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1.0 INTRODUCTION 

1.1 Purpose  of t he  Program 

The  main  program object ives  were: a)  to  determine  the  accuracy 

of the  numerical methods  embodied i n   t h e  AFTON 2P computer  code i n  a 

ca lcu la t ion  of  subsonic  laminar  boundary  layer  flow  over  a f l a t   p l a t e ,  

and b)  assuming a s u c c e s s f u l   f l a t   p l a t e   c a l c u l a t i o n ,   t o  test  t h e   f e a s i b i l -  

i t y  of using  the AFTON  2A and AFTON 2P codes t o  compute supersonic and ' 

tu rbulen t   f low  f ie lds  . 

1. 

1.2  Technical Approach 

The computer  code AFTON 2P was app l i ed   t o   t he   spec i f i c  problem 

of   f low  over   semi- inf ini te   f la t   p la te  a t  a Mach number of 0.2 and a Reynolds 

number per  centimeter of  3.2 x 10 . AS a test of   the AFTON 2P code, t h i s  

problem  presented  the  advantage  that   exact  solutions are known' bo th   fo r  

steady  laminar  f low  over  a  semi-infinite  plate,  and for  laminar  boundary 

layer  growth on a n   i n f i n i t e   f l a t   p l a t e ;   u n t i l   p e r t u r b e d  by signals  from 

the  plate  edge,  boundary  layer  development  aft  of  the plate 's  leading  edge 

proceeds  exact ly   as   i f   the   plate  were inf ini te .   For   this   subsonic   plate   f low 
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problem, the   ques t ion   of   the   appl icabi l i ty   o f  AFTON 2P centered on the  use 

of very  long,  thin  Eulerian cel ls  i n   t h e   c a l ~ u l a t i o n . ~   E a r l i e r  work had 

shown t h a t  boundary  layer  growth  could  be  described by AFTON 2P with  suf-  

f i c i en t   accu racy   fo r  most  purposes, i f  one  used f i n i t e   d i f f e r e n c e   c e l l s  

whose width was less t h a t   t h a t  of  the  boundary  layer by a factor  of  about.  

four, o r  more. ' However, laminar   f low  over   a   semi- inf ini te   f la t   p la te  

r e s u l t s   i n  a boundary layer  whose thickness a t  any given  distance  from  the 

plate 's   leading  edge i s  much sma l l e r   t han   t ha t   d i s t ance   i t s e l f .  Hence, 

the  use  of  square cells  with'edge  lengths of  only a f r a c t i o n  of t he  



boundary  layer  thickness would have  led t o   t h e   c a l c u l a t i o n   o f , f l o w . v a r i -  

ables  a t  an enormous number of f i n i t e   d i f f e r e n c e  mesh poin ts ,  and to   co r -  

responding  impractically  high  computation  costs. On the  other  hand,  the 

use  of cells with  the  large  length-to-width  ratio  ("aspect  ratio")  appro- 

p r i a t e   t o  a f la t  p l a t e  boundary  layer,  has  led to   large  numerical   inac-  

c u r a c i e s   i n  some pas t  AFTON 2P ca lcu la t ions  of  continuum  motion. The 

other   aspects  of t he   ca l cu la t ion   o f   g rea t e s t   i n t e re s t   a l so   r e l a t ed   t o   ce l l  

s ize ,   especial ly   near   the  plate 's   leading  edge where t h e   e n t i r e  boundary 

layer  would be   negl ig ib ly   th ick  compared t o  any ce l l  edge  length  that  

might be used i n   p r a c t i c e .  O f  particular  concern were the   e f fec ts   o f  

numerical leading  edge  inaccuracies on the   f low  f ie ld  computed downstream, 

and  on the  bow shock  which r e su l t ed  from  the assumed impulsive i n i t i a l  

conditions.  

While subsonic  laminar  flow  afforded a necessary test  of AFTON ZP, 

t he  main goal  of t he  work reported  here  was s e e n   i n i t i a l l y   a s   t h a t  of 

determining  whether  the AFTON 2A code  could  adequately  calculate  supersonic 

flow  over  an axisymmetric s t ep ;   t he   spec i f i c  s t e p  geometry programmed 

i n t o  AF'TON 2A was taken  from a Saturn V configuration  provided by the  

sponsoring  agency. However, by the  time the   ca lcu la t ion  of s tep  f low had 

proceeded  through some of the   ear ly   f low phenomena a r i s i n g  from impulsive 

i n i t i a l   c o n d i t i o n s ,  i t  was  c l e a r   t h a t   t h e   r e a l  problem  faced by AFTON 2P was 

not   that  of calculating  supersonic  f low,  but of ca lcu la t ing   the   tu rbulen t  

boundary  layer known exper imenta l ly   to  form  under  the  given  flow con- 

d i t ions .  No p r i o r  AFTON ca lcu la t ions  of turbulent  boundary  layer 

flow  had  been made; i n   f a c t ,   t o   o u r  knowledge the  equations  of continuum 

motion had not   been   in tegra ted   successfu l ly   for   tu rbulen t   f low by any 

computer  code. I t  was therefore  decided  that   turbulentboundary  layer 
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growth  be  isolated  from  the  overall  problem  of  flow  around  the  Saturn V 

s t ep ,  and the   s tep   f low  ca lcu la t ion  was accordingly  separated  into two 

pa r t s .  

The f i r s t  of   the  two Saturn V problems was that of computing 

turbulent  bounary  layer  growth fo?mard of  the  almost-stationary  shock 

c rea t ed   i n   t he   f l ow  f i e ld  by the   s tep .  Forward of the   s tep ,   the   rad ius  

of the  Saturn body through most  of i t s  length was la rge  compared t o   t h e  

an t ic ipa ted  maximum boundary  layer  thickness. Hence, t he   cy l ind r i ca l  

sur face  vas replaced  for   the  boundary  layer   calculat ion  by a f l a t   p l a t e ;  

a leading-edge  shock was the reby   subs t i t u t ed   fo r  the shock  a t tached  to   the 

nose  of  the  cylinder. The second  part  of  the  step  problem was t h e n   t o  

compute f low  over   the  s tep,   s tar t ing a short   distance  upstream  of  the 

s t e p  shock. The boundary  layer   prof i le   obtained  in   the  turbulent   f la t  

p l a t e   ca l cu la t ion  was t o  be  used as an  upstream  boundary  condition,  and 

the   f low  f ie ld  was t o   b e  computed f o r  a d is tance  of about 20 s t ep   he igh t s  

downstream  of t h e   s t e p  . 
From est imates   of   the  rate of  growth  of  eddies  based on l i n e a r  

s t a b i l i t y   t h e ~ r y , ~  it  was  known beforehand  tha t   to   car ry   ou t  a d e f i n i t i v e  

test calculation  of  turbulent  f low  over a f l a t   p l a t e  would have  been  pro- 

h ib i t i ve ly   expens ive   fo r   t h i s  program,and t h a t  cells o f   p rac t i ca l   s i ze  

would give a necessarily  coarse  picture  of  the  flow.  Thus,  although  the 

ca lcu la t ion  was worth  trying, i t s  results  proved  inconclusive.  As a 

r e s u l t ,  a search was begun f o r  a set of f low  f ie ld   condi t ions  which  would 

lead   to   tu rbulen t   f low  in  a r e l a t i v e l y   s h o r t   c h a r a c t e r i s t i c  time and  over 

r e l a t ive ly   sma l l   cha rac t e r i s t i c   d i s t ances ,   w i th   t he  a i m  i n  mind of f inding 

a d e f i n i t i v e  test o f   t he   code ' s   ab i l i t y   t o   ca l cu la t e   t he   t u rbu lence , a t   t he  
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l eas t   poss ib le   cos t .  The problem f i n a l l y   s e l e c t e d  and run for   th i s   pur -  

pose was t h a t  of turbulent  plane-symmetric  flow  over a r i g h t   c i r c u l a r  

cy l inder   in  a narrow  duct.  While  the  calculation  should be continued 

beyond the   po in t   to  which it  was taken i n   t h i s  program, the  behavior of 

the  f low  .f ield- was markedly  different from the  laminar  vortex  f ields pre- 

viously  successful ly   calculated,  and s t rongly resembled that  observed  in 

turbulent wakes. 

