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Introduction	 1

The work reported in this interim report represents a brief summary

of three of the activities being carried out at the Polytechnic Institute

of Brooklyn under NASA Grant NGR-33-006-020. The three areas are:

I. Study of Convolutional Codes

II. Coding for a Dispersive Channel

III. Recursive Signal Processing

We have obtained some new results for convolutional codes by extending

some error bounding techniques due to Forney. In particular, we have developed

a unified treatment of erasure and variable list decoding, which, we hope,

will be useful in analyzing the performance.of proposed practical algorithms

for decoding using a list. The main objective of the continued research in

this area is to develop a simple and practical algorithm for decoding con-

volutional codes which does not require as much memory as the viterbi algorithm

for maximum likelihood decoding nor as much computation as the various sequen-

tial decoding schemes.

The second area attempts to salve an old problem via a different

approach then usual - i.e. reducing the effects of intersymbol interference

in digital communications by using error correcting codes rather than by

linear operators using equalizers. The main idea is to use the dispersion

in the channel to perform part of the coding operator. Standard decoding

methods are used. Under certain conditions, several orders of magnitude

improvement is possible.

The third area, on recursive signal processing, is a continuation of

work initiated over a year ago. The main emphasis is on discrete, quantized
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processing of data. Several new algorithms were developed and preliminary

simulation results indicate significant improvement over approaches derived

from classical techniques when quantization effects are important.

The common thread of thest.. three areas (and others not reported here)

is the emphasis of discrete digital processing for digital communications.

Details will be produced in the final report and in expected published

papers and theses.

The following faculty and their students are being supported in this

program.

Raymond L. Pickholtz, Associate Professor

Jack K. Wolf, Professor

Richard Haddad, Associate Professor
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I. Study of Convolutional Codes

We have extended Forney's method for analyzing random tree

codes, to allow investigation of a broader class of decoding algorithms.

Specifically, consideriu maximum-likelihood decoding of a terminated

tree code, Forney established the equivalence of a decoding error and

the existence of a single unmerged span over which some incorrect word

has greater likelihood than the correct one. We, then, actually loosen

this bound by calculating the probability that some incorrect word has

greater likelihood over one or more unmerged spans; the resulting bound

is found to be asymptotically equal to Forney's. The advantage we gain

is ti-.at we are now able to analyze algorithms where the event of an

error cannot be equated quite so neatly with the occurrence of a single

unmerged span with greater likelihood (viz., list decoding).

As an initial application of the method, we obtain, for tree

codes, a unified treatment of Erasure and Variable List Size decoding,

analogous to that developed, by Forney, for block codes. Referring to

Forney's papers (and using his notation), where he obtains complementary

exponents E 
i 
(R,T), i = 1,2 for block codes, we find analogous exponents

e i (r,T), i = 1,2 for tree codes, given by:

e i (r,T) = inf
µe(0,1)

E i (µn, (1-µ)T

1- µ ; i = 1,2

Further, analogous to the Feedback and List exponents, E f (R), EI(R),

respectively, that Forney obtains as limiting cases of E i (R,T), i = 1,2,

we find exponents e f (r), e,(r) given by:

Ef(^)(µr)	 -
e f( ^ ) (r) µe(n̂fl)	 1-µ

as Feedback and List exponents for tree codes.



(Ex-very noisy channel)

E  (r, T)
Rcomp 0
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In the case of the Very-Noisy channel, we know e f (r) in closed
1

form; e l (r) is known in closed form for r < c /2, but must be calculated

by computer for higher rates.

Along the way, we have had to establish certain properties of

the exponents E i (R,T), i = 1,2 (viz., convexity in (R,T)). We have not

yet characterized the properties of e i (r,T), i = 1,2, but we can lower

bound them by relatively meaningful quantities as:

1
	 E1(u'r' 

T)
e (r,T) > e (r,T) = mf
1	 — 1	

µe(0.1)	
1-µ

e (r,T) > e2(r,T) = e 1 (r,T) + T
2

For a fixed value of T. we can show that the behavior of e i (r,T) will

have the form:

I
R comp ( T )	 C(T)

where 
RcomP 

(T), C(T) may be calculated for the given value of T (the above

result can also be seen quite clearly from Forney's sketch of the

e i (r,T) surface).



II. Coding For A Dispersive Channel 	 ►

The problem considered is that of reducing intersymbol interference caused

by time dispersive channels. This is not a new problem, and much recent work has

centered on the use of the Tapped Delay Line (TDL) equalizer. The conventional

approach is to choose the no dispersion channel as the desired channel, and then

to minimize some measure of the intersymbol interference.

The approach taken in this report recognizes the encoding properties of

time dispersive channels. These channels process the transmitted data in much

the same way as the generator of a cyclic algebraic code. Two methods of attack

are taken. In the first method the code generator coefficients are used as the

desired response for an otherwise conventional TDL equalizer. This method is

termed the Coded Equalizer method. Transmission of k q-ary symbols through the

channel in cascade with the coded equalizer results in a code word. Thus, error

correction can be obtained with an ordinary algebraic decoder, and without trans-

mission of parity symbols. In the second method the channel encoding is accepted

without further processing by a TDL equalizer, and is subsequently decoded by a

channel decoding matrix. This matrix is designed to minimize the additive noise

variance subject to the constraint that intersymbol interference be eliminated.

A modification of this method allows trading computation time for a limited amount

of intersymbol interference.

Upper founds on the probability of error are derived for both methods.

These bounds are in the form of easily calculated error functions. The parameters

of code block length, number of information symbols per block, and alphabet size

appear explicitly.

Computer simulations confirm the derived bounds and show that under certain

conditions orders of magnitude improvement in error rate can be obtained.



