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ABSTRACT

Two classes of closed form solutions of one-dimensional, nonlinear waves
of a rate-sensitive, elastoplastic material are reported. One class of these
solutions is self-similar and the other class consists of constant speed
propagations. Applications of these solutions to unsteady motions behind

propagating discontinuities are also considered.
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I. INTRODUCTION

The purpose of this report is to discuss two interesting classes of closed
form solutions of one-dimensional, unsteady motion of a rate-sensitive, elasto-
plastic material. One class of these solutions is self-similar and is deduced
from the invariant theorems of continuous groups of transformations. This
class of unsteady motion is governed by a single, first-order, nonlinear,
ordinary differential equation of the Riccati type and closed form solutions
in terms of elementary functions are obtained under special circumstances. If
the material in consideration possesses the additional property of instantaneous
linear elasticity [1] under "high rate' of straining, it may be demonstrated
that one of these self-similar solutions can be used to describe the dispersed
nonlinear wave motion behind a propagating shockfront into an initially quies-
cent region.

The second class of solutions is obtained by searching for one-dimensional
wave motions with constant speeds of propagation. These solutions are express-
ible as simple quadratures and closed form expressions can be obtained for
specific constitutive relations. Such solutions represent non-characteristic
propagations, i.e., they are not propagations of weak discontinuities or accele-
ration waves. It may be demonstrated, using the Poincaré-Bendixon theorem, that
these solutions, in general, are not periodic. Assuming a sub-elastic, constant-
speed, propagating discontinuity preceded by an elastic precurser with an un-
loading, relaxation zone, or a constant stress region, the nonlinear wave solu-

tion with a constant propagation speed equal to that of the discontinuity can be




used to describe the ”unsteady”+ motion behind the discontinuity.
One-dimensional rectilinear motion, in the strict sense, involves not just
one spatial coordinate but also only one component of stress, strain, and parti-
cle velocity. Such a type of motion is typical of the propagation of longitu-
dinal stress waves in thin straight rods when the lateral inertia effects of
the rods can be neglected. For such a type of motion, only a one-dimensional
stress-strain or constitutive relation is required. Various rate-sensitive,
constitutive equations have been proposed in the literature and a comprehensive
review of this subject can be found in Cristescu [2]. The solutions described
in this report are obtained based on a model first proposed by Sokolovskii [3,4j.
This model cannot, in general, be used to describe the structure or generation
of shock waves [5,6]. In applying the solutions given in this report to the un-
steady motions behind propagating shock layers or relaxation zones, additional

material properties may have to be assumed within these regions.

II. MATHEMATICAL FORMULATION
One-dimensional motion may be described by a scalar deformation field,
x=x (X, ) , (2.1)

where x is the instantaneous position coordinate at time t of a generic

+Such an "unsteady'" motion, of course, becomes-essentially steady for a
moving observer following the propagating discontinuity.




particle whose position coordinate at t = 0 was X. The Lagrangian equation of
motion and kinematic compatibility condition for rectilinear, one-dimensional

. +
motion are

p du/dt = 390/9X (2.2)
3e/3t = 3u/oX s (2.3)
where o is the longitudinal stress, and
u = ax/dt (2.4)
€ 2 9x/3X -1 (2.5)

are the particle velocity and Lagrangian strain, respectively. The material

is assumed to be initially unstressed and unstrained with a constant density p.
In this analysis, the material under consideration will be assumed to

follow the special constitutive relation for a rate-sensitive, elastoplastic

material generalized from a model suggested by Sokolovskii [3,4],
ac/oT = au/0% = E T 25/0T + ¥f (3/0_ - 1) 1 (5/o_ - 1) (2.6)

where f(+) is a dimensionless C! function with £(n) > 0 for n > 0, 1+(-) is

the Heaviside function, E is the modulus of elasticity which is assumed to be a

1“See, e.g., Courant & Friedrichs, [7].




constant, o is the static yield stress, and vy is a material constant. Thus,
the material is assumed to have an elastic range with a constant modulus. In
the plastic range, the dynamic yield stress is rate-sensitive. Strain-
hardening effects are not included. Equation (2.6) includes the well-known
models suggested by Cowper & Symonds [8], and Perzyna [9], as special cases.
It is a special form of a more general constitutive equation suggested by
Malvern [10].

