients die out and do not

contribute to instability, if any [13 1.

The task pursued here will be to find the stability threshold,

in the course of which the damping and stiffness coefficients as functions

of frequency will be obtained. The first step of the procedure is to assign

a zero value to the real part of the complex frequency and to prescribe the

imaginary part i w . This is tantamount to the imposition of a prescribed

sinusoidal motion at a frequency w on the journal. Then, the in- and out-of

phase steady state response of the three-foil system is found as a function

of frequency. This response can be substituted into the equations of

motion and one of the dynamic parameters, usually the rotor's mass can be
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found at the threshold of instability from the characteristic equation. It

is to be noted that the actual frequency is to be interpreted as excitation

of each bearing s(:ctor at a dimensionless frequency of v, = 2r0
 w Ek1/3/U.

With the solution of Eqs. (27a,1)) the right hand side of Eq. (31)

is a complex number denoted by K  i D k i, which can be t:etermined for any

frequency and a given set of physical parameters. This number depends

neither on the journal excursion from the equilibrium position nor its

velocity.

Evaluation of the results will be limited in this report to the

case of zero gravity, i.(?, of no radial load. In this case the tensions

and the parameters K, D are aqual for all three foils. Bearing this in

mind, and using Eq. (3b), Eq. (31) gives the tension perturbations in each

foil sector:

NN
^j = (K+ 17i	 (32a)

N

L	 2	 2 l	 (32b)

(kfD) J3T3	z	 2)	 (32c)	 !

Substitution of Eq. (32) into Eq. (29) results in

	

= 3 s © (k ^^^^ ^s	 (33a)
X
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sin	 3 N	
(33b)7

By analogy to spring-dashpot system, one finds that in the absence of

radial load the bearing is isoelastic and that the stiffness and damping

coefficients are then given by:

I '	 /K =- 3 Sin © K s E	 r,	 (34)

- 2^3
C = -3 Sin	 S E 7P 	 (35)

The procedure of solution car be summarized as follows:

(1)	 For a given geometrical arrangement, initial tension and

rotational speed, )r the corresponding dimensionless para-

meters (see Eq. (39) below) , find the equilibrium tension.

This requires a complicated iteration in Eq. (20) ,

since the gap is related to the actual tension through

the parameters 641J/T and p r /T s , while the tension
s	 a o 

is tied to the length of the fcil, which in itself is a function

of the gap distribution. Two additional factors cause the

solution to be laborious. The inlet and exit equilibrium

solutions are solved separately, while the matching of the

iniet and exit values of H* is accomplished by trial and

error [5] . Furthermore, the roots of the characteristic

equation are also functions of p a ro/T s , i.e., of the steady-

state tension.

RR 69-12
	

27



AMPEX

(2)	 For a given equilibrium state, solve for the complex response

of the perturbed film equations (27a) to sinusoidal tension

excitation. This part of the problem has been solved by

Barnum and Elrod [12 ^* . It involves the following steps.

(a) Obtain the roots of the characteristic equation of

(27a) in the uniformity region, as a function of

frequency.

(b) Obtain, for the inlet region, linearily independent

homogeneous solutions and a particular integral.

(c) Superpose these solutions to fit the inlet boundary

conditions.

(d) Repeat (b) and (c) for the exit region.

(3)	 Having established a relation between the tension perturbations

and the film behavior, use Eq. (31) to find the corresponding

shaft perturbations . Here complex foil-length perturbations

are required and are obtained frorn integration of the results

arrived at in step (2) .

(4)	 Finally, find the stiffness and the damping coefficients from

Eq. (34) and (35) .	
S

*Further details are discussed in Appendix B
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6.0 RESULTS AND CONCLUSIONS

Using Eq. (20), th,e steady state tension can be expressed

in the form

	

-) ^- ) ) )	 J J K/

Although the density p a does not appear in the formulation,

it is included here since the dimensionless groups are designed to include

inertia effects in anticipation of future studies. The bearing stiffness

coefficient in the zero gravity condition (x s = y  = 0) can be expressed

by means of Eqs . (34, 3 S) in the form

k - 4 (P- 4J )T) ^,* ^^	 P 	 (37b)

The damping coefficient c depends on the same parameters as the stiffness.

