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REALISTIC EKROR BOUNDS FOR A REDUCED-STATE MODEL-REFERENCE CONTROLLER

T, M. Taylor
Department of Electrical Engineering
University of Connecticut
Storrs, Conn. 06268

I INTRODUCTION

When confronted with the problem of controlling a plant which is imperfectly
identified, it is often mnecessary to employ extensive simulation studies in order
that desired performance is guaranteed. Although many approaches to solving this
problem have been made, in particular along the lines of adaptive control, a well
defined synthesis procedure cannot be said to have been defined. One approach to
solving this problem involves the application of identification techniques. However,
these methods require expenditure of time, and in many cases, if not ruled out by
cost factors alone, are not reliable because the stability is not guaranteed due
to the computation lag involved,

An alternative to this approach is to develop a control which guarantees
stability over the range of parameter uncertainty involved. Although this solution
to the problem will not be the most efficient, it may be justified in terms of
cost, or simply becavse no other method is available., This method of control which
has been discussed by ceveral authors [ 1], [ 2], [ 3] depends upon the synthesis of
a control law which guarantees stability by application of Liapunov’s direct method
This is accomplished by means of a model reference control system as characterized
in Figure 1.
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The objec of the model-reference control scheme is to fopce the states, x,.,
of a single-input, single-output, nonlinear, time- varying, ntM-order plant to
track the states, m,, of a linear, time-invariant nth-order model s the model
responds to somé input. The main requirement on the control is one of stability.
Stated in general terms, this requires that some measure of the offsets, x,,
between plant and model states, the tracking error, must either tend to ze*o in the
limit with time (Asymptotic Stability) or eventually be contained within some small
calculable bound (Lagrange Stability).

The main contribution of this report is an extension of previous work to allow
filtered states to be used in formulating the control law, thereby reducing noise
content in the gencral design and moreover providing the designer with the oppor-
tunity to use filtered derivatives of measurcable signals to approximate states
that cannot be measured.

The essential problem can be related to an equation of the form

% = Ax - b(t) sgn (y(x)) (1)

where the stability matrix A and b(t) are in phase-variable form

- — —

, b(t) =[0 --- bn(t)]T
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with | b (t)| <o2L (2)

The Signum function is defined to be

"
n ™Mo

Y = ox asx, (3)

where with no loss in generality we assume ., * 1.




That (1) is a proper reprcsentation of the controlled model-reference system
can be seen by the following example. Figurc 2 is the signal flow graph of a
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third-order nonlinear, time-varying plant having states Py that are to follow
those of the stable linear,time-invariant model reference m, respectively.
Ignorance of the plant is expressed in g(p,t) and c_(t). e former contains

nonlincar terms and coefficients known only within gounds; the latter is bounded
away from zero and known only within bounds.



The sign of the control, u, is that of the switching function y(x). The gain
4(x,p,r,t) in the designs of references (1) and [ 2] is generated in the nonlinear
controller to form the magnitude part of the control. To satisfy plant saturation
constraints it must be shown that M is less than some number L. In so doing, one
guarantees that substitution of the constant L forM would give the same stability

results., This is the motivation for the design of reference [3) where M = L and
the nonlinear controller is essentially a relay.

The relevance of (1) to the system of Hgure 2 becomes apparent through the
A property of the synthesis

equivalent signal flow represented in Hgure 3.
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techniques of references [ 1], [ 2], [ 3] is that the signal at node a has the sign
of -y and a magnitude bounded by 2L. Inasmuch as stability of the tracking is

y



based on stability of thc error states X; then stability of the controlled model-
reference system may be based on (1).

Before going further several points should be made concerning (1) and its
relevance to the model-reference controlled systen, nasmuch as the remainder of
this report is based entircly on (1).

Pirst, this relation is not the only one that could have been chosen. The
importznt qualities that must be preserved by the second term on the right of (1)
are that it must be of bounded magnitude and must take the sign of -y. Another
valid representatiog for example, would be the expression c{(t) y (x) where
0 <c(t) « =, The reason for the unboundedness of the time-variable gain c(t),
is explained by the second point.

