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1.0 INTRODUCTION

1.1 Purpose of the Program

The main program objectives were: a) to determine the accuracy
of the numerical methods embodied in the AFTON 2P computer codel'in a
calculation of subsonic laminar boundary layer flow over a flat plate,
and b) assuming a successful flat plate calculation, to test the feasibil-
ity of using the AFTON 2A and AFTON 2P codes to compute supersonic and

turbulent flow fields.

1.2 Technical Approach

The computer code AFTON 2P was applied to the specific problem
of flow over semi-infinite flat plate at a Mach number of 0.2 and a Reynélds
number per centimeter of 3.2 x 104. As a test of tﬁe AFTON 2P code, this
problem presented the advantage that exact solutions are known2 both for
steady laminar flow over a semi-infinite plate, and for lamiﬁar boundary
layer growth on an infinite flat plate; until perturbed by signals from
the plate edge, boundary layer development aft of the plate's leading edge
proceeds exactly as if the plate were infinite. For this subsonic plate flow
problem, the question of the applicability.of AFTON 2P centered on the use
of very long, thin Eulerian cells in the calculation.3 Earlier work had
shown that boundary layer growth could be described by AFTON 2P with suf-
ficient accuracy for most purposes, if one used finite difference cells
whose width was less that that of the boundary layer by a factor of about-
four, or more. ' However, laminar flow over a semi-infinite flat plate
results in a boundary layer whose thickness at any given distance from the
plate's leading edge is much smaller than that distance itself. Hence,

the use of square cells with‘edge lengths of only a fraction of the




boundary layer thickness would have led to the calculation of flow.vari-
ables at an enormous number of finite difference mesh points, and to cor-
responding impractically high computation costs. On the other hand, the
use of cells with the large length-to-width ratio ("aspect ratio'’) appro-
priate to a flat plate boundary layer, has led to large numericél inac-~
curacies in some past AFTON 2P calculations of continuum motion. The
other aspects of the calculation of greatest interest also related to cell
size, especially near the plate's leading edge where the entire boundary
layer would be negligibly thick compared to any cell edge length that
might be used in practice. Of particular concern were the effects of
numerical leading edge inaccuraciés on the flow field computed downstream,
and on the bow shock Which resulted from the assumed impulsive initial
conditions.

While subsonic laminar flow afforded a necessary test of AFTON 2P,
the main goal of the work reported here was seen initially as that of
determining whether the AFTON 2A code could adequately calculate supersonic
flow over an axisymmetric step; the specific step geometry programmed
into AFTON 2A was taken from a Saturn V configuration provided by the
sponsoring agency. However, by the time the calculation of step flow had
proceeded through some of the early flow phenomena arising from impulsive
initial conditions, it was clear that the real problem faced by AFTON 2P was
not that of calculating supersonic flow, but of calculating the turbulent
boundary layer known experimentally to form under the given flow con-
ditions. No prior AFTON célculations of turbulent boundary layer
flow had been made; in fact, to our knowledge the equations of continuum
motion had not been integrated successfully for turbulent flow by any

computer code. It was therefore decided that turbulent boundary layer




growth be isolated from the overall problem of flow around the Saturn V
step, and the step flow calculation was accordingly separated into two
parts,

The first of the two Saturn V problems was that of computing
turbulent bounary layer growth forward of the almost-stationary shock
created in the flow field by the step. Forward 6f the step, the radius
of the Saturn body through most of its length was large compared to the
anticipated maximum boundary layer thickness. Hence, the cylindrical
surface was replaced for the boundary layer calculation by a flat plate;
a leading-edge shock was thereby substituted for‘the shock attached to the
nose of the cylinder. The second part of the step problem was then to
compute flow over the step, starting a short distance upstream of the
step shock. The boundary layer profile obtained in the turbulent flat
plate calculation was to be used as an upstream boundary condition, and
the flow field was to be computed for a distance of about 20 step heights
dounstream of the step.

From estimates of the rate of growth of eddies based on linear
stability theory,4 it was known beforehand that to carry out a definitive
test calculation of turbulent flow over a flat plate would have been pro-
hibitively expensive for this program,and that cells of practical size
would give a necessarily coarse picture of the flow. Thus, although the
calculation was worth trying, its results proved inconclusive. As a
result, a search was begun for a set of flow field conditions which would
lead to turbulent flow in a relatively short characteristic time and over
relatively small characteristic distances, with the aim in mind of finding

a definitive test of the code's ability to calculate the turbulence, at the
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least possible cost. The problem finally selected and run for this pur-
pose was that of turbulent plane-symmetric flow over a right circular
cylinder in a narrow duct. While the calculation should be continued
beyond the point to which it was taken in this program, the behavior of
the flow field was markedly different from the laminar vortex fields pre-
viously successfully calculated, and strongly resembled that observed in

turbulent wakes.