III. Recursive Signal Processing

Two different areas in optimal filtering of discrete-time data are under

investigation. The first study deals with optimal state estimation based on noisy,

quantized data, while the second considers bias effects in mismatched minimum

variance polynomial filters.

(I) Nonlinear Recursive Estimation with Quantized Data.

The problem considered here is the optimal estimation of the state of a

dynamic system based on qua,itized, noisy measurements. The results obtained are

particularly applicable when the granularity is coarse and the usual quantization

model (additive, independent, uniformly distributed noise) is inadequate.

The state of the system is generated by the vector difference equation

x(k) = f[x(k - 1), k] + G(k - 1) u(k - 1), k > 1 	 (1)

and the noisy measurements before quantization are described by

y ( j ) = h[ x ( j ), j ] + v(j)
	

(2)

Upon quantization, this measurement is degraded, and the information at the quantizer

output (upon which the state estimate is to be conditioned) is that

a (j), < y(j) !:-1. b(j);i = 	 1, 2, . . . , k
	

(3)

In Eqs. (1), (2), (3) u(k) and v(j) are sequences of mutually independent gaussian,

vector random variables with zero mean and covariances

E(u(i) u'(j)}	 = 4(i) b ij ; E(v(j) v'(i)}	 = R(i) bij

We also assume that p[x(o)], the initial state probability density is known;

that each component of f(.,.) has continuous derivatives, and that p(x(o)) and

h(.,.) have continuous second partials.

A direct approach to the determination of approximate algorithms for the

recursive calculation of the mean and mode of x(k) conditioned on the quantized



data is taken. An exact equation for the conditional mode estimate is derived

which requires the solution of a nonlinear two-point boundary value problem.

The latter is linearized to give an approximate recursive state estimation

algorithm of the predictor-corrector form

x(i) = x(i) - P(i) hx [x(i)] d[x(i), R(i)] 	 (4)

where	 x(i) = f(x(i-1)) represents the predicted MLE

and	 P(i) = (1-P(i/i-1) L[x(i)]) -1 P(i/i-1)	 (5)

P(i/i-1) = fc[x(i)] P(i-1) fx'[x(i)] + A(i-1)

In Eq. (5), hx, fx represent matrices of partials of h, and f respectively,

A(.) = G(.) Q(.) G'(.), P(o) is related to the initial state density; d is

calculated from the known sequence of gaussian density functions, and L[x(i)]

is the matrix obtained from the first partial of the product hx(.) d(.,.)

evaluated at x(i).

An approximate conditional mean estimate is derived upon making the

simplifying assumption that at each step the a priori density of x(i) given

the priori measurements is gaussian. This approximate estimator also has a

predictor-corrector form

N	 /y

x(i) = x(i/i-1) + W(i) d[x(i/i-1), Py(i)]

where	
b(i)

j[y(i)-h[x(i/i-1)]g(y(i)-h(x(i/i-I),Py(i)]Idy(i)

d[x(i/i-1),Py(i)] = Py-1(i)
	

b(i)
9(y(i)-h[x(i/i-1)], Py(i))dy(i)

a(i)

and

Py(i) = hx[x(i/i-1)] W(i) hx'[	 + R(i)

W(i) = P(i/i-1)



and h
jxx 

is the matrix formed from the second partials of h j (.) and where g(.,.)

represents a gaussian density.

Monte Carlo simulation of these algorithms demonstrated the superiority

of these over the Kalman filter in which the quantization error is approximated

by additive measurement noise, at least for the examples considered (first-order

and a second-order system) whereinthe granularity is coarse. The improvement

in the RMS error is by a factor of 10 for one example.

II Bias Effects in Mismatched Minimum Variance Polynomial Filters

A steady-state dynamic error, or bias, results whenever the model of the

signal process (and the filter designed on the basis of that model) is an inadequate

representation of the actual filter input. Suppose a finite-memory polynomial

filter is -orrectly designed to smooth polynomial inputs of degree M. Bias errors

result when this filter is excited by non-polynomial inputs, or by polynomial

inputs of degree L > M. Our study is devoted to the latter aspect, which we view

as resulting from the fact that the state vector of the input is (L+1) dimensional

whereas the filter state is only (M+1) dimensional.

Under matched conditions, the filter algorithm for a p-unit prediction

interval is

N
J(n + p(n)) = H'(p) f

where f' _ [f(n) f(n-1) ... f(n- )] is the noisy data sequence, and t(n) is the

state vector of the input, and ^(.) its estimate, and

H ( p ) = H( o ) i(p)

v'here	 is the state transition matrix, and

H(o) is the product of known matrices of the form

H(o) = P1 C-2



By partitioning the state vector, and all the associated matrices according

Fo

E
•m

Fm+l

^C(t)

^Ll(t)

F2(t)

to

LN _ I

we can determine the bias according to

b l (n + p/n) =	 (p) E2 (n)

where N2 (t) represents the bottom part of the partitioned state vector

vm+1 x(t)/(rf+l): 1

N2 (t) _

	

	 where x(t) is the noise free input.

p x(t)/L:

: 11	 112

and B(p) _ 
[ill (p)	 + i12 (p) 

x223, where J(p) =	 is the transi-

*21	
*221tion matrix

r 22 is a submatrix of r,

a known matrix

and	
= (-1)m+111	

5 21 +	 22 E
21 '111 ' Jl, all known matrices

and	 b l (n+p/n) = E{F l (n+p) - F n(r+p/n)} is the bias error in prediction.

These results are g-zncralizations of specific work found in texts by

Morrison and Blackman. Specific cases can be evaluated to minimize or keep

within tolerable bounds, the bias by suitable choices of p, the prediction interval,

and N the filter memory. Usually p = - N/2 is a good choice; but this represents



a smoothing estimate as distinguished from filtering (present-time esLimating)

or prediction.
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