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R,ALISTIG ERROR BOUNDS FOR A REDUCED-STATE MODEL-REFERENCE CONTROLLER

T. h. Taylor
Department of Electrical Engineering

University of Connecticut
Storrs, Conn. 06268

I INTRODUCTION

When confronted with the problem of controlling a plant which is imperfectly
identified, it is often :necessary to employ extensive simulation studies in order
that desired performance is guaranteed. Although many approaches to solving this
problem have been made, in particular along the lines of adaptive control, a well
defined synthesis procedure cannot be said to have been defined. One approach to
solving this problem involves the application of identification techniques. However,
these methods require expenditure of tame, and in many eases, if not ruled out by
cost factors alone, are not reliable because the stability is not guaranteed due
to the computation lag involved.

An alternative to this approach is to develop a control which guarantees
stability over the range of parameter uncertainty involved. Although this solution
to the problem will not be the most efficient, it may be justified in terms of
cost, or simply because no other method is available. This method of control wr ich
has been discussed by ^everal authors [ 1], [2],[ 31 depends upon the synthesis of
a control law which guarantees stability by application of Liapunov's direct method.
This is accomplished by means of a model reference control system as characterized
in Figure 1.
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The objet of the model-refarence control schEmc: is to force the states, x.
1

,
of a singl y:-input, sinelc-output, nunlincar, time- varying, n th -order plant to 
track the states, r., of a linear, tim.-invariant n th-order model .3s the model
responds to some in

.
^ut. The main ruquirement on the control is one of stability.

Stated in general terms, this requires that some measure of the offsets, x.,
between plant and model statt:s, the tracking error, must either tend to zero in the
limit with timu (A^ympt tic Stability) or eventually be contairic:d within Borne small
calculable bounu (Lagrange Stability).

The main contribution of this report is an extension of previous work to allow
filtered states to be used in formulating the control law, thereby reducing noise
content in the general design and moreover providing the designer with the oppor-
tunity to use filtered derivatives of measurabl,4: signals to approximate states
that cannot be meacsured.

The essential problem can be related to an equation of the form.

	

x = Ax - b(t) sgn ( y (x))	 (1)

where the. stability matrix A and L(t) are in phase-variable form

	

I 0	 1	 I

0 1	 C) I0
A=: , L(t) = L 0 --- b (t)]T^..^	 -	 n

I
} 1 ^
,a-

1	 n1

with	 bn(t)	 < 2L	 (2)

The Signum function is defined to be

	

(+1	 y > 0

SF;n y =	 a	 y = 0 2 -1 _<

< 0

and the linear sw;_tchinc function y is

n
y = aTx = E	 a 

i 
x	 (3)

	

--- —	 i
i=1

where with no loss in Eenerality we assume a n = 1.
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That (1) is a propE•r representation of the controlled mode l-refaretice system
can b.:: seen by the following txair,pl^. Figure 2 is the signal flow graph of a
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third-order nonlinear, time:-varying plant having states p.
l
 that are to follow

those of the . stable linear,time-invariant modal rcierencem. respectively.
Ignorance of the plant is expressed in g( p ,t) and c

p
(t). The former contains

nonlinear terms and coefficients known only within bounds; the latter is bounded
away from zero and known only within bounds.
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The siLn of the control, u, i * that of the switching function -y( x). The gain
d (x,p,r,t) in the dQsions of refurunecs [ 11 and [ 2.1 is generated in the nonlinear
controller to form the magnitude part of thz control. To satisfy plant saturation
constraints it must be shown that h is less than some number L. Ia so doing, one
guarante,z:s that substitution, of the: constant L for M would give thu same stability
results. This is the motivation for the design of reference [ 3) where: 1 .1 o L and
the: nonlinear controller is essentially a relay.