4 
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1.3 Summary of  Results 

The p r inc ipa l   r e su l t s  of t he  program were as fol lo~7s:  

a) In  the  case  of   subsonic  flow over a f l a t   p l a t e ,   l amina r  

boundary  layer  profiles  agreed well with exact so lu t ions ,   bo th   for   the  

i n f i n i t e   f l a t   p l a t e  and for   s teady  f low  over  a semi- inf ini te   plate .   With 

the  moderately  dense meshes used  (a maximum of 9 or  10 cells i n   t h e  bound- 

ary  layer),   the  numerical  and exact ve loc i ty   p ro f i l e s   d i f f e red  by  no  more 

than  about 7 percent.  Furthermore,  the  transition  between  the two solu- 

t ions  v7as computed i n  cons iderable   de ta i l  a t  many distances  from  the 

leading  edge  of  the  plate.  

b)  For  the axisyrmnetric s tep   wi th   impuls ive   in i t ia l   condi t ions ,  

bow shock  formation t7as computed up t o  the  point  where the  shock  front  had 

moved about  one  step-width  forward  of  the  step  i tself ,   along  with  the 

assoc ia ted   f low  f ie ld   as  i t  t u r n e d   t o  accommodate the  step.  

c) The ca lcu la t ion  of supersonic  flow  over a f l a t   p l a t e  

resulted  in  accurate  leading-edge  shock  formation,  with a laminar  boundary 

layer  below the  shock.  Further  dotmstream  the  flow  remained  laminar  for 

the  mathematically  plane  plate  of  the problem. The introduct ion of i r r eg -  

u l a r i t i e s  on the   p la te   sur face   near   the   l ead ing   edge ,   in   an   a t tempt   to  

produce a turbulent  boundary  layer,  did  result  in  decidedly  nonlaminar 

flow  domstream,  although it was not  possible  to  determine  whether  the 

resul ts   represented  numerical   solut ion  error ,   or  a true  numerical  descrip- 

tion  of  turbulence. 

d) The ca lcu la t ion  of  flow  over a wire t r i p   i n  a duct employed 

a mesh f i n e  enough t o   g i v e  a de ta i l ed   p i c tu re  of the  boundary  layer on t h e  

t r i p .  A vortex formed  on the  back  s ide of the  t r ip ,and  shed.  A second 
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vortex  then grew in   p l ace  of the   f i rs t ,   reaching  about   one-third of the 

maximum diameter   a t ta ined by t h e   f i r s t   v o r t e x .  A t  t h a t   s t a g e   i n  its 

development, the  second  vortex  dissolved,  .leaving a region of small random- 

appearing  veloci t ies ,   c losely  s imulat ing  the breakup of vor t ices   as  i t  of ten 

( i f   no t   typ ica l ly)   occurs   in   the   ear ly  stages of turbulent  wake formation. 
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2.0 CALCULATIONS MADE AND RESULTS OBTAINED 

2 .1  Summary of  Problems Run 

The s ix  problems run i n   t h e  program were designated Problem 

600.0,  Problem  158.0,  Problem  560.0,  Problem  560.2,  Problem  2.0, and Prob- 

lem 561.0. They are desc r ibed   b r i e f ly   i n   Tab le  1. I n   e v e r y   c a s e ,   a i r  
. .  

vas   t r e i t ed  as a polytropic  gas (y  = 1.4)  and was assumed t o  flop7 adia- 

ba t i ca l ly .  I n  Problem  600.0,' subsonic  flow ~-7as calculated  over a f l a t  

p l a t e ,   w h i l e   i n  Problems  158.0,  560.0,  and  560.2 s u p e r s o n i c   f l a t   p l a t e  
. .  , 

flow  vas  calculated.  Problem  2.0 was concerned  with  supersonic  flow  over 

an   ax ia l ly  symmetric s t e p .   I n  Problem  561.0, viscous  compressible  flow 

was calculated  over a wire t r i p   i n  a plane,  two-dimensional  channel,  under 

conditions  which would r e s u l t   i n   P o i s e u i l l e   f l o w   i n   t h e   a b s e n c e  of t h e   t r i p .  

2.2 Boundary Conditions 

I n  Problems  600.0,  158.0,  560.0,  560.2,  and 2.0, the   dens i ty ,  

energy, and ve loc i ty  of material at   the  upstream  boundary were given 

the i r   f ree   s t ream  va lues .  The upstream  boundary  conditions  for Problem 

561.0 consis ted of a ve loc i ty   p rof i le   charac te r i s t ic   o f   s teady ,   fu l ly  

developed  plane  Poiseuille  f low  in a channela5 a spec i f ic   energy   prof i le  

f rom  the  isoenerget ic   re la t ion5 (which was assumed va l id   a t   t he   ups t r eam 

boundary),  and a densi ty   prof i le   f rom  the  energy  prof i le  and the  perfect   gas  

law, i.e. , 

where P i s  the  pressure,  E i s  the   spec i f ic   in te rna l   energy ,  p i s  the  

densi ty ,  and y is t h e   r a t i o  of   spec i f ic   hea ts .  The pressure   in   Equat ion  (1) 

was assumed constant  along  the  upstream  boundary. 
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The downstream  boundary condi t ion  used  in  a l l  the  AFTON ZP and 

AF'TON 2A problems  reported  here is based  largely on charac te r i s t ic   theory ;  

details   have  been  presented  in  previous  reports.  3J  The same condition 

was employed i n  our  previous  cylinder and appeared to   p rovide  

a good approximation t o  flow a t   t h e  downstream boundary. 

A no-s l ip   ru le  was enforce2  a t   the   surface  of   each  obstacle ,  

while   the flu?.d was allowed t o   s l i d e   w i t h o u t   f r i c t i o n  a t  the  system's 

la te ra l   boundar ies ,  i . e . ,  a t  a l a t e r a l  boundary,  the  normal component of 

veloci ty ,   and  the  tangent ia l  stresq, were zero. 
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2.3 Subsonic Laminar Flow Over a F l a t  P l a t e  

A study was  made  of subsonic  laminar f 10w over a f l a t   p l a t e   a t  

a f r e e  stream.Mach number of 0.20 and  a  Reynolds number per  centimeter  of 

3.2 x 10  (Problem  600.0). An Eu le r i an   f i n i t e   d i f f e rence  mesh consis t ing 

of 2912 mesh points was used in   t he   ca l cu la t ions .  Problem 600.0 was run 

from impulsive i n i t i a l   c o n d i t i o n s ,  i .e. ,  a uniform  velocity,   density,  and 

energy were imposed throughout  the  f low  field a t  zero  time,  except  for 

the  no-slip  condition a t  the plate surface.   In   order   to   obtain  the  leading 

edge solution,  the  upstream boundary was located normal t o   t h e   p l a t e   a t  

0.10 cm upstream of the   p la te ' s   l ead ing  edge. The downstream boundary 

4 

,i.7as located normal t o   t h e  plate 18 cm from the   p la te ' s   l ead ing  edge. The 

l a t e r a l  boundary,  where f r i c t ion le s s   f l ow t7as enforced, was  made parallel  

t o  the plate a t  0.593 cm from the   p la te   sur face .  Thus, the  f low  studied 

was tha t   i n   t he   en t r ance   t o  a channel of height 1.186 cm. 

Various  stages i n   t h e  development  of the  plate   f low are i l l u s -  

t r a t ed   i n   t he   ve loc i ty   vec to r   p lo t s  of Figures 1, 2,  and 3.  The vectors 

i n   t he   f i gu res  are p ropor t iona l   t o   t he   pa r t i c l e   ve loc i t i e s  a t  the  points 

of t he   f i n i t e   d i f f e rence  mesh;  a mesh point i s  located a t  the t a i l  of each 

vec tor .   In   F igure  1, the   ve loc i ty   f i e ld  i s  shown a t  an   ear ly   s tage  of 

motion.  Figure 2 c l ea r ly   exh ib i t s   t he  growth of t h e   i n i t i a l   v o r t e x   s h e e t  

a t   t h e  plate s u r f a c e   a t  a somewhat later time, when f ree   s t ream  par t ic les  

have t raveled 0.68 plate   lengths .  