Equations (2.2) and (2.6) are the basic equations describing the functions,
u(X, t), o(X, t), [and e(X, t)l, characterizing the one-dimensional motions to
be considered in this report. These equations may be combined into one single,
second-order, nonlinear, hyperbolic, partial differential equation of the

evolution type in dimensionless form as follows:
B(920/3x> - 3%20/0t?) = [1 _(0) df(0)/do + 8(0) £(0)] d0/0t , (2.7)
where
o(x, t) =o/c_ -1 , (2.8)

is the dimensionless overstress,

X = aX (2.9)
t = act (2.10)
c = VE/p (2.11)
o = By/pE/o_ (2.12)




8(+) is the Dirac delta functional, and B > 0 is a dimensionless constant
included here in the definition of a for convenience.

Materials described by the constitutive relation given in (2.6) probably
cannot support shock layers or explain the generation of shockfronts. If a
shock layer is dissipative, then generalized viscoelastic theories and constitu-
tive relations such as those considered by Varley & Rogers [6], Coleman §&

Gurtin [11], Dunwoody & Dunwoody [12], and Pipkin [5], or further generaliza-
tions of these models, should be used to describe it. For a thin straight rod,
the shock layer may be dispersive due to lateral deformation+ instead of due to
any dissipative mechanism. Such a shock transition may be described in terms of
a low frequency, large rate of straining .expansion of a three-dimensional
deformation field similar to that considered by Parker & Varley [13]. In apply-
ing one of the self-similar motions described in this report to a nonlinear. wave
motion behind a propagating shockfront, it will be assumed that the rate of
straining in the shock layer is high enough to allow the material to exhibit
instantaneous linear elasticitny[l]. Thus, acroess such a shock layer, it will

be assumed that

+The authors are indebted to Professor E. Varley for a discussion pertaining
to this point.

+The range of rate of straining within which materials exhibit instantaneous
elasticity varies from one material to another. There is usually an upper
(and lower) cutoff point in rate of straining above (and below) which a material
may have to be considered viscoelastic. ' The authors are indebted to Professor
R. 8. Rivlin for pointing this out to them.




[c] = E [e] , (2.13)

where [x] denotes the jump in value of x across the shock layer, and the value
of E will be assumed to be a constant and have the same value as the modulus
of the elastic range of the constitutive relation given by (2.6).

From the Lagrangian equation of motion (2.2) and the kinematic compati-
bility condition (2.3), two additional jump conditions relating [ul, and [e],
can be deduced formally following a technique suggested by Courant &

Friedrichs [7]. The results are:

pU [ul + [o]

n
(@]
v

(2.14)

U [e] + [ul

"
o
w

(2.15)

where U is the propagation speed of the shockfront. Equations (2.14) and
(2.15) can also be deduced from physical arguments directly. The jump condi-
tions, (2.13)-(2.15), indicate that the speed of propagation of a shock layer

of a material exhibiting instantaneous elasticity is
|u|l = VE/p (2.16)

which is, in fact, the same as the elastic speed of propagation of small
disturbances.

In applying the constant speed solutions to the "unsteady'" motion behind
a propagating discontinuity which moves at a constant sub-elastic speed, it

will be assumed that there is an elastic precurser and an unloading, relaxation




zone, or a constant stress region, ahead of the discontinuity. The details of
the unsteady motion of a relaxation zone ahead of such a discontinuity may be

very complicated and will not be considered in this report.

IIT. A CLASS OF SELF-SIMILAR SOLUTIONS

Cowper €& Symonds [8] proposed, in 1957, a power law,

f(o) = 06 . (3.1)

where 6§ > 0 is a dimensionless material constant, to describe the rate-
sensitivity of perfectly plastic materials. This law seems to be quite ade-
quate in approximating the dynamic responses of certain metallic alloys [14,15]
under moderately high rates of straining. Recent investigators [16-20] have
applied this model to impulsively loaded beams, rods, and plates. The class of
self-similar solutions described in this report is based on the constitutive
relation (2.6) and the special form of f(o) given by (3.1). Under these con-

stitutive assumptions, Eq. (2.7) may be expressed as follows:

¢ (GXX’ Utta Ot: 0, X, t) =0 ’ (3.2)

where

5
¢ = O = %%r = O 1 o, 1+(c) . (3.3)

and subscripts denote partial differentiation. The constant B which appeared

in the definition of o in (2.12) has been replaced by the material constant §.




