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ABSTRACT

The control of linear systems with incomplete information is considered
where the unknown disturbances and/or random parameters are assumed to
satisfy some gtatistical laws.

The observer theory for linear systems is developed which generalizes
the concepts due to Kalman and Luenberger pertaining to the design of linear
systems which estimate the state of a linear plant on the basis of both
noise-free and noisy measurements of the output variables. The Separation
Theorem for linear system is then extended for such observers-estimators.

The problem of controlling a linear system with unknown gain is then
considered. An open-loop-feedback-optimal control algorithm is developed
which seems to be computationally feasible. Existence of such suboptimal
control scheme is proved under the assumption that the uncertainties in the
unknown gain will not grow in time. Convergence of such suboptimal control
system to the truly optimal control system is considered. A computer pro-
gram is developed to study the control of a variety thrid order systems
with known poles but unknown zeroes. The experimental results serve to pro-
vide us with some more insights into the structure and behavior of the
open-loop-feedback-optimal control systems.
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CHAPTER 1

INTRODUCTION

In recent years, deterministic optimal control theory has come to its
full maturity. Text books [57], [43] have been written which are devoted
to the theory and application of modern control theory. In deterministic
control theory, it is assumed that the future effect of any present control
action is exactly known; this class of control problems is often called con-
trol with complete information [73]. In many situations, the necessity of
control arises from the fact that there are perturbing disturbances and/or
component failures in the physical system. These uncertain phenomena pre-
vent us to deduce exactly the future effect of all present actions, and
thus deterministic control theory may not be strictly applicable. The
classes of control problems where future effect cannot be predicted exactly

are called control withk incomplete information. There are cases where the

uncertain phenomena can be zppropriately modelled as stochastic processes,
so stochastic models and stochastic control theory can be applied [4], [74].
There are also cases where the chance phenomena have no statistical regu-
larity, in these situations, the game-theoretic approach [63] to obtain
min-max control may be more appropriate.

In this thesis we shall study some classes of problems with incomplete
information. First we assume that the system being controlled is linear
(either discrete time or continuous time). The disturbance and random
parameters are assumed to satisfy some statistical laws. In the beginning,
we assume that the only sources of uncertainty are the driving and/or obser-

vation disturbances. The statistical laws of disturbances are assumed to be

-1-
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known. Thern, we shall consider the case where some parameters of the system
are unknown but satisfy some statistical laws.

In Chapter II, some mathematical preliminaries are collected for ease
of references. Probability theory is treated briefly from a measure-
theoretic approach. Facts about linear stouchastic difference (and differen-
tial) equations, and stochastic optimization problems are included for the
sake of completeness. The sections on Generalized Riccati Equations are
new results and will be useful in later discussions. The theory for ob-
servers for discrete time and continuous time linear systems is developed
in Chapters III and IV. The conceptual framework is that an observer is a
device which will supply complémentary information about all recoverable
uncertainties. The observer theory is applied to estimation problems where
we have only partial observation of the states in the presence of observa-
tion noise which may be degenerate or even totally singular. The results
will include the Kalman filter [39], [50] as a special case.

In Chapter V, we consider the optimal control of linear system with
known dynamics with respect to quadratic criterion. The uncerﬁainties
arise from driving and/or observation disturbances with known statistical
laws. One such class of problems had been ronsidered before by Joseph and
Tou [56], Streibel [59] and Wonham [22]. They made the assumption that the
observation noise is nondegenerate Gaussian white noise process (see Section
2.2). In this work, this assumption is relaxed. It is assumed tﬁat the
observation noise may be: 1) nondegenerate Gaussian white noise, 2) de-
generate Gaussian white noise, 3) colored observation noise, 4) totally

singular (i.e., noise-free observations) or 5) the sum of colored and white
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Gaussian noise. The approach follows that of Wonham's [22] and the tech-
nique is the dynamic programming method.

The control of linear systems with unknown gain parameters is con-
sidered in Chapter VI. The open-loop-feedback-optimal approach is used to
derive a suboptimal control sequence which appears to be computationally
feasible. The technique used is that of the matrix minimum principle. Ana-
lytical studies on the overall suboptimal control system are carried out
and the asymptotic behavior of the overall suboptimal control system is de-
rived. Computer simulations for some third order linear systems were carried
out based on the theoretical results obtained in Chapter VI. The experi-
mental results are discussed in Chapter VII. Conclusions and some topics
for further research are listed in Chapter VIII.

The perspective and comparison of this work with published references
are done at the end of each chapter. In this contribution, we develop the
observer theory which provides a deeper understanding of the structure of
state estimators in the case of nondegenerate, degenerate, singular, or
colored observation noise. The theory unifies some seemingly different
concepts of Kalman filter, Luenberger observer and exponential estimator,
and treated them in one general framework. Then we have the extension of
the Separation Theorem for such observers-estimators. Finally, we have de-
veloped the open-loop feedbackboptimal control algorithm for the linear
stochastic systems with unknown constant or random gain parameters; theo-
reitical and experimental studies are carried out to this class of problems

which provide us with some insights into the structure and behavior of the

overall control system.




Notations:

Lower case underscored letters stand for vectors (e.g., X, ¥); upper
case underscored letters stand for matrices (e.g., A, B). Noise distur-
bances are denoted by lower case underscored Greek letters (e.g., £, n).
Lower case letters with subscripts will denote components (e.g., X, will be
the i-th component of the vector x, aij will be the ij-th element of matrix
A).

The transpose of a matrix A is denoted by A'. The transpose of a
column vector, x, is a row vector and is denoted by x'.

Let A be an nxn square matrix; the trace of A is defined as

i=1

Let H(xll, X cees Xnm) be a scalar function; we shall denote it by

12°
H(X). The gradient matrix is defined by

0X o, , )
2 ij

Mo will denote the set of all nxm matrices.
R.n will denote the product space of ordered n-tuples of real numbers,
we shall denote the elements in R.m by column vector x.

I will denote the set of all'integers and I[,

will denote the set of
1’j]

integers {i, i + 1, ..., j}, i £ j.

-
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CHAPTER 1I

MATHEMATICAL PRELIMINARIES

2.1 Introduction

The purpose of this chapter is to introduce the mathematical results
which will be used frequently in the later chapters. Some of these results
are known in the literature while some are due mainly to the author.

In Section 2.2, probability theory is treated briefly using the
measure-theoretic approach. Except for the precise basic definitions, the
treatment is physical rather than mathematical. For a detailed and rigorous
mathematical treatment, see Doob [1] and Loeve [2]. A rigorous mathematical
consideration on conditional expectation and conditional distribution of a
random vector is given. In the opinion of the author, a thorough under-
standing of these concepts is vital in most stochastic optimization problems.

In Section 2.3, linear stochastic difference and differential equations
are treated to the extént that some of the discussions in later chapters
will require for the sake of completeness.

In Section 2.4, the matrix minimum principle and optimality criteria
are considered to some detail. The matrix minimum principle can allow us
to deduce the necessary conditions for optimality for some special problems,
whereas the optimality criteria provides us a test to see whether a certain
solution is optimal.

In most control and filtering problems, we shall encounter a matrix
Riccati Diffefence or Differential equation. To foresee there generalized
matrix Riccati difference and differential equations are investigated in
detail in sections 2.5 and 2.6. The results obtained in these sections

are new, while the approach follows that of Wonham's [32].

5=
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From Section 2.2 to Section 2.4, the results are known. The discus-
sions in these sections are by no means exhaustive: detailed references
are given in Section 2.7 to indicate where more extensive results can be
found.

2.2 Probability Theory

Definition 2.2.1: Let  be a set. A o-algebra (Borel Field, o-field) on

2, F, is a class of subsets of @, such that it has the following properties:

a) QeF

b) IfAcF, then AS e F'

c) 1f Ai e F, i=1, a, ..., then

N Ai e F .

i=1

I < 8
>
™
5]

i=1
The pair (9, F) consisting of a set @ and a o-field F of subsets of @

is called a measurable space. The elements of @ are called F-measurable

sets, or just measurable sets if there is no ambiguity. In probability

theory, the set Q represents the sample space, and F represents the collec-

tions of possible events.

Definition 2.2.2: Let (Ql, Fl) and (92, F2) be two measurable spaces. A
mapping f of Ql onto Qz is said to be measurable if it satisfies the condition:
£ e F £ AcF
e Fy or every A e Fy .

Definition 2.2.3: Let Q be a set, and (fi)ieI a family of mappings of Q

into measurable spaces (24, Fy) The o-algebra generated by (f;)

. is
iel

the smallest o-algebra on @ with respect to which all functions (fi)isI are

iel’

measurable, and is denoted by F(f;, i e I).

.1..

AS denotes the complement of A.
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From the above two definitions, we see that if F' is the o-algebra
generated by (fi)iel' and F" is the o-algebra generated by (fi)isl" then
F' C F" if and only if I' © I" while I' and I" are both countable.

In general, a basic measurable space ({!, F) is assumed to be given
which describes the underlying uncertainty of random phenomena. Such a
measurable sﬁace is of an abstract nature; how the uncertainties reveal
themselves depends on the type of experiments we perform to obtain observa-
tions, the outcomes of which we usually referred to as statistics. In ab-
stract mathematical formulation, we let (Ql, Fl) be another measurable

space, where we call 9. the observation space and F. the collections of all

1 1

possible observations. A measurable function, f, from & to Ql is called the

observation statistic. Let F C F be a sub-o-algebra, an observation

statistic, £, is said to be F-measurable if F(f) CF. Special cases of
observation statistics are random vectors (Ql = Rp) and random processes

(Ql is the set of functions defined on [0, T] with values in Rn).

Definition 2.2.4: Let (2, F) be a measurable space. A probability law

on this space is an abstract positive measure p defined on F,ul~ and having
u(R) = 1. The triplet (2, F, u) is called a probability space.

Let (2, F, u) be a basic probability space, and let ( Fl) be another

lb

measurable space representing the observations with a statistic f which maps

£ onto Ql. We can define a probability law on (Q

be(A) = w(ETN@); A e F

1° Fl) by defining

We shall call ”f the statistical law of u under

1.

f; this law is also called the law of distribution of the statistic f.

Jru(°) is a set function defined on F with the property of countable addi-
tivity, i.e., if A,n e F, n € I, are disjoint, then we have

(U h) T o)

n n
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Definition 2.2.5: Let (2, F, u) be a probability space, let F, be a sub-
o-field of F, and let x be an integrable real-valued random vector. A

conditional expectation of x relative to F, is an integrable F,-measurable

1 1

real-valued random vecter y such that

(2.2.1)

J x(w)du(w) = f y(w)du (w) for every A ¢ Fl .
A

A
By the Radon-Nikodym theorem, such a random vector, y, exists and is unique

a.s. (almost surely): i.e., if y' is another random vector satisfying

(2.2.1), then

plo: yw) = y'(wi =1 . (2.2.2)

For this reason, we may simply write such y as E{§JF1}. The conditional ex-
pectation of the indicator of A € F with respect to Fl’ E{IAIFl}, L% also

ralled the conditional probability of A relative to F Note that this

1.

"probability" is a random variable defined up to an a.s. equality, and not

a number.
Lemma 2.2.6: Let (2, F, u) be a probability space. Let Fl, F2 be sub-o-
algebra of F with Fl CiFZ. Then
E{e{y|F,}| F,} = E{ylF}}  aus. (2.2.3)

where y is any u-integrable real-valued random vector.
Proof: By definition 2.2.5, we have for all A ¢ F2

J E{lle}du = f y du . (2.2.4)

A A

By assumption, Fl C'FZ’ therefore (2.2.4) holds for all A ¢ F Therefore

ll
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jA B{E{y |7} Fyau - IA E{ylF)}dn =
(2.2.5)

y du = j E{y|F.}du s AEeF .
| xa=] sale 1

Now (2.2.4) follows from the a.s. uniqueness of (2.2.1).

Lemma 2.2.7: Let (2, F, u) be a probability space. Let F1 be a sub-o-

algebra of F. Let y be a u-integrable random variable and x is a Fl-

measurable random variable, then

E{xy|Fl} = x E{y]Fl} . (2.2.6)

Equation (2.2.6) is true when x is a simple function, and the general case
follows using the approximation procedure. For a detailed discussion, see
(1], [2].

Let £ be an observation statistic on Q; i.e., £ is a measurable func-

tion from (2, F) onto (Ql, F,). Let F(f) be the ¢-algebra generated by f.

1
Such a statistic induces a conditional probability E{IAIFCQ}on ®. If there
exists a function Pf(A, w) such that for each w € @, Pf(A, w) defines a

probability measure on F and for fixed A e F.
P.(a, w) = E{I,|F(D)}  a.s. (2.2.7)

then Pf(A, w) is called a conditional measure on F relative to the statistics

f. Unfortunately, such Pf(A, w) may not exist, and so it may not always be

possible to define a conditional measure on F relative to a certain sta-

(1]

tistic. Let g be another statistic and F(g) is the o-algebra genefaéed

by g. If there exists a conditional measure defined on F(g); i.e., if there

is a function Pf(A, w) such that for each<n€Q,Pch¢Q)defines a measure on F(g),
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and for fixed A ¢ F(g)

P (A, w) = E{I,|F(f)} a.s. (2.2.8)

then one can define the law of distribution of g in the regular manner.
Doob[1] had proved that if the statistic g is a random vector (say y € Rp)
then the conditional measure on F(y), Pf(A, w), A e F(y), exists and so the
conditional distribution of y is well defined (a.s.). Let us denote the
conditional distribution by Pf(X, w) which defines a conditional measure

on the Borel set of R" through y. If ¢(y) is a measurable function of n-

(1]

variables with values in Rm, then almost surely, we have:

o0

E{(b(y)lF(f)} = J_w... f o (y) Pf(dyl cew dy w) . (2.2.9)

- 00

We can visualize F(f) as the o-algebra which contains, in a loose sense,
all the statistical information conveyed by the observation statistic about
the total underlying uncertainty of the basic sample space. On the other hand,
the conditional measure Pf(A, w), A€ F(x),‘describes the statistical infor-
mation of f conveyed about the random vector y. In view of this intuitive
interpretation we have the following definition.

Definition 2.2.8: Let (2, F, u) be a probability space, and let F. ., F, and

1’ "2
F3 be sub-c-algebras of F. Fl and F3 are said to be conditionally independen;

relative to F2 if for any random vectors, ¥y which is F

l-measurable, and Y

which is F3-measurable; we have

E{y, léle} = E{y_lle} E{y3|F,} . (2.2.10)

1 and fz are said to be

independent if F(fl) and F(fz) are conditional independent relative to

Let fl’ f2 be two observation statistics; f

F2 = (¢, Q2), or we say F(fl) andvF(fz) are independent.
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Let (%, F, u) be a basic probability space, and let y be a random n-
vector on f; this induces a law of distribution on R" through the statistic
y. Let F1 C F such that Fl and F(y) is independent relative to F2 = {$, Q}.
Then for arbitrary B € F,, we have for A € F(y), and ¢(y) measurable in R":

f E{e(y) |F, } du f 2(y) du = f Ip 8(y) du
B B Q

f dp f o(y) du (2.2.11)
B Q

JB (JQ 2 (y) du) du B e F1

Therefore, we have
E{@(z)iFl} = JQ o(y) du  a.s. . (2.2.12)
In particular if %(y) = IA’ A e F(y), then (2.2.11) and (2.2.12) become
w@ANB) =@ ue)  ; E{LIR}=w@  as. . (2.2.13)

This implies that if Fl and F(y) are inde?endent; the conditional distribu-

tion of y relative to F, is the same as the unconditional distribution of y.

Physically, this says that Fl reveals no information about y. In many cases,

Fl is generated by some observation statistics, fl, ‘e fn; so if y is in-

dependent of Fl = F(fi, i=1, ..., n), this means that the observation of
£f., ..., £ reveals no statistical information about y.
1 n >4
Let x be a random vector defined on the basic probability space (2, F, u).

(3]

X is called a Gaussian random vector if it has the distribution law.

b () = L J exp - 1 x-m' _Z__l(gc_ - m) dx (2.2.14)

|2ﬂz|%

XeA Z




where

>

m 2 E{x} f x(w)p(dw) ; ZLAEG-mEx-m'}
Q
(2.2.15)

= J (x(w) - m)(x(w) - m)'u(dw) .
Q

m is called the mean or expectation of the random vector x, and I is called
the covariance matrix of the random vector x. From (2.2.14), we see that
the statistical law of a Gaussian random vector is specified‘completely by
its mean and covariance. We shall always denote a Gaussian vector with mean
m and covariance I by the symbol G(m, I).

Two Gaussian vectors X,, X, are independent if and only if[3]

t=1
o~
E
"
oy
>

fﬂ}_l(w)gc_é(w)u (dw) = Jggc_l (w)u “‘“Jg-’ié(‘”)“ (dw)
(2.2.16)

Bz} - B}

Let x(t), t € [to, T], be a random n-vector process defined on the
probability space (2, F, v). x(t), t € [to, T], is called a Gaussian random

n-vector process if for any finite set {tl, coes tm}, t, € [0, T] the vector
: ’}S(tl’ w)
xw =

. l‘.(tm: w)
is a Gaussian random nm-vector.

Another observation statistic which we shall consider in the later
chapters is the "Gaussian White Noise Process.'" Different interpretations

of this kind of process are available. One may view it as a formal deriva-

tive of a Wiener Process,[4] [5]

or as a generalized random process where the

observation space is the set of linear functional on the class of test
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functions. We shall not consider these interpretations in detail; no
matter what interpretation one adapts, a Gaussian White Noise, g(t), has

the following properties:

t
1) j E(t)dT is Gaussian for all t € [to, T] with mean

o
t t
f m(t)dTt and covariance f R(t)dt, R(t) is measurable and
to to
in L2 locally.
t1 ty tn
2) f E(t)dr, J g(r)dr ... f E(t)dr, to < tl ces < tn <T,
t t t
0 1 n-1

are independent.
Let F_ be the o-algebra generated by £(1), ty £t s2t, then (2.2.12) and
the properties of Gaussian White Noise imply that

o) o
E{J g(dr|F } = f m(t)dt (2.2.17)
t t

o of o o o
E{(J g(t)dt - J{m(r)dr)([ E(r)dr - J g(r)dr)'lF} = J_g(r)dr . (2.2.18)
t t t t t t

2.3 Linear Stochastic Difference and Differential Equations

Consider a discrete«time linear system described by
x(k + 1) = A(k) x(k) + g(k) > k=0,1, ... . (2.3.1)

Let (2, F, p) be the probability space which describes all the underlying
uncertainties. Let x(0), £(k), k = 0, 1, ... be independent Gaussian vectors

with statistical laws:




x(0) G (x50 Zg)
(2.3.2)

£(k) v G (0, R(k}) ; k=0,1, ... .

