Approximating Properties of Linear Models for InputOutput Descriptions

by

Ernest G. Holzmann

March 1968

SCHOOL OF ENGINEERING

APPROXIMATING PROPERTIES OF LINEAR MODELS
 FOR INPUT-OUTPUT DESCRIPTIONS

by
Ernest Gunther Holzmann

March 1968
DEPARTMENT OF ELECTRICAL ENGINEERING STANFORD UNIVERSITY
STANFORD, CALIFORNIA

ACKNOWLEDGMENTS

The author wishes to express his appreciation to Professor R. E. Kalman, who supervised this study, for his guidance and patience throughout the course of the investigation, and to Professor G. F. Franklin for his encouragement and helpful suggestions.

Major financial support was received from the National Aeronautics NGKand Space Administration under Contract 1eqR=05-020-073 and is gratefully acknowledged.

Abstract

This report presents results of a research effort to solve certain approximation problems that arise in the computation of linear stationary models of dynamical systems from given input-output data. B.L. Ho's existence theorem states necessary and sufficient conditions for strict realizability that are satisfied only in ideal situations. Mathematical proof is given in this report that good dynamical simulation is possible with linear models which represent partial, rather than minimal, realizations. The restrictions of B.L. Ho's theorem do not apply to partial realizations, and the class of partially realizable input-output descriptions is large enough for practical purposes. For any normal sequence of scalar Markov parameters, the transfer function of each partial realization is shown to lie on the diagonal of the E-array corresponding to the given sequence. The proof is based on the classical theory of the Pade' approximation. Relevant parts of this theory are reviewed and developed in the report, including a new, stronger form of Pade's representation theorem.

As a by-product of this research, a sharpened, computationally more efficient version of B.L. Ho's minimal realization algorithm was derived. The new algorithm expresses every minimal realization of a given sequence of Markov parameters in terms of the pseudo-inverse matrices $\left(V^{\dagger}, W^{\dagger}\right)$. The generating matrices (V, W) are familiar from the theory of complete controllability and observability. The algorithm is shown to be the sharpest possible, subject to the requirement that every minimal realization be obtainable.

TABLE OF CONTENTS

Page
ABSTRACT iv
LIST OF SYMBOLS vii
I. INTRODUCTION 1
II. THE PADE TABLE 5
2.1 Definitions 6
2.2 Existence and Uniqueness of Padé Table 7
2.3 Representation Theorems 13
2.4 Padés Fundamental Proposition 25
2. 5 Normal Padé Approximants 32
2.6 The E-Array 39
2.7 Padé Approximation for Power Series of Nonnegative Order 43
III. REPRESENTATION OF PADÉ APPROXIMANT BY DETERMINANTS 52
3.1 Definitions 53
3.2 Some Properties of Hankel Determinants 55
3. 3 Conditions for a Block in the Pade Table 56
3.4 Determinantal Form of Padé Approximant 69
IV. MINIMAL RELAIZATIONS OF LINEAR DYNAMICAL SYSTEMS 78
4.1 B. L. Ho's Existence Theorem 79
4.2 B. L. Ho's Realization Algorithm 82
4.3 The Unique Representation Theorem 87
V. HANKEL DETERMINANTS OF REALIZABLE SCALAR SEQUENCES 105
VI. PARTIAL RELAIZATION OF SCALAR SEQUENCES 121
6.1 Definitions 121
6.2 Elementary Properties of Partial Realizations 122
6.3 Approximating Properties of Partial Realizations 127
VII. CONCLUSIONS AND FUIURE RESEARCH AREAS 131
APPENDIX A. Some Definitions in Algebra 133

1. Formal Power Series 133
2. Polynomials 134
3. Rational Functions. 135
APPENDIX B. The Pseudo Inverse of a Matrix 136
4. Definition 136
5. Construction. 136
6. Existence and Uniqueness Theorems 137
7. Properties 140
REFERENCES 141

Symbols	Description	Place of First Use
A^{k}	columa vector	Lemma 2.1
$\mathrm{A}_{\mathrm{N}}(\mathrm{z})$	Nth partial sum of $f(z)$	Eq. (3.3)
B	matrix of linearly independent columns	Lerma 4.7
C	matrix of linearly independent rows	Lemma 4.7
E_{n}	$E_{n}=\left[\begin{array}{llll}I_{n} 0 & \cdots & 0\end{array}\right]$	Eq. (4.7)
$\mathrm{E}_{\text {uv }}$	$u \times v$ canonical diagonal matrix of rank u	Eq. (4.6)
$E_{i}^{(j)}(z, s)$	(i, j) element of E-array for $Z(s)$	Eq. (2.60)
$f(z)$	power series	Theorem 2.2
F	$\mathrm{n} \times \mathrm{n}$ system matrix	Eq. (4.1)
G	$n \times m$ input distribution matrix	Eq. (4.1)
H	$\mathrm{p} \times \mathrm{n}$ output distribution matrix	Eq. (4.1)
I_{n}	$\mathrm{n} \times \mathrm{n}$ unit matrix	
J	canonical diegonal matrix	Eq. (B.7)
x	column space of $S_{r}^{(0)}$	Prop. 4.11
M	companion matrix	Eq. (4.4)
N	companion matrix	Eq. (4.5)
$\mathbb{N}(z)$	numerator polynomial	Eq. (2.19)
O_{n}	$n \times n$ null matrix	
P	premultiplier in realization algorithm	Theorem 4.4
$P(z)$	numerator polynomial	Theorem 2.5
$\begin{aligned} & P_{i j} \\ & P_{i}^{(j)} \end{aligned}$	numerator polynomial of (i, j) Pade' pair numerator polynomial of $E_{i}^{(j)}(Z, s)$	Theorem 2.4 Eq. ${ }^{\text {(2.60) }}$)

Q	postmultiplier in realization algorithm	Theorem 4.4
$Q(z)$	denominator polynomial	Theorem 2.5
$Q_{i j}$	denominator polynomial of (i, j) Pade' pair	Theorem 2.4
$Q_{i}^{(j)}$	denominator polynomial of $E_{i}^{(j)}(\mathrm{Z}, \mathrm{s})$	Eq. (2.60)
Q	row space of $S_{r}^{(0)}$	Prop. 4.11
$\mathrm{S}, \mathrm{~S}_{\mathrm{r}}^{(\mathrm{k})}$	generalized Hankel matrix	Eq. (3.1)
T	$n \times n$ transformation matrix	Lemma 4.8
T z)	z-transform transfer function	Eq. (4.21)
$\mathrm{T}_{i j}(\mathrm{z})$	determinantal form of numerator polynomial	Eq. (3.4)
$u(k), u(t)$	$m \times 1$ input vector	Eq. (4.19)
U	inverse of T	Lemma 4.8
$U_{i j}(z)$	determinantal form of denominator polynomial	Eq. (3.4)
V	$\left[\begin{array}{llll}H^{\prime} & \mathrm{F}^{\prime} \mathrm{H}^{\prime} & \cdots & \left(\mathrm{F}^{\prime}\right)^{\mathrm{r}-1} \mathrm{H}^{\prime}\end{array}\right]^{\prime}$	Eq. (4.10)
W	$\left[\begin{array}{lllll}\mathrm{G} & \mathrm{FG} & \cdots & \left.\mathrm{F}^{\mathrm{r}-\mathrm{I}_{G}}\right]\end{array}\right.$	Eq. (4.10)
$W(t)$	impulse response function	Eq. (4.23)
$x(k), x(t)$	$n \times 1$ state vector	Eq. (4.19)
\mathscr{X}	sequence of real numbers	Eq. (6.2)
$y(k), y(t)$	$\mathrm{p} \times 1$ output vector	Eq. (4.19)
y_{k}	scalar (Markov) parameter	Prop. 5.1
Y_{k}	matrix (Markov) parameter	Eq. (4.1)
$\mathrm{Z}(\mathrm{s})$	Laplace transform transfer function	Eq. (6.26)
$\mathrm{Z}(\mathrm{s})$	infinite series	Eq. (2.57)
Z_{N}	Nth partial sum of series $Z(s)$	Eq. (3.53)

α_{j}
$\Delta_{n}^{(k)}$
ΔZ_{N}
λ
ρ
$\psi(z)$
linear recursion coefficient
Eq. (4.2)
$\operatorname{det} S_{n}^{(k)}$
Eq. (3.2)
Nth term of series $Z(s)$
nonnegative index
dimension of minimal realization
annihilating polynomial of F

Superscripts
,
\#
\dagger
*

1
-
transpose
(non-unique) pseudo inverse
Eq. (4.14)
pseudo inverse
Eq. (4.26)
conjugate transpose
orthogonal complement (of a vector subspace)
submatrix
Eq. (B. 5)
Prop. 4.11
Prop. 4.11

I. INTRODUCTION.

The problems considered in this report were inspired by certain questions raised by Dr. Bin-Iun Ho in his dissertation "On Effective Construction of Realizations from Input-Output Descriptions" [6].

The object is to transform given input-output data of a multivariate process into another description more suitable for simulation. In the case of stationary linear dynamical systems, which are the class studied by B.L. Ho, a useful description may take the form of statevariable differential (or difference) equations. From a practical point of view, the derived description (called the "model") should meet the following criteria:
a. The model should reproduce the observed external behavior patterns of the dynamical system with acceptable accuracy.
b. The construction of the model from the given input-output data should be economically carried out on a computer, using available or readily programmed routines.
c. The model itself should be amenable to economical simulation on a computer.

These three criteria determine the quality, price, and operating cost of the model.
B. L. Ho's methods meet the above requirements at least as well as the known methods of other researchers. In fact, B. L. Ho's models
are called "realizations" precisely because they perfectly match given input-output data. Furthermore, in the sense used by B. L. Ho, a realization is a finite set of first-order linear differential equations (expressed in terms of the coefficient matrices), and programming of a realization for simulation therefore presents no special difficulty.

Suppose a given input-output sequence does not meet B. L. Ho's realizability conditions for a finite-dimensional model. Then two questions arise quite naturally:
(1) Does B. L. Ho's method give a model whose external behavior has approximating properties that make the model useful in simulating studies?
(2) Can B. L. Ho's method be modified to further improve the approximating properties found in (1)?

The present report covers the first phase of a continuing study aimed at answering these two questions.

Chapter II of the report reviews basic theorems in classical Padé approximation theory, i.e., the rational approximation of functions represented by power series, in a neighborhood of the origin of the argument. To prepare for application of the theory to the problem posed by question (1) above, a new and stronger form of Pade's representation theorem is presented (Theorem 2.5). In this chapter, we also draw attention to some pitfalls which must be avoided when generalizing results from normal to non-normal Padé tables. Examples to illustrate this point are discussed. Anticipating later applications
to the theory of linear dynamical systems, the chapter concludes with the definition of the E-array and its relation to the Padé table.

Chapter III concentrates on determinantal expressions which play a prominent part in the Pade theory. Such expressions have long been known for normal Padé tables, but Theorem 3.7 , giving the determinantal representation of the pade approximant for the general case, does not appear to have been stated or proved in the avallable literature. A corollary of the theorem, restricted to the normal case, indicates a similar representation for the elements of the $\mathbb{E}-a r r a y$.

Chapter IV states two results of B. L. Ho's work which are pertinent to the present research, namely the existence theorem (Proposition 4.1) and the algorithm for minimal realizations (Theorem 4.4). By appealing to the unique properties of the pseudo inverse, we are able to sharpen B. L. Ho's algorithm in Theorem 4.9. Corollary 4.10 presents the unique reciprocal relations between any minimal realization (F, G, H) and the matrices (V, W).

Chapter V, like Chapter III, deals primarily with determinantal relationships, but restricted to realizable sequences, i.e., to sequences corresponding to rational functions. As a by-product, corollary 5.5 generalizes one of $B . L$. Ho's theorems. Theorem 5.8 gives four mathematical equivalents of the statement that a scalar sequence has a minimal realization.

In Chapter VI, we generalize the concept of the realization of a sequence by considering partial realizations and the associated
approximation problems. Theorem 6.5 proves that the partial realization of a normal sequence y (i.e., one for which $\Delta_{r}^{(0)} \neq 0$, all positive integers r) is closely related to the Padé approximants for the power series $\Sigma \mathrm{y}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}}$. Corollary 6.6 identifies the transfer function, of the partial realization for normal y, with elements in the E-array for the power series.

Chapter VII serves as a review of the results obtained. The limitations of the work point to the need for further research, as indicated at the end of that chapter.

Two appendices are included. The first one summarizes a few definitions from algebra that are pertinent to Chapter II. The second appendix briefly states definitions and properties of the pseudo inverse of a matrix. These are used in Chapter IV.
II. THE PADÉ TABIE.

As pointed out in the Introduction, this chapter is concerned primarily with properties of the classical Pade approximation.

After the definition of standard terms, we prove a lemma which will later allow us to sharpen certain classical results.

Following the lerma, we consider the classical questions of existence (Theorem 2.2) and uniqueness (Theorem 2.3) of the entries in the Padé table for a given power series. The existence of Theorem 2.2 is proven by a constructive approach designed to pave the way for Theorem 2.5.

Theorem 2.5 has not been found in the published literature on the Padé approximation. It is a stronger form of the classical representation theorem (Theorem 2.4). Its formulation will be used in subsequent sections to link together the classical theory of the Padé approximation and the more recent theory of controlled linear dynamical systems.

Theorem 2.6 gives precise meaning to the notion that the Padé approximant is, in some sense, a "best" rational approximation to a given power series. The proof of the theorem is followed by a short discussion of its significance.

The possible existence of square blocks of equal approximants gives rise to the distinction between normal and other Padé tables. This important subject is introduced in Theorem 2.7 and its two corollaries.

The last section of the chapter deals with the E-array associated with a normal Padé table.
2.1 Definitions. [17, p. 378]

1. Let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k} \tag{2.1}
\end{equation*}
$$

be a formal power series in one variable, with real coefficients.* Let (i, j) be an ordered pair of nonnegative integers.

The (i, j) Padé approximant for f is a rational function

$$
\begin{equation*}
R_{i j}(f, z)=\frac{N_{i j}(z)}{D_{i j}(z)} \tag{2.2}
\end{equation*}
$$

with the two properties (called the defining conditions of the approximant):

$$
\begin{align*}
& \text { I. } \quad \operatorname{deg} D_{i j} \leq i, \quad D_{i j} \neq 0 \\
& \operatorname{deg} N_{i j} \leq j
\end{align*}
$$

and

$$
\begin{equation*}
\text { II. } f(z) D_{i j}(z)-N_{i j}(z)=\left(z^{i+j+1}\right) \tag{2.4}
\end{equation*}
$$

where $\left(z^{k}\right)$ denotes a power series beginning with the term z^{k} or a higher power of $z . * *$
2. The Pade table for f is the (doubly) infinite matrix $R(f)=\left[R_{i j}\right]$, $i=0,1, \ldots ; j=0,1, \ldots ;$ of Padé approximants for f.
3. The (i, j) Padé approximant for f is called normal if the quotient $R_{i j}$ is distinct from all other quotients in the table.

A formal power series f is normal if all of the Padé approximants for f are normal, i.e. distinct. The Padé table for f is then also called normal, and so is the sequence of coefficients (a_{0}, a_{1}, \ldots).

[^0]
2.2 Existence and Uniqueness of Padé Table.

Leman 2.1
Hypotheses:

1. $\left\{A^{k}: k=0,1, \ldots, i\right\}$ is a set of vectors in the real Euclidean vector space R^{i}, $i \geq 1$.
2. The vectors $A^{k}(k=0,1, \ldots, i)$ span an r-dimensional subspace of R^{i}.
3. m is the largest index such that the vectors $A^{m}, A^{m+1}, \ldots, A^{i}$ are linearly dependent.

Conclusions:

1. $\quad 0 \leq i-r \leq m \leq i$
2. The linear homogeneous equation

$$
\begin{equation*}
\sum_{k=0}^{i} d_{k} A^{k}=0 \tag{2.6}
\end{equation*}
$$

has a unique solution $\left(d_{0}, d_{1}, \ldots, d_{i}\right)$ such that

$$
d_{k}= \begin{cases}0 & (k<m) \tag{2.7}\\ 1 & (k=m)\end{cases}
$$

Proof:

1. By hypothesis 2, $r(\leq i)$ of the given vectors A^{k} are linearly independent, but any collection of $r+l$ vectors from the given set are linearly dependent. In particular, the vectors $A^{k}(k=i-r, i=r+1, \ldots, i)$ are linearly dependent. Hypothesis 3 then implies

$$
i-r \leq m \leq i
$$

2. Suppose $A^{m} \neq 0$.

The defining property of m now implies
(i) $m<i$.
(ii) The vectors $A^{k}(k=m+1, m+2, \ldots, i)$ are all nonzero and linearly independent.
(iii) A^{m} lies in the ($i-m$)-dimensional subspace spanned by the vectors $A^{k}(k=m+l, \ldots, i)$.

Therefore, the equation

$$
\begin{equation*}
A^{m}+\sum_{k=m+1}^{i} d_{k} A^{k}=0 \tag{2.8}
\end{equation*}
$$

has a unique solution $\left(d_{m+1}, d_{m+2}, \ldots, d_{i}\right)$.
Existence of the solution follows from (iii) above.
To prove uniqueness, suppose ($d_{m+1}^{\prime}, \ldots, d_{i}^{\prime}$) were a second solution of (2.8). Then

$$
\begin{equation*}
\sum_{k=m+1}^{i}\left(d_{k}-d_{k}^{i}\right) A^{k}=0 \tag{2.9}
\end{equation*}
$$

and (ii) above implies

$$
d_{k}=d_{k}^{\prime} \quad(k=m+1, \ldots, i)
$$

The solution of (2.8), together with the values of $d_{k}(k \leq m)$ given by (2.7), satisfies the vector equation (2.6) and is unique.

Suppose $A^{m}=0, \quad m=i$.
Then

$$
d_{k}= \begin{cases}0 & (k<i) \\ 1 & (k=i)\end{cases}
$$

is a solution of (2.6) satisfying (2.7), and clearly it is the only solution satisfying (2.7).

Suppose $A^{m}=0, m<i$.
Then, from the definition of m, we must hove

$$
A^{k} \neq 0 \quad(k=m+1, m+2, \ldots, i)
$$

and these vectors are linearly independent.

Now substitute the values of d_{k} given by (2.7) into equation (2.6). Then

$$
0=A^{m}+\sum_{k=m+1}^{i} d_{k} A^{k}=\sum_{k=m+1}^{i} d_{k} A^{k}, \quad \text { since } A^{m}=0 \text {. }
$$

By linear independence, we get the unique result

$$
\sum_{k=m+1}^{i} d_{k} A^{k}=0 \Longrightarrow d_{k}=0 \quad(k=m+1, m+2, \ldots, i) .
$$

Therefore

$$
a_{k}= \begin{cases}0 & (k \neq m) \tag{2.10}\\ I & (k=m)\end{cases}
$$

uniquely satisfies both (2.6) and (2.7).
Theorem 2.2 (Existence Theorem) (Padé) [11, p. 9]
Hypothesis: $\quad f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$.
Conclusion: For each ordered pair (i, j) of nonnegative integers, there exists a rational function $R_{i j}(f, z)$ satisfying the conditions I and II of the (i, j) Padé approximant.

Proof: Let $D(z)=\sum_{k=0}^{i} d_{k} z^{k}$
be a polynomial with undetermined coefficients (d_{0}, \ldots, d_{i}). Form the product

$$
\begin{equation*}
f(z) D(z)=\sum_{k=0}^{\infty} c_{k} z^{k} \tag{2.12}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{k}=\sum_{u+v=k}^{a_{u}} d_{v} . \tag{2.13}
\end{equation*}
$$

The undetermined coefficients d_{k} are chosen as follows:
(i) If $i=0$, take $d_{0}=1$.
(ii) If $i>0$, we set

$$
\begin{equation*}
c_{k}=0 \quad(k=j+1, j+2, \ldots, j+i) \tag{2.15}
\end{equation*}
$$

Written out, (2.15) is a system of i linear homogeneous equations in the $i+I$ unknowns $d_{0}, d_{1}, \ldots, d_{i}$, and thus alweys has a non= trivial solution. In matrix form, the system (2.15) is

$$
\left[\begin{array}{cccc}
a_{j-i+1} & a_{j-i+2} & \cdots & a_{j+1} \tag{2.16}\\
a_{j-i+2} & a_{j-i+3} & \cdots & a_{j+2} \\
\cdots & \cdot & \cdots & \cdot \\
a_{j} & a_{j+1} & \cdots & a_{j+i}
\end{array}\right]\left[\begin{array}{c}
a_{i} \\
a_{i-1} \\
\cdot \\
\cdot \\
\\
a_{0}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

or, equivalently,

$$
\begin{equation*}
\sum_{k=0}^{i} a_{k} A^{k}=0 \tag{2.17}
\end{equation*}
$$

where

$$
A^{k}=\left[\begin{array}{c}
a_{j-k+1} \\
a_{j-k+2} \\
\vdots \\
\cdot \\
a_{j-k+i}
\end{array}\right] \in R^{i}
$$

Let r be the rank of the $[a]$ matrix in equation (2.16). Then the vectors $A^{k}(k=0,1, \ldots, i)$ and the integer r satisfy the hypotheses of Lemma 2.1. Let $m \geq 0$ be the index defined in the lemma.

By the conclusions of the lemma, (2.17) has a (unique) nontrivial solution $\left(d_{0}, d_{1}, \ldots, d_{i}\right)$ such that

$$
d_{k}= \begin{cases}0 & (k<m) \\ 1 & (k=m)\end{cases}
$$

Substitution in (2.11) gives

$$
\begin{equation*}
D(z)=z^{m}+\sum_{k=m+1}^{i} a_{k} z^{k} \tag{2.18}
\end{equation*}
$$

The product $f D$ is therefore a power series of the form
where

$$
f D=N+\left(z^{i+j+l}\right)
$$

$$
\begin{equation*}
\mathbb{N}(z)=a_{0} z^{m}+\sum_{k=m+1}^{j} c_{k^{2}}^{z^{k}} \tag{2.19}
\end{equation*}
$$

From (2.18) and (2.19):

$$
\operatorname{deg} D \leq i, D \neq 0, \text { and } \operatorname{deg} \mathbb{N} \leq j
$$

Thus D and \mathbb{N} satisfy the defining conditions I and $I I$ of the (i, j) Padé approximant for f.

Theorem 2.3 (Uniqueness Theorem) [17, p. 378]
Hypothesis: I. $f(z)=\sum_{0}^{\infty} a_{k} z^{k}$.
2. (i, j) is an ordered pair of nonnegative integers.
3. Each of the two pairs of polynominals (N, D) and $\left(\mathbb{N}^{9}, D^{9}\right)$ satisfies the conditions I and II of the (i, j) Padé approximant for f.

Conclusion:

$$
\frac{N}{D}=\frac{N^{1}}{D^{i}}
$$

Proof: By hypothesis,
(i) $\quad f D-\mathbb{N}=\left(z^{i+j+1}\right) \Longrightarrow f D^{\prime}=\left[\mathbb{N}+\left(z^{i+j+1}\right)\right] D^{\prime} ;$ and
(ii) $f D^{\prime}-N^{\prime}=\left(z^{i+j+1}\right) \Rightarrow f D^{\prime} D=\left[N^{\prime}+\left(z^{i+j+1}\right)\right] D$.

Therefore

$$
\begin{equation*}
N^{\prime}-N^{\prime} D=\left(z^{i+j+1}\right) \tag{2.20}
\end{equation*}
$$

But $\operatorname{deg}\left[N D^{\prime}-N^{9} D\right] \leq i+j$,
the left side of (2.20) contains no power of z with exponent higher than $i+j$,
\Rightarrow the right side of (2.20) is identically zero,
$\xrightarrow[N]{\sim} N^{\prime}-\mathbb{N}^{P} D=0$
$\Rightarrow \frac{N}{D}=\frac{N^{i}}{D^{i}}$.

2.3 Representation Theorems.

Theorem 2.4 (Padé's Representation Theorem)[13, p. 421]
Hypothesis:
I. $f(z)=\sum_{0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$.
2. (i, j) is an ordered pair of nonnegative integers, and $R_{i j}(f, z)$ is the (i, j) Padé approximant for f.

Conclusions: There exists a unique pair of polynomials ($\left.P_{i j}, Q_{i j}\right)$ and a nonnegative integer λ such that
(i) $P_{i j}(0)=a_{0}, Q_{j, j}(0)=I$;
(ii) $\operatorname{deg} P_{i j} \leq j-\lambda, \operatorname{deg} Q_{i j} \leq i-\lambda$;
(iii) $z^{\lambda}\left[f Q_{i j}-P_{i j}\right]=\left(z^{i+j+1}\right) ;$ and
(iv) $P_{i j}$ and $Q_{i j}$ are relatively prime.

Furthermore, the polynomials ($P_{i j}, Q_{i j}$) defined by (i) - (iv) also have the property

$$
\text { (v) } R_{i j}(f, z)=\frac{P_{i j}(z)}{Q_{i j}(z)} .
$$

Proof: By definition of the (i, j) Padé approximant for f, $R_{i j}$ has a representation

$$
R_{i j}(f, z)=\frac{N_{i j}(z)}{D_{i j}(z)}
$$

where $\mathbb{N}_{i j}$ and $D_{i j}$ are polynomials satisfying conditions I and $I I$.
The greatest common divisor of $\mathbb{N}_{i j}$ and $D_{i j}$ is of the form ${ }_{z} \lambda_{B(z)}$, where

$$
\begin{aligned}
& \lambda \geq 0 \\
& B(z)=\sum_{v=0}^{r} b v^{v}, b_{0} \neq 0, \quad r \geq 0 .
\end{aligned}
$$

Now there exist relatively prime polynomials $P_{i j}, Q_{i j}$ such that

$$
\begin{align*}
& \mathbb{N}_{i j}(z)=z^{\lambda} B(z) P_{i j}(z) \tag{2.21}\\
& D_{i j}(z)=z^{\lambda} B(z) Q_{i j}(z) \tag{2.22}\\
& P_{i j}(0)=a_{0}, Q_{i j}(0)=I \tag{2.23}
\end{align*}
$$

By property II of the Padé approximant, we have

$$
\begin{aligned}
& {\left[f(z) Q_{i j}(z)-P_{i j}(z)\right] z^{\lambda} B(z)=\left(z^{i+j+1}\right) } \\
\Longrightarrow & {\left[f(z) Q_{i j}(z)-P_{i, j}(z)\right] z^{\lambda}=\left(z^{i+j+1}\right), \text { since } b_{0} \neq 0 }
\end{aligned}
$$

Next, $\quad \operatorname{deg} N_{i j} \leq j$

$$
\begin{aligned}
& \Rightarrow \operatorname{deg}\left[z \lambda_{i j}\right] \leq j-r \leq j, \text { by }(2.21) ; \\
& \operatorname{deg} P_{i j} \leq j-\lambda_{i} \\
& \text { Similarly, } \operatorname{deg} D_{i j} \leq i \\
& \operatorname{deg}\left[z Q_{i j}\right] \leq i-r \leq i, \text { by }(2.22) ; \\
& \operatorname{deg} Q_{i j} \leq i-\lambda .
\end{aligned}
$$

Thus, we have shown the existence of polynomials $\left(P_{i j}, Q_{i j}\right)$ satisfying (i) - (iv). Conclusion (v) is immediate from (2.21) and (2.22).

The uniqueness of $\left(P_{i j}, Q_{j j}\right)$ satisfying (i) - (iv) is shown as follows.

By Theorem 2.3, $R_{i j}$ is a unique rational function, with at most i poles and j zeros. Since $P_{i j}$ and $Q_{i j}$ are relatively prime and thus have no zeros in common, it follows from

$$
R_{i j}=\frac{P_{i j}}{Q_{i j}}
$$

that the zeros of $P_{i j}$ are exactly the same as the zeros of $R_{i j}$, with their multiplicities. By the Factor Theorem for Polynomials [16, p. 61] [9, p. 121], the polynomial $P_{i j}$ is uniquely characterized (aside from a constant factor) by its zeros. Therefore, the zeros of $R_{i j}$, together with the condition $P_{i j}(0)=a_{0}$, uniquely specify $P_{i j}$. Similarly, $Q_{i j}$ is uniquely given by the poles of $R_{i j j}$ and $Q_{i j}(0)=1$.

Definition. The unique pair of polynomials ($P_{i j}, Q_{i j}$) postulated in Theorem 2.4 is called the ($1, j$) Fade pair (for f).