1.3 Summary of Results

The principal results of the program were as follows:

a) 1In the case of subsonic flow over a flat plate, laminar
boundary layer profiles agreed well with -exact solutions, both for the
infinite flat plate and for steady flow over a semi-infinite plate. With
the moderately dense meshes used (2 maximum of 9 or 10 cells in the bound-
ary layer), the numerical and exact velocity profiles differed by no more
than about 7 percent. Furthermore, the transition between the two solu-
tions was computed in considerable detail at many distances from the
leading edge of the plate.

b) For the axisymmetric step with impulsive initial conditions,
bow shock foryation was computed up to the point where the shock front had
moved about one step-width forward of the step itself, along with the
associated flow field as it turned to accommodate the step.

¢) The calculation of supersonic flow over a flat plate
resulted in accurate leading-edge shock formation, with a laminar boundary
layer below the shock. Further downstream the flow remained laminar for
the mathematically plane plate of the problem. The introduction of irreg-
ularities on the plate surface near the leading edge, in an attempt to
produce a turbulent boundary layer, did result in decidedly nonlaminar
flow downstream, although it was not possible to determine whether the
results represented numerical solution error, or a true numerical descrip-
tion of turbulence. .

d) The calculation of flow over a wire trip in a duct employedA
a mesh fine enough to give a detailed picture of the boundary layer on the

trip. A vortex formed on the back side of the trip,and shed. A second




vortex then grew in place of the first, reaching about one-third of the

maximum diameter attained by the first vortex. At that stage in its

development, the second vortex dissolved, leaving a region of small random-
appearing velocities, closely simulating the breakup of vortices as it often

(if not typically) occurs in the early stages of turbulent wake formation.



2.0 CALCULATIONS MADE AND RESULTS OBTAINED

2.1 Summary of Problems Run

The six problems run in the program were designafed Probleﬁ
600.0, Problem 158.0, Problem 560.0, Problem 560.2, Problem 2.0, and Prob-
lem 561.0. They are described briefly in Table 1. In‘every casé; éir
was treated as a polytropic gas (Y = 1.4) and was assumed to flow adia-
batically. In Problem 600.0,‘§ubsonic flow was calculated o§er a flat
plate, while in Problems 158.0;.560.0; and 560.2 gupersonic fla£ piate
flow was calculated. Problem 2.0 was concerned with supersoanic flow over
an axially symmetric step. In Problem 561.0, viscous compressible flow

was calculated over a wire trip in a plane, two-dimensional channel, under

conditions which would result in Poiseuille flow in the absence of the trip.

2.2 Boundary Conditions

In Problems 600.0, 158.0, 560.0, 560.2, and 2.0, the density,
edergy, and velocity of material at the upstream boundary were given
their free stream values. The upstream boundary conditions for Problem
561.0 consisted of a velocity profile characteristic of steady, fully
developed plane Poiseuille flow in a channel,5 a specific energy profile
from the isoenergetic relation5 (which was assumed valid at the upstream
boundary), and a density profile from the energy profile and the perfect gas

lawv, i.e.,
P=(vy-1) pE o))

vhere P 1is the pressure, E is the specific internal energy, p is the
density, and vy is the ratio of specific heats. The pressure in Equation (1)

was assumed constant along the upstream boundary.




The downstream boundary condition used in all the AFTON ZP and
AFTON 2A problems reported here is based largely on characteristic theory;

3,7 The same condition

details have been presented in previous reports.
was employed in our previous cylinder studiess’7 and appeared to provide
a good approximation to flow at the downstream boundary.

& no-slip rule was enforced at the surface of each obstacle{
while the fluid was allowed to slide without friction at the system's

lateral boundaries, i.e., at a lateral boundary, the normal component of

velocity, and the tangential stress, were zero.



2.3 Subsonic Laminar Flow Over a Flat Plate

A study was made of subsonic laminar flow over a flat plate at
a free stream Mach number of 0.20 and a Reynolds number per centimeter of
3.2 x 104 (Problem 600.0). An Eulerian finite difference mesh consisting
of 2912 mesh points was used in the calculations. Problem 600.0 was run
from impulsive initial conditions, i.e., a uniform velocity, density, and
energy were imposed throughout the flow field at zero time, except for
the no-slip condition at the plate surface. 1In order to obtain the leading
edge solution, the upstream boundary was located normal to the plate at
0.10 cm upstream of the plate's leading edge. The downstream boundary
‘t7as located normal to the plate 18 cm from the plate's leading edge. The
lateral boundary, where frictionless flow was enforced, was made parallel
to the plate at 0.593 cm from the plate surface. Thus, the flow studied
was that in the entrance to a channel of height 1.186 cm.

Various stages in the development of the plate flow are illus~
trated in the velocity vector plots of Figures 1, 2, and 3. The vectors
in the figures are proportional to the particle velocities at the points
of the finite difference mesh; a mesh point is located at the tail of each
vector. In Figure 1, the velocity field is shown at an early stage of
motion. Figure 2 clearly exhibits the growth of the initial vortex sheet
at the plate surface at a somewhat later time, when free stream particles
have traveled 0.68 plate lengths.