From (2.3.1), since A(k) is linear transformation, x(k) is also a Gaussian
vector, k = 0, 1, ... .[3] Let f be some statistic on (R, F, u), and let
F(f) denote the o-algebra by f. Suppose that f is independent of £(i),

i=k, k+1, ...; then for i 2 k, by (2.2.12), we have,
R+ 1]£) = ADRA|E) a.s. ;3 2@A]E) § E{x(1)|F(F)} (2.3.3)
and

£+ 1[f) = AWEWA|EA'(A) + R(A) a.s. ;
(2.3.4)
S(1]£) = E{x(1)x" (1) |F(£)}

Using (2.3.4) and (2.3.3), the conditional covariance of x(i) relative to

F(f), denoted by gF(ilf), will satisfy
2% + 1)F) = ADZSE|H)A' ) + R(L)  a.s. . (2.3.5)

In addition, if the c: i itional distribution of x(k) relative to F(f) is
Gaussian, then for all i 2 k, x(i) is a conditional Gaussian vector relative
to F(f). The statistical information of the statistic f is contained in
F(f), but the necessary statistical information of f about the uncertainty
of the future state of the system, x(i), i 2 k, is contained in the con-
ditional distribution of x(k) relative to F(f); and if it is Gaussian,
#(k|f) and f£(k|f) completely specify the conditional distribution of x(i),

i 2 k, relative to F(f). This is also referred to as the Markov property.
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In the above discussion, the observation statistic is completely
general. If the observation statistic is linear in x(ji), j =0, 1, ..., k,

and some other Gaussian vectors, e.g., £ = {y(0), ..., y(k)}, and
y(i) = c(i) x(i) + n(i) i=0,1, ..., k (2.3.6)

where n(i) is F-measurable, independent of £(j), j 2 k and of Gaussian
statistical law, i = 0, 1, ..., k; then x(k) is conditional Gaussian rela-
tive to F(f).[ll There may be other kinds of statistical observations
which will induce a conditional Gaussian law on x(k), but in this thesis, we
shall only consider observation statistics of the type given by (2.3.6).

Consider a zontinuous linear stochastic system described by
x(t) = A(t) x(t) + E(t) (2.3.7)

where A(*) is measurable in t, and is locally bounded.
Let (2, F, u) be the basic probability space where.g(to), £(t),
t € [to, T] are statistics defined on Q. The solution of (2.3.7), x(t),

is defined as a process which satisfies the integral equation

t t
x(t) = x¢y) + f A(t)x(t)dT + J E(t)dt ;3 te [tgs TI (2.3.8)
t t
0 0
Let £(t) be a Gaussian White Noise Process with
t2
E{J E(drf=0 3 oty St <t ST (2.3.9)
t; L
!
“2 t2 t2
E{(f g_de)(J g(ydr) }=J R(dt 3 g St <, ST . (2.3.10)
tl tl tl
From (2.3.8), we see that for T 2 t, > tl 2 to
t2 t2
x(@t,)) = x(t,) + A(t)x(t)dr + E(t)dr . (2.3.11)
2 1 s e =

1 1
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We shall always assume thatig(to) and £(1), 7 € [to, t], are independent

for all t > ty: Therefore‘§(tl) is independent Of_E(T), T € [tl, t], for

all t > tl. We can find the solutijon of (2.3.11), x(1), T € [tl, T], by

successive approximation: ¢t € [tl, T]

t t
x,(0) = x€) 3(_1(t) =x() + J A(T)_}go('r)d'c + f E(t)dt - (2.3.12)
£1 ‘1
and
rt t
gn(t) = x(t;) + Jt éﬂi)gn_l(r)dt + jt E(r)dr n=1,2, ... . (2.3.13)
1 1

By the assumptions on A(*) and R(*), this procedure will converge with
§n(t) - x(t), t e [tl, T] a.s., and x(t) satisfies (2.3.11).

Let f be an observation statistic such that F(f) and F(E(t), T € [tl, T})
are independent. Suppose that the conditional distribution of gﬂtl) rela-
tive to f is Gaussian. Then from (2.3.12) and (2.3.13), we see that the

conditional distribution of zn(t) for a fixed t ¢ [t,, T] is Gaussian rela-

1°
tive to f, n =0, 1, ..., thus x(t), for a fixed t ¢ [tl, T], which satisfies
(2.3.11) is also conditionally Gaussian relative to F(f). Therefore the
complete statistical law of x(t) relative to f is described by its condi-
tional mean and covariance.

From (2.3.13), we see that for alln =1, 2, ...

t 1 "n-1 .
E{x_(t) [F(£)} = {yf A(rl)Jt 5(12)...J Al dac_...dn bE{x(t) [F(D)] aus.

& 1 t

(2.3.14)
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E{_}gn(t)_}gr'l(t) |F(E) } =

t 1 Th-1 '
(..I_*'J A(tl)j A(TZ)...[t _é,(fn) dTn"'dTl)'E{l{.(tn)ﬂ (tl)lF(f)}'
‘1 £ '
T
t 1 n-1 t
(ij A(Tl)j _é(fz)...J A(Tn)drn...dfl) +J R(t)dr
t t t t
1 1 1 1
t % “n-2 n-1
+J Ay )J A@,)... J( A _)) L _&(On) do_...do,
1 1 t1 1 '
t °1 “n-2 %n-1
+(J ‘A(ol)f _é(oz)...jt 'é(cn-l)jt .g(cn)dcn...dcl> a.s. . (2.3.15)
5 & 1 1

Since x_(t) + x(t) a.s., E{gn(t)!F(f)} ~ E{x(t) |F(f)} a.s., and
E{gn(t)gé(t)lF(f)} ~ E{x(t)x"(t)|F(f)} a.s. Equations (2.3.14) and (2.3.15)

imply that as n - «, E{x(t)|F(£f)} and E{x(t)x'(t)|F(f)} satisfy (a.s.):

R(t|F(£)) = A(E)R(t|F(£)) t 2 t; s R(t|F(£)) L E{x(t)|F(f)} (2.3.16)
EelF(D) = AMEE|F(E)) + E(e|F(ENAT () + R()  t2t

S(e|F(E)) & Elx()x" () |F(E)} . (2.3.17)

The conditional covariance of x(t), t 2 tys denoted by £ (t|F(£)) will then

satisfy

E5(EIF(E)) = AOIT(E]|F(E) + 25(e[F(EA' (1) + R(t) aws. , t2¢t . (2.2.18)

In the above, the observation statistic is completely general.  If the
conditional distribution of'g(tv} relative to f is not Gaussian, then x(t),
t 2 tl’ will not be Gaussizn for any fixed t; however the conditional mean

and covariance of x(t), t 2 t,, are still given by (2.3.16) and (2.3.18).
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In this thesis, we shall assume that the observation statistic is of the

form

y(t) = C(t) x(t) + n(t) , t e [ty T] (2.3.19)

where n(t), t € [to, T] is Gaussian white noise with

2
E{] n(r)dr }=0 (2.3.20)
1
]
52 t2 £
E{(J ﬂ(f)dt)(] Bjr)dt) }s J Q(t)dr (2.3.21)
t 51 1
and n(t), t € [to, T] is independent of £(t), t ¢ [to, T], and_g(to). With
such observation statistic, we see that Ft A F(y(t), T ¢ [to, tl]) is inde-
1

pendent of £(1), T ¢ [tl, T]; furthermorefc_(tl‘Ft ) is Ft -measurable and

1
__:“g(tllFt ) is conditionally Gaussian if‘g(to) is Gaussian.l[4] 1f
1

t, <t, <t

0 1 g ten < tn’ we have

In the more general nonlinear case, the system is described by
x(t) = £(t, x(t)) + £(b) (2.3.22)

where £(t), t ¢ [to, T], is a Gaussian white noise with statistical law
(2.3.9), (2.3.10), and £(t, x(t)) is F(E(1), T € [to, t])-measurable, the
solution of (2.3.22) is defined as the process which satisfies

t t

f£(1, x(1))dt + j g(t)dt a.s. t € [to, T] . (2.3.23)

x(t) = x () + J
%o

o

If £(t, ) satisfies the Lipschitz condition
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H.f.(t9 3(_1) = _f.(tt ﬁz)” < 0‘”?&1 = 3{.2“ H '}Sl’ ﬁz e R" (2.3.24)

where o is some constant; then the method of successive approximation by

setting x(t) =‘§(t0) and

t t

f(, En_l(r))dt + f £(t)dt n

0 o

1, 2, ... (2.3.25)

_’Sn(t) = X(ty) t Jt

(6]

will converge almost surely to x(t), as n > «, The interpretation we
used here is Itd's; the reason for adapting this interpretation is due to
the rich mathematical properties one can deduce and utilize by using this
interpretation. Ité's theory in stochastic differential equation will not
be considered in here, the detail can be found in [1], [7], [8].
Let x(t) be a process described by (2.3.22) or (2.3.23)% x(t) is
(51,07]

called a diffusion process. Let C(+, *) be defined on T *R" with

real scalar value, such that Qx(t, X), Ct(t’ x), and gxx(t, x) are defined
and continuous. The differential generator of x with respect to C is de-

fined by

£(c(t, x)) & lim(s - t)-lE{C(t + At, x(t + At)) - C(t, x(t)|x(t) = x}
s¥t
(2.3.26)

If x(t), t € [t,, T], satisfies (2.3.22), then [71,[8]

0’

1/2

2 er{gM 2 e (e, oR

2

£(c(t, x)) = /

2(c)} + £(t, ¥)'C (£, ©) . (2.3.27)

If in addition,

ol + fo | + Ixlle, | + Ixl®le | < k(1 + |=)®) 5 (6 » e T "

(2.3.28)




=20~
then

t
C(t,x(t)) = C(t,x(t))+ J [£(C(7,x(1)) + C_(1,x(1))]dr

Y

t
+ Jt gx(rlg(f))'gfr)dt (2.3.29)
1

where now the last integral must be interpreted in the sense of Itﬁ.[l7]

Let Fl be the sub-c-algebra which is independent of F(§(1); T € [tl, T}).

(4]

Since

t
E{It Qx(r,_g(t))' éﬂT)dT|F1} =0 (2.3.30)
1

2! 171, (4]
we have from (2.3.29) the Ité s integration formula:

t .
E{C(t,_:i(t))lpl} = E{C(tl,g(tl)jFl} + E{L [£c(r,x(1)) + CT(T,_:S(T)]dT[Fl} .
1 (2.3.31)

2.4 Stochastic Optimization

In this section, the mgthematical tools for stochastic optimization
problems are stated, and the outline of the proofs will be given. These
stochastic optimization techniques will be used in later chapters to solve
different stochastic control problems.

Since we shall be considering linear systems with Gaussian disturbances,
the process which we shall control will be Gaussian. Thus an adequate de-
scription bf the process is the evolution of its mean and covariance. As a
result, we shall deal with a set of deterministic equations which describes

the "trajectory" of the mean and covariance. In many cases, we can transform
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a linear stochastic control problem into a deterministic control problem
where the dynamics of the deterministic system are described by a set of
matrix and vector differential equations. After making such transformation,

the technique of the matrix minimum principle can be used to obtain neces-
[91,110]

sary conditions for optimality, in the following way.

Discrete Time Control Problem:

A set of matrix and vector difference equations is given:

X(k + 1) - X(k) = E(k,X(k),x(k),U(k))
k=0,1, ..., N -1

’ X(*) = X.; x(°) =

L (2.4.1)
20 %0

x(k + 1) - x(k) = £(k,x(k),X(k),U(k))

with U(k) € S, constrained control set, X(k) € Mnm’ x(k) € RP. Consider the
scalar cost:
N-1

I = REM,EM) + > L,U0,X0),x0) (2.4.2)
k=0

It is assumed that F(k,*), f(k,*), K(*) and L(k,*) satisfy the conditions

(33]

required by the discrete minimum principle. The control problem is to
%
choose U (k), K=0, ..., N = 1, such that the cost (2.4.2) is minimized sub-
*
ject to the constraint (2.4.1) and U (k) ¢ S, k=0, ..., N - 1.

Define the Hamiltonian function

H(X (k) ,x(k),P(k+1),p (k+1),U(k)) & L(k,U(k),X(k),x(k))
(2.4.3)
+ £'(k,x(k),X(Kk),U(k))p (k+1)+tr{F(k,X(k),x(k) ,Uk))P'(k+1)} -

where P(k), p(k) are the costate associated with X(k) and x(k) respectively.
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Theorem 2.4.1: (Matrix Minimum Principle: Discrete Time)

Let gf(k), k=0, ..., N- 1 be the optimal control and zf(k), gf(k),
k=0, ..., N be the optimal state$ then there exists a costate matrix
gf(k) associated with gf(k), and a costate vector gf(k) associated with
5f(k) such that the following relations hold:

1) Canonical Equations:

* * 9H * * JH
2+ -X0)=ga7T), + 2&k+D-x 0 =5307075,
* * 5H * * 5H
P((k+1) =P (k) = - =% s pk+1l)-p (k) = - —F<
r 3_)5(1() . ’ 3 A 3_)_(_0() *
(2.4.4)
2) Boundary Conditions:
x0) =X, ; x (0 2.4.5)
S ( ) = _X_o F) _’S ( ) 2_{0 ( e 2
X K (M), (V) * AKX (N),x (1))
Py = & Mx ; py = X A.x (2.4.6)
3X (N) 3x (N)
3) Minimization of the Hamiltonian:
For every U ¢ S, and for each k=0, 1, ..., N~-1
* * * * % * % * *
B(x" 00,2 (0,27 1) " (41), 0% (0) = B(XT00 2" (0 2" (o) 7 (k41) 1)
(2.4.7)
Continuous Time Control Problems:
A set of matrix and vector differential equations is given:
X(t) = E(t,X(6),x(£),0(t)) ; X ¢y = X,
(2.4.8)
x(t) = £(,x(6),X(1),U(t)) ;5 x(t) = x4
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with U(t) € S, constrained control set, X(t) € Mhm’ x(t) € RP, Consider

the scalar cost:

T
J = K(X(T),x(T)) + { L(t,X(t),x(t),U(t))dt ; T fixed . (2.4.9)

'to

The usual differentiability conditions for F(+), f£(+), K(*), and L(*) are
assumed to be satisfied. The control problem is to choose'gf(t), t € [to, T,
such that the cost (2.4.9) is minimized subject to the constraint (2.4.8)

and U"(t) € S.

Define the Hamiltonian function

H(X(t),x(t),P(t),p(t),U(t)) & L(t,X(t),x(t),U(t)) +
(2.4.10)
£'(t,x(t),X(t),U(t))p(t) + tr{F(t,X(t),x(t),U(t))P'(t)}

where P(t), p(t) are the costate associated with X(t) and x(t) respectively.

Theorem 2.4.2: (Matrix Minimum Principle: Continuous Time)

* * *
Let U (t), t e [to, T], be the optimal control and X (t), x (t),
* *
t € [to, T], be the optimal state, then there exist costates P (t), p (t)
such that the following conditions hold:

1) Canonical Equations:




2) Boundary Conditions:

f(to) =X, z_*(to) = X, (2.4.13)
* * * *

p¥(m) = KU iné M) p*m - XE&E (P X (T)) (2.4.14)
oX (T) 9x (T)

3) Minimization of the Hamiltonian:
u(g"‘(c)._:g*(w,g*(c),g*(c),g*m) < n(gc_"‘(c) X (8) B (8),p (£),U ) (2.4.15)

for all Ue S and t ¢ [to, T]}.

The matrix minimum principle (both discrete and continuous) is a just straight-
forward exteision of the vector minimum principle, Holtzman and Halkin
[33], Pontryagin, et al. [11]. Theoretically, the justification of the
matrix minimum principle hinges on the existence of a mapping from M.nm to
R™. The details were carried out by Tse [9]; see also Athans ([12].

The matrix minimum principle only provides us with necessary conditions
for optimality. A control and its corresponding state trajectory which
satisfies the matrix minimum principle will be called extremal control and
extremal state trajectory. If one can prove the existence of optimal con-
trols and the uniqueness of extremal controls, the matrix minimum principle
also served as a sufficient condition for optimélity. But, in general, the
matrix minimum principle does not provide sufficiency. It will be convenient
if one can have some sufficient conditions for optimality, so that one can
2asily test to see whether an extremal control is optimal or not. It turns

out that to look for sufficient conditions, it is often easier (and more

general) if we consider the original stochastic control problem without

transforming it to deterministic description in terms of mean and covariance.
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Discrete Time Stochastic Control Problems:

A discrete time stochastic process is described by

x(k + 1) = £¢k,x(k),u(k)) + £(k)  k =k, k +1, ... (2.4.16)

0* "0

with x(k) € Rn,_g(k) e R'. Let x(0), £(k), k=0, 1, ... be independent
Gaussian Vectors defined on the basic probability space with statistical
law (2.3.2).

Let U(kO, k) & Lg(ko),gﬁko + 1),...,u(k)} denotes the control sequence,
and g(ky), g(ky + L,ulky)), g(ky + 2,U(ky,ky + D), «ovy glk,Ulky, k - 1)),

. is a sequence of observation statistics which depends on control se-
quence, such that for all control sequences F(k,U(kO,k - 1) CF(k + l,U(kO,k)),
where F(g(k,U(ko,k - 1)) & F(k,U(kO,k - 1)). Let {§U(k0’k_l)(k)}g=kobe the
process described by (2.4.16) when control sequence U(ko,N - 1) is applied.

Assume that zﬂ(ko,k—l)(k) is F(g(k,U(ko,k - 1))-measurable when the control

is restricted to be of the form:

u(k) =.g(k,g(k,U(k0,k - 1)) €8 (a.s.) . (2.4.17)
The control problem is to find air optimal control 1awlgf(k, U*(k,o,k-l))
such that
N-1
J(U(ky,N - 1) [F(g(ky)) = E{R(x) + 2{ L(k,x(k),u(k)) [F(g(ky))} (2.4.18)
k=k0
is minimized subject to (2.4.16).
Theorem 2.4.3: (Optimality Criteria: Discrete Time)
* n
Suppose that there exists a control strategy ¢ (i,*) xR -+ S

F kg ,N-1]

n
and a scalar function C(¢,°): I xR +le such that almost surely,
[ko ’N-l]

1) C(N,x) = K(x) (2.4.19)
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2) 0 = E{L(k,x,8" (k,x))+C (kL x (kL3 |E (i, Uk k=1)) }=C (k)
(2.4.20)
s E{L(kzﬁlg)+c(k+l,§u(k+l,§)[F(k,U(ko,k-l)}-C(k,g) a.s.

k = ko, k0 +1, ...
where for k = ko, ko +1, 0., N-1
* *
x (k +1,x) = A(K)x + B(k)$ (k,x) + &(k) (2.4.21)

2 (k+1,%) = A(Kx + B(Ku + £(k) 5 u=d(k,g) ¢S

*
i.e., u is any permissible control value at k. Then the control law ¢ (°,*
is optimal and C(koai(ko)) is the optimal cost a.s.

*
Proof: Let x (k),k = k.,...,N be the random vectors which satisfy the dif-

0’

ference equation (a.s.)

x(k + 1) = AKX (k) + B (k,x (k) + £(K)
(2.4.23)
K (k) = xky) .

By using lemma 2.2:6, we have from (2.4.20) that: (a.s.)

* *
Clkysx(ky)) = B{L(ky,x(ky) 9 (kghx(k))+C(k +1,x (k+1) [F(g(ky))}

*
E{L(ky»x (k)8 (ks (k) [Fa k)

) * * *
+E{E{L(k0+lt§ (k0+1)1g (k0+l,§.(k0+l))

+C(k#2,5 (k#2)) [Flk#L, 2 (o8 (k) } [ F (g k)
kol
E D LOGx (R0 (kx (k) [F(glkg)
k=k0 .
+E{C(k0+2,§_(k0+2))[F(g(k0))} . (2.4.24)




-27-
Inductively and keeping (2.4.19) in mind, we have

N-1
* * * *
Cligon (k) = EfK(x (N))+z Ll,x (K),0 (k,x () |F(g(k))} a.s. (2.4.25)
k=ko
Now let U° = {g?(i)}ﬁ;é be any admissible control law of the form (2.4.17).

