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L. INTRODUCTIOHN

This article addresses itself to the question of the t — o state of the
quasilinear theory of weakly unstable plasma oscillations. This is a subject
t0 which numerous authors have devoted acvtention since 1961 (Drummond and Pines,
10623 Vedenov, Velikhov, and Sagdeev, 1962; Frieman and Rutherford, 196L;
Bernstein and Englemann, 195663 Moﬁtgomery'and Vahala, 1969), but is still
characterized byvdisagreements as to exactly what the theory does in fact say.
However, the subject occupies an essentisglly unique position in continuum
mechanics: iﬁ is the only example of an unsbable continuum system which apparently
leads to a simple set of dynamical equations from which a non-trivial final
turbdlen£ state can be deduced. For this reason alone, quasi-linear theory
deserves to bé examined carefully, even though some physical processes such as
particle trépping (see, e.g., Armstrong and Montgomery, 1969) we know are not
treated by it cofrectlyo (Tt can always be imagined that the difference between
the initial and final electric field energies is small enough that no appreciable
trapping’occurs, even if this is not the most exciting case.) Numerous consequences
of quasilinear theory have been asserted, and one purpose of this paper is to try
to separate those which can be prbved (convineingly if not rigorously), those
which‘it would be desirable to prove, and those which are not true. Particular
attention will be paid to the subjects of discrete, rather than continuous,
spectra, and to the possible inclusion in the formalism of Landau~-damped waves.

By quasi-linesr theory, in this context; we shall meén a. theory which
deals only with unbounded electron plasmas which obey the Vlasov-Poisson system.
We shall include no first-order terms in the discreteness parameter (as do, Tor

example, Harris (1907) or Rogister and Oberman (1969)), and thus obtain no



t — w approach to thermal equilibrium. We shall likewise not include any of
the higher~order corrections commonly called "mode coupling" terms. Some
considerable attention will be devoted to the differences between the two
and threé dimensional cases and the one dimensional case. The observation
that these are‘fundamentally different is due to Bernstein and Englemann
(1966), but we cannot confirm all of their conclusions. Another (to owr
knowledge new) consideration that is introduced is that of the differences
between the cases of continuous and discrelbe spectra in wave number space.
It'appearé»that the conclugions may be substantially different in the two
situations, and whereas laboratory experiments and computer simulations gener-
ally déal with the case of discrefe spectra, the theoretical treatments have
dealt (in.t&o and three dimensionsj invariably with the continuous % case.

Wé have some observations to make concernihg conservation laws and the
so-called "resonsnce approximation," wherein the growth rate of the unstable
waves is aliowed to go to zero at finite times. We note that some of the
more easily accessible of the conventional conclusions about the t — « state
can no longer be retained simultaneously with the laws of conservation of
momentunm and energy.

Finally, we present some numerical solutions of the one-dimensional,
discrete k, quasilinear equations in which the regonance approximstion is not
made. The results are similar in some respects, and different in others, from
the explicit final state which is usually given in terms of the "plateau" con-

struction and the equal~area rule.

II. SUMMARY OF THE DERIVATION OF THE QUASI-LINEAR SYSTEM

We consider an electron plasma with uniform positive background. Ve
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shall write the expressions, as a rule, in notatlion appropriate to the
three-dimensional case, with the allowed wave numbers E?taking on
a discrete set of valuese Except for numerical factors; the same ex-
pressions are appropriate to the twdndimensional case. Where needed, we
shall give the corresponding expressions er the one dimensional case,
and,indicaﬁe explicitly how the transition may be made to continuous A

The electron distribution function will be written

(¥, ¥, t) = £y (¥, t) + f(l)ﬁ?,T?, t), and it will be assumed that

e <y gy | (1)

for all t. TFor f<l) we shall assume an expression
DR 7,6 = E £ (7, t‘)eﬂg * ¥ ith £ p=1Tp. Sinilarly, the
, E%O
. O
electric fieldAEYEZt) will be written as E(X,t) = }ﬁ i%gt)elk "
K40
where ﬁ%{f) =k EE{t) = El;»(t), and & = Eyk. T is assumed to be of first
order in the same small parameter which measures | f(l)/ fo [, so that from
the exact equation for fo(§i t) (?btained by spatizlly averaging Vlasov's
Equaﬁion),

