@ https://ntrs.nasa.gov/search.jsp?R=19700010181 2020-03-12T00:58:19+00:00Z




The Variational Method III =-- Steady State

%
Time Dependent Perturbation Theory

by

Saul T. Epstein

Theoretical Chemistry Institute and
Physics Department
University of Wisconsin
Madison, Wisconsin

I WOULD GREATLY APPRECIATE YOUR CRITICISMS, COMMENTS, AND

SUGGESTIONS CONCERNING THE CONTENT AND ORGANIZATION OF THESE LECTURES

. 1.2,

This research was supported by the National Aeronautics and Space
Administration Grant NGL 50-002=001.



138

XXII. Steady State Time-dependent Perturbation Theory

Thus far in our discussion, the Hamiltonian has been explicitly
independent of time. Now we wish to discuss the response of a system
(atom or molecule) to a time dependent external field. Thus we wish
to solve the time dependent Schroedinger equation

éze,‘*arf = (H*’)AW)Q_.’ = 0% (XXIT-1)

WSS

2=

where %ﬁ is the time independent internal Hamiltonian of the isolated
system (we therefore ass;me we. can separéfe off the center of mass
motion) and fﬁvv represents the effackt of the external field. 1In
particular w% will be concerned with situations in which the external
field is sufficiently weak so that a straight forward perturbation
approach is appropriate (since we have included only one order of
perturbation in (1) our formlism will be strictly applicable only in
the case of a time dependent electric field, However, the formal
modification needed to incorporate a magnetic field should be quite
obvious).

We will be particularly interested in situations in which)AVJ is

w TIMe —

simple harmonicV with frequency W and in which initially S{f=-<Po 5

where \¥0 is the normalized ground state wave function for V%

B Y, = = \% - (XXII-2)

C\%) Yo =1 (XXII-3)
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N
Also we will treat '%i as nad degenerate, That is either it ig nowv
R ©) .

3

Tk
degenerate or, for reasons of symmetry W does not mix with the
3 Y 9 ]

other degenerate eigenfuncti

]

'

ong. To make the pf@blem reslistic we must
specify how fAV@ is ”turne& on', The kind of phenomena which result
can often depend in detail on this information. Because of its in-
trinsic interest In connection with the index of refraction for dilute

gases, and because it 1s the natural extension of our earlier discussion

Pedo

of stationary states, l.e. energy of eigenstates, we will largely con-

(&)

fine cur attention to the steady state responge of the system to the

simple harmonic perturbation. (The generalization to several fre-
quencies again should be obvious in low orders.)

This however raises a problem. TFor a real system the total re-~
sponge consists of a transient response plus a ateady state respouse,
and the transient response, which depends very much on howjpﬁVJ is
turned on, dies away in time becsuse of some natural damping wmechanism.
Thus, whatever the initial condition, one can isclate the steady state
response simply by waiting long enough. However, in our model of an
isolated system in a given exterunal field, there is no natural damping
-= no collisions, no quanta, no reaction on the sources of the field.
Thus in order to isclate the steady state response it behooves us to
try and eliminate the transients. Fortunately the method ig well
known. One imagines the field to be turned on very slowly ("adiabati-
cally™), starting at %i2§==d; . Thus for a gimple harmonic perturba-

tion we take f&wvto be of the form




[ — aa A 7 v o .Y
\)J\f = \‘V a&/ @7 A \\ 9
» A ol -
4 . N
{ A SWE S
\) f o= \\\J\} U o \"M“ . e. I
_

with 2P, and we will be
the end of the calculations

SN to be Hermitisn we must

3 . N ;
Wo = LWa ! (LRI -5)
where\®J$, may depend of the particles,
Y &
. o o =
In particular, in a si & =
- -
e ') 73
fee W = — €, Reo € :
W%m:—;ﬁ W = 5 ? g ﬂi& é«@ )
=.—;\)

, i . v C s
where (@9) is the charge of the s'~th particle and K¢ is b%@ positio
vector referved to some fixed origin.

4 N
//¢ . §%§
For a neutral system note that the v.h.s. of (&) ig transls-
tionally fnvariant and therefore depends only on intermal co-

ordinates. For a n@nzg@ut:alcgysgem we wouid include only
the internal part of DE Z§Q§> s Un W Problem: Con-
sider an atomic ion. Using the usual coordinates (center of
mags, nucleus, electrons relative to nucleus) find the
internal part of © . Do the same for a diatomic molecular
ion using some sultable coordinate system.

Sz

Froblem:
magnetic field

\\§"Eo

=

[
-
r

it
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Gordon

"damping

per turbation tre nel J a nore comnents on this point

lateroil

AXTLIL,

problem,

the sort

various other
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e Vi i}\ —
%% Lk, V=0 (XXIIT=1)

ization is preserved in time and so is ortho-

3

and (XXII-7) then this means that for our

problemn

( $ F¥=\ (XXTIT=2)

{(B) Time Dependent Hellmann=Feynman Theorem

the case of a spatially uniform electric field.

Consider ag
Then the quantity of physical interest in determining index of refraction

phenomena is the induced dipole moment of the system and, evidently, from

(X¥I1=6), thisz will be proportional to

CB W) = 0F, 3 @)
o)~

We now use the Schroedinger equation teo write this in another form.
First of all we have the identity, with ¥ an arbitrary real parameter

which conld be fﬁ in partiecular,

_ v »
g (D BR1= O 09 + (3028 4900 ¢)

the Schroedinger equation, we can rewrite as

g
=
E—l
3
=
o
[a1}
=
o
]
Fu.

2 L§ /M'\%ﬁm kf%y @\t) —% @ L __} {9, ag@) (XXIII=3)

nd we can also use the Schroedinger equation before we

differentiate with respect to T and write

O, RE )= T AR R :( IF b%) U,

3 (XXTLi-4)
(5‘\»«{

a@‘“@)
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Equating the vight hand sides of (3) aud (4) then we have

(@, oGy =L () 0"\ 40 [ H¥
Ta ) : b@“€> - Y ) >0

Q&g @%}?‘g?m v ’fl (\;)B (KXITI-5)
o

which is the time dependent Hellmann-Feynman theorem (Hayes and Par¥,

J. Chem. Phys. 43, 1831 (1961).)

Problem: Show that in the static case, and éf an enerygy
\;eigenfuﬂ@txjmﬂ this reduces to the Hellmann~-Feynman theoremo;/

XXIV, Direct Sclution ~~ The Méthod of Variation of Constants

With all this behind us it 1s now easy to see, at least formally,
g2

how to solve our problem. If we expand %& in a perturbation series
Loy by g
e
% L %g %’}A‘ Ao (XXTV=1)

then from (¥XI1-1) we evidently find

(g - 4 éa%)g @ oag (XXTV~2)
-a-\\ 4

O = wﬁ;”} W oew F o (XXIV~3)

; ) ) vy

O\ =% 5% ) R w N ey (XXTIV=4)

etc,
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Since condition (XXII-7) is independent of rm it then follows that
W) -L e
k= ‘%Joé <ot (XXIV-5)
To solve the remaining equations we write,

I ;2 Q\;EM} w 77 St (XXIV~6)
.

where the @Hémﬁ are functions of time, the 4@; are the time-independent

complete orthonormal set of eigenfunctions of , and the k;& are the

eigenvalues:

\T‘P%‘éa 2 = ‘%‘q{\:a

Q}%‘s’\s{c)\n\ = %Kg,

(As is customary we have used a discrete notation.) To satisfy the

initial condition we then require that

e > o o0 (XXTV-8)
=% ~ oo
Inserting (6) into the n'th equation of the sequence (2) = - ~
and using (7) " one readily finds
. TN NS -PRENRE o
Lodae™ 2 Ckewnkye Tk “’"Wd)
3¢ L QA
whence, using () we have
£ - -
(S 2y £
F 3 M) "
< L) W (Y,
N O\p . gé)c L &y Lg) O\:\' Lt) LMD (XX1V-9)
o ) . : )
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we may integrate

and, at lsast formslly, solve our problem.