From a study of t he   ve loc i ty   f i e ld  of Figure  2, i t  17as found 

tha t   the   p rof i les   over  most  of t he  downstream portion of t he   p l a t e  were 

independent of dis tance  a long  the  plate   surface.  Hence, a t  t h i s   p a r t i c u l a r  
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time the  f low  f ie ld   approaches  that  of a viscous   f lu id   over   an   in f in i te  

f l a t  plate  (Rayleigh  Problem). The v e l o c i t y   p r o f i l e   a t  a s t a t ion   co r -  

responding t o  0.7.2 plate  lengths  from  the  plate  leading  edge  (Station 

1.695 x KM, see Figure 2) was compared to   the  Rayleigh  solu-  

t ion.8 The r e s u l t s  are presented  in .Figure 4 ,  where the   r a t io   o f   l oca l  

t o   f r ee   s t r eam  ve loc i ty ,  U/U, , is  p lo t t ed   a s  a funct ion of the  Rayleigh 

s imilar i ty   parameter  = y / Z F ;  here, y i s  dis tance  normal   to   the  plate ,  

t is  the  t i m e ,  and V is the  kinematic  viscosity.  The da ta   used   to  

prepare  Figure 4 were generated by AFTON 2P a t   v a r i o u s   s t a g e s  of t he  

motion, up t o  a t i m e  corresponding to   0 .72 ,p la te   l engths   o f   t rave l  by a 

f ree   s t ream  par t ic le .  The numerical . .  r e s u l t s , d i f f e r , , f r o m   t h e   i n f i n i t e  

plate so lu t ion  by less than 5 percent;  most  of the   d i f fe rence  is  believed 

t o   r e s u l t  from the  proximity  of tpe lateral, bo,undary to   the   p la te ,   whereas .  

the  Rayleigh  solut ion  appl ies   to  ?n i n f i n i t e l y -  wide  channpl. 

. .  . 

. .  . , .  

. ,  

d From,a  study of the   veloci ty   prof i les   of  Problem 60Q.O a t  times 
. .  

later than  those  of  Figure 4 ,  b u t   a t   t h e  same s t a t i o n , ;  it, was f?.und, t h a t  

a t r a n s i t i o n  from the  Rayleigh  solqt io ,n . to   the  s teady-s , ta te   semi- inf ini te  

channel   solut ion  (s teady  f low  in   the  entrance  to  a channel)  occurred a,t 

a time corresponding,to 0.72 p l a t e   l e n g t h s   o f . t r a v e 1  by a free  s t ream , 

particle.   Hence,--in the t i m e  r equ i r ed   fo r  a f r ee   s t r eam  pa r t i c l e   t o   t r ave l  

from the   p la te   l ead ing   edge   to  a particular; ,downstream  statioo, a t r ans i - ,  

t i on  is made a t  tha t   s t a t ion ,  from  Rayleigh flow, to   s t eady   f l ow  in  a 

semi-infinite  channel.  

. .  

- .. 

I n  Figure 3 ,  laminar  boundary  layer  veloFity  profiles,   can  be , 

seen a t , a  time late enough so that s t eady- s t a t e   f l o~ i ,has   nea r ly   been  

achieved. It can   a l so   be   seen   in   F igure  3 tha t   the   ve loc i ty   vec tors  

~ . .  
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o s c i l l a t e   i n   t h e  neighborhood  of  the  plate,  leading  edge.  These  oscilla- 

t ions  are bel ieved  to   be  nmerical   ra ther   than  physical ,   resul t ing  f rom 

decelerat ion of the  flow  from Mach 2.0 t o   z e r o   i n  one  zone  along  the 

dividing  streamline a t  the  plate  leading  edge. The calculated  s teady-state  

ve loc i ty   p ro f i l e  0.72 plate l eng ths   a f t  of  the  leading  edge was compared 

to   Sch l i ch t ing ' s   so lu t ion   fo r  f10w i n   t h e   e n t r a n c e   t o  a channel.' The 

resu l t s   a re   p resented   in   F igure  5, a long  with  the  Blasius   solut ion  for  

flow  over a semi - in f in i t e   f l a t   p l a t e ; "   pos i t i on  normal t o   t h e   p l a t e   a t  

a given downstream s t a t i o n  is indicated by t h e   B l a s i u s ' s i m i l a r i t y  param- 

eter 7 = y & x . .  Although the   numer ica l   ve loc i ty   p rof i le  i s  s t i l l  

slowly  approaching a . t rue  s teady state, the   numer ica l   resu l t s   d i f fe r  from 

the  Schl icht ing  solut ion by l e s s - t h a n  7 percent. 

I 

I 
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2.4 Axially  Symmetric  Step  Calculations 

The  flow  over  an  axisymmetric.  90  step  (Problem 2.0) was  inves- 0 

tigated  using  the MTON 2A computer  code,  which  integrates  numerically  the 

equations  of  two-dimensional  transient  axisymmetric  continuum  motion. 

The body  configuration  of  Problem 2.0 was  taken  from  a  portion  of  a  Saturn 

test  model  which  was  experimentally  investigated  at  the  Marshall  Space 

Flight  Center. The outer  radius  of  the  step was.7 in.  and  the  inner 

radius  was 5 in. The complete  Saturn  test  model  configuration  is  shown  in 

Figure 6. The  finite  difference  mesh  utilized  for  this  study  was  composed 

of 3080 mesh  points  with an upstream  boundary  located 10 in.  forward  of 

the  step  (Sta.tion  -10,  see  Figure 6) and  a  downstream  boundary  located 

9.5  in.  aft  of  the  step  (Station  9.5  in.,  see  Figure 6). The lateral 

boundary  of  the  mesh  was  located  15.5  in.  from  the  axis  of  the  body.  The 

free  stream  Mach  number  was  1.5,  and  the  free  stream  Reynolds  number  was 

2.8 x 10 per  foot.  Uniform  free  stream  conditions  were  imposed  at  the 

upstream  boundary  of  the  mesh  and  impulsive  initial  conditions  were  used 

to  start  the  problem. 

6 

The development  of  the  bow  shock  which  recedes  from  the  step, 

is  illustrated  in  the  velocity  vector  plots  of  Figures 7 and 8. Figure  7 

gives  the  impulsive  initial  flow  field,  while  flow  over  the  axisymmetric 

step  is  shobm  in  Figure 8 at  an  early  stage  of  motion  (characteristic  time # 

~ ~~ ~ 

'The characteristic  time  is  defined as the  number  of  step  heights  that 
a  particle  traveling  with  free  stream  velocity  would  move  in  a  given  time. 
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of 7.85). In   F igu re  8, t h e  bow shock  can  be  seen  receding  from  the  step. 

Downstream of  the bow shock ,ve loc i ty   osc i l la t ions  are evident which are 

similar to   t hose  found i n  a region  of  turbulence.  Although  Problem  2.0 

has  not  been  run much beyond a c h a r a c t e r i s t i c  time of 1.57,  the  behavior 

of the   f low  f ie ld   agrees  a t  least qua l i ta t ive ly   wi th   ava i lab le   exper imenta l  

results;"  turbulent  oscillations  have  been  observed i n  the  separated 

region between t h e  bow shock  and  the  step. 

Since a bow shock is  a permanent fea ture  of the  f low  fteld  of 

Problem  2.0, i t  seems appropriate   to   discuss   br ief ly   here   the  t reatment  

of  shocks i n   t h e  AFTON 2A code. The AFTON  2A equations are b a s i c a l l y  

Lagrangian,  and i n  most n e e r i c a l   a n a l o g s  of  the  equations of  motion i n  

Lagrangian  form,  shock waves are not computed a s   d i sc re t e   d i scon t inu i t i e s .  

In s t ead ,   d i s s ipa t ive  stresses are introduced  which  cause  the  mathematical 

sur faces   o f   d i scont inui ty   to   be   rep laced  by t h i n   l a y e r s   i n  which t h e  

pressure,  density,  temperature, etc. ,  vary  rapidly  but   cont inuously.   For  

flov7s which are idea l ly   i nv i sc id ,   t he  AFTON codes present ly  employ an 

a r t i f i c i a l   v i scos i ty   func t ion   deve loped  by  von Neumann and  Richtmyer 

t o   e f f e c t  shock   t rans i t ions ;   wi th   th i s   d i ss ipa t ion   func t ion ,  i t  can  be 

shovm that  the  equations  of  motion are consis tent   with  the Rankine-Hugoniot 

equations.   In  the  case  of  viscous  f low,  dissipative stresses are an 

essent ia l   e lement   in   the  formulat ion of the  equations  of  motion, and it 

vas  not   found  necessary  to   use  an  ar t i f ic ia l   d iss ipat ion  funct ion  e i ther  

in  the  axisymmetric f1o-c.r ca l cu la t ions   d i scussed   abwe ,   o r   i n   t he  f l a t  

p la te   ca lcu la t ions   d i scussed   in   Sec t ion  2.5. It i s  evident from Figure 8 

that  the  variables  of  the  motion  nevertheless changed q u i t e   a b r u p t l y   i n  

the  neighborhood  of  the bow shock  of  Problem  2.0. 

12 

. .  