From a study of the velocity field of Figure 2, it was found
that the profiles over most of the downstream portion of the plate were

independent of distance along the plate surface. Hence, at this particular




time the flow field approaches that of a viscous fluid over an infinite
flat plate (Rayleigh Problem). The velocity profile at a station cor-
responding to 0.72 plate lengths from the plate leading edge (Station
1.695 x 10-4 RM, see Figure 2) was compared to the Rayleigh solu-

tion.8 The results are presented in.Figure 4, where the ratio of local
to free stream velocity, U/U, , is plotteq‘as.a function of the Rayleigh
similarity parameter T =y/2\/VE ; here y is distanqe normal tp the plate,
t 1is the time, and Vv is the kinematic viscosity. The daEa used to
prepare Figure 4 were generated by AFTON 2P at various stages 9f the
motion, yp to a time corresponding to 0.72 plate lgngths of t;avel by a
free stream particle. The numericai_results.differ“frog tbe inﬁinitg
plate solution by less than 5 percent; most of thg difference is believed
to result from the proximity of the lateral boundary to the plate, whereas.
the Rayleigh solution applies to an infinitely wide channel.

From a study of the velocity profiles of Problem 600.0 at times
later than those of Figure &4, but at the same station, it was found that
a transition from the Rayleigh solution. to the steady-state semi-infinite
channel solution (steady flow in the entrance to a channel) occurred at
a time corresponding to 0.72 plate lengths of travel by a free stream
particle. Hence, in the time required for a free stream ggrticle to trayel
from the plate leading edge to a particular downstream statiop, a tgan§iﬁ
tion is made at that station, from Rayleigh flow, to steady flow in a
semi-infinite channel.

In Figure 3, laminar boundary layer velocity profiles can be
seen at .a time late enough so that steady-state flow has nggply pgen

achieved. It can also be seen in Figure 3 that the velocity vectors

10



oscillate in the neighborhood of the plate leading edge. These oscilla-
tions are believed to be numerical rather than physical, resulting from
deceleration of the flow from Mach 2.0 to zero in one zone along the
dividing streamline at the plate leading edge. The calculated steady-state
velocity profile 0.72 plate lengths aft of the leading edgé was compared
to Schlichting's solution for flow in the entrance to a channel.9 The
results are presented in Figure 5, along with the Blasius solution for
flow over a semi-infinite flat plate;10 position normal to the plate at

a given downstream station is indicated by the Blasius similarity param-
eter 1= yvﬁ;75§-.. Although the numerical velocity profile is still
slowly approaching a true steady state, the numerical results differ from

the Schlichting solution by less than 7 percent.
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2.4 Axially Symmetric Step Calculations

The flow over an axisymmetric_900 step (Problem 2.0) was inves-
tigated using the AFTON 2A computer code, which integrates numerically the
equations of two-dimensional transient axisymmetric continuum motion.

The body configuration of Problem 2.0 was taken from a portion of a Saturn
test model which was experimentally investigated at the Marshall Space
Flight Center. The outer radius of the step was.7 in. and the inner
radius was 5 in. The complete Saturn test model configuration is shown in
Figure 6. The finite difference mesh utilized for this study was composed
of 3080 mesh points with an upstream boundary located 10 in. forward of
the step (Stétion -10, see Figure 6) and a downstream boundary located

9.5 in. aft of the step (Station 9.5 in., see Figure 6). The lateral
boundary of the mesh was located 15.5 in. from the axis of the body. The
free stream Mach number was 1.5, and the free stream Reynolds number was
2.8 x 106 per foot. Uniform free stream conditions were imposed at the
upstream boundary of the mesh and impulsive initial conditions were used
to start the problem.

The development of the bow shock which recedes from the step,
is illustrated in the velocity vector plots of Figures 7 and 8. Figure 7
gives the impulsive initial flow field, while flow over the axisymmetric

#

step is shown in Figure 8 at an early stage of motion (characteristic time

Z

The characteristic time is defined as the number of step heights that
a particle traveling with free stream velocity would move in a given time.
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of 7.85). 1In Figure 8, the bow shock can be seen receding from the step.
Downstream of the bow shock,;velocity oscillations are evident which are
similar to those found in a region of turbulence., Although Problem 2.0
has not been run much beyond a characteristic time of 1,57, the behavior
of the flow field agrees at least qualitatively with available experimental
results;11 turbulent oscillations have been observed in the separated
region between the bow shock and the step.