/7 -kt
- /

Problem: Write \%;}ZZ Thi\%%@

- LR
&qgg;‘; :@K)@ &w&bg @l% f @W’M’/q@)h ')

and hence derive (9) by expanding @=u in a perturbation
series, If ngﬂ then the form (®), with the e

constant, viel s solution of (XXIi-1). Hence ;
the name constants’,

AN

W

(%7 and derive

e

S

However is unsatisfactory on two accounts. Filrst of
all it yields the solution in a "sum over state form' whence unless the

discussed in connection with the analogous formulation of stationary

state perturbation theory. More important, although carrying out the

time integrationsis in principle straightforward, it can become very

m@ssy even in the simple harmonic case where only simple functiouns

(=

appear. In the next sectlion we will discuss an alternate apoproach in

which, for the simple harmonlc case, we essentially guess the time
o e s , ,
dependence of the \% and then are left with differential equations

to solve for the spatial dependence, differential equations much like

those we heve discussed in connection with stationary state problems

[0
3
(L

and to which we mavy

m
’*;‘}

apply all the techniques devaloped there,
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at of time 1s then evidently suggested, and

choice in that by inserting (2)

ime dependence we are led to the

{(X&V=3)

\%jl? - ;E; \?@5 (N%% »\L5$ %%@:> (XXV =5}

S = Vel PO
=

Ep- Bp S0

Ny

Y oand (5).) Note that@ﬁﬁ%%‘%%g gilven by
ed through first order. (Problem: Prove
N t the general solution of (1) is

P ﬁ«ﬁy% p BT where the MAw are constants., The
with %40 would evidently imply that the
me sort of transition, and heace are part
sponse., The term with ¥ =0 can simply
% zse factor if we vequire that ¥ be

tha
-

7

as
[
i

Now let ws fturn to the second order equation. Using (2) it ve:

o noadt
. —) Awlo N ) va Wre  cly e B XXV <6
(= £ 2)F 1 ™ T w I P

the aneatz

iy S0 YL

—n (Ep-rD e ) N
q, (XXV=7)

¢ W) o By
\‘%TA: A}m@’ % Q/ v%\%ﬁ}j&j‘g

O

we are led to the time iadepeundent
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vy

( -
(W— &g t2d “e? % W, =0 . (XXV=8)
9 L)y ‘
(,\%—-\?'.1)"7«"‘) ) Q(U:) £ W_ L%,,, =D (XXV=9)
(- €9) B quy ¥ W) =0 (XXV-10)

However now we see a difficulty. Namely equations (8) and (9) are
perfectly consistent inhomogeneous differential eqﬁations with formal

solutions

*

(XXV=-11)

-
- v

however (10) as it stands is inconsistent. WNamely, viewed as inhomo-

geneous differential equations there is an essential difference between
(8) and (9) on the one hand and (10) on the other =~- the homogeneous
part of (10) has dvo as a solution, while (except for very special
values which we will avoid =-- they yield the resonances mentioned
ear lier) the homogeneous part of (8) and (9) have no solutions (more
precisely no acceptible solutions) since Eptwd will not be an
eigenvalue.

If now we take the scalar product of (10) with “%b we then derive
the well known result that when the homogeneous equations has a solution,

then the inhomogeneous part must be orthogonal to that solution:

(G &
(\S(o, WeT aW_WY) =g (XXV-12)
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which is certainly impossible since from (5) the left hand side is

—

Z qu,\U+ ‘%\9)@@3&&}&#0) m 2 C\%}Wd%\i} (}%)w\,,ﬁ_%>
“ Be—Bg-u e . i

By By kv

which, remembering that W = (Aw%) , we can write as

v
5 ‘L
~ 2 \fﬁiﬁlﬁi:ﬁi2lj= - R ) (XXV-13)

which in general won't vanish.
Evidently something has gone wrong with our snsgatz. The clue to

seeing how to rescue the situation is to consider the static

W 0 . What do we expect there? The answer is given by the fawous

adiabatic theorem: In the steady state starting from a norwalized non-

S

degenerate eigenfunction of Y , X will be come the corresponding (in

the sense of perturbation theory) normalized eigenfunction of ¥ +}3% o3

~a et |
J = \\( e o D (XXV =14)

where

(R ) Q#’* E ¢ =0 xwvels)

and

\§

- Wy
E = Bot pE %}?E‘

3

quy—%bxkﬁvQM%«»» (XXV-16)

W,
(XXV-17)

Now expanding (l4) in powers of }k we see that there are terms lineay
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in k:, quadratic in t?, etc. representing the energy shift brought
about by the perturbation. Now the point is that we may expect similar
"permanent' energy shifts even with non zero frequency =-- the so-called
"lamp shift”.‘;See for example Jomes and Verschueren, Phys. Rev. 176,
42 (1968):] Most naively suppose we (incorrectly) apply %ﬂ\@ stationary

states energy formula

BE= Bo% (Yo W) o 1 GZ) \ (i, W‘%)i\;v
pr o) oy G et
EBe—Co
to a time dependent \W . Then we see that in addition to oscillating
terms there appear, first in second order, terms which are independent
of *: (terms which don't vanish on averaging over a period) arising
from cross terms involving as many VU¢= as W_ 4 terms therefore
which are suggestive of % permanent energy shift) brought about by the
perturbation r&d. ﬁ

This line of argument then suggests that we amend our ansatz (7) to

read
_ cCat @ - tgpan) b eyt
W o - Cx:,o-—«z.w\“c \l-—) A C» ~n tep ¥ R AT

where & is some constant which is to be determined. Inserting this
we then find (8) and (9) as before, but now instead of (10) we find

(Problem: Derive this)

W) (O \~) -
(W -80) ¥, 4 Db W) — & Yo =0 =183

whence we will have consistency if

(>~

) 4w
€ > C\'\'O)Wh— & ) <+ e ¥ (XXV-19)
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ENote that from (13) it follows that & is t’eallv .The formal solution

of (18) is evidently

\XJLZ)““ _ Z \gfwg; C\J\’\z,j \?&J% \:’Vj\) &—%\.U,A Qﬁ’;ﬁ) %r» C %ﬁ/
o - b0 T T ¢

where the real part of the cons tant <

(RN ~29 )

can be found by requiring that
‘E be normalized through second Ordere{ Padim 1 o Haad %‘Wa Q*ﬁ‘?"‘?’g‘};&@
D\qowﬁa ’6 @,e - )C*g’: D L Muﬂvw»ﬂ%vg}@ \‘éiﬂ@wiﬁwféng 6%\““;

<y

Problem: Compare € with the time independent term in
E\q,) above.

Problem: Show that the imaginary part of C does not con= '
\ tribute to expectation values through second order. f

XXVIL., The Static Limit and a New Ansatz

Let us again consider the static limit W-%p and for simplicity

- let us put Wy=W_= AW . Then from (13) we see that
+ -

&= 4 E\L)
IR

: —\
This rhises the question, where does the rest of v come from?

o €W . ,
Also where is © ? The answer to the latter question can be seen
from (XXV-5). Namely in the limit%-%D we see that

Y “W% Y —— W
\\#’4- e" e

+ Y- —

)
) v wto Ex—Eo

. W)
- e t\l{{)»% <



o

ek
L
o

. (Froblem:

Derive

[

Now formally at least it would be uice 1f the static limit could be

reful about

hout the need for

limiting behavior as W-H0 . in a

useful siace the of potentislily

=S
iy

of numerical difficulties one is ink

We now note that the bothersome terms,

the expans]

. L~
terms in %’9 T o o o Can

5

function of

of a factor in ‘@

iPr@blem: Show t

in this wa?}B hence this

Sg% = 7(, e (ZXVI-1)

3
o

where ?Q depends on space spin and time, and where ¥ is a real function

[N
i)

of time only. Having done this we would theu try to deal separately

7{ and with@ﬁ , expanding each In power series in frs but
§
58 ¥

o

expanding € . Further since (3 is real, ounly X

compute expectation values.