Se——— v .;) e 4 — :3
= } ) “)] f] > 5 ( )

A

we may conclude that fO is a slowly-varying function of time, since its time

derivative is of second order in this small paramcter. (e/m is the electronic

charge-to~mass ratio.)
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For its part, f;%?i +) will be assumed to obey the linearized Vlasov
i s o monb st

The situation studied is that which results when fO is initially a

sum of some stable distribution such as the Maxwellian, plus a uniform tenuous

stream of suprathermal electrons which pass through the plasma and render it

ol

weakly unstable to growing electron plasma oscillations, according to linear
theory.
The essential features of quasilinear theory are that: (i) BEquation (3)

and Poisson's Fquation are solved by using the lineor Landau (1946) solution

1

with f. "frozen," or treated as slowly-varying compared to fo 3 and (ii)

k 2

contributions to E%? and f?»from the rightmost Landau pole (in the complex

0

) ;

Laplace transform plane) only are retained. The location of this growing pole
is determined instantdneously by the slowly-changing value of fon

Fquivalently, we assume Tor ﬁf»(t) an expression of the form

f&% (t) = E’? (0) exp i— i\[o o(®) ar E ()

f

where Q(ﬁ)'z Q(¥,T) = a(iﬁ + iy(¥) determines the location of the pole in
the complex plane at time T.
The solution of Equétion (3) associated with (L) is
By (£) d1, /A7

f‘fg (v; t) = 2 N - ¢ (5)
iX - v~ )

Added to (5) should be other terms, if it is desired to match arbitrary

initial values of f?;(ﬁi 0). These would be of two types: (i) other, Landau-
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damped, contributions; and (ii) terms of fixed amplitude whose time dependence
is of the form exp(~ﬂ£) . R?t). Both are omitted by the following reasoning.

It is assumed that fp (v,0) is very small; both the additional classes of
terms remain of this same order or smaller. We include only waves which
grow initlally and e-fold several times, so that ﬁg (t) contains a factor
exp (fo tr('l?f)d»r) >>

eventually non-neglible amplitude, according to this criterion, from eventually

«» This does not prohibit a wave which has grown to an

becoming damped (v(¥) < 0). Tt only asserts that the validity of the approximation
t
requires Jf r(K)ar > |.
0
Closing the loop, the expression {5) is substituted into Poisson's

equation, ik %? = = Uy en ff? av , where n is the number density of

electrons arveraged over space. I EE’ # 0, this requires

‘ 2 B ' —
o NF /A
[ A (6)
) .- a®)

where (npz = lx nez/m.
Equation (6) is the Landau dispersion relation. As long as v(E) > 0, the
contours of integration are just along the real Veaxes. Tf v(K) went negative,

then one would loop around the pole - V= 9(15) in the usual way. If in
t
addition, exp/ y(RK)aT ceased to be >> |, one would pick up the exp(-ik ¢ Vt)
v 0 '
terms omitted from Equation (5). We shall assume for the present that even if

t
some v(K) were to go negative, f Y(X)dr remains >> |. [Even then, it will not -
0
be totally clear that negative y(¥K) can ve fit into the theory.]
In the situation of interest, we know that the solutions to (6) are, to

a good approximation,



o (B ¥ anZ + 3 k“vez .. (7a)

_ w 3

v(¥) 535 - 7y (w/k) (o)
: k" ,

. B B ., o
where P (u) = [ a¥ d(u-R - ¥) £,(¥, t), and vV ° = HZ F.(u) du. Hote
oM 0 e - 0

that co(E}) depeﬁds only upon the bulk properties of tlwle plasma, and if the
growth of the instability ceases before Zﬁ?f | E% ‘2 becomes comparable to mvez,
(X)) will .satisfy (7a) always and be time-independent. Equation (Tb), however,
Sl"lOVJ:SV‘fhat‘ T(f)% vary with time; anything which suffices to change FO(“)

ylocvallyfriea,r,u p w/k will cause *r('l'«'f) to vary without regard to the moments.