Although the node a is bounded and takes the sign of -y (x), it is not
necessarily zero when yis zero, Thus, if a linear gain is to relate the two
it must have infinite range. (Notice also that this property is present in (1)
in the infinite slope of the Sigrum function.) It is this property which makes
the stability analysis of (1) so difficult.

The third point to be made is that, due to the presence of nonlinear terms
and time-variable coefficients known only within bounds, very little can be implied
about the signal a., This ignorance is translated to b_(t) in (1). Consequently,
ne definite statement can be made concerning the time derivative of b_(t). This
also confounds the analysis problem. "

Another point is that due to the ignorance in b_(t) the system (1) is capable
of motions that may not be possible in the actual cofitrolled system. This is
due to parameter ignorance. Of paramount importance, however, is the fact that
all rossible motions of the controlled system are motions of (1) and therefore
a., properties that can be attributed to solutions of (1) apply also to those of
the model-reference controlled system.

The last point is that having assumed stability conditions to be satisfied
by the relay outrnut level, L, or varying gain M(b,x,r,t) the oqu design freedom
that remains is the choice of the switching function y(x) = a'x .

Having established the relevance of (1) to the controlled model-reference
system the problem is to analyze the stability of the origin as it is affected by
choice of the switching function,

II. CONTROL LAW SYNTHESIS

The purpcse of this section is to derive general conditions on the linear
switching function, vy =g?§, for which asymptotic stability is guaranteed. For
convenience (1) is rewritten here as

% = Ax - b(t) Sgn (a'x). (4)

Sufficient conditions are first found by Liapunov's Direct 41ethod. Choosing a
Liapunov function T
V= x Px (35)



where P is assumed symmetric, its total time~derivative is

Vo= ﬁ!?QE.' Zg?ﬂg(t) Sgn (gfg) (6)

where

Q=-C ATP + PA] . (7)

Choosing Q positive definite leads according to a theorem of Liapunov [ 5] to a
positive definite P since¢ A is a stability matrix. Furthermore P is a unique
solution to (7). Therefore Vis positive definite and V will be negative definite
providing

T

Pb(t) Sgn (a'x) > O. (8)

Since b(t) has only one nonzero tern, bn(t) which is non-negative, then (8) is
satisfied if

x"P[00 ---n- 117 sgn (x'a) > O (3)
which implies
B 00----1)" = a (10)

Thus the coefficients of the switching function must satisfy

a £ 8 3. 8:eeib (11)

i ° Pip®
where pij is the i-j element of P and with no loss of generality, Ba * 1. Design

freedon in the choice of a results from the fact that there is an infinity of
positive definite matrices Q which can be chosen and each one results through
(7) in a different positive definite matrix P, and this in turn leads to a
different a.

That the set of matrices P which is mapped through (7) from the set of all
positive definite matrices Q does not equal the set of all positive definite
matrices P is easily demonstrated by noting that the choice of a positive definite
P as the identity matrix leads through (7) to an indefinite Q, (q,,=0), for the
cave of phase-variable A. Therefore, the set of all switching fuﬁ%tions g?ﬁ_which

result in asymptotic stability of (4) is not easily determined. However, one
important property of this set can be observed.

In order to eliminate a state from the control law it must be shown that a
switching function satisfying the condition imposed above can be found which does
not involve that particular state. The elimination of the state x,, for exanple,
implied that o,=0 and through (18) that p, =0. In particular, to &liminate the
highest-order-derivative state x_ from théncontrol law, o must be zero and thus
pnn=0' This last condition ruleS out the possibility of ?inding an o satisfying

the stability condition for the case e 0 because a necessary condition for



positive definiteness of F is that all diagonal terms be greater than zero. It
is therefore not possible to ¢stablish asymptotic stability via the Direct Method
unless the highest-order-derivative state L is included in the switching function.