Since a bow shock is a permanent feature of the flow field of
Problem 2.0, it seems appropriate to discuss briefly here the treatment
of shocks in the AFTON 2A code. The AFTON 2A equations are basically
Lagrangian, and in most numerical analogs of the equations of motion in
Lagrangian form, shock waves are not computed as discrete discontinuities.
Instead, dissipative stresses are introduced which cause the mathematical
surfaces of discontinuity to be replaced by thin layers in which the
pressure, density, temperature, etc., vary rapidly but continuously. For
flows which are ideally inviscid; the AFTON codes presently employ an
artificial viscosity function developed by von Neumann and Richtmyer12
to effect shock transitions; with this dissipation function, it can be
shown that the equations of motion are consistent with the Rankine-Hugoniot
equations. In the case of viscous flow, dissipative stresses are an
essential element in the formulation of the equations of motion, and it
was not found necessary to use an artificial dissipation function either
in the axisymmetric flow calculations discussed above, or in the flat
plate calculations discussed in Section 2.5. It is evident from Figure 8
that the variables of the motion nevertheless changed quite abruptly in

the neighborhood of the bow shock of Problem 2.0.
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Problem 2.0 was primarily a pilot problem designed to test the
AFTON 2A code for axisymmetric viscous flow, and it was therefore of
minor concern that the uniform upstream boundary condition imposed in
the problem is not physically correct. Actually, the flow upstream of
the Saturn test model step is influenced by the forebody geometry. 1In
order to account for the effects of the forebody, a problem of flow over
a flat plate first had to be run; the flat plate flow field at a-distance
from the plate edge equal. to the length of the forebody would then serve

as boundary condition data for the axisymmetric step (see Section 1.2).

2.5 Supersonic Flat Plate Calculations

In order to generate boundary data for the axisymmetric step
problem, flow over a flat plate was numerically investigated at a free '
stream Mach number of 2.0 and at a Reyﬁolds number per foot of 3.48 x 106
The velocities, densities, and energies at a distance of 0.75 plate
lengths from the leading edge (Station -16, Figure 6) were recorded for
this purposé in each of three flat plate calculations.

First, a problem designated as Problem 158.0 was started From

impulsive initial conditions, with a finite difference mesh cdnsistidg'bf

'4200 points in a rectangular array.' The points were separated by uniform

increments of 0.04 ft along the plate surface, and .008 ft normal to the

plate, The plate for Problem 158.0 was’ 5.92 ft long. At the axial station

-16 in. (sée‘Fiéure 6), a turbulent boundafy layer would then have a
thickness equaltto about 6 cell widths. In Problem 158.0, a lateral

boundary was placed parallel to the plate surface at a distance of

0.388 ft. The inlet boundary in Problem 158.0 was 0.04 ft upstream of =~

the plate leading edge with one zone between the leading edge and the

14




upstream boun&ary. A triangular trip was placed on the plate surface at
a distance of 0.287 ft from the plate leading edge. The trip height of
.003 £t is equal to 80 percent of the laminar boundary layer thickness
at this position:

The second problem run in this numerical investigation was
Problem 560.0., Problem 560.0 was similar to Problem 158.0, but the inlet
boundary was moved 0.1 ft upstream of the plate leading edge,and 12 zones
were put between the leading edge and upstream boundary. Problem 560.0
also had closer mesh point spacing normal to the plate than did Problem
158.0, the minimum increment in Problem 560.0 being .006 fE. A triangﬁlar
trip was placed on the plate surface at a distance of .663 ft from the”
plate leading edge in this problem. Finally, in Problem 560.2, five
triangular trips replaced the lone trip of Problem 560.0.

A velocity vector plot of a plate flow field obtained in Prob-
lem 158.0 is presented in Figure 9, at a time when free stream parficles
‘have traveled .49 plate lengths. Since the inlet boundary was placed
upstream of the plate leading edge, the effect of the leading edge on the

flow can be seen. At the Reynolds number for the préblem'thé flow should

1.

become turbulent, and random oscillations are, in fact,' seen in the ~

R

velocity vectors near the plate surface starting frém the biétevléédidg"

edge. The trip is also indicated in Figure 9. The averagé'Boﬁndérf »

I O ‘$
layer velocity profile Was'combutédlat:a"distanée of .155 plate-lengths

from the plate leading edge. The resulting profile is presented -
in Figure 10, along with velocity profiles obtained From the 1/7 powetr
13 of #urbulerice, amd from Crocco's flat plate laminar boundary layer

['_\

law

solution at Mdch 2.0. % It cah be séeq from Figube 10 that' the ealéu-

lated average velocity profile is much closer to"a 1/7 power law, than is "
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the Crocco profile. 1In fact, the calculated average velocity profjile
approximates a 1/5 power law. In Figure 9, it can be seen that the plate
leading edge not only produces a shock wave, but also seems to be the
source of the "turbulent" oscillations. It is believed that deceleration
of the flow from Mach 2.0 to zero in one cell width along the dividing
streamline at the plate leading edge, is the primary cause of the oscil-
lations. As noted in Section 2.3, similar fluctuations were observed for
subsonic flow over a flat plate.

