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ABSTRACT

In a series of papers by the author and his colleagues, nonlinear
I

flutter analyses of plates have been made. Most recently in Part I curved

plates were considered. In the present paper, Part II, numerical results

are presented for three-dimensional curved plates of constant curvature

and simply -supported on all edges. Quasi-steady supersonic aerodynamic

theory is employed. These numerical results demonstrate some of the

important qualitative and quantitative differences between three -dimensional

plates and the two-dimensional ones discussed in detail in Part I.
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1.

INTRODUCTION

In Part I l i a nonlinear analysis was made of two and three-

dimensional plates of constant curvature within the framework of

shallow shell theory (essentially Von Karman: is approximations and quasi-

steady supersonic aerodynamics theory. Extensive numerical results were

presented there for the two-dimensional case; in the present paper results

are presented for the three-dimensional case and a discussion is given of

some of the features characteristic of this case which have no counterpart

in the two-dimensional problem.
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2.

GENERAL NATURE OF PROBLEM

The details of the mathematical analysis are contained in Part I.

For the convenience of the reader we recapitulate the major assumptions

and basic method of the analysis. Starting from the (nonlinear) shallow

shell equation and quasi-steady aerodynamic theory, a modal solution is

obtained via GalerkinVe method for the spatial variables and numerical

integration for the time variable. Formally the solution may be expressed

as

w/ h a W ' W	 X, µ / m, rx+ ry, a/ b, P)
	

(1)

where w/ h = plate deflection/ plate thickness and the remaining non-

dimensional variables are

C' n	 spatial variables

T	 time

with non-dimensional parameters

$ynamic pressure

µ/ M	 mass ratio

rx, r
 
	 (constant) curvature in x and y dvection.

Note rx, r8 H/ h or r sr 8(a/ b) HH"

where H/ h rise height/ thickness ratio.

a/ b	 length/ width ratio

P	 static pressure loading

One might also include externally applied in-plane loads and the cavity

effect with little additional difficulty. All of the results presented here
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3.

will be for no cavity effect, zero in-plane applied' loads and Ps O. The

author has made calculations including these effects for certain practical

cases but no systematic investigation has been made to date.

It should be noted that a relation similar to Equation (1) may be

derived for stress. For practical calculations one ordinarily deals with

stress as a design parameter. For insight into the physical problem,

deflection is usually a parameter of greater interest. Hence although

stresses have been computed for all case s. presented here, we shall focus

on deflection and omit the stresses.
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We shall emphasize the following aspects of the problem:

(1) The effect of three-dime nsi onality

(2) The effect of curvature, streamwise, spanwise
or both.

(3) The effect of in-plane boundary support conditions

To do this we shall consider a curved plate with square planform,

a/ b a 1. All results were obtained using six streamwise modes which

insures good convergence for the parameter range studied.

In Fig. 1 we compare results for the two-dimensional plate,

a/ b s 0, and no spanwise bending to that for the square plate with

streamwise curvature, a/ b s 1, r  # 0	 , and restrained at all edges.

As expected X f is always larger for a/ b : 1 than for a/ b = 0. What

Ls perhaps unexpected is the distinct peak for f when a/ b = 1 and

H/ h rs 2. This appears to be associated with the static deflections of the

plate under the aerodynamic loads due to the initial curvature of the plate.

For a/ b = 1 the static deflection is larger prior to flutter than for a/ b = 0,
'i

particularly near H/ h = 2. This large static deflection apparently gives

the plate added stiffness. The source of the static deflection itself is

apparently the greater spanwise bending for a / b	 1 than a/ b = 0. (Recall

a/ b = 0 denotes no spanwise bending by hypothesis . ) If this explanation-is

.correct this suggests that three-dimensional effects may be somewhat more

important for curved plates than flat ones. This is certainly true for the

data shown in Fig. 1. N
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In Fig. 2 we compare several results for the square plate, a/ b a 1,

including streamwise curvature only, r x # 0 r y a 0; spanwise curvature

only, r x # 0, r y # 0; and both streamwise and',°spanwise curvature,

r .4 0, r y 0 0. The results for r x# 0, r y a 0 have already been

discussed. Consider by comparison the results for r x z 0, r y A 0.

As can be seen there is a monotonic decrease in Xf. Note that for rX a 0,

there to no static aerodynamic loading due to plate curvature within the quasi-

steady aerodynamic approximation. Thus the explanation for the decrease

in X f must be sought elsewhere. If one examines the natural frequencies of

the first two streamwise modes, one finds that while both increase with

H/ h (or r y) the first increases more rapidly than the second. Indeed in

he present example for H/ h 4 the two frequencies coincide. Such

frequency coincidence is known to have a detrimental effect on X f . More

will be said of this interesting result later.

