CASE FILE COPY

LUNAR IGNEOUS INTRUSIONS

December 3, 1969

Bellcomm, Inc.

N70-18744

BELLCOMM, INC. Washington, D. C. 20024

TR-69-340-5

LUNAR IGNEOUS INTRUSIONS

December 3, 1969

Farouk El-Baz

ABSTRACT

Apollo 10 and 11 photographs reveal a number of probable igneous intrusions, including three probable dikes that crosscut the wall and floor of an unnamed 75 km crater on the moon's farside. These intrusions are distinguished by their setting, textures, structures, and brightness relative to the surrounding materials. Recognition of these probable igneous intrusions in the lunar highlands augments the many indications of the heterogeneity of lunar materials and the plausibility of intrusive igneous activity, in addition to extrusive volcanism, on the moon.

LUNAR IGNEOUS INTRUSIONS

The Apollo 10 and 11 missions photographed a number of interesting regions on the moon's farside. Previous photographic coverage of these regions was provided by the unmanned Luna and Lunar Orbiter spacecraft. However, the resolution, sun angle, and viewing direction of Apollo photography helped delineate features and structures not evident in previous photography.

One of these regions includes an unnamed*, generally round, partly crenulated, relatively young, large crater, about 75 km in diameter (Figure 1). The crater, whose center is at approximately 4°N 120°E on the Lunar Farside Chart (LFC-1), is situated in as yet undivided highland materials in the general area previously known as the "Soviet Mountains" (1). It exhibits a raised, wavy and sculptured rim, and terraced interior walls which suggest, although not unequivocally, an impact origin. It is not clear from the photographs whether or not the crater is rayed; the presence of an extensive ray system is held by most as a strong criterion for the impact origin of the younger lunar craters.

The crater is a few kilometers deep and the depth of its floor in relation to the rim crest varies with the amount of fill. The crater wall is terraced, up to six levels, and the highest terrace is steeper than most; a feature common to craters of similar size. The floor of the crater displays a prominent central peak which is forked. It forms a unique Y shape (Figures 1 and 2), with the right arm trending nearly due north.

Apollo 10 and 11 photographs of this crater are oblique views, taken at high sun illumination with a handheld Hasselblad camera from an altitude of about 110 km above the lunar surface. On Apollo 10, both the 80 mm lens (frames 4470-4474) and the 250 mm lens (frames 4349-4364) were used. Similarly, the Apollo 11 mission photographed the crater in medium resolution (frames 5419-5422, 6540-6543, and 6271) and in high resolution (frames 6448-6449). Both missions provided excellent stereoscopic coverage of the crater and its environs.

^{*}The crater is given the number 211 by the International Astronomical Union as indicated on the (G) Lunar Farside Chart (LFC-1), 1967 Edition.

Distinct layering is displayed along the crater walls, where rock ledges protrude at several levels within the wall terraces. At the rim crest, the first ledge of rock is in evidence along the crenulations, as in the middle of the right hand edge of Figure 2 (Apollo 10 frame 4350). At lower levels on the wall, discontinuous rock ledges could be traced for distances of 10 km or more. These ledges are indicative of horizontal bedding and are different in their setting and textural characteristics from material produced by slumping and mass wasting along the walls.

In the northern segment of the crater wall one encounters at least four different rock types (Figure 2). These are distinguished by their setting, textures, structures, and relative brightness. The first rock type is exposed in the area marked A in Figure 2. It represents a mantle of relatively young material of low albedo. This material appears identical to that which can be seen in a pool-like depression beyond the rim crest of the crater (A'). The latter is part of an extensive unit that covers a region of more than several thousand square kilometers as previously seen in the Apollo 8 photography (2). The textures and structures displayed by this unit are reminiscent of those exhibited by terrestrial lava flows. Wrinkles on its surface are common, especially at the lower parts of a given topographic level. The flow fronts are convex downslope and appear to be the result of a gentle or slow flow of molten material which has moved from higher to lower ground. There is also evidence of collapsed pool surfaces as in the upper left edge of Figure 2. An alternative interpretation of this mantling material would be that it is a debris flow or rock glacier. However, the aforementioned criteria supporting an extrusive volcanic origin, i.e., a lava flow, are quite strong.

The second rock type (area marked B in Figure 2) is characterized by a very high albedo. Its texture is clearly different from that displayed by the rest of the crater wall. The latter represents a third rock type, a typical segment of which is marked C in the same figure. The brightest segment of the wall (area B) is characterized by a great number of massive domical hills. These are separated by shallow furrows filled by darker, probably fine-grained debris material. These features strongly

indicate that this segment of the crater wall is made of a rock type which is dissimilar to that exposed elsewhere along the crater wall. The bright material may represent an exposure of intrusive, probably batholithic rock mass.

