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A STABILITY BOUND FOR RELAY CONTROL SYSTEMS IN NON-PHASE VARIABLE FORM

by
B. F. Goldstein and D. P. Lindorff

I INTRODUCTION

This paper presents an approach for determining a stability bound for relay
control systems in non-phase variable form. The system under consideration is
assumed to be subject to unknown but bounded parameter variations.

In a recent investigation [ 1], a semi-definite Lyapunov function has been

employed in the design of relay control systems, subject to parameter variations

and external disturbances, for systems in which the state vector is not in phase
variable form. It has been noted, however, that unless the initial condition lies
on the switching plane, a semi-definite Lyapunov function cannot be used to deter-
mine the region of stability in response ‘to initial conditions. Consider for ex-
ample the situtation in Figure 1. Although x(0) is within R,, it does not follow
with Vs 0 and V <0 off the switching plane that x (t;t>0) must reach the switch-

ing plane, since if x(t) leaves RO as shown, then the sign of { is not guaranteed
outside of R

In the approach of this paper, a bound inside which all trajectories will be
stable can be found if a similarity transformation is used for each parameter set
within the parameter space. Each resultant bound determined in the phase-variable
space is then mapped into the original space where some measure of a bound on
stable performance may be obtained.

IT DESIGN APPROACH

Equivalence of control in Non-Phase and Phase- Variable Space

Consider the linear, time-invarient controllable system defined by the equation:

X=AxXx+bu (2.1)
% = lxn state vector

A = nxn plant matrix.

b = 1zn input control vector

u = scalar input .

The system is in non-phase variable form and coefficients in A are known to lie

within some bounded region of the parameter space. In addition, A need not be
a stability matrix.

A p081tlve semi-definite Lyapunov function V__,=1/2 ['y(x)] is defined, where
y(x) = k x = 0 constitutes a linear switching pEanc in x space. In order to
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X Space Trajectory and Semi-definite Lyapunov Contour



insure that motion on the switching plane is stable, the necessary control law has
been shown [ 1] to be:

u=Lsgn [y(x] (2.2)
where | ¢
> kg A X
La|——
ko b

Consider now a particular parameter set{ai}for which A = Ay b= gi. For this
set there is a transformation [ 2]

='-!T~ 20
A 4.-1_%_ ( 3)

flor which ¥y is in phase~ variable form and for which a control law can be defined
by

u =L sgn (Ef y_) (2.4)
For u to be equivalent in equations (2.2) and (2.4), it is required that
t t
T = & *
k 4 ‘50 (2.5)

A system block diagram is shown in Figure 2,
Transformation to Phase-Variable Form

As shown in the design approach of [ 1], certain restrictions are placed on
the magnitudes of the components of gn.* Hence, with 50 fixed, there exists for
each parameter setid}a {I , k } which describes the system in terms of phase
variable coordinates.

As a result of the transformation ﬁi, the system may be represented in the
canonic (phase variable.) space as;

y = AC y + Qc u $

# In Reference 1, the model tracking problem was considered. 1In this paper, no
model is considered since attention is focussed on the initial condition problem.
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where

y = 1 x n state vector,

0 1 0 - 0
0 0 1 — 0
Ac= . ?
) 1
% T T 4y (2.6)
and b =[ 00 ... 1]. In general, A need not be a stability matrix. This

belng—¥he case, a stability matrix A mdy be defined and Equation 2.6 altered as ~
follows:

g=hA ytb u+ (A -A)y. (2.7)

It should be made clear that the choice of A is purely arbitrary, as long as
AS is a stability matrix.

Construction of Positive Definite Lyapunov.Function

Consider the canonic form of the state equation (2.7). Following the method
in [ 4], a positve definite Lyapunov function Vpd =yt P y may be found where a

symmetric P is a solution to the expression:
t
~-Q=A_P+PA 2.8
Q s 8 (2.8)
in which Q is a positive definite symmetric matrix.

If a bound Ri is found inside which the control law is valid, then there exists
a hyperellipsoid ~inscribed in R, such that for any l.(t ) inside the hyperellipsoid

V will be negative definite, and_z (t; £ > 0) will be asymptotically stable. This
is in contrast to the semidefinite case for which a closed bound cannot be found
for motion off the hyperplane.

It must be pointed out in contrast to [4] that in this paper a restriction
must be placed on P; that is, the Lyapunov function V4 is constrained by the fact
that P must contain k as its last column in order thag the control law developed
in terms of y will be equivalent to that orginally developed in terms of X, using
the semidefinite design approach.



As previously stated, the positive-definite Lyapunov function is defined as:
v =y Py.

Taking the derivative and simplifying, it is found that

.