In order to simplify the presentation of the results, the

parameters were incorporated into dimensionless groups. The number of

parameters is, nevertheless, too large for the presentation ol' a complete

parametric map. More limited objectives, therefore, have been set in

planning the graphical presentation. The effects of varying speed, radius,

initial tension, extension characteristics and wrap angle appear to be the

most important variables fo- geometrically similar bearings. The foregoing

consideration is reflected in the choice of the dimensionless variables

used in presenting the numerical results.
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Folloxing reference [10 1, the dimensionless groups involved

are

U

a
Speed parameter (38a)

^o
^r = Radius parameter (38b)

^2
r-°	 E d

= L Length parameter (38c)

T
-PT =	 —

Lq

Tension parameter (38d)

= ^► 21 Dimensionless gap (38e)

Dimensionless stiffness

^a
per unit width (38f)

C
P =	 Dimensionless damping

r	 coefficienL per unit width	 (38g)

1
P - 	 Dimensionless frequency	 (38h)
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ro w
^w =	 Frequency ratio	 (38i)

U

For the case of no radial load (x
s 

= Ys = 0) , the equilibrium

tension, gap, stiffness, and damping parameters can be expressed as

follows:

P_ = -P (^ o - j G)) -?, " Pr/ (39)

P^ (^ro P2 , O , _7(A , 'Pr )	 (40)

Pc - I c ( -Pi, ) -F^ )	 tau-) -Pr)	
(42)

In the graphical presentation of results, values of pertinent

dimensionless parameters and of corresponding characteristic physical

variables are stated next to each curve. This dual representation is

intended to facilitate the physical interpretation of the results. In select-

ing the sample values, the followinq magnitudes of physical parameters

have been used:

p	 = 14.7 psi
a

P
.9	

= 0.075 lb-in/ft3

µ	 = 0.265 x 10 -8 lbf-sec/in2

E	 = 30x10 6 psi

/r	 = 1.985
0 0
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The effect of variation of speed, initial tension, foil thickness,

journal radius and wrap angle on the steady-state tension of the foil are

shown in Fig. 3 and follow the intuitively anticipated trend. The same

holds true for the gap width in Fig. 4. In Fig. 5, the stiffness coefficient

is shown to increase with frequency in an undulatory fashion to an asymp-

totic value. Analogously, the damping coefficient is shown to decrease

to zero with frequency in an undulatory manner. (See Fig. 6) It is particularly

noteworthy that no sensitivity to excitation at half the rotational frequency

is exhibited.

The asymptotic and the undulatory behavior is discussed

below. In order to be specific, the approximation is made that the major

contribution to foil length variations stems from the central region. (i.e.

B=0inEq. (31).)

Each frame in Fig. 7 shows perturbations of gap width at

four sample time points, wt = 0, 0.5 'R, it, 1.5 'R. It can be seen that the

higher the exitation frequency the greater the number of waves within the

region of wrap. The latter travel at approximately U/2 from the inlet to

the exit as shown analytically [11 1 and verified experimentally by Licht [15].

The wave transit time from inlet to exit is approximately 20r /U. With the

period of exitation 2 7 ►1w, the condition that an integral number of waves be

contained within the region of wrap is:

l.J	 7V
PW s	 =-^ 	 •--	 (43)

v/Y -o	0

For the particular case shown in Fig. 7, 0= 1►/3 . For a frequency ratio of

P = 3, one full wave is seen to be present in the region of wrap. For
u.'

P = 6, two full waves are accommodated and so forth.
U:
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When an integral number of waves is present with cep one

can write approximately:

It follows that for frequencies given by Eq. (43) the right Nand side of

Eq. (31) is real. Consequently, the damping coefficient vanishes for

these frequencies and the stiffness coefficient is essentially the same

for all values of j . Hence the undulatory behavior. Approximate stiff-

ness formulae are given in Appendix A.