Consider a one-parameter continuous group of transformations defined by

(X, T, £) = (bx, bt, b)) , (3.4)

5 ) = (bn—QO n-2m n-m

(2 TT> °T XX

b g,) R (3.5)

XX?

where b is the parameter, and m,n are constants. It can be shown that for

the special case of m = 1, n = 1/(1 - §),

¢ (OXXO Ott’ Gt’ O; X’ t) =

X Z; X, T) s (3.6)

¢ (ZXX’ ZTT’ T’

where it is assumed that 6§ # 1. For § = 1, Eq. (3.2) is linear and the
analytical solution has been discussed in detail by Malvern [10]. Thus, ¢

is a constant conformal invariant under the group defined by Eqs. (3.4) and
(3.5) withm = 1, and n = 1/(1 - §). According to a theorem proven by

Morgan [21], the solution to Eq. (3.2) may be expressed in terms of a function

F(£) of an absolute invariant £ of the transformation group defined by
(X, T) = (bx, bt) . (3.7)

The function F(£) is an absolute invariant of the transformation group defined

by
.

(X, T, £) = (bx, bt, pl=6 g) . (3.8)




It will be straightforward to verify that

£E = t/x (3.9)

1

F(g) = o olx, t) (3.10)

are absolute invariants of the groups defined by Eqs. (3.7) and (3.8),
respectively. Thus, there exists a class of self-similar solutions to

Eq. (8.2) of the form

o= Fe) (3.11)

where £ is given by (3.9).
Substituting Eq. (3.11) into Eq. (3.2) and using Eq. (3.3), a nonlinear,
second-order ordinary differential equation results. For ¢ > 0, this equation

is expressible as follows:
(82 - 1)F" - {[26/(1-8)] € + Fa"l}F' + [8/(1-8)2]r = 0 (3.12)

where prime denotes differentiation.
For the special case of § = 2, Eq. (3.12) is immediately integrable to

the following Riccati equation:
2(g2 - 1)F' + 4¢ F - F2 = K (3.13)

where K is an arbitrary constant. This equation may be converted into a
linear, second-order, ordinary differential equation by the following

transformation:




(82 - 1Y v(2) = BExp [} %-J Eﬁ%il-dgi] , (3.14)
g12-1
2z = £+ 1 . (3.15)
The result is:
2(1 = z)V" + 2(1 + 1) (L -22)V' - (20 - K)V =0 (3.16)

where r satisfies the quadratic equation,
4r? + 4p + K= 0 . (3.17)

Equation (3.16) has three regular singular points at z = 0, 1, and =.
The solutions to this equation are expressible in terms of hypergeometric
functions. For & > 1, the appropriate general solution to (3.16) is, in the

usuval notation,

V(z) = oz 408 oFp [2r + 8, 2, Uy 1/z1 (3.18)

where C is an arbitrary constant. Thus, from Eq. (3.14), the corresponding

expression for F(£) is
F(g) = 6(E - 1) - bur

(g - 1) oF1 [2r + 4, 3, 55 2/(8 + 1)]
+ 2(2r + 3) . (3.19)
(£ + 1) F1 [2r + 3, 2, 43 2/(& + 1)]

10




The expression (3.19) for F(£) assumes some particularly simple forms in
terms of elementary functions for special values of K. As examples, typical
expressions for F(£) and o(x, t) for two different values of K are listed

below:

K=20, (i.e., » = 0, or - 1)

PE) = 8 {26+ (82 - 1) fn [(g - 1)/(6 + DI + A, (62 - D}" . (8.20)

o(x, t) = 8x {2xt + (£2 = x%) o [(t - x)/(t + 0] + & (£2 - xH)}7?
(3.21)
K= -3, (i.e., r = 1/2 or - 3/2)
F(g) =6 (1 + A, £+ E2)/(a, + 38 - &%) (3.22)
o(x, t) = 6 (%2 + A xt + t2)/(A2x2 + 3x2t - t3) . (3.23)

In these expressions, A AZ, and A3 are arbitrary constants.

1°
It is interesting to note that the solution given by (3.21) is invariant
under the translation defined by (x', t') = (x + a, ©t + a), where a is an
arbitrary constant. This property will be utilized in Section V to derive a
closed form solution of a self-similar, unsteady, dispersed, nonlinear wave

"

motion behind a constant "elastic-speed" shockfront propagating into an

initially quiescent region.