13 



Problem 2.0 was primarily a p i l o t  problem  designed t o   t e s t   t h e  

AFTON 2A code for  axisymmetric  viscous  flow, and i t  was therefore  of 

minor conce'rn that  the  uniform  upstream boundary condition imposed i n  

the problem is not  physically  correct.  Actually,  the  flow  upstream of 

the  Saturn test model s t e p  i s  influenced by the  forebody  geometry. I n  

order   to   account   for   the   e f fec ts  of the  forebody, a problem of flow  over 

a f l a t  plate f i r s t  had t o  be   run ;   t he   f l a t   p l a t e   f l ow  f i e ld   a t   a -d i s t ance  

from the plate edge equa l .   t o   t he   l eng th  of the  forebody would then  serve 

as boundary condition  data  for  the  axisymmetric s t e p  (see  Section  1.2). 

2.. 5 Supersonic   Flat   Plate   Calculat ions 

In   o rde r   t o   gene ra t e  boundary data  for  the  axisymmetric  step 

problem,  flow  over a f l a t  plate was numerical ly   invest igated  a t  a f r e e  ' 

stream Mach number of 2.0 and a t  a  Reynolds number per  foot of 3.48 x 10 . 
The v e l o c i t i e s ,   d e n s i t i e s ,  and energ ies   a t  a distance of 0.75  plate 

lengths from the  leading edge (Stat ion -16,  Figure  6) were recorded  for 

this   purpose  in   each  of   three  f la t   p la te   calculat ions.  

6 

F i r s t ,  a  problem designated  as Problem  158.0 was s t a r t e d  'from 

impuls ive   in i t ia l   condi t ions ,   wi th  a f in i t e   d i f f e rence  mesh cons i s t ing  of 

&ZOO po in t s   i n  a rectangular  array. '  The points were separated by uniform' 

increments  of  0.04 f t  a long  the  plate   surface,  and  .008 f t  normal' t o   t he  

plate .  The plate f o r  Problem  158.0 was'5.92 f t  long. A t  the   ax ia l .   s ta t ion  

-16 in.   (see '  Fibre 6), a turbulent  boundary  layer would then  have a 

, .  

thickness  equal  ' to  about 6 cel l  widths.  In  Problem 158.0.,  a l a t e r a l  

boundafy was p laced   pa ra l l e l   t o   t he  plate s u r f a c e   a t  a dis tance of 

0.388 f t .  The i n l e t  boundaky I n  ProGlern 158.0 was '0.04 f t '  upstream of ' . '  

the   plate   leading edge with one  zone  between the  leading .edge  and the 

14 



upstream  boundary. A t r i angu la r  trip was placed on the   p l a t e  s.urface a t  

a dis tance of  0.287 f t  from the  plate   leading edge. The t r i p  height   of-  

.003 f t  i s  equal   to  80 percent of the  laminar  boundary  layer  thickness 

a t   t h i s   p o s i t i o n .  

The second  problem run in   t h i s   numer i ca l   i nves t iga t ion  was 

Problem 560 .O., Problem  560.0 was similar t o  Problem  158.0, bu t   t he   i n l e t  

boundary C7as moved 0.1 f t  upstream of the plate leading  edge,and 12 zones 

were put  between  the  leading  edge and upstream  boundary.  Problem  560.0 

a l s o  had closer  mesh point  spacing  normal t o   t h e  plate than  did Problem 

158.0, the minimum increment i n  Problem  560.0 being .006 f €  . A t r i angu la r  

t r i p  vas  placed on the   p la te   sur face  a t  a dis tance of .663 f t  from the- 

plate  leading  edge i n   t h i s  problem. F i n a l l y ,   i n  Problem  560.2, f i v e  

t r i angu la r  t r i p s  replaced  the  lone t r i p  of  Problem  560.0. 

A ve loc i ty   vec tor   p lo t  of  a p la te   f low  f ie ld   ob ta ined   in  Prob- 

lem 158.0 is presented  in   Figure 9, a t  a time when f ree   s t ream  par t ic les  

'have t raveled .49 pla te   l engths .   S ince   the   in le t  boundary was placed 

upstream of the  plate   leading  edge,   the   effect  o f  the   l ead ing  -edge on 'the 

flow  can  be  seen. A t  the  Reynolds number f o r  t3e problem  'the-  flow  sh&ld 

bec 'ke  turbulent ,  and random o s c i l l a t i o n s  a$e, i n   - f a c t , '   s e e n   i n   t h e  .. 

veloci ty '   vectors   near   the  plate   surface '   s tarfLng fr&n t i e   p l a t e   l e a d i n g  

edge. The t r i p  i s  a l so   i nd ica t ed   i n   F igu re  9.  The a v e r a g e ' b o k n d a ~  

l aye r   ve loc i ty   p ro f i l e  was' computed 'at a"distan& A € '  .155 p la te .  lengths 

from the plate leading  edge. The r e s u l t i n g  profile is" presented' 

i n   F igu re  10,-  along  with  velocity  p.kofiles  obtained'  fr&'  the  1/7' power 

1a1.r'~ o f . h r b u l e h c e ,  aGd fro&. Croc-co"s ' f l a t  p la te   ld in inar  bbuhdary l a y e r  
r ,  , , , ,' ,'.3 .' . t-: 

s o l u t i o n   a t  Mach 2.0. 14' It can b'e seen f rob  Figure 10 tha t   t he  caliu- ' 

lated  average  velocity  progile '  i's much c loser   toea  177 powgr laiq; 

8 ,  
, :  - -  .a . .' . > 
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the  Crocco prof i le .   In   fac t ,   the   ca lcu la ted   average   ve loc i ty   p rofs le  

approximates  a 115 power law. In   F igu re  9, i t  can  be  seen  that   the  plate 

leading  edge  not  only  produces a shock wave, bu t   a l so  seems t o  be the 

source of the  " turbulent"   osci l la t ions.  It i s  bel ieved  that   decelerat ion 

of the  flow from Mach 2.0 t o  z e r o   i n  one cel l   width  a long  the  dividing 

streamline a t  the  plate  leading  edge, i s  the  primary  cause of t he   o sc i l -  

l a t i ons .  As noted in   Sec t ion   2 .3 ,   s imi la r   f luc tua t ions  were observed  for 

subsonic  flow  over a f l a t  p l a t e .  

The f l a t  plate r e s u l t s  of  Problem  158.0  were encouraging. How- 

ever, a conclusive  demonstration  that   turbulence  can  be  calculated  directly 

from the  conservat ion  pr inciples  of classical   mechanics,  would exh ib i t  

the  process of t r a n s i t i o n  from laminar  to  turbulent  flow. With t h i s  

ob jec t ive   i n  mind,  Problem  158.0 was re run   wi th   a   f iner   f in i te   d i f fe rence  

mesh i n  the  neighborhood of the plate  leading  edge, so tha t   g rea t e r  

accuracy  might  be  obtained in   descr ibing  the  leading edge  shock wave, 

and subsequent  laminar  boundary  layer growth near  the  leading  edge. I n  

order   to   induce   t rans i t ion   to   tu rbulence ,  a t r i angu la r  t r i p  was placed 

on the plate surface a t  a s ta t ion  corresponding  to   a  Reynolds number of 

2.0 x 10 . The t r i p  height was  made equal  to  the  laminar boundary layer  

thickness a t  t h i s   s t a t i o n ,  and the t r i p  width was 6.35 laminar  boundary 

layer  thicknesses.  

6 

For Problem  560.0, the   f in i te   d iEference  mesh  was composed of 

6683 mesh points ,  and i s  shown in   F igu re  11; impuls ive   in i t ia l   condi t ions  

were employed i n   t h e  problem. A veloc i ty   vec tor   p lo t  of the  f low  f ie ld  

of  Problem  560.0 is  presented  in  Figure 12. An oblique  shock  front,  and 

a laminar  f low  field below it, a r e  seen i n   t h e  neighborhood of the   p la te  

leading  edge. As Figure 12 shows, the change i n  flow  properties  across 

16 
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the   obl ique shock f ron t   a t   t he   p l a t e   l ead ing   edge ,  was more g radua l   i n  

Problem  560.0 than  for  the  axisymmetric  step (Problem  2.0;  see  Section 

2.4).  In  the.neighborhood of the plate leading  edge (where the  densi ty  

of mesh points  i s  grea tes t ) ,   the  shock f r o n t  was approximately  four  zones 

thick.  As i n  the  case of axisymmetric  flow,  the f l a t   p l a t e   c a l c u l a t i o n s  

were made without   introducing  an  ar t i f ic ia l   d iss ipat ion  funct ion.  