Let gf(k), k = ko, ko + 1, ..., N be the random vectors which satisfy (a.s.)
o o o 0
2k +1) = AWK + BIOWCR) + £ 5 x7(k) = x(k)) . (2.4.26)

By (2.4.17), g?(k) is F(k,Uo(ko,k - 1))-measurable. Using lemma 2.2.6 and

the inequality of (2.4.20), we have (a.s.),

Clkysx(ky)) S E{L(Ky,x (ko) ou® ()4 (k#L,x° (k+1)) [F (g (k) )

A

E{L(k»x (ko)) ,u” (k) [F(g (k) HE(EL(ky#1,x° (k1) ,u° (k+1))

+C(k+2,x° (k+2)) | F (kg +L,u° (k) H F (g (k)

kg+l
= BUY L0k,x" (0,07 (00 [F (gl HELC(k+2,57 (k+2)) [ F( (k) )
%o (2.4.27)

Inductively and using (2.4.19), we have

N-1
Clkyx(ky)) £ EfR(x" () + z Lik,x (k) ,u” (k) [Fg(kg)) } a.s. (2.4.28)

=k_0

Combining (2.4.25) and (2.4.28) we have the assertion of the theorem.

Continuous Time Stochastic Cbntrol Problem:

A continuous time process is described by

x(t) = £(t,x(t)) + B(t)u(t) + £(t) (2.4.29)
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where x(t) € Rp,‘i(t, ) satisfies the Lipschitz condition (2.3.18).
E(to) i Q(go,go) and §(T), T € [tO,T] is white Gaussian noise with statis-
tical law (2.3.9) and (2.3.10). Denote the control U[to,t) = {u(1),
TE [to,t)}. Let g(t,U[to,t)) be an observation statistic such that if

A A .

= A .

at t to, g(tO,U[to,tO)) 2 g(to) and is independent of control. Let
{EU[to,t](t)’ t € [tO,T]} be the process described by (2.4.29) when U[tO,T)
is applied. We assume that x

—U[to,t

control is restricted to be of the form

(t) is F(t,U[t_ ,t))-measurable when the
) 0

u(t) = g(t,g(t,U[tO,t))) €S (a.s.). . (2.4.30)

The control problem is to find optimal control law of the form (2.4.30)
such that the cost

T

JWIty D [Fety) = Efkam + j L(e,x(8) ,u(0))de | Flg(eg)) | (2.4.31)
t
0

is minimized subject to (2.4.29).
For a fixed control Uo[tO,T) of the form (2.4.30), we have a fixed

diffusion process described by
x(t) = £(t,x(t)) + B(t)u’(t) + E(t) (2.4.32)

and we can associate with Uo[tO,T] a fixed differential generator & o(-).
u
Let C(t,x) be a scalar function, we have

/

£ ce,0) = 5 e &2, (60RY (01 (E 0B ) (2.4.33)

u

c (£,




-29-

Theorem 2.4.2: (Optimality Criteria: Continuous Time)

* *
Suppose there exists a control law ¢ (*,*): [tO,T) xﬁ? + S with ¢ (t,*)
1
satisfying the Lipschitz condition, and a function C(*,*): [tO,T) xR" -+ R
such that

1) C(t,x), Ct(ttg), gx(t,g), Qxx(ttﬁ) are continuous and for

some k
le| + fc,| + Ixllc | + =%l | < k@ + x| %) (£,0elty, xR (2.4.34)
2) C(T,x) = K(x) a.s. (2.4.35)
3) 0=C.(t,8) + E £¢*(c(t,§_) + L(t._:g.g*(t,gc_))IF(t,U[to,t))}

A

C (t,%) + E{ Syc(t,x) + L(t,ﬁ,g(t,gc_))|F(t,U[to,t))} a.s. (2.4.36)

fdr all (t,&)e[to,T]an, and ¢(t,*) satisfies Lipschitz condition.
Then Qf(t,g(t)) is the optimal control law and C(totg(to)) is the optimal
cost a.s.
Proof: Let §f(t) be the resulting diffusion process described by (2.4.32)
where we adapt control law g%(-,- . Using the Ité's integration formula

*
(2.3.31) applyi:y; to the process x (t), we have
( * _ * _ *
B(C(tg,x (£)) |F(a(eg))} = Cley,x (£))) = ELC(T,x (1)) |F(e(ty))
T
- E{J [£5#(C(T,x (1))
%o

+ CT(T,Ef(T))]dT|F(g(tO))} a.s. (2.4.37)

By lemma 2.2.6 and Equation (2.4.35), (2.4.36), we obtain
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Cltgsx (£0)) = BIE(C(T,x (D) [F@& (D)} [F(ry)))

T *
- E[E{jt [£¢7'-(C(T935_ (t)))

*
+ ¢ (t,x (1)) ]dt|F(t,Ulty,t)) [Flg(ty))

T

E{K(E*(T)) +J L('r,zc_*('r),g*(T,_g*(T))dTlF(g(to))

o

a.s. (2.4.38)

Let ¢(t,*) be any control law which satisfies the Lipschitz condition, and
gé(t) be the resulting diffusion process described by (2.4.32) when control
law g?(t,-) is used. The Itd's integration formula, applied now to the

o .
process x (t), gives us

T

C(ty,x°(t)) = ELC(T,x° (D) [Fa(t )} - Eth [£,0(c(r,x” (1))

0
+ € (1,27 (1)) Jdt [F(gltp)) |

In

T
E{K(EO(T)) +J L(T,EO(T)QO(T,z(T))dTIF(g(tO))} a.s.

t
0 (2.4.39)

where the last inequality comes from the inequality part of (2.4.36), also
lemma 2.2.6 is being used in deriving (2.4.39). Note that C(+,*) is de-
fined on [tO,T)xRp; now equations (2.4.38) and (2.4.39) yield the statement

of the theorem.

2.5 Generalized Matrix Riccati Difference Equations

k=k0’ 0’
k,+1, ..., let {P (k,k ;F)}w_ be the sequence which satisfies the linear
0 -v 0’— k—ko

For a given sequence of matrices V £ {V(k)} Vk) e M, k =k

matrix difference equation:
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P (ktl,k3E) = (A®K)-V(D(KA®K))R, (k,kq3F) (A(K)-V()DK)AK)) !
+(I_-V(K)D(K))Q, (k) (L_~V(K)D(K)) "+Q, (k) =y (W)+Y(K)R(K)V' (k)

B (kpskysE) = (2.5.1)

where A(k) e Mnm’ D(k) € an are bounded uniformly for all k. We assume

that F, Ql(k) , gz(k) are symmetric nonnegative definite nxn matrices with .
gl(k) < g?_(k), k = kO’ ko + 1, ..., and that R(k) is symmetric nonnegative

definite mxm matrix. Since (2.5.1) is linear, therefore for any arbitrary

V(k) € Mnm’ k = ko, ko +1, ..., {_liv(k,ko;_fi) }k=k0 exists, is unique and
. > =
R (kk3E) 20, k= ky, kg + 1, oee

When V(k) ranges over Mnm’ k = ko, k. +1, ..., we generate a solution

0
set ﬁko = {(gv(k,ko;_g))k=k0|y_(k) e M, k =k, ky+ 1, ...}. All elements
in the solution set f3 is a sequence of symmetric nonnegative definite

kg

nxn matrices.

Definition 2.5.1: (Minimal sequence) Let 8, = {(M(k))m_ l_ﬁ:l_(k) eM |,
ko — k—ko nn

[o}

Mk) 20, k=%k,, k. +1, ...}; an element (I°(k)) € Sk is called a

- 0> 0 k=k0 0
minimal sequence with respect to § if for all (M(k)):_ e 8§, , we have
ko — k-ko ko
MO (k) < M(k), k = kgs ko + 1,
For a given set @k , a minimal sequence may not exist; but if it
0

exists, it must be unique. In the following, it will be shown that the
solution set rRk has a unique minimal sequence.
0

Let us define the matrix _\gk(y,_g) by (k = k., k., +1, ...)

0> 0

¥ (V,P) = (A%0)-Y D()AGK)R(A)-Y DA +(I_-¥ D(k))Q, (k) (L_-¥ D(K))"

+Q, (k)=Q; (K)+V R(K)V' - (2.5.2)
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where V ¢ M, P ¢ M . Fer 2 fixed P ¢ M__, define the set
- nm’ — nn - nn

u (B) = Ve Mnm](*)k is satisfied} where the condition (*), is given by
(%) {R(K)+D (k) (Q; (W+A(KE A' (K))D' (I)} = {AGIR AT(k)+@) (IR . (2.5.3)

We have the following lemma:

Lemma 2.5.2: (Minimum property) Let P ¢ Mnn’ and P 2 0; if i_elfk(g),

then for all Ve M
- nm

k. +1, ... . (2.5.4)

> Tt , =
Y WP 2% @B ;0 k=kg, kg

Proof: Let us denote

R(k,P) = R(k) + D(k)(Q; (k) + A(K)P A" (k))D' (k)
(2.5.5)

k =k, k. +1,

0’ 0
The condition (*)k can now be written as

' v
) ¥

|55

(k,B) = (AP A'(K) + @ (k) D'(k)

k=k,, k, +1,

0> 0

Let ¥V el;k(g),_ﬁ.must satisfy (*)i; and so for V e M, we have

¥ (0R)+E-DRE&,P) -1

AP A' (K)+Q, (K)-V D(k) [A(K)E A’ (K)+Q, () ]-[A(K)E A' (k)+Q, (K)ID' (K)V' (k)

20 R(k,P)T'+Q, (k)-Q, (k)+V R(k,B)V'-V R(k,P)V'-V R(k,D)¥'

e

AGOR A" ()49, (10+Q, ()-Y R(k,B)V '~ (AM)RA' ()+Q; (0))D' ()Y

-V D(k) (Q; (M) +A(K)R A" (K)) = y, (V,P) k= ky, kg+ 1, ... . (2.5.6)
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Since R(k,P) 2 0, (2.5.4) follows from (2.5.6).

An immediate consequence of the lemma is that

¥R = Y

k _2’2) S _Yl’_y_z £ Uk(f_) . (2-5.7)

Theorem 2.5.3: There exists a unique minimal sequence, {g?(k,ko;g)}:=k

0
with respect to the solution set ﬁk .
0
Proof: Let us construct the sequence {gé(k,koig)}k=k as follows: Set
0
Po(k ,k.3F) = F, and choose Vo(k ) eV, (F). Such a Vo(k ) may not be
= Yot T X -~ 0 ko - -~ o
unique, but by (2.5.7) and (2.5.1), this gives rise to a unique
o) _ o o
Assume that‘yé(k), ko, ko + 1, ..., ko + i, have been chosen induc-
tively with y?(k) £ Uk(gé(k,ko;g) and a unique sequence
o o) .
PY(ktl,k3E) = ¥ (V0 (K),B° (k,kysE)) , ko= kg kbl .okt (2.5.8)
,0 . o . .
has been constructed. Choose l_(ko +1i+1) ¢ Uk0+i+l(g (kO + i + 1,k0,g)).
By (2.5.7) and (2.5.1), this gives a unique
TJO 3 . - o 3 o 3 .
» (k0+1+2,k0,g) Xk0+i+1(-! (kO + i+ 1),P (k0+1+1,k0,§)) . (2.5.9)
The sequence {Eé(k,ko;gj}isk thus constructed is unique.
0
Let V = {Z(k)}k=k0 be an arbitrary sequence with V(k) € Mnm’ k = ko,
ko +1, ... . By lemma 2.5.2,
o
. > .
gv(k0+l,k0,§) 2 g,(k0+1,k0lg) . (2.5.10)
Assume that for i 2 1,
3 . 0 : [ ] . 1
Ev(k0+1,k0xg) > g_(k0+1,k0lg) . (2.5.11)
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From (2.5.1) and (2.5.2), we =vo for a given V € Mhm:

¥ LR 2 ¥ (VLP) if ¢, 2P, 20 , k = ky,kgtl, .. . (2.5.12)

Combining (2.5.1), (2.5.2), (2.5.4), (2.5.11), and (2.5.12), we have

) By = U . . ) n .\ pO© . .

0 0

v

= 0 i .
k0+ (W° (kg +i) 2% (et ks E)) = RO(kgbiksE) . (2.5.13)

The theorem follows from induction.

Definition 2.5.4: The set of equations

B(Hl,k3E) = (I -V(K)D()) AR K,k DA ()40, (0)) IV (D))"

+Q, (K)-Q, (R)+V(R(, V' (k) 5 B(k P =F

0’ 0’
(2.5.14)
V(k) (R(K)+D(k) (A(K)E (k,k3E)A" (K)+Q, (k))D' (k))

= (ARP(k,ky; DA (K) + Q (k) D'(k)

is called the generalized Matrix Riccati Difference equation, and the
unique solution is called the Riccati sequence, which is also the minimal

sequence with respect to Qk .
0
The above definition is meaningful because of theorem 2.5.3. 1In the

special case when R(k) or'g(k)gl(k)gf(k) (or both) is positive definite,

then (2.5.14) can be written as a single nonlinear difference equation:
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R(kH k;E) = AGOR(k, kDA’ ()4, ()~ [AG)E(k,k sDA' (4 (K)]D' (k) -
{RU+D () (AMIR (k, kg sEIA' () +Q (K))D' (1)} (k) [AGOR (ks IA' ()49, ()

F) = F . (2.5.15)

Equation (2.5.15) is the Matrix Riccati Difference equation.[zgl’lzgl

2.6 Generalized Matrix Riccati Differential Equations

Let V(t) be arbitrary bsunded measurable nxm matrix defined on [tO,T].

Let gv(t,to;g) be nxn matrix defined on [tO,T] which satisfies
B (t,t3E) = (A(t)-V(£)D; (£))B (t,tsEI+R (£,t43E) (A(E)-V(£)D, (£))'
f!(t)gﬁt)ﬂf(t)+(1nf2ﬁt)22(t))5(t)(Lnf!(t)gz(t))' R
P (tystgsE) =E20 (2.6.1)

where A(t) is nxn,‘gl(t), gz(t) are mxn; R(t) is nonnegative definite nxn
matrix and Q(t) is mxm nonnegative definite matrix (all matrices are
assumed bounded measurable). Since (2.6.1) is linear, the solution
Ev(t,to;gj, t € [tO,T], exists and is unique for a fixed bounded measurable
V(t) (nxm) defined on (tO,T]. .

When V(t) ranges over the set of all bounded measurable mxm matrices

" defined on [tO,T], it generates the solution set B: = {gv(t,to;g),
0

t e [tO,T][y(t) is bounded measurable nxm matrix defined on [tO,T]}.

Definition 2.6.1: (Minimal function) Let Sz M(t), t e [tO,TJLE(t) 20,
0

t e [tO,T]}. An element M?(') € ﬁz is called a minimal function with respect

T

oy MO(t) s M(E), t e [ty,TI.

to §; if for all M(+) ¢ §
o

Let us define

A, V(D) =A (B) - V(DD (V) . (2.6.2)
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The solution of (2.6.1) is given‘by[BA]

t
P (E,t3E) = &4 (t,t)F 01(t,t0) + f 45(e, DYDY’ (1) +

t
0
[I, - Y(OD, (D) ]R(D)[L - V(1)D, (1) ]} 85(k,T)dr . (2.6.3)

Since F, R(t), Q(t) are all nonnegative definite matrices, we have
gv(t,toig) 20 : t e [tO,T] . (2.6.4)

Define the matrix

¥(t,V,P) & A(t,V)P + P A'(t,V) + V Q(E)V' +

(I, - ¥ D,(£)R()(X = ¥V D, () (2.6.5)

where V is bounded nxm matrix, and P is bounded nxn matrix. For a fixed

¢ i = {V *x 4 *
PeM define the set ut(g) {Ve Mnm(( )t is satisfied where ( )t is

the condition
(*) $(Q(t) + D, ()R(£)D)(E)) = B DI (t) + R(EID;(t)

Lemma 2.6.2: (Minimum Property) Let P ¢ M and P 2 0; if Ve ut(g),

then for all Ve M , we have
- nm

¥(t,¥,p) 2 ¥(e,¥,B) , ot [t,,T] . (2.6.6)

Proof: Let ﬁ»e ut(g), by using (*)t we have
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#(e, 9, 2)+(U-V) (D, (£)R(£)D) (£)4Q(t)) (V-1) '
= ACt)P-V D, (£)P+R A" (t)-P D ()T '+R(t) j’f_p_ (£)R(t)-R D (e)¥'
+2i(22(t)_&(c)gé(t)+g(t))_\Z'+_\L(_Qz(t)g_(t)p_§(t)+g(t))1'—_z(22<t)_&(t)_lz§(t)
+Q(£))¥'-V(D, (£)R(£)D) (£)+Q(£)) V'
= A(£)E-V D, (£)P+R A" (t)-E D; (£)V'+R(£)-V D, (£)R(£)-R D, (£)V!

+V (D, (£)R(£)D, (£)+Q(E))V' = ¥(t,V,P) te [ty,7] . (2.6.7)

Since R(t) 2 0, Q(t) 2 0, (2.6.7) implies (2.6.6) immediately. From the

lemma, we have

¥(t,9,,B) = ¥(£,V,,B)  if V.V e u(® . (2.6.8)

Theorem 2.6.3: There exists a unique minimal function g?(t,toig),

t e [tO,T], with respect to the solution setﬂ%T

t L]
0
Proof: Let us construct a sequence {gk(t,t ;g)}§=1 as follows: Set
gi(t t.;F) = 0, choose bounded measurable V () e b (P (t, t 3F) t e [tO,T].