However just to write (1} does not get us very far since given ™ |

7L and © are not specified uniquely. However, here our desives for

°

a simple static limit suggest a prescription, namely write
(XXGT-2)

then impose the additional

requirement that




=
(95
(%)

=

(RXVT=3)

T o gl e
LOWLNE . b

Further,

b
Y R ﬁ
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go that in this limit % does include all of the energy (including Ep ).
Thus we can expect that in the nonstatic case ¢' will contain neither

DL‘;, terms nor terms involving +t , ¥ etc. Finally note that in the

static limit
5. Y
C\’VOIW)
Lo € 5 c‘> becomes the energy eigenfunction in intermediate normalization.
%\@.%

We will now show &, by use of the Schroedinger equation,"/we can
determine 6' in temms of4> and be left with an equation for 49
alone, an equation which we will then solve by a perturbation expansion.
We will then show subsequently that, in accord with the above vemarks,
we will encounter no inconsistencies when we make the obvious ansatz
that the & involve only periodic terms, i.e. terms of the form

Tamwt .
e with m=0,) Sl eee

To determine % and derive the equation for ¢’ we write (2) as
i
¥ =N o7 (XXVI-6)
where [|\} = C&_.&:)QWV . Then
.- o »
L N AR L

B’C - Q% b-\;— v!,t

whence

%@3 ;35‘2_‘(_‘\, L&E“R’&%‘)é; (XXVI=7)
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Now we take the scalar product of (7) with \%@ and use CQ’Q,§§ = | P
. S8, _ o
and hence Q‘%@Y ??V) = , to find

<0 LAy n e o o
<:é‘(@)ég“‘&- )=+ ( Ity £ - i‘f“i} = iﬁéé&‘“%"ﬂ"’g) (XXVI=8)

"bJOLJ £Q5: %%%3%&# 80
C‘%] pto& V= By¥ Q‘i)@)}/\i}u G (XXVT=9)

wherice we may integrate (8) to find

L (&}‘ALM ‘““Z’@) = E @t =;\p '_;%UCKPD’) }f\w %:;> &:}g (XXVE‘“.“,

;

and therefore
+
¢ \ R 4 f“
Y = $ e eoe +;§d} C%)),\w ¥)i ]
{(XXVI=11)

©
/
B - et Rl copwEoan
e ® moo
P phekhay
where we havevinvoyied the adiabatic turn on in order to ensure that the

integral exists and whire our choice of constant of integration in (10)

has been such that the initial condition on §§ is now simply

—= Y, (XXVT=12)
T~ w
TRME&%? from (7)), (3), and (9) must also satisfy the differential

eguation

+® g - EED&")VK( o, W PDHNEF - = %% (XXVT-13)

Note that this equation does not require that Cgﬁ)\ag 5‘%@, but it
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guarantees that if @beéﬁzgy initially, as it does from (12), then it
will stay equal to 1 . (Froblem: Prove this. Also discuss the static
limit of (13),

Also note that although we used the adiabatic turn on in deriving
(12), eq. (13) involves only instantaneous quantities, hence it still
allows the particular solution approach which we used before and it is

to this that we now turun.

Making the pevturbation expansion

i = \}’o +}A @M py @7\"” e (XXVI-14)

and using (9) we readily derive the sequence of equations

» - »"
(v 5) " & Z\v = C%)\u%)l B o=~ k%% (RXVI~-17)
A\ W)
: Cﬁ"‘tﬂ)é ) “‘% E W = Ck\'@ ,\U\»D)tk@ = CQQ)W §h‘) ‘A(O = (XXV'L.glg)
5 0B
Dt

etc, Further, the condition (¥h9552)§4 becomes

Clo, ) =0 O (XXVI-19)

, Sham
Inserting (XXII=4)) (17)Vsuggests that for ©720
) \; Swh Y TS W ry XXV -
@:2@*_(& /b—@{}’_e,"’ (XXVI-20)

which in turn leads to

) :
o — Bp 2w Ph 1 (Wa_ (Y, wadp)) "y (XXVT-21)
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-
i
[ox]

Q\’ﬁ IR ‘éia”&m) . c&i&%}i - 2}@\%}3

)

whence it follows from (247 that

i 5 oo VY
(%o, X7) =0 (RZV 1

Now the part of . time will satisfy
) . (‘F*k”?/’\'} L \/‘D}
M-€et @, + &) =p

. o . i P ) ;wa' e e
whence ¢ince (25) evidently implies that (§&@> o b= , it follows

that (26) is 2 consistent equation.

Turning now to seco

() ) 20w 4 < P o
g = e ~+ % SR S

then yields the consistent set of equations
4 C%m,) . W

€
—— (,\3?@?\3\14%‘ @g} >Qf/@ = D

_ &S Ia
(W—80) )7 1 T Wy Gy y (0

(KXVT-29)

4+ Tw_- (,@wwaw@}& @ (:\A(%W?@ﬂ&%ﬁ%? L, W @\) \§% =D

From (28) it then follows, in sccord with our general argument above,

that (ﬁ&@ﬁ C%Yz?> =7 ﬁﬁlle Aﬁ (‘:

ig ortho=

L 2 @ 4
gonal to %%b ag This of course leaves { Wy, i%’>> undater -

mined, however, to
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Then, using Cq%\§§%9 =3 We have

(3 &)= |
a 3", &)
W2 L@EE) + BV FM ]
£ },s« E C@‘\w’)) ) o @\@; &) A4 (_@@) B 1

(‘%nﬂ—ﬂa—@ﬂ“
Putting this together we then have
(&, we
) ) — )
(2,2

b | Qo w @) I )

a0 [ G, w B ) (B w ) 287 wl) =L, iy 4) |
HE T Gl wB®) HE W) L& W) e 2
— BV 3V § O, v B L8 WY
— 1 BN @) BUEDY M ww) |
R [ C4, wB™) £ b) + (B wa™) +80y )
FLEIWET) T E) ] o, W™ )1 (8w 1487 W)
— 10 8 43 A Cow B i D)} |

«;i)ﬁ"? e

= W +),§\\M‘c‘3 }.)m'v W A (REVTT=1)
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where of course,

L

W;\V.sre, +~ W_ &

"
(XXVII-2)

3. 0?‘,\3 o MY " é?!:z ea—«:‘w’c

z_ﬁw% &) (» ~28ewt
%“’72 C\’\f e e T Al
(KXVII=4)
3{wt GY ~db 9 2t )
\2) o » -3¢
g st B & BT $7 o W (XXVT11-5)
7l M) aTet W) 3ok - X
%‘1‘: c%“' £ 4 c%i-';, e ¥ + *0) o= c@:\i t”“L’L"U’}L (KKVII~6)

4 c{;w.') e._\\'tzu%

Problem: Verify (5) and (6).

Of particular formal interest to us though not necessarily of
Y
greatest physical interest will be the termsVwhich are time independent.

)
As we will begin to see in this section, they have proper;ies much
like the terms in the energy expansion of stationary state perturbation
theory and eventually (Sec., XXXIII) we will show that we can derive
them from a variational prianciple, that is that we can hope to calcu-
late them approximately with sn error of second order.
Let us then look at these terms. In Wy there clearly are none,

5]

( b
nor are there any in \W or in V@J\b. (Problem: Show that there are

A ) |
no such terms in WV ~with n even.) On the other hand there are such

terms in \.\}J\\) and \\Nm, name ly
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<W‘M>T - 2—@@ L (.%w)\é\jﬁ-q%iz ) + C%}M@@:;\]
(XXVIL-7)

and

3
CWT2 w20 Low, v 8004 6, 0423

(XXVIL=8)

z ":W § )
P2 LR, T ey 4 i3]

Y200 [ (49 Two- Gopwty 7 )4 (82 Twg - Womhy 142 )j

+ terms which involve %‘2} and \5(0 only
where < > can be understood to indicate an average over a period,
= >

Problem: Prove that in fact (Qr@) W %‘S) and C\\'v,"&!@ ck’\:;
are real., How about the loyuyiw ¢ Wm}’ 5
T‘ o

3 -
To evaluate <WL“>T we need ‘{’@ and ({21) while to evaluate {W\g)\%
we apparently also need (%(g’) )ae\z) and f?“,? . We will now show that

in fact we don't need @\2 . As we will see later, this result i

¥]

analogous to the fact that in time independent perturbation theory,
4 i
that to evaluate E ) we need omnly “%@7 SO awd o) and don't need

g{}ﬂ o and indeed the proof proceeds in a similar way.