It is the e¢limination of this particular state that prescents the greatest
challenge. This is due to the fact that it can only be obtained by differentiating
a lower-order-devivative state. The problem of eliminating any other state is
synthetic in thc sense that it could be obtained bt integrating another state.

In as much as the desired climination of state cannot be shown to yield
asymptotic stability by means of the Direct Method, une wonders if some other suf-
ficiency condition might be used to establish stability. For this reason the
application of a frequency domain stability criterion was investigated.

The Circle Criterion( 6] applies to a system with linear part and nonlinear,
time-variable feedback such as (4). However, this sufficient condition requires
for the case of (4) that the loop tramsmission from relay output .o relay input,

G(x) = o [1s-A1"* [00....117 (12)

must have no part of its Nyguist plot contained in the left half Nyguist plane.
This condition implies indirectly that the switching function y must involve the
highest-order derivative state, x . This is the same condition imposed by the
Direct Method., "

The examples above, illustrate the difficulty of obtaining sufficient cond-
itions for asymptotic stability of (4) for the case wherein a_ = 0. The lack
of any such condition leads one to consider the following apppoach to the problem.

The solution proposed here is to pass the noisy measurements of the highest-
order states theough a set of filtered derivative circuits to be used ia the
implementation of the switching function (x). In what follows, the case of X,

vnavailable is treated. Generalization to the case of the r highest-order
states unavailable is straightforward. The remainder of the report treats the
bound of the filtered system,

In some cases the process of differentiating a lower-order state produces
worse noise than was present on the original measured state. In this case it
may be desirable to use the filtered measurement of the state., The following
therefore treats the case wherein the state x_ is filtered and then used in the
switching function. .

III. DFRIVATION OF FILTERED SYSTEM

In a situation where the highest-order-derivative state x_ is not accessible
but is required for asymptotic stability, a reasonable solutioh is to use a
filtered derivative of X -1 in place of X Choice of the filter dynamics would

be based on some knowledge of measurement noise statistics. In this case, the
filter transfer function would have a denominator polvnomial of order two or higher
to provide adequate low pass filtering of white noise encountered in the mcasure-
ment of X1 In the casc of colored noise a first-order filter might suffice

but for generality we consider a second order filter. For purposes of this




discussion such a filter will be represcntod by

 2%nel * C1%ne1 Y %1 ¢ *L-l (13)
This can also be expressed as
©2*n+1 * cl*n¢1 & - B L (14)

Because of the phase-variable structure, *n = x_. However, (13) is written
to indicate that the statc x is the input to E*o filter rather than x_ as
indicated in (14). Accordin21§ the derivative of noise cncountered in the measurc-
ment if x . would appear on the right sidc of (14).

An augmented system results when the filter (l4) is incorporated into the
original system (1), that is, when the state X ool is used in place of L in the

switching function (3). It can easily be shown that the stability analysis of this
augmented system is hindered in much the samc manner as was that of (1). This is
true in the case of both the Direct Method and the Circle (riterion,

Even though asymptotic stability camnnot be guaranteed in the augmented system
it is reasonable to expect that the filter could be chosen so as to minimize the
ultimate bound that may result, Toward this end we consider the term

e EX =X . (15)
It is this filter error that distinguishes the augmentcd system from the criginal
system (1), In fact, for the following discussion it is convenient to express
the augmented system as

x = Ax - b(t) Sgn (g?l_- a ). (16)

The problem that remains is to choose the switching function coefficients
B],82 o0 O and filter constants ¢j, ¢ 7 to minimize the ultimate bound on seclu:tions

of (16).

One solution is to choose a so that (16) is asymptotically stable for the
case e = 0., Then treating the term a e as switching function imperfection, a real-

istic bound can be determined by means of a previously reported technique [4].
However, for the ~~2se of state-dependent imperfection this technique only applies

to solutions having initial condi!tions in a certain state-space region., Inasmuch

as calculation of this region is generally tedious, an alternate design is desirable.