Denote P, (t,t.3;F) = P (t,t, ;F). Having chosen bounded measurable
2 0’°— vy 0°=

. (t) € ut(gi(t,to;g)), t € [tO,T], for i = 1, » k, let —k+l(t’ O,F) =

\Y
—i
gvk(t,toig), t e [tO,T]. Using lemma 2.6.3, for k > 1:

d(, (t,t 3F)=P, . (£,t,3E))
k dtk+l 0 = ¥(t,V. (t) P (t ty sF))-Y (¢, V (t)

,_k+l(t,t0;£))

Iv

¥,V (£),R, (£,t,5F)) =¥ (e, ¥, (£),By o (t,t3F))

i

é(t,ﬂk(t))@k(t tosE)=By 1 (E,ty3E))+

—k+1

¢ ) — . A 1 .
(B, (£,£0sP) By, (£,£sDIACE, T, (D)1 . (2.6.9)
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Since fk(to,to;g_ 1\_*‘l(t.(‘).vz © - - 7.nl9) dmplies that for k » 1:
P (ttsE) 2B, oo =0 tE [E),T] : (2.6.10)
Therefore, there exists Eé(tg‘u,r) such that
. o .
lim gk(t,to;g) =P (t,tO;E) . (2.6.11)

ke

Let us define, for k » 1, the matrix Eg(t,to;gﬁ which satisfies

Ly k
= f ¢ .
(e, ) _f_(t,y_k_l(t),gk_l(t t 3F));P (tys O,_k:) F . (2.6.12)
Clearly, P (t, O,F) 20, te [tO,T], and
d(P (t,ty 3 E) - _lik(t,to;};‘_)) )

. - . X
(2.6.13)
Since A(t V (t)) is bounded measurable in [tO,T], taking limits on both
sides of (2.6.13) and using (2.6.11), (2.6.12) we kave
) o) o) . =k . : O
26,V (0) 27 (t, 6 3F)) = lim P (t,t3F) = lim B, (£,t3F) = B (t,tq:E)
k> koo
(2.6.14)
where Vo(t) e U (Po(t t 3F), t [t.,T] ”
- t = ’ O’__ * E O! .
-1 is nonunique and so

the sequence {Ei(t’tO;E)}i=l thus constructed is nonunique. Let {!i(t)}i=l

Note that the choice of the sequence {yi(t)}z_

be another chosen sequence where for i 2 1,;ﬁi(t) € Ut(gi(t,CO;E)) and

E) =0, B, L (ttg3E) = _Pi{,i(t,to;g). Let

lim 2, (t,t ;F) = B°(t,t ;F) . (2.6.15)
K> k 0 .. >70
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Then E?(t,to;g) also satisfies
20 ~0 ~0 ) ~0
Br(t,t3E) = ¥(r,V7(8),E (t,t53E)) i P(tghtsE) = E (2.6.16)

where ﬁ?(t) € Ut(gé(t,to;gj), t e [tO,T]. Using lemma 2.6.2, we have

TCRMO BRI IVIERTCR M OB RN 2D

'.].?_) - ,130 (t ’ to ;F_)

1
<
o~
(m1
<
~
r
o’
o
O
~

£,6g3E)) = 2(6,1°(6) B (8, £05F))

A(e, % () (B (t,t3E) - BO(t,£3E)) +
(B°(t,t 5E) - PO(t, e sEA' (£,5°()) . (2.6.17)

We conclude that E?(t,to;g) 2 g?(t,togg), t € [tO,T]. We c2n interchange
between P°(t,t ;E) and P°(t,ty3E) in (2.6.17) to obtain B2 (t,tyE) < B2 (t,t0:E) .
Therefore we have the uniqueness of the function g?(t,to;g).
Let V(t) be an arbitrary bounded measurable nxm matrix. We have as

before:

&3
~
'
e

o]
~
(93
L

o
~
|

= ¥(£,9(6),B_(£,t3E)) - ¥(£,¥°(6) 27 (e, £ 3E))

v

¥(E,V(E),B (£, 3E)) = ¥(£,V(),BO (t,t03E))
= A(e, (e @ (t,tg3E) - g°(t,c0;§_))
. - p° . At
+ (B (t,tg3F) - P(t,t3EDA(£,¥(8))  (2.6.17)

and so gv(t,to;g) > g?(t,to;g), t e [tO,T}. This completes the proof of
the theorem. Note that the proof also gives an explicit algorithm to find

PO (t,tp5E) -
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Definition 2.6.4: The set ¢ o:.2as ..

_?_(t,to;f_) = (A(£)-¥(e)D, (£)). R Pl ACA S D (ACe)-¥(t)D, (€)'
+V(£)Q(t) V' (t>+(_‘£n~y,(t)22(t>>;1&(t) (_I,n-y_(tmz(t))‘ 3 B(ty,ty3E) = F
N () (@)D, (E)R(E)D) (£)) = B(£,ty3E)D) (£)4R(£)D, () (2.6.18)

is called the generalized Matrix Riccati Differential Equation. The unique
solution gﬁt,to;g), t e [tO’T]’ is called the Riccati function, which is
also the minimal function with respect to the solution setﬂBi .

If_é(t) & Q(t) +'22(t)§(t)2é(t) > 0, then (2.6.18) reducgs to a

single nonlinear matrix differential equation:

B(t,tgsE) = (ACE)-R(ED)(£)AT (£)D, (£)BLE, b s DR, 5E) (ACE)

O;
“R(£)D) (£)87(£)D, (€)'

“P(t, £ 3E)D; (887 (6)D] ()R, £ sE)+R(E)-R(E)D, ()47 (£)D} (£)R(E)

g(to,to;g) =F . (2.6.19)

Equation (2.6.19) is the Riccati Differential Equation.[3l]’[32]

In the genecal case, for a fixed bounded measurable V(t), t e [to,T]:

. > - :
gv(t,to,gl) 2 gv(t,to,gz) if E z E, . (2.6.20)

Let E&Kt) £ Ut(gﬁt,to;gd)), t e [tO,T], where g(t,to;gy) is the Riccati

function satisfying (2.6.18). By theorem 2.6.3, we have for gi 2 g&:

0= 1 1

. < . < . = . . .
Pl t3Ey)) S B (t,t03F,) S P (t,e53F,) = B(t,e3E,) 5 te [£,,T) . (2.6.21)
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2.7 Perspective

easure tueoretic approaches to probability theory can be found in Loeve
[2], Doob [1l]. The notion of statistics as used here was introduced by
Halmas and Savage [13]. The term observation statistic is used so as to
conform with physical interpretation. Conditional expectation and condi-
tional distribution of a random variable (or vector) are treated in detail
by Doob [l]. Conditional independence of sub-o-algebra was treated by
Meyer [14]. This is a more general and more intuitive definition of inde-
pendence. Gaussian random vectors and Gaussian random processes are treated
by Doob [1], Loeve [2], Cramer [15], Davenport and Root [3]. Gaussian white
noise process viewed as the formal derivative of a Weiner process is
treated by Wonham [4], McKean [16], It6 [17]; Gaussian white noise process
viewed as a generalized process can be found in Tse [5], Gel'fand and
Vilenkin [18].

Linear transformation of a Gaussian Vector is treated by Davenport and
Root [3], Cramer [15], Doob [1]. Stochastic differential equations are
studied by Ité [17], Stratonovich [19], Wong and Zakai [20], Tse [5], Clark
[21]. Different interpretations to the stochastic differential equations
are possible, some afe in accordance with physical interpretation [19],

[17]

[21] while some in terms of mathematical rigor. In the linear case,
all different interpretations are equivalent. The treatment used in
Section 3 is consistent with all interpretations. The diffusion process is
treated following Wonham [22] using I£6's interpretation, for a detailed
discussion on the differential operator of a diffusion process, see Dynkin

[7]. The proof of Ité's integration formula is given by Ité [17], Skorokhod

[8], Wonham [4].




Matrix Riccati Differerce equations are not treated in detail in the
existing literature. Deyst and Price [28], Sorenson [29] and Aoki [30]
considered the matrix Riccati difference equation which appears in filtering
problems. heir considerations are restricted to a special, yet a large
class of problems. The treatment given here is new, and the intrinsic
properties of the matrix Riccati difference equation are revealed. The
definition of generalized matrix Riccati difference equations and Riccati
sequences are due to the author.In the continuous case, Kleinman [31],
Wonham [32] had made detailed instigations. The approach used here is due
to Wonham [32]. The generalization given in Section 6 is new, and the
definition of generalized matrix Riccati differential equations and Riccati
functions are due to the author. The motivation for this generalization is
to bring out the mos%t intrinsic properties of the equation and its solution.

As we shall see in later chapters, this generalization allows us to under-

stand the structural behavior of estimators and closed loop control systems.




CHAPTER III

OBSERVER THEORY FOR DISCRETE-TIME LINEAR SYSTEMS

3.1 1Introduction

The problem of estimating the state variables of a dynamical system
given observations of the output variables is of fundamental importance
in the design of an optimal control system. If one considers the class of
linear systems, then there are two approaches available in the literature.
I1f the output variables can be measured exactly,and if there are no other
stochastic disturbances acting on the system, then one can use a determin-
istic observer (see references [35], [36]). On the other hand, if all the
output variables are corrupted by additive white noise, then one can use a
Kalman filter (see references [39], [40], [37], [10]) for state estimation.

There are many cases in which some of the output variables are noise-
free while others are noisy. One can argue that no measurement is exactly
noise-free. On the other hand, there are many engineering systems in which
the accuracy of measuring one variable is much greater than the accuracy
of measuring some others. In such problems the measurement covariance
matrix is almost singular and it can lead to ill-conditioned matrices and
numerical problems. Thus, one ¢an attempt to model the very accurate
measurements as being deterministic.

The main purpose of this chapter is to examine this class of problems.
In this contribution we examine the state estimation problem for linear
discrete~time time-varying dynamical systems. The continuous time case will

be considered in Chapter IV.

~43-
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The structure of this chapter is as follows. In Section 3.2, we focus
our attention to time-varying deterministic systems, we define the notion
of a deterministic observer and estimator, the class of equivalent observers,
and the class of minimal order observers. 1In Section 3.3, we extend the
deterministic notion to the class of stochastic systems where we show that
the class of equivalent observers yield unbiased estimates. Then we determine
the class of observers that yield minimum variance estimates by formulating
the problem as finding the minimal sequence of a certain solution set and
then make use of theorem 2.5.3; we then prove that these observers yield
indeed the conditional mean estimates of the state. Naturally, if the obser-
vation covariance matrix is positive definite one obtains the well-known
Kalman filter. 1In Section 3.4, we examine in detail the case that some
measurements are noisy while others are noise free. Under these conditions
we show that the order of the minimal order observer is less than that of

the state to be estimated. In Section 3.5, the notion of detectability is

defined and the relation between detectability and observability of dis-
crete linear system is considered; also in this section, we generalize the
results of Kalman [41] on deadbeat deterministic observers to the time
varying case. Using the concept of detectability, we derive necessary and
sufficienc condition for the minimum error covariance to be uniformly
bounded and to have a steady state behavior. This is carried out in Section
3.6. In Section 3.7, we have general discussions on the approaches and re-

sults. In Section 3.8, detailed literature connected with the development

in this chapter is listed.
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3.2 Classes of Observers for Deterministic Systems

In this section we shall consider a linear time-varying discrete system

Sl described by

(state eq.) x(k + 1)

A(k)x(k) + B(k)u(k)

(output eq.) y(k) = C(k)x(k)

where k = 0, 1, 2, ..., x(k) € Rn,‘g(k) £ Rr, yk) € Rm, and C(k) is of rank m.

Let an be the set of all mxn matrices with real entries. If m = n, the

m

null space of a matrix M e M will be denoted by N(M) = {x ¢ R"; Mx =0 €R }.
Definition 3.2.1: Let C(k) € an be of rank m; the set

R(C(k)3m,s,n) = {T(k) & M__:N(Z(K)NN(C(K)) = 0 e R'}
is called the set of complimentary matrices of order s for C(k) if s 2 n - m.

We note that T(k) e Q(C(k);m,s,n) if and only if there exist P(k),

V(k) of appropriate dimensions such that

PRI(k) + V(K)C(k) = L (I, eM ) . (3.2.1)

Definition 3.2.2: A discrete linear time varying system of dimension

s 2 n - m described by the relation

z(k + 1) = FK)z (k) + D)y k) + G&K)u(k) (3.2.2)

is called an s—-order observer for the system Sl if by some appropriate

choice of z(0), we have
z(k) = T(k)x(k) : for all k=0, 1, ... (3.2.3)

for some T(k) ¢ ©(C(k);m,s,n), k = 0, 1, 2, ... . We shall also say that
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the observer is described b: . refer to such an observer by the

symbol C;.
[f Gi is an s-order obscrver for S], then by an appropriate choice of

z(0), we can reconstruct x(k) by
w(k) = P(k)z(k) + V(k)y(k) = P(K)T(k)x(k) + V(k)C(k)x(k) = x(k) (3.2.4)

where P(k), V(k) are chosen to satisfy (3.2.1).
In the following theorem, we prove that a class of observers can be
constructed for any linear discrete time varying system.

Theorem 3.2.3: Let T = {l(k)}:_o be any sequence of matrices in Mns such

that T(k) ¢« 2(C(k);m,s,n). Then, there exists an s-order observer, Gl for

T’
81.
Proof: The proof is a constructive one in which an explicit form of G% is

obtained. Let T(k) ¢ 2(C(k);m,s,n), k =0, 1, ..., be given. Pick

F(k) = T(k + 1)A(k)P (k) (3.2.5)
D(k) = T(k + 1)A(k)V(k) (3.2.6)
G(k) = T(k + 1)B(k) (3.2.7)

where P(k), V(k) satisfy (3.2.1), k=0, 1, 2, ... . Taen

2k + 1) - T(k + Dx(k + 1) = T(k + DAKP®K) (z(k) - T(K)x(k)) . (3.2.8)

Therefore, if we choose z(0) = T(0)x(0), we obtain

2(k) = T(R)x(k) 3 k=0,1,2, cev (3.2.9)
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The observer described by the given sequence T has the explicit form:

Gz (k) = T(HDAMRM)Z(K) + TRFDARY Wy () + TR+DBRIuk)

(3.2.10)
To an observer 6%, we associate an estimator 6% described by (see Figure

3.1)

2 (k1) = T(k+AKR(K)z (k) + T(k+1)AKIV(K)y (k) + T(k+1)B(k)u(k)

1
€t (3.2.11)

w(k) = P(k)z(k) + V(k)y(k)

where P(k), V(k) satisfy (3.2.1) for the fixed T(k), k =0, 1, ... . By

setting z(0) = T(0)x(0), w(k) will equal x(k) by (3.2.4). But in most
cases, the initial state x(0) is unknown. We shall fix the initial condi-

tion for the observer @% by the relation

z(0) = T(0)a (3.2.12)

. R o
where the vector o is a guess for x(0). Thus o is any vector in R, and

the possible values of z(0) will be in the range space of T(0).

Let V & {2(k)}:=0 be any sequence of matrices in Mnm' Let us associate

with the given sequence a sequence of sets where

‘J_\]_(k) = {I(k) EMSIII E(k)_'ll(k)ﬂl_(k)g(k) = _];n for some P(k) eMnS;sZn-m} ,

IfT= {Eﬂk)}§=0 is a sequence of matrices in MSn such that

T(k) € SV(k)’ k=0,1, 2, ..., then we shall in short write T € 9 Now

Vc

let T ¢ SV; by theorem 3.2.3 we can associate 0 every such T with an
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%. Thus, we can associate with any fixed

V a class of observers of different orders.

observer Q%, and an estimator €

Suppose that for a fixed V, the sequence of matrices {(Ln - V(k)C(k))},

k=0,1, 2, ..., has rank n - p; then the class Hs = {GéiT € 3V’ and

T(k) € Mn(n-p) has full rank, k = 0, 1, ...} is called the class of minimal

nrder observers associated with V.

Definition 3.2.4: Let Ll be a linear discrete system described by

¥k + 1) = F, (K)x, (k) + G, ()udk)

Ll: (3.2.13)
Xi(k) = Qi(k)zi(k) +,21(k)g(k)
with‘§1(0) e X, cR™. We shall say that Lys described by
x,(k + 1) = F,(k)x,(k) + G, (k)u(k)
L.: (3.2.14)

2
2,(K) = G, (0%, (K) + D) (K)ulk)

with 52(0) e X, T Rn, is an equivalent representation of L. if for any

2

there exists a §2E X2 such that

1

By e Xy

1K

where_gi(kigi,gk) is the output of the system Li forlgi(O) = ﬁi and applied

control u, .
tro u

Equivalent representations may not be symmetric, i.e., if L2 is an

equivalent representation of L, this does not imply that L

1 is an equivalent
L ]

1

representation of L If L. and L, are both equivalent representations of

2° 1 2

each other, then we say that Ll and L2 are equivalent.
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| |
We shall say that two o! r (..,:,. QI‘" are equivalent if 8; and F'l"

: 1 .
are equivalent. Let OT be s s-order observer; by some linear transforma-
tion on the state, we can easily see that we can construct an s'~-order ob~-
o . . 6! ' s
server Gy, which is an equivalent representation of ap where s' 2 s.
Interestingly enough, if we restrict the possible initial conditions of the

: i 1 =
observer state, then for any s-order observer, GT’ we can find an s'-order

observer, G%, which is an equivalent representation of G%, with s' = s.

0

Theorem 3.2.5: Let V = {X(k)}k.o

be a fixed sequence of matrices in Mnm'

the class of observers § T ¢ T, are equivalent.

1
y dg '
Proof: Let 8%, 3% be any two estimators, T, T ¢ 3V’ described by

2(k+1) = T(k+D)AGKP(K)z(k) + T(k+DAK)V(K)y(k) + T(k+1)B(k)u(k)

e : (3.2.16)
w(k) = P(k)z(k) + V(K)y(k) : 2(0) ¢ S = {TI(0)aja ¢ R"}
2(k+1) = T(R+DAKP(K)Z(K) + T(k+1AKIV(K)y(k) + T(k+1)B(k)u(k)

e%; (3.2.17)

w(k) = P(k,2(k) + V(K)y(k) 3  2(0 ¢ § = {T(0)alx ¢ R™)

Let z(0) = 1(0)&1 ¢ S be the initial condition for G;. Choose

z(0) = i(O)g_l ¢ S be the initial condition for Q%,, then for all y(0):
w(0) = P(0)T(0)z, + ¥(0)y(0) = B(0)T(0)g; + V(0)y(0) = w(0) . (3.2.18)
Assume that w(k - 1) = w(k - 1), then
w(k) = P(K)T(KAKwWk - 1) + V(k)y(k) + P(K)T(k)B(k)u(k)
= P(KT(KAMKIwW(k - 1) + V(k)y(k) + P(k)T(k)B(k)u(k)

=atk) .
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From (3.2.18) and (3.2.19) we conclude that

R,

w(k) = @(k) for all k . (3.2.20)

Conversely if 2(0) = 2(0)&2 e 8, pick z(0) =_1(0)g2 e S, then we also have

that the output of 3% and that of 8% are the same. Thus 6%, 3% are equiva-

lent, and @%, G% are equivalent.
Thus, for a fixed sequence V, we can associate with a class of equiva-

lent observers @l

_p T € 3V. When V ranges over all possible sequences, we

obtain different classes of observers parameterized by the sequence V. 1In

a vague sense, the class of observers @%, T sASV, utilize the same amount

of incoming information provided by the observatioms y(k), k = 0, 1, ... .
The notion of efficiency of a system, as regard to the processing of in-
coming information, is({n a loose sense)a ratio between information utilized
and the complexity of the system. Thus for a fixed V, the most efficient
system associated with it is the class of minimal order observers, ws. In
view of the above discussion, the design of appropriate observer for esti-
mation and control purposes can be split into two distinct steps: 1) to

%
find the appropriate V which specifies the operating performance of the

class of observers, 2) to find an observer in *the class of minimal order

Py .

observers, my

R
3.3 Optimum Classes of Observers for Linear Stochastic Systems

Let us consider the stochastic system S_ described by

2

x(k + 1) = AGx() + BOOuk) + £(K)
C | (3.3.1)
$(K) = COx(R) + n(k)
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where x(0), £(0), n(0), &(1;. :.71), ... are independent Gaussian random

vectors with statistical law:

x(0) Vg %y L) 3 Ly 0 (3.3.2)
E(k) ~G (0, R(k)) ; R(k) 2 0 (3.3.3)
nk) vG (O, Q) ;3 QK 20 . (3.3.4)

The control u(k), k = 0, 1, ..., is an arbitrary but known sequence.
Let V = fy(k)}z=0 be an &rbitrary sequence of matrices in M . If we
. 1
use an estimator BT’ T € SV’
the error e(k) A w(k) - x(k), can be computed from (3.2.11) and (3.3.1).

for 52 to generate an estimate of g{k), then

By picking z(0) = E(O)EO, the error dynamics are given by g
s,
e(kH1) = [I_-V(et1)C(k+1) JACK)e (k)Y (k1) (k1) +(V (k+1)C (kt1) -1 ) E (k)
(3.3.5)
e(0) = [Lnﬁy(019<0)][§07§(0)]f!(0)n(0)

So explicitly (3.3.5) reveals that all estimatorstii, T ¢ ., give the same

\Y
error dynamics ,which in some sense reflect the state of uncertainty of the

system 82. From (3.3.5) we see that
Ele(k)] = 0 ; k=0,1, 2, ... . (3.3.6)

Therefore sassociated with an arbitrary V, we have a class of equivalent
observers whose associated estimators yield unbiased estimates. Our aim
, 5
©

*
now is to find the optimum V which will result in minimum error covariance.