The relevance of (1) to thy: system of figure 2 becomes apparent through thy;
equivalent signal flow represented in figure 3. A property of the synthesis

'^ Cm
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r(t)
	 14(x,Q,r,t)(.p(t)

Equivalent Thiru-Order Model Refere:ace Controller

Figure 3

techniques of ruferenccs [ 1], [ 2], [ 31 is that the signal at node a has the sign
of -y and a magnitude bounded by 2L. Inasmuch as stability of the trackini is
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based on stability of tho error states x. than stability of the controlled modol-
rKe:rance system may bu based on (1).	 1

Mom voing further several points should be made concerning (1) and its
relevance: to the model-refarence controlled systwn , nasmuch as the remainder of
this report is based entirely on (1).

Pirst, this ru lation is not the only one that could have been chosen. The
important qualities that must be preserved by the second term on the riiht of (1)

are that it must be of bounded magnitudu and must take . the sign of -y. Another
valid representatioq for examplo, would be the <xpression c(t) y (x) where
v < c(t) _v	 TO reason for the unboundedness of the time-variable gain c(t),
is explained by the second point.

Although the node; a is bounded and takes the sign of -y (x), it is not
necessarily zero when y is zero. Thus, if a linear gain is to relate the two
it must have infinite range. (Notice also that this property is present in (1)
in the infinite slope of the Sienum function.) It is this property which makes
the stability analysis of (1) so difficult.

The third point to bu made: is that, due to the presence of nonlinear terms
and time-variuble coefficients known only within bounds, very little: can be implied
about the signal a. This ignorance: is translated to b (t) in (1). Consequuntly,
no definite statement can be made concerning the time Rerivat.ive of Ln (t) . This
also confounds the: analysis problem.

Another point is that due to the ignorance in b (t) the system (1) is capable
of motions that may not be: possible in the actual contro lled system. This is
due to parameter ignorance. of paramount importance, however, is the fact that
all --ossible motions of the controllc.a system are motions of (1) and therefore
A. , properties that can be attributed to solutions of (1) apply also to those of
the model-rufe:rence controlled system.

The last point is that having assumed stability conditions to be satisfied
by the relay out put level, L, or varying gain h(b,x,r,t) the oily design frQedom
that remains is the choice of the switching function y(x) = a x .

Having established the relevance of (1) to the controlled model-rUcrence
system the problHm is to analyze the stability cf the origin as it is affected by
choice of the switching function.

II. COATROL LW SYNTHESIS

The purpesc: of this section is to derive general conditions on the linear
switching; function, y =aTx, for which asymptotic stability is guaranteed. For
convenience: (1) is re:writtan here: as

x = Ax - b(t) Sgn (aTx).	 (4)

Sufficient conditions are first found by Liapunov's Direct Method. Choos.ng a
Liapunov function

V= xTPx	 (5)
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where P is assumed syrmnttric, its total tire:-derivativo- is

1'	 -x TQx - 2x TPb( t) Sgn (u Tx)	 (6)

where

Q	 - [ ATP + PA ] .	 (7)

ChoosinC Q positive definite leads according to a thLortm of Liapunov [S] to a
positive definite P since A is a stability matrix. rurth(^:rmore P is a unique
sclution to (7). Therefore vis positive definite and V will be negative definite
providing

xTPb(t) Sgn (aTx) > o.
	

(t1)

Since b ( t) has only one nonzero terc., bn (t) which is non-negative, then (8) is
satisfied if

xTP COO -----1 j T Sgn (X 
T 
a ) > 0	 ( ? )

which implies

F[ 00----1 )T = a
	 (10)

Thus the coefficients of the switching function must satisfy

CL i	 p in , i = 1,2 9 ...n	 (11)

where p ij is the i-j Element of P and with no loss of generality, p nn = 1. Design

freedom in the choice of a results from the fact that there is an infinity of
positive: definite matrices Q which can be chosen and each one results through
(7) in a different positive definite matrix P, and this in turn leads to a
different a.