Theorem 2.5

Hypotheses:
I. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$.
2. (i, j) is an ordered pair of integers, $i \geq 1, j \geq 0$.
3. m is the largest index such that the column vectors $A^{m}, A^{m+1}, \ldots, A^{i}$ are linearly dependent, where

$$
\begin{align*}
& A^{k}=\left[\begin{array}{c}
a_{j-k+1} \\
a_{j-k+2} \\
\vdots \\
a_{j-k+i}
\end{array}\right] \quad(k=0,1, \ldots, i) \tag{2.24}\\
& a_{v}=0 \text { for } v<0 .
\end{align*}
$$

Conclusions:

1. There exists a unique pair of polynomials (P, Q) such that
(i) $P(0)=a, Q(0)=1$;
(ii) $\operatorname{deg} P \leq j-m, \quad \operatorname{deg} Q \leq i-m ;$
(iii) $z^{m}[f Q-P]=\left(z^{i+j+1}\right) ;$ and
2. The pair of polynomials (P, Q) defined by (i) - (iii) is the (i, j) Padé pair for f. That is, P and Q have the additional properties
(iv) $R_{i j}(f, z)=\frac{P(z)}{Q(z)}$.
(v) P and Q are relatively prime.
3. The index m has the additional properties:
(vi) $m=\max \lambda$, the maximum being taken over all integers λ satisfying

$$
\begin{equation*}
\operatorname{deg} P \leq j=\lambda, \quad \operatorname{deg} Q \leq i-\lambda \tag{2.25}
\end{equation*}
$$

where (P, Q) is the (i, j) Padé pair for f. (vii) Either $\operatorname{deg} P=j-m$, or $\operatorname{deg} Q=i-m$.

Proof: The existence of P and Q is readily shown. Using the same construction as in the proof of Theorem 2.2, we get two polynomials N and D,

$$
\begin{align*}
& D(z)=z^{m}+\sum_{k=m+1}^{i} d_{k} z^{k} \tag{2.18}\\
& \mathbb{N}(z)=a_{0} z^{m}+\sum_{k=m+1}^{j} n_{k} z^{k} \tag{2.19}
\end{align*}
$$

satisfying conditions I and II of the (i, j) Padé approximant for f. Therefore

$$
\begin{equation*}
R_{i, j}(f, z)=\frac{\mathbb{N}(z)}{\bar{D}(z)} \tag{2.26}
\end{equation*}
$$

Let

$$
\begin{align*}
& P(z)=z^{-m} N(z)=a_{0}+\sum_{k=m+1}^{j} n_{k} z^{k-m} \\
& Q(z)=z^{-m} D(z)=1+\sum_{k=m+1}^{i} a_{k} z^{k-m} \tag{2.27}
\end{align*}
$$

Then (2.26) implies

$$
\begin{equation*}
R_{i j}(f ; z)=\frac{P(z)}{Q(z)} \tag{2.28}
\end{equation*}
$$

and $P(0)=a_{0}, Q(0)=I ; \operatorname{deg} P \leq j-m, \operatorname{deg} Q \leq i=m$. Also, $f D-\mathbb{N}=\left(z^{i+j+1}\right)$ and (2.27) imply $z^{m}[f Q-P]=\left(z^{i+j+1}\right)$.

Therefore the polynomials (P, Q) defined by (2.27) have the properties
(i) through (iv).

To prove the uniqueness of P and Q, we show first that P and Q are relatively prime and then apply Theorem 2.4.

Certainly z does not divide P or Q because of their form (2.27). Suppose, now, that the polynomial

$$
\begin{equation*}
B(z)=1+b_{1} z+\cdots+b_{n} z^{n}, 0 \leq n \leq \min (i, j)-m \tag{2.30}
\end{equation*}
$$

divides P and Q. Then there are polynomials $P *$ and Q^{*} such that

$$
\begin{aligned}
& P(z)=B(z) P^{*}(z) \\
& Q(z)=B(z) Q^{*}(z) .
\end{aligned}
$$

From equations (2.27) and (2.30), P^{*} and Q^{*} have the form

$$
\begin{align*}
& p^{*}(z)=a_{0}+\sum_{k=1}^{j-m-n} p_{k}^{*} k \tag{2.31}\\
& Q^{*}(z)=1+\sum_{k=1}^{i-m-n} q_{k}^{*} z^{k} .
\end{align*}
$$

Consider now two polynomials \mathbb{N}^{*} and D^{*}, defined by

$$
\begin{align*}
& N^{*}(z)=z^{m+n_{P *}(z)} \\
& D^{*}(z)=z^{m+n^{*}}(z) . \tag{2.32}
\end{align*}
$$

\mathbb{N}^{*}, D^{*} have the following properties:

$$
\operatorname{deg} \mathbb{N}^{*} \leq j, \operatorname{deg} D^{*} \leq i, D^{*} \neq 0 ;
$$

and (2.29) implies

$$
\begin{align*}
& z^{m} B\left[f Q^{*}-p^{*}\right]=\left(z^{i+j+1}\right) \\
& \Rightarrow f D^{*}-\mathbb{N}^{*}=\left(z^{i+j+1+n}\right) . \tag{2.33}
\end{align*}
$$

Furthermore, (2.31) and (2.32) imply that D^{*} may be written

$$
\begin{equation*}
D^{*}(z)=\sum_{k=0}^{i} d_{k}^{*} z^{k} \tag{2.34}
\end{equation*}
$$

with $\quad d_{k}^{*}= \begin{cases}0 & (k<m+n) \\ 1 & (k=m+n) \\ q_{k-m-n}^{*} & (k=m+n+1, m+n+2, \ldots, i) .\end{cases}$
The product $f D^{*}$ is a power series:

$$
f D^{*}=\sum_{k=0}^{\infty} c_{k_{k}^{*}}^{k}
$$

where

$$
c_{k}^{*}=\sum_{u+v=k} a_{u}^{d_{v}}{ }_{v}^{*} .
$$

From (2.33) and deg $N^{*} \leq j$ we infer that the following coefficients c_{k}^{*} vanish:

$$
\begin{equation*}
c_{k}^{*}=0 \quad(k=j+1, j+2, \ldots, j+i) \tag{2.35}
\end{equation*}
$$

The i homogeneous linear equations (2.35) can be stated in the form of a linear relation between the $i+1$ column vectors A^{k}, with coefficients d_{K}^{*} :

$$
\begin{equation*}
\sum_{k=0}^{i} d_{k}^{*} A^{k}=0 . \tag{2.36}
\end{equation*}
$$

Substituting for $d_{k}^{*}(k=0,1, \ldots, m+n)$ in (2.36), we have

$$
\begin{equation*}
A^{m+n}+\sum_{k=m+n+1}^{i} d_{k}^{* A^{k}}=0 . \tag{2.37}
\end{equation*}
$$

By hypothesis 3, the linear dependence relation (2.37) implies $n=0$. Therefore $B(z) \equiv l$, and P and Q are relatively prime, as claimed in (v).

Now $f,(P, Q)$ and $\lambda=m$ satisfy the hypotheses of Theorem 2.4. Since P and Q are relatively prime, Theorem 2.4 ensures the uniqueness of the representation. This completes the proof of conclusions 1 and 2 .

To show $m=\max \lambda$, we note that because of (ii), m satisfies the conditions (2.25) for λ. It remains to show that no larger value of λ can satisfy (2.25).

Suppose $\lambda_{0} \geq m+1$, and λ_{0} satisfies (2.25). Then $\operatorname{deg} P \leq j-m-I$, $\operatorname{deg} Q \leq i-m-1$. Therefore, the two polynomials P, Q have the form

$$
\begin{array}{ll}
P(z)=\sum_{k=0}^{j-m-1} n_{k} z^{k}, & n_{0}=a_{0} ; \\
Q(z)=\sum_{k=0}^{j-m-1} d_{k} z^{k}, & d_{0}=1 .
\end{array}
$$

Define $\quad c_{k}=\sum_{u+v=k} a_{u} d_{v}$ the coefficient of z^{k} in the power series $f Q$. From $z^{m}[f Q-P]=\left(z^{i+j+1}\right)$ we obtain the two sets of equations

$$
\begin{array}{ll}
n_{k}=c_{k} & (k=0,1, \ldots, j-m-1), \\
c_{k}=0 & (k=j-m, j-m+1, \ldots, j-m+i) .
\end{array}
$$

In matrix form, the second set reads

By the definition of m, the columns of the $[a]$ matrix in (2.38) are linearly independent. Hence (2.38) can only have the trivial solution, contrary to the requirement $d_{0}=1$. Thus we have proved that no value
of λ greater than m can satisfy (2.25). Hence (vi) follows, and (vii) is a trivial consequence of (vi).

The proof of Theorem 2.5 is complete.

Relation between Theorems 2.4 and 2.5 . Theorem 2.5 is a new and stronger version of the classical representation theorem 2.4. Theorem 2.5 preserves the uniqueness property of the classical Padé pair and has the added advantages that

1. it gives sharp upper bounds for the degrees of the polynomials characterizing the (i, j) Padé pair for a given power series f;
2. it eliminates the classical requirement that the candidate polynomials P, Q for the Padé pair be relatively prime. The property of being relatively prime turns out to be a result of, rather than a condition for, the choice of the pair (P, Q);
3. the index m appearing in Theorem 2.5 is uniquely determined for each triple (f, i, j), while the similar parameter λ appearing in Theorem 2.4 is not unique.

The non-uniqueness of λ is demonstrated in the following example.

Example to Show Non-Uniqueness of λ_{0}
Let $f(z)=\frac{1+z-z^{3}}{1-z^{3}}=1+z+z^{4}+z^{7}+z^{10}+z^{13}+z^{16}+\ldots$
Fade table for f :

By Theorem 2.4, the (i, j) Fade pair for f is $\left(P_{i j}, Q_{i j}\right)$, where
(i) $P_{i j}(0)=a_{0}, \quad Q_{i j}(0)=1 ;$
(ii) $\operatorname{deg} P_{i j} \leq j-\lambda, \quad \operatorname{deg} Q_{i j} \leq i-\lambda$;
(iii) $z^{\lambda}\left[f Q_{i j}-P_{i j}\right]=z^{\lambda}\left[z^{4}+z^{7}+z^{10}+\ldots\right]=\left(z^{i+j+1}\right) ;$
(iv) $P_{i j}, Q_{i j}$ relatively prime.

The integer λ (see conclusion of Theorem 2.4) has the following admissible values for the given power series:

j	0	1	2	3	4	5	6	
i 0	0	0	0	0	0	0	0	
1	0	0	O, 1	1	0	0, 1	1	
2	0	0	1	2	0	1	2	
3	0	0	0	0	0	0	0	
4	0	1	0	0	0, 1	0, 1	0, 1	
5	0	0	0	0	0, 1	0, 1, 2	0, 1, 2	

For each pair (i, j), the index m (see Theorem 2.5) equals the maximum admissible value of λ.
2.4 Padés Fundamental Proposition.

Theorem 2.6 (Padé) [11, p. 12]

Hypotheses:

1. $f(z)=\sum_{0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$.
2. (i, j) is an ordered pair of non-negative integers; and
$R_{i j}(f, z)$ is the (i, $\left.j\right)$ Padé approximant for f.
3. (P, Q) are a pair of polynomials in z, with
```
deg}P\leqj, degQ\leqi
```

4. r is the largest integer such that

$$
f(z)-\frac{P(z)}{Q(z)}=\left(z^{r}\right) ;
$$

s is the largest integer such that

$$
f(z)-R_{i f}(f, z)=\left(z^{S}\right)
$$

Conclusions:

1. $r \leq s$; and
2. $r=s \Leftrightarrow R_{i j}(f ; z)=\frac{P(z)}{Q(z)}$.

Proof: Half of conclusion 2, namely

$$
\begin{equation*}
R_{j j}=\frac{P}{Q} \Rightarrow r=s \tag{2.39}
\end{equation*}
$$

follows trivially from the definition of r and s in hypothesis 4.

For the other half of conclusion 2 , it suffices to show

$$
\begin{equation*}
r \geq s=R_{j, j}=\frac{P}{Q} \tag{2.40}
\end{equation*}
$$

Then (2.39) and (2.40) together imply that $r \geq s \Rightarrow r=s, i . e . r \neq s$, and thus conclusion 1 is validated.

By Theorem 2.5, $R_{i j}(f, z)$ has a unique representation

$$
\begin{equation*}
R_{i j}(f, z)=\frac{P_{i j}(z)}{Q_{i j}(z)} \tag{2.41}
\end{equation*}
$$

where the polynomials $P_{i j}, Q_{i j}$ have the properties
(i) $P_{i j}(0)=a_{0}, Q_{i j}(0)=1$;
(ii) $\operatorname{deg} P_{i j} \leq j-m, \operatorname{deg} Q_{i j} \leq i-m ;$
(iii) $z^{m}\left[f Q_{i j}-P_{i j}\right]=\left(z^{i+j+1}\right)$;
with $m \geq 0$ defined in terms of the coefficients of f.

Properties (i) and (iii), together with (2.41), give

$$
f-R_{i j}=f-\frac{P_{i j}}{Q_{i j}}=\left(z^{i+j+1-m}\right)
$$

From this, by hypothesis 4,

$$
\begin{equation*}
0 \leq i+j+l-m \leq s \tag{2.42}
\end{equation*}
$$

Now suppose $r \geq s$. Then, again by hypothesis 4,

$$
\begin{align*}
& \frac{P}{Q}-\frac{P_{i j}}{Q_{i j}}=\left[f-R_{i j}\right]-\left[f-\frac{P}{Q}\right]=\left(z^{s}\right)-\left(z^{r}\right)=\left(z^{s}\right) \\
& =P Q_{j j}-P_{i j} Q=Q_{i j} Q\left(z^{s}\right) . \tag{2.43}
\end{align*}
$$

From the properties of the polynomials (P, Q) and $\left(P_{i j}, Q_{i j}\right)$, we get

$$
\begin{aligned}
& \operatorname{deg}\left[P Q_{i j}\right] \leq i+j-m \\
& \operatorname{deg}\left[P_{i j} Q\right] \leq i+j-m
\end{aligned}
$$

so that the left -hand side of (2.43) has no powers of z with exponent greater than $i+j=m$. But the right -hand side contains no powers of z with exponent less than $s, s \geq i+j-m+1$ by (2.42). Therefore the two sides of (2.43) have no nontrivial terms in common, and each side must vanish identically. Thus

$$
P Q_{i j}-P_{i j} Q=0
$$

and so, finally,

$$
\frac{P}{Q}=\frac{P_{i j}}{Q_{i j}}=R_{i j}, \quad \text { by (2.41). }
$$

This completes the proof of the Fade Theorem.

REMARKS: Padé called the theorem just proved "fundamental" to his theory. One is therefore surprised to find that the place of this important theorem in the Pade theory has been obscured in some recent work.

The distinction between the defining properties I and II of the Padé approximation, and the conclusions of the Padé theorem, is most clearly explained with the aid of an example:

Consider $f(z)=\cos z=1-\frac{z^{2}}{2}+\ldots$, and let $i=j=1$.
The defining properties I and $I I$ give the (unique) numerator and denonimator polynomials

$$
N_{11}(z)=z=D_{11}(z) .
$$

Check: $\operatorname{deg} N_{11}=1=\operatorname{deg} D_{11}=1=\operatorname{deg} D_{11}$, and

$$
f(z) D_{11}(z)-N_{11}(z)=-\frac{z^{3}}{2}+\ldots=\left(z^{3}\right)
$$

Now the Padé theorem asserts that the expansion of the quotient

$$
R_{11}(f, z)=\frac{N_{11}(z)}{D_{11}(z)}
$$

in ascending powers of z, agrees with more leading terms of the power series for f than does the expansion of any other rational function whose numerator and denominator are of degrees not exceeding j and i, respectively.

In our example, then, Theorem 2.6 claims that, of all rational functions of the form $R(z)=\frac{a z+b}{c z+d}$, the unique one whose expansion agrees with the most terms of

$$
\cos z=1-\frac{z^{2}}{2}+\ldots
$$

is $R_{11}=1$. The point to note is that the theorem does not yield an explicit numerical index that allows one to deduce a priori how many terms in the expansion of f are matched by the Pade approximant.

Such an index $1 s$, however, provided in the classical definition of the Padé approximant: Property II of the Padé approximant gives an explicit least upper bound, namely z^{i+j}, on the powers of z which are matched in the expansion

$$
f(z) D_{i j}(z)-\mathbb{N}_{1 j}(z)
$$

This distinction between the defining properties of the Padé approximant, and the resulting properties asserted in the Padé theorem, is not always respected in the recent literature. We give three specific instances:
8. Baker, in his recent (1965) study of the convergence properties of sequences of Padé spproximants, states $[1$, p. 3]:
"In the $[N, M]$ Pade approximant the numerator has degree M and the denominator degree N. The coefficients are determined by equating like powers of z in the following equations:

$$
f(z) Q(z)=P(z)=A z^{M+N+1}+B z^{M+N+2}+\ldots, Q(0)=1.0
$$

Where $P(z) / Q(z)$ is the $[N, M]$ Padé approximant to $f(z)$."

This characterization is clearly inconsistent, as shown by taking $f(z)=\cos z, M=N=1$. The first of the two equetions gives $P(z)=Q(z)=z, A=-\frac{1}{2} ;$ so $Q(0)=0 \neq 1$.
b. Shanks, in his 1954 dissertation [14, p. 21] characterizes the Padé approximant for f by two properties:
"Property 1. $R_{k n}$ may be written as the ratio of two polynomials:

$$
\mathrm{R}_{\mathrm{kn}}=\mathrm{N}_{\mathrm{kn}} / \mathrm{D}_{\mathrm{kn}}
$$

with the degree of $\mathbb{N}_{k n} \leq n$ and the degree of $D_{k n} \leq k$. But $D_{k n}$ does not vanish identically.

Property 2. The power series of $R_{k n}$ agrees with that of $f(z)$ to a higher power of z than any other rational function with degrees of numerator and denominator no greater than n and k, respectively."

Shanks then cites Wall [17, p. 378] as a reference for the assertion:
"Property 2 is equivalent to the condition

$$
f(z) D_{k n}-N_{k n}=\left(z^{k+n+l}\right) . "
$$

Actually, Wall neither proves nor even states that the two conditions are equivalent. The weakness of Shanks ${ }^{\text { }}$ claim is evident from the same counterexample used before:

For $f(z)=\cos z, N_{11}=D_{11}=1$ satisfy Shanks' properties I and 2, yet

$$
f(z) D_{11}-N_{11}=-\frac{z^{2}}{2}+\ldots \neq\left(z^{3}\right)
$$

c. In his 1962 book Matrix Iterative Analysis, Varga [15, p. 266] defines the Padé approximant for $f(z)=\sum_{V=0} a v^{z}$ as the quotient of polynomials $n_{p q}(z)$ and $d_{p q}(z)$ which are respectively of degree q and p. Assuming

$$
d_{p q}(0) \neq 0,
$$

Varga now selects for each pair of nonnegative integers p and q those polynomials $n_{p q}(z)$ and $d_{p q}(z)$ such that the Tayloris series expansion of $n_{p q}(z) / d_{p q}(z)$ about the origin agrees with as many leading terms of $f(z)$ as possible. Varga then claims "it is evident that the expression

$$
d_{p q}(z) f(z)-n_{p q}(z)=0\left(|z|^{p+q+1}\right), \quad|z| \rightarrow 0,
$$

gives rise to $p+q+1$ linear equations in (the unknown coefficients), whose solution determines these unknown coefficients."

The inconsistency of Varga's assertions is readily evident from the previously used counterexample:

For $f(z)=\cos z, \quad d_{11}(0) \neq 0 \quad d_{11}(z)=1$ nd $n_{11}(z)=1$, but

$$
\alpha_{11}(z) \cos z-n_{11}(z)=-\frac{z^{2}}{2} \neq 0\left(|z|^{3}\right)
$$

To place this discussion in proper perspective within the pade approximation theory, the following should be added. First, it is of course possible to construct a consistent theory of the Pade approximation using Varga's definition. Cheney (1966) [2, p. 174] has taken this approach, carefully avoiding the pitfalls along the way.

Second, the two approsches are equivalent for that class of functions which have a normal Padé table. This assertion will be proved in Corollary 2.9, with the aid of the next theorem.
2.5 Normal Padé Approximants.

Theorem 2.7 [13, p. 425] [17, p. 394]
Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$
2. (i, j) is an ordered pair of nonnegative integers, and
$R_{i j}(f, z)$ is the (i, j) Padé approximant for f.
3. ($P_{i j}, Q_{i j}$) is the unique (i, j) Padé pair for f,
with

$$
\begin{equation*}
\operatorname{deg} P_{i j}=p, \quad \operatorname{deg} Q_{i j}=q . \tag{2.44}
\end{equation*}
$$

Conclusions:

1. There exists a nonnegative integer \mathbf{r} such that the power series $\left[f Q_{i j}-P_{i j}\right]$ starts exactly with the power $z^{p+q+r+1}$, or else $f Q_{i j}-P_{i j}=0$. In the latter event, we set $r=\infty$.
2. The $\left(q+r_{1}, p+r_{2}\right)$ Padé approximant for f equals
$R_{i j}, \quad$ with
$r_{1}, r_{2}=0,1, \ldots, r$ in case r is finite,
and $\quad r_{1}, r_{2}=0,1, \ldots$ in case r is infinite.
3. No entry other than those enumerated in conclusion 2 is equal to $R_{i j}$.

Proof: The defining properties of the Padé approximant imply

$$
\begin{align*}
& 0 \leq p \leq j, \quad 0 \leq q \leq i \tag{I}\\
& f Q_{i j}-P_{i j}=\left(z^{i+j+1}\right) . \tag{II}
\end{align*}
$$

Assertion I of the theorem is immediate.

By hypothesis 3, ($\left.P_{i j}, Q_{i j}\right)$ have the following five properties (reference Theorem 2.4):
(i) $P_{i j}(0)=a_{0}, \quad Q_{i j}(0)=1$;
(ii) $p \leq j-\lambda, \quad q \leq i-\lambda, \quad \lambda \geq 0 ;$
(iii) $\lambda+p+q+r \geq i+j ;$
(iv) $P_{i j}$ and $Q_{i j}$ are relatively prime;
(v) $R_{i j}(f, z)=\frac{P_{i j}(z)}{Q_{i j}(z)}$.

To prove assertions 2 and 3 of the theorem, let (u, v) be a pair of nonnegetive integers. By Theorem 2.4, necessary and sufficient conditions for

$$
\begin{equation*}
R_{u v}(f, z)=P_{i, j}(z) / Q_{i j}(z) \tag{2.45}
\end{equation*}
$$

are that there exists a nonnegative integer k such that

$$
\begin{align*}
& p \leq v-k, \quad q \leq u-k \tag{2.46}\\
& k+p+q+r \geq u+v \tag{2.47}
\end{align*}
$$

Our task is to solve these inequalities for u, v, and $k(\geq 0)$.
Condition (2.46) is equivelent to

$$
\begin{aligned}
& u+v \geq u+k+p \\
& u+v \geq v+k+q
\end{aligned}
$$

or, combined with (2.47),

$$
k+p+q+r \geq u+v \geq\left\{\begin{array}{l}
u+k+p \\
v+k+q
\end{array} .\right.
$$

Hence

$$
\begin{equation*}
q+r \geq u, \quad p+r \geq v \tag{2,48}
\end{equation*}
$$

Moreover, $\mathrm{k} \geq 0$ and (46) implies

$$
\mathrm{u} \geq \mathrm{q}, \quad \mathrm{v} \geq \mathrm{p}
$$

so that the following conditions are necessary for (2.45):

$$
\begin{equation*}
q+r \geq u \geq q, \quad p+r \geq v \geq p . \tag{2.49}
\end{equation*}
$$

The inequalities (49) validate assertion 3 of the theorem.

To complete the proof of the theorem, we only need to demonstrate that for each choice of (u, v) in accordance with (49), there exists an integer $k \geq 0$ satisfying (46) and (47). We choose

$$
\begin{equation*}
k=\min (u-q, v-p) . \tag{2.50}
\end{equation*}
$$

Then $k \leq u-q, k \leq v-p$ imply (2.46).
Suppose $u-q \leq v-p$.
Then

$$
\begin{aligned}
k+p+q+r & =(u-q)+p+q+r \\
& =u+p+r \\
& \geq u+v, \text { by }(2.49)
\end{aligned}
$$

Similarly, $u-q \geq v-p \Longrightarrow k+p+q+r \geq u+v, \quad$ by (2.49).
Pherefore (2.47) is satisfied by k as defined in (2.50).

It. follows that (2.49) are both necessary and sufficient conditions for (2.45), and assertion 2 verified.

Assertions 2 and 3 are verified.

Remarks: Wall [17, p. 395] calls x the order of the (i, j) Padé approximant. When the approximant $R_{i j}$ is nomms, it is distinct from all other entries in the Badé table, and thus $r=0$. For this case we have the following corollary of Theorem 2.7.

Corol1axy 2.8 [13, p. 425]

Hypothesis:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$ 。
2. $R_{1 j}(f, z)=\frac{\mathbb{N}_{i j}(z)}{D_{i j}(z)}$ is the (i, j) pade approximant for f,
with $N_{i j}$ and $D_{i j}$ relatively prime.
Conclusion: The following conditions are necessary and sufficient for $R_{i j}$ to be normel:
(i) $\quad \operatorname{deg} \mathbb{N}_{i j}=j, \quad \operatorname{deg} D_{i j}=i$.
(ii) The expansion of $i D_{i j}-N_{i j}$ in escending powers of z starts exactly with the power 2^{i+j+1} (not with a higher power).

Proof:
Sufficiency: Suppose (i) and (ii) are true. Apply Theorem 2.7. Then $p=j, q=i \Rightarrow r=0$ by conclusion 1 of Theorem 2.7 , and $R_{i j}$ is normal, by conclusion 3 .

Necessity:
Let $\left(P_{i j}, Q_{i j}\right)$ be the ($\left.i, j\right)$ Made' pair for f. By the uniqueness of $R_{i j}$,

$$
\frac{P_{i j}}{Q_{i j}}=\frac{N_{i j}}{D_{i j}} .
$$

Since both quotients are clear of common (nonconstant) factors, the numerator polynomials are equal up to a constant factor, and the denominator polynomials are equal up to the same constant factor.

Applying Theorem 2.4, there exists $\lambda \geq 0$ such that
and

$$
\begin{aligned}
& p=\operatorname{deg} P_{i j}=\operatorname{deg} \mathbb{N}_{i j} \leq j-\lambda \\
& q=\operatorname{deg} Q_{i j}=\operatorname{deg} D_{i j} \leq i-\lambda \\
& {\left[f D_{i j}-\mathbb{N}_{i j}\right]=\left(z^{i+j+1-\lambda}\right) .}
\end{aligned}
$$

By Theorem 2.7, there exists $r \geq 0$ such that

$$
\begin{equation*}
i+j+1-\lambda \leq p+q+r+1 \tag{2.51}
\end{equation*}
$$

a. Suppose $p+q<i+j$, that $i s,(i)$ is not satisfied.

If $\lambda=0$, then (2.51) implies

$$
i+j+l<i+j+r+l,
$$

therefore, $0<r$.

If $\lambda>0$, then $p+q \leq i+j-2 \lambda$, by definition of λ. This, together
with (2.51) implies $i+j+1-\lambda \leq i+j-2 \lambda+r+1$, so $0<\lambda \leq r$ and $0<r$.

Now $0<r$ implies that $R_{i j}$ is not normal, by Theorem 2.7, Conclusion 2 .
By contraposition, $R_{i j}$ is normal only if $p+q \geq i+j$. But $j \geq p, i \geq q$. Thus (i) is a necessary condition for $R_{i j}$ to be normal, since

$$
\begin{aligned}
& j \geq p \geq i+j-q \geq j \geq p=j \\
& i \geq q \geq i+j-p \geq i
\end{aligned}
$$

b. Suppose (ii) does not hold.

Then the expansion of $f D_{i j}=N_{i j}$ in ascending powers of z starts with $z^{i+j+r+1}, r>0$. Again, by Theorem 2.7, $R_{i j}$ occurs in at least 4 positions of the Pace table R_{ij} is not normal. This completes the proof of the corollary.

Corollary 2.9.

Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0$.
2. The Padé table $\left[R_{u v}(f, z)\right]$ for f is normal.
3. (i, j) is an ordered pair of nonnegative integers.
4. $N_{i j}, D_{i j}$ are polynomials, $\operatorname{deg} N_{i j} \leq j, \quad \operatorname{deg} D_{i j} \leq i, \quad D_{i j} \neq 0$. Conclusion:

The following two conditions are equivalent:
(i) $f(z) D_{i j}(z)-\mathbb{N}_{i j}(z)=\left(z^{i+j+1}\right)$;
(ii) $f(z)-\frac{\mathbb{N}_{i j}(z)}{D_{i j}(z)}=\left(z^{i+j+1}\right)$.

Proof:

If (i) holds, then hypothesis 4 implies

$$
\frac{N_{i j}(z)}{D_{i j}(z)}=R_{i j}(f, z)
$$

and

$$
f-\frac{\mathbb{N}_{i j}}{D_{i j}}=f-R_{i j}
$$

But the Padé table for f is normal. Therefore, by Corollary 2.8, the expansion of $\hat{I}(z)-R_{i j}(f, z)$ in ascending powers of z starts exactly with the power z^{i+j+1}, and (ii) follows.