The angle  between  the  leading  edge  shock and the  plate   of  Prob- 

lem 560.0, t7as compared to  the  corresponding  angle  calculated from a com- 

bination  of  boundary  layer  theory and the jump conditions  across  oblique 

shocks. A shock  angle  of 32.9' r e l a t i v e   t o   t h e  plate was estimated from 

the  veloci ty   vector   plot   of   Figure 1 2 ,  as  an  average  of  the  angles between 

the   p l a t e  and each  of two s t r a i g h t   l i n e s  which approximately bound the 

oblique  shock  region. An independent  estimate of the  angle  of  the  lead- 

ing-edge  shock was obtained, assuming tha t   t he  boundary layer   near   the 

p la te   l ead ing  edge e f f ec t ive ly   conve r t s   t he   p l a t e   t o  a  wedge,  which 

causes  the  free  stream  flow  to  turn by means of an  oblique  shock. Accord- 

ingly,   the  angle of the  shock above a given  point  of  the  boundary  layer 

surface,  v7as computed a s   t h a t  due t o  a wedge with a slope  equal  to  the 

de r iva t ive  of the  displacement  thickness, 6*, with respec t   to   d i s tance ,y ,par -  

a l le l  to   the   p la te  . The Stewartson  transformation16 ~a7as employed to  determine 

a boundary layer  displacement  thickness  for  compressible  f low,  using  the 

momentum thickness , Bi, and displacement  thickness, hi ,  of  an  equivalent 

incompressible flOT.7. For  the  adiabatic  flow of a gma-law  gas   over  a 

15 

* 

f l a t   p l a t e   w i th   P rand t l  number uni ty ,   the   per t inent   re la t ionships   a re   as  

follows: 
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where Rei i s  the  Reynolds number for  the  equivalent  incompressible  f low, 

&J is  the free stream Mach number, Urn is the  f ree   s t ream  veloci ty ,  T~ is  

the   f ree  stream temperature, T is  the  free  stream  stagnation  temperature, 

P, i s  the   f r ee  stream pressure,  P i s  the   f r ee  stream stagnat ion  pressure,  

Pm is  the   f ree  stream densi ty ,  P t he   f r ee  stream stagnat ion  densi ty ,  CLrn i s  

the   f r ee  stream v i scos i ty ,  and ps i s  the   f r ee  stream s tagnat ion   v i scos i ty .  

The leading  edge  shock  angle, 8 ,  is  then  determined from the  oblique 

shock  equations , where the   e f f ec t ive  wedge angle e is  given by 

S 

S 

S 

17 

8 = tan(6  /y) 
* 

In   the  present   case,   the   dis tance y was taken  as .1 f t  from the  leading 

edge  of  the  plate. A t  th is   dis tance  the  obl ique shock  produced i n  Problem 

560.0 is c l e a r l y   v i s i b l e   i n   F i g u r e  1 2 ;  a t   t h e  same time,  the bow shock  near 

the t i p  of   the  plate ,  where the  parabolic  boundary  layer  surface  meets  the  plate 

edge a t  a r igh t   angle ,  i s  of insignificant  dimension compared with .1 f t .  

On th is   bas i s ,   the   angle  of the  oblique  shock  calculated from Equations (2)-(6) 

and the  oblique  shock  transit ion  equations,   differed from tha t   o f  Problem 

560.0 by 4.5%. 
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Do~7nstream  of the  leading-edge  shock of  Problem  560.0, i n   t h e  

neighborhood  of   the,   t r ip ,   osci l la t ions  are   seen  in   the  veloci ty   vectors  

of Figure 12 ;  however, they  appeared  to damp out  a s h o r t   d i s t a n c e   a f t  

of the t r i p .  The frequency  of  the  disturbance  introduced by t h e   t r i p  

was eva lua ted   re la t ive   to  measurements of n e u t r a l   s t a b i l i t y  made by 

Schubauer and  Skramstad"  on  a subsonic f l a t  pl&e a t  zero  incidence 

(see  Figure  13), and the   the   numer ica l   s tab i l i ty   ca lcu la t ions  of Mack 

f o r  a f l a t   p l a t e   a t  Mach 2.2 (see  Figure 14). The disturbance  frequency 

due to   t he  t r i p  is  seen  to  l i e  i n   t h e  damped reg ion   of   the   neut ra l   s tab i l i ty  

curves  for  both  the  subsonic and supersonic  platb  flows. Thus, the  leading 

edge phenomena calculated  numerically were q u a l i t a t i v e l y   c o r r e c t   f o r   t h i s  

case,  and a disturbance  of  greater  amplitude and frequency is  necessary 

to   induce  t ransi t ion  , to   turbulence.  

19 

In  order  to  increase  the  amplitude and frequency of the  input  

dis turbance,   f ive t r i p s  (each of height  2.0  laminar . .  boundary layer   thick-  

nesses and width 2.67 laminar  boundary  layer  thicknesses) were introduced 

a t  a s ta t ion   cor responding   to  a Reynolds number of  2.0 x 10 (Problem 

560.2). The f i n i t e   d i f f e r e n c e  mesh i n  Problem  560.2 is  shotm in   F igu re  5. - 
Velocity  vector  plots  of  the computed floT.7 f i e ld   a r e   p re sen ted   i n   F igu res  

16 and 17 a t  times when the   f ree  stream p a r t i c l e s  have moved .245 p l a t e  

6 

lengths and  .452 p la te   l engths ,   respec t ive ly .  Random o s c i l l a t i o n s  are 

seen  propagating  dotmstream i n   t h e  wake behind  the t r i p  region. The 

frequency of the  dis turbance  introduced  by  the  t r ips  i s  a l so  compared t o  

the  experimental  data  of  Schubauer and Skramstad and the  numerical  data 

of Mack (see  Figures  13 and 14).  It is seen  that   the  disturbance  frequency 

introduced by the t r i p s  is  wi th in   the   uns tab le   reg ion  bounded by  the  neutral  
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stabi l i ty   curves   for   both  the  subsonic  and supersonic  plate  f lows. Hence, 

it was bel ieved  that   the   dis turbance produced i n   t h e  t r i p  region would 

cause t ransi t ion  to   turbulence.  However, upon further  running of  Problem 

560.2, it was found that  the  amplitude of the  disturbance  introduced by 

the   t r ip   cont inua l ly  damped as time progressed. Thus, s teady-state  

laminar  flow  over a f l a t   p l a t e   (w i th   a  t r i p )  was approached,  instead of 

turbulent  f low  over a f l a t   p l a t e .  
, 

Experimentally i t  has  been shown tha t   vo r t i ce s ,  which  con- 
20 

t i n a l l y  form and shed  behind  a t r i p ,  are  the  primary  source of the  per- 

turbations which cause  transit ion  to  turbulence.   Study of the  numerical 

f l a t   p l a t e   f l ow  f i e ld   da t a   i nd , i ca t ed   t ha t  no vo r t i ce s  had  developed i n  

the  region  behind  the t r i p .  Since  the AFTON 2P computer  code is capable 

of ca l cu la t ing   vo r t i ce s   beh ind   an   obs t ac l e   i f   a   su f f i c i en t ly   f i ne  mesh 

is  i t  was  concluded  that   for  the problem a t  hand,  the mesh points 

were too  widely  spaced i n   t h e   v i c i n i t y  of the t r i p ;  in   o rder   to  compute 

vort ices   behind  the t r i p ,  and the  subsequent   t ransi t ion  to   a   turbulent  

boundary  layer,  a  greater mesh point  density  than  that   of Problem 560.2 is 

needed i n   t h e  neighborhood  of  the  plate  surface and the   t r ip .  
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2.6  Channel  Calculations 

In   o rde r   t o   de f ine   t he   vo r t i ce s  which  form  and shed  behind a 

t r i p  i n   g r e a t e r   d e t a i l   t h a n  was p r a c t i c a l   i n   t h e   s u p e r s o n i c   f l a t  plate prob- 

lem, it t7as decided to   invest igate   numerical ly   ful ly   developed  plane 

Po i seu i l l e   f l ow  in  a two-dimensional  channel,  rather  than  to  recompute 

Problem  560.2 with a f i n e r  mesh. Fully  developed  channel  flow  changes 

the   s ca l e  of the  problem s o  tha t   t he   en t i r e   r eg ion  of ca l cu la t ion  lies 

within  the  boundary  layer.   In  the  supersonic  plate problem, the  boundary 

layer  consti tuted  about 5 percent of the  f low  f ie ld .  Thus, 30 points  

could  be  obtained  in  the boundary layer  in  the  channel  problem  instead of t h e  

4 points which defined  the boundary l aye r   p ro f i l e s   i n   t he   supe r son ic   f l a t  

p l a t e  problem. It was f e l t   t h a t   s u c c e s s   i n   c a l c u l a t i n g   t h e   t r a n s i t i o n  

from laminal   to   turbulent   f low  in  a channel would demonstrate  conclusively 

that   turbulent   f low  f ie lds   can be computed d i r e c t l y  from the  conservation 

principles  of  classical   mechanics.  Then, w i th   f i ne r  meshes than  those 

used i n  Problems  560.0  and  560.2, we would expect   to   calculate   turbulence 

on the   supe r son ic   f l a t  plate. 