It must be stated that the unusually high albedo of this intrusive material is not due to a mantle of bright material. Bright rays from the crater Giordano Bruno (located at 37.7°N 102.5°E on LFC-1: barely seen on Lunar Orbiter V frame M-181 and best seen on Apollo 8 frame 2209), which were erroneously interpreted from Luna III photographs as the "Soviet Mountains" (1) are evident in the vicinity of the crater. The characteristics of these bright rays are easily distinguishable from those of what is here interpreted as an intrusive rock mass.

Two major zones of extremely dark rocks within the bright segment of the northern wall of the crater represent the fourth rock type. The one to the left, marked D in Figure 2, displays fine, closely-spaced, discontinuous, linear outcrops of dark rock, which crosscut the wall material. The outcrops are localized in a zone 2 km long with an average width of about 0.5 km. This zone, which trends in a northwesterly direction, is texturally different and is much darker than the enclosing wall materials. By earth analogy this zone most probably represents a dike and is here so interpreted. An alternative explanation would be that it is a segment of the layered wall material which has rotated through slumping to stand on edge. However, the appearance of this rock and its setting support the interpretation as a dike.

Farther east, to the right of this dike, is another zone of the crater wall which displays a similar dark color. In this case, the first ledge below the top is nearly black.

^{*}Batholithic, meaning that it may be part of a mass of igneous intrusive rock which crystallized beneath the crust and whose diameter and depth are unknown. In support of this interpretation is the fact that this bright mass of rock displays steep contacts. The exposed portion of the rock mass appears to dip outward from the crater wall.

^{**}A dike is a wall-like tabular body of igneous rock that cuts across the structure of adjacent materials.

A dark zone about 2 km wide extends for a short distance beyond the rim crest of the crater. This zone includes a linear structure that may also represent a dike (D' in Figure 2). One also encounters the dark layers overlying the lower wall terraces in this area. The latter occurrence however, probably represents a shedding from the upper rock mass.

A slightly arcuate and discontinuous line of rock that outcrops within the crater floor represents a third probable dike (D"). The outcrops are similar to the exposed rocks of the aforementioned probable intrusions. Here again, the rocks are texturally different from the enclosing material. The discontinuous outcrops stand above the surrounding terrain and appear much darker than it.

Outcrops of dark rock are also evident on top of the central peaks, especially along the sides of the right arm of the Y-shaped chain of mountains. These occurrences of dark material on the central peaks may be related to the intrusive rock material. They represent either extensions of the same material or a similar rock type that was brought to the surface by the cratering event. Additional photography at higher resolutions on future Apollo missions would help delineate these relationships.

The Flamsteed P ring in Oceanus Procellarum has been interpreted as a ring dike $^{(3)}$. A prominent zone within one of the central peaks of the crater Copernicus has also been interpreted as a possible lunar dike $^{(4)}$. The recognition of this new locality of probable igneous intrusions in the farside highlands is strong evidence for the heterogeneity of lunar materials. It lends additional support to the plausibility of intrusive igneous activity, in addition to extrusive volcanism, on the moon.

town Box

2015-FEB-kmj

Attachments References Figures

REFERENCES

- E. A. Whitaker, Comparison with Luna III Photographs.
 In: "Analysis of Apollo 8 Photography and Visual Observations," U. S. Gov't. Print. Off. (1969; in press).
- 2. H. G. Wilshire and Farouk El-Baz, "Possible Volcanic Features-Landforms," ibid; and D. E. Wilhelms, D. E. Stuart-Alexander, and K. A. Howard, "Lunar Farside," ibid.
- J. A. O'Keefe, P. D. Lowman, Jr., and W. S. Cameron, Science 155, 3758 (1967) p. 77-79.
- 4. Farouk El-Baz, "Geologic Characteristics of the Nine Lunar Landing Mission Sites Recommended by the Group for Lunar Exploration Planning," Bellcomm Technical Report, TR-68-340-1, (1968).