\
EA

Namely we have the following equations

: (XXVII=9)



(o= Botu) &2 & Cwi o g we vgn) &

,‘ fe
3 T wy - Mo, Wit ) SP;

— < &) T 3 49y i Wt ] )
Oy, W &) %; - LW‘% wy @0 ¢ Nyw_ ¢ ) Z ¢y
4 FL (XXVIT~10)

S Y {y - o T
1 (‘\%0} oA C?Q ) + C‘*&’i}) \@j};d?&g j k&(b =y
; . . / 037y et s o {%,‘fij 5
Now the terms in § S @'\A\) which involve N tan be
5 £
written

CU«), Tws— C\kg)\uﬁ-\%}] C\*f\f; )»-}» C\%f) Tw_ - pr} W) %)if? ~>

= ( L~ By, w ) ] p, ) H(L vy Cho wire ] e 43{31)

A X .
where we have used ( ‘*5‘03 C%':?‘ 7 = B . Now from (9) this equals

C-\
= - CC\?:3 A —Ep-2) P )~ (Y Gy~ ) )

which from (10), using Cc%vtg") Wi=p s can be written as
(AN
[y 3 \-’?" (\ . -
(, #’ -y Z,\J% aﬁ\iﬂﬂ‘ W,:.\J«’p)j C?QQ} “\“{C%)m ) L'\A/;,m C%, \U}f‘%g)i %;;lf-ﬁ

L&Y Wy - G s o)) @9 Yae (e o .
% “\“7 i + ﬂa T ‘9)1% >’% Cé?"}‘“% ng\r&‘ &&%ﬁ‘@j:’\%}r}z@%}x}i}

: : ) .U
4+ terms involving only i@;}, and u(’@



and hence we see that as announced

) T - <y ‘ 4
<\W >% = A0 L( ('h Lws — Soamvp)y] &)

n { i )
i @"? CTw. - (g w9) 1 €0

(XXVII-11)

{ g .
+ C&Q) Lw. — Gy w_Np) | C@\%)>

b (8 D, - g w182

4 . F A
+ terms involving only %’ Q and %

/Prablem: Can you mske a similar reduction in the time de-
pendent terms in W% 7 Can you eliminate r;&am’) in favor of
%

~ in Wy 2 SE0
%\% in \W

; W,
Now let us turn to a more detailed examination of \\M ) in the case
of a uniform electric field '
=7§
o~ g
We D& Conwt

=

o
\N;‘, w_. = )‘2’ lhyg"b

—
—

Then we have

hY % ‘=§ e
\WC‘)z ‘Z CQV, B %\m) " Qﬁ\iD\%O)] ‘QDQZMM/QC

where from (XXVI-23)

, — 9
s - twb —LLT
Pt B R | ‘%\L@%,D“%%)é L &
L o By~ Eyptd Ev-Eep—W
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Thus one readily £fiands

g 2 . S

W= = 2 ) Dyt ) () B9y )

4o L (XKVIT-12)

R R S PO '
IS By By

=
==

which defives the polarizibility tensor- %jpﬂﬁ)

& e T a3 -
Z?cw»; 2 2 (o, D ‘*’(})L“v’%g YY) (Be—end (XXYTI=13)

Eo WUEE\%N ep)” -

For ¢y =99 it becomes the static p@larizabiliﬁyjand as we know we have
a variational principle for its diﬁgonai elements. The same will
gshortly be geen to be true for general “ and will rest on the
observation that

< Wtﬁ> - 4

T = P

B e
T Q’L‘“ED

o (XXVIL-14)

by 9
Note also that (14) imples that we caa recover ii} of S from ‘Q%M{E%

and,:-gs noted earlier, it is for (&Q@% that we will find a variational
principle. In higher orders however KMQ“ containse other terms which
cannot be recovered from t<&NJ£@?§?+r, . 5\&NL) VAt Egaﬂﬂq;ij
6’1 ‘L? )‘/ﬁf\ <Wc’m>~r M W vl Yi:\,\f\a a Vﬂ:«l“:ﬁe?}\“‘)'ﬁfuts}‘ )
P/L'ﬁvuﬁ,ﬂé \'D“Fg\\pr Yo wo vkl "tﬁfsuu g \,’A—ng.%vmij )Vwﬂv}i/
Ron trty P Sreallyy vang SN lg - Qv andibes,

As 1s clear from (13), if s is the ground state the diagonal
& )
elements of & (which are the quantities involved in (12$g7are positive,
&>
and that ¥  becomes infinite when Wz Bv ~Ey . This infinite
response is of course just the behavior we veferred to in Sec. XXII.

In light of our subsequent investigation there is one asgpect which may

appear odd.however -- namely why do the resonances occur - at Wy Fa 7
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What happened to the "lamp shift"? One answer of course is to say that
the shifts are at least of second order and hence yield a higher order
effect, However this is really no answer since it should be fairly
clear that however far one goes in the perturbation theory resonancesg
will be predicted only st these and similar positions since one will

always have denominators of the form

E\LA @*y P aw

( =) can be thought of as due to the absorption of M  quanta.)

The real point is that to see the shift of the resonances one must really
abandon straightforward perturbation theory and use some method which in
effect permits a partial re-summing of the perturbation series in order
to, so to speak, ''put some f& 's in the denominator'. (For a systematic
approach sed Kroll reference in Sec. XXI1.)

AN

Problem: Show that through third order <$Nm>? and some of

the terms arising from the < (3% )7} term in
a8 can be cqmbined hibit'a shifted reso-
Ny ™ can be cqmbined to exnibit a shitfted reso
nance Eg-Ep~1-» Ex-Cp—D -0 What is A ?7 Does it equal 7
@ of Sec. XXV as we expect? 4

AN

Finally one other point which may be puzzling -- how can a normal-
ized wave function become infinite everywhere? Clearly this is also an

artifact of straightforward perturbation theory since for example

QWQ + k)
(oo 407, gy 2 2) e

™
stays perfectly finite., However ﬁﬁ) is not the only term which reso-

nates; there are terms in each order, hence to do the job correctly
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again calls for a rearrangement of the perturbation series. Also to
include real physical damping one should explicitly include photons in
the theory. ¥or details we again refer to Kroll,
All of this discussion can be summarized by the obvious remark e
that straightforward perturbation theory is inadequate near a resonance,

wl@$@\WA&QWV§ﬁ

and’if the lamp shifts are not small compared with the level spacings.

XXVITI. Exact Solution of the Differential Equatious

QPQ) is known for hydrogeun in & spatially uniform electric field.