The channel  flow  study (Problem  561.0) was conducted at an 

average Reynolds number of 10,000  based on the  channel  height and average 

ve loc i ty  a t  the  channel  entrance.  This i s  about  twice  the  experimentally 

measured c r i t i c a l  Reynolds number f o r   t r a n s i t i o n  from  laminar t o   t u rbu len t  

flow i n  a channel. A wire t r i p  was placed on the  top and bottom  walls of 

the  channel a t  a dis tance of  .858 channel  heights  from  the  channel  entrance. 

The wire t r i p  was s i zed  so t h a t   t r a n s i t i o n  would occur  immediately downstream 
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2 1  
of   the  t r ip .   According  to   the  experimental   resul ts  of  Fage  and Preston 

the  minimum height   for  which t rans i t ion   occurs  a t  t h e   t r i p  element i t s e l f  

can  be  found from the   r e l a t ion  

U* K 
V 

7 c r i t  2o 

where : 

7 w a l l  shear stress 
W' 

p, densi ty  

' Kcrit' c r i t i c a l   t r i p   h e i g h t  

V, Kinematic  viscosity 
22 

From the  fully  developed  laminar  channel  solution'  

where : 
- 
U, average   ve loc i ty   a t   channel   en t rance  

D, channel  height 

Combination  of  Equations (7) and (8) y ie lds  

Kcrit  20 . .  
' D  6 %  

For l$, = 10,000, we obtain Kcrit/D = .0818. However, t o   i n s u r e  an 

e f f e c t i v e   t r i p   i n  this numerical  study, Kcrit/D = .14 was used. 

Tine f j .n i te ,d i f fe rence  mesh f o r  Problem  561.0 was developed  from, 

the  s t reamlines  and p o t e n t i a l   l i n e s  of   the  potent ia l   theory  solut ion  for  

flow  over a wire t r i p .  The f i n i t e   d i f f e r e n c e  mesh,  which is composed of 
23 
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4717 points ,  is sholm, in   F igu re  18. Since  the  channel  centerline i s  an 

ax i s  of  symmetry, the lateral boundaries of the  region of ca l cu la t ion  

consis t  of the  channel  centerline and the  channel  wall. The plane 

Po i seu i l l e   pa rabo l i c   ve loc i ty   p ro f i l e  was imposed a t   t h e  upstream 
22 

boundary  of the mesh. The average Mach number at   the   upstream boundary 

was 0.20. A no,-slip  condition was imposed along  the plate  and t r i p  

surfaces .   Fr ic t ionless   f low was requi red   a long   the   cen ter l ine  of the 

channel, and t h e   c h a r a c t e r i s t i c  boundary condition employed previously 3 a 7  

was imposed a t   t h e  downstream  boundary.  The values of the   f low  f ie ld  

variables  at   the  upstream  boundary were used  as   ini t ia l   values   throughout  

the mesh. 

So f a r ,  Problem  561.0 has  been  run t o  a c h a r a c t e r i s t i c  time of 

9.9 . The in i t i a l   impu l s ive   f l ow  f i e ld  i s  shotm in   t he   ve loc i ty   vec to r  

p l o t  of Figure 19 ( c h a r a c t e r i s t i c  time of 0.0). The po ten t i a l   f l ow  f i e ld  

solut ion  about   the t r i p  i s  obkained  during  the  early  stages of  motion 

(see Figure  20). A t  a c h a r a c t e r i s t i c  time of  2.95, a vortex formed behind 

the t r i p .  A ve loc i ty   vec tor   p lo t  of t h i s   f l ow  f i e ld  i s  shotm in   F igu re  21. 

Vortex  shedding 1.7as i n i t i a t e d   a t  a c h a r a c t e r i s t i c  time of about  5.75  (see 

the   ve loc i ty   vec tor   p lo t  of Figure  22). A secondary  vortex i n  an   ear ly  

formative  stage, is a l so   i nd ica t ed   i n   F igu re  22. In   F igure  23 (charac- 

# 

t e r i s t i c  time  of  8.75) t h e   f i r s t   v o r t e x   h a s  moved dotmstream  and the 

second  vortex is well-formed  behind  the  trip. Some random f luc tua t ions  

are a l so   i nd ica t ed   i n   t he   ve loc i ty   vec to r s  between  the two vor t i ce s .  A t  

'The c h a r a c t e r i s t i c  time (7) corresponds  to  the number of t r i p  heights of 
t r a v e l  by a p a r t i c l e  moving wi th   the   cen ter l ine   ve loc i ty  a t  the  upstream 
boundary, i.e., 7 = 1.5t7/Kcrit. 
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a  characteristic  time  of 9.9 (Figure 24),  the  first  vortex  continues  to 

propagate  downstream.  However,  the  secondary  vortex (or  eddy)  has 

dissolved  and  fluctuating  velocities  have  replaced  it. In previous 

vortex  shedding  problems7 an eddy  once  formed  grew  into  a  vortex  which 

shed.  This  is  our  first  numerical  calculation  of  the  formation  and  dis- 

integration  of an eddy. 
24 

Schlichting  described  turbulence in terns  of  portions  of  the 

fluid  (eddies)  ‘having  their  own  intrinsic  motion  superimposed  on  the 

main  flow. The continual  formation  and  disintegration  of  these  eddies 

determines  the  scale  of  turbulence.  Turbulent  eddies  were  made  visible 

by  photographing  turbulent  flow in a  water  channel  with  varying  capera 

speeds.  Photographs  of  this  kind  were  taken  by  Ni  uradse,  and  are 

presented in Figure 25. The numerical  results o Problem  561.0  have 

duplicated  the  eddy  formation  and  disintegration  process  characteristic 

of  turbulence.  Thus,  it  is  believed  that  further  running  of  Problem  561.0 

will  result in a  calculation  of  the full transition  from  laminar flop7  to a 

two-dimensional  analog  of  true  three-dimensional  turbulent  flow. 

6/” 
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3.0 CONCLUSIONS AND Rl3CO"EM)ATIONS 

The r e s u l t s  of the  laminar   plate   calculat ions performed i n   t h i s  

program, par t icular ly   for   supqrsonic   f low,   provided  fur ther   evidence of 

t h e   a b i l i t y  of exis t ing  numerical   techniques  to   give  quant i ta t ively  useful  

descr ipt ions of laminar   f low  f ie lds ;   ear l ie r   ca lcu la t ions  of laminar 

boundary layer  formation on a r igh t   c i r cu la r   cy l inde r   a l so  showed excel- 

l e n t  agreement  with  boundary  layer  profiles  obtained by a n a l y t i c  methods. 

Furthermore,  although i n   p r a c t i c e  no f i n i t e   d i f f e r e n c e  mesh can  provide 

de t a i l   w i th in   t he  boundary layer  as the  leading edge  of t he   p l a t e  i s  

approached, i t  appears   that   lack  of   def ini t ion  near   the  leading edge  does 

not   affect   the   accuracy of a numerical   f low  f ie ld   fur ther  dotmstream, 

where the boundary layer  thickness is several  times  the  distance  between 

adjacent mesh points.   In  fact ,   even  the  leading  edge  shock was found t o  

be accura te ly   represented   in   the   f in i te   d i f fe rence   so lu t ion .  We therefore  

conclude  that  as a p r a c t i c a l  matter, using  existing  numerical  methods  and 

computers, a wide  and  important  class of laminar  flows  can  be  calculated 

numerically,  even when f i n i t e   d i f f e r e n c e   c e l l s  of la rge   aspec t   ra t io  4 )  

are employed in   the  process .  