That the sut of ma trices P which is mapped through (7) from the set of all
positive definite matrices Q does not equal the set of all positive definite
matrices P is easily demonstrated by noting that the choice of a positive definite
P as the identity matrix leads through (7) to an indefinite Q, (q11= 0), for the

ca:,e of phasa-variable A. Therefore, the set of all switching functions a Tx which

result in asymptotic stability of (4) is not easily determined. However, one
important property of this set can be observed.

In order to eliminate: a state from the control law it must be shown that a
switching function satisfying thi. conk^.ition imposed above can be found which does
not involve that particular state. Tree elimination of th y; state x , for example,
implied that a.=0 and through (18) that p. =0. In particular, cular, to liminate the

highest-order-d ,:rivative state x from thencontrol law, a must be zero and thus
pnn 0. This last condition rul`s out the possibility of Minding an a satisfying

the stability condition for the case: an = 0 because a necessary condition for

6



positive definiteness of F is that all diagonal torms be gre :atQr than zero. It
is therefore: not pobsible to tstallish asymptotic stability via the Direct Method
unless the highest -order -derivat ; vc: state xn is included in the switching function.

It is the elimination of this particular state that pr,-svnts the: greatest
challenge. This is due to thf; fact that it can only be obtained by differentiating
a lower-order-de^ivativ statc.. The+ problem of eliminating any other state is
synthetic in the sense that it could he obtained bt intcgrating another state.

In as much as the: desired elimination of state cannot be shown to yiLld
asymptotic stability by means of thu Direct Method, unc: wondcsrs if some other suf-
ficiency condition might be used to establisiu stability. For this mason th,;
application of a fr-.^qu;:ncy domain stability criterion was investigated.

The %role Criterion [ G] applies to a syst--m with linear part and nonlinear,
time:-variable feedback such as (4). Nowuv,.;r, this sufficient condition requires
for the case of (4) that the loop transmission fro rm r.Llay output '.o relay input,

G(x) = a  [Is-A] -1 [00....1] T 	(12)

:rust havz no part of its Nyguist plot contained in the Qft half Nyguist plane:.
This condition implies indirectly that the switching function y must involve the
highest-order derivative state:, x n . This is the same condition imposed by the
Direct Method.

Th,; examples above, illustrate: the difficulty of obtaining sufficient cond-
itions for asymptotic stability of (4) for the: case, wherein a = 0. The lack
of any such condition leads one to consider the following appPoach to the problem.

The solution proposed here is to Fass th,: noisy measurements of the highcst-
order staT-e;s theough a set of filtered derivative: circuits to be used is the
implementation of the switching function 40. In what follows, the cast of x 

;navaiiable is tre:atud. Generalization to the: case of thL r highest-ordtjr
states unavailable is straightforward. The remainder of th,. report treats the
bound of the; fi lt;;re;d system.

In some cases tee: process of differentiating a lower-order state produces
worse noise than was present on the. original measured state. in this case it
may be &siraLlc: to use the filtcresd mtasurc;me:nt of the state. The: following
therefore treats the: case; wherein the state: x 's filtered and then used in the
switching function.	 n

III. DFRIVATIN OF FILTERED SYSTEM

In a situation where the highest-order-derivative state x is not accessible
but is required for asymptoticstability, a reasonable; solution is to use a
filttx%A derivative of xn-1 in pled: of xn . Choice of the filter, dynamics would
be based on some; krsowle:dge of measurement noise statistics. In this case, the
filter transfer function would have a denominator pol:,rnomial of order two or higher
to provide adequate low pass filterin g of white noise encountered in the m,_asure-
ment of xn-l . In the case: of colored noise a first-order, filter might suffice
but for ge:ne:rality we consider a second order filter. For purposes of this
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e - X -
ri	 'ntl'

(15)

discu;siun such a filter will L.: ruprt;U:.nt..d by

c2Xn+1 + C lxn+1 + xr4+l	 x -1	
(13)

This can 313o be c:xprc:sscd as

c 2xn+l + c 1Antl + xn+l = x
n .	 (14)

Bvcaust. of the phase:-v3riablo atructur^_ ,x 1 = x	 However, (13) is written
to indicate that thw stats: x 1 is the input tvnttio f i?tvr rather than x a:,
ind ic,atud in (14) . Accordii ^ y the dsriva t iv.- of r,oisw yncounturyd in J,'%; m,:a3urc-
ML:nt if xn-1 would appear on tht. right side; of (14) .