The fact that the damping constant vanishes at discrete

frequencies, denoted as "critical", has an important design implication.

If the rotor mass is such that resonance occurs at one of the critical

frequencies, the resonance is undamped. In reality, some external damp-

ing will exist in the system, but the critical frequencies may nevertheless,

be dangerous. "Critical" varies of mass should, therefore, be avoided

in design. For example, using the approximate value of stiffness given

in Eq. (A10) of the Appendix, the critical mass, based on the lowest freq-

uency at which damping vanishes, is:

z/3

N	 ^ s - ►, Z ^ s E ro
_	 (45)

L	
TS ^o ^L^3+ H O	

'R ^lt
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Fig. 7 Spatial distribution of clearance perturbation at
four sample time points for various frequency ratios.
(cont) .
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Additional crit+.cal mass values are m /2 2 , m c /32
c	

, etc. Referring to

Fig. 5 and 6, it will be noted that an increase in the rotor mass above the

critical value will shift the resonant frequency into a region in which film

damping is higher. This practice is recommended.

In the case of response to imbalance m • e, the "amplitude

ratio" is

(46)
C. A

Where the subscript c denotes values at the lowest critical frequency.

The ratio of shaft amplitude to static deflection in the case of response to

a constant periodic excitation is:

r
^`	 I

	

Z	 ^M KC	 L	 (47)
st	 (C^,/ p,zrr P^)

Eq. (46), (47) are described graphically in Figs. 8a and 8b and illustrate

the above effects.

At high frequency the stiffness approaches a constant value

while damping tends to zero. Again, this is what one would expect as the

film becomes locally trapped in the gap, without appreciable side flow.

Approximate values of stiffness in the lin::ts of low and high frequencies

are given in Appendix A and are indicated in Figs. 5 and 6. The approximate

values are in good agreement with those based on more exact calculations.

RR 69-12	 44



- AM PEX	 -	 --

One essential factor missing in the present formulation is

the effect of fluid inertia. This effect is very important [10 1 , and further

work is in progress to account for its influence. Because of this deficiency,

the results given herewith are accurate for low speeds of rotation, but may

serve as a guide in conjunction with results repo rted in reference [101.
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APPENDIX A

APPROXIMATE TRE-kTMENT OF LIMITING CONDITIONS

It is possible to obtain in a simple manner, approximate

-^	 results for certain limiting cases. If one limits attention to the central

region, where the equilibrium solution predicts uniformity of clearance,

Eq. (27a) , when written in terms of the variable defined in Eq. (30) becomes:

d 
Y N ^

I{G) _ ^ ^. 
11^` —	 1 SH +— ^Itc^ +.C^s^l-+c _- 5	 (A1)

In addition, a simplified relation between tension fluctuations

and shaft excursions is obtained by substituting B=0 in Eq. (31)

N
1	 Z SIN	 (A2)

'k	 Ed r,	 k	 °^

When h K is known in the uniformity region, Eq. (A2) can be

evaluated. Two r xtreme cases will be discussed below.
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1	 Quasi Static Limit

The solution of (Al) is composed of a linear combination of

four exponential terms (corresponding to the roots of the characteristic

equation of the homogeneous part of (Al) ) plus a particular integral. A

study of these solutions [12 ] reveals that three of them are insignificant

-	 in the central region whereas the fourth root of the characteristic equation

can be expressed in the limit of small frequencies as

Consequently, h assumes in the central region and in the

limit of low frequencies the form

,-E G	
(M)l^

where A is a complex coefficient. Since the disturbance is very slow

one cannot expect any lag in the response. Thus, the imaginary part of

h (^) must vanish with v--oo. Therefore, in this limit the perturbation

is Teal and uniform throughout the central region. This is the usual

situation, when for zero frequency there is no damping force, but never-

theless the damping coefficient does not necessarily vanish. The constant

perturbation-amplitude may be found from the steady state solution

\i

C TL

where

H 
x = I-4

	

	 ro

C Ts
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Taking the differential , one finds

r-	 -	 _ ^ 0-1±^(2

Thus, Eq. (A2) becomes

2 5 h

_ ask Qo E _^(^ 1k	 Ed r, k	
H	

CA d(^^

For the central position it follows from Eq. (34) that

L 

O	 Z /^
L E

S n — N -DG -

cd ro	 3	 01 (^)