Now suppose (ii) holds. Let (P, Q) be the (i, j) Pade pair for f. Since f is normal, Corollary 2.8 implies that the power series $f Q-P$ starts exactly with the power z^{i+j+1}. But $Q(0)=1$, so the expansion of $f-\frac{P}{Q}=f-R_{i j}$ starts with the same power z^{i+j+1}. By Theorem 2.6, Conclusion 1, we have for the given polynomials $N_{i j}, D_{i j}$ (hypothesis 4)

$$
f-N_{i j} / D_{i j}=\left(z^{r}\right), \quad r \leq i+j+1
$$

since $\operatorname{deg} \mathbb{N}_{i j} \leq j, \operatorname{deg} D_{i j} \leq i$. But $r \geq i+j+1$, because of (ii). Theorem 2.6, Conclusion 2, shows that $r=i+j+1$ implies

$$
\begin{equation*}
\frac{N_{i j}}{D_{i j}}=\frac{P}{Q}=R_{i j} \tag{2.52}
\end{equation*}
$$

The polynomials P and Q are relatively prime, and $\operatorname{deg} P=j$, $\operatorname{deg} Q=j$, because f is normal (Corollary 2.8). But this, combined with (2.52) and hypothesis 4, gives

$$
\begin{align*}
& j \geq \operatorname{deg} N_{i j} \geq \operatorname{deg} P=j \Rightarrow \operatorname{deg} N_{i j}=j \tag{2.53}\\
& j \geq \operatorname{deg} D_{i j} \geq \operatorname{deg} Q=i \Rightarrow \operatorname{deg} Q_{i j}=i . \tag{2.54}
\end{align*}
$$

Together, (2.52-2.54) imply $N_{i j}=c P, \quad D_{i j}=c Q$, for some constant $c \neq 0$. Therefore

$$
\begin{equation*}
f D_{i j}-\mathbb{N}_{i j}=\frac{1}{c}[f Q-P]=\left(z^{i+j+1}\right) \tag{2.55}
\end{equation*}
$$

by Corollary 2.8(ii). Thus we have shown (ii) (i).
The proof of Corollary 2.9 is complete.

2.6 The E-Array

So far, we have considered rational approximations related to power series of the form

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0 \tag{2.56}
\end{equation*}
$$

In connection with the theory of linear dynamical systems to be taken up in Chapter IV, V and VI, we will be looking for transfer functions which approximate series of the form

$$
\begin{equation*}
z(s)=\sum_{k=0}^{\infty} a_{k} s^{-k-1} . \tag{2.57}
\end{equation*}
$$

Of course, the series (2.56) and (2.57) may be transformed into each other by means of the simple relationships

$$
\begin{equation*}
f(z)=z^{-1} Z\left(z^{-1}\right) \tag{2.58}
\end{equation*}
$$

$$
\begin{equation*}
Z(s)=s^{-1} f\left(s^{-1}\right) \tag{2.59}
\end{equation*}
$$

However, the following important distinctions between the two series are observed.
(i) If the series (2.57) is rewritten as a power series in $z=s^{-1}$, the constant term is zero, thus violating a condition which has been assumed in the development of the Padé approximation theory.
(ii) The Padé table is essentially a symmetric structure in the sense that the power series expansion of $[f(z)]^{-1}$ has the same form as that of $f(z)$. In contrast, the power series expansion of $[Z(s)]^{-1}$ has not the same form as that of $Z(s)$.

Definition: Suppose f and Z are given, as in (2.56) and (2.57), and suppose the Pade table for f is normal. Following Wynn [30, p. 149], we define the E-array for Z to be a lower triangular matrix with rational elements ${\underset{E}{i}}_{(j)}^{(Z, s)}$ of the form

$$
\begin{equation*}
E_{i}^{(j)}(Z, s)=\frac{P_{i}^{(j)}(s)}{Q_{i}^{(j)}(s)} \tag{2.60}
\end{equation*}
$$

where $Q_{i}^{(j)}$ is a polynomial of ith degree,

$$
\begin{equation*}
Q_{i}^{(j)}(s)=\sum_{k=0}^{i} q_{i k}^{(j)}{ }_{s}^{k}, \tag{2.6I}
\end{equation*}
$$

$P_{i}^{(j)}$ is a function of the form

$$
\begin{equation*}
P_{i}^{(j)}(s)=s^{-j} \sum_{k=0}^{i+j-1} p_{i k}^{(j)} s^{k}, \quad P_{0}^{(0)}=0 \tag{2.62}
\end{equation*}
$$

and the series expansion of $E_{i}^{(j)}(Z, s)$ in inverse powers of s agrees with that of $Z(s)$ as far as the term containing $s^{-2 i-j}$. The elements of the E-array appear in the order shown below:

$$
\begin{align*}
& \mathrm{E}_{0}^{(0)} \\
& \mathrm{E}_{\mathrm{O}}^{(1)} \quad \mathrm{E}_{1}^{(0)} \\
& E_{0}^{(2)} \quad E_{1}^{(1)} \quad E_{2}^{(0)} \\
& E_{0}^{(3)} \quad E_{1}^{(2)} \quad E_{2}^{(1)} \quad E_{3}^{(0)} \tag{2.63}\\
& \begin{array}{llll}
& & & \\
\vdots & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot
\end{array} \\
& E_{O}^{(j)} \quad E_{1}^{(j-1)} E_{2}^{(j-2)} E_{3}^{(j-3)} \cdots E_{j}^{(0)}
\end{align*}
$$

The element $\mathbb{E}_{i}^{(j)}$ stands at the intersection of the $(i+1)$ th column and the $(j+1)$ th diagonal.

Clearly, the constituents $P_{i}^{(j)}, Q_{i}^{(j)}$ of the function $E_{i}^{(j)}$ may be displayed in the same arrangement. If we specify $q_{i j}^{(j)}=I$ in (2.6I), then, by Corollary 2.8,

$$
s^{-i} Q_{i}(j)(s)=Q_{i, i+j-1}(z), \quad s z=1
$$

and

$$
s^{-i+1} P_{j}(j)(s)=P_{i, i+j-1}(z), \quad s z=1
$$

where $\left(P_{n m}, Q_{n m}\right)$ is the (n, m) Padé pair for f.
The close relationship between the Padé table and the E-array is shown even more clearly in the following proposition.

Proposition $2.10[30, \mathrm{p} .150]$

Hypothesis:
Suppose $\quad f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0$,
and the Padé table for f is normal.
Conclusion: If we define $Z(s)=\sum_{k=0}^{\infty} a_{k} s^{-k-1}, s z=1$, then the whole E-array for Z may be obtained from the Padé table for f by transposing the Padé table, deleting the terms lying above the superdiagonal (ie., the diagonal starting with the second term of the first row in the transposed table), and placing the quantity $\mathrm{E}_{0}^{(0)}=0$ at the peak of the array.

Conversely, part of the Padé table for f may be obtained from the E-array for Z by removing the entry $\mathrm{E}_{\mathrm{O}}^{(\mathrm{O})}$ and transposing the E-array about the diagonal $\mathrm{E}_{\mathrm{i}}^{(1)}, \quad i=0, I, \ldots$.

Proof: The (i, j) Padé pair $\left(P_{i j}, Q_{i j}\right)$ may be regarded as a vector pair

$$
\begin{equation*}
\left(p_{i O}, p_{i l}, \ldots, p_{i j}\right),\left(q_{O j}, q_{i j}, \ldots, q_{i j}\right) \tag{2.66}
\end{equation*}
$$

so that

$$
\begin{align*}
& P_{i j}(z)=\left(p_{i O}, p_{i l}, \ldots, p_{i j}\right)\left(1, z, \ldots, z^{j}\right)^{\ell} \tag{2.67}\\
& Q_{i j}(z)=\left(q_{0 j}, q_{1 j}, \ldots, q_{i j}\right)\left(1, z, \ldots, z^{j}\right)^{\prime} .
\end{align*}
$$

Similarly, the entry $\mathrm{E}_{\mathrm{j}}^{(\mathrm{j})}$ in the E-array may be regarded as a vector pair

$$
\begin{equation*}
\left(p_{i 0}^{(j)}, p_{i 1}^{(j)}, \ldots, p_{i, i+j=1}^{(j)}\right),\left(q_{i 0}^{(j)}, q_{i 1}^{(j)}, \ldots, q_{i j}^{(j)}\right) \tag{2.68}
\end{equation*}
$$

so that, by (5.17) and (5.18),

$$
\begin{align*}
& p_{i}^{(j)}(s)=s^{-j}\left(p_{i 0}^{(j)}, p_{i 1}^{(j)}, \ldots, p_{i, i+j \ldots 1}^{(j)}\right)\left(1, s, \ldots, s^{i+j-1}\right) \\
& Q_{i}^{(j)}(s)=\left(q_{j 0}^{(j)}, q_{i 1}^{(j)}, \ldots, q_{i j}^{(j)}\right)\left(1, s, \ldots, s^{i}\right)^{\prime} \tag{2.69}
\end{align*}
$$

Now substitute in (2.64), using the appropriate expressions shown on the right of (2.67) and (2.69), to verify the assertions made in the proposition.

2.7 Padé Approximation for Power Series of Nonnegative Order

The classical definition of the Padé table assumes that the power series to be approximated has a nonzero constant term [11], [13], [14], [17]. The assumption of zero-order serjes serves the purpose of simplifying the statements and proofs of theorems. The restriction can be removed without difficulty, as will now be shown.

Existence (Generalization of Theorem 2.2): Let g be a nonzero power series of order $\sigma=\sigma(\mathrm{g})$; that is,

$$
\begin{equation*}
g(z)=z^{\sigma} f(z) \tag{2.70}
\end{equation*}
$$

where

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0
$$

Let (i, j) be an ordered pair of nonnegative integers, $j \geq \sigma$. Let $m=j-\sigma$, and let $\left(P_{i m}, Q_{i m}\right)$ be the (i, m) Padé pair for f, defined as in Theorem 2.4. The (i,j) Padé approximant for g is

$$
\begin{equation*}
R_{i j}(g, z)=\frac{z^{\sigma} P_{i m}(z)}{Q_{i m}(z)} . \tag{2.71}
\end{equation*}
$$

Proof:
I. $\quad \operatorname{deg} Q_{i m} \leq i, \quad b y$ definition of Padé pair;

$$
\begin{array}{cl}
Q_{i m}(0)=1, & \text { by Theorem 2.4; } \\
\operatorname{deg}\left[z^{\sigma_{P}}{ }_{i m}\right] \leq j, & \text { by definition of Padé pair. }
\end{array}
$$

II.

$$
\begin{aligned}
g Q_{i m}-z^{\sigma} P_{i m} & =z^{\sigma}\left[f Q_{i m}-P_{i m}\right] \\
& =z^{\sigma}\left(z^{i+m+1}\right) \\
& =\left(z^{i+j+1}\right)
\end{aligned}
$$

The defining conditions of the Pade approximant for g are therefore

For $0 \leq j<\sigma$, we take $R_{i j}(g, z)=0$, corresponding to $N_{i j}=0$, $D_{i j}=z^{i}$ in equation (2.2). Clearly,
I.

$$
\begin{array}{ll}
\operatorname{deg} D_{i j}=i, & D_{i j} \neq 0 \\
\operatorname{deg} N_{i j}=0 \leq j ;
\end{array}
$$

II. $\quad g(z) D_{i j}-N_{i j}=z^{0+i} f(z)=\left(z^{i+j+1}\right)$.

Uniqueness (Generalization of Theorem 2.3): Having proved the existence of Padé approximants for general power series, the restriction $a_{o} \neq 0$ can now be deleted from Theorem 2.3 . The proof is unchanged.

Padé Representation (Generalization of Theorems 2.4 and 2.5):
Suppose the power series

$$
g(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

is of order $\sigma=\sigma(g)$. Let (i, j) be an ordered pair of nonnegative integers and $R_{i j}(g, z)$ the (i,j) Pade approximant for g. The conclusions of Theorem 2.4 remain valid for g, except conclusions (i) and (iv), which must be changed to read:

$$
\begin{aligned}
& \left(i^{*}\right) \quad P_{i j}(z) \equiv 0, \quad Q_{i j}(z)=z^{i}, \quad \text { if } 0 \leq j<\sigma ; \\
& \\
& \lim _{z \rightarrow 0}\left[z^{-\sigma} P_{i j}(z)\right]=a_{\sigma}, \quad Q_{i j}(0)=1, \quad \text { if } j \geq \sigma . \\
& \left(i v^{*}\right) \quad P \text { and } Q \text { are relatively prime, provided that } j \geq \sigma .
\end{aligned}
$$

Proof:

1. Represent g as the product $z^{\sigma} f(z)$, where $f(z)$ is a power series with nonzero constant term.
2. For $j \geq \sigma$, let $m=j-\sigma$. The Padé pair $\left(P_{i m}, Q_{i m}\right)$ and the integer $\lambda \geq 0$ postulated in Theorem 2.4 for f exist and are unique since f satisfies the hypothesis of Theorem 2.4.
3. It is easily verified that, for $j \geq \sigma$, the pair ($z^{\sigma} P_{i m}, Q_{i m}$) and integer λ satisfy (i^{*}), (ii) and that

$$
\begin{equation*}
z^{\lambda}\left[f_{Q_{i m}}-P_{i m}\right]=\left(z^{i+m+1}\right) \tag{iii}
\end{equation*}
$$

implies

$$
\begin{equation*}
z^{\lambda}\left[g Q_{i m}-z^{\sigma} P_{i m}\right]=\left(z^{i+j+1}\right) ; \tag{2.73}
\end{equation*}
$$

(iv) $P_{i m}, Q_{i m}$ being relatively prime and $Q_{i m}(0)=1$ imply that $z^{\sigma P_{i m}}$ and $Q_{i m}$ are relatively prime;
(v)

$$
R_{i m}(f, z)=\frac{P_{i m}(z)}{Q_{i m}(z)}
$$

implies

$$
\begin{equation*}
R_{i j}(g, z)=z^{\sigma} \frac{P_{i m}(z)}{Q_{i m}(z)} \tag{2.74}
\end{equation*}
$$

4. For $j<\sigma$, the proof leading to equation (2.72) applies, and the Padé pair $\left(0, z^{i}\right)$, with $\lambda=0$, satisfies conclusions (i^{*}), (ii), (iii) and (v).

To extend Theorem 2.5 to the general case, it is necessary only to change conclusion (i) to (i^{*}), and (v) to (iv*), as stated above, with corresponding obvious modifications in the proof.

Fade's Fundamental Proposition: Let f be a nonzero power series, and let $\sigma(f)$ denote the order of f. Theorem 2.6 was proved for $\sigma(f)=0$. It remains true for $\sigma(f)>0$.

Proof: Let (i, j) be an ordered pair of nonnegative integers, and let P, Q, r, s be defined as in Theorem 2.6.

For $j \geq \sigma(f)$, the proof of the generalized version of Theorem 2.6 completely parallels the proof given in section 2.4 .

Suppose $0 \leq j<\sigma(f)$. Then $R_{i j}(f, z) \equiv 0$, and

$$
\begin{equation*}
f(z)-R_{i j}(f, z)=\left(z^{s}\right) \tag{2.75}
\end{equation*}
$$

where $s=\sigma(f) \geq j+1$.

We will show that $r \geq s \Rightarrow \frac{P}{Q}=0$. Then it follows that $r \not p s$, and the proof will be complete.

$$
\begin{align*}
& \text { Certainly, by hypothesis } 4, r \geq s \text { and } R_{i j}=0 \text { imply } \\
& \frac{P}{Q}=\left[f-R_{i j}\right]-\left[f-\frac{P}{Q}\right]=\left(z^{s}\right)-\left(z^{r}\right)=\left(z^{s}\right) \Longrightarrow P=\left(z^{s}\right) Q . \tag{2.76}
\end{align*}
$$

The left-hand side of (2.76) has no powers of z with exponent greater than j, while the right-hand side contains none with exponent smaller than $s \geq j+1$. Therefore the two sides of (2.76) have no nontrivial terms in common, and each side must vanish identically. Thus

$$
P=0
$$

and

$$
\frac{P}{Q}=R_{i j}=0 .
$$

Normal Padé Approximants. Theorem 2.7 and its corollary 2.9 are generalized as follows.

Theorem 2.11
Hypotheses:

1. $f(z)=\sum_{0}^{\infty} a_{k} z^{k}, \quad \sigma=\sigma(f)$ is the order of f.
2. (i,j) is an ordered pair of nonnegative integers and $R_{i j}(f, z)$ is the (i, j) Pade approximant for f.
3. $\left(P_{i j}, Q_{i j}\right)$ is the unique ($\left.i, j\right)$ Padé pair for f, with

$$
\begin{equation*}
\operatorname{deg} P_{i j}=p, \quad \operatorname{deg} Q_{i j}=q \tag{2.77}
\end{equation*}
$$

Conclusions:

1. There exists a nonnegative integer r such that the power series $\left[f Q_{i j}-P_{i j}\right]$ starts exactly with the power $z^{p+q+r+1}$, or else $f Q_{i j}-P_{i j}=0$ and $r=\infty$.
2. The $\left(q+r_{1}, p+r_{2}\right)$ Padé approximant for f equals $R_{i j}$, with

$$
r_{1}, r_{2}=0,1, \cdots, r \quad \text { in case } r \text { is finite }
$$

and

$$
r_{1}, r_{2}=0,1, \cdots \quad \text { in case } r \text { is infinite. }
$$

3. No entry other than those enumerated in conclusion 2 is equal to $R_{i j}$, provided $j \geq 0$ 。

Proof: The special case $\sigma=0$ was treated in Theorem 2.7.

Suppose $0<\sigma \leq j$. By the generalization of Theorem 2.4,
$\left(i^{*}\right) \quad \lim _{z \rightarrow 0}\left[z^{-\sigma} P_{i j}(z)\right]=a_{\sigma}, \quad Q_{i j}(0)=1$.

Also, there exists an integer $\lambda \geq 0$ such that
(ii) $\quad p \leq j-\lambda, \quad q \leq i-\lambda$;
(iii) $\quad z^{\lambda}\left[f Q_{i j}-P_{i j}\right]=\left(z^{i+j+1}\right) ;$
(iv) $P_{i j}$ and $Q_{i j}$ are relatively prime;
(v) $\quad R_{i j}(f, z)=\frac{P_{i j}(z)}{Q_{i j}(z)}$.

From (iii),

$$
f Q_{i j}-P_{i j}=\left(z^{i+j-\lambda+1}\right)
$$

But $i+j-\lambda+1 \geq p+q+\lambda+1$, so either there is an integer $r \geq \lambda$ satisfying assertion 1 , or $\mathrm{fQ}_{i j}-P_{i j}=0$ 。

Let (u, v) be a pair of nonnegative integers. By the generalized Theorem 2.4, necessary and sufficient conditions for

$$
\begin{equation*}
R_{u v}(f, z)=\frac{P_{i j}(z)}{Q_{i j}(z)} \tag{2.78}
\end{equation*}
$$

are that there exists a nonnegative integer k such that

$$
p \leq v=k, \quad q \leq u-k \quad \text { (Theorem } 2.4, \text { ii) }
$$

and

$$
\mathrm{k}+\mathrm{p}+\mathrm{q}+\mathrm{r} \geq u+v \quad \text { (Theorem 2.4, iii). }
$$

These conditions are equivalent to

$$
k+p+q+r \geq u+v \geq\left\{\begin{array}{l}
u+k+p \\
v+k+q
\end{array}\right.
$$

Since $k \geq 0$, we obtain

$$
\begin{equation*}
q+r \geq u \geq q, \quad p+r \geq v \geq p \tag{2.79}
\end{equation*}
$$

The inequalities (2.79) validate assertion 3 of the theorem, for $j \geq \sigma$. The proof of assertion 2 is identical to that given in the context of Theorem 2.7 (see p. 34).

Counterexample to show Theorem 2.11 fails for $j<\sigma$.
Consider $f=z^{3}$ and $j=0,1,2$. For every nonnegative integer i, the (i, j) Padé approximant is $R_{i j}(f, z)$. The Pade table for $f=z^{3}$ is
shown below. Similarly, every function f of order $\sigma>0$ has a Padé table whose σ leading columns are zeros. By definition, the Padé tables for all such functions are anormal.

Padé Table for $f=z^{3}$.

$j=0$		1	2	3	4	.
$i=0$	0	0	0	z^{3}	z^{3}	-
1	0	0	0	z^{3}	z^{3}	.
2	0	0	0	z^{3}	z^{3}	-
3	0	0	0	z^{3}	z^{3}	-
4	0	0	0	z^{3}	z^{3}	-
-	-	-	.			

Corollary 2.12

Hypotheses:

1. $f(z)=\sum_{0}^{\infty} a_{k} z^{k}, \quad \sigma=$ order of f.
2. $R_{i j}(f, z)=\frac{N_{i j}(z)}{D_{i j}(z)}, j \geq \sigma$, is the (i, j) Padé approximant
for f, with $N_{i j}$ and $D_{i j}$ relatively prime.
Conclusion:
The following conditions are necessary and sufficient for $R_{i j}$ to be normal:
(i) $\quad \operatorname{deg} N_{i j}=j, \quad \operatorname{deg} D_{i j}=i \geq 0$.
(ii) The expansion of $\left[f D_{i j}-\mathbb{N}_{i j}\right]$ is of order $i+j+l$.

Generalization of Corollary 2.9 and Proposition 2.10.
In view of Corollary 2.12 above, the requirement $a_{0} \neq 0$ is implied by the hypothesis that f has a norral Padé table. Therefore, it is not necessary to state explicitly that $a_{0} \neq 0$.

III. REPRESENTATION OF PADÉ APPROXIMANT BY DETERMTNANTS.

In Chapter 2, we were concerned with properties of the Padé table for arbitrary power series $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0} \neq 0$. We continue this investigation in the present chapter, with the aim of expressing the Padé approximants for f as the ratios of determinants, explicitly in terms of the coefficients of f (Theorem 3.5).

One of the properties of the Pade table discussed in Chapter 2 was the geometrical pattern that governs the occurrence of equal approximants: If the table for a power series f contains two equal Pade approximants, then there must be a square block of $(r+1)^{2}$ equal approximants (Theorem 2.7). Frank [21, pp. 92-94] gave necessary and sufficient conditions for the Padé table for f to contain a square block with corners $(q, p),(q+r, p),(q+r, p+r),(q, p+r)$, where p, q, and r are arbitrary nonnegative integers (Theorem 3.5). We include a proof of Frank's theorem that is, perhaps, a little easier to follow than the versions given in the original paper or by wall [17, pp. 395-398].

Theorem 3.7 expresses the Padé approximant for the power series f explicitly in terms of the coefficients (a_{0}, a_{1}, \ldots) of the series. The beauty of the method lies in the fact that it proceeds directly to the computation of relatively prime numerator and denominator polynomials. The method thus avoids any problems that might arise if the Padé approximant is to be cleared of common factors in the numerator and denominator.

3.1 Definitions.

The following notation will be used for certain frequently recurring Hankel matrices and determinants: Given the sequence $\left\{a_{k}: k=0,1, \ldots\right\}$ and two nonnegative integers r, n, we define

$$
S_{r}^{(n)}=\left[\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+r-1} \\
a_{n+1} & a_{n+2} & \cdots & a_{n+r} \tag{3.2}\\
\cdot & \cdots & \cdots & \cdots \\
a_{n+r-1} & a_{n+r} & \cdots & a_{n+2 r-2}
\end{array}\right] \quad \begin{gathered}
(r>0) \\
\Delta_{r}^{(n)}=\operatorname{det}_{s_{r}(n)} \\
\Delta_{0}^{(n)}=1 .
\end{gathered}
$$

Moreover, for given nonnegative integers i, $j, ~ \mathbb{N}$, and for a given power series f

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k},
$$

let A_{N} denote the N th partial sum of f, that is

$$
A_{\mathbb{N}}(z)=\sum_{k=0}^{N} a_{k} z^{k}
$$

Taking $a_{n}=0$ for $n<0$, we define

$$
\begin{align*}
& T_{i j}(z)=\operatorname{det}\left[\begin{array}{cccc}
z^{i} A_{j-i} & z^{i-1} A_{j-i+1} & \cdots \cdot & z^{O^{A}}{ }_{j} \\
a_{j-i+1} & a_{j-i+2} & \cdots & a_{j+1} \\
\cdot & \cdots & \cdots & \cdot \\
a_{j} & a_{j+1} & \cdots \cdot & a_{j+i}
\end{array}\right] \\
& U_{i j}(z)=\operatorname{det}\left[\begin{array}{llll}
z^{i} & z^{i-1} & \cdots & z^{0} \\
a_{j-i+1} & a_{j-i+2} & \cdots & a_{j+1} \\
\cdot & \cdot & \cdots & a_{j+i}
\end{array}\right] \tag{3.4}
\end{align*}
$$

In particular, these definitions imply the following properties:

$$
\begin{align*}
& \operatorname{deg} T_{i j} \leq j, \quad \operatorname{deg} U_{i j} \leq i, \tag{3.5}\\
& T_{O j}=A_{j}, \quad U_{O j}=1, \tag{3.6}\\
& T_{i j}(0)=(-1)^{i} A_{j} \Delta_{i}^{(j-i+1)} \tag{3.7}\\
& U_{i j}(0)=(-1)^{i_{\Delta}}(j-i+1)
\end{align*}
$$

3.2 Some Properties of Hankel Determinants.

Certain properties of the Hankel determinants $\Delta_{r}^{(n)}$ will be useful later. These properties are stated in the following two classical lemmas.

Lemma 3.1. [23, p. 120][4, p. 25]

For all positive values of n and r,

$$
\begin{equation*}
\left[\Delta_{r}^{(n)}\right]^{2}=\Delta_{r}^{(n-1)} \Delta_{r}^{(n+1)}-\Delta_{r+1}^{(n-1)} \Delta_{r-1}^{(n+1)} \tag{3.8}
\end{equation*}
$$

the determinants being those defined in equations (3.1) and (3.2).

The proof of this lemma is straightforward, but tedious and not very enlightening. Householder [24, pp. 116m117] indicates the proof for $r=1,2 ;$ Henrici [4, pp. 25-26] sketches a similar verification for all admissible r.

Lemma 3.2. [4, p. 28] (i) Bieberbach's version [25, pp. 319-321]:

$$
\begin{align*}
\text { Let } f(z) & =\sum_{k=0}^{\infty} a_{k} z^{k} \text { be rational, } \\
f(z) & =\frac{b_{0}+b_{1} z+\ldots+b_{p} z^{p}}{c_{0}+c_{1} z+\ldots+c_{q} z^{q}}, \quad c_{0} \neq 0, c_{q} \neq 0 \tag{3.9}
\end{align*}
$$

Then

$$
\Delta_{q+1}^{(n)}=0 \text { for all } n \geq \max (0, p-q+1)
$$

Conversely, let p and q be integers such that $p>q-1$, and $\Delta_{q}^{(n)} \neq 0$, $\Delta_{q+1}^{(n)}=0$ for $n \geq p-q+2$. Then $f(z)$ is a rational function of the form (3.9), with $c_{0} \neq 0, c_{q} \neq 0$.
(ii) Dienes' version [26, p. 323]:

The necessary and sufficient condition that the power series $\sum_{0}^{\infty} a_{k} z^{k}$ should represent a rational function is that there be a number q such that $\sum \Delta_{q+1}^{(n)} z^{n}=P(z)$ is a polynomial. Then the least value of q is the degree of the denominator, and the degree of $P(z)$ is not less than $p-q, p$ being the degree of the numerator.
3.3 Conaitious for a Block in the Pade Table.

Lemma 3.3. (See $[14, p .22]$ for special case where a. $\neq 0$.)
Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$.
2. $R_{i j}(f, z)$ is the (i, j) Padé approximant for f.