The £lat plate results of Problem 158.0 were encouraging. How-
ever, a conclusive demonstration that turbulence can be calculated directly
from the conservation principles of classical mechanics, would exhibit
the process of transition from laminar to turbulent flow. With this
objective in mind, Problem 158.0 was rerun with a finer finite difference
mesh in the neighborhood of the plate leading edge, so that greater
accuracy might be obtained in describing the leading edge shock wave,
and subsequent laminar boundary layer growth near the leading edge. In
order to induce tramsition to turbulence, a triangular trip was placed
on the plate surface at a station corresponding to a Reynolds number of
2.0 x 106. The trip height was made equal to the laminar boundary layer
thickness at this station, and the trip width was 6.35 laminar boundary
layer thicknesses.

For Problem 560.0, the finite difference mesh was composed of
6683 mesh points, and is shown in Figure 11; impulsive initial conditions
were employed in the problem. A velocity vector plot of the flow field
of Problem 560.0 is presented in Figure 12. An oblique shock front, and
a laminar flow field below it, are seen in the neighborhood of the plate

leading edge. As Figure 12 shows, the change in flow properties across
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the oblique shock front at the plate leading edge, was more gradual in
Problem 560.0 than for the axisymmetric step (Problem 2.0; see Section
2.4). 1In the neighborhood of the plate leading edge (where the density
of mesh points is greatest), the shock front was approximately four zones
thick. As in the case of axisymmetric flow, the flat plate calculations
were made without introducing an artifiéial dissipation function.

The angle between the leading edge shock and the plate of Prob-
lem 560.0, was compared to the corresponding angle calculated from a com-
bination of boundary layer theory and the jump conditions across oblique
shocks. A shock angle of 32.9° relative to the plate was estimated from
the velocity vector plot of Figure 12, as an average of the angles between
the plate and each of two straight lines which approximately bound the
oblique shock region. An independent estimate of the angle 6f the lead-
ing-edge shock was obtained, assuming that the boundary layer near the
plate leading edge effectively converts the plate to a wedge, which
causes the free stream flow to turn by means of an oblique shock. Accord-
ingly, the angle of the shock above a given point of the boundary layer
surface, was computed as that due to a wedge with a slope equal to the
derivative of the displacement thickness, 5*, with respect to distance,y,par-
allel to the platels. The Stewartson transformation16 was employed to determine
a boundary layer displacement thickness for compressible flow, using the
momentum thickness, ei’ and displacement thickness, 52’ of an equivalent

incompressible flow. For the adiabatic flow of a gamma-law gas over a

flat plate with Prandtl number unity, the pertinent relationships are as

follows: Y+1
P 2y 6
3 -1 2 5 g %
8§ = (—-E) EH- YT M, (1.*_.5_3,;_)] 6i (2)
1
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where Rei is the Reynolds number for the equivalent incompressible flow,
Me is the free stream Mach number, Ux is the free stream velocity, Te 1is
the free stream temperature, TS is the free stream stagnation temperature,
P, is the free stream %ressure, PS is the free stream stagnation pressure,
Pe is the frée stream density, Ps the free stream stagnation density, He is
the free stream viscosity, and us is the free stream stagnation viscosity.
The leading edge shopk angle, B, is then determined from the oblique

17
shock equations , where the effective wedge angle 6 is given by

8 = tan(s'/3) _ (6)

In the present case, the distance y was taken as .1 ft from the leading

edge of the plate. At this distance the oblique shock produced in Problem

560.0 is clearly visible in Figure 12; at the same time, the bow shock near

the tip of the plate, where the parabolic boundary layer surface meets the plate
edge at a right angle, is of insignificant dimension compared with .1 ft.

On this basis, the angle of the oblique shock calculated from Equations (2)-(6)
and the oblique shock transition equations, differed from that of Problem

560.0 by &.5%.
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Downstream of the leading-edge shock of Problem 560.0, in the
neighborhood of the,téip, oscillations are seen in the velocity vectors
of Figure 12; however, they appeared to damp out a short distance aft
of the trip. The frequency of the disturbance introduced by the trip
was evaluated relative to measurements of neutral stability made by .
Schubauer and Skramstad18 on a subsonic flat pléte at zero incidence
(see Figure 13), and the the numerical stabilit& calculations of Mack19
for a flat plate at Mach 2.2 (see Figure 14). The disturbance frequency
due to the trip is seen to lie in the damped region of the neutral stability
curves for both the subsonic and supersonic platE flows. Thus, thg leading
edge phenomena calculated numerically were qualitatively correct for this
case, and a disturbance of greater amplitude and frequency is necessary
to induce transition to turbulence.