However it is sufficieantly complicated in structure that we have rele-
Wt o L s s Ak

gated its discussion to an Appendix. The esseuntial difficuley is that

%33

even though one can immediately reduce the problem to a radial problem,
the independent solutions of the homogeneous equatiocns are quite com=
plicated for W =0 . For low frequencies however, the situation be-

. A A Y] .
comes more transparent in that it is reasonable to expand 42% in
powers of ) (correspondingly ollw) will be represented as a power

series in W Yo Thus writing
@\'\l _ 2 D\) c{?lﬁm)
we clearly are let to equations of the form
C}¥~—Q§o> 4%£§> = terms involving lower order functions

Such equations are of course exactly of the type which we encountered in
stationary state problems and may be readily delt with in the case of
hydrogen. See Dalgarno and Kingston, Proc. Foy. Soc. A259, 424 (1960)

for details.
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The expansion in power of ¢J requires that Ll &) and
Evr~E¥
- o 7 = e
hence will fail near and above the first resonance, i.e. Wl 2, E,-e»
However one might extend the range by proceeding as follows: First of
all, assuming that one knows ¥, , one can insert the first resconance
"by-hand" i.e. one can write
(.":‘)

3

(,\) &
3= - O, wi_,j? + \S

Ey~Ep "o

) e
Then TS$ gatisfies

~ B
CH “E’U t'kl) T Z) + C\U‘i - L\’\’g'\ylw,vj-) L\/Dwﬁ\!e,,) “Ji‘{{v)q") =17

L) _
and one ccoculd now expand '§;i in powers of W  which will again yield
equations of familiar form, or as an altermate one might vearrange the
. \) 5 ? = = TN S i = A
series and expand ‘?Qb’ in power of = Cw=vtkr"t’q) P hea, one will
get the same sort of equation but now with Ev replaced by &, . i.e.
x G
UA—-C») i = known things
Aside from hydrogen however the possibility of exact soluticns
seems remote and hence one must resort to approximation metheds, in
particular variational methods. Before discussing these techniques

however there iz one more topic which we wish to take up.

XXIX. Double Perturbation Theory

Here we will simply refer to Hirschfelder, Brown and Epstein in
Adv. in Quan. Chem. I. P. O. L¥wdin ed. (1964), pages 323-324. For an
application to %%Q:see Musulin and Epstein, Phys. Rev. 136, A266 (1964).
For an extension to complex frequencies and for other applications see
papers by Kestner and collaborators in J. Chem. Phys. 45, 4014 (1966);

49, 3392 (1968); 49, 3398 (1968).
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where
PR\ ooy NS
L,,i‘)_,_ ( ql'_-?) QHMEOEZ»JDCP;_))

NS b
f Dy Ty o] #F)

(XXX-2)
&) . Mg -
+( q;i) IW; - C%,\us;%)} ¢’i )
o ~lr) &) Ny |
— G, WE ED)(Fy ) — LT W ), 7)Y
and
N N (v
L0, (&P men d)
NC ) B\ - ()\91
+ C C{? :)‘[\m}, WAPRESHY| @.,2 ) ¥ ( @,3 , Tw_ - C‘%}\u;\vﬁ)} 43,;“) )
‘ SN) 3%}2 R T (Xx=3)
£ (b, Tw.- G w-p] D (Y Tws — Clopwal) ,)7)
- 1 0% Wy @2 )+ (oW &") )’1 C a;‘;*i &)
~ 0w o)+ (W) O, §)
Note that analogously to %#L;') and r:\f(:?; $ i.nft’? 5 “\’Q is the exact

NtV

) [ . . '
function and in Lj 3 Q\’O and @Q are the exact functions. We now
-0 =

discuss some general properties of these functiongls, (Problem: Write
(8Y)

R . . . \L _
down the variational functionals associated with Wj; and 4’3 and
o

carry through an analogous discussion for them).
o A My

) ¥ )
(A) With = é?.x? and ‘b%; CSQ)J we see that the numerical

- N 0

At Al
values of L;_ and L,% are

[~
Ug) = (YW, W1 é«r_)) (KXK~4)
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M ) . \ S
B9 2 (8. Twg - O, wawy] B (xc-5)

WA

()

L

(872, v Codvriol] €50) 4 (47 Tu, - G ipgIP )

{BXX=06)

, ; T, vy
respectively where we have used v\j{U; ¥ D= (»)

e
« R Q:’L”&?
o 4 PRI T Y 5 N a bty % 4 PRI
Comparing L with (XXVILI-7) we see that given XU , b & will
e s P G Py O 5 . .
yield g variaticnal approximation to \W v o+ and comparing Lf with
ey

\ t - .
{(IXNVTI=11) we see, given KX’o and d?? . that Ly will yield a
U @*%wgwxwuﬁfV&ﬁmv@”*v’”’”

variational approximastion for <§\‘U @
&‘p‘h/\bﬁ\—ﬂf\ﬁ)«%ﬂv‘iu J&ﬁm\N\_} UB’\'} ?@’\ ‘\Lﬁ@}‘g é \\;\,} %%} R«A“"’
I.e. we have no formulas into which we can suhsr.ltute approxd =

functions and get a result which differs from the ewxact vesult by terms
of second order.

&’\Q? f\ﬁf\
(B) 1If &@ “’l @‘?ﬁ with 5“’1 resl or pure imaginary are
‘Vﬁy)

I
allowed varistions of C@t and if = &y 4;;}% sre allowed

variations of ®, then one finds (Prmo_&,,m: Flll in the details) that
/\,\\;\,’) AVR) v A
L and L& are given by formulae like (4 6) but with in
5 5 g Y (=

appropriste places.
[ \»;}

w,\ \M@w %‘?

©y 1f A& Br 25 is¥allowed with &%, real or pure imaginary
0

then we will have CW@» %< V2D ., Similarly nEY =&Y ¢y

~ % 7
allowed yields mﬁz?p %"E ) =D . (Problem: Prove all this.)

(b)Y For Bo  the ground state it is easy to show (Problem: Do this)

that
A (D] N $ QL& A [’Mf}
oo e and Ly g U
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’m =3
~J
IaN

I3 @ﬂl -
g?b 2 e Ohws )
+ frf‘;f&»?/ g\&%&@‘}"l’&/

and from (IWILIT-9) or (IXX-8) that

M

ASEe v -

A 2l (XXKI-1)
4 omm

€y By hd

. ; » . . g
Now as is wall know, the exact generalized oscillator strengths

@f::g, Eo) [0k Wy %){gv satisfy various sum rules. For example,
e 9 '
“g . P
T (e Wty | = Qly, Wo wa )
LS
and
- 7
2 G ew | (e, Wy ¥p)] = G w_ T ¥walvy)
Y2

the latter, in the case of the spatially uniform electric field, being
the famous Thomas-Reichs-Kvkn sum rule.

We now ask, do the approximate generalized oscillator strengths
7 - W
(fe- €9) | (%, wa Up)l

gatisfy similar rulagzi That is do we have (recall "‘;ii =%y )

™
Z Q\&@\ﬁm) Wy %f)\{v = (\@1;,7 W_ Wy k\@)

& =1 (XXXI"Z)

and

!
<
D Ceeo20)| oWy do) =0 v Tnon] o)

tai - :
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In particular since the TRK sum rule is, as is well know, linked

I - . s -
to ‘ﬁ‘%ﬁf %\7( = B %‘v% one might, in. &\5}/\)" of the discussion at the

end of Sec, VIII, doubt the validity of (3). We will now show that
)

. - Y
(2% and (3) are satisfied if W‘%—% B i iR &Mu%é%fv*wg’fz‘vw‘}\? Namely

ja8)

P
o
D
=

intréducing operator of Sec. VIIIL, we certainly have, for

example, that (Preblem: Prove this)

Ns

[
\mi“'»w%’ oyl = i C%, W W) (e, Wy W)= (g we 7wy Yy )
=y

=1
But now to say’l’ that W%Wg igs in the ﬁrAuzg means that
i8] XN“} QU;: \J\Jar\'\b
whence we have (2). Similarly (Problem: Fill in the detaills)
M M
7 (even) | (huitn "= L Corn €9) Gy WY O )
| =3 =y

M .
2 Dow- %) (e Trw o wye w18
=y

a D, wo T L URTWL vy T )

= Clo, wo Wi mwpab )= (o) w_ T W,y
= (qu\r@f% T Wyly) — (Tws Yo, B\e)
which if O W«%»‘%f: Wy becomes @)