A f u r t h e r   r e s u l t  of cons iderable   theore t ica l   in te res t  i s  t h a t  

shocks  can  be  included i n  a t  l e a s t  some viscous  compressible  supersonic 

flow problems wi thout   the   need   for   an   a r t i f ic ia l   v i scos i ty .   Per t inent  

examples i n   t h i s  program were the  laminar p l a t e  leading  edge  shock,  and 

the bow shock-  which recedes from  an  axisynrmetric s t e p  under  impulsive 

in i t i a l   cond i t ions .  While i t  was not clear whether  the  f low  field 

viscosi ty ,   and/or   the  discret izat ion  error ,   and/or   the  conservat ion 
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propert ies  of the   f in i te   d i f fe rence   equat ions ,  were responsible   for  

e f fec t ing   the   shock   t rans i t ion ,   the   fac t  i s  t h a t   t h e   t r a n s i t i o n  was 

made. In   fu tu re   ca l cu la t ions  of viscous  compressible  flow, w e  w i l l  

therefore   not   int roduce  an  ar t i f ic ia l   v iscosi ty   without   f resh  evidence 

of the need f o r  it; it  appears  that   the Rankine-Hugoniot equations w i l l  

be s a t i s f i e d  anyway across  an  ambient  shock. 

A n  important  negative  result  of the   ' f l a t   p la te   ca lcu la t ions  

reported  here is tha t   even   the   de l ibera te   in t roduct ion  of roughness,  with 

an amplitude  comparable t o   t h a t  of the boundary layer  thickness,  produced 

only  decaying  transients.   Since  the  f low  parameters  were  given  values 

known t o   r e s u l t   i n   t u r b u l e n t  boundary  layer  formation,,we must  conclude 

e i t h e r   t h a t  a turbulent boundary layer on a plate  cannot be calculated 

using  the AFTON 2P code,   or   that   the   calculat ion  requires  a denser set 

of mesh points   than  that  employed i n   t h i s  program; we a re   i nc l ined   t o  

bel ieve  the lat ter,  as  noted below. 

The calculat ion of flow Over a t r i p  i n  a narrow  duct  has  pro- 
, .  

vided  the  strongest  evidence  to  date  that   the  numerical  methods  embodied,,, 

i n  codes l i k e  AFTON 2P are capable of providing a quant i ta t ive  account  of 

turbulent  flow.  This w e  consider  the most important   resul t  of the group 

of calculat ions  reported  here .  The f a c t   t h a t  a tes t   case  had t o  be care-.. 

f u l l y   s e l e c t e d   t o  make even this  l imited  demonstration  possible,  i s  a t  

l e a s t   p a r t l y   o f f s e t  by the  order-of-magnitude  reduction  in computing costs  

which  can be achieved by  making use of recent advances i n  numerical methods 

and i n  computing  hardware. By incorporat ing  into  the AFTON 2P code time- , 
saving  techniques  a l ready  tes ted  in   small-scale   calculat ions,  and by 

26 



employing the  most   eff ic ient  computers present ly   avai lable ,  it appears 

l i k e l y   t h a t  a s i g n i f i c a n t   c l a s s  o f  turbulent   f low  f ie lds   can be  calcu- 

lated  numerically,   including a turbulent  boundary  layer on a f l a t  plate. 

I n   f u t u r e   c a l c u l a t i o n a l  programs  of the  kind  discussed  here,  the 

h ighes t   p r ior i ty   should  be assigned  to   carrying  the  t r ip- in-a-narrowduct  

problem t o   a s   l a t e  a stage  of  development a s  i s  economically  feasible.  

The importance  of t h i s  problem in   p rovid ing  a d e f i n i t i v e  answer t o   t h e  

f e a s i b i l i t y  of AFTON 2P calculat ions of turbulence,  outweighs  the  fact 

t h a t   t h e   f l o w   i t s e l f  i s  qu i t e   spec ia l ,  and  perhaps  qf l i t t l e  i n t r i n s i c  

i n t e r e s t .  Of less urgency,  but s t i l l  h ighly   des i rab le ,  is the  incorpor- 

a t i o n  of  improved numerical  techniques  into  the AFTON 2P code, and the 

adaptation of the code t o   t h e  most e f f i c i e n t  computers present ly   avai lable ,  

o r  soon t o  become operational.  The potent ia l   reduct ion of  computing cos t s  

for   p resent ly   feas ib le   ca lcu la t ions ,  and the  potent ia l   enlargement  of the 

class of calculable   f lows  to-be  achieved  thereby,   just i fy   considerable  

emphasis on these  tasks .  It is  then recommended that  proof of the  gain 

i n   e f f i c i e n c y  s o  obtained  be  exhibited  in  the form  of a successful  calcu- 

l a t i o n  of turbulent  boundary  layer  formation on a f l a t   p l a t e .  Assuming 

tha t   the   resu l t s   o f   such  a f i a t  plate -ca lcu la t ion   a re   sa t i s fac tory ,   the  

ca l cu la t ion  of flow  over a step on a Saturn V missile should  then  be 

resumed because of i t s  prac t ica l   s ign i f icance .  
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Problem 
Number 

600.0 

158. o 

560.0 

560.2 

2.0 

561.0 

Reynolds 
Number 

3.2 x 10 4 
per cm 

3.48 x 10 
per f t  

3.48 x 10 
per f t  

6 

6 

3.48 x lo6 

2.8 X IO 

I x lo4 

per f t  

6 

per f t  

Time Step 
Increment 

3 x 
msec 

1 x 
sec  

4 x 

4 x 

I x 

sec  

sec 

sec  

6.125 x 
msec 

TABLE 1 

SUMMARY OF  PROBLEMS RUN 

No. of Time 
Steps Run 

0 - 14,000 

0 - 2,360 

0 - 1,500 

0 - 2,280 

0 - 1,500 

0 - 3,820 

Type of  Upstream 
Boundary Condition 

Uniform Energy,  Density 
and Velocity 

Uniform Energy,  Density 
and Velocity 

Uniform  Energy,  Density 
and Velocity 

Uniform Energy,  Density 
and Velocity 

Uniform Energy,  Density 
and Velocity 

Veloc i ty   p rof i le   for  
plane  Poiseuille  f low, 
energy  profile from 

and dens i ty  p ro f i l e  
isoenergetic r e l a t ion ,  

from per fec t  gas  equa- 
t ion of s t a t e   w i t h  
constant  pressure 

Type of I n i t i a l  
Condition 

Impulsive 

Impulsive 

Impulsive 

Impulsive 

Impulsive 

I n i t i a l  flow 
f i e l d   t h a t  of 
steady  plane 
Poiseuille  f low 

Dimensions 
of F in i t e  

Different Mesh 

16 x 182 

2a x 150 

41 x 163 

41 x 163 

35 X aa 

30 x 157 
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18. 17. 
AXIAL STATION (cm) 

Figure 2.  Velocity  vector  plot  f o r  laminar 
flow  over a f l a t   p l a t e   a t  a time 
when free  s t ream  par t ic les  have 
t raveled .68 plate  lengths;4 
Problem 600.0, R = 3 . 2  x LO per  
c m ;  M, = .20. 
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nn +- 5. /-- 4. 
&PLA'JX  LEADING  EDGE 



flow  over a f l a t :   p l a t e   a t  a time 
when free  stream  particles have 
traveled 1.36 plate   lengths-  
Problem 600.0, R = 3.2 x l oa  per  
cm; M, = -20. 
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'Figure 4. Veloc i ty   p rof i le  normal t o  a f l a t   p l a t e   unde r   cond i t ions  
of Rayleigh  flow; R = 3.2 x lo4 per cm, 1.L = .20; Curve A 

AFTON 2P output   data  (Problem 600 .0 ) ,  12.9 cm a f t  of  the 
is the   Rayleigh  veloci ty   prof i le ;   the   data  poin ts  are 

plate  leading  edge, and a t  d is tances  normal to   t he   p l a t e  
of y = -02  cm, y = -041 cm, y = .063 cm, and y = .09 cm; 
each  data symbol represents  a time, T i ,  which corresponds 
to   the  number of p la t e   l eng ths  of t r ave l  by a f r e e  stream 
par t i c l e .  
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30 1.00 2.00 S.00 9.00 5.00 600 7.00 0.00 9.00 