11




IV. NONLINEAR WAVES WITH CONSTANT SPEEDS

Equation (2.7) is a nonlinear, hyperbolic differential equation of the

evolution type. The characteristic speeds related to this equation are given

by,

1
I+
0

DiX/Dt
or,

Dix/Dt

1]
H+
et

(4.2)

where Di(-)/DE and Di(~)/Dt denote differentiation along the characteristics.
Due to the presence of the evolution or dissipative term,

[1+(0) df(c)/do + 8(c) £(0)] 30/3t, in Eq. (2.7), it is expected that, in the

plastic range, the material can also support dissipative, dispersive waves in

addition to the characteristic propagations of discontinuities given by

Eq. (4.1) or (4.2). To demonstrate the existence of non-characteristic propa-

gations, a class of constant speed solutions to Eq. (2.7) is considered in

this section. This class of solutions 1s obtained by searching for expressions

of the form:
o(x, t) = g(s) R (4.3)
where,
s=ct-x o, ' (4.1)

and ¢ = constant determines the speed of propagation.

12




Substituting Eq. (4.3) into Eq. (2.7), a nonlinear, second-order, ordinary

differential equation results:
-2 -
B(1 - c)g" =c [1(g) £'(g) + &(g) £(0)1g" (4.5)

where primes denote differentiation. This equation can be integrated once

immediately to yield,
-2 -
B(L - clg' =c 1+(g) f(g) + A . (4.6)

where A is an arbitrary constant. Actually, the fact that Eq. (4.5) can be
integrated once in closed form is not due to the special choice of the consti-
tutive equation, (2.6), since, by assuming solutions of constant speeds of
propagation, Eq. (2.2) can be integrated at once without making any additional
assumptions. By comparing the expression (4.6) with the basic equations,

(2.2) and (2.6), it is easily demonstrated that A = 0. Thus,
2 -
B(L - clg' =c¢ 1+(g) f(g) s (4.7)

for constant speeds of propagation.

If g < 0, then Eq. (4.7) becomes,
2
(1 -clg' =0 . (4.8)

Except for the trivial case of g = constant, Eq. (4.8) requires that c = %1,
which of course is the elastic speed of propagation. For g > 0, Eq. (4.7)

requires that

13




2

(i) ¢ <1, for (g'/c) >0 . (4.9)

_2 -
(ii) ¢ > 1, for(g'/c) <0 . (4.10)

_2
Thus, for the physically more meaningful case of ¢ < 1, the overstress may

increase or decrease with s depending on whether ¢ > 0 or < 0.
Equations (4.9) and (4.10) also indicate that if solutions for g > 0 exist,
the waves represented by these solutions are not characteristic propagations.

On setting h = g', Eq. (4.5) for g > 0 may be written as

' -

L. L C (4.11)
& s1-c)

Since f(g) is a C! function, Eq. (4.11) does not have any singular points.
Thus, according to Poincaré-Bendixon theorem, it may be concluded that
Eq. (4.11), in general, does not possess periodic solutions.

For g > 0, Bq. (4.7) may be integrated, in general, by quadrature as

follows:
2 &8
s=1[B(1-c)/el [ £ (¢)dg+cC (4.12)

where C' is an arbitrary constant.
Perzyna [9] in 1963, suggested two interesting expressions for £(z).

In slightly generalized forms, these expressions are given as follows:

(1) ()= ] a0 (4.13)

14




L
(i1) £(z) = b_ + ) b, (Exp ;K -1, (4.14)
L£=1

where a,, b, are constants. Expression (i) or Eq. (4.13) includes the model

f(z) = C6 suggested by Cowper & Symonds [8] as a special case. For F(r) = cé,

and § # 1, Eq. (4.12) becomes,

_2
(L -c ), 1-8 1-68
== C ) (g

-8

- ) N (4.15)
1 (1 - 8)e 1

where g, = g(sl)’ s, is a constant, and B has been chosen as bl”

Another simple result is obtained for the constitutive relation (ii) or
Eq. (4.14) with L = 1. The integrated expression is

g
(g, - g) + 4 e—g—l , (4.16)

c e”lo 21

2
o = (L -c¢c)

where, again, g = g(sl), s is a constant, and B has been chosen aS~b1.

It is of interest to note that for the constitutive relation (i) or
Eq. (4.13), the integral in Eq. (4.12) can always be evaluated in closed form.
It is known that any real polynomial can be expressed as a product of factors,
of which typical terms are (ulc + az)k and (Blc2 + QBZC + BS)P’ where
o, 0L2o 61, 82, 63 are real constants, 622 < 6183 and k,p are real positive

1

integers. Thus, f_l(c) may be expressed in the form:

n
-k 2 -p
) Cy (alc + uz) + L (dpc + ep)(Blc + 262C + 63) R
P (4.17)

£l =
k

no~—s

where s dp, and ep are real constants.