On Eqaatiohs (7), we also have the symmetry conditions

o(-B) = - ofF)
(R =@ (&)

(Bo‘oh ¥ and - mustiy be present for reality, and the growing contribution

from -k must have the same phase velocity direction as +K.)
Substituting Equation (5) into Equation (Z2) gives, using (8),
R - 3 f
%% s (3, %k (9)
. 5 t — -~
oV OV

where the diffusion tensor D is defined by

=3 2 X e -
Do 5 oy, LELELE (20
n® T (o(B)-K - V)T (E)

with G(E) =

i

T (t) 22 . C(f) clearly evolves according to




d Cpy
é(f) = 2 v(B) £(X). (12)

Both (k) and v(¥) are given by Equations (7), and it is to be emphasized
that in Equation (10), we have a discrete sum over K.
Equations (7) through (11) are what we shall be calling the guasilinear

equations. It 1s their consequences, rather than the validity of the under-

lying assumptions in their derivation, which is of primary concern to us here.

1f ¥ is a continuvously distributed variable, the same set of equations

results, but with the modification that in Equation (10), the Zi?cxkﬁ goes

. K = ~ - o -
- over intofdk) éC(E)) vhere éc(};)) = lim ( ;“ ) é(i?), L is the periodicity
. T co o )
length which, when finite, had defined the allowed discrete ¥ values incfﬁgL
- The same expressions apply to the two dimensional (2D) case, up to numerical

factors.

The analogous one dimensional (1D) equations are

.37, 3 3 Fpy(u,t)
“é".‘t"" (H)t) = 5;” (D(U-)t) ‘T“ ) p) (91)
D = _?__2_ ég(k) T (k) (101)

2 2 7
m T (o(k)=kp )™ + v (k)

%%-(Q = 2y (1) E(x). (111)

Both o{k) and y(k) are still given by Equations (7), and the symmetry con-
ditions analogous to (8) are w(-k) = -w(k), v(-k) = + y(k). The transition
to the continuum limit is straightforward. It should be noted that in 2D and

3D, k = f ﬂﬂl > 0, but that in 1D, k can be ecither positive or negative.
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it is readily proved, by use of the dispersion relation, that these
quasilinéar equations conserve both momentum and energy. For example, in
3D, it is readily shown that as a consequence of Equations (9)-(11),

=T . . ’\:? o R . =3
at = 0 and @ LTOt“/Qb = 0, where

[o N
=
2
k)

e

r 2
> 2 - LD
W =n/ a&x avsm . v + dag
Tot. 2 0 G

-

. =2 a7
PTotg ?/Adﬂ av mv fo .

it

'Both these expressions are infinite, but can be referred to unit volume and
'thereby made finite. Similar expressions can readily be proved constant in
2D and 1D. Cbviously, all systems also conserve particle number.

‘It can also be readily shown that Equations (10), (10I) do not conserve
Mot ana_?kot. in the large t limit, if the limit y/w - 0 is taken at finite

times. We will return to this point later.
IIT.  TMPLICATIONS OF THE BERNSTEIN-EHGELMANY "H-LIKE" THEOREM

A. The 2D and 3D Cases

Throughout this Section, we shall be assuming that the solution to the
guasilinear system can be obtained assuming no Y(E? in the Zﬁ ever becomes < 0.
As lon ds we remain in the regime of discrete EZ we shall encounter no con-
tradictions, Only in the linit of contiauous ¥ does the contradiction noted
'by.Berﬁétéip and Engelmann (1966) arise. We shall show that all v(¥) must
éventu&lly'aﬁproach zero; whether this happens in a finite or an infinite time
has‘eﬁe:ything to do with whether the quasilinear system has a well-behaved

solution with only non-negative y(k). We return in Section IV to the possibility

A - " . . . S N p
Tf we first restrict the sum in Equation (10) to growing waves, y(k) > Q,
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=
it is clear that for any vector Eﬂ a D & > 0. The equality sign, if

. - . -_.9
more than two linearly independent values of X are present, can only hold

if & = O. Using Equation (9) and integrating by parts,

3 f, = of
S fyelqw=--| —2 .5. -8 &7 <o, (12)
d‘t O 3 -.-:) .
S v Qv
with the equality sign holding only if
m,:;Q s 1 ° _)_. = O) <l3)
3 v 3 v '