From (3.3.2) to (3.3.6) we see that the error covariance will propagate

according to the matrix difference equation:
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E (L)

= [L_-V (k) C () ] [AGOE(OA' (R)+R() ][I -V (kH)C(k+1) ]!
+V(kHD)Q(RHL)V' (k+1) o k = 0, 1,
(3.3.7)
2(0) = [L-V(0)G(0)1Z, [L ~¥(0)C(0)]'+¥(0)Q(0)Y' (0)
where
(k) = BEle(e' (W)} ; k=0, 1, (3.3.8)
Defining
A(-1) = En H R(-1) =0 (3.3.9)
equation (3.3.7) can be written
L(k+l) = [Iniﬂ(k+l)§fk+l)][é(klz(k)é'(k)fg(k)][lni!(k+l)§fk+l)]'
V(L Q(R+L)V' (k+1) s k = -1, 0, 1,
(3.3.10)
I-1) = I

When V ranges over all possible nxm matrices, we generate a solution

set B . of (3.3.10). For the optimum estimation, we would like t¢ find a

1

3
sequence v which will give rise to the minimal sequence with respect to
the solution set B_l. By comparing (3.3.10) with (2.5.1), we have the

following:

o °]

*
Theorem 3.3.1: A unique minimal sequence {% (k)}k=0

with respectﬁpo the

solution set B_. of (3.3.9) exists and is given by

1

S+ 1) = AT - Tk + 1Ok + AR 3 k=0, 1, .

(3.3.11)

™
~
(o]
~
i

c! ' -1
I, - L C'(0)[Cc(O)Z C'(0) + Q(0)] "C(O)Z
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where
% *®
AN L AM)IT AT M) + R 3 k=0, 1, ... (3.3.12)

and ¥ (1) & Y @ D) = v e M_[VICOO)A (1) (104000 = A7 (-1)C' (k)1
k=1, 2, ... .

If either Q(k) » 0, k =0, 1, ..., or C(k+t1)R(k)C' (k+l) > 0,

k=0, 1, ... (or both), then the ynique Riccati sequence is given by
3 X % % - %
L) = 870 -AT ()" (kL) [C(kHL)A” (k) C' (kHL)+Q (k1) 1™ C (k1) A (k)

(3.3.13)

1

£(0) = I~2 C'(O)[COE C' (O ez, 5 k=0,1,

L
2z,
where éﬁ(k) is given by (3.3.12), and the unique {yf(k)}:=o which gives

rise to the Riccati minimal sequence is given by .
V) = A (k- 1)C R CHRA (k - 1DC' (k) + QG)I™F 3 k=0, 1, v.o. . (3.3.14)

The proof of this theorem follows from theorem 2.5.3 directly by

identifying

S+ 1) - DI , R - QX

Q, (k) (3.3.15)
(k) — Bo(k,-132) 5 Q(k) — R(K) . (3.3.16)

Theorem 3.3.1 implies that an optimum class of observers is specified by

any sequence {i%(k)}:=0 wherelié(k) £ uk_l(g*(k - 1)) inductively,

k=0, 1, ... with I (k) given by (3.3.11), and (3.3.12), k = -1, 0, 1,

In the special case when Q(k) > 0, or C(k + 1)R(k)C'(k +1) > 0, k=0, 1, ...,

* o
then there is a unique class of optimum observers specified by {y_(k)}k=0,

given by (3.3;11). In fact, one can show that an observer with an initial
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condition z(0) = 2(0)50 is in some sense equivalent to the concept of un-
biased linear estimator (see Section 3.7), and thus an optimum class ¢t
observers is also an optimum class of linear unbiased estimators., In the
rest of this section, we shall show that when u(k) is known, the estimator
. 2 R . . . 2
generated via an observer GT, T e S g% and its associated estlmator'é‘,T
is the conditional mean of x(k). This reflects the truly optimum nature

of the optimum classes of observers.

Since u(k), k=0, 1, ..., are known a priori, we may assume them to

be zero without loosing generality. Now consider 82 with control sequence

equal to zero. By the Gaussian assumption, the conditional expectation of
x(k), denoted by

Rk|k) = Ex®[|F&)} ;3 F) 2 F(y({), i=0,1, ..., k) (3.3.17)
equals almost surely to some linear functicnal of {y(0), ..., xﬁk)}.[l]

Lemma 3.3.2: (Weiner-Hopf Equation) Let {E(k)}z=o be a sequence of random

vectors such that w(k) is a linear functional of y(0), ..., y(k). If in

addition, w(k) satisfies for k = 0, 1, ...
Elwk)y'(1)] = E[x(k)y' (1] i=0,1, ..., k (3.3.18)

then w(k) = %(k|k) a.s. for all k.
The proof is given in the Appendix B. An immediate consequence of this

lemma is the Projection Theorem.

'The superscript is used to indicate that the stochastic systemg2 is being
considered.
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Theorem 3.,3.,3: (Projection Thcorem) let Ig(k)}:_o be a sequence of random

vectors such that w(k) 18 a 1 ¢ fun tional of {y(0), «isy y(k)}. Let

e(k) & w(k) = x(k), k =0, 1, .. . I e(k) satisfies, for all k,
E{s(k)l.(i)J ) ) i = 0, 1, iaiy k (303019)

then w(k) = &(k|k) almost surely for all k. [We shall refer to Leuation
(3.3.19) as the Projection equation.])

For any fixed sequence V = {!(k)}:_o; the output of the estimator
ei, T €3, at time k is clearly a linear functional of {3€0)y ¢uvy y(k)},

In the following, we shall prove that
B I (4)) o . 480,01, sui, k (3.3.20)

where !‘(k) the error of estimates if we adopt &,f., T8 TV*' as an estimating

device, and !*(k) is given by (see 3.3.5)

8" 41) = (L = £ (D) C01) T (AGOR" () = £0R)] + " (ke1)n(is1)
(3.3.21)
* * N
8 (0) = [1 = (060 ) (x, = %(0)) + ¥ (0)1(0)

and 9"(k) ¢ v, (2" (k = 1)) inductively, k = 0, 1, ..., with £ (k) given by
(3.3.11), (3.3.12). Let us first establish a lemma and a corollary which
will be useful in later discussions.

Lemma 3.3.4: Let {_l_(k)):_o be a sequence of random vectors satisfying
(3.3.20), Let (x(k)}, o be given by (3.3.1) with u(k) = 0, k = 0, 1, ...,

then for all k » 0, 1| E
#* *
E{@ (k)x'(k)} = =« Z (k) (3.3.22)

where 7' (k) is given by (3.3.11), (3.3.12).
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Proof: We shall use induction on k. For k = 0, using (3.3.21), (3.3.1),

(3.3.17) and the given statistical law:

(@ - T (0)C(0)) {x x' - E[x(0)x’(0)]?

E[g (Dx'(0)] = (T

l

(3.3.23)

~% *
-z + T (OCOE, = - £ (0)

Assume that (3.3.22) is true for k =0, 1, ..., n. Using (3.3.21), (3.3.1),

(3.3.11), (3.3.12) and the given statistical law, we have:

T (1) (n#1) T [A(MELS ()x' (1) }A' (n)-R(n) ]
(3.3.24)

B[ (nt+1)x' (n+1)]

[

I
-

A ()= (e () E ()] = -E (1)

L}

The lemma is proved by induction.

Corollary 3.3.5: Let {g(k)}igo be a seyuence of random vectors satisfying

~ % % % Y
(3.3.21) where yﬁ(k) € Uk—l(g (k = 1)) with £ (k - 1) given by (3.3.11) and
(3.3.12). Let {y_(k)}:;o be given by (3.3.1) with u(k) = 0, k = 0, 1,

Then for all k = 0, 1,
E(g (k)y'(k)} =0 . (3.3.25)

Proof: We shall use induction on k. For k = 0, since using (3.3.21),

(3.3.1), (3.3.22) and the given statistical law, we have

E{&" (0)x' (0)}C' (O)+E{&" (0)n' (0)}

it

E{&" (0)y' (0)}
(3.3.26)

-2 C'(0)+V (0)C(0)Z C'(0)+¥ (0)Q(0) = 0

% %
Assume that (3.3.25) is true for k = 0, 1, ..., n. Since V (n+l) ¢ Un(§ (n)),

using lemma 3.3.4, (3.3.11) and (3.3.1), we have




%*
E{é (n+i)y'(n+l)}

£(8" (n#1) 2" (n41)1C" (n+1)4E(8" (n+1) 1" (n#1))

5" (1) (k1 )40 (nh1)Q (1)

22 (1) (1) 48" (1) C ! (1)< (1) C (1) 2 (R)C! (1)
* *
5 (1) ¢! (1) (b1)C (n#1) = 0

(3.3.27)
the corollary is proved by induction.

We are now in a position to prove (3.3.20).
a theorem,

The results are stated as

Theorem 3.3.6: Let (& (k)}, o be given by (3.3.21), where w0 e v @ 1))
with Ef(k-l) given by (3.3.11) and (3.3.12). Let {1'(k)}: o be given by

*
(3.3.1) with u(k) = 0, k = 0, 1, ... . Then for all k = 0, 1, ..., & (k)
satisfies the projection equation; i.e.,

E(a" (y' (1)} = ¢

180, 1, ¢ee9 K P (3.3.28)
Proof: We shall use induction on k.
when k = 0,

By Corollary 3.3.5, (3.3.27) 1is true

Assume that (3.3.27) is true when k = 0, 1, ..., n.

For 1 - 0, 1""’ n’
we have from (3.3.21) and the induction hypothesis that
2l " , x
E{ég (n+l)y'(1)} = (;“ = V (n#1)C(n+1)A(n)E{& (n)y'(1)} = 0

(3.3.29)
For 1 = n+ 1, Corollary 3.3.7 gives

Ea"(n+ Dy’ + 1)) =0

(3.3.30)
Combining (3.3.29) and (3.3.30), we have that (3.3.28) 1is true jand the
thecrem is proved by induction.
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‘ . *
In view of the Projection Theorem, this means that the estimate w (k)

generated via Sé,

The results are also true when u(k), k =0, 1, ..., is a nounzero but known

T e 3%*’ is the a.s. conditional mean of X(k),k=0,1,... .

control sequence, for one can always subtract off the deterministic contri-
bution due to the nonzero known control sequence. The general situation
where the u(k), k=0, 1, ..., are generated by feedback of the observation
sequence, shall be considered in detail in Chapter 5.

From the above discussions, we note that in the general caae, thare is

more than one optimum classes of observers which will yield the same per-

formance; only in the special case when Q(k) > 0 or C(k+1)R(k)C'(k+l) =~ O,
k=0, 1, ... (or both), there exists a unique cptimum class of observers.

3.4 Minimal Order Optimum Observers for Stochastic Systems

ik %
Let V (k) € Uk_l(g_(k -1)),k=20,1, 2, ..., specify an optimum
class of observers. The class of minimum order ¢-timum observers associated

~ % o0
with {y_(k)}k_o is ﬁg*, where p is the minimal aydey Jor dimension). To

find the number p amounts to finding the rank 7 iie matrix | - ﬁé(k)gﬁk)].

1
-1
We shall see that, depending on the observation noise, we have that the

minimal order optimum observers will have order which ranges from n - m to n.

Let us assume that the observations are partly deterministic, i.e.,

¥, (k) [ (k) f1 (k)
yx)y =] ... =] ... |xx +] ... (3.4.1)
¥, (k) C, (k) 0
m m

where Xi(k) £ R l, zg(k) e R 2. The vector'zz(k) is the noise-free component
(Figure 3.2). This assumption has no loss of generality, for’by appropriate

transformation of the observation vector, all problems where the observation

3
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x

noise is degerierate can be put into this form. We shall assume that

1, (k)
Y
has covariance matrix Q(k).
9, 0
QW) = ... L ... ; Q) >0 ; Qi(k) eM o . (3.4.2)
0 0 1L
T M

Definition 3.4.1: A system with output w(k) is called compatible with

respect to the noise-free observation Yo if for k=0, 1, ...

_gz(k)yfk) = Qg(k)gﬁk) = Xz(k) a.s. . (3.4.3)

We shall also say that an observer @T’ T szIV, is compatible with re-

spect to zﬁif i¢s associated estimator 8T, T € SV’ is compatible with respect

to Y-

~ % 2 *
Theorem 3.4.2: Let U (k) € Uk_l(g”(k - 1)), with £ (k - 1) given by (3.3.11)

and (3.3.12); any ¢, e J.,

T 5% is compatible with respect to the noise~free

cbservation Yo
Proof: Using Corollary 3.3.5, we have

o

T 00 = 3T 0e' &) .3 k=0, 1, ... : (3.4.4)

Partition the matrix.ﬁf(k) into

~r .,7" R . ~% ~N ~% i
= ' . N .
T = G Gl s G0 eu, 0 5w,
k=0, 1, (3.4.5)




i
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Equation (3.4.4) implies

. % H
Yy0Q (k) = 27 ¢ 1) i k=0,1, ... (3.4.6)
gnmz =L (k) i s k=0,1, ... (3.4.7)

&
where - (k) satisfies (3.3.11) and (3.3.12). The theorem follows from

In the following, we shall consider the special case where the sequence

k=0

treated in a similar approach. Since by assumption R(k) > 0, k=0, 1, ...,

of matrices {R(k)!} are all positive definite. The general case can be
gf(k) is given by equation (3.3.13), and yﬁ(k) given by (3.3.14) specifies
the unique optimum class of observers.

Lemma 3.4.2: Let R(k) >0, k=0, 1, ... . If the noise-free observation

m
9 %
Xﬂ(k) e R7, k=0, 1, ..., chen £ (k) given by (3.3.13) is of rank n - m

29
k=0, 1,

Proof: By compatibility (3.4.7) we have
w
rank £ (k) £ n - m, k=20,1, ... . (3.4.8)

From (3.4.6) and (3.3.14), we deduce that
oK _ 7':'
Ql(k)g,(k) 91(k)21 (k)

= 0, (L™ (g, () (27 (k-1)-1" G138 (1)

(G, (08" (k=1)C) () T1C, (08" (-1)]  (3.4.9)
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where
A () = 19, (4G, () [A" (k-1)=8" (e-1)C) (k)
* ' -1 * ' -1 .
(€, (08" (km1) gy ()71, (A" (-1 1) (0 > 0

k=0,1, ... . (3.4.10)

(In deriving (3.4.9) from (3.3.14), a fair amount of matrix algebra is

needed.) Let us define the matrix Eé(k - 1) by
1) & 2" (e1)ey 00 (6, " (-1rey () 7He, 0a" (k1)
k=20, 1, ... . (3.4.11)
Now equation (3.4.9) can be written as
S ML () = QDA ()G ()[4 (-1)-T (k-1)] 3 k=0, 1, ... . (3.4.12)

%
We note from (3.4.11) that if a vector v e N(I (k - 1))’then it must be true

o,

that Qf(k - 1ve N(gz(k)). Now suppose that the same vector VvV ¢ N(gd(k));

then, from (3.4.9), we conclude that
Q) (OA" (08, (08 (1)Y= 0 > 8 (ki)Y € N(C; (K))
k=0, 1, ... .  (3.4.13)
Therefore,
A*(k - v e N(C(k)) 3 k=0,1, ... . (3.4.14) ; .
But from (3.3.11), we have

* ' \
s 0=A(k=-1v ; k=0,1, ... . (3.4.15)




%
Since 4 (k « 1) > 0 vk, we must have v = 0. Thus,

M = D ARG 0 kel (3.4.16)

*
Clearly, the rank of [*(k - 1) |1is My and so N(I' (k = 1)) has dimension

n = m, (3.4.16) implies that

*
rank (2 (k)) n=-m TS T e (3.4.17)

2

Equations (3.4.8) and (3.4.17) imply that rank.gr(k) =n = my,

Theorem 3.4.3: wvet R(k) > 0, k = 0, 1, ... . If the noise-free observation
m

12(k) € R 2. k=0, 1, ..., then the class of minimal order observers is

of order n - My
Proof: From the remark made at the beginning of this sectifon, one needs
<
only to prove that the matrix [Ln - V (%)C(k)] has rank n = My 20T, s

(3.3.13) and (3.3.14) give us
* * L]
[ln - ! (k)g(k) ]_&_ (k - 1) - _}-_ (k) ’ k = 0, 1. e . (3-“-18)

By assumption, R(k) > G, k = 0, 1, ...; thus gf(k) has fuil rank for all k.
By lemma 2.4.2, L*(k) has rank n = My k=0,1, ...} therefore,
(1 - v ()CW)] has rank n = m,.
To end this section, we shall give one explicit minimal order opti.um
observer and its associated estimator for each :aee:
Case 1: m, = 0
The clans of minimal order optimum observer is of order n, and one

explicit optimum estimator of minimal order can be constructed:

B w (kb)) = (L=¥" (tD)C+1)IAGON" ()Y (b y (Rt 1)4BAON(K)  (3.4.19)
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o
k=0

is the Kalman estimator [39]. (Figure 3.3.)