An augmtntt-d system results whin the filter , (14) is incorporated into the
original system (1), that is, wht:n the state xn+l is used in plcice of x  in the

switching function (3). It can easily be shown that the stability analysis of this
augmented system is Wndort;d in much the -,am,. manner as was that of (1) . This is
true in the cast; of both the Direct Method and the; Circles Criterion.

Even though asymptotic stability cannot be guaranteed in the augmented system
it is rea::rjnaLlc: to Qxptct that thL filter could be chosen so as to minimize the

ultimate: bound that may result. Toward this end we confider the term

It is thin filter error that distinguishes the augmL^ntud systQm from th,: crigina,
system (1 ) . In fact, for the following discussion it is convenient to express
thv augmcnv:d systc:rn as

x = Ax - b(t) Sgr, (aTx - anc).
	 (1.6)

The problem that remains is to choose thc: switching function coefficients
a  A2 ... an and filter constants c l , c 2 to minimize tht ultimate bound on solutions

Of (16).

Ono solution is to choose a so that (16) is asymptotically stable for the
case e = 0. Then treating the term a 

n 
e as switching function imperfection, a real-

istic bound can bo. duterninc:d by means of a previously reported technique [4].
However, for th- -ase of state:-dependent imperfection this technique only applies
to solutions having initial conditions in a certain state-space: region. Inasmuch
as calculation of this region is gencrally tedious, an alternate design is desiraLle.

In the following section a new design technique: is developed for which the
bound [4] applies to any initial condition.. A natural switching function is shown
to guarantee that solutions of (16) will monotonically approach a hync:rplanar
region, St, parallel to and centered about the switching plant:. By nature of the
fact that x will eventually c:ntLr sI and will remain, there: for all subsequent time,
the mound Technique developed in ref^rencc [41 applies directly. This bound oil
1-yj which in turn is based :)n worst -case magnitudes of f.ilte:r t;rror and filtQrLd
measurement noise. Thy trade-off that exists bUtwaLn the effects of these two
bour:ds is discussed.

8



IV. NATURAL SWITCNItic FUNCTION

Paraphasing a theorem of Lasalle's [7), it is Dossible to obtain asymptotic
stability with the usd of a scmidtfinite Liapunov function providing: a) that t:.Q
function approaches zuro asymptotically and b) that motion on the: zero manifold is
asymptotically stable. to the origin. 1n terms of the problem at hand where linear
switching is employed, asymptotic stability could be achieved if sufficient
conditions could be found to guarantuo that switching hypc :rplanu is asymptotic to

the origin. It will now by shown that choice of what will be calltd a natural
switching function guarantees both conditions.

Thc: linear switching function

Y = x 
T 

a	 (17)

lids a derivative based on (6) which is

Y - xT ATa - bn W So (a x - e).	 (18)

If a► is ehosvri as an %Age:nvuetor of AT and -a is the: corr:sponding c:igenvaluc..
that is if

A 
T 
a = -k a,	 (19)

then for the cast c = 0.

Y = - a Y - bn ( t) - Sgr, (1).	 (20)

This equation is asymptotically stable since: -a is an eigenvalu,^, of AT and thus
of A which is a stability matrix and therefore -a < 0, and b n (t) is non-negative.

Thus Y will approach zero asymptotically. In fact Y wi'_ mach zero in fin3T.:
time for the cas,. wher,-in b(t) is not id.-ntically zero. `Cn;s can be sten by
considering y approaching zero from abov,::. Th.: second *_urm on the right of (20)
has a f mite, nugativt averagi: value: which will b-.; a.:aignatc:d as -X.i . The asymptote3
of y is therefore -B. The: c:xponc:ntial nature. of the solution then, gurantees that
for any number vuc:twe: ►_-n y((j) and y( m ) _ -B, -.here: is a finite, time T for which
Y(T) = v, 0 < T < o-. Zero is such a number. This is dumonstratcd graphically in
Figure 4.