In order to increase the amplitude and frequency of the input
disturbance, five trips (each of height 2.0 laminar boundary layer thick-
nesses and width 2,67 laminar boundary layer thicknesses) were introduced
at a station corresponding to a Reynolds number of 2.0 x 106 (Problem
560.2). The finite difference mesh in Problem 560.2 is shown in Figure 5. .
Velocity vector plots of the computed flow field are presented in Figures
16 and 17 at times when the free stream particles have moved .245 plate
lengths and .452 plate lengths, respectively. Random oscillations are
seen propagating downstream in the wake behind the trip region. The
frequency of the disturbance introduced by the trips is also compared to
the experimental data of Schubauer and Skramstad and the numerical data
of Mack (see Figures 13 and 14). It is seen that the disturbance frequency

introduced by the trips is within the unstable region bounded by the neutral
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stability curves for both the subsonic and supersonic plate flows. Hence,
it was believed that the disturbance produced in the trip region would
cause transition to turbulence. However, upon further rumnning of Problem
560.2, it was found that the amplitude of the disturbance introduced by
the trip continually damped as time progressed. Thus, steady-state
laminar flow over a flat plate (with a trip) was approached, instead of

turbulent flow over a flat plate.

1

Experimenta11y20 it has been shown that vortices, which con-
tinally form and shed behind a trip, are the primary source of the per-
turbations which cause transition to turbulence. Study of the numerical
flat plate flow fieid data indicated that no vortices had developed in
the region behind the trip. Since the AFTON 2P computer code is capable
of calculating vortices behind an obstacle if a sufficiently fine mesh
is used3’7, it was concluded that for the problem at hand, the mesh points
were too widely spaced in the vicinity of the trip; in order to compute
vortices behind the trip, and the subsequent transition to a turbulent
boundary layer, a greater mesh point density than that of Problem 560.2 is

needed in the neighborhood of the plate surface and the trip.
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2.6 Channel Calculations

In order to define the vortices which form and shed behind a
trip in greater detail than was practical in the supersonic flat plate prob-
lem, it was decided to investigate numerically fully developed plane
Poiseuille flow in a two-dimensional channel, rather than to recompute
Problem 560.2 with a finer mesh. Fully developed channel flow changes
the scale of the problem so that the entire region of calculation lies
within the boundary layer. 1In the supersonic plate problem, the boundary
layer constituted about 5 percent of the flow field. Thus, 30 points
could be obtained in the boundary layer in the channel problem instead of the
4 points which defined the boundary layer profiles in the supersonic flat
plate problem. It was felt that success in calculating the transition
from laminar to turbulent flow in a channel would demonstrate conclusively
that turbulent flow fields can be computed directly from the conservation
principles of classical mechanics. Then, with finer meshes than those
used in Problems 560.0 and 560.2, we would expect to calculate turbulence
on the supersonic flat plate.

The channel flow study (Problem 561.0) was conducted at an
average Reynolds number of 10,000 based on the channel height and average
velocity at the channel entrance. This is about twice the experimentally
measured c;itical Reynolds number for transition from laminar to turbulent
flow in a channel. A wire trip was placed on the top and bottom walls of
the channel at a distance of .858 channel heights from the channel entrance.

The wire trip was sized so that transition would occur immediately downstream
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of the trip. According to the experimental results of Fage and Preston

the minimum height for which transition occurs at the trip element itself

can be found from the relation

crit > 20 @)

where:
X = -
U'r T /p

Tw’ wall shear stress
p, density

K

erit’ critical trip height

v, Kinematic viscosity

22
From the fully developed laminar channel solution '

Uk = Jé ﬁ/\/i; (8)

where:

E, average velocity at channel entrance

D, channel height

Combination of Equations (7) and (8) yields

K .
crit 20 (9)

B

/D = .0818. However, to insure an

For RD = 10,000, we obtain Kcrit

effective trip in this numerical study, Kcrit/D = .14 was used.

The finite difference mesh for Problem 561.0 was developed from .
the streamlines and potential lines of the potential theory solution for

flow over a wire trip. The finite difference mesh, which is composed of
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4717 points, is shown, in Figure 18, Since the channel centerline is an
axis of symmetry, the lateral boundaries of the region of calculation
consist of the channel centerline and the channel wall. The plane
Poiseuille parabolic velocity profihazzwas imposed at the upstream
boundary of the mesh. The average Mach number at the upstream boundary
was 0.20. A no-slip condition was imposed along the plate and trip
surfaces. Frictionless flow was required along the centerline of the
channel, and the characteristic boundary condition employed previously3’7
was imposed at the downstream boundary. The values of the flow field
variables at the upstream boundary were used as initial values throughout
the mesh.

So far, Problem 561.0 has been run to a characteristic time of
9-9# . The initial impulsive flow field is shown in the velocity vector
plot of Figure 19 (characteristic time of 0.0). The potential flow field

solution about the trip is obtained during the early stages of motion

(see Figure 20). At a characteristic time of 2.95, a vortex formed behind

the trip. A velocity vector plot of this flow field is shown in Figure 21.