Problem: Discuss the status of the sum rules involving
eyt ond Cv_ep)*



So far our discussion of sum rules has been Natdwadll) to the case

of linear parameters only. If we introduce non-linear parameters as

=]

well, then of course, the simple form C@} will be destroyed --
the epproximate generalized oscillator strengths will, so to speak,

v
become frequency dependent. However for L,%, one has

¢
B Z | QEvI%J4“¢D :z;(j;xfiiﬁj {QQV_VWFWV)}

whence we can still ask in a general WayV&&be%r not as W-~®a) one has

L’\ : — v) 0) +C \’\’9‘ \V"‘ th Ew%’ 3&‘&/9) ()Q“*r‘raq‘)

+ bo—9 % 12V b\f/

We will now chow that this will almost certainly be the case if
(\1\ AW‘) (\\~ ‘\)
A ®L= MWako BPs =% a4 A% _sq )
with %”1 real or pure imaginary, are all allowed varistiops, as was
of course true in the linear case which we have just discussed., The
point is simply that in order to guarantee that these variations be
allowed the space of trial functions will presumably be made up of

functions of the form

LWLy + b X T

I
N ~
where @ , Y% and € are arbitrary variational pa rameterbjand where

A%

K can be anything so long as it does not depend explicitly on f
vy PR i :
o s b on e . But now with X fixed we have a linear space with

\&b and “V+}%b members, whence (4) will be satisfie&, and since it will

~)

be satisfied for any X it will also be satisfied by the optimal choice

A
X .
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A~ ~Y
T T clics Yo+ JBY = oo g S _ 5 s i
We will now show t_hat{@ >’T’3 differs from by second order gquantities.
~Y
" O o s s o
(Problem: Show that@ 1is tesd and periedic.) Thus if we average (6)
8 sl ot £177 1y sl : = o 5 o T
over a period we will have a variational expression with which to

approximate E . To show this we write

S e U AN

Pt

Then using (5) we find (Problem: Fill in the details,).
&3 = o L0 vy minad i «L%: (,4)
T (4, (-2 D)

=z o @%ﬁ?ﬁ’) — L;E ,4) + @, Q- :ﬁw@“')&)

ry
Now let us average over a period. Since Y and¥ are both periodic,
so therefore is A , whence the average of a@v\“ﬂ?,&ﬁ will vanish and

X ’ v t
we’ have, since (f%;, Vv w3 constant

gg £ o+ 0

as announcead,
Thus the Heinrich's variational method can be stated as folleows:

We introduce the functional

7 ) ; y ) . o ~N D ”n >
with periodic and with it L’V») 'X;?z@ . Then ™% and & are

determined by

& N\
Sd =0 s A { =%



if the space of trisl functions is

~Q o
W) fe4,4)

vardtedhargs
ive our first order variational pring

N S:y&,@\& EEM}V/\\@@%\'\@J Ahd @&M@Mp d% % N

To this end we write

ere must be relations among the F 7in order that

th
ff“} . .
v ¥/ be constant, but for the moment we ignore them. If

the norm of U

now we caleculate Vﬁ» ?ﬁﬁ**@ Y&) then through second order the only
terms independent of time, i.e. the only terms which will survive the

averagin%‘ over a period, are

R N 7 A*\ (\\
Coy By 57 L Ly §0) 0w ¥ +ee ]

s O Copaed ¥+ OB SR LIN
D

Y Lt W25+ (39, g} oL

If now we write

A ) LW o)
Ei - C '*’)@ C \'%% . S



N
77
N 7 o 9. :
then siy &ﬂq ) will be made constant we have

B smonas AW ; Sy Aty
B <’u£) ﬁ§>T = % (}@\@)k\\»,a} ‘ﬂm & (@f@%:) + )ﬁ% E@ w(}% )
4

whence through second order we have

==

A -
A, Ao 7 ) . = {43 " A . .
T2 o, -EMN) T Cln) ﬁ}%

&463

L({\%*‘v@H“ 4 ))Le;f)v@g W *y ) M‘%’ g W‘)X
A >, - ™ 2 .
+T (f\?"‘l (- E% w) D) pid, Wy ¥ Y wov) ]

P T f, (4= EDN) HED, 1057 %)) - W%,%)}ivw

and we have the conditions

A ‘o
S =0 od E=0 “’“M/"“’

~
i -3 o - /‘A 3 3 ° -
Now the condition that U$9f¥> be independent of time requires that

[N a2 7 q 7 SR 2 Ty e o B T 2 K
éﬁﬁ))é;é»)‘%ﬁ *) S%J should vanish. (Problem: Prove this.) Ian

) . 9 o . .
accord with our esrlier definition of X which makesflgz¢;4§? we

A
(%7? %P V=0 (XXKITL-8)




Fap e ﬁ =T

e




!

ff




188

%ﬁmw
XXXIV, A General | Theorem
I

We will simply prove the theorem. The applications are very
similar to those discussed in Sec., XVI for the analogous theorem-%w@

stationary states. From{ XAAWM—&)
g" E)3) (v, (80— B2 )~ (XXKIV=1)
e 5 V0 L =k
Y ¥, ﬁ)")a) &

also

A ¢ 230 %
& i&ﬁ‘) = (F) K= 3R ¥) (XXKIV=2)
%Imum ‘e '%ﬁ o9 % ONg )\MWM oY tha W’\f\?')mro ('?fﬂ\f) ang w}}l,;niy«y

Now let

FaAr $

(XXXIV=3)
Then (1) and (2) yield
i i3 -
O D) = & (hd) € of) -2y 5)

But

N~ N ps
V)= TH )+ (1,8 +18,9) +(8:8)



So {4) becomes

A

A e A . A . (\
= & + % Uy (- @%ﬁ-ﬁ@“)&> +H8) =22 o' )y
O 40

] N ‘
o, R 2 b))

then
g = g ¥ Q[,fﬂz“*@
Provided that the time average of %,E = 0O gk}m*“) . One now

readily sees that even 1f
- - 1 o -
(- T3 & )L =0

then this will be the case if <g = Allowed variation in the Heinrich's

iole

variational princiy

o]

i
+
S
\?
P
5
-+
¥
et

XXXV, The Variationsl Method IIT--The Frenkel Variational Principle

In thiz section we want to dlsewss: a variational principle which
has been widely used, but which, in 2 sense, is not a variational
principle at all since it cannot be put in the form 'variation of some-

thing equal to zero'. Rsther it is more like a method of moments



(XEXV=-1)
or, Lf there zrve mo vestrictions on reslity,

A . £
(Skm (-2 ) %) =0 (XXX =2)

egquation.
In pariticular note that (1) can be written

A A N A .
$ (3 9 (- V@2%7 %> o ”"’3% L) 5‘%‘) =0 (KXXV =3}

vly convincingly that it is not in the form of waristion

of something = 0., On the other hand if we integrate (3) over time and
A

require that S¥  vanish at the end points, then we do have a more

standsrd sort of variational principle

b
A - I A A
é»§ de OF) W-50) % )mn L 6§ GvagS Bims (e
¥

which is the or is usually introduced in connection with dis-
cussions of the Schroedinger equation as a field theory. However (4)
A
iz not of much uvse to us. With ‘%\e; -— 0% , the condition §% (=)= p
would make senge.-= we could require that all our trial fumetions
satisfy the proper initisl conditions. However what does one do about
t“, 7 A generalization of (4) has however found use in the theory of

transition probabilities (see Demkov's book "Wariation Principles in
2 L p

the Theory of Collisionzs’ MacMillan 1963).
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In the simple hzrmonic case however, we have exhibited a variational
principle == the Heinrichs variational principle -= and hence it is of
interest to see that it is contained ia the Frenkel principle

under

Let us insert in (1), the by now familiar form

A AN
A b A N - e
- &4 e *P i spye

~
with © real, whence (1) becomes

A « (AL'd L " /A A A
(8%, #-=2 -0 )% ) + (W32 Byyey)
- /\ o (\,‘ A - Al: [AS
e G [ (%) - kA ) -(d-<p -6 \'(\3'”?/}3':@