15




The integrals from the first summation are of the type:
-k
[ag+a) a
which gives,
-1

o, (- 1)} (0,5 + az)l‘k . e 1)

o ' fn lalc + a2] , (k=1)

1

The integrals from the second summation are of the type:

2 -p
i (az +e) (8% + 280+ 8)7F do

= 2 P
= (e /8)) [ Bz +8)) (B2? + 28,0 +8,) 7 de

- 2 %
# ey = B,d /8 [ (B2 + 28,0 4 8" at

The first integral in Eq. (4.20) gives:

-1 1

275 (1 - p)

27t i g% + 28,0+ B, ., (p = 1)

The second integral can be reduced as follows:

16

2 1-p
(61€ + 282C + 83) , (p#1)

2

(4.18)

(4.19)

(4.20)

(4.21)




i <slc2 + 280 % 63>“P dg = ef'l (8.8 - BZZ)I/Z"P [ 2+ 1) Pay

13
(4,22)
and the integral,
I, = [ G2+ Pay (4.23)
can be evaluated from the recursion relation:
2 1-p
2(p - 1) Ip - (2p - 3) Ip_l = y(y* + 1) R (4.2y)

with Il = tan_ly. The entire integral in Eq. (4.12) can, therefore, be

evaluated in closed form in terms of elementary functions.

V. NONLINEAR WAVE MOTION BEHIND PROPAGATING DISCONTINUITIES

5.1. Self-similar solution behind a constant-speed shockfront.

Consider a one-dimensional shockfront propagating at some speed U(>0)
into an initially quiescent one-dimensional region (x % 0). As it had been
remarked earlier, if the range of the rate of straining within the shock
layer renders the material to exhibit instantaneous linear elasticity, then

the shockfront will propagate at a constant speed,
U=VvE/p , (5.1)

where E is the instantaneous modulus of elasticity. If the value of E is
chosen to be the same as the modulus of the elastic range of the constitutive

equation, (2.6), then the shock speed has the same value as the characteristic

17




speed D+i/D% given by Eq. (4.1). Under such an assumption, the values of u
and 0 immediately behind the shock layer must satisfy the characteristic

compatibility condition [10]:
do - pcdu = - Eyf(a/oo - l)l+(c/oo - 1) at |, (5.2)

where ¢ = U = VE/p
The values of u, o, and e, immediately behind the shock layer must also
satisfy the jump conditions given by Egs. (2.13) to (2.15). Since u, 0 = 0

in the quiescent region in front of the shock layer, Eq. (2.14) requires that,
6 = - plu = - pcu R (5.3)

immediately behind the shock layer. Combining Egs. (5.2) and (5.3), the

following differential equation results:

2Rdo = - f(o)l+(o) dt . (5.4)

i

where as before, o = (5/0O - 1) and t = act with a BY/pE/0_. Equation (5.4)
indicates that, if ¢ > 0, then the overstress immediately behind the shockfront
always attenuates with time along the shock.

Assuming that o > 0 behind the shockfront, Eq. (5.4) can be integrated by

quadrature as follows:
¢
t=28[ £ (g)dg+cC" (5.5)

where the integral is identical to that of Eq. (4.12). Thus, closed-form

solutions of Eq. (5.5) are possible for special constitutive assumptions.

18




For f(g) = Ca with § # 1, Eq. (5.5) becomes
= [26/(1 - )1 (0,170 -7 (5.5)
where 0. = ¢(0), and B has been chosen as §. Therefore, the overstress

1

immediately behind the shock attenuates monotonically with time along the
shockfront from o = 9y at t = 0too =0 at t = =,
It is interesting to note that for 6§ = 2, Eq. (5.6) can be satisfied

by one of the self-similar solutions given in Section III:

867 = (x + a) [%n + (n? - 1) {Al +4n [(n - 1)/(n + l)qi] ,» (5.7)

where n = (t + a)/(x + a), and a, A1 are constants. To satisfy the compati-
bility condition (5.6) for § = 2, the constant a in (5.7) must be chosen as

follows:
a = 4/01 . (5.8)
Therefore, the dimensionless overstress o(x, t) behind the shockfront is

given by,

o= 8/[}t + 4/0,) {2 + (n - 1/7) (A, + &n (Ei%)]{] ) (5.9)

and the stress boundary condition at x = 0 is,

o(0, t) = 8/|2(t + B/o ) + (2t + cltz/u) {A1 - 4n [1 + 8/(olt)]lJ .
(5.10)

The behavior of this function for various values of A1 is shown in Fig. 1.