V otion on the switching plane. Y = 0 is guaranteed to be asymptotically stable
since by assumption A is a stability matrix and therefor:: there can be no unstable
manifold passing "through the origin. Inasmuch as the switching hyperplane Y = 0
i.. a manifold of the syst.:m it must therefor-,: be a stable one.

Another argument for tt,is point is that, with the natural switching function
design, the tr.,jectory in finite time attains the manifold Y = 0 upon which it
remains for all subsequent tim• -. Consequently, with e = 0 the second term on the
right of (20) and (16) is identically zero. 	 Thus (16) is represented by

x = Ax; e = 0,	 (21)

O



wh^:rvupon subs r quLnt motion on Y a 0 is asymptotically stable.

Y(t)

y (0)

I

T
`t

i

Y (t)i Reaches Zero in Finite Time

Figure; 4

T11L natural switching function design for the case of an n th-order system

is only possibly whin A ,r and equivalently A has at least one distinct real cigt:n-
value. ['or th,: case of m < n simpl y: roots there are m possible natural switching
functions. This d sign has sevl^.ral merits. Thc. most important will now bQ
d--mor.stratud .

Having ^!stablishQd asymptotic stability in the absence of filter error, the
problL:m remains to obtain a realistic estimate of thu bound on x due: to a given
filter. The method to be employed here is to show that thiz sta g. vc , ctor is confined
to a certain neighborhood of the switching plane. Then the bound estimation
technique reported previously [4] may bi- employ(d. The problem 'heref ore is to
obtain a r,:alistic bound on y(x), thus guaranteeing that x is contained in a
hyp..:rplane region centered about "'Lit! parallvl to the switching plane. The system
with filter error is repmsent::d by

Y = - AY -bn (t) • Sgn (Y - e).	 (22)

Thy following discussion is Lased on the: fact that magnitude of Y will be decreasing
as long as

lyllkl -	 (23)

It becomes apparent that the bound on It-,' becomes on upper bound on ^ ^. Minimiza-
tion of the bound is therefore simply bastd. on the minimization of l.-

 T.
 The object

then in obtaining an uppL:r bound on Jul is to determine the largest value of 1Y1

that can result.

The natural switching-function system is described by the following set of
equations and corresponding flow graph, Figure 5.
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xl = x2

x 2 = x3

xn-1 xn -

xn-•1 = xn+2

n-1

E a ix i + y

i=1

(24)

n-1

c 2xn+2 - -xn+l	 clxn+2	
it

	 a.x. + y

y = -ay -bn (t) 5gn (Y-e)

- X  - xn+l

I/s
1 	 xn	 1/s :^n-1	 x'L	 1/s xl

—^-	 i `^	 n- 1 ^^
-	 -- -	 -«

\	 _^  -a 1
-L

n (t) r 1	 1 	 ^	 1 ^l

(hLlay)

-C 1

Natural Switching Fullctioll Syster.1

Figure 5
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The filter error responds to initial conditions of all intugr.ztor outputs and
to the relay output. How^v.:r it is the driven rasponse that is of interest
he.rr for it is this esponse that prevails to possibly affect an eventual bound.
To find the largest Jul that can be rf iched , tht system i!, initiated at z = 0
and the relay is allowL:d to switch, regaralLss of its switching function, in an
optimal fashion with b (t) set at its maximum magnitudo, 2L. Note that the system
in Figur,.: 5 does not irvolv,: plant parameters.