Conclusions:
If

$$
\Delta_{i}^{(j-i+1)}=0,
$$

then

$$
R_{i, j-1}=R_{i-1, j}=R_{i-1, j-1}=R_{i j}
$$

Proof: To compute the Padé approximant $R_{i-1, ~ j-1}$, we let

$$
R_{i-1, ~ j-1}=N_{i-1, ~ j-1} / D_{i-1}, j-1
$$

where

$$
\begin{aligned}
& D_{i-1, j-1}(z)=\sum_{k=0}^{i-1} d_{k} z^{k} \\
& N_{i-1, j-1}(z)=\sum_{k=0}^{j-1} n_{k} z^{k}
\end{aligned}
$$

The denominator and numerator polynomials thus defined satisfy the condition II for the ($i-1, j-1$) Padé approximant, that is

$$
\begin{equation*}
f D_{i-1, j-1}-N_{i-1, j-1}=\left(z^{i+j-1}\right) \tag{3.10}
\end{equation*}
$$

Form the product

$$
f(z) D_{i-1, j-1}(z)=\sum_{k=0}^{\infty} c_{k} z^{k}
$$

where

$$
c_{k}=\sum_{u+v=k} a_{u} d_{v} .
$$

In order for $\left(N_{i-1}, j-1, D_{i-1, ~},-1\right)$ to satisfy condition II for the (i-1, j-I) Padé approximant, we need

$$
\begin{equation*}
n_{k}=c_{k} \quad(k=0,1, \ldots, j-1) \tag{3.11}
\end{equation*}
$$

and

$$
c_{k}=0 \quad(k=j, j+1, \ldots, j+i-2)
$$

The last equations, written in matrix form, are

$$
\left[\begin{array}{cccc}
a_{j-i+1} & a_{j-i+2} & \cdots & a_{j} \tag{3.12}\\
a_{j-i+2} & a_{j-i+3} & \cdots & a_{j+1} \\
\cdot & \cdot & \cdots & \cdots \\
a_{j-1} & a_{j} & \cdots & a_{j+i-2}
\end{array}\right]\left[\begin{array}{c}
a_{i-1} \\
a_{i-2} \\
\cdots \\
\cdots \\
a_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
0
\end{array}\right]
$$

Eq. (3.12) states that the i-vector $\left(d_{i-1}, d_{i-2}, \ldots, d_{0}\right)$ must be orthogonal to the row vectors of the [a]-matrix. Since there are only i-l row vectors in [a], they can span at most an i-I dimensional subspace of R^{i}. Therefore (3.12) always has a nontrivial solution. Choosing any such solution, we now determine the n_{k} by (3.11). Then
$\left(N_{i-1}, j-I, D_{i-I, ~}, I\right)$ satisfy conditions I and $I I$, and we have correctly computed $R_{i-1}, j-1$ since it is unique.

$$
\text { Suppose now that } \Delta_{i}^{(j-i+1)}=0 \text {. Then the row vector }
$$

$\left(a_{j}, a_{j+1}, \ldots, a_{j+i-1}\right)$ is in the row space of the $[a]$ matrix in (3.12) and i_{s}, therefore, orthogonal to the vector $\left(d_{i-1}, d_{i-2}, \ldots, d_{0}\right)$ chosen to satisfy (3.12). But this implies

$$
\begin{equation*}
c_{j+i-1}=0 \tag{3.13}
\end{equation*}
$$

and as a result we can improve (3.10) to read

$$
\begin{equation*}
f D_{i-1, j-1}=\mathbb{N}_{i-1, j-1}=\left(z^{i+j}\right) \tag{3.14}
\end{equation*}
$$

This increase in the order of approximation means that we may set $\left(N_{i-1}, j, D_{i-1}, j\right)=\left(N_{i-1}, j-1, D_{i-1}, j-1\right)$, and

$$
\begin{equation*}
R_{i-1, j}=\frac{N_{i-1}, j-1}{D_{i-1, j-1}}=R_{i-1, j-1} \tag{3.15}
\end{equation*}
$$

For the polynomials of the pair $\left(\mathbb{N}_{i-1, j}, D_{i-1, j}\right)$ clearly have degrees no greater than j and $i-1, ~ r e s p e c t i v e l y$, and thus property I. Further, by (3.14), they satisfy property II of the (i - I, j) Padé approximant for f. By a similar argument, we have $R_{i, j-1}=R_{i-1, j-1}$. Again, we may set $\mathbb{N}_{i j}=Z \mathbb{N}_{i-1}, j-1$ and $D_{i j}=z D_{i-1, j-1}$. The $\operatorname{pair}\left(\mathbb{N}_{i j}, D_{i j}\right)$ satisfies both properties I and II of the (i, j) Padé approximant for f : Property I because $\operatorname{deg} N_{i j} \leq j$, deg $D_{i j} \leq i$; and property II since from (3.14)

$$
f D_{i j}-\mathbb{N}_{i j}=z\left[f D_{i-1, j}, j-\mathbb{N}_{i-1}, j-1\right]=\left(z^{i+j+1}\right) .
$$

This proves the lemma.

Lemma 3.4. (Frobenius) [3, pp. 1-3]
Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0$
2. (i, j) is an ordered pair of nonnegative integers, and $R_{i j}(f, z)$ is the ($\left.i, j\right)$ Padé approximant for f.

Conclusions:

1. The determinants $T_{i j}, U_{i j}$ defined in (3.4) are relatively prime (i) if, and (ii) only if

$$
\Delta_{i}^{(j-i+1)} \neq 0 .
$$

2. If $\Delta_{i}^{(j-i+1)} \neq 0$, then $R_{i j}=T_{i j} / U_{i j}$.

Proof:
1(ii). Suppose $\Delta_{i}^{(j-i+1)}=0$. Then by (3.7) and (3.8)

$$
T_{i j}(0)=0 \text { and } U_{i j}(0)=0
$$

Therefore, unless $T_{i j}$ and $U_{i j}$ are identically zero, they have a common factor z. If $T_{i j}, U_{i j}$ are zero polynomials, they are not relatively prime, by definition [9, p. 72].

$$
\begin{equation*}
1 \text { (i) and 2. Suppose } \Delta_{i}^{(j-i+1)}=(-1)^{i} c \neq 0 \text {. } \tag{3.16}
\end{equation*}
$$

Then the i. columns of

$$
s_{i}^{(j-i+1)}=\left[\begin{array}{cccc}
a_{j-i+1} & a_{j-i+2} & \cdots & a_{j} \tag{3.17}\\
a_{j-i+2} & a_{j-i+3} & \cdots & a_{j+1} \\
\cdot & \cdot & \cdots & \cdot \\
a_{j} & a_{j+1} & \cdots & a_{j+i-1}
\end{array}\right]
$$

are linearly independent.

Define

$$
A^{k}=\left[\begin{array}{c}
a_{j-k+1} \tag{3.18}\\
a_{j-k+2} \\
\cdot \\
\cdot \\
a_{j-k+i}
\end{array}\right] \quad(k=0,1, \ldots, i)
$$

Then $S_{i}^{(j-i+1)}$ can be represented as the row vector

$$
\begin{equation*}
S_{i}^{(j-i+1)}=\left(A^{i}, A^{i-1}, \ldots, A^{I}\right) . \tag{3.19}
\end{equation*}
$$

Each A^{k} is an $i \times I$ column vector. Since the i columns $A^{i}, A^{i-1}, \ldots, A^{1}$ of $S_{i}^{(j-i+1)}$ are linearly independent, they must span the space R^{i}. Therefore A^{O} is in the column space of $S_{i}^{(j-i-1)}$, and $m=0$ is the largest index such that the column vectors $A^{m}, A^{m+1}, \ldots, A^{i}$ are linearly dependent.

Now consider the polynomials

$$
\begin{align*}
& P(z)=\frac{I}{c} T_{i j}(z) \tag{3.20}\\
& Q(z)=\frac{1}{c} U_{i j}(z) .
\end{align*}
$$

From (3.7) and (3.5) respectively, we have
(i) $P(0)=a_{0}, \quad Q(0)=1$
(ii) $\operatorname{deg} P \leq j, \quad \operatorname{deg} Q \leq i$.

To verify that

$$
\begin{equation*}
\text { (iii) } \quad I Q-P=\left(z^{i+j+1}\right) \tag{3.22}
\end{equation*}
$$

we proceed as follows. The value of $T_{i j}(z)$ is unchanged if we add to the first row a linear combination of the other rows. In particular, we add z^{j+k} times the $(k+1)$ th row, $k=1,2, \ldots, i$. Then the first term of the first row becomes

$$
\begin{equation*}
z^{i} A_{j-i}+z^{i} \sum_{k=1}^{i} z^{j+k-i} a_{j+k-i}=z^{i} A_{j} \tag{3.23}
\end{equation*}
$$

The other terms of the first row are changed similarly, increasing by i the index of each $A_{n}(n=j-i, j=i+1, \ldots, j)$. Now

$$
T_{i j}(z)=\operatorname{det}\left[\begin{array}{cccc}
z^{i} A_{j} & z^{i-1} A_{j+1} & \cdots & z^{0} A_{j+i} \tag{3.24}\\
a_{j-i+1} & a_{j-i+2} & \cdots & a_{j+1} \\
\cdot & \cdot & \cdots & \cdot \\
a_{j} & a_{j+1} & \cdots & a_{j+i}
\end{array}\right] .
$$

Therefore we can write
$A_{j+i} U_{i j}-T_{i j}=\operatorname{det}\left[\begin{array}{llll}z^{i}\left(A_{j+i}-A_{j}\right) & z^{i-1}\left(A_{j+i}-A_{j+1}\right) & \cdots & 0 \\ a_{j-i+1} & a_{j-i+2} & \cdots & a_{j+1} \\ \cdot & \cdots & \\ a_{j} & a_{j+1} & \cdots & a_{j+i}\end{array}\right]$.
By inspection, z^{i+j+1} divides every polynomial appearing in the first row of the determinant in (3.25). Therefore z^{i+j+1} divides the determinant, and consequentiy

$$
\begin{equation*}
A_{j+i} U_{i j}-T_{i j}=\left(z^{i+j+l}\right) \tag{3.26}
\end{equation*}
$$

But now

$$
\begin{align*}
f Q-P & =\left[A_{j+i^{Q}}-P\right]+\sum_{k=j+i+1}^{\infty} a_{k} z^{k} Q \\
& =\left(z^{i+j+1}\right) \tag{3.27}
\end{align*}
$$

since the proportionality factor c in (3.20) is merely a nonzero constant.
As we have shown in the preceeding steps, the pair (P, Q) defined in (3.20) satisfies all the conditions of Theorem 2.5, with $m=0$. By result (v) of that theorem, we have

$$
\begin{equation*}
R_{i j}(f, z)=P(z) / Q(z)=T_{i j}(z) / U_{i j}(z) \tag{3.28}
\end{equation*}
$$

as was to be shown (Conclusion 2).
Also, by result (v) of Theorem 2.5, P and Q are relatively prime polynomials, and therefore $T_{i j}$ and $U_{i j}$ are relatively prime.

This completes the proof of the lemma.

Remark: The hypothesis $a_{0} \neq 0$ may be removed if one restricts j to values not less than the order of f and proceeds as in the generalization of Theorem 2.2. (See Section 2.7.) Smaller nonnegative values of $j \leq \sigma(f)$ give rise to the trivial case. $R_{i j}(f, z)=0$.

Theorem 3.5. [21, p. 93][17, p. 395]
Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0$.
2. (i, j) is an ordered pair of nonnegative integers, and $R_{i, j}(f, z)$ is the ($\left.i, j\right)$ Padé approximant for f.
3. $\left(P_{i j}, Q_{i j}\right)$ is the (i, j) Padé pair or polynomials for f, postulated in Theorem 2.4, with

$$
\operatorname{deg} P_{i j}=p, \quad \operatorname{deg} Q_{i j}=q
$$

4. r is the unique nonnegative integer such that the power series $\left[f Q_{i j}-P_{i j}\right]$ starts exactly with the power $z^{p+q+r+1}$, (See Theorem 2.7.)

Conclusion:
The following five conditions are necessary and sufficient for $R_{i j}(f, z)=R_{u v}(f, z)$, with (u,v) ranging over the $(r+1)^{2}$
values defined by $\quad(q \leq u \leq q+r, p \leq v \leq p+r):$
(i)

$$
\begin{equation*}
\Delta q-q+2) \neq 0 \tag{ii}
\end{equation*}
$$

$$
\Delta_{q}^{(p-q+1)} \neq 0
$$

$$
\begin{equation*}
\Delta_{q+1}^{(p-q)} \neq 0 \tag{iii}
\end{equation*}
$$

(iv)
(v)

$$
\begin{equation*}
\Delta_{q+r+1}^{(p-q+1)} \neq 0 \tag{3.29}
\end{equation*}
$$

$$
\Delta_{q+k}^{(p-q+1)}=0 \quad(k=1,2, \ldots, r)
$$

Note: If $r=0$, the condition (v) is not present. By Theorem 2.7, $r=0$ implies $(q, p)=(i, j)$ and, with this substitution, conditions (i) through (iv) are necessary and sufficient for $R_{i j}(f, z)$ to be normal. $[11$, p. S. 34][13, p. 427].

Proof: By Theorem 2.7, the following five conditions are necessary and sufficient for $R_{i j}=R_{u v}(q \leq u \leq q+r, p \leq v \leq p+r)$:

$$
\begin{equation*}
R_{q p} \neq R_{q-1, p-1} \tag{i}
\end{equation*}
$$

$R_{q p} \neq R_{q-1, p}$
(iii $\left.{ }^{8}\right)$
$R_{q p} \neq R_{q, p-1}$
(iv ${ }^{1}$)
$R_{q p} \neq R_{q+r+1, p+r+1}$
$\left(v^{8}\right)$

$$
R_{q p}=R_{q+k, p+k} \quad(k=1,2, \ldots, r) .
$$

It is convenient to include the condition (i^{2}) although, by Theorem

From Lemma 3.3, we obtain (by contraposition):

$\left(i^{8}\right) \longrightarrow(i)$	[Iet	$(i, j)=(q, p) \quad$ in (3.9)].
$\left(i i^{8}\right) \longrightarrow$ (ii)	[1et	$(i, j)=(q, p+1)$ in (3.9)].
($\mathrm{ii} \mathrm{I}^{\prime \prime}$) \Rightarrow (iii)	[Iet	$(i, j)=(q+1, p)$ in (3.9)].
$\left(i v^{8}\right)$ and (V^{8}) \Rightarrow (iv)	[Iet	$(i, j)=(q+r+1, p+r+1)$

It remains to show $\left(v^{i}\right)(v)$. By Theorem 2.4, in order for ($P_{i j}, Q_{i j}$) to satisfy condition II of the ($q+k, p+k$) Pade' approximant $(k=1,2, \ldots, r)$, we need

$$
z^{k}\left[f Q_{i j}-P_{i j}\right]=\left(z^{p+q}+2 k+l\right)
$$

As in Theorem 2.4, let

$$
P_{i j}(z)=\sum_{v=0}^{p} n_{v} z^{v}, \quad \quad n_{0}=a_{0}
$$

$$
Q_{i j}(z)=\sum_{v=0}^{q} d_{v} z^{v}, \quad \quad d_{0}=1 ;
$$

and

$$
f(z) Q_{i j}(z)=\sum_{v=0}^{\infty} c_{v^{2}} z^{v}
$$

where

$$
c_{v}=\sum_{\alpha+\beta=v}{ }^{a} \alpha^{\alpha_{\beta}}{ }^{0}
$$

Then the condition (3.31) can be written

$$
n_{v}=c_{v} \quad(v=0,1, \ldots, p)
$$

and

$$
\begin{array}{cl}
c_{v}=0 \quad(v=p+1, p+2, \ldots, p+q+k) \tag{3.32}\\
& (k=1,2, \ldots, r) .
\end{array}
$$

Equations (3.32), written in matrix form, are

$$
\left[\begin{array}{cccc}
a_{p-q+1} & a_{p-q+2} & \cdots & a_{p+1} \\
a_{p-q+2} & a_{p-q+3} & \cdots & a_{p+2} \\
\cdot & \cdot & \cdots & \\
a_{p+k} & a_{p+k+1} & \cdots & a_{p+k+q}
\end{array}\right]\left[\begin{array}{c}
a_{q} \\
a_{q-1} \\
a_{q-1} \\
\vdots \\
\cdot \\
a_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
0
\end{array}\right], a_{0}=1
$$

Choose any k from $\{1,2, \ldots, r\}$. Equation (3.33) can be satisfied only if the $q+1$ columns of the [a]-matrix are linearly dependent. Therefore $\Delta_{q+k}^{(p-q+1)}=0, k=1,2, \ldots, r$, and thus (v) is necessary for ($\mathrm{v}^{\text {q }}$).

We now prove that (3.29) is sufficient for (3.30). From (i) we conclude (Lemma 3.2, proof of conclusion 2) that there exists a pair of relatively prime polynomials (P, Q) such that

$$
\begin{equation*}
R_{\mathrm{qp}}=P / Q, \tag{3.34}
\end{equation*}
$$

$$
\begin{equation*}
f Q-P=\left(z^{p+q+1}\right) \tag{3.36}
\end{equation*}
$$

The polynomials (P, Q) are uniquely determined by the conditions (3.34) and (3.35), and the same conditions imply that the coefficients of $Q=I+\sum_{v=0}^{q} d_{q}^{*_{z}}{ }^{q}$ satisfy the matrix equation (3.33), with $k=0$. From (ii) and (iii) it follows that P and Q are exactly of degree p and q, respectively. For Q, this result is immediate from (3.33), since $k=0, \Delta_{q}^{(p-q+2)} \neq 0$ gives $d_{q}^{*} \neq 0$. Suppose that

$$
P(z)=a_{0}+\sum_{v=0}^{p} n_{v}^{*} z^{v} .
$$

Then (3.36) gives

$$
\mathrm{n}_{\mathrm{v}}^{*}=\sum_{\alpha+\beta=v} \mathrm{a}_{\alpha} \alpha_{\beta}^{*} \quad(\mathrm{v}=0,1, \ldots, \mathrm{p})
$$

In particular, $n_{p}^{*}=\left[\begin{array}{llll}a_{p-q} & a_{p-q+1} & \cdots & a_{p}\end{array}\right]\left[\begin{array}{c}d_{q}^{*} \\ d_{q}^{*} \\ q-1 \\ \vdots \\ d_{*}^{*} \\ 0\end{array}\right], d_{0}^{*}=1$.

But (iij) implies that $S_{q+1}^{(p-q)}$ is a nonsingular matrix:
$S_{S_{q+1}}^{(p-q)}=\left[\begin{array}{cccc}a_{p-q} & a_{p-q+1} & \cdots & a_{p} \\ a_{p-q+1} & a_{p-q+2} & \cdots & a_{p+1} \\ \cdots & 0 & \cdots & \cdots \\ a_{p} & a_{p+1} & \cdots & a_{p+q}\end{array}\right]$
Therefore, the rows of $S_{q+1}^{(p-q)}$ span the space R^{q+1}. The vector $\left(d_{q}, d_{q-1}, \ldots, d_{0}\right)$ is a nonzero vector in R^{q+1}, orthogonal to all rows of $\mathrm{s}_{\mathrm{q}+1}^{(\mathrm{p}-\mathrm{q})}$ except the first row (by equation (3.33), with $k=0$). Therefore the scalar product in (3.37) cannot vanish, and (iii) $\Longrightarrow n_{p} \neq 0$.

Now $R_{q p}=P / Q,(P, Q)$ relatively prime and $\operatorname{deg} P=p, \quad \operatorname{deg} Q=q$, implies
(1^{\prime}) $\quad R_{q p} \neq R_{q-1, p-1}$
(ii') $\quad R_{q p} \neq R_{q-1, p}$
(iii $\left.{ }^{8}\right) \quad R_{q p} \neq R_{q, p-1}$.
To prove $\left(\mathrm{v}^{\mathrm{q}}\right)$, let $\mathrm{R}_{\mathrm{q}+\mathrm{k}, \mathrm{p}+\mathrm{k}}=\mathrm{N}^{(\mathrm{k})} / \mathrm{D}^{(\mathrm{k})}$, where

$$
N^{(k)}=\sum_{V=0}^{p+k} n_{V}(k)_{z}^{v}, \quad D^{(k)} \quad \sum_{V=0}^{q+k} d_{V}^{(k)_{z}}{ }^{v}
$$

Since $f D^{(k)}-\mathbb{N}^{(k)}=\left(z^{p+q+2 k+1}\right)$, we have

$$
\prod_{\substack{p+k+1 \tag{3.39}\\
\text { rows }}}^{\downarrow}\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & a_{0} \\
0 & 0 & \cdots & a_{0} & a_{1} \\
\cdot & \cdot & & \cdot & \cdot \\
a_{p-q} & a_{p-q+1} & \cdots & a_{p+k-1} & a_{p+k}
\end{array}\right]\left[\begin{array}{c}
d_{q}^{(k)} \\
d_{q+k}^{(k)} \\
d_{q+k-1} \\
\vdots \\
d_{0}^{(k)}
\end{array}\right]=\left[\begin{array}{c}
n_{0}^{(k)} \\
n_{1}^{(k)} \\
\vdots \\
\vdots \\
n_{p+k}^{(k)}
\end{array}\right]
$$

where $d_{0}^{(k)}=1, \quad n_{0}^{k}=a_{0}$.
Also

Since $\Delta_{q+1}^{(p-q+1)}=0$, comparison with (3.33) shows that a nontrivial
solution of (3.40) for $k=1$ is

$$
d_{0}^{(1)}=0, \quad d_{v}^{(1)}=d_{v-1} \quad(v=1,2, \ldots, q+1) \cdot(3.41)
$$

Substituting in (3.39), one obtains

$$
\begin{gathered}
n_{0}^{(1)}=0, \quad n_{v}^{(1)}=n_{v-1}^{(1)} \quad(v=1,2, \ldots, p+1) \cdot(3 \cdot 42) \\
N^{(1)} / D^{(1)}=P / Q
\end{gathered}
$$

and (v^{\prime}) holds for $k=1$. Then, since $\Delta_{q+2}^{(p-q-1)}=0$, it follows that for $k=2$, (3.40) has the nontrivial solution

$$
d_{0}^{(2)}=0, \quad d_{v}^{(2)}=d_{v-1}^{(1)} \quad(v=1,2, \ldots, q+2)
$$

while (3.39) gives

$$
n_{0}^{(2)}=0, \quad n_{v}^{(2)}={\underset{v}{n-1}}_{(2)}^{-68} \quad(v=1,2, \ldots, p+2)
$$

Consequentiy, $N^{(2)} / D^{(2)}=N^{(1)} / D^{(1)}=P / Q$. On continuing this argument, we conclude that (v^{1}) holds.

Finally, (iv') holds. For if not, we would have

$$
z^{r+1}[f Q-P]=\left(z^{p+q+2 r+3}\right)
$$

which is impossible by virtue of (iv).

This completes the proof of Theorem 3.5.
3.4 Determinantal Form of Padé Approximant.

Lerma 3.6.
Hypotheses:

1. $\left\{a_{k}\right\}$ is an infinite sequence of real numbers, $a_{\sigma} \neq 0, \sigma \geq 0$, $a_{k}=0$ for $k<\sigma$.
2. (i, j) is an ordered pair of nonnegative integers.
3. The i-dimensional column vectors $A^{k}(k=0,1,2, \ldots, i)$
are defined by

$$
A^{k}=\left[\begin{array}{c}
a_{j-k+1} \tag{3.43}\\
a_{j-k+2} \\
\vdots \\
\vdots \\
a_{j-k+i}
\end{array}\right]
$$

$S=S_{i}^{(j-i+1)}$ is the Hankel matrix defined by (3.17).
4. m is the largest index such that the column vectors $A^{m}, A^{m+1}, \ldots, A^{i}$ are linearly dependent.

Conclusions:

$$
\begin{align*}
& \Delta_{i=m}^{(j-i+1)} \neq 0 \quad \text { if } m=0 \quad \text { or } m=i \tag{3.44}\\
& \Delta_{i=m+1}^{(j-i+1)}=0 \quad \text { if } \quad 1 \leq m<i \tag{3.45}
\end{align*}
$$

Proof:
(i) Suppose $m=0$.

Then the columns of $S=\left[A^{i}, A^{i-1}, \ldots, A^{1}\right]$ are linearly
independent and

$$
\operatorname{det} s=\Delta_{i}^{(j-i+1)} \neq 0
$$

(ii) Suppose $m=i$.

Then $A^{i}=0$ and, in particular, $a_{j-i+1}=0$.
Therefore

$$
\Delta_{1}^{(j-i+1)}=a_{j-i+1}=0
$$

Also, trivially by definition (3.2),

$$
\Delta_{0}^{(j-i+1)}=1 \neq 0
$$

(iii) Suppose $1 \leq m<i$.
$\triangle_{i-m+1}^{(j-i+1)}$ is the minor consisting of the first $i-m+1$ rows of the matrix $M=\left[A^{i}, A^{i-1}, \ldots, A^{m}\right]$. But the columns of M are linearly dependent, so

$$
\triangle_{i-m+1}^{(j-i+1)}=0
$$

This completes the proof of the Lemma.

Theorem 3.7.

Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad a_{0} \neq 0$ 。
2. (i, j) is an ordered pair of nonnegative integers.
3. d is the smallest nonnegative integer such that

$$
\begin{equation*}
\Delta_{i-d}^{(j-i+1)} \neq 0 . \tag{3.46}
\end{equation*}
$$

Conclusions:

1. $0 \leq \alpha \leq i$.
2. The polynomials $T_{i-d, j-d}$ and $U_{i-d, j-d}$ defined by equation (3.4), have at most j and i zeros, respectively, (counting multi. plicities). They have no zeros in common.
3. The (i, j) Padé approximant for f is

$$
\begin{equation*}
R_{i j}(f, z)=\frac{T_{i-d, j-d}(z)}{U_{i-d, j-d}(z)} \tag{3.47}
\end{equation*}
$$

4. $R_{u v}=R_{i j} \quad(u=i, i-1, \ldots, i-d ; \quad v=j, j-1, \ldots, j-d)$.

Proof: Conclusion 1 is obvious from the definition $\Delta_{0}^{(n)}=1, n \geq 0$.
Suppose $d=0$. By Lemma 3.4, $\Delta_{i}^{(j-i+1)} \neq 0$ implies that $T_{i j}, U_{i j}$ are relatively prime polynomials and

$$
\begin{equation*}
R_{i j}(f, z)=\frac{T_{i j}(z)}{U_{i j}(z)} . \tag{3.49}
\end{equation*}
$$

From (3.5), deg $T_{i j} \leq j, \quad \operatorname{deg} U_{i j} \leq i$.

Suppose d >0.
Then $\Delta_{k}^{(j-i+1)}=0 \quad(k=i, i=1, \ldots, i-d+1)$.
By repeatediy applying Lema 3.1, we obtain (3.47), since

$$
\begin{align*}
R_{i j} & =R_{i-d, j-d} \tag{3.50}\\
& =\frac{T_{i-d, j-d}}{U_{i-d, j-d}}, \quad \text { by Lemma } 3.2
\end{align*}
$$

Conclusion 2 follows directly from $\Delta_{i-d}^{(j-i+1)} \neq 0$, by Lemma 3.4.
In particular, if $d=i$, then by (3.6)

$$
\begin{equation*}
R_{i j}=\frac{T_{0, j-i}}{U_{0, j-i}}=A_{j-i} \tag{3.51}
\end{equation*}
$$

Conclusion 4 is a trivial consequence of (3.50), by Lemma 3.6.

Remarks: The method displayed in Theorem 3.7 depends on finding first the parameter d which, in turn, depends on the distinction between singular and nonsingular matrices. In practice, round-off errors will obscure the distinction. It is, therefore, of some interest to note the effect of an erroneously large choice of d. This will happen if a nearly singular Hankel matrix is considered to be "singular" (by the criteria used in a given computer algorithm). As a result, the computed (i, j) Padé approximant in (3.47) will be cleared of numerator and denominator factors which are not strictly cancellable.

The theorem is a refinement of Lema 3.4. (Frobenius [3, pp. 1-3].)

Corollary 3.8 [30, p. 159]
Hypotheses:

1. $Z(s)=\sum_{k=0}^{\infty} a_{k} s^{-k-1}, \quad a_{0} \neq 0$.
2. The Padé table for $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ is normal.
3. (i, $j)$ is an ordered pair of nonnegative integers.