19




In dimensional forms, the resulting expressions for o(X, t), u(X, t),

and e(X, t) for this case are given as follows:

o = c/co -1

[lte oo/(EY)J (X + cto)
[%c (X + cto) (t + to) - [e2t (t + 2to) - X (X + QCtO)]

-1
{Kn [(ct + X + QCtO)/(CE - X1 + Bi} R

(5.11)
w= - (o /o) [o(E + £t )/(X + ct ) + chro, (5.12)
e = (o /p) [0(F + t)2/(X + ct )2 + 21 (5.13)
(o] O o]
where
to = 200/(y01E) , (5.14)

and B is a constant. The behavior of the functions u(0, t) and e(0, t) for
various values of A1 are indicated in Figs. 2 and 3. It is of interest to

note that (5.13) yields a permanent strain ep given by

g = lim g = - (OO/E) [(4e GO/ByE) (X + cto)_1 - 1] . (5.15)
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5.2. Constant speed solution behind an elastic precurser.

Duvall [22] suggested that the one-dimensional, unsteady motion in a
semi-infinite (x > 0), rate-sensitive, elastoplastic region generated by a
continuously applied load at its boundary (x = 0) may eventually consist of
an elastic precurser propagating into an initially quiescent region, an un-
loading, relaxation zone, and a sub-elastic, constant-speed, nonlinear wave
motion as depicted in Fig. 4. After a reasonable length of time, the elastic
precurser will be far ahead of the leading wave of the constant speed region
and the boundary of x = 0 will be far behind it. Relative to an observer
moving with the leading wave of the constant speed region, the unsteady motion
behind the leading wave becomes essentially steady.

Any of the constant-speed, nonlinear wave solutions described by Eq. (4.12)

in Sec. IV with ¢ < 1 may be considered as a constant-speed portion of such an

It

"unsteady" motion. If the overstress on the leading wave s s, is o, > 0,

1 1

then the quadrature expression, (4.12), becomes,

_2  _ Y -1
s-s, =[B(L-c)/el[ £ (x)a (5.16)
o)
1

where s = ct - x, and ¢ < 1. From Eq. (5.16), the stress boundary condition
required to maintain the constant-speed motion can be evaluated in a straight-
forward manner.

It is of interest to note that, if the initial rate of loading of the
applied stress at the boundary is not too high such that the time required to

raise the stress o from zero to the value of the static yield stress o is
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much longer than the pertinent characteristic relaxation time of the medium,
then a complete description of a possible nonlinear wave motion for a continu-
ously loading boundary may be constructed exactly. Figure 5 is a schematic
representation of such a motion. It consists of four solution regions separa-

ted by three discontinuities described as follows:

(1) Solution Regions

RI: the undisturbed region, =0

R,: the elastic region, o < o,

Ryt the constant stress region, o = o,

R, : the constant speed solution region, o > o,

(2) Discontinuities

5, the leading elastic wave
s, the trailing elastic wave
g_: the leading constant speed wave.

Such an unsteady motion may be generated by a monotonically increasing
stress boundary condition. The manner in which the stress varies at the
boundary in the elastic range can be quite arbitrary (so long as the rate of
loading is small enough so that there will be no dynamic overstressing in the
elastic precurser) and has been chosen as a linear function of t in Fig. 5 for
simplicity, while the rate of stressing beyond the static yield stress must

follow the expression given in Eq. (4.12) or the differential equation, (4.7).
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It is clear from Bq. (4.7) that nontrivial solutions in R, can be generated
from a leading wave s, on which the stress is o = 0 only if £(0) > 0. The
value of £(0) can be arbitrarily small. Alternatively, if £(0) = ¢ for a
specific constitutive relation, a solution such as the one depected by Fig. 5

can still be generated by viewing s, as a small discontinuity in the value of

3

o such that the overstress jumps across this "plastic shock' from zero to some

small constant positive value 01 << 1. The jump in ¢ from 0 to 01 at the

boundary of X = 0 may be viewed as the result of a very fast rate of loading r

in a small interval of time At near t = Eo such that lim (r At) = 51 =
At»o

= (1 + dl)c(3 and 0 < o, << 1. The fact that o = o in R3 is an admissible

solution can be deduced immediately from Eq. (4.7).
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