*
where {V (k)} is given by (3.3.11) to (3.3.13). He notice that this

Case 2: ml =0

The class of minimal order optimum observer is of order n - m, i.e.,

there must exist P(k) ¢ Mn(n—m) and T(k) ¢ M(n-m)n’ =0, 1, ... such that
I(k)

(R ¥V (k)] =1 (3.4.20)
C(k)

Since T(k) ¢ M and C(k) € an, (3.4.20) also implies that

(n-m)n
7* = . ( = . =
TEY () =0 5 TOORM) =I5 COIRG) =0 o+ (3.4.21)
"To specify one explicit minimal order optimum observer, let {gﬁ(k)}::o be
any sequence of matrices such that
C(k)P (k) Qm(n—m) k 0, 1, ... . (3.4.22)
’ * o
Let {2-(k)}k=0 be the solution of
T (k)V (k) = g(n—m)m ; T (KPR (k) = ln—m s k=0, 1, ... . (3.4.23)

| The solution for (3.4.23) exists and is unique because we know a priori that
(3.4.21) must have solutions (nonunique). The choice of{gf(k)li_o

is nonunique, and is usually chosen so as to simplify computation.

e s
‘Note that the condition_g(k)yf(k) = lm is automatically implied by
compatibility.
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Case 3: 0 < m2 < m

The class of minimal order optimum observer is of order n - My, i.e.,

and T(k) e M

there must exist P(k) Mn(n-mz) (n—mz)n’ k=0,1, ...
that
T(k)
L[] * _
C(k)

and T(k) is of rank n - m Choose T (k) such that

20

T, (k)
T(k) = .o : _32<k) € M(n—m)n
T, (k)
and
,lz(k)
Ck)
is of rank n; thus Ei(k) must be given by
¢, (®)
T (k) = (K (K) DR, (K)] £ K()C (k)
C, (k)
where.gl(k) € Mmlml, gz(k) € Mﬁlmz. Partition P(k) into

Equations (3.4.24) to (3.4.27) imply also that

such

(3.4.24)

(3.4.25)

(3.4.26)

(3.4.27)
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T, (k)
* c 1. ..k o
ng(k) :,gl(k)g%k) + vV (K ... 'ln . (3.4.28)
' C(k)
Since
1
I, (k)
cen e M s
nn
c(k)
(3.4.28) also implies
I‘?. (k)_]?,z(k) = ;[__n_m H _Q(k)_fiz (k) = _Qm(n_m) ’

e ‘* _
I, (02, (KL, (Y () = 0, v 5 COOB (OKHCIOY (k) = I

(3.4.29)
Partiti V*(k) = [V*(b\ . V*(’)] V*(k) M V*(k) M ; com atib'iit
artition = 1) 2 Y 00], Yk e nml, 9 € nmz’ comp ility
implies:
* v *
= . 1 = 2 : ¢ Lz = T
C2(k)P1(k) 0 m : Cz(k)vl(k) 0 CZ(L)VZ(L) -72 . (3.4.30)

Using (3.4.30), the last equation of (3.4.29) can be reduced to:

m

& (VB (DK () + G (0T, 00 = 0, (3.4.31)

*
€, ()R, (WK, () + € ()Y, (k) = ;ml : (3.4.32)

Now to specify one explicit minimal order optimum observer let us

* o0
choose ‘P (k)}k=0 such that

(3.4.33)

% % L% % %
T00 = (B D 2p(0) 5 B0 ey, s Rp00 e M

n-m)
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* *
and.gi(k),‘gz(k) satisfy:

*
; Cy(KE (k) = 0 : (3.4.34)

%
Ck)P, (k) =
2 —m2ml

£%n(n¥n0

%* * .
,‘gl(k) £ Mﬁ o ,‘52(k) £ Mm 0 be the solution of the

Let To(k) ¢ M
=22 amn 1M1 1™2

following:

1

* .k Lk
C, (O] (K (&) + G (O, ()

-mlmz
K)P ()K (k) + C. ()Y (k) = I
& (B} (K[ () + & (X0 = I
0P a0 @) + eV k) = 0 . k=0,1, 2 (3.4.35)
_T_z( )""l( )""1(1{) _:_2( )__l( ) = __(n_m)ml ’ - ’ ’ y ers T
¥ ()P (K (k) + T (k)Y (k) = 0
ORI = I
22( ~2( ) = “n-m

Solution for (3.4.35) exists and is uniquesince we know a priori that
there are solutions for (3.4.29). The choice of {gﬁ(k)}§=o is nonunique,
and is usually chosen so as to simplify computation. One minimal order

optimum estimator is BT*, where

K" (k)€ (k)
T (k) = L (3.4.36)
% K
T, (
and Kﬁ(k), EZ(k) are given by the solution of (3.4.35). (Figure 3.4.)

3.5 Detectability and Observability of Linear Systems

Let us consider the totally nois¢ free situation, i.e., R(k) = 0,

Q(k) =0, k=0, 1, ... . We shall discuss the notion of detectability and

observability of the deterministic system Sl»in terms of its structural

propé}ties.
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Definition 3.5.1: The system 81 is said to be detectable at ko if for

, 1
zﬁko) e R" arbitrary, there exists an estlmator‘ﬂT described by

z(3+l) = TGHHAG)PGiz2G)HTGHAGD VG y () +T(GHL B3 u ()
gl (3.5.1)

T
w(i) = P(3z(G3¥H)y@E) 5 z(k) e 5 = {I_(ko)g!g e R
(@]

such that w(j) = x(j) as j + =». The system §, is said to be detectable

if it is detectable at all ko = ...y =1, 0, 1, ... .

Definition 3.5.2: The system gl is said to be completely observable at k
of index Vv if for x(k) ¢ R" arbitrary, we can deduce x(k) by observing

y&), y(k + 1), ..., y(k + v-1),

One can easily show that an equivalent definition of observability

is:[42]

Definition 3.5.2': The system Sl is said to be completely observable at

k.o of index v if there exists VvV <® such that

= 0! LN | A ] ; 3 D - : i o -
Qko"’ LS (ko>:9_A(ko,ko)_c_ (ko+1):...:9_A(ko+v z,ko)g (ko*h 1)] (3.5.2)

has rank n, where

>
3
-
H
v
("
v
~

$,(1,3) 2 AMDAG-D...AG) 5 8, (1,i41) . (3.5.3)

The system Sl is said to be completely observable if it is completely ob-

servable at all ko with index v k.0 = ..., -1, 0, 1,

k
From the above definition, we cannot conclude a priori any relation
between detectability and observability of the linear system. Intuitively,

we may think complete observability implies detectability but at first sight,

this implication is not obvious. 1In this section, we shall investigate the

relation between observability and detectability.
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Without loss of generality, we can set kQ = 0, and for simplicity write
= = ! * 41 1 . AV e ! (enn ] 5.
9 =9k [C'(0)I94(0,0C" (1)1, .. (k=2,0)C" (k-1)] . (3.5.4)

We shall assume that A(k) is invertible for all k = ..., -1, 0, 1, ... . Let

us denote for j = i:

- - -1
e ) = 27D = AT AT i - D A L (3.5.5)

If we assume some a priori distribution on the initial condition of x(0),
then we can make use of the results in Section 3.3 to obtain the equation

for the error covariance, this is given by [see (3.3.11l), (3.3.12)]

e = 2 - T eee)r 5 k= o, 1,
(3.5.6)
_j': _ ' ' -1
Z2(0) = £ - £.C'(0)(C(0)E_C'(0)) T C(0)E
where
L = A 0Aa® 5 k=1, 2 ... (3.5.7)
and

g*(k) c uk_l(_z_*(k-l)) = {Ve Mnmly_[g(k)g*(k—l)g' k)] = A*(k—l)_C_' (k) } s

k=0,1,

Theorem 3.5.3: Let {gﬁ(k)}: be a sequence satisfying (3.5.6) and (3.5.7)

oo

(gf(k - 1)). 1f 20 > 0 (but arbitrary), then the null

with V (k) = Uk—l
space of gf(k) equals to the range space of g&(o,k - 1)gk, k=0, 1,

Proof: We shall use induction on k. For k = 0, we have from (3.5.6)

Z(0)Q, = I (0C'(0) =1 C'(0) -1 C'(0) =0 . (3.5.8)

s
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Thus we conclude that
NET () DR (Q) 5 din N(E'(0)) z dim R (@) =m  (3.5.9)

where Ra(!) denotes the range space. By assumption, §D » 0, thus from

(3.5.6) we have
N(.Z_*(O)) N N(E_C'(0)(c(0)z ¢! (0))'1_6_(0)_213) = {0} (3.5.10)
€(0) is of range m, therefore (3.5.10) implies
m 2 dim NI (0)) . (3.5.11)
Equation (3.5.9) and (3.5.11) imply that
N(LE_*(O)) = R_(Q) = R(¥,(0,-1)Q ) . (3.5.12)
Let us assume that for k = i, we have
NEH ) = R (0,5 - Q) - (3.5.13)
From (3.5.4) and (3.5.5)
At @) 0,1 - 1), = 130,08, . (3.5.14)
Let v ¢ R_($,(0,1)Q,), then there exists some x ¢ R" such that
v = 310,0)Qx = (A7 (1))'9} (0,1 - 1)Q.x (3.5.15)

and so A'(i)v ¢ Ra(gi(o,i - 1)gi), and, by the induction hypothesis, we also
® S *
have A'(i)v € N(Z (1)) or v € N(A (i)). By (3.5.6), we conclude v ¢ N(Z (i + 1)).

%
Also, by compatibility, the null space of £ (i + 1) includes the range space

of C'(i + 1). Combining the two, we have




Tl
NET(E D) DR (3100,00,,) - (3.5.16)

We also have the inequality
. * . > . ] .
dim N(Z (1 + 1)) 2 dim Ra(gA(O,l)gi+l) . (3.5.17)

Let 5. = {v e R%|v ¢ R_(Z (1)) NN(C{ + 1A(L))}. Since R is finite
dimensional, from the induction hypothesis (3.5.13), we have

Ra(gé(i)) = N(giQA(O,i - 1)). Therefore any v ¢ Si is described by

i i = . ! T - - 1 ! > . = . SJ
CHADAMA)v =0 _Qi_\gA(O,l Dv=20 .—.=>_(_)Li+1y_A(0,1)_@_(1)y_ 0 . (3.5.1%)
Since by assumption A(i) is nonsingular, equation (3.5.18) implies that

dim Si = dim N(Q_:!L_JrlgA(O,i)) =n - dim Ra(EA(O,i)Qi_*_l) . (3.5.19)

- %
Let Sil be the image of Si through the transformation £ (i)A'(di); i.e.,

-

S;” = fw e Rpfgf(ilé'(i)yr= Vi VeE Si}' Let 8;1 be the subspace which is

A —

equal to Sil modulo the null space of Ef(i)é'(i). S;l has the same dimension
as S,, and so
i
. -1 _ _ . [} . .

1

- . -1
Now let w € Si » w# 0; then from the definition of Si and Si , we have

cE+Da Ww=0 3 aWwto . (3.5.21)

From (3.5.6), we conclude

A+ Du=a"(Duit0 . (3.5.22)
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* -
Therefore, the null space of £ (i + 1) and the space Sil have only the zero

element in common; thus

* -1
. , < _ Ai = A4 i .
dim N(Z (1 + 1)) 2 n - dim S, dim RanA(O,l)Qi+l) . (3.5.23)

Equations (3.5.16), (3.5.17), and (3.5.23) imply

NET 1) = R @10,0Q,,) - (3.5.24)

The theorem follows from induction.
A direct consequence of the above theorem is the following result :

Theorem 3.5.4: Let Sl be completely observable at time k of index v ; then

k

there exists an optimum observer 6!, T ¢ SV’ which will reconstruct the

exact state, x(j), in at most v, steps (i.e., at time k = j X k + vk).

k
Thus if 31 is completely observable at time k of index Vys then 31 is de-

tectable at time k; if S, is completely observable, then S. is detectable.

1 1

Theorem 3.5.4 generalizes Kalman's results [41] in deadbeat estimators;

for this reason, we may refer to such an optimum observer 6!, T ¢ 3~,, as a

v

deadbeat observer. Clearly there is more than one class of deadbeat ob-

~ o] ~ *
parameterized- by fy(k)}k=0,'y(k) € Uk_l(g k -1, k=1, 2, ...
Among these, we shall find the simplest deadbeat observer.

Theorem 3.5.5: Let 31 be completely observable; the class of minimal order

deadbeat observegs is of order n-m .
Proof: Clearly, the class of minimal order deadbeat observer must be of

order greater than or equal to n - m. To prove the theorem, we need to

o]

k=0’

%
the matrix (Ln - yi(k)gjk)) has rank less than or equal to n - m for all

L% % 3
find a sequence {yl(k)} yl(k) € Uk_l(gc(k - 1)), k=1, ... such that

k=1, 2,
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Construct

T = 8% k-1e' (0 (8™ k-1 Gy + ¢! 0 (cog )™t -

(3.5.25)
(1 - ct*ae-De' (o e @ k=1, 2, ...

where gﬂ denotes the pseudoinverse of a matrix M. Using the properties of

pseudoinverse (see Appendix A) we have

T 0ca” k-1)e (k)

T RC)A (k-1)C' (k) = 8" (k-1)C' (k) ; k = 1,

(3
~ % X

Therefore yl(k) € Uk_l(g (k -1)), k=1,2, ... . From (3.5.25), we
_Q(k)(ln -,Kl(k)Q(k) = C(k) - C(k) = 0 . (3

Since C(k) is of rank m, (3.5.27) implies that

%
- < n -

rank (ln 'yl(k)gﬁk)) Sn-m (3

and the theorem follows.
Finally, we would like to derive a test for the detectability of

systems. Using (3.3.7), we have easily the following:

Theorem 3.5.6: A system Sl is detectable if and only if there exists

uniformly bounded sequence {y(k)};=0 such that

L. < -g‘zli_jl
IIQQV(1,3)1| S o,e s Opaly > 0! (3

2 @-1)e (k) (02" -1y G oo™ e-1)0" (o)

T (k) (c (k)8 (k-1)¢" (1)) i) a™ (k-1)¢" oy ™ k-1)¢' (k)

2,

.5.26)

deduce

.5.27)

.5.28)

linear

.5.29)
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where for i 2 j:

ne>

8, (V(k+1)) & A(k) - V(k+1)C(+DAK) gev(i,j) L 2, (VEHL)E, (V)

—-~1

.8, GD) (3.5.30)

3.6 Asymptotic Behavior of Optimum Eslimators

In this section, we shall investigate the asymptotic behavior of an

optimum estimator 82, T e UV*’ for the stochastic system 82. We shall say

that the system 82 is detectable if its deterministic correspondence, Sl’
is detectable. The investigation is carried out by considering the minimal

o)

=0 which describes the evolution of the minimum

*
Riccati sequence {I (k)}
error covariance.

First, let us assume that the initial time is ko’ and consider the

* ®
behavior of £ (k), as k + «», where I (k) satisfies

£ L) = AT (K) - T (k1) C (kA1) A (k)
(3.6.1)

™

= ' ' k -1
2k ) =3 -1 (k)IC(Kk)DEC (k) + k)] Ck )T

%
and V (k)

m

®
VB k-1, k=k +1,k +2, ...

%
Theorem 3.6.1: The minimum covariance error I (k), will remain bounded

for all k

k +1, k + 2, ... if and only if the system SZ is detectable.

Proof: 1If 82 is detectable, then from theorem 3.5.6, we note that there

o}

k=0
solution of (3.3.7) (with ko replacing 0) will remain bounded for all

must exist a uniformly bounded sequence {V(k)} such that the resulting

k=k,k +1, ... Since {gf(k)}z=0 satisfying (3.6.1) is the minimal

sequence with respect to the solution set of (3.3.7) we conclude that
?

zﬁ(k) must also be bounded for all k =‘ko, ko + 1,
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%
Conversely, if gﬁ(k) remains bounded for all k = ko, ko + 1, ... then

from (3.3.7), we have
ngV*(i,j)H < mle_m!l_:’l @50, > 0 (3.6.2)

and so S& is detectable.

Next, we shall assume that the present time is k, and assume that the
initial time ko > =0,
4

Let us rewrite (3.3.9) in a more suggestive form: (set kg = ko -1

0Lk E ) = (A=Y (kD) C(HAK))E, (kb k! 5E ) (A(K) -V (k+1)C (k+1)) !
(LY (k1) S (FDR(K) (I_-Y (k1) C (k1)) 4V (kDI Q(RHLIV! (kD)5 k = k! k!4, ...

LT B -
Ev(ko,ko,go) Eo . (3.6.3)

As we have noted, (3.6.3) is the same as (2.5.1) except for some changes in
the symbol (3.3.14), (3.32.15). We shall still use the symbol as defined
by (2.5.2) with the obvious change (3;3.14). As usual, we shall denote the
minimal Riccati sequence with respect to the solution set of (3.6.3) by

% e

fz ey
(Z (k,kO,LO) }

k=k' "
Q S 00
Lemma 3.6.2: There exists an unique bounded sequence {2_(k;9)}k=_w such
that
* . *
lim E,(k,kégg) = % (k;0) for all k (3.6.4)
k ' o
)

and g‘(k;g) satisfies

Z (k+1;0) =

b ), 2 (50) 5 T € U @ (k30)  (3.6.5)

if and only if the systemS2 is detectable.
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Proof: Let us denote

e

8. (W) 2 A(k) - ¥V C(k+D)A(K) 3 k =k, kI +1, ... (3.6.6)

el

-

Using lemma 2.5.2 and Equation (3.6.3), we have the inequality

x

~ 3 * ® - & -
J1 Gk =102 (k-1,k -130)-2 (k=1,k150))8) ;, (V (k,k-1;0)

<

. *

$ GGk -LL,0-E (k1300 . (3.6.7)
* *

Since §_(ké,ké-lig) 2 0 and g_(ké,ké;g) = 0, (3.6.7) implies that

% *
z (k,ko-l;g) 2 g (k,ko;g) for all k 2 k (3.6.8)

If §, is detectable, then by using theorem 3.6.1, Zh(k,k 30) will be
2 0’
bounded for a fixed k and all ko 2k

By the monotone convergence thecrem

of nonnegative operators [32], we conclude that there exists an unique
Z7(k;0) such that

% % .
lim I (k,k';0) = £ (k;0) 2
K ' >moo © -7

2 £ (kyk_30) 3 k> (3.6.9)
0
Let us define
A o % % v ~% *
L (k+1;0) = 9 (V (k+1),2 (k300 5 ¥V (k+l) e\ (Z (k;0)) . (3.6.10)
By lemma 2.5.2 and (3.6.8) we have for all k; > -
~k % ~% % ~% *
I (kt1;0)-Z (k+130) < ¢, (V (k+1),2 (k30))=9, (V (k+1,k[30),5 (k,k150))
< ¢ 7 1, * (k3 - S T, * ok k! 3.6.
S 4 (0 (41, 30),5 (k30)) =gy (T (k+1,k130),2 (k,k150)) - (3.6.11)
To* 1. * el k' =1 -
-!'(k’ko i;0) € Uk_lcg (k l,ko i;0))
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X X
Since I (k,k!30) » £ (k;0) as k! » =, (3.6.11) implies
% *
L (k+1;0) = I (k+1;0) (3.6.12)
From (2.5.12) (3.6.9) and lemma 2.5.2, we have for all ké:
o v ~ % % * . * . * .
L (kt1;0)2y. (X,(k+l),§,(k,ké;Q))Zﬂk(Y,(k+l,ko;9),§,(k,ko;Q)) = §,(k+1,ko;9)
(3.6.13)
(3.6.14)

and so taking ké -+ =00}
A'f B
£7(k#130) 2 £ (k+1;0)

>0

Combining (3.6.12) and (3.6.14) we obtain (3.6.5).
Conversely if (3.6.4) and (3.6.5) are true, then it must be true that
-a, |i-j]
0y 500 (3.6.15)

(i¢e~*(i,j)|l < ae

and so 52 is detectable by theorem 3.5.6.
Theorem 3.6.3: There exists a unique sequence Lg“(k>}:= such that
lim % (k,k 32 ) = £ (k)  for all k (3.6.16)
Koo o’~o
0
with Z 2 0; and Zx(k) satisfies
£, T2 £
% ~% % * L% x ~% %
Z (k1) = (V (k+1),2 (k) = A (k)-¥ (kHD)Ck+1)A (k) ;5 V (k1) e (2 (k)

if and only if the system 82 is detectable.
Using lemma 2.5.2, we have

Proof:

S (T (kK 5T ) (E (k5T )3 (kuk'30))6" (V (k,k' 32 ))SE (k+1,k" 3% )-

.__k e ’ O’__‘) = b O,—O = s O;,__ ___k \_Y_ ] O,__O - . ] O’__O
(3.6.18)

_*% R I =% (I * r. - ® ', ' o 1.
z (ktl,k!50)58 (V (k,k!50)) (T (k,k! 32 )-L (k,k!50))8, (V (k,k;0))
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*
Since E‘(ké,ké;go) =L 2 0, tuen (3.6.18) implies that

% % .
02 E (etl,k! 52 ) = 2 (kH1,k130) = 6. (k,KDE 47 (k,k))

where
0. (k') & o (T (k,k'30008, - (k=1,k';0)...6, , (¥ (k',k';0) . (3.6,20)
=9 70" T ~k— Y7o’ k-1 *To = —*é* 0’ o’
If the system 82 is detectable, then by theorem 3.6.1l, we must have
-azlk-kél
nge(k,ké)'[ : o,e 050, > 0 (3.6.21)

and so using lemma 3.6.2 and equations (3.6.19), (3.6.21), we have
% * * *
lim £ (k,k';Z ) = lim I (k,k';0) = I (k;0) 2 £ (k) . (3.6.22)
k":»—oo 00 k'o—o o -
0 o
Equation (3.6.17) follows from (3.6.5).
The proof in the reverse direction is the same as in proving lemma

3.6.2.