Vortex shedding was initiated at a characteristic time of about 5.75 (see
the velocity vector plot of Figure 22). A secondary vortex in an early
formative stage, is also indicated in Figure 22. In Figure 23 (charac-
teristic time of 8.75) the first vortex has moved downstream and the
second vortex is well-formed behind the trxip. Some random fluctuations

are also indicated in the velocity vectors between the two vortices. At

?%he characteristic time (T) corresponds to the number of trip heights of
travel by a particle moving with the centerline velocity at the upstream

boundary, i.e., T = 1.5tU/K.crit
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a characteristic time of 9.9 (Figure 24), the first vortex continues to
propagate downstream. However, the secondary vortex (or eddy) has
dissolved and fluctuating velocities have replaced it. 1In previous
vortex shedding problems7 an eddy once formed grew into a vortex which
shed. This is our first numerical calculation of the formation and dis-
integration of an eddy.

Schlichting24 described turbulence in terms of portions of the
fluid (eddies) having their own intrinsic motion superimposed on the
main flow. The continual formation and disintegration of these eddies
determines the scale of turbulence. Turbulent eddies were made visible
by photographing turbulent flow in a water channel with varying camera
speeds. Photographs of this kind were taken by Ni uradse,25 and are
presented in Figure 25. The numerical results of Problem 561.0 have
duplicated the eddy formation and disintegration process characteristic
of turbulence. Thus, it is believed that further running of Problem 561.0
will result in a calculation of the full transition from laminar flow to a

two-dimensional analog of true three-dimensional turbulent flow.
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3.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the laminar plate calculations performed in this
program, particularly for supgrsonic flow, provided further evidence of
the ability of existing numerical techniques to give quantitatively useful
descriptions of laminar flow fields; earlier calculations of laminar
boundary layer formation on a right circular cylinder also showed excel-
lent agreement with boundary layer profiles obtained by analytic methods.
Furthermore, although in practice no finite difference mesh can provide
detail within the boundary layer as the leading edge of the plate is
approached, it appears that lack of definition near the leading edge does
not affect the accuracy of a numerical flow field further downstream,
where the boundary layer thickness is several times the distance between
adjacent mesh points. 1In fact, even the leading edge shock was found to
be accurately represented in the finite difference solution. We therefore
conclude that as a practical matter, using existing numerical methods and
computers, a wide and important class of laminar f£lows can be calculated
numerically, even when finite difference cells of large aspect ratio (& 4)
are employed in the process.

A further result of considerable theoretical interest is that
shocks can be included in at least some viscous compressible supersonic
flow problems without the need for an artificial viscosity. Pertinent
examples in this program were the laminar plate leading edge shock, and
the bow shock which recedes from an axisymmetric step under impulsive
initial conditions. While it was not clear whether the flow field

viscosity, and/or the discretization error, and/or the conservation
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properties of the finite difference equations, were responsible for
effecting the shock transition, the fact is that the transition was
made. In future calculations of viscous compressible flow, we will
therefore not introduce an artificial viscosity without fresh evidence
of the need for it; it appears that the Rankine-Hugoniot equations will
be satisfied anyway across an ambient shock.

An important negative result of the flat plate calculations
reported here is that even the deliberate introduction of roughness, with
an amplitude comparable to that of the boundary layer thickness, produced
only decaying tranmsients. Since the flow parameters were given values
known to result in turbulent boundary layer formation, we must conclude
either that a turbulent boundary layer on a plate cannot be calculated
using the AFTON 2P code, or that the calculation requires a denser set
of mesh points than that employed in this program; we are inclined ?o
believe the latter, as noted below.

The calculation of flow over a trip in a narrow duct has pro- .
vided the strongest evidence to date that the numerical mthods embodied
in codes like AFTON 2P are capable of providing a quantitative account of
turbulent £low. This we consider the most important result of the group
of calculations reported here. The fact that a test case had to be care-
fully selected to make even this limited demonstration possible, is at
least partly offset by the order-of-magnitude reduction iﬁ computing costs
which can be achieved by making use of recent advances in numerical method§
and in computing hardware. By incorporating into the AFTON 2P code time-

saving techniques already tested in small-scale calculations, and by
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employing the most efficient computers presently available, it appears
likely that a significant class of turbulent flow fields can be calcu-
lated numerically, including a turbulent boundary layer on a flat plate.
In future calculational programs of the kind discussed here, the
highest priority should be assigned to carrying the trip-in-a-narrow-duct
problem to as late a stage of development as is economically feasible.
The importance of this problem in providing a definitive answer to the
feasibility of AFTON 2P'ca1culations of turbulence, outweighs the fact
that the flow itself is quite special, and perhaps @f little intrinsic
interest. Of less urgency, but stillrhighly dgsirable, is the incorpor-~
ation of impfoved numgrical techniques into the AFTON 2P code, and the
adaptation of the code to the most efficient éomputers presently available,
or soon to become operational. Ihe potential reduction of computing costs
for presently feasible éaléulations, and the potential enlargement of the
class of calculable flows to.be achieved thereby, justify considerable
emphasis on these tasks, Iﬁ is then recommended that proof of the gain
in efficiency so obtained be exhibited in the form of a successful calcu-
lation of turbulent boundary layer formation on a flat plate. Assuming
that the results of sucp a flat plate calculation are satisfactory, the
calculation of flow over a step on a.Saturn v missiie should then be

resumed because of its practical significance.
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Problem