In the following section a new design technique is developed for which the
bound (4] applies to any initial condition. A natural switching function is shown
to guarantee that solutions of (16) will monotonically approach a hypcrplanar
region, Q, parallel to and centered about the switching plane. By nature of the
fact that x will eventually enter Q and will remain therc for all subsequent time,
the bound technique developed in refcrence [4] applies directly., This bound on
|y| which in turn is based un worst-case magnitudes of filter error and filtered
measurement noise. The trade-off that exists betwecn the effects of these two
bounds is discussed.



IV. NATURAL SWITCHING FUNCTION

Paraphasing a theorem of Lasalle's [7), it is nossille to obtain asymptotic
stability with the use of a semidefinite Liapunov function providing: a) that tle
function approaches zero asymptotically and b) that motion on the zoro manifold is
asymptotically stable to the origin. 1In terms of the problem at hand where linear
switching is employed, asymptotic stability could be achieved if sufficient
conditions could be found to guarantcue that switching hyperplane is asymptotic to
the origin. It will now be shown that choice of what will be called a natural
switching function guarantees both conditions.

The linear switching function

e 5?& (17)

has a derivative based on (6) which is

y = x"ATy - b_(t) sgn (a'x - e). (18)

If a is chosen as an eigenvector of AT and -\ is the corresponding eigenvalue,
that is if

ATg_ z =) 3, (19)

then for the case ¢ s 0.
§ = =y -bn(t) + Sgn (y). (20)

This equation is asymptotically stablc since -2 is an eigenvaluc of AT and thus

of A which is a stability matrix and therefore -\ < 0, and bn(t) is non-negative.
Thus y will approach zero asymptotically. In fact y wi'l reach zero in finjrte
time for the case wherein b(t) is not identically zero. %his can be seen by
considering y approaching zero from above. The second term on the right of (20)
has a finite, negative average value which will bu dosigpnated as-As. The asympilote
of vy is therefore -B. The cxponential nature of the solution then gurantees that
for any number v between y(0) and y(«) = -B, there is a finite time T for which
¥y(T) = v; 0 < T <« Zcro is such a number. This is demonstrated graphically in
Figure 4,

Motion on the switching plane y = 0 is guaranteed to be asymptotically stable
since by assumption A is a stability matrix and therefore there can be no unstable
manifold passing through the origin., Inasmuch as the switching hyperplane y = 0
iz a manifold of the system it must therefore be a stable one.

Another argument for this point is that, with the natural switching function
design, the trajectory in finite time attains the manifold y = 0 upon which it
remains for all subsequent time. Consequently, with e = 0 the sccond term on the
right of (20) and (16) is identically zero. Thus (16) is represented by

X = Ax; e = 0, (21)



whereupon subsequent motion on y = 0 is asymptotically stable.

vt)
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y (t) Reaches Zero in Finite Time
Figurec 4

The natural switching function design for the case of an nth-order system
is only possible when AT and equivalently A has at lcast one distinct real eigen-
value. For thc case of m < n simple roots there are m possible natural switching
functions. This design has several merits. The most important will now be
demonistrated.

Having established asymptotic stability in the absence of filter error, the
problem remains to obtain a realistic estimate of the bound on X due to a given
filter. The method to be employed here is to show that the state vector is confined
to a certain neighborhood of the switching plane. Then the bound estimation
technique reported previously [4] may be employed. The prohlem *herefore is to
obtain a realistic bound on y(x), thus guaranteceing that x is contained in a
hyperplane region centered about @ud parallel to the switching plane. The system
with filter crror is represented by

y = =y -bn(t) * Sgn (y - e). (22)

The following discussion is based on the fact that magnitude of y will be decrecasing
as long as