.t t ..
pd:_y.. P.Y.*l Py.

=ny_+zy_tP(gcu+AA_y) (2.9)
where

AA = A -A .
¢ '8

For Vpd‘ <0 it is sufficient to require that

y P Ib_u+ 6yl <o. (2.10)
Expanding this term, one obtains:
n
Ky W+ I c,y,) <0 (2.11)
jep 373

where Cj designates coefficients of the nth vrow of AA.

To satisfy Equation 3.4 it is required that

n
=L> | ¥ c.y.] (2.12)

2. sgnu = sgn (5? y).

Note that L = i( b cj le defines a pair of hyperplanes which represent a region

inside which the control law is valid.

The Lyapunov Contour in E2 Space

To aid in picturing the resulting contours and bounds it is advantageous to
consider an E“ space. This is shown in Figure 3 where Ri is taken to be the bound
defined by

L .
> f X cJ yJ

j=1
Under the assumption that the valid control region R. completely encloses the quad-

ratic bounds, the largest positive definite Lyapunov contour which may be inscribed
in Ri is an ellipse which is tangent to at least one point of Ri.*

* Appendix A




‘Figure 3

Positive befinite Lyapunov Contour in y Space



This is shown in Figure 3 as a dashed contour.

In order to obtain a measure of the conservetiveness of the resulting positive
definite elliptic contour, it is of interest to map the positive semi-definite
Lyapunov contour into the canonic space. This function may be defined as

1 2
Vosd = 7L v, ®)] (2.13)
where
I
v(T; x) =k"y,
Taking the derivative,
¥ @=K gk Ay ek b ou,
For V < 0 it is required that
psd -~
1. sgn vy (y) = - sgn y ()
(2.14)
| |
fu =L > | %
max -t . v,
j=1 73 yJ!
where t
. E_Acz_
d, = coefficients of
1 kb
——C

In general, the linear bounds for both the positive definite and positive semi-
definite Lyapunov functions will not be parallel. This is illustrated in Figure Uu.
From a qualative viewpoint, if the semi-definite bound defines a region greater

than the contour V;ZX, the design approach may be considered conservative. If the

situation is reversed, however, an improvement has been accomplished. It is
inconseguential to consider the positive semi~definite Lyapunov bound, however,
since the region of asymptotic stability, which is of primary concern, is defined
only within the contour Vggx.*

Determination of Bound in x space

Assume that for the given set of parameters the maximum elliptic contour is
found to be
Ty = ymax
y N pd

This contour is then mapped into the X space through the transformation
max
pd

* For the model tracking problem considered in [1], stability is achieved only in
the sense of bounded motion on the switching plane. In the regulator problem con-
sidered here, however, a region of asymptotic stability can be defined off the
hyperplane.

-t-
Pt P T, =y (2.15)




Figure 4

Positive Definite and Positive Semi-befinite Lyapunov Contours in y Space



For each set of parameters {o,} a contour may be mapped into the X space by
application of (2.15). This Pesults in a set of 1ntersect1ng ellipses (for the more
general case, a set of hyperellipsoids), as is illustrated in Figure 5.

In general it is not known which set of parameters {u,} describes the actual
system. Hence, any initial condition x(t_ ) within the int&rsection of the ellipses
will result in a stable trajectory. The bound on these trajectories, however,
must include the union of the ellipses. These two conditions may be stated as
follows:

x(t) = {x e X /lx"px = Vi [ (IxF Py x ViTT 5 L3100, muidi) (2.16)

t max t max . s o g
2(t;t>0) = {xe XQ/EE. P, x =V, ]2J)[§_ Pj x = V.13 4, §=1,...,n, i#j}

]
(2.17)
It must be recognized that a variety of parameters are utilized in the design
approach, and each may assume a continuum of values. These parameters include :

1. The parameters of A and b; unknown but bounded.
2., The transformation Ti’ fixed by each parameter set {ai}.

3. The set of linear feedback gains k., restricted within certain

bounds by the design approach of [ —Q
4. Stability matrix AS.

5, Positive definite P, selected with the restriction that P, = k.

At first glance, it would seem that numerous contours must be generated befors
any approximate representation of a stability bound can be determined. This
difficulty may be partially overcome, however, if it is recognized that in many
practical problems, even though parameters may not be known exactly, there is a
relationship between the elements of the parameter set {a } which reduces the
parameter space considerably.