No information about the damping coefficient c can be found, however,

from this consideration. The reason is that the damping coefficient is the

limit of the ratio of damping force to the circular frequency as the circular

frequency tends to zero. The evaluation of this limit requires knowledge

of the damping force not only at w = o bat in its neighborhood. The above

does not provide such information.
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Very High Frequency Limit

The roots of the characteristic equation of (Al) in the limit

of v + imply that none of the homogeneous solutions of (Al) affect the

uniformity region. Therefore, the limiting behavior in this region is

^'	 H
(A8)

t+C,

Physically, this is the behavior encountered generally in gas bearings in

the limit of high frequency i.e. local isothermal compression. Under

these circumstanc?s, Eq. (A2) becomes

Tsk	 -L13	 H' O	 (A9)

In the central positior_ the stiffness and 3amping coefficients become

k _	 6 s^ ^ 
z B ^-113

(Al 0)

^d ro E	 + ^ tC-

G = o
	 (Al 1)

r
Case of ►̂ ,^, _ 3 WIT

Under the above conditions, the number of wavelengths

present within Vie angle of wrap is integral. Using Eq. (44) , Eq. (31)
ft	

becomes, approximately:
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^N

I	 L Sin

"^	 _ Tsk ,Qo E-zl^
k	 E d r, k

In the central position the stiffness is then,

^C	 6	
z

SIV^ Z

^a	 C Ts ^°
Ed Yo

and the damping coefficient vanishes.

(Al2)

(A13)
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APPENDIX B

i	 SOLUTION TECHNIQUE OF EQ. (27a)

The solution of Eq. (27a) is summarized below mainly for the

sake of completeness. The equation was solved previously by Barnum and
i
i	 Elrod [12 ] and the technique used here is essentially the same.

The solution is obtained separately for the inlet, e>dt and

central regions and matching conditions are applied. Eq, (27a) can be

re-written in the form

F
40 C 

Flo 	 + 1 I CF ro C	 ^'^ F C ^]

N I	 A^

F	 ^, ^ Fo. ^) +	 F.,

In the central region a simplified form of the coefficients is valid:
2.

^1	 ^ A t ^ H* 3 -f

N L^
t 	 L

N y3	 ^^ c.) Iq}t

The general solution of this equation is:

A 5	 —	 (B3)
c..
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where m
3
 are the complex roots of the characteristic equation:

YrL 
4	 -M	 Yn Cv H14	 t

H # (i+L^	 µ (1-*c-)

where m
j 

are the complex roots of the characteristic equation of (B2) .

The subscript j refers to the index shown in Fig. 9. The particular form

of the solution desired for (B1) is such that it does not "blow up" in the

central region. This implies that the complex coefficients A 3 IaLid A4

vanish for the representation of the central region as one approaches the

inlet. It would imply further that AI and A2 vanish in the representation

of the central region as one approaches the exit. A I must, however, be

retained for low frequencies due to the smallness of the real part of m

and it thus provides the link between inlet and exit.

These restrictions on the form of behavior in the central

region provide initial conditions for numerical integration of (B1) which is

done separately toward the inlet and toward the exit. The remaining

degrees of freedom (i.e. AI and A2 for the inlet solution and A 3 and A4 foi

the exit solution) must be determined from the boundary conditions, which

state that far out in the inlet and in the exit regions

(BS)

This is conveniently done for each region by generating

numerically two linearily independent homogeneous solutions as well as

a particular integral of (B1) and superposing them so that Eq. (B4) are

satisfied.

In Fig. 10, sample curves of magnitude and phase of h are

shown as functions of frequency and may serve to further illustrate the

dynamic behavior.
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