Ivl>fel. (23)
It becomes apparent that the bound on |e| becomes on upper bound on | |. Minimiza-
T The object

tion of the bound is therefore simply based on the minimization of [e
then in obtaining an upper bound on {el is to determine the largest value of |y|
that can result,

The natural switching-function system is described by the following set of
equations and corresponding flow graph, Figure 5.
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The filter error responds to initial conditions of all integrator outputs and

to the relay output, However it is the driven response that is of interest

here for it is this :esponse that prevails to possibly affect an eventual bound.
To find the largest |e| that can be reached, the system is initiated at z = 0

and the relay is allowed to switch, regardless of its switching function, in an
optimal fashion with b_(t) set at its maximum magnitude, 2L. Note that the system
in Figure 5 does not ifvolve plant parameters.

To achieve the optimization, it is convenient to use the transfer function
relating the nodes u and e in the absence of the nonlinear feedback path. This
takes the form

§™(c,.s + C,)
= H(S) = g : (25)

(su)(s“'l + a g2 4 -==a, S+ “1)(°252 +C.S+1)

n-1

E

~~

g)

4

1

for which the inverse transform h(t) obviously exists. It is important to note
that the term 1/(5+ A)(sP~1 + a1 §R=2 4 eee 4 al) relates u to x, and therefore

the rocts of this polynomial are identical with the cigenvalues of A. That is to
say

(8 + ;\)(s"'l + 872 4 cam a8 + al) = det (IS-A). (26)

el 2
(n-1)

Also in (25) the numerator term S relates x, to X . The remaining term

relates x, toe by the filter equation (15) and the relation e = X = X4t
E(S) _ 8(C,8 + ) o
xnté) (C2S“7z +C;8 4 1)

It is shown in the Appendix that the largest |e(t)| that can result for |u(t)|< 2L
is
o

le| oy = 2L J |h(t)|dT. (28)
o .

With this result, the minimization of |e| and consequently of |y| and of the
eventual bound on x can be discussed.

One method of reducing e ~yond the result of (28) involves the fact that
the behavior required of bn(t, nd of the relay, or equivalently, of u(t), to

produce the maximum |e| would most likely produce a y that is larger than e in
magnitude. If a second iteration were performed wherein this constraint were
placed on y or equivalently on u(t) it is certain that a smaller e would result.
This could possibly converge through several iterations to a much smaller value
and possibly zero. However, the dptimal problem involves a state-space constraint
and its solution has not been determined.

It might be thought possible to apply the optimal technique used in obtaining

(28) to the transfer function relating the transforms of y and e, namely, (S+\)(H(S)
However inasmuch as this has numerator and demominator of cqual order it will

12



never occur that |e| would be less than |y|.

It will now be shown for the case when A has a large negative eigenvalue
that |e|m will be correspondingly small, When this is not the case it is shown
that the"filter (14) can be chosen to make IeJ‘ax in (28) arbitrarily small at the

expense of admitting noise encountered in the measurement of X1 into the switching

function. The trade-off of y-bound due to filter error and filtered noise will
also be pointed out,

Bound on |yl

With the help of Figure 5 it is seen, since |u|< 2L, that the largest |y|
which can occur is 2L/A, Clearly, if A were to have a distinct real eigenvalue
with very large negative value, the hyperplane tangent to its corresponding eigen-
vector could be chosen as a natural switching plane and )\ would be very large.
This situtation offers two advantages. The resulting bound on y would be very
small and, by nature of the solution of (20), |y| would tend to converge faster
from some initial condition to the bound 2L/A than would be the case with smaller
values of A, This result agrees with intuition in that the lack of highest
derivative information should not be so serious in a system which could be
approximately represented by a lower-order system.