Conclusion:

Let the partial sums Z_{N} of the infinite series Z be denoted by

$$
\begin{align*}
& Z_{N}=\sum_{k=0}^{N-1} a_{k} s^{-k-1}, N>0 \tag{3.53}\\
& Z_{0}=0
\end{align*}
$$

and let $\Delta Z_{N}=Z_{N+1}-Z_{N}=a_{N} s^{-N-1}$.
Then the (i, j) element in the E-array for Z is

Proof:
As in Chapter II, equation (2.60), we can write

$$
\begin{equation*}
E_{i}^{(j)}(Z, s)=\frac{P_{i}^{(j)}(s)}{Q_{i}^{(j)}(s)} \tag{3.56}
\end{equation*}
$$

where $Q_{i}^{(j)}$ is a monic polynomial of degree i, and $P_{i}^{(j)}$ is a meromorphic function of s. [Equation (2.62)]. By Corollary 2.8, we have, as in equation (2.64)

$$
s^{-i+1_{P}}(j)(s)=P_{i}, i+j-1(z), \quad s z=1
$$

and

$$
\begin{equation*}
s^{i} Q_{i}^{(j)}(s) \quad=Q_{i, i+j-1}(z), \quad s z=1 \tag{3.57}
\end{equation*}
$$

where $\left(P_{i, i+j-1}, Q_{i, i+j-1}\right)$ is the ($\left.i, i+j-1\right)$ Padé pair for f.
Using the result of Theorem 3.7,

$$
\begin{equation*}
E_{i}^{(j)}(Z, s)=\frac{s P_{i}^{(j)}(s)}{Q_{i}^{(j)}(s)}=\frac{P_{j, j+i-1}(z)}{z Q_{i, j+i-1}(z)} . \tag{3.58}
\end{equation*}
$$

The Padé table for f is normal, so $\Delta_{i}^{(j)} \neq 0$ and

$$
\begin{equation*}
E_{i}^{(j)}(z, s)=\frac{T_{i, j+i-1}(z)}{z U_{i, j+i-1}(z)} . \tag{3.59}
\end{equation*}
$$

Now, the respective definitions of A_{N} in (3.3) and Z_{N} in (3.53), with $\mathrm{sz}=1, \quad$ imply

$$
\begin{equation*}
A_{N-1}(z)=\sum_{k=0}^{N-1} a_{k} z^{k}=\sum_{k=0}^{N-1} a_{k} s^{-k-1}=s Z_{N}(s) \tag{3.60}
\end{equation*}
$$

By definition (3.4),

$$
\begin{align*}
& T_{i, j+i-1}(z)=\operatorname{det}\left[\begin{array}{llll}
z^{i} A_{j-1} & z^{i-1} A_{j} & \cdots & A_{j+i-1} \\
a_{j} & a_{j+1} & \cdots & a_{j+i} \\
\cdots & \cdots & \cdots & \cdots \\
a_{j+i-1} & a_{j+i} & \cdots & a_{j+2 i-1}
\end{array}\right] \tag{3.61}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& U_{i, j+i-1}(z)=\operatorname{det}\left[\begin{array}{cccc}
z^{i} & z^{j-1} & \cdots & 1 \\
a_{j} & a_{j+1} & \cdots & a_{j+i} \\
0 & 0 & \cdots & . \\
a_{j+i-1} & a_{j+i} & \cdots & a_{j+2 i-1}
\end{array}\right] \tag{3.62}\\
& =\operatorname{det}\left[\begin{array}{cccc}
s^{-i} & s^{-i+1} & \cdots & 1 \\
s^{j+1} \Delta z_{j} & s^{j+2} \Delta z_{j+1} & \cdots & s^{j+i+1} \Delta Z_{j+i} \\
\cdot & \cdot & \cdots & \\
s^{j+i} \Delta z_{j+i-1} & s^{j+i+1} \Delta z_{j+i} & \cdots & s^{j+2 i_{\Delta Z}}{ }_{j+2 i-1}
\end{array}\right]
\end{align*}
$$

where $\mathrm{sz}=1$.

Finally, substitution of (3.61) and (3.62) into (3.59) gives the desired result, and the corollary is proved.

Remark: Comparing Theorem 3.7 and Corollary 3.8, we note that the latter assumes normality of the Padé table as an added restriction on f. If this condition is not fulfilled, certain formal difficulties exist in the derivation of results paralleling those of Theorem 3.7. A theory of E-arrays for the general case is not yet available.

The rational expressions $R_{i j}(f, z)$ or $E_{i}^{(j)}(Z, s)$ which may be obtained from the set of coefficients $a_{k}, k=0,1, \ldots, 2 r-1$, are those entries in the Padé table lying upon and in the triangle whose vertices coincide with the approximants

and those entries in the E-array which lie in and upon the triangle whose vertices coincide with the functions

As pointed out by Wynn [30, p. 171], numerical experience supports the claim that, in general, for prescribed values of the arguments z and s, the expressions in the sets (3.63) and (3.64) for which

$$
\left|R_{i j}(f, z)-f(z)\right| \text { or }\left|E_{n}^{(m)}(s)-Z(s)\right|
$$

are a minimum, are given by $i+l=j=r$, or $i=j+j=r$, or $\mathrm{m}=0, \mathrm{n}=\mathrm{r}$.
IV. MINTMAI REALIZATIONS OF ITNEAR DYNAMICAI SYSTEMS.

One of the problems in the theory of linear dynamical systems is to construct models from input-output data. This is variously known as the problem of "modeling", "process identification", or "constructing a realization". While special, distinctive meaning has been given to each of these terms, the object is generally to find a mathematical model which lends itself to computer simulation.

The explicit determination of such a model is the subject of B.L. Ho's dissertation [6]. In particular, Ho considers the problem of constructing state-variable models of linear, stationary, finite-dimensional, multivariate dynamical systems. His algorithm is based on the solution of the "algebraic realization problem", defined as follows:

Given an infinite sequence of real ($p \times m$) matrices, $\mathscr{y}=\left(Y_{O}, Y_{1}, Y_{2}, \ldots\right)$, to find real matrices F, G, H such that

$$
\begin{equation*}
H F^{k} G=Y_{k} \quad(k=0,1,2, \ldots) \tag{4.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{F}=(\mathrm{n} \times \mathrm{n}) \text { matrix } \\
& \mathrm{G}=(\mathrm{n} \times \mathrm{m}) \text { matrix } \\
& \mathrm{H}=(\mathrm{p} \times \mathrm{n}) \text { matrix. }
\end{aligned}
$$

Following the accepted terminology, any solution (F, G, H) of the algebraic realization problem is called a realization of y, n is the dimension of the realization, and a solution with the smallest possible dimension n_{0} is called a minimal realization of \mathscr{H}

4.1 B.L. Ho's Existence Theorem.

Ho gave (i) necessary and sufficient conditions for a solution of the above problem to exist (Proposition 4.1), and (ii) a numerically simple algorithm for the construction of minimal realizations (Theorem 4.4). He also derived other abstract results of realization theory, some of which are reviewed and extended in this and the following chapters.

The existence of a realization is established by the following proposition which plays a fundamental role in Ho's theory.

Proposition 4.1 [6, p. 11]
The sequence $y=\left(Y_{0}, Y_{1}, Y_{2}, \ldots\right)$ has a realization if and only if there exists an integer r such that

$$
\begin{equation*}
Y_{r+j}=\sum_{i=1}^{r} \alpha_{i} Y_{r-i+j}, \quad j=0,1, \ldots \tag{4.2}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ are suitably fixed constants.
Ho gives a beautifully simple proof of this proposition. Before proceeding with it, we make some definitions and present a lemma which will be useful throughout this chapter.

Definitions:

1. Given a sequence $y=\left(Y_{0}, Y_{1}, \ldots\right)$, and two nonnegative integers r, k, we define the ($\mathrm{pr} \times \mathrm{mr}$) matrix

$$
S_{r}^{(k)}=\left[\begin{array}{cccc}
Y_{k} & Y_{k+1} & \cdots & Y_{k+r-1} \tag{4.3}\\
Y_{k+1} & Y_{k+2} & \cdots & Y_{k+r} \\
\cdot & \cdot & \cdots & \cdot \\
Y_{k+r-1} & Y_{k+r} & \cdots & Y_{k+2 r-2}
\end{array}\right]
$$

Note: The definition (4.3) is consistent with that made in Chapter III when y is a scalar sequence. In this case $(p=m=1)$, we set $\operatorname{det} S_{r}^{(k)}=\Delta_{r}^{(k)}$, as in (3.2).
2. If y satisfies the linear recursion relation (4.2), let M be the ($\mathrm{pr} \times \mathrm{pr}$) block companion matrix

$$
M=\left[\begin{array}{ccccc}
0_{p} & I_{p} & o_{p} & \cdots & o_{p} \tag{4.4}\\
0_{p} & o_{p} & I_{p} & \cdots & o_{p} \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
0_{p} & o_{p} & 0_{p} & \cdots \cdot & I_{p} \\
\alpha_{r} I_{p} & \alpha_{r-1} I_{p} & \alpha_{r-2} I_{p} & \cdots & \alpha_{1} I_{p}
\end{array}\right]
$$

where $O_{p}=(p \times p)$ zero matrix

$$
I_{p}=(p \times p) \quad \text { identity matrix. }
$$

3. If y satisfies the linear recursion relation (4.2), let N be the ($\mathrm{mr} \times \mathrm{mr}$) block companion matrix

$$
\mathbb{N}=\left[\begin{array}{ccccc}
0_{m} & 0_{m} & \cdots & o_{m} & \alpha_{r} I_{m} \tag{4.5}\\
I_{m} & 0_{m} & \cdots & o_{m} & \alpha_{r-1} I_{m} \\
0_{m} & I_{m} & \cdots & o_{m} & \alpha_{r-2} I_{m} \\
\cdot & \cdot & \cdots \cdot & \cdot & \cdot \\
0_{m} & 0_{m} & \cdots & I_{m} & \alpha_{1} I_{m}
\end{array}\right] .
$$

4. For given positive integers $u, v(u \leq v)$, let $E_{u v}$ be the ($u \times v$) matrix

$$
E_{u v}=\left[\begin{array}{ll}
I_{u} & 0 \tag{4.6}
\end{array}\right]
$$

In particular, if r is a positive integer and $v=u r$, we abbreviate

$$
\begin{equation*}
E_{u}=E_{u, u r} \tag{4.7}
\end{equation*}
$$

Lemma 4.2.
Hypothesis:

1. $y=\left(Y_{O}, Y_{1}, \ldots\right)$ is a sequence of matrices satisfying (4.2) for some positive integer r 。
2. i, j are nonnegative integers.

Conclusion:

$$
\begin{equation*}
S_{r}^{(i+j)}=M^{i} S_{r}^{(j)}=S_{r}^{(j)} \mathbb{N}^{j} \tag{4.8}
\end{equation*}
$$

the matrices S, M, N having been defined in (4.3), (4.4), (4.5), respectively.

Proof: Let j be an arbitrary nonnegative integer. We shall prove the lemma by induction on i. (4.8) is obviously true for $i=0$.

Suppose (4.8) holds for on arbitrary fixed integer $i \geq 0$. Then, because the coefficients $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right)$ of M and N satisfy (4.2),

$$
M^{i+1} S_{r}^{(j)}=M_{r}^{(i+j)}=S_{r}^{(i+j+1)}=S_{r}^{(i+j)} N=S_{r}^{(j)} N^{i+1}
$$

Therefore (4.8) holds for $i+1$. By mathematical induction, the lemma holds for all $i \geq 0$. But j was arbitrary, so the proof is valid for all nonnegative i, j.

Proof of Proposition 4.1 [6, p. 11]:

Assume that a realization (F, G, H) of dimension n exists.

Let $\psi(z)=z^{n}-\beta_{1} z^{n-1}-\beta_{2} z^{n-2}-\cdots-\beta_{n}, \beta_{0}=1$ be an annihilating polynomial of F. (The Cayley-Hamilton Theorem guarantees the existence of ψ.) Then

$$
0=H F^{j^{j}} \psi(F) G=H F^{n+j_{G}}-\sum_{i=1}^{n} \beta_{i} H F^{n-i+j_{G}}
$$

so that (4.2) holds with $r=n$ and $\alpha_{i}=\beta_{i}, \quad i=1,2, \ldots, n$.
Conversely, suppose (4.2) is true. By Lemma 4.2, this implies

$$
M^{i} S_{r}^{(0)}=S_{r}^{(i)} \quad(i=0,1,2, \ldots)
$$

The first block in $S_{r}^{(i)}$ is Y_{i}. Therefore

$$
Y_{i}=E_{p} S_{r}^{(i)} E_{m}^{\prime}=E_{p} M^{i} S_{r}^{(0)} E_{m}^{\prime}
$$

and

$$
\begin{align*}
& F=M \\
& G=S_{r}^{(0)_{E_{m}^{\prime}}^{\prime}} \tag{4.9}\\
& H=E_{p}
\end{align*}
$$

is a realization of y, by (4.1).

4.2 B.L. Ho's Realization Algorithm

The following lemma prepares the way for Ho's minimal realization algorithm.

Lemma 4.3.
Hypotheses:

1. y is a sequence of matrices satisfying (4.2) for some positive integer r.
2. (F, G, H) is a realization of \mathscr{Y}.

Conclusion: rank $S_{r}^{(0)} \leq \operatorname{dim} F$.

Proof: By hypothesis, $Y_{k}=H F^{k} G_{\text {, }}$ all $k \geq 0$. Therefore $S_{r}^{(0)}$ can be factored as follows:

Let

$$
\begin{align*}
& V^{8}=\left[\begin{array}{llll}
H^{8} & F^{8} H^{8} & \cdots & \left(F^{8}\right)^{r-1} H^{8}
\end{array}\right] \\
& W=\left[\begin{array}{llll}
G & F G & \cdots & F^{r-1}{ }_{G}
\end{array}\right] \tag{4.10}
\end{align*}
$$

where the prime denotes the transpose of a matrix. Then

$$
\begin{equation*}
s_{r}^{(0)}=V W \tag{4.21}
\end{equation*}
$$

Now rank $\mathrm{S}_{\mathrm{r}}^{(0)} \leq \min ($ rank V , rank $W) \leq \operatorname{dim} \mathrm{F}$.
Theorem 4.4. (Ho's realization algorithm) [6, p. 13]
Hypotheses:

1. y is a sequence of ($p \times m$) matrices satisfying (4.2) for some positive integer r.
2. $S_{r}^{(k)}(k=0,1, \ldots)$ are generalized Hankel matrices for y, as defined in (4.3), with rank $S_{r}^{(0)}=n$.
3. P and Q are nonsingular matrices, of dimensions ($\mathrm{pr} \times \mathrm{pr}$)
and ($\mathrm{mr} \times \mathrm{mr}$) respectively, and such that

$$
\begin{equation*}
\mathrm{PS}_{r}^{(0)_{Q}}=\mathrm{E}_{\mathrm{n}, \mathrm{pr}}^{\mathrm{E}} \mathrm{E}_{\mathrm{n}, \mathrm{mr}} \tag{4.12}
\end{equation*}
$$

i.e., $\operatorname{PS}_{r}^{(0)} Q$ is the canonical diagonal form

$$
\left[\begin{array}{ll}
I_{n} & 0 \\
0 & 0
\end{array}\right] \text { of } \mathrm{s}_{\mathrm{r}}^{(0)} \cdot \quad[22, \text { vol. I; p. 141] }
$$

Conclusion:
Let

$$
\begin{align*}
& F=E_{n, p r} P_{r}^{(I)} Q_{n, m r}^{P}, \quad(n \times n) \quad \text { matrix; } \\
& \mathrm{G}=\mathrm{E}_{\mathrm{n}, \mathrm{pr}}{ }^{P S}{ }_{r}(\mathrm{O})_{\mathrm{E}_{\mathrm{m}}{ }^{\prime}, \quad(\mathrm{n} \times \mathrm{m}) \quad \text { matrix; }} \tag{4.13}\\
& H=E_{p} S_{r}^{(0)} Q E_{n, m r}^{\prime}, \quad(p \times n) \quad \text { matrix } .
\end{align*}
$$

Then (F, G, H) is a minimal realization of the sequence Y.
Proof: The existence of suitable matrices P and Q is a well-known fact from linear algebra. [22, pp. 133-141]

Let

$$
\begin{equation*}
S^{\#}=Q E_{n, m r}^{\mathrm{E}} \mathrm{n}, \mathrm{pr}^{\mathrm{P}} . \tag{4.14}
\end{equation*}
$$

Then hypothesis 3 gives

$$
\begin{align*}
& S_{r}^{(0)} S_{S} \#_{S}(0)=S_{r}^{(0)} ; \tag{4.15}\\
& S_{S}^{\#_{S}} S_{r}^{(0)} S_{S}^{\#}=S^{\#}
\end{align*}
$$

From the definitions of F, P and Q,

$$
\begin{equation*}
F^{k}=E_{n, p r}{ }^{P S}{ }_{r}^{(k)} \mathrm{QE}_{\mathrm{n}, \mathrm{mr}}^{\prime} . \quad(\mathrm{k}=0,1) \tag{4.16}
\end{equation*}
$$

By Lemma 4.2,

$$
\begin{aligned}
& F^{2}=E_{n, p r}{ }^{P M S}{ }_{r}^{(0)} S_{S} H_{r}^{(0)}{ }_{N Q E}{ }_{n, m r}^{1} \\
& =\mathrm{E}_{\mathrm{n}, \mathrm{pr}} \mathrm{PMS}_{r}{ }_{r}^{(0)} \mathrm{NQE}_{\mathrm{n}, \mathrm{mr}}^{\prime} \\
& =E_{n, p r}{ }^{P S}{ }_{r}^{(2)} Q_{n, m r}^{\prime} .
\end{aligned}
$$

Using Lemma 4.2 and (4.15) repeatedly, we have the general result

$$
\begin{equation*}
F^{k}=E_{n, p r}{ }^{P S}{\underset{r}{(k)} \mathrm{QE}_{\mathrm{n}, \mathrm{mr}}^{\mathrm{k}}}^{(\mathrm{k}=0,1,2, \ldots) .} \tag{4.17}
\end{equation*}
$$

Therefore

$$
\begin{align*}
& =E_{p} S_{r}^{(0)} S_{S} S_{r}(0) N_{S} S_{H_{r}} S_{r}^{(0)} \mathbb{E}_{m}^{B} \\
& =E_{p} M^{k} S_{r}(0) E_{m} \tag{4.18}\\
& =E_{p} S_{r}^{(k)} E_{m}^{s} \\
& =Y_{k} \text {. }
\end{align*}
$$

F is an $(n \times n)$ matrix, and rank $S_{r}^{(0)}=n$ by hypothesis 2. By Lemma 4.3, the realization is minimal.

Remark: Theorem 4.4 solves the algebraic realization problem stated in the introductory paragraphs of this chapter, whenever such a realization exists. The following proposition, due to Ho [6, p. 48], demonstrates that the algebraic realization problem is equivalent to the problem of finding the (minimal) realization of linear, stationary, finite-dimensional dynamical systems from their input-output descriptions. A remarkable feature of this proposition is that it applies equally to discrete-time and continuous-time systems, and that the input-output data may be presented either in the time domain or in the transform domain.

For the discrete-time system

$$
\begin{align*}
x(k+1) & =F x(k)+G u(k) \\
y(k) & =H x(k) \tag{4.19}
\end{align*}
$$

the time-domain description is given by the pulse-response function

$$
\begin{equation*}
Y_{k}=\mathrm{HF}^{\mathrm{k}} \mathrm{G}_{\mathrm{G}}, \quad \mathrm{k}=0,1, \ldots \tag{4.20}
\end{equation*}
$$

The transform-domain description is given by the z-transform transfer function

$$
\begin{equation*}
T(z)=H(z I-F)^{-I_{G}} \tag{4.21}
\end{equation*}
$$

For the continuous-time system

$$
\begin{align*}
\frac{d x}{d t} & =F x(t)+G u(t) \tag{4.22}\\
y(t) & =H x(t)
\end{align*}
$$

the time-domain description is given by the impulse-response function

$$
\begin{equation*}
W(t)=H \exp (F t) G, \quad t \geq 0 \tag{4.23}
\end{equation*}
$$

The transform domain description is given by the Laplace transform transfer function

$$
\begin{equation*}
Z(s)=H(s I-F)^{-1} G_{\text {. }} . \tag{4.24}
\end{equation*}
$$

Proposition 4.5 [6, p. 48]

The following four problems are equivalent to the algebraic realization problem:
(i) Given the function $k \rightarrow Y_{k}$, find a triple (F, G, H) of constant matrices such that (4.20) holds.
(ii) Given the function $z \rightarrow \mathbb{T}(z)$, find a triple (F, G, H) of constant matrices such that (4.21) holds.
(iii) Given the function $t \rightarrow W(t)$, find a triple (F, G, H) of constant matrices such that (4.23) holds.
(iv) Given the function $s \rightarrow Z(s)$, find a triple (F,G,H) of constant matrices such that (4.24) holds.

For a proof and further discussion of this proposition, the reader is referred to the paper by Ho and Kalman [36, p. 453].

4.3 The Unique Representation Theorem.

In this section, we present a specialized version of B.L. Ho's minimal realization algorithm. The specialization is accompanied by the achievement of a number of desirable new properties.

For example, the one-to-one correspondence established in Corollary 4.10 has no parallel in Ho's theory. By showing this one-to-one correspondence between minimal realizations (F, G, H) and generating matrices (V, W), we demonstrate that the new algorithm is the sharpest possible, subject to the requirement that every minimal realization may be obtained.

We note, too, that the generating pair (V, W) in Corollary 4.10 is the same pair of matrices whose rank determines the complete controllability and observability of stationary linear dynamical systems. [7; p. 201], [8; p. 170], [27; pp. 499-506], [29; p. 53]. The beauty and significance of the reciprocal relations (4.69) and (4.70) is obvious.

The close similarity, as well as the difference, between the computations for B.L. Ho's algorithm and the new algorithm are brought into sharp focus in Proposition 4.11. B.I. Ho's algorithm is phrased and proved in such a manner that the whole matrices P and Q appear. The new algorithm operates only with submatrices of the matrices P and Q, viz., with the parts which lie in the column and row spaces of $S_{r}^{(0)}$.

Lemma 4.6.
Hypotheses:

1. Y is a sequence of ($p \times m$) matrices satisfying (4.2) for some positive integer r.
2. Rank $S_{r}^{(0)}=n$, where $S_{r}^{(0)}$ is the generalized Hankel matrix defined in (4.3).
3. (F, G, H) is a minimal realization for Y, and

$$
\begin{align*}
& V^{\prime}=\left[\begin{array}{llll}
H^{\prime} & F^{\prime} H^{\prime} & \ldots & \left(F^{\prime}\right)^{r-1} H^{\prime}
\end{array}\right] \\
& W=\left[\begin{array}{llll}
G & F_{G} & \ldots & F^{r-1} I_{G}
\end{array}\right. \tag{4.25}
\end{align*}
$$

Conclusions:

1. The columns of V are a basis for the column space of $S_{r}^{(0)}$. The rows of W are a basis for the row space of $S_{r}^{(0)}$.
2. The pseudo inverses V^{\dagger}, W^{\dagger} are given by

$$
\begin{align*}
& V^{\dagger}=\left(V^{8} V\right)^{-1} V \\
& W^{\dagger}=W^{1}\left(W W^{1}\right)^{-1} . \tag{4.26}
\end{align*}
$$

3. $V F^{k} W=S_{r}^{(k)}, \quad k=0,1,2, \ldots$.

Note: See Appendix B for definition and properties of pseudo inverse.
Proof:

1. Since (F, G, H) is a minimal realization, we have $\operatorname{dim} F=n . \quad B u t$

$$
S_{r}^{(0)}=V W
$$

and so we have
$n=\operatorname{rank} S_{r}^{(0)} \leq \min (\operatorname{rank} V, \operatorname{rank} W) \leq \max (\operatorname{rank} V, \operatorname{rank} W) \leq \operatorname{dim} F$.

Therefore, $\operatorname{dim} F=n$ implies the well-known result [8, pp. 169, 170]

$$
\text { rank } V=\text { rank } W=n
$$

Since V has exactly n columns and W has exactly n rows, Conclusion I follows immediately. Also, the system represented by (F, G, H) is completely controllable (since $\operatorname{rank} W=n$) and completely observable (since rank $V=n$). [6; p. 50].
2. To show Conclusion 2, write $V=V I_{n}$ and $W=I_{n} W$. Then (4.26) is readily verified by the construction given in Appendix B, Section 2.
3. Since (F, G, H) is a realization, we have

$$
Y_{i}=H F^{i} G, \quad i=0,1,2, \ldots
$$

Therefore, the product $V F^{k} W$ is a block matrix whose matrix elements are precisely the elements of $S_{r}^{(k)}$.

This completes the proof of the lemma.

Lemma 4.7.
Hypotheses:

1. y is a sequence of $(p \times m)$ matrices satisfying (4.2) for some positive integer r.
2. $S_{r}^{(k)}(k=0,1,2, \ldots)$ are generalized Hankel matrices for y, as defined in (4.3), with $\operatorname{rank} S_{r}^{(0)}=n$.
3. B and C are matrices with the following properties:
(i) B is a $(p r \times n)$ matrix whose n columns are a basis for the column space of $S_{r}^{(0)}$;
(ii) C is a ($n \times m r$) matrix whose n rows are a basis for the row space of $S_{r}^{(0)}$;
(iii) $B C=S_{r}^{(0)}=S$, say.

Conclusion:
For each pair of nonnegative integers (i, j),

$$
B^{\dagger} M^{\dot{j}} S N^{j} C^{\dagger}=\left(B^{\dagger} M S C^{\dagger}\right)^{i+j}=\left(B^{\dagger} S N C^{\dagger}\right)^{i+j}
$$

the matrices M and N having been defined in (4.4) and (4.5), respectively. Proof:

By Lemma 4.2,

$$
M^{i} S \mathbb{N}^{j}=S \mathbb{N}^{i+j}, \text { and } M S=S N
$$

Therefore, taking $k=i+j$, it suffices to show that

$$
\begin{equation*}
B^{\dagger} S \mathbb{N}^{k} C^{\dagger}=\left(B^{\dagger} S \mathbb{N C}^{\dagger}\right)^{k}, \quad(k=0,1, \ldots) \tag{4.27}
\end{equation*}
$$

By Hypothesis 3, we deduce (see Appendix B.4(ix))

$$
\begin{equation*}
S^{\dagger}=C^{\dagger} B^{\dagger} \tag{4.28}
\end{equation*}
$$

Certainly, (4.27) is true for $k=1$.
Suppose (4.7) is true for k equal to some fixed positive integer q. Then
$\left(B^{\dagger} S N C^{\dagger}\right)^{q+1}=\left(B^{\dagger} S N C^{\dagger}\right)\left(B^{\dagger} S N^{q} C^{\dagger}\right)$
$=\mathrm{B}^{\dagger} \mathrm{MSS}^{\dagger} \mathrm{S} \mathrm{N}^{\mathrm{q}} \mathrm{C}^{\dagger}$, by (4.28)
$=B^{\dagger} M S \mathbb{N}^{q} C^{\dagger}$, by definition of S^{\dagger} (see Appendix B.I)
$=B^{\dagger} S_{N} N^{\mathrm{q}+1} \mathrm{C}^{\dagger}$, by Lemma 4.2.

Therefore, (4.27) is true for $k=1,2,3, \ldots$, by induction.

For $k=0$, we have

$$
\begin{equation*}
B^{\dagger} S C^{\dagger}=\left[\left(B^{\prime} B\right)^{-1} B^{\prime}\right] B C\left[C^{\prime}\left(C C^{1}\right)^{-1}\right]=I . \tag{4.29}
\end{equation*}
$$

This completes the proof of the lemma.
Lemma 4.8 [6; p. 17]
Hypotheses:
y is a sequence of ($\mathrm{p} \times \mathrm{m}$) matrices satisfying (4.2) for some positive integer r 。

1. Any two minimal realizations $\left(F_{k}, G_{k}, H_{k}\right), k=1,2$, of the same sequence y are isomorphic: There exists a nonsingular matrix T such that

$$
\begin{align*}
F_{2} & =T F_{1} T^{-1} \\
G_{2} & =T G_{1} \tag{4.30}\\
H_{2} & =H_{1} T^{-1} .
\end{align*}
$$

2. The matrix T in (4.30) is given explicitly by

$$
\begin{equation*}
T=V_{2}^{\dagger} V_{1}=W_{2} W_{1}^{\dagger} \tag{4.31}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathrm{V}_{\mathrm{k}}^{\prime}=\left[\begin{array}{llll}
\mathrm{H}_{\mathrm{k}}^{\prime} & \mathrm{F}_{\mathrm{k}}^{\prime} \mathrm{H}_{\mathrm{k}}^{\prime} & \cdots & \left(\mathrm{F}_{\mathrm{k}}^{\prime}\right)^{r-1} \mathrm{I}_{\mathrm{k}}^{\prime}
\end{array}\right], \\
& W_{k}=\left[\begin{array}{llll}
G_{k} & \mathrm{~F}_{\mathrm{k}} G_{k} & \cdots & F_{k}^{r-1} G_{k}
\end{array}\right], \quad k=1,2 . \tag{4.32}
\end{align*}
$$

Proof:
By Lemma 4.6,

$$
\begin{equation*}
S_{r}^{(0)}=V_{I} W_{I}=V_{2} W_{2}, \tag{4.33}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{r}^{(I)}=V_{1} F_{1} W_{1}=V_{2} F_{2} W_{2} . \tag{4.34}
\end{equation*}
$$

Define

$$
\begin{equation*}
T=W_{2} W_{1}^{\dagger}, \quad U=V_{1}^{\dagger} V_{2} \tag{4.35}
\end{equation*}
$$

Assertion:

$$
U T=T U=I_{0}
$$

Proof of assertion (4.36):

By Lemma 4.6, the columns of V_{k} are a basis for the column space of $S=V_{k} W_{k}$, and the rows of W_{k} are a basis for the row space of S; for $k=1,2$.