. . . -
almost everywhere (i.e., except for a possible set of measure zero) in V.
. ; - - =
Again let us assume that more than two linearly independent values of ¥ are

present (otherwise the problem would not be three dimensional). Then Equation

(13) could not be satisfied unless d fo/a'$ = 0 for almost all ¥, or equivalently,

- . . . .
fO(v = const., almost all v. Since the equations conserve particles, this
constant could only be zero. However, fO cannot gpproach zero in such a way

f — - 2 > -
as to conservek/ fO dv and keep | Vv fO av finite,. and both these quantities

are bounded for all t (see Section II). Therefore we have proved that as long

- A -
as Y(K) > 0 for three or more linearly independent values of EZ % f02 av must

decregse. However, gince this integral is positive, this derivative of
%/‘foz av must approach zero. Clearly,»the only way to reconcile these two
statements is to have thezr(f)m—%—0+ as t —w; as long as we are not allowing
negative y(X).

In fact, all the 7(¥) nust go to zero, for the requirement (13) is equiva-
lent to & » O fO/a Vv = 0 if the corresponding v{¥) £ 0. But £, must - 0 35

| ¥V |—>w. By tracing £ « O £6/3 ¥ = 0 in from inTinity parallel to the ¥
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direction, we could prove :E‘O = 0 at any value of ¥ otherwise , and we have
already observed this cannot happen. Therefore, all y(X) — 0 , as t e
must characterize any acceptable solution.

The content of Equation (13) is then

= ~ I
D (¥, =) =Tp RRER) xd (ok) - K+ V) (14)
which then leads to the much weaker statement that

3 fo(“?,‘ )

T =0for E-7ao®, (15)
v

X o

again with the possible exception of a set of measure zero. Equation (15) is
simply the sté.t’ement that the unit normal to the surface fo('\?) = const. is
perpendicular to ¥ when K e V= ().

A similar statement api)lies in two dimensions, and Equations (14) and (15)
hold for the two-dimensional case as well.

The loci of points v satisfying ¥ - ¥ = o(R) are a discrete set of planes
in three dimensions and a discrete set of lines in two dimensions. It is showp
in Figure 1 how the surfaces fo = const., might arrange themselves t0 satisfy
Equation (15) in the t -« state.

It is here that the first significant difference between the case of
discrete and continuous ¥ has shown up. We see that in the former it is not
unthinkable that an internally consistent final state might exist where all the
r(ﬁ)—+ 0,, but do not pass £hrough zero. Bernstein and Englemenn concluded
that this vas impossiblé for tﬁhe continuous ¥ case, for the following reason.
If ¥ is continuously distri‘bu’ced, (15) has to be replaced by the much stronger
condition that o :t‘o/ dV=0 over’ an vinfim‘.te » continuous subregion of the v

space, so that fo = a constant there. Since particles and energy are (again)
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conserved, this constant can only be zer»n. Thus, the only imaginable way

we could find a consistent t — o state with all y(X) > 0 would be for the
particles to evacuate completely an infinite subregion of the v space. This
seems physically very unlikely, though no thoroughly satisfactory proof exists
that it is impossible.

Bernstein and Inglemann were led to the conclusion that an internally
consistent final state would require negative v(E), and that all y(E) would
eventuslly become negative. We shall return to discuss this possibility in
Section IV. TFor the present, we note that no such necessity arises in the
discrete ¥ case, although it remains an open guestion whether or not the
solutions of Equations (9)-(11) do have in fact the t — «» form we have shown
is possible for them.

B. The One Dimensional Case

B
In one dimension, the condition analogous to @ « D + a > 0 is D(u,t) > O,
which holds if we have any v(k) > 0 and we restrict v to be non-negative.

Analogous to Equation (12), we have

r oF 2
d . & 0 ; e
6:’{\/ _32 FQ dp = -—\[ <~5—'}1—“> Dadn <0, (121)
with the egquality holding only if

3 ¥, @

BT D(u,t) =0 (131)

for all u. The 1D case is uncomplicated by the geometrical considerations of
the 2D and 3D cases. Since if any v(k) is > 0, D > O everywhere, Rquation (13I)

would only be satisfied (for any v(k)>0) by Fy = const, This constant would



have t0 be zero by conservabtlon of particles, but FO must have a finite

second moment, so this cannot be.