Now let 1

> @
S St

guppose that

A g A N
) H- 1207 =0

A
Note that since &

AA
is real this implies that (¥, %) is independent of

tipao (Problem: Prove this.) Then we have

© 7 (\ g
(5% - 358D %)y (22 G yhs8)

A A A A . 5
(6% (8- 23 )y ) (¥, th- 22 _8)6%)

T’{) Now Wo atsuve thh I)\[ o) 8’9 e )\Q./\'Y‘O&J‘-:Qa »ﬁ’(ﬁgﬂ\%w

GYnSre pia B & ﬁgp;q7g, wo n&4q1u4tnu,¥$£MMﬂnLL35 VoA P,
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XXXVIL. The Time Dependent Linear Variational Method
If we use linear variatiomal parameters
o - S
= 2
\% - e C&&,LL’) %y,
=)

with the c#h independent of time and independent of 7& then clearly
the Frenkel varistional method tells us to solve the
W oW
Ty
problem exactly. In particular in terms of thgdlinear combinations of
the %&, which are eigenfunctions of iﬁ 5 -the expansions
of the results in powers of/h- will yield formulae having the same
structure as the exact sum over states formulae except that the sums will
be finite. (This assumes that as an initial condition one will naturally
use é% b ewgéhfqén .) I believe that essentially this approach was
—0 '
used by Sitz and Yaris (J. Chem. Phys. 49, 3546 (1968)) in their calcu=
lation of higher order suceptibilities for Hydrogen and Helium (in the
latter case Q% is an approximation to q%, but 3 is effectively
replaced by the Sternheimer Hamiltonian so that whatever one uses for
& o sl %z .
Incidentally this "finite state'" problem has been much studied
(particularly for M=72) in connection with non steady state behavior.
See for example Shirley, Phys., Rev. 135, B979 (1965) and references

given there,
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D e Ear < P
ite Application

et. al., Phys.

Ty determ

zed determinants

(XXHV o1 )

whence if we wirite

IS

where (éuﬁﬁng‘ then it follows that

A+ AT =p (XXX

T
L /

SN

-
&

=]

which in turn means that thep§¥¥ terme contribution to the left hand

w

7= 1) vanishes identically since that contribution is

A (8 e AL SY A (@-3d)E %)

G220 ) a2 (5D

ine then vanishes from (1) and the second

is nﬂrma1%2@

0<§§% which are orthogonal to %

o

we are imposing no further reality conditions, we

in the form (¥MVW2), i.e.
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A - A
(65, - %) &) =0
(RHRVE-3)

A
[
For§uﬁ§ then we insert a Slater determinant which differs frmn§§ in

A
that one spin=-orbital, f; say, bBas been replaced by a spin-orbital

§Q5 which is orthogonal to all the occupied spin-orbitals:

~ A
_ Fa leas W

(312}
%3
IS
)
m
=
[
e
s
=
)
=]
(a7
2}
(=N
[T
1)
o
h

N
w

N
(@]
[}
ot
=1
m
=}
h
e
3
Q.
w

Evaluating th

which, by comparison with (4), since §Y; is otherwise arbitrary,

implies that

Vi
- a
(hop - “’pp’ﬁ g = Z; Tot s
where theqtg4 are for the moment arbitrary functions of time.

(Problem: Fill in the details.) Now to ma¥.e everything consistent
the Csd must be chosen so that the Q& are orthonormal, and we see
that we can do this most simply by putting TSt 20 . More precisely,
under these conditions if Q& are chosen to be orthonormal initially
they stay orthonormal, (Problem: Prove this.) which, clearly, is &%

much as we can expect from a2 differential equation, i.e. we must supply

the initial conditions. Thus we have, for the 'canonical orbitals"

(XXXVTE=6)

ﬂl
o

1
( KHF" 2"@2{) (Q‘,
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2% \
the o %xh onormal, set L4 we can find many A
sets 212 Uga @y where the U form
15 1% t*me depeqd&nt matrix == ghow that fzev
" o f R /f\ mr“]

T ems

A
/\ T &y
AT = Q;% &
y o

A A

)

u&&iﬁéw@ Anpld ond ?vm@\%ﬂﬁggma/vg
A

%

{xXK1

are allowed then satizfies the time dependent Hellmann=Feynman

Tda
ua

theorem.

(’boﬁ CH- &

To see this we note that, inserting (1) intoe (XXXV-1) v

ST

ﬁf) % > %'C - < U)“g (XX T 3)

while (2) inserted intol4AV-2) yields
N o &
g = 75%2) %) =0 (XXKVTIF4)
The derivation now follows the pattern of Sec., II. (Problem: Fill in
the details.)
To satisfy 2ll these conditions then cne would choose the trial
functions in a O independent way, and allow them to have arbitrary

(complex) scale., Now the

first requirement

is

met by our TDURHF theory
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@
=]
[an
o,
jay
@

T
[

—
f=2e
Yo

)
jay
13
,‘)

ence oOne may won lidity of

that if we uvse (XXXVI-6), then (&) won't be

S oLsar

the Hellmann-Feynman theorer be satisfied,

note that (XXXVI-6) implies that

A

s I
g -5 2) & wr —o

and we know that

when ﬁ(

clear how

7 particle interactiong. On the ot

et

ituation., We will stilll preserve orthono

0'

ity 1f in ) we choose T%S = Tide weth L any real functions
of time. The new orbitals will then differ from the ones defined by
(% b
I . . EER A TR
(XXXVI=7) by the time dependent phase factor & whence the

?ée

new determimant will differ from the old by anVessential phase factor

(e @&YY? = Hag)

r-\

The new determinant will satisfy
(& Wg - z%b, — g Te > F wE =0 (EXXVITE5)

so if,choose
WL

ﬁE? A~ J i oy
PR (\*XW)?«LQHT:C&HF} w(;@m:) N I wr)
A A
= 0 Fpp, Hur Gye)— (Por, #Inr)

then (4) will

l—w
=

and we will have the time dependent Hellma

Feynman theore Fill in the detsils.).
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: gst to note that some authoyy, notably
ok

ﬁ%;‘:p 2 T

rea~Fock Hamiltonisn

Va;iati@ﬂ*l principle

’%/"m &Qﬂ\ Q“L#{,W‘Nﬂ@ﬁj 3) ﬂ-a T
it h)/ %

Yor - TUF
\7‘1/
Chryr, o)

- &N
{
(fur, dur) =)
where \%%fF iz the URHF function for }R O o If this is

. . . 2
true, discuss the slgnificance of t%e/@tz“W theorem io

TDURHF . 2 TR i &1
w@mféwﬁgw W Eyp= 240 (2-8,)

sw that i§ in the linesr variational method the

=Y =nt of O then the time=-dependent Hellwmanne
7211 be satisfied. Show that the Heinfichs
principle will be satisfied. Discuss the applic-
Y theorem //

variati

\\\’ Dlﬁmzy pf th&/%

(B) The Generalized Fhrenfest Theorem

Suppose that
Af= v &LU T (xixvT1L-9)

n is allowed, Then from YXXV-1) we have

) W ((ft-c2 S ) i\\ 1% %’3*&«@ (XXKVIII-7)




198

or
(g, L 0% s g T -
ic - A )
Vo) (8, V) +0F, THUIE =0
which we can write as

N A £as o = A — &
;%CQ\’:() od) = (% %ﬁé ‘3:) AN @7 L:H)U-]i) (XXRVIII-8)

which is the generalized Ehrenfest theorem.
Iﬂk@KV—Z) applies then,under the same conditions, we can derive

the stronger result
A
(&, 00 &)= ;Lﬁ)u?ﬂs/ .
T (XXXVILI-9)
We will now show if U is a one particle operator that (7) and hence
(8) hold in the unrestricted Hartree-Fock approximation whatever the
choice of the T:As so long as they make the Q& orthonormal. As
in the analogous discussion of hypervirial theorems in the time inde-
pendent theory it is not clear, from the discussiig to date, that (6)
is allowed. However, we can argue as follows: QJQ} with U a one
particle operator (we will omit the subscripts HF) is a sum of Slater
determinants, each with one orbital changed fronlég . It then follows
from (XXXVI=3) that the part of each of these determinants which is
A

or thogonal to X will make a zero contribution to the left hand side

A
of (7). Thus we may in effect replace U'¥ by

A

ALY C‘%)U\"Sﬂ

A
(remember that ?& is normalized).