Finally, we shall consider the time invariant case where A, C, Q, R

are constant and bounded matrices. In this case
2 k,k'3E ) = T (k-k',03% ) (3.6.23)
"'(,0"—0 - £ O""""O U

thus taking ké = 0 is the same as considering k -~ «, We shall only ccn-
sider ké = 0, and k » o,

%*
Theorem 3.6.4: There exists a bounded ¥ such that

* % )
lim £ (k,03Z ) = L (3.6.24)

ko

*
and I satisfies the algebraic equation

g




* * ~ % R o % * X
L=a-¥es ; Yew@)2{veM |vEac +Q =ac")
(3.6.25)
% *
A =ATA +Q (3.6.26)

if and only if the system 82 is detectable.

Proof: In the time invariant case

B (WD = W, 2u,D ; 8@ =8 ,WMLeW . (3.6.27)

Using lemma 2.5.2, we have

% * % g *
E (k+1,050) - 2 (k,0;0) 2 86(V (k,0;0)) (2 (k,0;0) - £ (k-1,030))

8’ (i*ck,o;g» (3.6.28)

Since £ (1,0;0) 2 0, (3.6.28) implies that

LU(H,050) 2 B (k,030) k=0, 1,2, .. . (3.6.29)

By theorem 3.6.1,4;?(k,0;9) will remain bounded if and only if Sz is de-

*
tectable, and so by (3.6.29), one concludes that there exists %X such that

t x
lim £ (k,030) = &

K->

. (3.6.30)

*
Using (3.6.23) and lemma 3.6.2, & satisfies the algebraic equation

x 2 x® * % * ~% %
r =y ,z)=8 -VCA s Vo oewe@) (3.6.31)

]

*
and L 1is given by (3.6.26) if and only ifé%z is detectable. Using theorem

3.6.3 we have the desired results.

Theorem 3.6.5: If 82 is detectable, there exists only one nonengative

oJs
Al

definite matrix z

which satisfies (3.6.25), (3.6.26).
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Proof: Let us define

]
it
lo
<
m
<
~
o
j

and

E} _ w(vl-l’zl-l) . .!} e U(E})

(3.6.32)

(3.6.33)

i *
By (3.6.30), such a constructed sequence of g} will converge to I , which

satisfies (3.6.25), (3.6.26).

Let £ 2 0, and ¥ satisfies (3.6.25), (3.6.26); i.e.,

e

£=yd,5 i Ve w@

By lemma 2.5.2, we have

e@E-2he' @ <i-ztsehHE - 2The ah
By construction, E? = 0, thus
055 -2 5 0,(1,0F 04(1,0)

where

651,02 ahe™) ... 2%
If 82 is detectable, then

-a, i3]

’Lie(i:j)'l = @le al,az >0

thus we have
2} + ¥ as i =+ «

and uniqueness follows.

(3.6.24)

(3.6.35)

(3.6.36)

(3.6.37)

(3.6.38)

(3.6.39)’
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3.7 General Discussion

In this chapter, we have obtained an optimum unbiased estimator for
the stochastic system SZ’ where the observation noise may be degenerate
(Q(k) 2 0) or singular (Q(k) = In essence, the optimum estimator is

specified by the relations:

2 (k) = TOHAGE(K) Z (K)+T (kLA T™ (k)y (k) #T(k+1) B(K) u(k)

E: (3.7.1)

2
T ™ % ~%
w(k) =Pz (K)+V (Kyk) ; 2z(0) = '1_‘(0)3_4_0

where yf(k) is the optimal estimates of x(k). (See Figure 3.4.) The matrices

P(k), T(k) satisfy

P(KIT(k) + V (k)C(k) (3.7.2)
and.i%(k) is given by (see theorem 3.3.1)
ik * ~% ' . ' -1
Ve ey (2 (1) , k=1,2, ... ; ¥ (0) =% ¢ (0)[C(0)L_C'(0)+Q(0) ]

2 ek) = 250 -1 el c e AT (1)
(3.7.3)
£(0) = -3 _¢'(0)[C(0)E_C' (0)+Q(0)]” c(o)z

L (k) A(k)Z {k)A(k)+R(k)

Note that {Ef(k)}§=0 can be precomputed when the structure of S, and the
statistical law of the uncertainties are known. 1In general, {if(k)};=0

may not be unique. In the special case when Q(k) > 0 or C(k+1)R(kK)C'(k+l) > O
we have uniqueness in {V*(k)}w_ (see theorem 3.3.1).

Once {V (k); is found, we can choose different {P(k)} and

k=0 k=0

fz(k)}izo such that (3.7.2) is satisfied, and so one can construct different
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optimum estimators Si, where the dimension of the observer state vector
z(k) are different depending on the choice of {Eﬂk)};=o, T(k) = Sﬁf{k)‘
It has been shown that in the special case when R(k) - 0, the minimal
order optimum obszserver is of dimension n - ™, where m, is the number of
noise-free channels available. Though the proof is given for the special
case, it is conjectured that the results will be true in the general case
when R(k) 2 0 or even R(k) = 0.

Finally, the asymptotic behavior of E%(k) given by (3.7.3) was con-
sidered in great detail. Necessary and sufficient condition were derived
for Ef(k) to be uniformly bounded and existence of its steady behavior.

In the following, we shall discuss some of the relevant points in the

development of this chapter.

(A) Discussion of Approaches

Different approaches are available to filtering problems. The
Projection approach was used by Kalman to first obtain the Kalman filter.
The starting point of this approach is the Projection Theorem (Theorem
3.3.2). There is also the Baysian approach [43] where one computes the
conditional expectation of the state,4§(k). Also, a max-likelihood
approach [44] is available to filtering problems. Then, there is the
approach of unbiased minimum error covariance estimates [10], and of
weighted least square estimétes [43]}. In the linear-Gaussian case all
these approaches will yield the same solution (see also section 3.3). It
is hard to argue which of the above approachs to the problem is more funda-
mental than the other, for this highly depends on one's philosophical
viewpoint to the problem. One may argue that the Baysian approach is the

most fundamental approach. This is true to the extent where one can justify




i
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the knowledge on a priori distribution of all the underlying random

vectors.
The approach used in this chapter seems to be a new approach to

the problem where one starts from deterministic consideration  This is

true in some sense. If the knowledge on the a priori distribution of the

state x(0) is correct, then the approach is equivalent to that of unbiased
minimum error covariance. To verify this statement let us consider the
stochastic system 32 (with u(k) = 0). We look for an unbiased estimator

which is nonanticipative. In general, such an estimator is described by [45]:

z2(ktl) = F(k)z(k) + G(k)y(k) s z(k) ¢ R®
(3.7.4)

w(k) = P(k)z(k) + V(k)y(k)

The initial condition of 2(0) 1is some linear transformation of 50; i.e.,

2(0) = T(0)x, (3.7.5)

]

and for all k 2 0, we want E{w(k)} = E{x(k)}. With this restriction we

have
(B(0)T(0) + V(0)C(D)x = X . (3.7.6)

We would like to construct the estimator completely independent of the

mean of x(0), then (3.7.6) implies
P(0)T(0) + V(0)C(0) = 1 , (3.7.7)

and so we must have s 2 n - m and T(0) € Q(Q(O);m;s,n). For k > 0, the

unbiased restriction gives
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k-1
P(k) [$5(k-1,0)T(0)% +Z $p(k=1,i4+1)G(1)C(1) %, (1-1,0)x ]
i=0
+ V()CH)g, (k-1,00x_ = ¢, (k-1,0)%_ . (3.7.8)

If_é(k) are invertible for all k, and the structure of the estimator is

independent of X then (3.7.8) implies that

k=1
R(0 (8, (-1, 00T(0)8, (0,k-1) + Y ¢, (-1, 41)G(H)G (1), (k1) ]
=0
+ V(k)C(k) = ln . (3.7.9)
Define
k-1
T(k) = 6, (k-1,0)1(0)y, (0,k-1) +Z 4 (k=1 i+DG(CH Y, (1,k-1) . (3.7.10)

i=0

Then T(k) € Q(C(k);m,s,n) and T(k) satisfies:
T(k + 1) = F(OT@RA T(k) + DARICIA k) . (3.7.11)

Such an estimator can be realized by picking
PO = T(k +DAMEP&) 3 D) = T(k + DAMKYE . (3.7.12)

Comparing with theorem 3.2.3, we see that all unbiased, nonanticipative

estimators can be realized by an observer ®§, T ¢ 3V’ and its associated

estimator 8%. Therefore ,the restriction of using an observer and its

associated estimator as an estimating device is the same as restricting

ones attention to dnly unbiaszed state estimators., e

But if the a priori assumption on X is different from the true mean

of x(0), then it is not unbiased minimum mean square error approach. In
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fact in this situation, nearly all the approaches mentioned above may not

be justified. But we shall see in discussions that under some mild
conditions our approach is still valid even with incorrect

on a priori distribution on the initial state x(0).

(B) Dimension of Observers

From the point of memory storage, we would like to find the minimal
order optimum observer; but from the point of view of computation, one
may not want to find the minimal order optimum observer.+ One may want to
look for those observers @T, T e SV* where the number of nonzero entries of
T(k + 1) A(k) P(k), T(k + 1) A(k) V(k), and P(k) is kept to a minimum. No
systematic way of finding such observers is available; in general this will
depend on the specific problem under consideration.

(C) Detectability and Observability

Detectability is a weaker condition than observability (see theorem
3.5.4). Essentially, detectability implies that in noise free situations,

one can deduce the current state (but not the initial state) of the system

if given infinitely long observation period, and so it is not the same as
"asymptotic observability' (if such a concept can be defined). 1In all
sequential estimation problems, one is interested to estimate the current
state rather than the initial state of the system, so one would expect
that detectability would be the intrinsic property which will assume nice
behavior of the minimum error covariance when noises are present. This
physical intuition was verified in section 3.6. We showed that detecta-

bility of linear system gives the necessary and sufficient condition for

This viewpoint is due to F.C. Schweppe

<
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uniformly bounded Eé(k) and the existence of its steady state behavior.

Observability implies that in the noise free situation, we can deduce

the initial state of the system if given a long enough observation period.

Of course, knowing the initial state will enable us to deduce the current

state; but as long as sequential estimation is the goal, the knowledge

of initial state will be nice but not absolutely necessary. Except in the

smoothing estimation, where we are interested in finding not only the

current estimate, but the whole trajectory estimate; thus in this situa-

tion, detectability may not be enough to assure the ''nice behavior' of

Eé(k); we need observability of the system.

In the development, we assume an a priori distribution on the initial

state x(0). This assumption can only be justified if’as time advances

and information accumulates, the resulting performance will be independent of

the a priori distribution of x(0). Assume that the true mean of x(0) is

zé but we guess its mean to be X - Since the mean of the state of 82

satisfies (a.s.) the deterministic equation described by‘Sl (see section

ﬂ~j 2.3), then detectability implies that even with a wrong assumption on the
mean of x(0), the optimum observer will give an asymptotically unbiased
estimate Thus as k » «, E%(k) truly represents the error covariance.
From theorem 3.6.3, we see that in the steady state period, the error
covariance is independent of the covariance of x(0). Therefore if 82 is
detectable the performance will "merge' when information accumulates even if
we started off with different assumptions on the statistical law x(0).
Thus detectability justifies the assumption on knowing the mean and co-

’§ variance of x(0).
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(D) Sequentially-Correlated Observation Noise

The derived results are also applicable to the case when the observa-

tion noise satisfies: [see equation (3.3.1) for §]
n(k + 1) = A@n(k) + y(k) :  n(k) & R" (3.7.13)

where {lﬂk)}:=0,_ﬁ(0>,’§(0), and {g(k)};=0 are independent with statistical

law (3.3.2), (3.3.3) and

n(® v g ) s v 6 0,8m) . (3.7.14)
We can define
(%010 A) 0
k) &1... s A% =] ... ;
nek) 0 A®m
L (3.7.15)
(o) | Bk
2y =f... | 5 8% =
_Y’(k)J 0

Then we have the augmented system

x(k + 1) = A% + 82uk) + £2 (k)

a
SZ' . (3.7.16)

L] a
y(&) = [C(k)II_1x% (k)
We can apply the derived results to the above system Sz. Note that
a ; n+m . . s . ‘ . .
x (k+ 1) € R , but since the noise free observation is of dimension m,
the minimum order optimum observer is of order n. This problem has also

been considered by Henrikson [46], Bryson and Ho [43] using a different

approach. We can easily verify that the results obtained by applying the
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derived results to this special class of problem ; they are the same as those
obtained by Henrikson. This special application will be considered in a
future investigation.

3.8 Perspective

Observers for a linear system were introduced by Luenberger [35],
[36]. He only considered continuous,linear,time invariaﬁt systems. Ob-
servers for discrete,linear,time invariant systems were discussed by Aoki
and Huddle [37] in relation to a constrained estimator problem. Observers
for discrete linear time varying system were first introduced and studied
by Tse and Athans [38].

Optimum linear filtering for discrete linear time varying systems was
investigated by Kalman [39], [40] using the projection theorem approach.
Deadbeat estimator for discrete time invariant system were derived by Kalman
[41]. The unbiased approach to cptimum linear filtering problems was used
by Athans and Tse [10], Tse and Athans [38]; the unbiased approach to non-
linear filter was used by Athans, Wishner, Bertolini [42].

Detectability was first introduced by Wonham [32] as the dual concept
of stabilizability. Detectability as defined by definition 3.5.1 seems
to be more appropriate and more general than that of Wonham's (Wonham con-
sidered only the time invariant case).

The asymptotic behavior of minimum error covariance for discrete
linear systems were not investigated in full detail in the current litera-
ture. Deyst and Price [28], Sorenson [29], and Aoki [30] considered to
some extent the asymptotic properties of the minimum error covariance. They
confine themselves to consider the special case when the observation noise

is regular (Q(k) > 0). ©Little or no attention is paid to the case when the
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observation noise is degenerate (Q(k) 2 0) or singular (Q(k) = 0). The

treatment in section 3.6 is original, and consider~ all different cases

in a unifying manner.

|

|
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CHAPTER 1V

OBSERVER  THEORY FOR CONTINUOUS TIME LINEAR SYSTEMS

4,1 Introduction

The problem of state estimation for discrete linear systems was con-
sidered in detail in Chapter IIIL. In this chapter, we shall consider the
state estimation problem for continﬁgus time linear dynamical systems.
Aside from the fact that state estimation is of prime importance in the
design of optimal control systems, the problem in itself is of great impor-
tance in the design of modern communication systems.

The structure of this chapter is as follows. In section 4.2, we con-
sider time-varying deterministic linear systems; the notion of a determin-
istic observer and estimator for a continuous linear system is defined and
we prove that classes of observers and estimators can be constructed if
the dynamics of the system are known. Equivalent classes of observers and
the classes of minimal order observers are defined and some preliminary
results on parameterizing equivalent classes of observers are obtained. In
section 4.3, we extend the deterministic notions to stochastic systems
where we show that some classes of observers yield unbiased estimates. By
some physical considerations, we restrict the classes of observer-estimators
that shall be considered. We then determine the class of minimal order
observers that yield minimum variance estimates by formulating the problem
as finding the minimal function of a certain restricted solution set and
then using theorem 2.6.3. We then show that the class of minimal order
optimum observer-estimators yields the conditional mean estimates of the

stage. This reveals the true nature of the derived minimal order optimum

~03-~
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observer-estimator. In section 4.4, the notion of detectability of con-
tinuous linear time system is defined, and the asymptotic behavior of the
optimum estimator is studied in terms of detectability and observability
of the system. In section 4.5, we have some general discussions on the
approaches, results and further applications. In section 4.6, detailed
literature connected with the development in this chapter is listed.
Conceptually, there is little difference between discrete and con-
tinuous time linear systems; therefore we would expect the results obtained
in this chapter will be quite similar to those of Chapter III. One marked
difference between the discrete and continuous time cases is that for the
discrete time case, the observation statistic is sequential, and so each
bit of observation conveys finite amount of information in an accumulative
manner; whereas in the continuous time case, we have only a priori infor-
mation before any observation is made, and when an observation is made at the

initial time we have a sudden increase of information within a very small

interval of time due to some noise-free observation component. We would

expect this "jump'" in information to be reflected in the initial condition
of the optimum observer-estimator.

4,2 Classes of Observers for Continuous Linear Systems

In this section, we shall consider a linear time-varying continuous

system gi described by

(state eq.) x(t) = A(t)x(t) + B(t) u(t)

’(output eq.) y(t)

C(t)x(t)
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where x(t) € R". We shall assume that C(t) is a differentiable time-
varying nxm matrix of rank m, for all t = [to,m] (n 2 m). For a fixed
t e {to,ml the set of complementary matrices of order s for C(t) is denoted
by &(C(t);m,s,n) = {T(t) € Msn: N(Z(t)) NN(C(L)) = Qn e R%}. We note

that T(t) £ 2(C(t);m,s,n) if and only if there exist matrices PE(t),

V(t) (of appropriate dimensions) such that
P(O)I(E) + ¥(e)C(t) = T . (4.2.1)

Definition 4.2.1: A linear time varying system of dimension s 2 n - m

6 z(t) = F(0)z(t) + D(D)y(t) + 6(Du(e) ;5 z(t) =z (4.2.2)

is an s-order observer for the system §, if for some choices of 2. the

solution, z(t) of (4.2.2) equals
2(t) = T(t)x(t) ; t >t (4.2.3)

for some T(t) e &(C(t);m,s,n), t > to. We shall also say that the observer

is described by T(t), t » ts and refer to such an observer by the symbol

c
QI.
Let T(t) be an sxn matrix which satisfies the differential equation
>
(> t)

“r

T (6) = E(OI(t) - I(0) (A0 - L(OC() + D(BS(D) 5 Tit) = T,

where L(t), Eﬁt),_ﬁ(t),'zo are some prescribed matrices of appropriate

dimensions. If we construct a time varying system of dimension s 2 n - m:

6 : 2 (£) = E(t)z(t) + (D(t) + T(O)L())y(t) + T(t)B(E)u(t) (4.2.5)




then using (4,2.4), we have
%z (T(e)x(t) = z(t)) = F(t) CL()x(t) - z(r)) (46.2.6)

I3 — + k P
and if we choose znig(to) “.é(to): then T(t)x(t) = z(t), t > to'

c

1
priate choices of L(t), F(t), D(t), Eo the solution, T(t) of (4.2.4) will

Therefore @é will be an s—order observer for §. if by some appro-
be in the set of complementary matrices of order s for C(t), t » ty:

By assumption, C(t) is differentiable for all t ¢ [tQ,W]; thus there
exists a function T(t) = 2(C(t);m,s,n), t > t,» such that T(t) is
differentiable.