-
We again have a positive definite integralﬁk/

hWE

FOZ du, whose Gtime
derivative is negative; it must therefore approach a constant as t - . By
the remarks of the last paragraph, this can only occur if the final state is
characterized by all v(k)- 0,-

For this reason, the relation analogous to (14) is

D) = T C() 76 (@(x)-hu);3 (141

note that (14T) is asserted only at t — «, a very different matter from
asserting it at finite times. The eguality (13I) now just requires the vanishing

of FO'(p) at a discrete set of points:

d Fo(w(k)/k, ) .
LR = 0. (151)
At other values of p, no information on Fo(p,w) is explicitly provided.

There is no doubt, then, that such a consistent picture of the 1D final
state as t —» » can be given, and some numerical details of the approach to this
state appear in Section V. There is no reason a priori to include negative
v(k), though this possibility is discussed in Section IV.

Passage to the continuum 1limit is straightforward in 1D, and unlike 2D
and 3D, no qualitative conclusions are changed by doing so. Unfortunately,
the explicit solution for ékk) at t = o given in the original papers can only
be given if the relation (14I) is asserted at finite t. We have already observed

the vioclation of conservabion laws this introduces, so there seems to be little
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practical incentive for considering the continuous k case.
IV. DAMPED WAVES AND NEGATIVE DIFFUSION COEFFICIENTS

Some obscurity has surrounded the subject of the inclusion of damped
waves (v(¥) < 0) in the formalism. They have been conventionally held to be
important for two and th;ee’dimensions, and though not essential in one,
desirable. It is our purpose in this section to point out some difficulties
associgted with the inclusion of r(f3 < 0 waves.

Several preliminaries are in order. TFirst notice that the "H-like" theorem
discussed in Section IIT depends on the result 2D a >0, all VZ in 2D and
3D and on D > 0 in 1D. From Equations (10) and (10I), we see that these state-
ments no longer hold if some y(¥) can be negative. In particular, if some v
goes from positive to negative, there will always be negative values of
2 - ;-)3 « 2 (or D) near enough to a(¥) = X + ¥ (or o(k) = ku) immediately after
Y goes negative. Since we have considered that only the perturbations which
grow out of the noise by e-folding several times are being considered, it makes -
sense to treatL/\tY(EvdT as >> L, at least until damped waves have been present
for several ewfoiding times. Therefore 1f damped waves are to be present, they
must arise from the transition of some Y from positive to negative. It likewise
follows that the presence of any damped waves implies at least a temporary loss
of the positive-definite character of the diffusion coefficient over a finite
region of its arguments.

Second, it is well known that serious difficulties arise in diffusion-like
equations when the diffusion coefficients become negative. This can be illustrated

by the following one dimensional example. Consider the equation

Es) 2 §dv(u> -«a—LWSF(‘j*“)é (16)
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»

where d{u) is wnchkion of which is negative in some interval. 1In
Ll H )

that interval, consider a perturbation on the solution of the initial form

Fg{u§ t=0) = F (1) e ", where the u-space wavelength, 2n/c, is 50 much less

(o7
than the characteristic size of the interval over which d(u) varies that d(u)
can be treated as essentially consbant:

o > } at{y)

s

F&(ujt) then obeys the equation

5F3<U‘9t> o 2 . )
wﬂwg%.ww N 4 OLFQ{H)-E)} (18)

to which the solubion is
2
Fa(u,t) = Fo(g} exp{tﬂx at } . (19)

Consider Fa(u) as given and small, and t as fixed. TFor 4 < 0, we can make
Fa{u,t) as large as we like by making the wavelength 2n/a as small as we like,
Said another way, arbibtrarily small changes in the initial data make arbibrarily
large changes in the answer after fixed, finite t. Such a lack of well-posedness
is generally held to render a differential equation useless for describing a
physical system. (Note that this is not simply an "instability", where, to get
ansvers arbitrarily faor apart for small initial data differences, one nmust go
to infinite %.)