By the same lemma,

$$
\begin{aligned}
& V_{k}^{\dagger}=\left(V_{k}^{\prime} V_{k}\right)^{-1} V_{k}^{\prime} \\
& W_{k}^{\dagger}=W_{k}^{\prime}\left(W_{k} W_{k}^{\prime}\right)^{-1}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\mathrm{V}_{\mathrm{k}}^{\dagger} \mathrm{V}_{\mathrm{k}}=\mathrm{I} \text { and } \mathrm{W}_{\mathrm{k}} \mathrm{~W}_{\mathrm{k}}^{\dagger}=I \tag{4.37}
\end{equation*}
$$

Now

$$
\begin{aligned}
\mathrm{UT} & =\mathrm{V}_{1}^{\dagger} \mathrm{V}_{2} W_{2} W_{1}^{\dagger}=V_{1}^{\dagger} \mathrm{V}_{1} W_{1} W_{1}^{\dagger}, \quad \text { by }(4.33) \\
& =\text { I, by }(4.37)
\end{aligned}
$$

Again,

$$
T U=W_{2} W_{1}^{\dagger} V_{1}^{\dagger} V_{2}=W_{2}\left(S_{r}^{(0)}\right)^{\dagger} V_{2}, \quad \text { by (4.28) }
$$

Using assertion (4.33), we obtain

$$
T U=W_{2} W_{2}^{\dagger} V_{2}^{\dagger} V_{2}=I, \quad \text { by (4.37) }
$$

The assertion (4.36) is proved.
Now (4.36) shows that T and U are nonsingular and that $U=T^{-1}$. Also, from (4.33), (4.35) and (4.37),

$$
\begin{align*}
& \mathrm{V}_{2}^{T}=\mathrm{V}_{2} \mathrm{~W}_{2} \mathrm{~W}_{1}^{\dagger}=\mathrm{V}_{1} \mathrm{~W}_{1} \mathrm{~W}_{1}^{\dagger}=\mathrm{V}_{1} \\
& \mathrm{UW}_{2}=\mathrm{V}_{1}^{\dagger} \mathrm{V}_{2} \mathrm{~W}_{2}=\mathrm{V}_{1}^{\dagger} \mathrm{V}_{1} \mathrm{~W}_{1}=\mathrm{W}_{1} . \tag{4.38}
\end{align*}
$$

Substitution for V_{1} and W_{1} from (4.38) into (4.34) gives

$$
V_{1} F_{1} W_{1}=V_{2}{ }^{T F_{1}} U W_{2}=V_{2} F_{2} W_{2}
$$

which, in turn, yields

$$
\begin{equation*}
F_{2}=T F_{1} U=T F_{1} T^{-1} \tag{4.39}
\end{equation*}
$$

where

$$
T=W_{2} W_{I}^{\dagger}=U^{-1}, \quad \text { by }(4.36)
$$

But $U^{-l}=\left(V_{1}^{\dagger} V_{2}\right)^{-1}=V_{2}^{\dagger} V_{1}$, by Appendix B.4, properties (ii), (iii), and (ix). Therefore

$$
\begin{equation*}
T=V_{2}^{\dagger} V_{1}=W_{2} W_{1}^{\dagger} . \tag{4.40}
\end{equation*}
$$

$$
\begin{equation*}
\text { From (4.32), } \quad G_{k}=W_{k} E_{n, m r}^{\prime}, \quad k=1,2 \text {; } \tag{4.41}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{H}_{\mathrm{k}}=\mathrm{E}_{\mathrm{n}, \mathrm{pr}} \mathrm{~V}_{\mathrm{k}}, \mathrm{k}=1,2 \tag{4.42}
\end{equation*}
$$

Substitution of $W_{2}=U^{-1} W_{1}=T W_{1}$ from (4.38) into (4.41) gives

$$
\begin{equation*}
G_{2}=T W_{1} E_{n, m r}^{\prime}=T G_{1} . \tag{4.43}
\end{equation*}
$$

Similarly, substitution of $V_{2}=V_{1} T^{-1}$ from (4.38) into (4.42) gives

$$
\begin{equation*}
H_{2}=E_{n, p r} V_{1} T^{-l}=H_{1} T^{-1} \tag{4.44}
\end{equation*}
$$

In view of (4.39), (4.40), (4.43) and (4.44), the lemma is true.

Theorem 4.9 (Unique Representation Theorem)
Hypotheses:

1. y is a sequence of ($p \times m$) matrices satisfying (4.2) for some positive integer r.
2. $S_{r}^{(k)}(k=0,1,2, \ldots)$ are generalized Hankel matrices for y, as defined in (4.3), with rank $S_{r}^{(0)}=n$.
3. (B, C) is an ordered pair of matrices with the following properties:
(i) B is a pr $\times n$ matrix whose n columns are a basis for the column space of $\mathrm{S}_{r}^{(0)}$;
(ii) C is a ($n \times m r$) matrix whose n rows are a basis for the row space of $S_{r}^{(0)}$;
(iii) $B C=S_{r}^{(0)}=S, \quad$ say.

Conclusion:
Let

$$
\begin{array}{lll}
F=B^{\dagger} S_{r}^{(1)} C^{\dagger} & (n \times n) & \text { matrix; } \\
G=B^{\dagger} S_{r}^{(0)} E_{m}^{\prime} & (n \times m) & \text { matrix; } \tag{4.45}\\
H=E_{p_{r}^{S}}^{(0)} C^{\dagger} & (p \times n) \text { matrix. }
\end{array}
$$

Then

1. (F, G, H) is a minimal realization of the sequence \mathscr{U}.
2. Given any minimal realization (F,G,H) for Y, there exists an ordered pair of matrices (B, C) having the properties of Hypothesis 3 and generating (F, G, H) when substituted on the right-hand side of equations (4.45).
3. The pair (B, C) of Conclusion 2 is unique for each minimal realization (F, G, H), and is given explicitly by

$$
\begin{equation*}
(B, C)=(V, W) \tag{4.46}
\end{equation*}
$$

where V and W are defined by (4.19).
Proof:

1. Let $S=S_{r}^{(0)}$ and $S^{\dagger}=$ pseudo inverse of S.

Then, as shown in Appendix B,

$$
\begin{equation*}
S^{\dagger}=C^{\dagger} B^{\dagger} \tag{4.47}
\end{equation*}
$$

and

$$
\mathrm{SS}^{\dagger}{ }^{\mathrm{S}}=\mathrm{S}
$$

Now $H r^{k} G=\left(E_{p} S_{r}^{(0)} C^{\dagger}\right)\left(B^{\dagger} S_{r}^{(1)} C^{\dagger}\right)^{k}\left(B^{\dagger} S_{r}^{(0)} E_{m}^{r}\right)$

$$
=\left(E_{p} S C^{\dagger}\right)\left(B^{\dagger} \operatorname{SNC}^{\dagger}\right)^{k}\left(B^{\dagger} S E_{m}^{1}\right)
$$

$$
=\left(E_{p} S^{\dagger}\right)\left(B^{\dagger} S N^{k} C^{\dagger}\right)\left(B^{\dagger} S_{m}^{p}\right), \quad \text { by Lemma } 4.5
$$

$$
\begin{equation*}
=E_{p} S S^{\dagger} S N^{k} S^{\dagger} S_{m}^{\prime}, \quad \text { by (4.47) } \tag{4.49}
\end{equation*}
$$

$$
=E_{p^{M}} M^{k} S_{m^{\prime}}^{\prime}, \quad \text { by }(4.48)
$$

$$
=E_{p} S_{r}^{(k)} E_{m^{\prime}}^{\prime}, \quad \text { by Lemma } 4.2
$$

$$
=Y_{k} .
$$

This shows that (F, G, H) is a realization for \mathscr{U}.
F is an $(n \times n)$ matrix and rank $S_{r}^{(0)}=n$, by Hypothesis 2. Therefore the realization is minimal, by Lemma 4.3. This completes the proof of Conclusion 1 .
2. Suppose that (F,G,H) is an arbitrary fixed minimal realization for 4 . Then Lemma 4.6 implies that the matrices (V, W) defined by (4.25) have the properties of (B, C) postulated in Hypothesis 3 of our theorem. Therefore, substitution of

$$
\begin{align*}
& B^{\dagger}=V^{\dagger}=\left(V^{\prime} V\right)^{-1} V \\
& C^{\dagger}=W^{\dagger}=W^{\prime}\left(W^{\prime}\right)^{-1} \tag{4.50}
\end{align*}
$$

on the right-hand side of (4.45) will give a minimal realization of \mathscr{U}. Let this minimal realization be $\left(F_{1}, G_{1}, H_{1}\right)$:

$$
\begin{align*}
& F_{1}=V^{\dagger} S_{r}^{(1)} W^{\dagger} \\
& G_{1}=V_{r}^{\dagger} S_{r}^{(0)} E_{m}^{\prime} \tag{4.51}\\
& H_{1}=E_{p} S_{r}^{(0)} W^{\dagger}
\end{align*}
$$

Let $V_{1}^{\prime}=\left[H_{1}^{\prime} F_{1}^{\prime} H_{1}^{\prime} \cdots\left(F_{1}^{\prime}\right)^{r-1} H_{1}^{\prime}\right], W_{1}=\left[G_{1} F_{1} G_{1} \ldots F_{1}^{r-1} G_{1}\right]$.

By Lemma 4.8,

$$
\begin{equation*}
(F, G, H)=\left(T F_{I} U, T G_{I}, H_{I} U\right) \tag{4.52}
\end{equation*}
$$

where

$$
\begin{equation*}
T=V^{\dagger} V_{1}=U^{-1}, \quad U=W_{1} W^{\dagger}=T^{-1} \tag{4.54}
\end{equation*}
$$

By Lemma 4.6,

$$
\begin{equation*}
S_{r}^{(0)}=V_{1} W_{I}=V W \tag{4.55}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{r}^{(1)}=V_{1} F_{1} W_{1}=V F W . \tag{4.56}
\end{equation*}
$$

Now from (4.53) and (4.54):

$$
\begin{aligned}
\mathrm{F}=\mathrm{TF} F_{1} \mathrm{U} & =\left(\mathrm{V}^{\dagger} \mathrm{V}_{1}\right) \mathrm{F}_{1}\left(\mathrm{~W}_{1} \mathrm{~W}^{\dagger}\right) \\
& =\mathrm{V}^{\dagger} \mathrm{S}_{\mathrm{r}}^{(1)_{W}^{\dagger}, \quad \text { by }(4.56) .}
\end{aligned}
$$

Using the first of the equations (4.51), we obtain

$$
\begin{equation*}
F=F_{I} . \tag{4.57}
\end{equation*}
$$

Again, from (4.53) and (4.54),

$$
\begin{equation*}
G=T G_{1}=\left(V^{\dagger} V_{1}\right)\left(V^{\dagger} S_{r}^{\left.(0)_{E_{m}}\right) .}\right. \tag{4.58}
\end{equation*}
$$

But now (using $S=S_{r}^{(0)}$):

$$
\begin{aligned}
& V_{1} V^{\dagger} S=\left[\begin{array}{c}
H_{l} \\
H_{l} F_{I} \\
\cdot \\
\cdot \\
H_{l} F_{I}^{r-I}
\end{array}\right] V^{\dagger} S \text {, by (4.52) } \\
& =\left[\begin{array}{c}
\mathrm{E}_{\mathrm{p}} \mathrm{SW}^{\dagger} \\
\mathrm{E}_{\mathrm{p} \mathrm{SW}^{\dagger} \mathrm{V}^{\dagger} \mathrm{MSW}}{ }^{\dagger} \\
\vdots \\
\cdot \\
\mathrm{E}_{\mathrm{p}} \mathrm{SW}^{\dagger}\left[\mathrm{V}^{\dagger} \mathrm{MSW}^{\dagger}\right]^{r-1}
\end{array}\right] \mathrm{V}^{\dagger} \mathrm{S}, \quad \text { by (4.5I) } \\
& =\left[\begin{array}{c}
E_{p} S W^{\dagger} V^{\dagger} S \\
E_{p} S W^{\dagger}\left(V^{\dagger} M S W\right. \\
\\
\vdots \\
\vdots \\
E_{p} S V^{\dagger}\left(V^{\dagger} M^{r-1} S W^{\dagger}\right) V^{\dagger} S
\end{array}\right] \text { by Lemma } 4.7
\end{aligned}
$$

$$
\begin{align*}
& =\left[\begin{array}{c}
E_{p} \\
E_{p} M \\
\vdots \\
\vdots \\
E_{p} M^{r-1}
\end{array}\right] \quad S, \quad \text { by (4.28) and Lerma } 4.7 \\
& =I_{p r} S=S \tag{4.59}
\end{align*}
$$

Now, from (4.51), (4.58) and (4.59),

$$
\begin{equation*}
G=v^{\dagger} s_{r}^{(0)_{E_{m}}^{\prime}}=G_{I} \tag{4.60}
\end{equation*}
$$

Similarly, from (4.53) and (4.54),

$$
\begin{equation*}
H=H_{1} T^{-1}=\left(E_{p} S_{r}^{\left.(O)_{W}^{\dagger}\right)\left(W_{1} W^{\dagger}\right)}\right. \tag{4.61}
\end{equation*}
$$

By proceeding as in the proof of (4.59), one can show

$$
\begin{equation*}
S_{r}^{(0)} W_{W}^{\dagger} W_{1}=S_{r}^{(0)} \tag{4.62}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
H=E_{p} S_{r}^{(0)} W^{\dagger}=H_{1} \tag{4.63}
\end{equation*}
$$

We have shown that the pair $(B, C)=(V, W)$ generates the minimal realization (F, G, H).
3. Suppose that there exists some other pair (B_{1}, C_{1}) having the properties of Hypothesis 3 and giving

$$
\begin{align*}
& F=B_{1}{ }^{\dagger} S_{r}^{(1)} C_{1}^{\dagger} \\
& G=B_{1}^{\dagger} S_{r}^{(0)} E_{m}^{\prime} \tag{4.64}\\
& H=E_{p} S_{r}^{(0)} C_{1}^{\dagger}
\end{align*}
$$

By Lemma 4.8, we must have

$$
\begin{align*}
& T=V^{\dagger} B_{I}=I \tag{4.65}\\
& U=C_{1} W^{\dagger}=I \tag{4.66}
\end{align*}
$$

By Appendix B.4(iv), VV^{\dagger} is the (unique) orthogonal projector for the column space of $S_{r}^{(0)}$. The columns of B_{1} are in the column space of $S_{r}^{(0)}$. Therefore (4.65) implies

$$
\begin{equation*}
V=V v^{\dagger} B_{1}=B_{1} \tag{4.67}
\end{equation*}
$$

Similarly, $W^{\dagger} W$ is the orthogonal projector for the row space of $S_{r}^{(0)}$, and (4.66) implies therefore

$$
\begin{equation*}
W=C_{1} W^{\dagger} W=C_{1} . \tag{4.68}
\end{equation*}
$$

The theorem is proved.

Corollary 4.10.

Hypothesis:
y is a sequence of matrices having a realization of dimension r.

Conclusion:

There is a one-to-one correspondence between the minimal realizations (F, G, H) for Y, and the matrix pairs $(V, W)=(B, C)$ satisfying the conditions stated in the hypotheses of Theorem 4.9.

The correspondence is established by the following transformations:

$$
\begin{align*}
& F=V^{\dagger} S_{r}^{(1)_{W}^{\dagger}} \\
& G=V^{\dagger} S_{r}^{(0)_{E_{m}}^{\prime}} \tag{4.69}\\
& H=E_{p} S_{r}^{(0)_{W}^{\dagger}} \\
& V=\left[\begin{array}{llll}
H^{\prime} & F^{\prime} H^{\prime} & \cdots & \left.\left(F^{y}\right)^{r-1} H^{\prime}\right]^{\prime} \\
W & =\left[\begin{array}{llll}
G & F G & \cdots & F^{r-1} G
\end{array}\right]
\end{array} .\right.
\end{align*}
$$

(The one-to-oneness is assured by the uniqueness of the pseudo inverse of a matrix. See Appendix B, Section 3.)

Proposition 4.11.
Hypotheses:

1. y is a sequence of $p \times m$ matrices and satisfies (4.2) for some positive integer r.
2. $S_{r}^{(k)}(k=0,1,2, \ldots)$ are generalized Hankel matrices for y, as defined in (4.3).
3. $\operatorname{rank} S_{r}^{(0)}=n$ 。
$\mathcal{X}=$ column space of $S_{r}^{(0)}$; i.e. an n-dimensional subspace of R^{pr}.

$$
\begin{aligned}
& R=\text { row space of } S_{r}^{(0)} ; \text { i.e. an } n \text {-dimensional subspace of } R^{m r} . \\
& K^{\perp}=\text { orthogonal complement of } K . \\
& R^{\perp}=\text { orthogonal complement of } R .
\end{aligned}
$$

Conclusions:

1. Suppose (P, Q) are a pair of matrices satisfying the hypotheses of Theorem 4.4; and give a minimal realization (F; $G ; H$) for \mathscr{y}, through substitution in the algorithm (4.13). Then the pair (B, C),

$$
\begin{align*}
& B=\left(E_{n, p r} P\right)^{\dagger} \tag{4.71}\\
& C=\left(Q E_{n, m r}^{:}\right)^{\dagger} \tag{4.72}
\end{align*}
$$

substituted in the algorithm (4.45) of Theorem 4.9, will produce the same realization (F, G, H).
2. Suppose (B, C) are a pair of matrices satisfying the hypotheses of Theorem 4.9, and give a minimal realization (F, G, H) for y, through substitution in the algorithm (4.45). Then the pair (P, Q),

$$
\begin{equation*}
P=\left[B_{B^{-}}^{B^{\dagger}}\right], \quad Q=\left[C^{\dagger} C^{-}\right] \tag{4.73}
\end{equation*}
$$

substituted in Ho's algorithm (4.13), will produce the same realization ($\mathrm{F}, \mathrm{G}, \mathrm{H}$).

The submatrices B^{-}and $C^{-\quad}$ may be chosen arbitrarily, subject only to the restriction that the rows of B^{-}must be a basis for K^{\perp} and the columns of C^{-}must be a basis for p^{+}.

Proof:

1. By Ho's algorithm, Theorem 4.4, equations (4.13):

$$
\begin{align*}
F & =E_{n, p r} P_{r}^{(1)} Q E_{n, m r}^{\prime} \tag{4.74}\\
& =B_{r}^{\dagger} S_{r}^{(1)} C^{\dagger}
\end{align*}
$$

since $B^{\dagger}=\left[\left(E_{n, p r} P\right)^{\dagger}\right]^{\dagger}=E_{n, p r} P$, by (4.71), and

$$
C^{\dagger}=Q E_{n, m r}^{\prime}, \quad \text { by }(4.72)
$$

Likewise, $G=E_{n, p r}{ }_{P S}{ }_{r}^{(0)} E_{m}$. Therefore, by (4.71),

$$
\begin{equation*}
G=B^{\dagger} S_{r}^{(0)} E_{m}^{1} \tag{4.75}
\end{equation*}
$$

Also, $\quad H=E_{p} S_{r}^{(0)} Q_{n, m r}^{r}$. Therefore, by (4.72),

$$
\begin{equation*}
H=E_{p} S_{r}^{(0)} C^{\dagger} \tag{4.76}
\end{equation*}
$$

Equations (4.74), (4.75), (4.76) are the same as equations (4.45) of Theorem 4.9, thus proving claim 1.
2. By Appendix B, section 4 (vii), the n rows of $B^{\dagger} \operatorname{span} K$. By hypothesis, the $(p r-n)$ rows of $B^{-} \operatorname{span} K^{\perp}$.
Therefore, $P=\left[\begin{array}{c}B^{\dagger} \\ B^{-}\end{array}\right]$is a nonsingular ($\mathrm{pr} \times \mathrm{pr}$) matrix.
Similarly, $Q=\left[C^{\dagger} C^{-}\right]$is a nonsingular ($\mathrm{mr} \times \mathrm{mr}$) matrix.
Furthermore, by hypothesis, the rows of B^{-}are orthogonal to the columns of $S_{r}^{(0)}$, and the columns of C^{-}are orthogonal to the rows of $S_{r}^{(0)}$. Therefore

$$
\begin{equation*}
B_{B}^{-} S_{r}^{(0)}=0 \text { and } S_{r}^{(0)} C^{-}=0 \tag{4.77}
\end{equation*}
$$

Also, $B^{\dagger} S_{r}^{(0)} C^{\dagger}=\left[\left(B^{8} B\right)^{-1} B^{p}\right](B C)\left[C^{\prime}\left(C C^{9}\right)^{-1}\right]=I_{n}$.

Now

$$
\begin{aligned}
& \operatorname{PS}_{r}^{(0)} Q=\left[\begin{array}{c}
B^{\dagger} \\
B^{-}
\end{array}\right] S_{r}^{(0)} \\
& {\left[\begin{array}{cc}
\left.C^{\dagger} C^{-}\right]
\end{array}\right.} \\
&=\left[\begin{array}{ll}
B^{\dagger} S_{r}^{(0)} C^{\dagger} & B^{\dagger} S_{r}^{(0)} C^{-} \\
B^{-} S_{r}^{(0)} C^{\dagger} & B^{-} S_{r}^{(0)} C^{-}
\end{array}\right]
\end{aligned}
$$

Substituting from (4.77) and (4.78), we see that

$$
{ }_{P S}^{(0)} Q=\left[\begin{array}{ll}
I_{n} & 0 \tag{4.79}\\
0 & 0
\end{array}\right]
$$

Thus, the pair (P, Q) satisfies the hypotheses of Theorem 4.4. In Ho's algorithm (4.13), P and Q occur always in combination with the factors $E_{n, p r}$ and $E_{n, m r}^{\prime}$. By (4.73),

$$
\begin{align*}
& E_{n, p r} P=E_{n, p r}\left[\begin{array}{c}
\left.B^{\dagger}\right]=B^{\dagger} \\
B^{-}
\end{array}\right] \tag{4.80}\\
& Q E_{n, m r}^{\prime}=\left[C^{\dagger} C^{-}\right] E_{n, m r}^{\prime}=C^{\dagger} .
\end{align*}
$$

On substituting the factors (4.80) into Ho's algorithm (4.13), the identity of the resulting equations with those of (4.45) is immediately evident.

The proof is complete.
V. HANKEL DETERMINANTS OF REALIZABTE SCALAR SEQUENCES.

Using the tools of the preceding chapters, certain theoretical properties of realizable sequences and of their realizations can be easily proved. The work reported in this chapter was to provide a theoretical basis for linking the properties of realizations of a given sequence, with the properties of Pade approximants of the formal power series generated by the same sequence.

Theorem 5.4 and its corollaries show some interesting properties of symmetric matrices. Theorem 5.8 gives four different mathematical equivalents of the statement that a scalar sequence has a minimal realization of a given dimension. The theorems mentioned above are generalizations or sharper forms of theorems found in the referenced Iiterature. In view of the great wealth of literature which is concerned with the same or related problems, it is unlikely that the results presented in this chapter are genuinely new, although the proofs are our own (except where references are given).

Proposition 5.1.

Hypotheses:

1. $y=\left(Y_{0}, Y_{1}, \ldots\right)$ is a sequence of real scalars having a realization; i.e. y satisfies a linear recursion (4.2) for some positive integer r 。
2. For each nonnegative integer $k, \rho=\rho_{r}^{(k)}$ is the smallest integer such that either the first $\rho+1$ columns of $S S_{r}^{(k)}$ are linearly dependent or $\rho=r$.

Conclusion:

$$
\begin{equation*}
\Delta_{\rho}^{(k)} \neq 0 \tag{5.1}
\end{equation*}
$$

Proof. Let k be a fixed nonnegative integer.
By (4.2), the $(r+1)$ th column of $S_{n}^{(k)}, n>r$, is a linear combination of the first r columns.

By hypothesis 2, we have $\Delta_{r}^{(k)}=0 \Longrightarrow \rho<r$, so $\rho=r \Rightarrow \Delta_{r}^{(k)} \neq 0$. Therefore, the conclusion is trivial if $\rho=r$.

The result is also trivial for $\rho=0$, since by definition, $\Delta_{0}^{(k)}=I \neq 0$.

Now suppose $\rho=r-d, \quad 0<d<r$. By hypothesis 2,

$$
\begin{equation*}
\Delta_{\rho+1}^{(k)}=\Delta_{\rho+1}^{(k+1)}=\cdots=\Delta_{\rho+1}^{(k+d-1)}=0 \tag{5.2}
\end{equation*}
$$

while at least one of the following determinants is nonzero:

$$
\begin{equation*}
\Delta_{\rho}^{(k)}, \Delta_{\rho}^{(k+1)}, \ldots, \Delta_{\rho}^{(k+d)} \tag{5.3}
\end{equation*}
$$

By Lemma 3.1, for $0 \leq c \leq d$,

$$
\begin{equation*}
\left[\Delta_{\rho}^{(k+c)}\right]^{2}=\Delta_{\rho}^{(k+c-1)} \Delta_{\rho}^{(k+c+1)}-\Delta_{\rho+1}^{(k+c-1)} \Delta_{\rho-1}^{(k+c+1)} \tag{5.4}
\end{equation*}
$$

Suppose $\Delta_{\rho}^{(\mathbb{K})}=0$. Then successive substitution of $c=1,2, \ldots, d$ in equation (5.4) and use of (5.2) gives

$$
\Delta_{\rho}^{(k+c)}=0 \quad(c=1,2, \ldots, d)
$$

Therefore all the determinants (5.3) vanish, contrary to the implication of hypothesis 2. We conclude that $\Delta_{\rho}^{(k)} \neq 0$.

Theorem 5.2.

Hypotheses:

1. $y=\left(y_{0}, y_{1}, \ldots\right)$ is a sequence of real scalars having a realization; i.e., y satisfies a linear recursion (4.2) for some positive integer r.
2. For each nonnegative integer $k, \rho=\rho_{r}^{(k)}$ is the smallest integer such that either the first $\rho+1$ columns of $S_{r}^{(k)}$ are linearly dependent or $\rho=r$.

Conclusion:

$$
\operatorname{rank} S_{r}^{(k)}=\rho_{r}^{(k)}, \quad \text { all } k \geq 0
$$

Proof: We will carry out the proof for $k=0$. For other values of k, the subscripts of the y-element in each matrix $S_{n}^{(k)}$ are increased by the value of k, but the method of proof remains the same.

By hypothesis, the first $\rho=\rho_{r}^{(0)}$ columns of $S_{r}^{(0)}$ are linearly independent, and thus span a ρ-dimensional subspace, say K, of the r-dimensional Euclidean vector space R^{r}. Also by hypothesis, the $(\rho+1)$ th column of $S_{r}^{(0)}$ is in the subspace K. We will show by mathematical induction that all the columns of $S_{r}^{(0)}$ lie in the subspace K. Then the column rank of $S_{r}^{(0)}$ equals the dimension ρ of K, and the conclusion of the theorem follows.

Column NO.

Table 5.1: Indices of elements in $S_{r}^{(0)}$ and in the row bordering $S_{r}^{(0)}$

Induction Hypothesis: Fix $j, 0<j$; suppose the $j t h$ column in $S_{r}^{(O)}$ is in K (i.e. the first ρ columns of $S_{r}^{(0)}$ and the jth column are linearly dependent).

Conclusion: The $(j+1)$ th column in $S_{r}^{(O)}$ is also in K.
Proof:
The result is trivial for $0<j \leq \rho$.
Suppose $j>\rho$. By realizability of the given sequence y, the $(r+1)$ th row of y-elements bordering $S_{r}^{(0)}$ is a linear combination of the r rows of $S_{r}^{(O)}$. In other words, there exist r numbers $\beta_{i}(i=1, \ldots, r)$ such that

$$
\left[\begin{array}{c}
y_{r} \tag{5.5}\\
y_{r+1} \\
\vdots \\
\cdot \\
y_{r+j}
\end{array}\right]^{\prime}=\underset{i=1}{r} \quad \beta_{i}\left[\begin{array}{c}
y_{i-1} \\
y_{i} \\
\vdots \\
\vdots \\
y_{i+j-1}
\end{array}\right]^{\prime}
$$

where the prime (') denotes the transpose.

