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Abstract 

A discrete Fourier transform method for factoring arbitrary 

spectral density functions is presented. The factorization can be 

implemented in a straightfom-ard and efficient manner, and it does 

not require that the spectra be rational. An expression for the 

absolute error is also presented. 

* Research performed under NASA Grant NGL 05-009-079. 
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The application of spectral factorization to computing causal filters is 

well knom. 

As Blake and Thomas define it, the linear random process is constructed from a 

sequence of independent, identically distributed generating random variables in 

such"a h-ay that the generating random variables can be recovered from the past 

of the process by a linear operation. This operation is called inversion, and 

It is of recent interest in connection with the linear random process. 

it follom immediately from the spectral factorization. (11 

For the actual computation in statistics as h-ell as engineering, one 

usually assumes that the spectra are rational. Formally this is not restrictive 
since any factorable spectrum can be approximated by a rational spectrum. (21 

The numerical techniques, however, are cumbrous and time-consuming, and precise 
expressions for the error are not horn. (31 

The discrete-Fourier-transform method which we shall describe completely 

eliminates these difficulties. 
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I. The Discrete-Parameter Process 

A discrete-parameter process has a factorable spectral density function 

(S.D.F.) cppL) if and only if it is regular, (4) i.e. 

The S.D.F. cp (u) is real, symmetric, and differentiable almost everyxhere. 

Moreover, delta functions are explicitly excluded. 
P .  

In many applications the discrete-parameter process is derived by sampling 

a continuous-parameter process. In that case 

is the "aliased" spectral density of the original process. 

is used to distinguish the discrete- and continuous-parameter S.D.F.'s. 
The subscript P 

To proceed with the factorization, note that (1) is sufficient to permit 

the Fourier series representation 

u 

If ice define 00 

it follows that 

(3) 
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has only positively indexed Fourier coefficients and that  (5) is the desired 

spectral factorization. 

Suppose noh; that  cp (- T )  # 0. We shal l  show in Section 11 that  th i s  P -  
assumption can be eliminated. 

{ak}, where k = 0, 1, ..., N - 1, and N is even, such that 

Since cp (w) is symmetric %-e can find N real  numbers P .  

k=O 

specifically N- 1 
“k’  - N 1 ~n[cp~(2~rn/N)]~ exp(2rink/N). 

n=O 

Now if (4) is  approximated by g +(2nn/N), vchere N 

it folloh-s that  

0 

Cp(2.rrnP) = exP{gN+ ( 2 4 0 1  exP&N+ (2dN13 * (10) 

which is  the discrete xnalogue of (5). Hence we take as our approximation to  

It can be shohn (7) that  
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1.f we make the definition 

k >  0 

2: a0 k = O  

= i:' 0 k < 0, 

+ 
ak 

+ + it follow from (12) that "k = ak + C1N-k' tihere 

+ + + 
k+mN' "k = ak + a 

(13) 

(14) 

(The primed summation indicates omission of the m = 0 term.) One can then show , 

SN-1 that 
+ 

a sin 2.rmk/N. (15) 
+ 

N-k (n) = .en[cp(2sn/N)I4- gi(Znn/N) = 2i EN 
k=l 

(K+l) ] Khenever Rn tp (a) From standard Fourier theory we h o ~  that ak is O[k- 
+ 

has K continuous derivatives. 

O[(k + I~N)-(~+')]. 

Hence each term in the summation in (14) is 

NOK for fixed k and k # N the term N -(K+l) can be factored 
+ out of the summation, and we see that ak differs from ak by a term that is 

O(N-(K+l)). In (15), therefore, $ N - 1 terms that are each O(N -@+'I) are being 

summed. 

verifies this conclusion. 

-K We Kould expect EN(n) to be at least O(N ), and a detailed analysis 

To summarize, we have shom that 

+ The error term sN (n) is purely imaginary and rapidly decreasing with increasing 

N for smooth S.D.F.'s. 

Fourier transforms, (8) and ( 9 ) ,  which can be efficiently implemented for 

The computation requires evaluating b-o discrete 

N = p ,  where PI is a positive integer. (8) 
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11. The Continuous-Parameter Process 

For a continuous-parameter process the regularity is guaranteed by the 

familiar Paley-Wiener condition (9) 

. w  
4 A 

Since the S.D.F. is integrable, we cannot have ~ ( w )  # 0 at w = 00. 

consider the restricted class of S.D.F.'s that satisfy the additional condition 

Hence we 

a 

where K is a positive integer and C is a finite, non-zero constant. The parti- . 

alar form of (17) is chosen for convenience. 

can approach zero faster than a power of w2, (17) excludes only S.D.F.'s that 

approach zero slower than w2. 

Since no S.D.F. satisfying (16) 

Now if we make the coordinate transformation (lo) u = 2 tan-l w (17) 

guarantees that the new function 

(18) 
- (K+1) 1 f(u) = (1 + cos 2u) v(tm 7 4 

is a regular S.D.F. on (- n, R) that is finite at u = - T and admits a factor- 

ization f (u) = f+(u) [f'(u) ] * where 
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Hence the method of Section I can be applied to approximate f+(u). 

additional discrete transform. the coefficients yn can be approximated. 

With an 

Once the coefficients yn have been computed, it is a simple matter to 
+ 1 compute the Fourier coefficients y:) of cp (tan Tu). We have the recursive 

relations 
u 

relations (20) are 

2 -% m- 1) 
YO 

and y:) = 2-4 + y ) for n > 1. To compute yf) the (yn-1 n 
evaluated for M = 1, 2 ,..., K. 

?I 

It is clear that we can use this method for the discrete-parameter process 

h&en 'pp(- r) = 0. We factor 'pp(w)/(l + cos 2a) K'l , with K chosen so that 
(a)/(l + cos 2~)~'~ is finite, and then use (20) to compute the Fourier . ,  

linl 
w + T T r ( P p .  

coefficients of rpp(w).  
+ 1 For the continuous-parameter case the Fourier coefficients of 'p (tan 

4- do not lead to the most convenient representation for V, (a). We note, however, 

xhich is the Fourier transform of the n-th Laguerre function 2% e-t Ln(2t> 

Hence if we compute f(u) in (17), with K chosen so that (13) is satisfied, we 
+ can compute the Laguerre coefficients of cp (a) by applying the recursive rela- 

tions (20) exactly K times. 

immediately. 

If K is zero, we have the Laguerre coefficients 

To demonstrate the method, the Laguerre coefficients for the factorization 
-w2  of cp(~) = (1 + w ~ / N ) - ~  were computed. 

does not satisfy (16). 

The Fourier transform cp+(t) of ~p+(a) is 

Note that as N -f a cp(u) -+ e , which 
For this S.D.F., 'p (a) can be computed analytically. 

+ 
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For N = 6 the series 
M 

t > O  

t < O  

n=O 

was computed for several values of t and compared with (22). 

is plotted in Fig. 

smallest error we could expect since only 11 significant figures were carried 

The error, which 

This is nearly the 1 along with @+(t), Kas less than 

in the computation. The transforms were evaluated with 128 points. 
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Figure Captions 

+ 1. Approximate inverse Fourier'transform of 'p (u) for the spectrum 
m .  

~ ( u )  = (1 + u ~ / N ) - ~ ,  and its absolute error. Computation performed with 

128 points and N = 6 .  