This is an indication, bthough not a proof, that damped waves may not be
posgible to include within guasi-linear theory. [In Eguation (9I), for instance,
D implicitly involves the vnknown T through v(k), whereas in the example, d{u)

was a given time-independent function.] The numerical results of Section V,
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however, Strongiy indicate that difficulties do arise, since numerical integration
routines for solving Equations (91)-(111), which function smoothly for v(k) > O,
become wildly'unstable if any v(k) < O.

~Parallel arguménts are readily constructed for the 2D and 3D cases. We
are left'ﬁith sﬁiong indiéations, but ne proof, that damped waves cannol be
includedvin‘quééi~linear theory in a consistent way.

One ﬁay~out,of the impasse suggests itself, but unfortunately does not
seemvfé'heiﬁz namely, the inclusion of contributions from additional poles in
»Eguatioh (5)8' The réason this'does not help is that all these have time depend-
ences 5 exp[«i? f'ﬂ%}, and-contéiﬁ as a multiplicative Tactor the initial small
noise level frpmvwhich the unstable waves aré assumed to have grown. Since by
assumption-\/ﬁtrcg)_dT >> when'y(f)'first goes negative, the exp[-ikK . V)

A o

terms are too small'to compensate for those retained in Equation (9).
. V. NUMERICAL RESULTS IN OHE DIMENSION

HThé'diSCQSSion up to this point has centered around possible final states
for the Quasilinear equatiohs. in the absence of rigorous existence proofs for
the'solutiéns,-thé-main avenve to debtermining whether the equationskdo in fact
iead‘tokéuch_final stétes would seem to be by solving them numerically. Drummond
and Pine% (1962) in their original paper considered the numerical problem of

solving Eéuations~(91)~(llI) in the resonance approximation Y/{Yz+(0fku)2]—%ﬂa(quu)g

We have already obsérved, among other things, that conservation of momentum and
energy are no longer preserved under this approximation; it is therefore of in-
terest to give a numerical solution of Ernuations (9I)-(11I1) without making the

resonance -approximation.
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For numerical purposes, it is convenient to refer all guantities to
dimensionless units, which may be thought of as lengths being measured in units
of the Debye length %i/ui’ times in units of the inverse plasma frequency
a%l, and velocities‘in vnits of the thermal speed V..

The initial velocity distribution is a Moxwellian, plus a Maxwellian

"bump" on the tail:

F(1,0) = (Zn)"%" {0-93'e><1>("u2/2)

| + 0.07 éxp(—(u—h)Z/ZJ s (20)

in the dimensionless units. Since we are interested only in the qualitative
features of the solutions to.(9I)—(llI), having once derived the equations, we
can»relax somewhat the various inequalities used to derive them. [Thus, for
example, the "bump" in Equation (20) is located at about four thermal velocities,
and it is largely a matter of taste as to whether 4 can be counted as >> |.]

The boundary conditions Fo(7,t) = FO(7,O), FO(-T,t) ='FO(—7,O) are imposed for
convenience; all the significant‘development of FO occurs at velocities less than
that.

In Figure 2, the development of Fo(”’t) in the neighborhood of the unstable
waves is shown. There are fen values of k‘present, and their phase velocities,
1/k, are located between u=3.0 and y=3.9. The initial values of the ((k) are
all 0.003. Conéiderably finer detail in Fo(u,t) and D(p,t) needs to be retained
in the neighborhood‘of the phase velocities than elsevhere. An apprcpriately
matched explicit finite difference scheme for -7 <p < 2.1 and an implicit finite
difference scheme for 2 <p < 7 are used. The 7's decrease, and as they get

closer to zero, D(p,t) of course becomes more sharply peaked. This necessitates
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a much smaller step-size (Lu=0.025, At=0.005) in the resonant (implicit)
region than elsewhere, where Au can be chosen as 0.1, and At as 0.01,

It can be seen from Figure 2 that in the course of the development of
F_» regions of positive FO'(u,t) can result at values of y where FO‘(H,O)
was negative. It is interesting to observe the different’consequences of
allowing phase velocities which lie only in the region of initially positive
FO'(u,O), and allowing those which also lie in regions which would initially
correspond to negative y. These are the dased and solid lines, respectively,
in Figures 2. A stable program can be applied to either case if we simply
instruct the computer to set Bgf(k)/ét = 0 at a given time step if Y is negative,
but to obey Equation (11I) if v > Q. (Thisris the equivalent of only counting
growing waves, analytically.) » ‘

In Figure 3, a logarithmic plot of D(u.t) at an eaily time and at a late
time is shown. In Figure 4, a plot of the»entire FO(M;t) is shown; note the
modification of Fo(p,w) far from the resonant region.