To achieve the optimization, it is convenient to use tho transfer function
relating the nod..;s u and e in thy: absancL; of the nonlinear feedback path. This
takrs thc: form

E( S )
	 Sn(C, S t C )

(S+ M Sn-1 + aiz-1 Sn-2 + ---a 2 S+ u 1 )(C 2 S 2 + C 
1 
S + 1)

For which the inverse transform h(t) obviously exists. It is important to note
that the term 1/(S+ X)(S ri-1 + an-1 Sn-2 + --- + a 1 ) relates u to x1 and therefore

the. roots of this polynomial arm identical with the uigenvalues of A. That is to
say

(5 + a)(S
n-1 + CL	 IS n-2 + --- a 2 S t a l ) = det (IS-A).

	
(26)

( -1)
Also in (25) the numerator term S 

n	
relates x 1 to xn . The remaining term

relates xn to e by the filter equation (15) and the relation e = xn - xn+1'

E(S) -	
0(C 2 S + C1)

xn	 ( C 2 S 2 + C IS + 1)
(27)

It is shown in the Appendix that the largest le(t)l that can result for ju(t)j< 2L
is

lei 
max= 

21,
	 I h( -r)Idt.	 (28)

0

With this result, the minimization of JeI and consequently of iyl and of the
eventual bound on x can be discussed.

One method of reducing e 	 •,pond the result of (28)  involves the fact that
the behavior required of b n (t, ld of the relay, or equivalently, of u(t), to

produce the maximum lei would most likely produce a y that is larger than e in
magnitude. If a second iteration were performed wherein this constraint were
placed on y or equivalently on u(t) it is certain that a smaller e would result.
This could possible converge through several iterations to a much smaller value
and possibly zero. However, the optimal problem involves a state-space constraint
and its solution has not been determined.

It might be thought possible to appl,^ the optimal technique used in obtaining
(28) to the transfer function relating the transforms of y and e, namely, ( S+a ) (H(S ).
however inasmuch as this has numerator and demominator of equal order it Phil).

a

12



never occur that lei would be less than lyl.

It will now be shown for the case when A has a large negative eigenvalue
that lei	 will be correspondingly small. When this is not the case it is shown
that themMilter (14) can be chosen to make 

Ier^aX 
in (28) arbitrarily small at the

expense of admitting noise encountered in the measurement of x n-1 into the switching

function. The trade-off of Y-bound due to filter error and filtered noise will
also be pointed out.

Bound on

With the help of Figure 5 it is seen, since ju, 2L, that the largest 1 Y d
which can occur is 2L/X. Clearly, if A were to have a distinct real eigenvalue
with very large negative value, the hyperplane tangent to its corresponding eigen-
vector could be chosen as a natural switching plane and X would be very large.
This situtation offers two advantages. The resulting bound on Y wol:ld be very
imall and, by nature cf the solution of (20), jyj would tend to converge faster
from some initial condition to the bound 2L/X than would be the case with smaller
values of X. This result agrees with intuition in that the lack of highest
derivative information should not be so serious in a system which could be
aprroximately represented by a lower-order system.

It will now be shown that when A does not have this property, the filter can
be chosen so that the bound on lei and therefore on jyj can be designed to be
arbitrarily small. If the transfer function ^)f the general filter in (14) is
replaced by a second-order filter with simple real poles so that

Xn+1 (S) 	 1

X T S	 Ti S + 1 (T?S+l)
(29)

that is if C 2 = T i T 2 and C, = Tl + T 2 , then the transfer function relating x 
1

to e is

L(S)	 S[S + (T l + T2)/T lT2]

X  S
	 (S + 1/Tl S + 1/T2)	

(30)

If T l is chosen much less than 1 2 we have

S(S) -	 S	 Tl«T2	 (31)
X  S
	 S + 1 /T2

In light of this the transfer function relating a and e from (15) becomes

J
( S ) 

= fl ) = det iS - AM + 1/T2	 (32)
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Which can be expressed as shown in Figure 6.

1

u 	 S + 1 /1 2

_l

.._.f 
S 

	

^1

8 --i; det (IS - A) 	
e

Equivalent Lxpression of (32)

Figure G

A consequence of the magnitude constraint Jul < 2L and the constraint T2«T1
is that

1s1 <	 21 2 L.
	