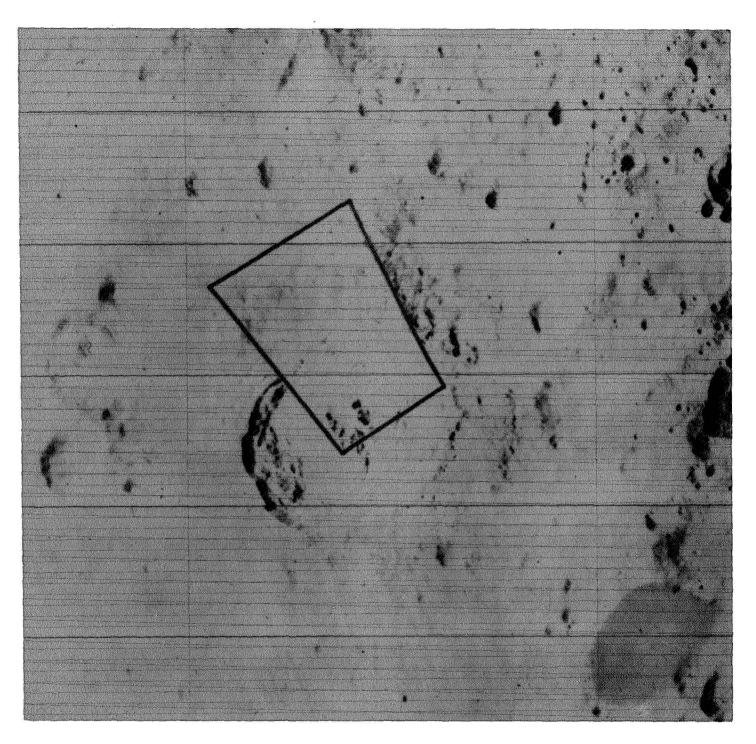


FIGURE 1

PART OF LUNAR ORBIT I FRAME M-136 SHOWING CRATER 211 NEARLY IN THE CENTER. NOTE THE Y-SHAPED CENTRAL PEAKS. A DETAIL OF THE MARKED AREA IS SHOWN IN FIGURE 2.

FIGURE 2

POLLO 10 FRAME 4350 SHOWING FOUR DIFFERENT TYPES OF MATERIALS. A: MANTLING MATERIAL WHICH IAY REPRESENT FLOWS OF THE SAME MATERIAL IN THE POOL-LIKE DEPRESSION A'. B: HIGH ALBEDO MATERIAL ORMING DOMICAL HILLS. C: A TYPICAL SEGMENT OF THE CRATER WALL. D, D, AND D": ARK WALL-LIKE ZONES (MARKED WITH DASHED LINES) WHICH MAY REPRESENT THE OUTCROPS OF DIKES.

BELLCOMM, INC.

DISTRIBUTION LIST

Complete Memorandum to

NASA Headquarters

- R. J. Allenby/MAL
- D. A. Beattie/MAL
- R. P. Bryson/MAL
- R. J. Green/MAL
- T. A. Keegan/MA
- M. W. Molloy/MAL
- W. T. O'Bryant/MAL
- L. R. Scherer/MAL

Manned Spacecraft Center

- A. J. Calio/TA
- J. W. Dietrich/TH3
- T. H. Foss/TH2
- J. W. Harris/TA
- J. H. Sasser/TJ
- H. H. Schmitt/CB
- J. R. Sevier/PD
- L. C. Wade/TJ

U. S. Geological Survey/Flagstaff

- A. H. Chidester
- D. P. Elston
- T. N. V. Karlstrom
- H. Masursky

U. S. Geological Survey/Menlo Park

- K. A. Howard
- N. J. Trask
- D. E. Wilhelms
- H. G. Wilshire

California Institute of Technology

E. M. Shoemaker

Lamont Geological Observatory

P. Gast

Massachusetts Institute of Technology

- F. Press
- E. Simmons

Complete Memorandum to

Stanford University

- R. H. Jahns
- R. L. Kovach

University of Arizona

E. M. Whitaker

University of Massachusetts

D. U. Wise

Bellcomm, Inc.

- D. R. Anselmo
- A. P. Boysen, Jr.
- J. O. Cappellari, Jr.
- C. L. Davis
- D. R. Hagner
- W. G. Heffron
- J. J. Hibbert
- N. W. Hinners
- T. B. Hoekstra
- B. T. Howard
- D. B. James
- A. N. Kontaratos
- M. Liwshitz
- J. A. Llewellyn
- H. S. London
- D. Macchia
- E. D. Marion
- J. L. Marshall
- K. E. Martersteck
- R. K. McFarland
- J. Z. Menard
- B. G. Niedfeldt
- J. J. O'Connor
- G. T. Orrok
- J. T. Raleigh
- P. E. Reynolds
- I. M. Ross
- J. A. Saxton
- J. A. Schelke
- F. N. Schmidt

BELLCOMM, INC.

DISTRIBUTION LIST

Complete Memorandum to

Bellcomm, Inc. (Cont'd.) R. L. Selden

- R. V. Sperry
- A. W. Starkey
- W. B. Thompson J. W. Timko
- A. R. Vernon
- J. E. Volonte
- R. L. Wagner M. P. Wilson
- D. B. Wood
- All Members Department 2015
- Central Files
- Department 1024 File
- Library