By the induction hypothesis, the jth column is in K, so that there exist (unique) numbers $\alpha_{k}(k=1,2, \ldots, \rho)$ such that

$$
\left[\begin{array}{c}
y_{j-1} \tag{5.6}\\
y_{j} \\
\vdots \\
\vdots \\
y_{r+j-2}
\end{array}\right]=\underset{k=1}{\rho} \quad \alpha_{k}\left[\begin{array}{c}
y_{k-1} \\
y_{k} \\
\vdots \\
y_{r+k-2}
\end{array}\right]
$$

Now

$$
\begin{align*}
y_{r+j-1} & =\sum_{i=1}^{r} \beta_{i} y_{k+j-2} \\
& =\sum_{i=1}^{r} \beta_{i} \sum_{k=1}^{\rho} \alpha_{k} y_{i+k-2} \\
& =\sum_{k=1}^{\rho} \alpha_{k} \sum_{i=1}^{r} \beta_{i} y_{i+k-2} \tag{5.7}\\
& =\sum_{k=1}^{\rho} \alpha_{k} y_{r+k-1}
\end{align*}
$$

(5.7), together with (5.6), gives the desired result:

$$
\left[\begin{array}{c}
y_{j} \tag{5.8}\\
y_{j+1} \\
\vdots \\
y_{r+j-1}
\end{array}\right]=\underset{k=1}{\rho} \alpha_{k}\left[\begin{array}{c}
y_{k} \\
y_{k+1} \\
\vdots \\
\vdots \\
y_{n+k-1}
\end{array}\right]
$$

i.e. the $(j+1)$ th column of $S_{r}^{(0)}$ is in the subspace K spanned by the first ρ columns.

Since the induction hypothesis is true for $j=\rho+1$ (definition of ρ), it holds also for $j=\rho+2, \rho+3, \ldots$.

Lemma 5.3 .
Hypotheses:

1. $y=\left(y_{0}, y_{1}, \ldots\right)$ is a sequence of real scalars having a realization; i.e. y satisfies a linear recursion (4.2) for some positive integer r 。
2. For each nonnegative integer $k, \rho=\rho_{r}^{(k)}$ is the smallest integer such that either the first $\rho+1$ columns of $S_{r}^{(k)}$ are linearly dependent or $\rho=r$.

Conclusion: rank $S_{n}^{(k)}=\rho_{r}^{(k)}$, for all $n \geq \rho_{r}^{(k)}, k \geq 0$.
Proof:
For $n=\rho_{r}^{(k)}$, the result follows from Proposition 5.1.
For $n \geq r$, we merely replace r by n in the linear recurrence relation for y. The new coefficients thus arising in the recurrence relation are set equal to zero. Then Theorem 5.2 gives the desired result.

For $\rho_{r}^{(k)}<n<r$, the column space of $S_{n}^{(k)}$ has dimension at least equal to $\rho_{r}^{(k)}$, by Proposition 5.1. But its dimension cannot be greater than the dimensionality of the column space of $S_{r}(k)$, which is $\rho_{r}^{(k)}$, by Theorem 5.2. Therefore, we again have the desired result, and the proof is complete.

Remarks: The above lemma generalizes a theorem by Ho [6, p. 28, Theorem 2.12], who proved it for the special case $k=0$. Ho ${ }^{i}$ s theorem
can be strengthened in another direction, as shown in the following theorem and its corollary.

Theorem 5.4.

Hypotheses:

1. $y=\left(y_{0}, y_{1}, \ldots\right)$ is a sequence of real scalars having a realization; ie. y satisfies a linear recursion (4.2) for some positive integer r.
2. For each nonnegative integer $k, \rho_{r}^{(k)}$ is the smallest integer such that either the first $1+\rho_{r}^{(k)}$ columns of $S_{r}^{(k)}$ are linearly dependent or $\rho_{r}^{(k)}=r$.
3. $\operatorname{rank} S_{r}^{(0)}=\rho$.
4. The $(\rho+1)$ th column of $S_{n}^{(0)}, n>\rho$, is the (unique) linear combination

$$
\begin{gather*}
{\left[\begin{array}{c}
y_{\rho} \\
y_{\rho+1} \\
\vdots \\
\vdots \\
y_{\rho+n-1}
\end{array}\right]=\sum_{i=1} \quad \alpha_{i}\left[\begin{array}{c}
y_{\rho-i} \\
y_{\rho-i+1} \\
\vdots \\
\vdots \\
y_{\rho-i+n-1}
\end{array}\right]} \tag{5.9}\\
\sigma=\max \left\{0, i: \alpha_{i} \neq 0\right\} . \tag{5.10}
\end{gather*}
$$

Conclusion:

$$
\operatorname{rank} S_{n}^{(k)}=\max \{\rho-k, \sigma\}, \quad a l l k \geq 0, n \geq \rho
$$

The significance of Hypothesis 4 is that it uniquely specifies σ. To show that the hypotheses are consistent, fix $n>\rho$. Independent columns in $S_{\rho}^{(0)}$ are also independent in $S_{n}^{(0)}$. By Lemma 5.3 , rank $S_{n}^{(0)}=p$. Therefore the $(\rho+1)$ th column of $S_{n}^{(O)}$ must be a unique linear combination of the first ρ columns; that is, there exist unique numbers $\alpha_{i}(i=1,2, \ldots, \rho)$ such that

$$
\left[\begin{array}{c}
y_{\rho} \tag{5.11}\\
y_{\rho+1} \\
\cdot \\
\cdot \\
y_{\rho+n-1}
\end{array}\right]=\sum_{i=1} \quad \alpha_{i}\left[\begin{array}{c}
y_{\rho-i} \\
y_{\rho-i+1} \\
\cdot \\
\vdots \\
y_{\rho-i+n-1}
\end{array}\right]
$$

Some (possibly all) of the α_{i} may be zero. Let $\sigma=0$ if all of the α_{i} are zero; otherwise let $\sigma=\max \left\{i: \alpha_{i} \neq 0\right\}$. Then the sum in (5.11) can be written as in (5.9), without loss of generality.

Now n in the preceding paragraph was an arbitrary integer greater than p. Therefore (5.9) implies the linear recursion relation

$$
\begin{equation*}
y_{\rho+j}=\sum_{i=1}^{\sigma} \alpha_{i} y_{\rho-i+j}, \quad \text { for } \quad j \geq 0 \tag{5.12}
\end{equation*}
$$

Let K_{n} denote the column space of $S_{n}^{(0)}$. Then (5.12) implies that the columns of $S_{n}^{(k)}$ all lie in K_{n}, for every $k \geq 0, n \geq \rho$. Moreover, for every $n \geq \rho$, we have from 5.12.

$$
\begin{align*}
& \operatorname{rank} S_{n}^{(k)}=\rho-k, \quad k=0,1, \ldots, \rho-\sigma \tag{5.13}\\
& \operatorname{rank} S_{n}^{(k)}=\sigma, \quad k>\rho-\sigma
\end{align*}
$$

The theorem is proved.

Corollary 5.5 (Generalization of B.L. Ho's Theorem [6, p. 28])
Hypotheses: Same as in Theorem 5.4.
Conclusion: Among all possible Hankel matrices $\mathrm{S}_{\mathrm{n}}^{(\mathrm{k})}$ constructed from the sequence y, the largest nonsingular ones are
(i) $S_{\rho}^{(0)}$, if $0 \leq \sigma<\rho ;$
(ii) $S_{\rho}^{(k)}, k \geq 0$, if $\sigma=\rho$.

Corollary 5.6.
Hypotheses: Same as in Theorem 5.4.
Conclusion: The power series

$$
\begin{equation*}
f(z)=\sum_{i=0}^{\infty} y_{i} z^{i} \tag{5.14}
\end{equation*}
$$

is a rational function with denominator of degree not more than ρ.
Furthermore, if $\sigma=\rho$, then

$$
f(z)=\frac{b_{0}+b_{1} z+\cdots+b_{\rho-1} z^{\rho-1}}{c_{0}+c_{1} z+\ldots+c_{\rho} z^{\rho}}, \quad c_{0} \neq 0, c_{\rho} \neq 0
$$

Proof:
(i) Suppose $0 \leq \sigma<\rho$. Then, by Corollary 5.5,

$$
\Delta_{\rho}^{(0)} \neq 0, \Delta_{\rho}^{(k)}=0 \text { for } k>0
$$

Substitute $q=\rho-1$ in Dienes version of Lemma 3.2. Then $f(z)$ is seen to be a rational function with denominator of degree at most $\rho-1$.
(ii) Suppose $\sigma=$. Then, by Corollary 5.5, $\Delta_{\rho}^{(k)} \neq 0, \Delta_{\rho+1}^{(k)}=0$, for $k \geq 0$. Substitute $p=\rho-1, q=\rho$ in the Bieberbach version of Lemma 3.2. Then the desired result follows immediately from the lemma.

Lemma 5.7. [27, pp. 302-305][28, pp. 1010, 1011]
Hypothesis:
F is a constant $\mathrm{n} \times \mathrm{n}$ matrix.
Conclusions:

1. $\quad(s I-F)^{-I}=\frac{B(s)}{d(s)}$
where

$$
d(s)=\operatorname{det}(s I-F)=s^{n}+d_{1} s^{n-1}+\ldots+d_{n}
$$

and

$$
\begin{equation*}
B(s)=B_{0} s^{n-1}+B_{1} s^{n-2}+\ldots+B_{n-1} . \tag{5.16}
\end{equation*}
$$

2. The coefficients d_{i} of the polynomial $d(s)$ and the matrix coefficients B_{j} of the matrix polynomial $B(s)$ are given by the recursion formulas

$$
\begin{align*}
& d_{k}=-\frac{1}{k} t_{r}\left(B_{k-1} F\right), \text { for } k=1,2, \ldots, n ; \\
& B_{k}=B_{k-1} F+d_{k} I, \text { for } k=1,2, \ldots, n-1 ; \tag{5.17}\\
& B_{0}=I .
\end{align*}
$$

3.

$$
\begin{equation*}
B_{n-1} F+d_{n} I=0 \tag{5.18}
\end{equation*}
$$

For a proof of the lemma, see Desoer [27], pp. 302-305.

Comment:

The matrix rational function $\Phi(s)=(s I-F)^{-1}$ is called the resolvent of F. [29, p. 52] $\Phi(s)$ is also the Laplace transform of the state transition matrix, $\Phi(t)=\exp (F t)$.

It may happen that all the n^{2} elements of the matrix polynomial $B(s)$ have one or more factors in common with $d(s)$. Cancellation of all
such common factors leads to a simplified expression, namely,

$$
\Phi(s)=\frac{P(s)}{m(s)}
$$

where the polynomials $m(s)$ and $P(s)$ are the result of these cancellations. Then $m(s)$ is the minimal polynomial of the matrix F, i.e. the (monic) polynomial of least degree such that $m(F)=0$; also, every eigenvalue of F is a pole of $(s I-F)^{-1}$, i.e. a zero of $m(s)$.

For the purpose of computing $\bar{\Phi}(s),(5.17)$ is a more efficient procedure than Cramer's rule, the latter requiring nearly ($n-1$): times as many multiplications as (5.17). [27, pp. 302, 306]

Theorem 5.8.
Hypothesis:
$y=\left(y_{0}, y_{i}, \ldots\right)$ is a sequence of real scalars.
Conclusion:
The following five statements are equivalent:
(i) y has a minimal realization of dimension ρ.
(ii) Y satisfies a linear recursion of the form

$$
\begin{equation*}
y_{\rho+j}=\sum_{i=1}^{\rho} \alpha_{i} y_{\rho-i+j}, \quad j=0, \quad 1, \ldots \tag{5.19}
\end{equation*}
$$

where ρ is the smallest positive integer for which (5.19) is true.
(iii) The function $f(z)=\sum_{k=0}^{\infty} y_{k} z^{k}$ is rational of the form

$$
f(z)=\frac{b_{0}+b_{1} z+\ldots+b_{\rho-1} z^{\rho-1}}{c_{0}+c_{1} z+\ldots+c_{\rho} z^{\rho}}, \quad c_{0} \neq 0, \quad c_{\rho} \neq 0
$$

(iv) $\Delta_{p+1}^{(k)}=0, \quad k=0,1, \ldots$

For each $\mathbb{N} \geq 0$, there is $n=n(\mathbb{N}) \geq \mathbb{N}$ such that

$$
\begin{equation*}
\Delta_{\rho}^{(n)} \neq 0 \tag{5.21}
\end{equation*}
$$

(v) There exists a positive integer ρ such that

$$
\begin{equation*}
\rho=\min \left\{r: \quad \operatorname{rank} \mathrm{S}_{\mathrm{n}}^{(0)}=r, \text { all } n \geq r\right\} \tag{5.22}
\end{equation*}
$$

Proof:
The proof will be accomplished in two cycles:
First cycle: (ii) \rightarrow (i) \rightarrow (iii) \Rightarrow (iv); \Longrightarrow (ii)
Second cycle: $(i) \Longrightarrow$ (ii) \Rightarrow (v) \Longrightarrow (i).
(ii) (i).

By Lemma 4.2, $S_{\rho}^{(i)}=M^{k} S_{\rho}^{(0)} \quad(i=0,1,2, \ldots)$.

The first element in $S_{\rho}^{(i)}$ is y_{i}. Therefore

$$
\begin{equation*}
y_{i}=E_{1} S_{\rho}^{(i)} E_{l}^{i}=E_{1} M_{S}^{i} S_{\rho}^{(0)} E_{1}^{i} \tag{5.23}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{F} & =M \\
\mathrm{G} & =S_{\rho}(0)_{E_{1}^{8}} \tag{5.24}\\
H & =E_{1}
\end{align*}
$$

is a realization of y, of dimension p.

By Lemma 4.3, the dimension of any minimal realization of y is equal to the rank of $S_{\rho}^{(0)}$.

It remains to show that rank $S_{\rho}^{(0)}=\rho$, i.e. $\Delta_{\rho}^{(0)} \neq 0$. Since ρ is the smallest integer for which (5.19) is true, then for each integer $\sigma, I \leq \sigma \leq \rho$, there is an integer $r(\sigma)$ such that the σ th column of $S_{r}^{(0)}(\sigma)$ is linearly independent of the preceding $\sigma-1$ columns. Let $r=\max \{r(\sigma), \rho\}$. Then ρ is the smallest integer such that the first $1 \leq \sigma \leq \rho$
$\rho+I$ columns of $S_{r}^{(0)}$ are linearly dependent or $\rho=r$. By Proposition 5.1, we have $\Delta_{\rho}^{(0)} \neq 0$. This completes the proof of (ii) \Longrightarrow (i).

(i) (iii).

Let (F, G, H) be a minimal realization of \mathscr{H}. The transfer
function of the $\operatorname{system}(F, G, H)$ is

$$
\begin{equation*}
Z(s)=H(s I-F)^{-I_{G}} \tag{5.25}
\end{equation*}
$$

where I is the ρ-dimensional unit matrix. We can write

$$
Z(s)=\frac{1}{S} H\left(I-\frac{1}{S} F\right)^{-1} I_{G}
$$

and, for sufficiently large s, express $\left(I-\frac{l}{S} F\right)^{-1}$ as a geometric series. The result is

$$
\begin{equation*}
Z(s)=\frac{1}{s} H \sum_{k=0}^{\infty}\left(\frac{1}{s} F\right)^{k}{ }_{G}=\sum_{k=0}^{\infty} y_{k} s^{-k-1} \tag{5.26}
\end{equation*}
$$

It is convenient to consider functions that are regular at 0 rather than at infinity. We therefore put

$$
\begin{equation*}
\mathrm{z}=\frac{\mathrm{I}}{\mathrm{~s}}, \quad \mathrm{sZ}(\mathrm{~s})=\mathrm{f}(\mathrm{z})=\sum_{\mathrm{k}=0}^{\infty} \mathrm{y}_{\mathrm{k}} \mathrm{z}^{\mathrm{k}} \tag{5.27}
\end{equation*}
$$

By Lemma 5.7, z is a rational function of s, of denominator degree $q \leq \rho$ and numerator degree $p=q-1$. It follows that f is a rational function of z, with numerator and denominator degrees the same as Z.

To show that $q=\rho$, we use the following two facts:
(a) (F, G, H) is the minimal realization of a scalar sequence; therefore F is a nonderogatory matrix, i.e. the minimal and the characteristic polynomials of F coincide. [6, p. 47, Corollary 3.7]
(b) Suppose all factors common to the numerator and denominator of $Z(s)$ have been cancelled. Then the denominator is the minimal polynomial of the matrix F. [27, p. 306]

The characteristic polynomial of $F, \Delta(s)=\operatorname{det}[F-s I]$, is of degree ρ. By (a), F is nonderogatory; so, the minimal polynomial is of the same degree ρ. Therefore, (b) implies $q=\rho$.

By Lemma 5.7, equation (5.18), the denominator of f has a nonzero constant term. (Otherwise s would be a cancellable factor.) Thus, f is a rational function,

$$
\begin{align*}
f(z) & =\frac{b_{0}+b_{1} z+\cdots+b_{\rho-1} z^{0-1}}{c_{0}+c_{1} z+\ldots+c_{\rho} z^{\rho}}, \quad c_{0} \neq 0, c_{\rho} \neq 0 . \tag{5.28}\\
\text { (iii) } & =\text { (iv) }
\end{align*}
$$

Invoking lemma 3.2(i), we find that (5.28) implies

$$
\begin{equation*}
\Delta_{p+1}^{(k)}=0 \text { for all } k \geq 0 \tag{5.20}
\end{equation*}
$$

Again, by Lemma 3.2(ii), ρ is the least value of q such that $\sum_{k=0}^{\infty} \Delta_{q+1}^{(k)} z^{k}$ is a polynomial. Therefore, given any nonnegative integer N, there is $n=n(N) \geq N$ such that

$$
\begin{equation*}
\Delta_{\rho}^{(n)} \neq 0 . \tag{5.21}
\end{equation*}
$$

$$
(i v) \geq(i i)
$$

Condition (5.20) implies that, for all $n \geq \rho+1$, the first $\rho+1$ columns of $S_{n}^{(0)}$ are linearly dependent. Condition (5.21), however, implies that for sufficiently large n, the first ρ columns of $S_{n}^{(0)}$ are linearly independent. Therefore, $q=\rho$ is the smallest integer such that the first $q+1$ columns of $S_{n}^{(0)}$ are linearly dependent for all $n \geq 0$. This, in turn, implies that $q=\rho$ is the smallest integer such that for all $n \geq 0$, the $(q+1)$ th column of $S_{n}^{(0)}$ is a linear combination of the preceding q columns. The statement (ii) is an immediate consequence.

$$
(i) \Rightarrow(i i) \Rightarrow(v) \Rightarrow \text { (i) } \cdot[6 ; p \text {. 25] }
$$

If a minimal realization for y exists and has dimension ρ, then (5.19) is true. This implies rank $S_{n}^{(0)}=\operatorname{rank} S_{\rho}^{(0)}=\rho, \quad$ all $n \geq \rho$. Since rank $S_{\rho-1}^{(0)} \leq \rho-1$, we have shown that (ii) \Rightarrow (v).

Conversely, suppose (5.22) is true for some positive integer ρ. We appeal to the following lemma proved in Ho^{\prime} 's dissertation [6; p. 20, Lemma 2.7]:
"Suppose that $\operatorname{rank} \mathrm{S}_{\mathrm{r}}^{(0)}=\operatorname{rank} \mathrm{S}_{r+1}^{(0)}$ for some integer r. Applying the algorithm (4.13) to the matrix $S_{r}^{(0)}$ produces (F, G, H) such that the fundamental relation $H F^{k}{ }_{G}=Y_{k}$ is satisfied for every element of $S_{r+1}^{(0)}$, that is, for $k=0,1,2, \ldots, 2 r . "$

Now (5.22) implies rank $S_{n}^{(0)}=\rho$, all $n \geq \rho$. Therefore applying the algorithm (4.13) to the matrix $S_{\rho}^{(0)}$ produces (F, G, H) such that $\mathrm{HF}^{\mathrm{k}} \mathrm{G}_{\mathrm{G}}=\mathrm{X}_{\mathrm{k}}, \mathrm{k}=0,1,2, \ldots$ Therefore y has a realization (F, G, H) and the realization is minimal of dimension ρ, by Theorem 4.4. The proof of the theorem is complete.
VI. PARTIAL REALIZATION OF SCALAR SEQUENCES.

The last theorem of Chapter 5 gave four distinct sets of conditions, each set being necessary and sufficient for a given scalar sequence to be realizable in the strict sense used by B. L. Ho. We now turn our attention to the following two problem areas: One is the approximate realization of sequences which do not meet the realizability criteria of Theorem 5.8. The other problem concerns the partial, approximate realization of sequences which are known to be realizable in the strict sense.

The two problems can be treated as one, mathematically. This becomes evident from the following definitions.
6.1 Definitions.

Suppose $y=\left(y_{0}, y_{1}, \ldots\right)$ is a sequence of real numbers.
The sequence y is called p-realizable if it is realizable and
if ρ is the smallest positive integer for which the recursion formula

$$
\begin{equation*}
y_{\rho+j}=\sum_{i=1}^{\rho} \alpha_{i} y_{\rho-i+j}, \quad j=0,1, \ldots \tag{6.1}
\end{equation*}
$$

is true. If y is not realizable, we set $\rho=\infty$.

Suppose r is a positive integer, and $\left(F_{r}, G_{r}, H_{r}\right)$ is an ordered triple of matrices computed from Ho's minimal realization algorithm using the matrices $S_{r}^{(0)}$ and $S_{r}^{(1)}$ associated with y. Then $\left(F_{r}, G_{r}, H_{r}\right)$ is called a linear model of order r for y.

For the sake of clarity, the phrase realizable in the strict sense will be used if a sequence y is ρ-realizable, $\rho<\infty$.

A linear model of order r is called a partial realization (of order r) for y if y is ρ-realizable, $\rho>x$, or if y is not realizable in the strict sense.

Remarks.

If \mathscr{y} is ρ-realizable, $\rho<\infty$, then any linear model of order ρ (or greater than ρ) is a minimal realization, while any linear model of order less than ρ is a partial realization. This follows immediately from the definitions and the theorems of Chapter 4, especially Theorem 4.9 and its corollary.

Suppose $\left(F_{r}, G_{r}, H_{r}\right)$ is a partial realization for Y, and that the elements x_{k} of the sequence $\mathscr{X}=\left(x_{0}, x_{1}, \ldots\right)$ are given by

$$
\begin{equation*}
x_{k}=H_{r} F_{r} k_{G_{r}}, \quad k=0,1, \ldots \tag{6.2}
\end{equation*}
$$

The sequence \mathscr{X} is uniquely determined by \mathscr{Y}, r, and by the choice of the submatrices B^{\dagger} and C^{\dagger} of P and Q, respectively. (See conclusion 2 of Proposition 4.11.) The map $\mathscr{Y} \rightarrow \mathscr{X}$ and its approximating properties thus may possibly depend on the particular choice of the partial realization. The related questions can be usefully studied as projection problems. [37]

6.2 Elementary Properties of Partial Realizations.

Proposition 6.1.
Hypotheses:

1. y is a ρ-realizable sequence, $\rho<\infty$.
2. (F_{r}, G_{r}, H_{r}) is a linear model of order r for Y.

Conclusion:

1. ($\left.F_{r}, G_{r}, H_{r}\right)$ is a minimal realization for y if, and only if, $r \geq \rho$.
2. $\operatorname{dim} F_{r}=\rho$ if $r \geq \rho ; \operatorname{dim} F_{r} \leq r \quad$ if $r<\rho$.

Proof:

Since y is ρ-realizable, $\rho<\infty$, a linear recursion of the form (6.1) holds for y, with upper limit ρ. By Proposition 4.1, y has a realization.

By definition, ρ is the smallest integer for which the recursion (6.1) is true. Therefore, Theorem 5.8 implies that every minimal realization for y has dimension p. By Theorem 4.4, $\operatorname{dim} F_{r}=\operatorname{rank} S_{r}^{(0)}$.
(i) Suppose $r \geq \rho$.

Then, rank $S_{r}^{(0)}=\rho$ [6; p. 25, Corollary 2.9], and, by Theorem 4.4, $\left(F_{r}, G_{r}, H_{r}\right)$ is a minimal realization for $y, \operatorname{dim} F_{r}=\rho$.
(ii) Suppose $r<\rho$.

Clearly, rank $S_{r}^{(0)} \leq r$, since the elements of y are scalars. But $\operatorname{dim} F_{r}=\operatorname{rank} S_{r}^{(O)}$, by Theorem 4.4. Therefore, $\operatorname{dim} F_{r} \leq r<\rho$. Every minimal realization for y has dimension ρ. Therefore $\left(F_{r}, G_{r}, H_{r}\right)$ is not a minimal realization.

The proof is complete.

Corollary 6.2.
Partial realization for a given scalar sequence y are not realizations in the strict sense.

Theorem 6.3.

Hypotheses:

1. $y=\left(y_{0}, y_{1}, \ldots\right)$. is a sequence of real numbers.
2. r is a positive integer such that $\Delta_{r}^{(0)} \neq 0$.
3. (F, G, H) is a linear model of order r for $~ U$.

Conclusion:
$H F^{k}=y_{k}, k=0,1, \ldots, 2 r-1$.
Proof:
By hypothesis 2, $S=S_{r}^{(0)}$ has an inverse S^{-1}. Define the ($r \times 1$) vector α by

$$
\alpha=\left[\begin{array}{c}
\alpha_{r} \tag{6.3}\\
\alpha_{r-1} \\
\cdot \\
\cdot \\
\alpha_{1}
\end{array}\right]=s^{-1}\left[\begin{array}{c}
y_{r} \\
y_{r+1} \\
\cdot \\
\vdots \\
y_{2 r-1}
\end{array}\right]
$$

Then $S_{r}^{(0)} \alpha=\left[\begin{array}{c}y_{r} \\ y_{r+1} \\ \cdot \\ \cdot \\ y_{2 r-1}\end{array}\right]$, which means that

$$
\begin{equation*}
\sum_{i=1}^{r} \alpha_{i} y_{k-i}=y_{k}, \quad k=r, r+1, \ldots, 2 r-1 \tag{6.4}
\end{equation*}
$$

Define a sequence $\mathscr{X}=\left(x_{0}, x_{1}, \ldots\right)$ by

$$
\begin{align*}
& x_{k}=y_{k}, \quad k=0,1, \ldots, r-1 \tag{6.5}\\
& x_{k}=\sum_{i=1}^{r} \alpha_{i} x_{k=i}, \quad k=r, r+1, \ldots \tag{6.6}
\end{align*}
$$

We observe:
(i) The sequence \mathscr{x} satisfies a linear recurrence relation and therefore has a realization, by Proposition 4.1.
(ii) The first $2 r$ terms of the X-sequence are the same as the first $2 r$ terms of the $y_{\text {-sequence }}$
(iii) The matrices $S_{r}^{(0)}$ and $S_{r}^{(I)}$ are completely determined by the first $2 r$ terms of the y-sequence.
(iv) The coefficients $\left\{\alpha_{i}\right\}$ of the vector α are unique because S is nonsingular.

By Theorem 4.4, (F, G, H) determined from the first $2 r$ terms of the X-sequence is a minimal realization for the X-sequence. Because of hypothesis 2, dim $F=r$. Now

$$
\begin{equation*}
H F^{k} G=x_{k}, \text { for a.ll } k \geq 0 \tag{6.7}
\end{equation*}
$$

But, as observed in (ii), $x_{k}=y_{k}, k=0,1, \ldots, 2 r-1$. Therefore

$$
\begin{equation*}
H F^{k_{G}}=y_{k}, \quad \text { for } \quad k=0,1, \ldots, 2 r-1 \tag{6.8}
\end{equation*}
$$

where (F, G, H) are determined by $S_{r}^{(0)}$ and $S_{r}^{(I)}$.
The proof of the theorem is complete.

Corollary 6.4. (Note: This is a special case of B.L. Ho's Lemma

$$
2.7[6, \text { p. 20] and }[38 \text {, Theorem 2].) }
$$

Hypotheses:

1. $y=\left(y_{0}, y_{1}, \ldots\right)$ is a sequence of real numbers.
2. r is a positive integer such that $\Delta_{r}^{(0)} \neq 0, \Delta_{r+1}^{(0)}=0$.
3. (F, G, H) is a linear model of order r for \mathscr{Y}.

Conclusion:

$$
H F^{k_{G}}=y_{k}, \quad k=0,1, \ldots, 2 r
$$

Proof:
By Theorem 6.3, $H F^{k}{ }_{G}=y_{k}, k=0,1, \ldots, 2 r-1$.
$\Delta_{r}^{(0)} \neq 0$ implies the first r columns of $S_{r+1}^{(0)}$ are linearly independent. Let their span be \mathcal{K}_{0} Then $\Delta_{r+1}^{(0)}=0$ implies that the last column of $S_{r+1}^{(0)}$ is in K. Therefore there exist unique coefficients $\alpha_{i}, i=1,2, \ldots, r$, such that

$$
\begin{equation*}
y_{r+j}=\sum_{i=1}^{r} \alpha_{i} y_{r+j-i}, \quad j=0,1, \ldots, r \tag{6.9}
\end{equation*}
$$

The first r equations of the set (6.9) are identical with (6.4). The coefficients $\left\{\alpha_{i}\right\}$ are uniquely determined by (6.12), as was observed in comment (iv) of Theorem 6.3. Therefore the $\left\{\alpha_{i}\right\} \quad$ in (6.4) and (6.9) must be the same.