Number

600.0

158.0

560.0

560.2

2.0

561.0

Reynolds
—Number

3.2 x 10%

per cm

3.48 x 10°

per ft

3.48 x 10°

per ft

3.48 x 10°

per ft
2.8 x 10°
per ft

1 x 10%

Time Step
Increment

3x 1074
msec
1x 1078
sec

4 x 10”7
sec

4 x 1077
sec

1x 107
sec

6.125 x 1074

msec

No. of Time
Steps Run
0 - 14,000

0 - 2,360

0 - 1,500

0 -~ 2,280

0 - 1,500

0 - 3,820

TABLE 1

SUMMARY OF PROBLEMS RUN

Dimensions
Type of Upstream Type of Initial of Finite
Boundary Condition Condition Different Mesh
Uniform Energy, Density Impulsive 16 x 182
and Velocity
Uniform Energy, Density Impulsive 28 x 150
and Velocity
Uniform Energy, Density Impulsive 41 x 163
and Velocity
Uniform Energy, Density Impulsive 41 x 163
and Velocity
Uniform Energy, Density Impulsive 35 x 88
and Velocity
Velocity profile for Initial flow 30 x 157

plane Poiseuille flow,
energy profile from
isoenergetic relation,
and density profile
from perfect gas equa-
tion of state with
constant pressure

field that of
steady plane
Poiseuille flow
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Velocity vector plot of the flow field about a
finite flat plate at a time when the free stream
particles have moved 0.1775 plate lengths; Prob-

lem 560.0, R = 3.48 x 10° per foot, M» = 2.0;

finite difference mesh (41 x

163).

Flow viewed

in a frame moving downstream at M = 1.49.
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560.2 in the vicinity of the plate
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; Figure 16. Velocity vector plot of the flow field

about a finite flat plate at a time when
the free stream particles have moved 0.245

plate lengths; Problem 560.2, R = 3.48 % 106
per foot, M = 2.0; finite difference mesh
(41 x 163)., Flow viewed in a frame moving
downstream at Mach 1,49,
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Figure 18. Finite difference mesh for flow

in a channel with a wire trip;
Mesh (30 x 157); Problem 561.0.
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Velocity vector plot of the flow
field about a wire trip in a
channel at a time when the
particles dlong the channel
centerline have moved 0.0 trip
heights; Problem 561.0, Rp(avsg.)
= 10000.0, M(Avg.) = .20; finite
difference mesh (30 x 157).

Figure 19.
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Figure 20. Velocity vector plot of the flow
field about a wire trip in a
channel at a time when the

- particles along the channel
centerline have moved 1.4 trip
heights; Problem 561.0, Rp(Avg.)
= 10000.0, M(Avg.) = .20; finite

difference mesh (30 x 157).
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Figure 21, Velocity vector plot of the flow i
field about a wire trip in a A
channel at a time when the
particles along the channel
centerline have moved 2.95 trip
heights; Problem 561.0, Rp(Avg.) ‘_1rqr_?_t~,r_T_1,qr_f—«r—w—wr*?“r—f—«r—c—
= 10000.0, M(Avg.) = .20; finite ° )

difference mesh (30 x 157).
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Figure 22. Velocity vector plot of the flow
field about a wire trip in 2.
channel at a time when the
particles along the channel
centerline have moved 5.75 trip ————
heights; Problem 561.0, Rp(Avg.) TN Y TR v v s
= 1000.0, M(Avg.) = .20; finite
difference mesh 30 x 157).
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Figure 23. Veloci‘ty vector plot of the flow
field about a wire trip in-2a
channel at a time when the

particles along the channel <YW
centerline have moved 8.35 trip
heights; Problem 561.0, Rp(Avg.)
= 10000.0, M(Avg.) = .20; finite
_difference mesh (30 x 157).
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Figure 24. Velocity vector plot of the flow
field about a wire trip in a
channel at a time when the
particles along the channel M
centerline have moved 9.9 trip
heights;-Problem 561.0, Rp(Avg.)
= 10000.0, M(Avg.) = .20; finite

difference mesh (30 x 157).
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a. Mcan motion and fluctuations
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Fig. 25 c. Camera velocity 25 em/sec
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Figure 25 a,b,c,d. Turbulent flow in a water
channel 6 cm wide, photo-
graphed with varying camera
speeds. Phoazgraphs taken
by Nikuradse and
published by Tollmien
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