It will now be shown that when A does not have this property, the filter can
be chosen so that the bound on |e| and therefore on |y| can be designed to be
arbitrarily small. If the transfer function of the general filter in (14) is
replaced by a second-order filter with simple real poles so that

xn+l(S) E 1 i

xn(S) (17 S + 1)(1,8+1) °*

that is if C, = 1172 and C
to e is

y %1 % 15 then the transfer function relating X

E(S) S{e + (11 + 1/1172]

x (8) ~ ¥ I/ + 17350 (30
If 1y is chosen much less than 1y we have

E(8) _ S -

a0 Wiy @ Ut )
In light of this the transfer function relating u and e¢ from (15) becomes

E(S) _ . s"

116 RS = ¢ - I O [ R VATY) (32)

13



Which can be expressed as shown in Figure 6.

I 1 a '

1 g - S g
bt det (IS = A) |~

|

J

Equivalent Expression of (32)

Figure 6

A consequence of the magnitude constraint |u| < 2L and the comstraint tp<<t)
is that

|8] < 21,L. (33)

Inasmuch as e is the output of a realizable filter having all roots with negative
real parts it follows that e is bounded in proportion to the filter input B. Thus
e approaches zero with tp. However, to reduce the bound on |le| and |y| in this
way, T, must be made small and as a result $= -1/1, becomes a farvoutpole. Further-
more, the filter pole at 8 = -1/1; is even farther out by the assumption 1)<<T13.
These far-out poles admit high frequency measurement noise to the switching
function. Treating this noise as an additive signal in the switching function and
assuming a magnitude constraint on the noise |n(t)| < N it follows that the sign

of y and therefore the relay output cannot be affected if |y| > N. Thus Sgn y #
sgn (y - e) only if |y| < N. Due to the fact that the switching line is approacher
monotonically in the absence of switching function imperfection, and since n(t)

can only cause imperfection when |y| < N, it follows that a bound on |y| results
due to noise alone. This bound is |y| < N.

It becomes apparent that the cost of choosing a wide-bandwidth filter to
decrease the bound on |y| caused by filter error is that a greater bound on |y|
due to the presence of high frequency noise may result. The filter would have
to be based on some knowledge of the measurement noise in any particular application.
To further evaluate the trade-off that exists in the absence of information about
the number N, statistical properties of the bound con |y| due to noise could be
used rather than absolute maximum values as were used in this instance.

14



A further advantage of the natural switching function design that becomes
apparent here is that the bound on |y| due to both filter error and filtered
noise is simply the sum of the bounds due to each acting separately. The reason
is that each is based upon imperfection in the switching function and this is an
add/tive cuantity. That is to say, if filtered noise n(t) bounded in magnitude
by N, and filter error e bounded in magnitude by E, are both present in the
implemented signal y, imperfect control can result only in the state space region
denoted by

QNL‘ = {x: |Y(£) | < N + E}. (34)
This is termed the "region of imperfect control." This region for the case of
filter error or filtered noise acting alone is

Q

g = x: |y(x)| < E) (35)

and

=
"

PR T NTC B (36)

respectively.

Having established the region of imperfect control for (14) and thus for (16),
and having guaranteed by the natural switching function design that once X enters
Q. it will remain in this region for all subsequent time, it is possible to de-
tefmine an eventual bound on the states x, by employing a technique reported earlier.
(4] This is discussed briefly in what foilows.

Bound on State Vector

It will now be shown that by nature of the fact that x will eventually be
confined to the region of imperfect control

8 {x: |y(x)] <c) (37)

a reasonable bound can be determined for %X, This follows from the fact that
X € Q implies

n
e L - 48 %0, (38)

Following through with the earlier assumption that e, = 1, the constraint (38)
implies

n-1 n-1
= SRS Ay <X <C L K, (29)
i=1 i=1 *
which is satisfied if
n-1
X, & = §- aXy + B(t) (40)
i=l

15



where
|8(t)| < c. (41)

In light of (41) it is possible to represent motion of (1) confined to 0
by the n-15t -order system

X, ® Arﬁr + gvﬁ (42)

where Ar is an (n-1l) x (n-1) matrix of the form

and Er is an (n-1)xl vector of the form

= T

b, = [0 1],
The reduced-order system (42) serves as a model that represents motion of (1)
confined to fi in that any solution of the latter is a solution of the former.
Therefore, a bound on solutions of (42) is a bound on solutions of (1) confined
to Q.