II DISCUSSION OF RECOVERABLE SETS

Additional work has been performed in order to obtain a comparison of the
recoverable set suggested by the above methed and the approach of Lemay [3]. For a
linear, time-invarient system, the following equations are defined:

Kecoverable Szt

T
RRM(T) = x: x = [ oA Bu(g) d& ; u(g) admissible]
0 (3.1)
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Reachable Set

T
i e o A(T-¢) . issi
REM(T) =[x:x = e Bu (£) d &; u (&) admissiblel (3.2)
0
In addition, Lemay has shown that:

RRM € (T) = REM(T) (3.3)
which says that "for a constant system, the set of states which can be driven to
the origin in time T is equivalent to the set of states which can be reached by
starting at the origin and running the system backwards for the same elapsed time.'
It is this property of the recoverable set which allows a comparison of methods.

Consider a single-input, time-invarient system

X=AxX+bu

which has all positive distinct eigenvalues. Define the transformation x =Mgq
where M is a modal matrix in the following form:

= N 3.4
Moo= (8185 889 +oo» g8) (3.4)
where
g; = gaing to be determined
g = eigenvectors

It can be shown that:

1 t

o —{:Ei/gl, EQ/gQ, cees rn/gn] (3.5)
where

r. = the rows of % = (p r iey Do)

=i : il? "i2* """ “on

Performing this transformation, one obtains the normal form:

g=g+bu ; (3.6)

where A

éb‘




In order to obtain the form of the state equation used by Lemay (see Equation 3.11),
it is required to alter the eigenvalues of/\.. This may be accomplished by time
scaling the differential expression

é.:if\3-+ gﬂu

With uw = 0
4G =M gy
=2 9
(3.7)
4 = Ay 9,
letting + = Bt, gives
1
AlBtl
ql(Btl) = e (3.8)
If B = %- then
1 'tl
4 (Btl) = e
A /ALt
171
q, (Bt)) =e
A /A E
3.
a (Bt)) = e n’7171 (3.9)
For vector En the following gains are computed
g = ;b
A
- 1l
2
A (3.10)
gy =5 (2, D)
n

13-



As a result the following equation of Lemay is obtained:

4, (8tp] |2 i q (Bt 1
0
. Alr
4, (Bty) q, (Bt Ay/Ay
I = ¢ ® + * . (3~ll)
) . 0 : . .
An/Al
g, | | Ta ] oy

In order to compare the recoverable set obtained by the two methods, it is
necessary to map the system in phase-variable y space to the normal g space. For
any contour

the corresponding contour in g is

max £t .t
= g N . Q 3.2
v ] g_M Tl P 'I’:L M g (3.12)
where V vemaing invarient under the linear transformation.

pd

A design example will now be considered in order that a comparison of methods
may be made.

IV DESIGN APPLICATION

The design technique presented in Section 2 is to be applied to a plant con-
sisting of a cart supporting an inverted pendulum using the control law developed
in [1]. Figure 6 shows the cart, which is mounted on a track, connected through
a pulley and gearing tc a D. C. motor.

The equations of the plant may be written in the form [1]:

Xl = all Xl + a12 x2 + bl u

e (4.1)
XS = a5 Xy + A, %y + b3 u
In order to study the effect of parameter variations, the distance (2) from the
pivot point to the center of gravity of the pendulum was made to be adjustable by
repositioning a sliding mass on the rod. The purpases of this paper are served,

however, by determining a bound for the nominal set of parameter values as listed
in Table 1.

iy
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Table 1

Parameters nominal % dependence
aj, -800 none
a, -3 none
a5 800 1/%
43, 13 1/2
bl 15 none
b3 ~15 1/4
In accordance with [1], the components of 50 are to be chosen so that
.
kg = -1
kg < 0
kg < -1

With k, satisfying these conditions, and u defined by (2.2), a region of stability
can be found for this set of parameters.
Transformation to Phase-Variable Form

Utilizing the method of Silverman [2], the system (with the parameters of
table 1) are transformed to canonic form. The resultant matrices are:

o 1 o 1 0 1 -150 0 15

A =| 0 o 1 L T=-—2. 1o 10 of rTts 0 -15 0
¢ ? 150 ’

8000 13 -800 0 0 10 0 0 -15

Computation of P

Since AS is arbitrary, the stability matrix was selected as:

0 i 0
A =10 0 1
s
-1 -2 =4 J (4.2)



. t t -1 .
Since E' = EO Ti it follows that

Cl
plSl"‘ k - qll/zal ®

With kl = -1 and k1 = =150 .kl, it follows that q 1 7 300. Letting Q be a diagonal
matrix to simplify the compu%ation, we select qzl and dog such that the conditions

2
k2 < 0 and kg < ~1 are satisfied. With

0
300
0
Q = Lo
0 80
the P matrix is equal to:

660 700 150

P = 700 1490 360 | . (4.3)
150 360 100

. t _ .t t )
Since Eo = Bn Ti the value of 50 becomes

t
k; =[-1, -24, -23/3 ]

satisfying the constraints on the elements of 50.