Now let us turn to r x i 0 and r y 4 0. •since rx # 0, the re is

a static aerodynamic loading on the plate„ Indeed it is found that typically

prior to flutter the plate buckles ! This unexpected buckling generally

stiffens the plate with respect to flutter, and, as may be seen inFig. 2, X f

is higher for this case than any other when the curvature is sufficiently

large, H/ h > 2.

The flutter frequency is also of some interest and is shown in

Fig. 3. Generally the frequency increases with Yncreasing curvature, H/ h,

but note the drop-off when r x . 0 for H/ h •:% S. This latter behavior is

unexplained at present.
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In Fig. 4 we plot w/ h vs. X for a typical case, r X = r yet 0, H/ h s 4 0

Note the transition from unbuckled, X !r- 500, to buckled, X = 625 "* 875, to

flutter, X = 1000. For flutter the plate deflection oscillates over the range

indicated. Other cases are not so unambiguous, for example, r x # 0,

r y = 0 and H/ h e 2.0. See Fig. 5. Here it is difficult if not impossible

to make a distinction between unbuckled and buckled. The transition to

flutte r is clear.

Now let us return briefly to the., interesting case r x s 0, r y 4 0.

The results shown in Fig. 3 directly contradict those found earlier by Voss2

in his well known paper on cylindrical shells and curved prates, as well as

various authors who have followed Voss. Here we find a decrease in h f with

increase in spanwise curvature while other authors have determined spanwse

x curvature to be beneficial with respect to flutter. It first might be thought

that these differences are due to nonline aritie s, however this is not so. A

lirjar analysis would give the same results for flutter boundary , i.e. at

kf, as long as r x 0. The difference in the present results and

those due to Voss are entirely a result of satisfying different in-plane

boundary conditions. Voss implicitly assumes zero in-plane stress on the
a and y = 0, b.

boundaries, x s 0, A (In the present analysis this is equivalent to setting

R	 R a 0, see Part I.) Here we assume zero displacement. In Fig. 6
x	 y

the two results are compared. The conclusion to be drawn from this

comparison is not that one analysis or the other is right or wrong, but

rather that the results for curved plates are sensitive to in-plane edge
.

x:	 boundary conditions. Another, more trivial, example of this is the two

n
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4
dimensional plate, a/ b = 0, with no spanwise bending but streamwise

curvature. If the edges are completely restrained against in-plane

displacement the results are those shown in Fig. 1. On the other hand

if there is no restraint, i.e. zero in-plane stress at the edge, then there

is no effect of curvature on X  and 
X  

remains constant for all curvature,

H/ h. Thus for curved plates the flutter boundary, quite aside from the

flutter motion per se, is dependent upon in-plane as well as out-of-plane

edge restraints.

Three questions which deserve further study are the following

One item is the question of the most critical spanwise mode.

All of the results discussed so far were obtained using only the first

spanwise mode. Based upon Voss $ results one may expect that for some

curved plates, particularly those with spanwise curvature and zero membrane

stress at the edges, higher spanwise modes can be more critical for flutter,

In Fig. 7 results are shown for the first three spanwise modes for a/ b : 1,

T e 0 and R o R s 0. As may be seen for this example the first span-
x	 x	 y

wise mode is always" the most critical although near H / h s 3 the second

mode flutter boundary is very near that of the first. It should be empha-

sized that coupling between spanwise modes has not been accounted for

in the present analysis. For the particular example there is no coupling

between modes. However if Ry# 0, the various spanwise modes will

couple unless, of course, one reformulates the problem in terms of natu-

ral modes. In general it would seem reasonable to neglect spanwise

coupling except when two modes which may couple have flutter bo^^daries
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in close pr cximity. However it would seem wise  to investigate higher span-

wise modes at least on an individual basis to assure that the most critical

flutter mode has been determined.

A second item is the effect of spanwise variation of the aerodynamic

loading on the pre-flutter deformation at the lower Mach numbers. A more

refined aerodynamic theory will be required to study this effect, see Ref. 3.

Finally, a continuous variation of curvature should be studied so

that the question of imperfections may be considered. This would be in the

spirit of earlier work by Fung4 and Kobayashi bui including three-dimen-

sionality and sufficient modes to insure convergence.
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CONCLUSIONS AND RECOMMENDATIONS

The major conclusions to be drawn from the present study are

(1) Three-dimensional curved plates with streamwise curvature

will be more significantly affected by pre-flutter static

deformation than two-dimensional ones. A non-linear

structural theory is required to account for this deformation

which may include in some instances buckling under the

static aerodynamic loading.

(2) Three-dimensional curved plates with spanwise curvature

are sensitive to in-plane boundary support conditions even

when linear theory may be used to determine the flutter

boundary.

Topics recommended for additional study include

(3) The effect of coupling between spanwise modes.

(4) The effect of a more refined aerodynamic theory at lower

Mach number.

(5) The effect of variable curvature with particular attention on

plate imperfections.

(4) and (5) are thought to be more important than (3).
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