(33)

Inasmuch as a is the output of a realizable filter having all roots with negative
real parts it follows that e is bounded in proportion to the filter input S. Thus
e approaches zero with T 2 . However, to reduce the bound on lei and lyl in this
way, 12 must be made small and as a result S= -1/T 2 becomes a far4outpole. Further-
more, the filter pole at S = -1/T 1 is even farther out by the assumption T1 «T2,
These far-out poles admit high frequency measurement noise to the switching
function. Treating this noise as an additive signal in the switching function and
assuming a magnitude constraint on the noise Jn(t)J < :J it follows that the sign
of y and therefore the: relay output cannot be affected if j y j > N. `Thus Sgn y /
Sgn ( y - e) only if l y < 17. Due to the fact that the switching line is approaches!
monotonically in the absence of switching function imperfection, and since n(t)
can only cause imperfection when Jy <	 N, it follows that a bound on Iyl results
due to noise: alone. This bound is lyj < N.

It becomes apparent that the cast of choosing a wide-bandwidth filter to
decrease the bound on jyl caused by filter error is that a greater bound on lyl
due to the pr^:sence of high frequency noise may result. The filter would have
to be based on some knowledge of the measurement noise in any particular application.
To further evaluate the trade-off that exists in the absence of information about
the number N, statistical properties of the bound on jyj due to noise could be
used rather than absolute maximum values as were used ?n this instance.
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A f!irthe.r advantage; of the natural switching function design that becomes
apparent here is that the: bound on jyj due to both filter error and filtered
noise is simply the sum of the bounds due to each acting separately. The reason
is th.-t each is based upon imperfection in the switching function and this is an
add ;.tivt. quantity. That is to say, if filtered noise n(t) bounded in magnitude
by N, and 1iltcr error e: bounded in magnitude by E, are both present in the
implemented signal Y, imperfect control can result only in the state space region
denoted by

aNb = {x:	 IY(x) I < N + E}.	 (34)

This is termed the "region of imperfect control." This region for the case of
filter error or filtered noise acting alone is

c2£ _ { x:	 I Y (x)I < g}	 (35)

and

.2N _ {x: lY(x)l <	 N}	 (36)

respectively.

Having established the region of imperfect control for (14) and thus for (16),
and having guaranteed by the natural switching function design that once x enters
QNE it will remain in this region for all subsequent time, it is possible to de-
termine an eventual bound on the states x. by employing a technique reported earlier.
(4] This is discussed briefly in what fohows.

Bound on State: Vector

It will now be -0hown that by nature of the fact that x will eventually be
confined to the region of imperfect control

n	 {x:	 JYWJ	 < . C}

a reasonable bound can be determined for x,
x s Q implies

n
-C < z	 a.x. < C.

(37)

This follows from the fact that

(38)

Following through with the eariier assumption that an = 1, the constraint (33)
implies

n-1	 n-1
-C -	 E	 U.X. < x < C -L	 a x.	 (29)

i=1	
i. i— n— i=1

which is satisfied if
n-1
E a.x. + R(t)	 (40)

n 
i=1
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where

s(t) J < C.	 (41)

In light of (41) it is possible to represent motion of (1) confined to 0
by the n-1 st -order system

x= A x t b B
	

(42)
-r	 r-r -r

where A is an (n-1) x (n-1) matrix of the form
r

F 0 1
0	 1,

A = i

r
' a	 --

and b is an (n-1)xl vector of the form
-r

b  = [0 --- 11T.

The reduced-order system (42) serves as a model t%at represents motion of (1)
confined to si in that any solution of the latter is a solution of the former.
Therefore, a bound on solutions of (42) is a bound on solutions of (1) confined
to aL

It is important to note in (42) that the case; B=0 rQpresents motion confined
to the switching hyperplane y=O, and as pointtd out earlier, the natural switching
function design guarantees that this motion is asymptotically stable;. Thus A 
is a stability matrix.