Determination of Linear Constraints

The linear bounds defining the validity of the control law for both the positive
definite and positive semi-definite Lyapunov functions may be computed from (2.12)
and (2.14), respectively, For the computed A, and the arbitrarily selected AS it
follows that

0 0 0
AA = 0 0 0
8001 15  -796

The bounds are then detevmined as:

i

L > |8oo1 y, * 15y, + 796.43 y3} , p.d. case (o)

H

L > |8000 y, + 1%.5 y, -796.473 y3] ; p.s.d. case

16



It is seen that the sets of planes are approximately coplaner. This result is
due to the large values of certain coefficients in the phase variable matrix Ac“

Selection of larger negative values in AS would only result in both sets of planes

intersecting the y coordinates closer to the origin.

Determination of Maximum Ellipsoidal Contour

It is required now to determine the largest ellipsoidal contour which lies

within the p081t1ve definite linear constraint, L > |Z c., ¥i|+ For L = 1.0
computer results give the tangency point as: | 373
0.00012356
y = -0.00009805] -
~0,00001617
Correspondingly VIoX = 8.06 x 107°.

pd

The computation to this point has involved only one set of plant parvameters
(the nominal), and a single stability matrix AS and positive definite P. The

resulting ellipsoidal contour will now be compared with the recoverable set obtained
by Lemay {3] for one parameter set.

Comparison of Recoverable Sets

For the 3]0d order example studied in this paper, the eigenvalues (nominal
plant parameters)are:

Al = 3,1641
AQ = 3.1604
As = 800.003,

The model matrizx M is determined from:

2
A - 13 ~3A2 -3
. 2 _ . (4.5)
= Adj [AI-A] =| 800 AQ(A2+800) As + 800
_Vsooxl 13x2 + 8000 AS(AS + 800)

17



The gains g; are determined from (3.10), Utilizing (3.12), the ellipsoidal

contour is then mapped into the g space.

By definition, Lemay defines the system being discussed as "3,1,1", which
indicates a 3rd order system with one eigenvalue > 0, and a single control input u.
It is shown in [3] that the recoverable set for this type system (with L = % 1.0)
is the open region between the planes passing through q, = * 1 and parallel to the
9,95 plane. The ellipsoidal contour mapped from the y space is shown in Figure 7.

V CONCLUSIONS AND RECOMMENDATIONS

The approach taken in this paper to determine a stability bound for relay
control systems has been applied to a 3rd order system as discussed in Section 4.
It was found that in order to reduce the plant parameter space, the resulting
mathematical manipulation becomes quite cumbersome. A comparison was made of
the bound determined in this paper to the recoverable set of Lemay [3]. In general,
it was concluded that the stability bound derermined in this studyv results in a
very conservative estimate of the rscoverable initial conditions.

Though preliminary results indicate a conservative design, it seems appropriate
to study ways of varying the elements of P such that the overall Lyapunov contour
is enlarged. The effects of such parameters as EO’ Q, and the linear constraints
should be considered. ' )
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Appendix A - Derivation of Tangency Point

To determine the maximum elliptic contour in y space, the problem may be
formulated as:

min J = [ ‘XF Pydy
X

subject to
t
2 y2L

Define the Hamilttonian
H= (L -a"y) +y° 0y

a..H
== =) a4+ 2 Py =0
v a Bl

[+>4

hence y = '%-P—l 2

Since gﬁx = L, substitute y and obtain

or

or

20
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Appendix B ~ Elements of P as a Function of Q and AS

In the solution of the simultaneous equations for P, it is assumed that

pij= Pijfor the 3 x 3 system under study, the elements dre;
2 83 2
(a) + a3 +a, al)qll - 2(aytayay)a), - 2aja5q,5 + )840y, + 2y g4
Fia = " '
2(a1 + 2y 84
i&' 2 ~ 2a - + aa
a; a3 41 2%3%13 7 8192 T 313933
Pig =
Z(a1 + a2a3
q
1 Y
Pig = 2,
1
2r 2
ay(a+a 2 )+as[as ~a,)
33817 9%3/ 818 "8y 2 (a on® -
o B appt 2272909y 3-(2y-a3)9y,-2(a;%ay23) 6,5
22 =
2(a1 + a, a3)
alaz(al+aza3) + af(a§+a2)q33
a,a
. 1%3
2(31 + a, a3)
2
a
-2 + 28,9,4 = 800G, —~ &
a) 941 3913 3922 1933
Py3 = '
2(a1+a253)
8q
7, 4T 2435 F dyy = 2ydg4
P3q™
2(&1 + a2a3)
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