Figure 5. Velocity  profi le   in the boundary layer on a f la t   p la te   a t  Ilach 0.20 w i t h  a 
Reynolds number of 3 .2  x lo4 per cm; Curve A laminar prof i l e   in  the  entrance 
t o  'a channel. Curve B Blasius  f lat   plate   velocity  profi le ,  OAFTON numericil 
calculations from  Problem 600.0. 
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Figure 6. Saturn V wind tunnel configuration 
experimentally  investigated at  the 
Marshall Space  Flight Center. 
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Figure 12. Velocity  vector  plot  of  the  f low  field about a 
"""""""" 

part ic les  have moved 0.1775  plate  lengths; Prob- 
f i n i t e   f l a t   p l a t e   a t  a  time when the  free stream 

lern 560.0, R = 3.48 x IO6 per  foot,  PL = 2.0; 

i n  a frame moving downstrevn a t  M = 1.49. 
"""""""" f in i te   d i f ference  mesh (41 x 163). Flow viewed 
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560.2 in  the  vicinity of the  plate  I 
leading  edge. 
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Figure 12. Velocity  vector  plot   of  the  flow f i e l d  about a 

f i n i t e   f l a t   p l a t e   a t  a time when the free stream 
part ic les  have moved 0.1775  plate  lengths; Prob- 
lem 560.0, R c 3.48 x lo6 per foo t ,  l 4 n  2.0; 

i n  a frame moving downstream a t  M = 1.49. 
"""""""" f in i te   d i f ference  mesh (41 x 163) .  Flow viewed 
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Figure 13.  Curves  of neu t r a l   s t ab i l i t y   fo r  
neutral  frequencies of disturbance 
on a f la t   p la te   a t   ze ro   inc idence .  f 8  
The point A corresponds  to  the  flow 
field  conditions of the  numerical 
calculat ion  for  a s ingle  t r i p ;  0 
r e fe r s  t o  the  numerical  calculation 
with  five trips. 
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Figure 14. Neutral-stability curves of 
frequency versus Reynolds number 
at M, = 2.2 for insulated-wall 
boundary layer. 
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Figure 15. 

1 1 1 1 1 1 1 1 1 1 1 1 1 1  
Finite  difference mesh f o r  Problem 
560.2 i n  the  vicinity of the  plate 
leading  edge. 
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2 Figure  16.  Velocity  vector  plot of the flow f ie ld 
about  a f i n i t e   f l a t   p l a t e   a t  a time when 
the free stream particles  have moved 0.245 
plate  lengths; Problem 560.2, R 3.48 x lo6 - - .- ..- - 
per foot, M = 2.0;   f inite   difference mesh 
(41 x 163). Flow viewed i n  a frame  moving 
dobmstream a t  Mach 1.49. . . ~ - ” “ “ P ” . c  
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Figure 17. Velocity  vector  plot  of the flow f i e l d  
about a f i n i t e   f l a t   p l a t e   a t  a time 
when the  f ree  stream par t i c l e s  have moved 
0.452 pla te  lengths;  Problem 560.2, R=3.48 
x lo6  p e r  foo t ,  M=2.0; f i n i t e   d i f f e rence  
mesh (41 x 163). Flot7 viewed i n  a frame 
moving dovms tream a t  M = 1.49. 
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Figure 18. Finite  difference mesh for  flow 
in a channel with a wire trip; 
Mesh (30 x 157); Problem 561.0. 
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Figure 19. Velocity  vector p l o t  of the  flow 
f i e ld  about a wire trip i n  a 
channel at a time when the  
particles along  the  channel 
centerline have moved 0.0 trip 
heights; Problem 561.0, RD(AVg.1 
= 10oo0.0, M(Avg.) = .20; f i n i t e  
difference mesh (30 X 157). 
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Figure 20. Velocity  vector  plot  of  the  flow 
f i e l d  about a wire t r i p  i n  a 
channel a t  a time when the %.x L L 1. I. x - * \  L . . . . .  

centerline have moved 1 .4  t r i p  
heights; Problem 561.0, Rg(Avg.) 
= 10000.0, M(Avg.) = .20; f i n i t e  
difference mesh (30 x 157). 
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Figure .23. Velocity  vector  plot  of the flow 
field  about a wire t r i p  in-.a 
channel a t  a time when the  
pa r t i c l e s  along the  channel 
centerline  have moved 8.35 trip 
heights;  Problem 561.0, RD(Avg.) 

> \ \ X " " ~ ' " ' '  

= 100o0.0, M(Avg.) = .20; f i n i t e  \ \ * ' T  . \ *  \ X . ' \  
- .  difference mesh (30 X -157). \ * x . .  \ " " " '  ' \ * x  ' 
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Figure 24. Velocity  vector  plot of the flow 

f i e l d  about a w i r e  t r i p  i n  a 
channel a t  a  time when the 
particles  along  the  channel 
centerline have moved 9 . 9  t r i p  H 
heights; - Problem 561.0, RD(Avg.) 
= 10000.0, M(Avg.) = .20; f i n i t e  
difference mesh (30 x 157). .-." e. L -- 

\ -- x .  -L- '. 
I - .-. . \ .  

-.- . 
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a. Mean motion  and  fluctuations 

Fig. 25 a. Carncra velocity 12-15 cm/sec 

Fig. 25 b. Camera velocity 20 cm/sec 

Fig. 2 5 c.  Camera velocity 25 cm/sec 

Fig. 25 d. Csmera velocity 27.6 cm/sec 

Figure 25 a ,b ,c ,d .  Turbulent flow i n  a  water 
channel 6 cm wide,  photo- 
graphed with  varying camera 

' speeds.  Phospraphs  taken 
by Nikuradse and 
published by Tollmien 

65 



1. 

2. 

3 .  

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

REFERENCES 

Trul io ,  J.G. , "Theory  and S t ruc tu re   o f   t he  AFTON Codes , I t  Technical 
Report No. AFW-TR-66-19 (1966) 

Schl ich t ing ,  H. , "Boundary Layer  Theory," McGraw-Hill Book  Company, 
1960, p. 116  and p. 212. 

Trul io ,  J . G . ,  and Wal i t t ,  L., "Numerical  Calculations  of  Viscous 
Compressible  Fluid Flow," Applied  Theory  Report No. ATR-68-5-1, 1968, 
to   be  publ ished  as  a NASA cont rac tor   repor t .  

Reference  2, p. 396. 

Schl icht ing,  H. , "Boundary Layer  Theory," McGraw-Hill Book Company, 
1960, p.  67. 

Hayes, 1.1. D. , and Probstein,  R. F. , "Hypersonic Flow Theory," Academic 
Press,  1960, p. 482 and  p.  485. 

Tru l io ,  J.G. , Niles, W. J. Carr, W. E. , and Rentfrow, R.L., "Calcu- 
la t ion   o f  Two-Dimensional Turbulent Flow Fie lds ,"  NASA CR-430 (1966). 

Reference  5, p. 212. 

Reference  5, p. 168. 

Reference 5, p. 116. 

Kistler, A.L. , "Fluctuating  Wall   Pressure Under a Separated  Supersonic 
Flow," Journal  of  the  Acoustical   Society of America,  Vol.  36, No. 3, 
March 1964,  pp.  543-550. 

von Neumann, J. , and  Richtmyer, R.D. , "A Method f o r   t h e  Numerical 
Solut ion  of  Hydrodynamic Shocks,"  Journal  of  Applied  Physics, Vol. 21, 
March 1950. 

Reference 5, p. 571. 

Reference  5, p. 347. 

Liepmann, H. I?. , and Roshko, A., "Elements  of Gas Dynamics,"  TJiley 
(1962) pp. 340-342. 

Stewartson, K. , ' torrelated  Incompressible  and Compressible Boundary 
Layers,"  Proc. Roy. SOC. London A200, 1950, pp. 84-100. 

Reference  15, p. 87 

Schubauer, G. G. , and  Skramstad, H. K. , "Laminar  Boundary Layer   Osci l la t ions 
and S t a b i l i t y   o f  Laminar  Flow," NACA Report No. 909(1948). 

66 

- . . . . . . . 



REFERENCES (continued) 

19. Hack, L. M. , "The S t a b i l i t y  of the  Compressible  Laminar Boundary  Layer 
According t o  a Direct  Numerical  Solution,"  Proceedings of a S p e c i a l i s t s '  
Meeting,  s,ponsored  by t h e  AGARD Fluid Mechanics  Panel,  held i n  Naples, 
I t a l y ,  10-14 May 1965. 

20, Schl icht ing,  H. ,  "Boundary Layer  Theory," McGratr-Hill Book  Company, 
1960,  p. 400. 

21. Reference 20, p.  446. 

22. Reference 20, p. 67. 

23. Milne-Thomson, L. M. ,  "Theoretical  Hydrodynamics ,I1 Macmillan Company, 
1965, p .  174. 

24. Reference  16, p.  458. 

25. Nikuradse, J., "Kinematographische Aufrahme eines  Turbulenten Stromung," 
Zamin 9,  495  (1929). 

67 