Calculation of the bound on x confined to Q is now accomplished by deter-
mination of the reachable set [81 of the lines time-invariant stable reduce;d-
order system (42). A computer Estimation technique is available due to the work
of Nare:ndra [0] whereb y a piecewise-planar figure which bounds the reachable set.
every facet of which touches the reachable s,:t at on,: point, is obtained.

A different m«A hod has been developed by the author. This method involves
a computer simulation of (42) in which the impulse response is computed once
during; which time any number of points on the reachable set can be calculated. This
scheme saves on commutation time relative to the former method which requires a
two-point-boundary-'value problem solution for each facet of the approximation. The
author's method will be submitted for publication [10].
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VII. Loncluslons

In this paper the design of model reference Liapunov controllers is extendeu
to the case wherein a linear 'filter is incorporated in the implementation of the

switching function. This broadens the scope of the design to permit filtered

mer.surements of available states ana filterea approximations of inaccessible states.

It Wight be sadea that the analysis also facilitates the evaluation of the affects
of tran6ilucer dynf=ics which heretofore have been neglected.

In the absence of any sufficient stability criteria Lagrange stability was

obtained rather than ksymptotic Stability. The body of the report treats the
bound estimation and the trade-off effects of filtered noise and filter error.

For purposes of facilitating the bound analysis, a new design is proposed.
It hcs been shown that choice of s natural switching function guarantees that
the state vector approaches the switching plane monotonically, until it enters

the region of imperfect control, to remain there for all subsequent time. Inasmuch
as the bound calculation is based on thy: width of the region of imperfect control,

factor y Iffvctirtg the bound Ira evaluated in terms of their contribution to this

wiath. Estimation of the state bound is made through the reachable act of a lower-

ordEr model.

Inasmuch as this is a preliminary report, simulation studies have: not been
incluueu. The complete report is being; prepared in the form of c doctoral
dissertation which treats the reduced-state stability analysis of the general
relay control system that (1) represents. Numerous examples will be included.
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l.PPLAIX

Me following pertains to a stable linear filter having input u(t) constrr.ined
accoruing to

Ju(t) I	 < 21.	 (al)

and output e(t). Thy filter is completely described by its impulse respons4 h(t).
It is to be 3hoan thnt as a consequence of the input constraint the lnrgLst
maf;nitude of filter output that cnn occur is

lei 
m::x 

a 2L	 I h(T	 dT	 (az)

where it is assumed e(0) = U. NathemaPically,it is to be shown that the right
side of 02) is the luast upper bound on IV-1.

It can ensily bL shown that 02; i3 an upper bound on le(t)lfor t < -
since

t

U(t) a	 h(1 ) u(t-T	 dr	 03)
0

Thus

(t
je(t) l	 I	 Ih(t	 u(t-T)	 dt	 (a4)

J0

which for all t < - becomes in light of (gal)

CO

lei < 2L	 Ih(t	 d T .	 (a5)

0

Therefore lei	 given by (a2) is indeed an upper bound. To demonstrate that it
is a least upper bound it must be proved that equality iii (a5) can occur, otherwise,
there would exist a lower upper bound.

We use a constructive proof to show that thk:re exists ? control u(t) which
causes the filter output to equal Iel 	 us given in (a2). Consider the (positive)
sequence [ t 

n 
J - -, the sequence_ of controls 	 [U n (01  defined over the intervals

0 < t < t where
- - n

ui(t) = 2L Sin [ h(t i-t)]	 (a6)

and the sequence of resultant outputs[ e
n n
(t ) ] -+ E where

ti

e  (t i )	 2L	 h(t ) Sgn [ 11(T ) I dT

0
(a7)

t.

2L	 ^h(T )I dT

0

18



It follows that as [t n 1 + ao ,[a r (t n ))	 E and

E = 2L(	 jh(T )I dT .	 (a8)

1
p	 QED
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