It is important to note in (42) that the case B=0 represents motion confined
to the switching hyperplane y=0, and as pointed out earlier, the natural switching
function design guarantees that this motion is asymptotically stable. Thus A
is a stability matrix. L

Calculation of the bound on x confined to @ is now accomplished by deter-
mination of the reachable set [8] of the linear time-invariant stable reduced-
order system (42). A computer estimation technique is available due to the work
of Narendra [9] whereby a piecewise-planar figure which bounds the reachable set.
every facet of which touches the reachable set at one point, is obtained.

A different method has been developed by the author. This method involves
a computer simulation of (42) in which the impulse response is computed once
during which time any number of points on the reachable set can be calculated. This
scheme saves on computation time relative to the former method which requires a
two-point-boundary-value problem solution for each facet of the approximation. The
author's method will be submitted for publication [10].
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VII. Conclusions

In this paper the design of model reference Liapunov controllers is extended
to the case wherein a linear filter is incorporated in the implementation of the
switching function. This broadens the scope of the design to permit filtered
measurements of available states and filterea approximations of inaccessible states.
It wight be udded that the analysis also facilitates the evaluation of the affects
of transducer dynamics which heretofore have been neglected,

In the absence of any sufficient stability criteria Lagrange stability was
obtained rather than Asymptotic Stability. The body of the report treats the
bound estimation and the trade-off effects of filtered noise and filter error.

For purposes of facilitating the bound analysis, a new design is proposed.
It has been shown that choice of a2 natural switching function guarantees that
the state vector approaches the switching plane nonotonically, until it enters
the region of imperfect control, to remain there for all subsequent time. Inasmuch
as the bound calculation is based on the width of the region of imperfect control,
factors affecting the bound arc evaluated in terms of their contribution to this
wiath, Estimation of the state bound is made through the reachable set of a lower-
order model.

Inasmuch as this is a preliminary report, simulation studies have not been
incluaed. The complete report is being prepared in the form of & doctoral
dissertation which treats the reduced-state stability analysis of the general
relay control system that (1) represents. Numerous examples will be included.
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APPERDIX

The following pertains to a stable linear filter having input u(t) constrained
according to

lue) | <21 (al)

and output e(t)., The filter is completely described by its impulse response h(t).
It is to be shown that as a consequence of the input constraint the largest
magnitude of filter output that can occur is

Ielmx = 2L I | h(r)|ar (a2)

where it is assumed e(0) = 0, Mathenagically.it is to be shown that the right
side of (a2) is the least upper bound on |el.

[t cen eesily be shown that (a?) is an upper bound on |e(t)|for t <=
since

t
e(t) = I h(r) u(t=r) ar. (a3)
0
Thus ¢
le(t)| < I Ih@r) | Ju(t=t)| dr (a4)
0

which for all t < « becomes in light of (al)

sl < & j InGc) |d . (25)
0
Therefore |el given by (a2) is indeed an upper bound. To demonstrate that it

is a least up‘é‘é%‘ bound it must be proved that equality in (a5) can occur, otherwise,
there would exist a lower upper bound.

We use a constructive proof to show that there exists 2 control u(t) which
causes the filter output to equal |e as given in (a2). Consider the (positive)
sequence [tn] + ®, the sequence of coftrols [ un(t)J defined over the intervals

0 <t < . where
u, (t) = 2L Sgn[h(ti-t)l (a6)

and the sequence of resultant outputs [ en(tn)J + E where
£y
e, (t,)) = 2L J h(t) Sgn[ h(r)] dr
e (a7)
t.
= 2L J “ |h(r)| dr .
0

18



It follows that “£th + o .n(tn)] - E and

E =2l |n(r)]ar. (a8)

)
S QED



10,
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