If we insert this into the left side of (7) we find
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ove that if the Gas are chosen as iu {6} then
2 o

conzider the frequency dependent dipole shield-

ing comstsnt for an atom., We will treat the nucleus ag infinitely

cDRE AL ‘y&% WJ?U"\’V@

i - o o f
heavy, We bathe the ztom in a gpatially uniform simple harmonic
electric field, and calculate the net field st the aucleus.

The force on the nucleus, 1f it has charge Z is, as in the

static case which we considered earlier (§ec. XI-B)

-9 R
Po= 2 2% Foa

-5
where Z‘ is the electric field and Fe.-a is the force on the .. .
nucleus due to the electrons. On the other hand the net force on the

electrons,if there are N electrons, is also as before
5 -5 ?
Fe = —NL = g (XXXVILI=11)

But now the "force-onethe-electrons' ig the average value of the

roe
= =P
iTH, 1 e
operator b where is the total electronic momentuin.
Thus from Ehrenfest's theorem we have

)

% A
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%
and since P i e electron operator this holds in TDUHF. Further

?a? .
where=®  is the dipole moment., Hence

(,,“\i%i)eg @yg‘ "*l Q\:’;s}z @“}

and since & % lso a one electron operator this holds in TDUHW.
Thus we fin

12lly have the familisr result

- > 4
FQ = %L ) C @ § S %,‘3
L

whence to lowest order in the electric

field
= & ) ¥
Fg = — @ [ @!z@ . W é;\%

T R’ W ol &
e
Returning to (11) we have
hton v
—% b &
= - ML - w2
U -

whence, fron (10)

. R
> &
N N (XXXVITTI=12)
land éﬂ “E?
.~ e~ TP
R
which defines the shielding tensor f& .
Thus in TDUHF one should find
& & &
= B of + L o dw (XXKVITT-13)
g T

which 13 a useful check on the caleulations and which generalizes the

result we fourd esrlier for static fields (w=u)

Clearly the same result will follow if one vequires double spin
occupancy but allows free variation of spatial dependence (i.e. TBQ@J%?}
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ed only for

in general and restricted Hartree-Fock

shellz and for a

s Theorem

and Epstein, Phvs. Rev. 136, A966 (1964) -- Appeundix.

XXXIX., Tmaginar weies

VAT for an atom can be used to calculate Van der Waal's
forcas. have shown that it is pogsible td fiad

oo g N ﬂ(“ w> - 'E L, o
variation and lower bounds to v for allw | Epsteln,

Jo. Chem.

Goscingki, Int, J. Q. Chem. 2, 761 (1968); P. Robinscn {to be pub-
56 -0
lishe”i] However their resultsYseem useless for

b

ve (W-Ep)  to high powers or they involvelw-to?
1Y A
N - E o - % V o
neatest formulation would use (W~To) :& Hence we will

2

1 here. Their main use has been to derive

bounds for Wliw) in terms of its various (exact) derivatives at w=p

s, Such bounds have slso been found in other ways

s, Phys., Rev. Lett. 19, 1461 (1967); by Gordom,

J. Chem. Phys.,

3922 (1968); and by Futrelle and McQuarrie, Chem.

Phys. Letit., 2, 223 (1%63)., See also Weinheld, J. Phys. ¥, 1 655 (1968).
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Show that it field; a sta-
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Appendix A (Sec. XXV)

In this appendix we will present the results which one finds when
cne carvies out the program of Sec, ¥XIV through the first two orders,
and compare them with the ansatz of Sec., XXV, (See also Hammer and
\M@,\@&\,j J. Mathi, Phys. 6,1591 (1965).) Carrying out the integrations

is straightforward but tedious. In first order one finds for ét'>®

ZO&L = (e iy %)4 (e W)

[ % (B Egrw) ba] L1 tow—gpmn)

o (Be—eorN €

(i (Be- &o 'HAA}

b sam thdy vl Wy W dord) Wy — -

We now let ob—>» U and aswve- that W 1s unequal to any of the
Ev —vgp , and also that o 1s not equal to zero. Then since there
are no possible singularities, we can simply put o/ = whence ’

we are left with

If we now insert this in (XXIV=6) we find

\\\2 o C\%“v‘-‘w%\)fg) Q;;L 1Sy - eyt _ C\-&»\«,,\M,—n%) N v By By-wit

Ev— Epred Py —~Cy-r)

which is evidently in complete agreement with (XXV=2) and (XXV=5).



Turning now to second order, one finds for t"?D

\

—a {“ O, W% ) (b iyl )

Loe o +d 111 ey -Ey tuusre’)

v (EBe-Ey ~w)t
Vet ﬂ»}{,_s__wfmwlw-ﬁﬂ

. 7 [T e gyt +od 1 @r-eorwd |
VEy—E vt }

A (Ex~Ep F2mdt
4 { ¢ -\

[ B 2o LT (B Bpyww

+ <E§ Cg%éyk;,&%p)cuﬂ“)hd%;*o) [

;;,u;u,eb+w\+a]ZL@;b,E@»zd3

¢ { ot - EL ot } \ \
- .
Licee- gL —wd ) Lo e epw) 4 | Lo te-ep 0 §

& (Bv—-vp)t n —-
o et g Somothiog L vy

W, —» \UA) w_ =% Wi

[ 5 ce-eo )15 G5u-1207) onrd o -~

(A-1)
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.. - B .
after wholeselp. cancellation

&\Q;) 6;\; (Ep— &g FranHlo
L Z (e g, S Wy )
L.
Gep- pr1w) B~ Bptad)
(A=-2)
w (Ev— BT
+ € % Q\?\’vﬂ o) C\PL)M,,&W;)
(Su— BY)CE L~ ot
+ game thing but with an““%wajwaaibw% and s .0
lEeBpr e
For {=p we must be more cautious. Noting that 4 ) -1 - t
Ee-? €0 . I G-V
W e find, putting =0 wherever this is no change of a singularity
2uw'
)
&U = Q, Z ("q«)} Wa Qﬁ,‘)cw(ﬂ,.,w¥w’9\)
L o ==

L

24 LU (8 ~Epiwd +0-)

I - l

‘CE@@@@'} LY

+ zame thing but with Wy *-%Wm} Yoy P WS e and G .y,



A-d

Then noting that
1 \ + \ FO )

28 (B ~8yw) 2 (B~ &+

2’& ZC QL;LG-EU "*MAB *“%‘l

we have finally

9, vwt
T T e
oMY )T, W TR)

L T (BB te)

L 7 Mg v )
Rt e

i WA e

Q=R ) o V7

R A A [V C .
> i
CELm =y ’V*W)

L)

+ same thing but with \443‘NA)¥JF.u¢9¥J%. and Qgé%ﬁhd

We leave it as an exercise for the reader to show that (A-2) and (A-3)

are in complete agreement with our ansatz

\§J vy \}}w 0 il IV (o Yy _Sepb \PM -SLeyd 1t ek
v €T, 6 + Y- ¢ et +a ¢
™) {2y
where %ﬂ¥ are given by (XXV=11), € by (XXV=19))and 3 by (XXv-20)

with the real part of C chosen so as to normalize Y through second

A\

order, and with the imaginary part of C proportional to o . Thus

we have justified our ansatz through second order.