Figure 5 is for a three wave case, wherein one of the phase velocities has
an associated v < 0 initially. By t = 2.0, appreciable unstable oscillations
have developed, and by a later.timej they are off scalé. This is characteristic

of attempts to include negative T;
VI. SUMMARY

Tt has been argued that: (1) ig the'case of discrete E?spectra, a con-
sistent version of the quasilinear theory can be given without damped waves
in one, two, and three dimensions; (2) ﬁhg inclusion of damped waves by any
known prescriptioﬁ renders the theory ill-posed in one dimension, and very

probably in two and three; (3) qualitative differences in the theory, the origin
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of which is not fully understood, appear in the transition to continuous T
in two and three dimensions; (k) for an internally self-consistent theory
satisfying the conservation laws, one must not use the "resonance approximation"
v/e = 0 at finite times.

In (&), we should remark on a recent proof by G. Knorr (1969) that if an
expansion in yv/w is done correctly, new terms in the diffusion coefficient
appearbwhich recover the conservation laws; However, the usual t —» @ calculation
of the bne‘dimensional.ékk) can no longer be salvaged.

In ciosing, we should remark on recent numerical simulations for ZD and
3D plasmas by Morse and Hielson (1969). Because the CXEﬁ ?TTJ?T{E they imply
confirmation of the Bernstein«Englemann continuous ¥ version of the theory,
which also has this as a prediction. It appears that no more detailed comparison
than that has been attempted, however, and the simmlation at this point stands
as equally gompelling evidence fof‘any other theory that predicts the vanishing

of the electrostatic field energy at long times.
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FIGURE CAPTIONS

Figure 1. Possible contours of fo(ﬁﬁ = qoﬁsﬁ. in two dimensional case; The
smooth curves ére the t = 0 values and the distorted ones are for t = . Wote that
for discrete Fi-i?- BfO/S? =0 att = o (exéeﬁt for d set of measure zero) on
the lines'wv;‘? ~'32 leaving the integral expression on the right of Eaquation
(12) zero. | | |

Figure 2. pne'dimensional Fb(u,t) in the neighborhood of the bump on

the tail, for the case of ten waves. The dotted lines pertain to the case
ﬁhere only initially fositive Y(k)-are included, ﬁhereas the solid curves also
include Waves‘ﬁhiCh had initially negative r:{and,for which B(i (k)/ 3t was
initially set =:O]-which later went positivé; |

Figure 3. . Logarithmic plot of the one diﬁénsion#l diffusion coefficient
D(n,t) at two times. Tﬁe~situatioﬁs correspond to those in Figure 2. liote

that by t = 1.66, some of the Y(k)[(a»ku)z + YZ(k)]-;‘have already essentially
become delta functibns. |

Figuré L, Plot of‘ﬁhe total distributiqﬁ in one dimension initially, and what
is essentially the t — o state. The région of»?hase velocities corresponding
to waves develops the familiar pléteau étructure, but the platesu level is higher
than that predicted‘by the resonance approxim@tion; The main body of the dis-
tribution is’modified down to uA=‘O, |

Figure 5. The cffect of including one neé&ﬁi?e’r(k).u In contrast to the
cases shown previously, a negative Y(k)‘was‘inéluded,’and the corresponding
B(f(k)/at was not set eQual to zero. There are ohly three waﬁes present in this
case. By t‘z 2.0, strong numerical instébilities,had developed; slightly later,
Fo(u,t) was‘off scale and < 0. Such behavianwas only observed when it vas

attempted Lo compute with negative v(k).
18 o 7
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