Proceeding as in Theorem 6.3, we get a realizable sequence $\mathscr{X}=\left(\mathrm{x}_{\mathrm{O}}, \mathrm{x}_{1}, \ldots\right)$ and a triple of matrices $(\mathrm{F}, \mathrm{G}, \mathrm{H})$ such that

$$
\begin{align*}
\mathrm{HF}^{\mathrm{k}_{\mathrm{G}}} & =\mathrm{x}_{\mathrm{k}}, \quad \text { all } \mathrm{k} \geq 0 \tag{6.10}\\
\mathrm{x}_{\mathrm{k}} & =\sum_{i=1}^{r} \alpha_{i} \mathrm{x}_{\mathrm{k}-i}, \quad \mathrm{k}=r, \quad r+1, \ldots \tag{6.11}
\end{align*}
$$

$$
x_{k}=y_{k^{2}} \quad k=0,1, \ldots, r-1
$$

Now (6.8) to (6.12) imply

$$
\begin{equation*}
\mathrm{HF}^{k}{ }_{G}=x_{k}=y_{k}, \quad \text { for } k=0,1, \ldots, 2 r \text {. } \tag{6.13}
\end{equation*}
$$

The corollary is proved.

6.3 Approximating Properties of Partial Realizations.

Theorem 6.5.
Hypotheses:

1. $y=\left(y_{0}, y_{1}, \ldots\right)$ is a sequence of real numbers.
2. r is a positive integer such that $\Delta_{r}^{(0)} \neq 0$.
3. (F, G, H) is a linear model of order r for $~ y$.

Conclusion:

The rational function

$$
\begin{equation*}
R(z)=H(I-z F)^{-I_{G}} \tag{6.14}
\end{equation*}
$$

is the ($r, r-1$) Padé approximant for the power series

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} y_{k} z^{k} \tag{6.15}
\end{equation*}
$$

Proof:

The hypotheses are the same as those of Theorem 6.3. As shown in that theorem, (F, G, H) is a minimal realization for the sequence $x=\left(\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots\right)$ defined by (6.4) to (6.6). The dimension of the realization is r, by hypothesis 2 .

The transfer function of the system (F, G, H) is

$$
\begin{align*}
Z(s) & =H(s I-F)^{-1} G \\
& =\frac{1}{s} H\left(I-\frac{1}{s} F\right)^{-1} G . \tag{6.26}
\end{align*}
$$

Let $z=\frac{1}{s}, \quad$ then

$$
\begin{equation*}
\frac{I}{z} Z\left(\frac{I}{z}\right)=H(I-z F)^{-1} G=R(z) . \tag{6.27}
\end{equation*}
$$

Now $R(z)$ is a rational function of the form

$$
\begin{equation*}
R(z)=\frac{b_{0}+b_{1} z+\ldots+b_{r-1} z^{r-1}}{c_{0}+c_{1} z+\ldots+c_{r} z^{r}}, \quad c_{0} \neq 0, c_{r} \neq 0 \tag{6.28}
\end{equation*}
$$

The proof is contained in the proof of Theorem 5.8, equation (5.28). Because of (6.28), $R(z)$ satisfies the defining condition I of the ($r, r-1$) Padé approximant for f :

$$
\begin{align*}
& \operatorname{deg} B \leq r-1 \tag{6.29}\\
& \operatorname{deg} C \leq r \tag{6.30}
\end{align*}
$$

where

$$
\begin{aligned}
& B=\text { numerator polynomial of } R \\
& C=\text { denominator polynomial of } R .
\end{aligned}
$$

It remains to show that

$$
\begin{equation*}
f(z) C(z)-B(z)=\left(z^{2 r}\right) . \tag{6.31}
\end{equation*}
$$

For sufficiently small values of z, we have

$$
\begin{equation*}
R(z)=\sum_{k=0}^{\infty}(z F)^{k} G=\sum_{k=0}^{\infty} x_{k} z^{k} \tag{6.32}
\end{equation*}
$$

where $x_{k}, k=0,1,2, \ldots$, are the elements of the sequence x.
By Theorem 6.3,

$$
\begin{equation*}
x_{k}=y_{k}, \quad k=0,1, \ldots, 2 r-1 . \tag{6.33}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
f(z)-R(z)=\sum_{k=2 r}^{\infty}\left(y_{k}-x_{k}\right) z^{k}=\left(z^{2 r}\right) \tag{6.34}
\end{equation*}
$$

Multiply both sides of (6.34) by $C(z)=c_{0}+c_{1} z+\ldots+c_{r} z^{r}$. Then (6.31) is obtained, and condition II of the ($r, r-1$) Padé approximant for f is satisfied by $R(z)$.

The proof of the theorem is complete.
Corollary 6.6.
Hypotheses:

1. $f(z)=\sum_{k=0}^{\infty} y_{k} z^{k}, y_{0} \neq 0$
is a power series whose Padé table is normal.
2. (F, G, H) is a linear model of order r for the sequence $y=\left(y_{0}, y_{1}, \ldots\right)$.

Conclusion:
The transfer function of the system (F,G,H) is the element $\mathrm{E}_{\mathrm{r}}^{(0)}$ in the E -array for the function

$$
\begin{equation*}
T(s)=\sum_{k=0}^{\infty} y_{k} s^{-k-1} \tag{6.36}
\end{equation*}
$$

Proof:
Since f has a normal Padé table, Theorem 3.5 implies that $\Delta_{r}^{(0)} \neq 0$. Therefore, $H(I-z F)^{-1} G$ is the $(r, r-1)$ Padé approximant for f, as shown in Theorem 6.5.

The transfer function of the system (F,G,H) is

$$
\begin{equation*}
Z(s)=H(s I-F)^{-I_{G}}=\sum_{k=0}^{\infty} x_{k} s^{-k-1} \tag{6.37}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}}=\mathrm{HF}^{\mathrm{k}_{\mathrm{G}}}, \quad \mathrm{k}=0,1, \ldots \tag{6.38}
\end{equation*}
$$

Let $\left(P_{r}, r-1{ }^{\prime} Q_{r, r-1}\right)$ be the $(r, r-1)$ Padé pair for f. By Theorem 6.5,

$$
\begin{align*}
& P_{r, r-1}(z)=b_{0}+b_{1} z+\ldots+b_{r-1} z^{r-1} \tag{6.39}\\
& Q_{r, r-1}(z)=c_{0}+c_{1} z+\ldots+c_{r} z^{r}, c_{0} \neq 0, c_{r} \neq 0 .
\end{align*}
$$

By Proposition 2.10 and the definition of the E-array,

$$
\begin{equation*}
\mathrm{E}_{r}^{(0)}(\mathrm{T}, \mathrm{~s})=\frac{\mathrm{P}_{r}^{(0)}(\mathrm{s})}{Q_{r}^{(0)}(\mathrm{s})} \tag{6.40}
\end{equation*}
$$

where [equations (2.64)]

$$
\begin{equation*}
P_{r}^{(0)}(s)=z^{-r+1} P_{r, r-1}(z), \quad s z=1 \tag{6.41}
\end{equation*}
$$

and

$$
Q_{r}^{(0)}(s)=z^{-r} Q_{r, r-1}(z), \quad s z=1
$$

Now (6.39) and (6.40) give

$$
\begin{align*}
\mathrm{E}_{\mathrm{r}}^{(0)}(\mathrm{T}, \mathrm{~s}) & =\frac{\mathrm{zP} P_{r_{2},-1}(z)}{Q_{r}, r-1}(z) \\
& =z R(z), \quad \text { by }(6.28) \\
& =\sum_{k=0} x_{K r} s^{-k-1}, \quad \text { by }(6.32) \tag{6.42}\\
& =Z(s)
\end{align*}
$$

The proof of the corollary is complete.
VII. CONCLUSIONS AND FUTMRE RESEARCH AREAS.

Starting with B. L. Ho's algorithm for computing linear models from input-output data, we have studied the relation between the realized system matrices (F, G, H) and certain rational approximations related to the formal power series whose coefficients are the Markov parameters. For scalar sequences of Markov parameters, $y=\left(y_{0}, y_{1}, \cdots\right)$, the system matrices (F, G, H) computed by B. L. Ho's algorithm are shown to have the following property: Suppose y is a normal sequence (i.e., $\sum_{0}^{\infty} y_{k} z^{k}$ has a normal Padé table), then the transfer function $H(s I-F)^{-1} G$ lies on the diagonal of the E-array for \mathscr{y}.

Deeper results require research into the properties of E-arrays for nonnormal sequences. With this aim, we have developed an explicit determinantal expression for Padé approximants which is valid for both the normal and the nonnormal case (Theorem 3.7). The extension of this work to the E-array should be straight-forward, even if tedious.

By concentrating attention on the leading terms of a given sequence y, the Pade approximation emphasizes the high-frequency response of a linear model for y. This approach, while desirable for many applications and interesting from a theoretical standpoint, has certain Iimitations. For instance, in modeling a linear system from noisy input-output data, one would want to emphasize a pass-band rather than the high end of frequency-response spectrum. This important problem is therefore likely to require some modification of the methods of the Padé approach. A possible alternative to be considered is the uniform (Chebychev) approximation.

Besides confining attention to the Padé approach, our research on the approximating properties of linear models has been restricted to single input-single output systems. The restriction allowed the important issues and steps to stand out in the investigation. Extension of the results to multivariate systems may be possible, at the cost of increased complexity in the derivations.

As a byproduct of our study, we derived reciprocal relations between a minimal realization (F, G, H) and the corresponding pair of matrix factors (V, W). The result, found in the Unique Representation Theorem and its corollary, is a refinement of Ho 's algorithm. The intrinsic elegance of the relations presented in the corollary is accompanied by computational advantages compared with the earlier formulation of the algorithm by B. L. Ho. Future research may be able to exploit the one-to-one correspondence established here for the first time, and uncover its deeper theoretical significance.

Appendix A. Some Definitions in Algebra

1. Formal Power Series [9, p. 146]

Let X be a letter and let N be the set of nonnegative integers (i.e. the natural numbers). Let G be the monoid of functions from the set $\{X\}$ to \mathbb{N}.

If $k \in \mathbb{N}$, let X^{k} denote the function in G whose value at X is k. Then $G=\left(X^{0}, X^{l}, X^{2}, \ldots, X^{k}, \ldots\right)$, and X^{k} is a monomial whose index v is called its degree. As a matter of notation, "degree" is often abbreviated "deg".

Let R be a commutative ring, and let $R[[X]]$ be the set of functions from G into R, without any restriction. Then an element of $R[[X]]$ may be viewed as assigning to each monomial X^{k} a coefficient $a_{k} \in R$. We denote this element by

$$
\sum_{k=0}^{\infty} a_{k} X^{k} .
$$

The summation symbol here is not a sum, but the expression is also written in the form

$$
a_{0} x^{0}+a_{1} x^{1}+\ldots
$$

and is called a formal power series in one variable, with coefficients a_{0}, a_{1}, \ldots in R.

Addition and multiplication of two elements in $R[[X]]$, say

$$
f=\sum_{k=0}^{\infty} a_{k} X^{k} \text { and } g=\sum_{k=0}^{\infty} b_{k} X^{k},
$$

are defined as follows:

$$
\begin{aligned}
& f+g=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k} \\
& f g=\sum_{k=0}^{\infty} c_{k} X^{k}
\end{aligned}
$$

where $c_{k}=\sum_{u+v=k} a_{u} b_{v}$. (Note: With these definitions of addition and multiplication, the set $R[[X]]$ becomes a commutative ring.)

Let $f=\sum_{k=0}^{\infty} a_{k} X^{k}$ be a nonzero power series. The smallest index k for which $a_{k} \neq 0$ is called the order of f, denoted by $\sigma(f)$. The zero element of $R[[X]]$ is said to be of order $+\infty$. [19, p. 129]
2. Polynomials [9, p. 118]

Polynomials in one variable with coefficients in R can be identified with formal power series as follows:

If $f \in R[X]$ and $f_{\infty}=a_{0} X^{0}+a_{1} X^{1}+\ldots+a_{m} X^{m}$, then we identify f with the power series $\sum_{k=0} a_{k} X^{k}$, where $a_{k}=0, \forall k>m$. Thus, the polynomials in one variable in $R[X]$ are identified with the subset of functions $G \rightarrow R$ in $R[[X]]$ which are zero for almost all elements of G. [9, p. 110]

The degree of f, denoted by deg f, is the largest index k for which $a_{k} \neq 0$. The zero polynomial is said to be of degree $-\infty$. If $\operatorname{deg} f=m$, then $a_{m} \neq 0$ by definition, and a_{m} is the leading coefficient of f. A monic polynomial has leading coefficient equal to unity.

If $f, g \in R[X]$, then we have:

$$
\operatorname{deg}(f, g) \leq \max (\operatorname{deg} f, \operatorname{deg} g)
$$

Also $\operatorname{deg}(f g)=\operatorname{deg} f+\operatorname{deg} g$ if R is an integral domain, provided at least one of the leading coefficients of f, g is not a divisor of zero. If $f, g \in \mathbb{R}[[X]]$, then [Zariski and Samuel, II p. 129]

$$
\sigma(f, g) \geq \min (\sigma(f), \sigma(g)) .
$$

Also

$$
\sigma(f g)=\sigma(f)+\sigma(g)
$$

if R is an integral domain.
3. Rational Functions [9, p. 116]

If K is the quotient field of an integral domain R, the quotient field of $R[X]$ is denoted by $K(X)$. An element of $K(X)$ is called a rational function. A rational function can be written as a quotient $f(X) / g(X)$ where f, g are polynomials.

Two nonzero polynomials f, g are called relatively prime if f and g have no comon factors other than constants. If f and g are relatively prime, the rational function $f(X) / g(X)$ is sometimes called "irreducible". [2, p. 153], [10, p. 106], [17, p. 398].

Appendix B. The Pseudo Inverse of a Matrix

1. Definition $[7$, p. 197]

Let A be an arbitrary (finite) matrix. A matrix A^{\dagger} is called the pseudo inverse of A if the following hold:

$$
\begin{align*}
& A A^{\dagger} A=A, \quad A^{\dagger} A A^{\dagger}=A^{\dagger} \\
& \left(A^{\dagger} A\right)^{\prime}=A^{\dagger} A, \quad\left(A A^{\dagger}\right)^{8}=A A^{\dagger} \tag{B.2}
\end{align*}
$$

For an alternative, equivalent definition, see Moore's theorem in section 3.
2. Construction $[31, p .9]$

Let A be an arbitrary $p \times m$ matrix, rank $A=n$. Suppose B and C are matrices with the following properties:
(i) B is a $p \times n$ matrix whose n columns are a basis for the column space of A.
(ii) C is a $n \times m$ matrix whose n rows are a basis for the row space of A.
(iii) $A=B C$.

Then, by the "Theorem of Corresponding Minors" [31, pp. 14, 15], ($B^{\prime} B$) and ($C C^{\prime}$) are nonsingular $n \times n$ matrices. The pseudo inverse of A is given by

$$
\begin{equation*}
A^{\dagger}=C^{\prime}\left(C C^{8}\right)^{-1}\left(B^{i} B\right)^{-1} B^{\prime} \tag{B.4}
\end{equation*}
$$

3. Existence and Uniqueness Theorems [34, pp. 600, 601]

Moore's Theorem [35, p. 197-203]:
Given a finite matrix A, there is a unique matrix A^{\dagger} (called "general reciprocal" by Moore) such that, for suitable matrices L and R,

$$
\begin{equation*}
A A^{\dagger} A=A, \quad A^{\dagger}=L A^{*}=A^{*} R . \tag{B.5}
\end{equation*}
$$

This A^{\dagger} satisfies

$$
\begin{equation*}
A^{\dagger} A A^{\dagger}=A^{\dagger} \tag{B.6}
\end{equation*}
$$

and $A A^{\dagger}, A^{\dagger} A$ are Hermitian matrices. (Note: A^{*} is the conjugate transpose of A_{0})

Proof: [34, p. 600]
(i) Let $n=$ rank A. There are nonsingular matrices P and Q such that

$$
\mathrm{PAQ}=\left[\begin{array}{cc}
I_{\mathrm{n}} & 0 \tag{B.7}\\
0 & 0
\end{array}\right]=J
$$

is the canonical diagonal form of A. [22, vol. I; p. 141]

$$
\begin{equation*}
\text { Then } A^{\dagger}=Q J^{*} P \text { satisfies } A A^{\dagger} A=A \text {. } \tag{B.8}
\end{equation*}
$$

Express the columns of A^{\dagger} as sums of vectors in the column subspace of A^{*} and vectors orthogonal to the columns of A^{*} :

$$
\begin{equation*}
A^{\dagger}=A^{*} X_{2}+X_{3}, \quad A X_{3}=0 \tag{B.9}
\end{equation*}
$$

Similarly, write

$$
\begin{equation*}
x_{2}=x_{4} A^{*}+x_{5}, \quad X_{5} A=0 . \tag{B.10}
\end{equation*}
$$

Then

$$
\begin{aligned}
A=A A^{\dagger} A & =A\left[A^{*}\left(X_{4} A^{*}+X_{5}\right)+X_{3}\right] A \\
& =A A^{*} X_{4} A^{*} A_{0}
\end{aligned}
$$

Hence (B.5) holds if we take

$$
\begin{align*}
A^{\dagger} & =A^{*} X_{4} A^{*} \\
L & =A^{*} X_{4} \tag{B.11}\\
R & =X_{4} A^{*}
\end{align*}
$$

This proves the existence part of Moore's theorem.
(ii) If $A X A=0, \quad X=Y A^{*}=A^{*} Z$, then

$$
(A X)(A X)^{*}=A X X^{*} A^{*}=A X\left(Y A^{*}\right)^{*} A^{*}=(A X A) Y^{*} A^{*}=0
$$

implies $A X=0$. But then we have

$$
X^{*} X=\left(A^{*} Z\right)^{*} X=Z^{*}(A X)=0 \quad X=0 .
$$

Hence all solutions A^{\dagger} of (B.5) are the same. This proves the uniqueness part of Moore's theorem.
(iii) Since $\left(A A^{\dagger} A\right) A^{\dagger} A=A$, and, by (B.11),

$$
\begin{aligned}
& A^{\dagger} A A^{\dagger}=\left(A^{*} X_{4} A^{*}\right) A\left(A^{*} X_{4} A^{*}\right)=L_{1} A^{*}=A^{*} R_{1}, \\
& L_{1}=A^{*} X_{4} A^{*} A A^{*} X_{4}, \quad R_{1}=X_{4} A^{*} A A^{*} X_{4} A^{*},
\end{aligned}
$$

it follows that ($A^{\dagger} A A^{\dagger}$) satisfies Moore's conditions (B.5) for the pseudo inverse. By uniqueness of A^{\dagger}, we have

$$
\begin{gathered}
A^{\dagger} A A^{\dagger}=A^{\dagger} \\
-138-
\end{gathered}
$$

$$
\text { (iv) } \begin{aligned}
A A^{\dagger} & =\left(A A^{*} X_{4}\right) A^{*}=A\left(A^{*} X_{4} A^{*}\right) A^{\dagger *} A^{*}=A A^{\dagger} A^{\dagger *} A^{*} \\
& =\left(A A^{\dagger} A^{\dagger *} A^{*}\right)^{*}=\left(A A^{\dagger}\right)^{*} .
\end{aligned}
$$

Similarly, $A^{\dagger} A=\left(A^{\dagger} A\right)^{*}$. This completes the proof of Moore's theorem.

Penrose's Theorem [33, pp. 17-19]
Given a finite matrix A, there is a unique matrix A^{\dagger} (called "generalized inverse" by Penrose) such that

$$
\begin{array}{ll}
A A^{\dagger} \mathrm{A}=\mathrm{A} & \left(\mathrm{AA}^{\dagger}\right)^{*}=A A^{\dagger} \\
\mathrm{A}^{\dagger} \mathrm{A} A^{\dagger}=A^{\dagger} & \left(\mathrm{A}^{\dagger} A\right)^{*}=A^{\dagger} \mathrm{A} . \tag{B.12}
\end{array}
$$

Proof: [34, p. 601]
Let A be fixed. If A^{\dagger}, L, R satisfy (B.5) and (B.6), then (B.12) holds, so A^{\dagger} exists.

Conversely, if (B.12) holds, then

$$
\begin{aligned}
& A^{\dagger}=A^{\dagger}\left(A A^{\dagger}\right)=A^{\dagger}\left(A A^{\dagger}\right)^{*}=\left(A^{\dagger} A^{\dagger *}\right) A^{*} \\
& A^{\dagger}=\left(A^{\dagger} A\right) A^{\dagger}=\left(A^{\dagger} A\right)^{*} A^{\dagger}=A^{*}\left(A^{\dagger *} A^{\dagger}\right)
\end{aligned}
$$

Hence (B.5) follows, with $L=A^{\dagger} A^{\dagger *}, \quad R=A^{\dagger *} A^{\dagger}$. Therefore, by Moore's theorem, (B.I2) has exactly one solution A^{\dagger}.

This completes the proof of Penrose's theorem, and furthermore proves the

Corollary:

Moore's and Penrose's definitions, of the pseudo inverse A^{\dagger} of a given finite matrix A, are equivalent.
4. Properties [31, pp. 8, 9][32, p. 15]

Let A be an arbitrary $p \times m$ matrix, rank $A=n$, and let A^{\dagger} be the pseudo inverse of A, as defined in Section 1. Let B and C be constructed as in Section 2.
(i) A^{\dagger} exists and is unique. (Pentose's theorem, see Section 3.)
(ii) If A is nonsingular, then $A^{\dagger}=A^{-1}$.
(iii) $\left(\mathrm{A}^{\dagger}\right)^{\dagger}=\mathrm{A}$.
(iv) $A A^{\dagger}=B\left(B^{\prime} B\right)^{-1} B^{\prime}$ is the unique orthogonal projector for the column space of A, i.e. given any $p \times 1$ vector $x, A A^{\dagger} x$ is the orthogonal projection of x upon the column space of A.

Similarly, $A^{\dagger} A=C^{\prime}\left(C C^{9}\right)^{-1} C$ is the unique orthogonal projector for the row space of A.
(v) $A A^{\dagger}$ and $A^{\dagger} A$ are symmetric, idempotent matrices.
(vi) The row space of A^{\dagger} is the column space of A; the column space of A^{\dagger} is the row space of A.
(vii) B^{\dagger} is a $n \times p$ matrix whose rows span the column space of $A ; C^{\dagger}$ is a $m \times n$ matrix whose columns span the row space of A.

$$
\text { (viii) } B^{\dagger} B=I_{n} ; \quad C C^{\dagger}=I_{n} \text {. }
$$

$$
\text { (ix) } A^{\dagger}=C^{\dagger} B^{\dagger}
$$

RBFERENCES

1. George A. Baker, "The Theory and Application of the Padé Approximant Method", Advances in Theoretical Physics 1 (1965), 1-58.
2. E. W. Cheney, INTRODUCTION TO APPROXTMATION THEORY, MCGraw-Hili (1966).
3. G. Frobenius, "Uber Relationen zwischen Naherungsbrichen von Potenzreihen ${ }^{\prime \prime}$, J. fir reine u, angew. Math. 90 (1881), 1-17.
4. Peter Henrici, "The Quotient-Difrerence Algorithm", N.B.S. Applied Mathematics Series 49 (1958), 23-46.
5. Peter Henrici, ELEMENLS OF NUMERICAL ANALYSIS, John Wiley, New York (1964).
6. B. -L. Ho, "On Effective Construction of Realizations from Input-Output Descriptions", Ph. D. Dissertation, Stanford University (1966).
7. R. E. Kalman, Y. C. Ho and K. S. Narendra, "Controllability of Linear Dynamical Systems, Contrib. to Diff. Eq., Vol. 1, No. 2; John Wiley, New York (1962), pp 189m213.
8. R. E. Kalman, "Mathematical Description of Linear Dynamical Systems", J. SIAM Control, Ser. A, Vol. 1, No. 2 (1963), pp 152-192.
9. Serge Iang, AIGEBRA, Addison-Wesley (1965).
10. D. F. Mayers, "Interpolation by Rational Functions", Ch. 12, Methods of Numerical Approximation, D. C. Hanscomb (ed.), Oxford, Pergamon Press (1966).
11. M. H. Padé, "Sur la représentation approchée d'une fonction par des fractions rationelles", Ann. Scientifiques de l"Eole Normale Supérieure 3^{e} sêrie, 9 (1892), Supplement pp. S.1-S.96.
12. M. He Padé " "Sur la distribution des réduites anormales d"une Fonction": Comptes Rendus 130 (1900), pp. 102-104
13. Oskar Perron, DIE LEHRE VON DEN KETTENBRÜCHEN, Teubner (1913).
14. Daniel Shanks, "Nonlinear Transformations of Divergent and Slowly Convergent Sequences", J. Math. and Phys. 34 (1955), pp 1-42.
15. Richard S. Varga, MATRIX ITERATIVE ANALYSIS, Prentice-Hall (1962).
16. B. I. van der Weerden, MODERN ALGEBRA I, and Edition, Ungar, New York (1953).
17. H. S. Wall, ANALYTIC THEORY OR CONTINUED FRACTIONS, Van Nostrand (1948).
18. P. Wynn, "Upon Systems of Recursions which Obtain Among the Quotients of the Pade Table", Numerische Mathematik 8 (1966), pp 264-269.
19. O. Zarisky and P. Samuel, COMMUPATIVE ALGEBRA, Vol. II, Van Nostrand, Princeton (1960).
20. Rudolf Zurmihh 1, MATRIZEN UND IHRE TECHNISCHEN ANWENDUNGEN, 4th ed., Springer, Beriin (1964)。
21. Evelym Frank, "Corresponding Type Continued Fractions", Am. J. of Math., 68(1946), pp 89-108.
22. F. R. Gantmacher, THE THEORY OF MATRICES, 2 vols., Chelsea Publishing Company, New York (1959).
23. J. Hadamard, "Essai sur 1'êtude des functions données par leur dévelopment de Taylor", J. Math. Pure et Appl. (Ser. 4) 8 (1892), pp. 101-186.
24. A. S. Householder, PRINCIPLES OF NUMERICAI ANAIYSIS, McGraw-Hill, New York (1953).
25. Ludwig Bieberbach, IEHRBUCH DER FUNKTIONENTHEORIE, VOI. II: MODERNE FUNKIIONENTHEORIE, 2nd ed., B. G. Teubner, Leipzig (1931); Chelsea Publishing Co., New York (1945).
26. P. Dienes, THE TAYLOR SERIES, Clarendon Press, Oxford (1931).
27. Lotfi A. Zadeh and Charles A. Desoer, IINEAR SYSTEM THEORY: The State Space Approach, McGraw-Hill, New York (1963).
28. J. M. Souriau, 'Une méthode pour la aécomposition spectrale et l'inversion des matrices", Comptes Rendus 227 (1948), pp. 1010, 1011.
29. R. E. Kalman, "When is a Linear Control System Optimal?", Trans. ASME 86D (1964), pp. 51-60.
30. P. Wynn, "The Rational Approximation of Functions which are Formally Defined by a Power Series Expansion", Math of Computation 14 (1960), pp. 147-186.
31. A. S. Householder, THE THEORY OF MATRICES IN NUMERICAL ANALYSIS, Blaisdell (1964).
32. T. N. E. Greville, "Some Applications of the Pseudoinverse of a Matrix", SIAM Review $2(1960)$, pp. 15-22.
33. R. Penrose, "On Best Approximate Solutions of Linear Matrix Equations", Proc. Cambridge Phil. Soc., 52 (1956), pp. 17-19; "A Generalized Inverse for Matrices", ibid., 52 (1956), p. 406.
34. R. Rado, "Note on Generalized Inverses of Matrices", Proc. Cambridge Phil. Soc: 52 (1956), pp. 600-601.
35. E. H. Moore, GENERAL ANALYSIS - Part I, Memoirs Am. Phil. Soc., I (1935), vi +231 .
36. B. L. Ho and R. E. Kalman, "Effective Construction of Linear StateVariable Models from Input/Output Data", Proc. Third Annual Allerton Conf. on Circuit and System Theory, Monticello, Illinois (1965), pp. 449-459.
37. John R. Rice, "Nonlinear Approximation", Proc. Symp. on Approximation of Functions, G. M. Res. Labs., Warren, Mich., 1964; H. L. Garabedian, editor; Elve sier (1965), pp. 111-133.
38. B. L. Ho and R. E. Kalman, "Effective Construction of Linear StateVariable Models from Input/Output Functions", Regelungstechnik 14, No. 12 (1966), pp. 545-548.

[^0]: * For definition and brief discussion of the properties of formal power series, as well as other terminology and definitions from algebra, see Appendix A.
 ** In particular, we may have $\left(\mathrm{z}^{\mathrm{k}}\right) \equiv 0$ 。