Theorem 4.2.2: Let iﬂt) e 2(C(t);m,s,n), t > ty and T(t) is differentiable

in the interval (tO,W). Then, there exists a class of s—order observers
which are all described by T(t), t > t, for the system Si.
Proof: Let B(t), ¥(t), t > t » be matrices of appropriate dimension such

that
BE(e) +¥()e(w) =1 3 et . (4.2.7)

Choose for t > t:o

Be) = BOAE)V(E) + T2sT(e) (4.2.8)

F(t) = T(OAE)B (L) + T(£)B(t) (4.2.9)
L mt

T, =1I() (4.2.10)

where

i) @A) - L(t)e(t) (4.2.11)

&
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and L(t) is an arbitrary nxm matrix. With these choices of D(t), E(t), and
I, e have the solution of (4.2.4)

t ¢ ~
I(t) = gF<c,cg>i<c‘;>gA<c;,t>+f p (6, D RO+ S §(r)e(0) 1g5(x, ) d0

t

° (4.2.12)

where QF(t,t:) and gﬁ(t,t:) are fundamental matrices associated with E(t)

and é(c) respectively. Using (4.2.7) and (4.2.9) the integrand of (4.2.12)

becomes
t ~ t dé~(7,t)
500) A AL(T) 5. . - Feey —B
Jt+ﬁp(t,f)[l(T)A(T) + =5 Y@ eIy (r,t)dr Jt+[i‘+’~F(t’T)—T—(T) T+
O o
m d¢..(t,T)
~ dL() —E 5 - Fe)- ety en (£F
9p(6,T) =5 93(1,t) + ——3—— L(1) ¢z (1,t) Jdr = T(£)=g,(t,t HI(E )25 (t ,t)
(4.2.13)
Combining (4.2.12) and (4.2.13) we have
T(t) = (L) e R(C(E)3mys,n) ., E>t . (4.2.14)

So an s-order observer can be constructed by (4.2.5). We note that by
choocing different L(t) € Mnm’ t > to’ we obtain a class of observers de-

scribed by the same.i(t), t > to. For a fixed iﬂt) e Q(C(t);m,s,n),

I o

t > to’ and a fixed L(t) € Mnm’ t > to, we shall use the symbol G%C(L) to
represent the observer which is specified by i(t) and L(t), and
G%C = {G%C(L)/L(t) € Mnm} the class of observers which is specified by iﬂt).
1lc 1lc . . . . lc
For each GT (L) € GT , we shall associate with it an estlmatoréif (L)

described by (Figure 4.1)

2(t) = (F(£) (AGE)-L(£)C(E))P (E)+T (B (D2 (t)+(T (£) (A(E)-L(£)C(£)V(t)
lc .
& (M- K (O T()+E(E)L() )y (£)+T (£)B(E) ult)
w(t) = P(0)z(e)+(t)y(t)

(4.2.15)
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If we know g_(t:), then by setting
ot +
gﬁto) = Eﬁtoli(to) (4.2.16)
we have from (4.2.6) and (4.2.16) that
w(t) = B(O)T(t)x(t) + V(e)C(t)x(t) = x(r) . (4.2.17)

But usually_g(t;) is unknown, and so if we want to usefi%c(L) as an esti-
mating device, we would restrict the initial condition of‘g(t:) to be in
the range space of iﬁtgﬁ.

Let V(t) € Mnm’ t > t,» be a fixed differentiable matrix. Associated
with it is a set of matrix functions!ls = {T(t) ¢ Msn’ t > tO/E(t) is dif-~
ferentiahle on (to,w) and P(t)I(t) + V(t)C(t) = ln for some
P(t) € Mns’ t € (tO,W);s 2 n~-m}. For a fixed T(t) 8255 we can associate
with it a class of observers @%C and a class of estimators

8%C = {S%C(L)/Lﬂt) € Mnm}. Therefore, for a fixedy(t),T we can associate

with it different classes of observers @lc

T ° T(t) € 35, of different orders.

For a fix:a ‘(t), t > t, suppose that (Ln - V(t)C(t)) has rank

n-p, (p £m): then the class wSC(L) = {G%C(L)/E(t) €9 and T(t) e M

c
v

has full rank, t ¢ (to,w)} is called the class of minimal order observers

n(n-p)’

associated with V(t) and parameterized by L(t). We can define the notion

of equivalent representation as in the discrete case (Definition 3.2.5).

1

+ X
For the rest of this chapter, V(t) is always assumed to be differentiable
on t € (to,w].

Pl
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Lemma 4.2.3: For a fixed V(t), t t, such that ln - V(t)C(t) has rank
=D, 1J to, let G;C(L), ELL) & 33 be a given cbserver of order

s - n = p. Then there exists a n - p order observer @%C(L), T(t) E:;E such
that G%C(L), @%C(L) are equivalent.

Proof: Let &tc(L) be a given s-order observer; its associated estimator

e%.C(L) is described by

z(t) = (:1;(1:)(A(t)-g(t)g(t)_l’_(t)+i(t)g(t))z(t)+(_'1;(t)(A(t)-g(t)g(t)
C'JISC(L)‘ V(E)+E()V(t)y()+T(t)B(t)u(t) ; E_(t:)es = {I(I::)g|g£Rn}
w(t) = P(t)z(t)+V(t)y(t)

(4.2.18)
with P(t), T(t) satisfying (4.2.1) and z(t) ¢ R°, s 2 n - p. Since
ln - V(t)C(t) has rank n - p, we may assume without loss of generality
that P(t) is of rank n - p. P(t) is a time varying linear transformation
from R° - RP. We can break the transformation into two steps: map R° to

R*P by a time invariant transformation K, then from R*P to R" by an appro-

priate time varying transformation g(t) f.e.,

P(t) = P(t)K ok (4.2.19)

(a-p) 25 %a-pe °

Let us construct an n - p order observer G-%.-c(L) with T(t) = K T(t) and
. n
the restricted observer's state initial condition _i_(t:) e §=(K z_(t:)glg eR 1}

First we see from (4.2.19) that

P(O)T(e)+V(e)C(t) = B(E)K T(t)+V(e)C(t) = P(L)T(e)+V(t)C(t) = L

(‘02020)

lc
T

with G%C(L). To prove the lemma, we need to verify that w(t) = w(t) for

thus we conclude that T(t) ¢ 33. Let £-"(L) be the estimator associated
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all possible u(t) and y(t) where w(t) is the output of*a%c(L). Let
g(t:) = z(t:)g for some g € R" and pick gﬁt:) = g_zﬁt:)g; then one can

easily show that by construction

2(t) = K z(t) >t (4.2.21)

e
(md

for all y(t) and u(t). Then we have

w(t) = P()2()+V(t)y(t) = B(t)K z(t)+V(t)y(t) = B(t)z(t)+V(t)y(t) = w(t) .
(4.2.22)
R + + +
Conversely, if g(to) = Eul(to)g, pick gﬁto) = E(to)g;then we have (4.2.21)
and (4.2.22) in the same manner, and the lemma is proved.

Theorem 4.2.4: Let V(t) € Mhm’ t>t, such that the rank of V(t) and

ln - V(t)C(t) are p and n - p, respectively. For a fixed L(t) € Mnm the

class of observers @%C(L), T(t) € Tg are all equivalent.
Proof: Let P(t) ¢ Mn(n-p)’~2(t) € M(n-p)n such that
T(t)
P(e)T(t) + V(t)Cc(t) = [P(t) . V(BO)]] ... J= I - (4.2.23)
) Cc(t)

Denote the column vectors of V(t) bytgi(t), i=1, ..., m:

v(t) =[%(t) %_z(t) %n(t)] . (4.2.24)

. * p ] *
Since V(t) has rank p, {th(i)(t)}i=l form an independent set, where ot( )

is a permutation of 1, ..., m and v

. -P
j > p are dependent on {Xct(i)(t)fi=l'

t(j)’

Rearranging,if necessary, we may assume for a fixed t:

Vie) = [¥,(v) . V,(8)) (4.2.25)
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with‘yl(t) € an and of rank p, while

Vy(t) = ¥, (o) 5 M(t) e M (4.2.26)

(m-p)

The matrix C(t) is also rearranged accordingly (if necessary); we may assume

c, (t)
cr)y =| 71 DG e, G0 e M (4.2.27)

G, (©) ~

Since C(t) is of full rank, (4.2.23) implies that

C () = N(OT(E) 5 N(E) e Mo oo s (4.2.28)
Using (4.2.23) to (4.2.28), we have for a fixed t:
I(t)
[P(t) ; yi(t)] ces = T . (4.2.29)

G, (8) + M(£)N(£)I(t)

Since [P(t) . yi(t)] € Mnn’ (4.2.29) implies that

T(t)B(t) = ;n_p ; T(e)V, (e) = g(n_p)p

L (B)V, (£) + M(E)N(O)T(B)V, (t) = S 0y, (e) = lp . (4.2.30)
From (4.2.25), (4.2.26) and (4.2.30), we have

(4.2.31)

S ta-pym

T(t)P(t) = Lp ; T(t)V(t) =

We note that under the assumption on V(t), (4.2.31) is true for all
t >t .
o)
From lemma 4.2.3, we see that to prove the theorem we need only to
, lc pc .
prove that all observers @T (L) € Ty (L) are equivalent.

Let @%C(L) € ﬂsc(L) be arbitrary, i = 1, 2. The associated estimators
i ,

are described by
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| 2,(t) = (T, (t) (_4_(t>-}_(t)_q(t>)gi(t)+ii(t)£i(t>>_z_i(t>+(f_r_i(t>_11(t)+ii(t)£(t)
ey, (1) +I, (8) (A(E)-L()C(E)V(ENZ(E)4T, (£)B(E)u(E)

w () = B (D)2, (D+(03(0) 5 z,(£))es, = (L, (£1)a|aer™

(4.2.32)

Without loss of generality, we may assume that the Ei(t) € Mn(n-p)

are of rank n - p. Then there exists a nonsingular matrix K(t) ¢ M(n-p)(m-p)’
such that
B(0) = B (OK() 5 By(8) = By (DK () (4.2.33)
and so we also have
KOL () = T, 5 L0 =K (0L . (4.2.39)
Let us define
2(r) = KDz, () . (4.2.35)
Using (%4.2.32) to (4.2.35), we obtain the equation for z(t):
£(6) = (T, (0) (A(E)-L(DC(ENR(OHK(DT, (DB (£I+(DK T (£))2()
(T, (DL O T, (DI (4T, (1) (A -L(EIC(E))V())y(e)
4T, (D)B(B)u(t) ;
2(E£) = K(tDT, (t)a = T,(EHa e 5, (4.2.36)

since P (t), I,(t) satisfy (4.2.23), i =1, 2; thus, by (4.2.31), (4.2.33)

and (4.2.34) we can easily show that

i : . | . -1 e
{ R(0)T, (£)B, (t) f&(t)x_ (e) = I,(t)R,(t) , (4.2.37)
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K()T, (£)¥(t) = K(E)T, (£)V(r) (4.2.38)

Substituting (4.2.37), (4.2.38) into (4.2.36) and comparing with (4.2.32),
we see for any given_g(t:), we can pick an appropriate

EQ(CZ) £ Sz(Z(t:) =152(t:)) such that
2(t) = z,(t) (4.2.39)

and so

w(t) Ei(t)gi(t) + V(t)y(t) = Eﬂ(t)gft)gi(t) + V(t)y(t)

= P, (t)z,(t) + V(0)y(t) = w, () . (4.2.40)

%C(L); similarly, we
2 2
can prove &%C(L) is an equivalent representation of 6%C(L) and the theorem

1 2

Therefore 8%C(L) is an equivalent representation of £
follows.

Note that the results are different from those in the discrete case.
We see that only in some special cases equivalent classes of observers
are parameterized by V(t) € Mnm and L(t) € Mnm' Because of this difference,
our approach to the problem of designing ''mice-behaved' observers and
assoclated estimatorsfor the continuous system S; will be slightly different
from that used in the discrete case.

4.3 Optimum Class of Observers for Linear Stochastic Systems

Consider a stochastic system S; described by: (Figure 4.2)

x(t) = A(E)x(t) + B(t)u(t) + £(t)

gc.
. (4.3.1)

C (e)x(t) + ﬂ(t)]
_C_?_(éig.c_(t)

y(t)
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m
where x(t) & R%, u(t) ¢ R, £(t) ¢ R, a(®) ¢ R ©, y(&) € K", (m 2 m).

We assume thatk§(to), {e(e), t 2 to}, {n(t), t 2 to} are independent

statisties. x(t ) is a Gaussian random vector with mean X and covariance

0
go; E(t), n(t), t 2 t, are white Gaussian noises with properties
re t 't ! t
E{§ 2 _;(t)dt} =0 E{(( 2§(t)dc)(j zé(t)dt) }: I Zg(c)dt oty > by
ty "tl t ' £

t t t ! t
EU 2 _Tl(t)dt} ; E‘({ 2 _r_l_(t)dt)(j 2 n(t)dt) L. f 2 Q(t)dt t, > t
"t 'ty t1 ’ 1

]
o

N

et

(4;302)
where R(t) 2 0, R(t) ¢ M and Q(t) » 0, Q(t) ¢ M o - The control u(t) is

11
known function of time.

Let us denote the noisy observation by zi(t) and the noise-free obser-

vation by ZQ(t):
y,(8) = ¢, (0)x(t) + n(t) ;o 2,08 = G, (B)x(t) . (4.3.3)

Our objective is to find a "filter" whose output will be an unbiased
minimum mean square estimates of x(t). Since x(t) is a Gaussian random
process (see Chapter 2, section 2.3), we may restrict ourselves to consider
only linear filters [47]. Thus we may assume that the estimate of x(t) is
given by

t

E: w(t) = I H(t,t)y(t)dt + V(t)y(t) (4.3.4)

t
0

where H(+,+) is an nxm matrix whose elements are differentiable in both

arguments. If we demand the system € to yield unbiased estimates of x(t),

then & can be realized by an s-order observer @%C(L)f and its associated

- . . . . c s
The superscript 2 is to indicate that system 82 is considered.
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estimator &%c(L) (see section 4.5). For this reason, we may view observer-
estimators as estimating devices.

Let us restrict ourselves only to some special classes cf observers.
First we note that in the discrete analog, the optimum observers are
compatible with respect to the noise-free observation. This is one in-
trinsic property of the optimum observers, and this property should be
preserved when we pass from the discrete to the continuous. Thus, we shall
only consider observers which are campatiblef with respect to the noise-
free observation Xz(t)' Since‘zl(t) contains white noise in the measure-
ment, therefore, in order to obtain reasonable estimate, we shall not 'pass'’
zi(t) without filtering. These physical consideration allow us to consider

only those observer 8%C(L) which are compatible and parameterized by

L(t) € Mnm arbitrary and V(t) of the formk

v(e) = [0 . V(0] V,(t) e M (4.3.4)

(m—ml)

All such V(t) are of rank S m -~ m L

2.
Theorem 4.3.1: Let V(t) be of the form (4.3.4)5 if there exists an observer

O%C(L), T(t) € 33, which is compatible, then rank V(t) = m, and rank

(ln - V(t)C(t)) = n - m,.

ﬂiC(L)

Proof: By lemma 4.2.3, we may assume that there exists @%C(L) €
which is compatible. Let.E%c(L) be the associated estimator and w(t) the

resulting estimate. Using (4.3.4), we have

e(t) = w(t)-x(t) = P()z(£)+V(t)y(£)-x(t)

i

R(£)2(0)4Y, (£)C, (D)x()-x(t) = R(£) (2(D)-T(DX(E)) . (4.3.5)

?Compatibility is defined as in discrete case. See section 3.4.
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By compatibility we must have
C,(p)e(t) = C,()R() (2(t) - I(t)x(t)) =0  a.s.
Thus in particular if g(t) = 0, n(t) = 0,(4.3.6) implies that

+ + _ .
_qz(t),l_’_(t)gF(t:,to)_ﬂ;(to)g_ =0 ;

+
where F(t) is given by (4.2.9). Since @%C(L) € ﬂsc(L), therefore ;r_(%) may

be assumed to be of full rank, and so (4.3.7) implies that
C,(t)B(t) = 0

Using (4.3.5), we have

C,(t)e(t) = G, )V, (6)C, (1) x(t) = G, (t)x(t) = 0 a.

x(t) can be an arbitrary vector in Rn; so we conclude that
L, ()Y, (t) = _I_m2
and that rank \_/Z(t) =m,.

From (4.3.8), we have

'Qz(tlg(tig(t) =0 ; rank P(£)T(t) £En - m

2
P(t), T(t) satisfy
B(&)I(t) + V,(t)C,(t) = I

Equations (4.3.12) and (4.3.10) imply rank P(t)T(t) 2 n - m, .

with (4.3.11) we have

1.‘ank(_I_n - _\l(t)g(t)) = rank P(t)T(t) =n-m

2

a e R" arbitrary

(4.3.6)

(4.3.7)

(4.3.8)

(4.3.9)

(4.3.10)

7N
H

.3.11)

(4.3.12)

Together
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By theorems 4.2.4 and 4.3.1, we see that all V(t) of the form (4.3.4)
can be classified into two classes: either all.@%c(L), T(t) = 83 are all
uncompatible or all @%C(L), T(t) € 3; are all compatible and equivalent.
We may call the former class of V(t) uncompatible and the latter class of

V(t) compatible. Thus,the classes of observers which we shall consider are

parameterized by L(t) € Mnm and compatible V(t) of the form (4.3.4).

Let V(t) be a fixed, differentiable matrix function of the form (4.3.4)
which is compatible; and let L(t) € Mnm be arbitrary. From theorem 4.2.4,

all observers @%C(L), T(t) € 33 are equivalent and thus yield the same error

2¢c
T

m2c

dynamics. Let 6. (L) ¢ L (L)’its associated estimator 8%C(L) is

described by:

z(t)
L):

(T(£) (ACE)-L(£)C(E))P(E)FI(E)P (ENz (£)+(T(t) (ACE)-L(t)C(t) )y,z(t)
2c

HE(E)V, (4T(E)L, (£)) 3, (+T(DL, (£)y, (D+T(DB(E)u(E)

w(t) = B(£)z(t)+V, (t)y,(t)

(4.3.14)

where

L(t) = [Lqﬁt) E Lé(t)] H _Ll(t) € Mnml > _Lz(t> € Mhmz (4.3.15)
P(t) € Mn

T(t) ¢ M(n-m ya satisfy (4.3.12) and, in addition, they

- b}
(n mz) g

satisfy:
I(0)V,(t) = Qnmz 3 C,(0)R(E) = ,szn 3 L, (0¥, () = E’“z 5

T(e)R(E) = I : (4.3.16)
2

We can simplify the structure of 8%C(L) by using (4.3.15) and (4.3.16):
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T()L(e)C(L)P(L) = ;r,<t)(_Iil(t>gl(t)+,a2(t>92(t))g(t) = J:_(_t)y_l(t)gl(t)g(t)
(4.3.17)

T(£)L,(£) - T(E)L(E)C(E)V, () = -T(t)L, (£)C, (£)V, (k) (4.3.18)

Substituting (4.3.17), (4.3.18) into (4.3.14), the structure of the estimator

S%C(L) is given by (Figure 4.3)

2(t) = (T(AR(E)+T(E)R(£) =T (L)L, (£)C) ()R (t)z(E)+T(£)B(t)u(t)
2c
fr W +T(E) Ly (£) ¥, ()+(T(D)A(DY, (D+T ()Y, (£)-T(E)L, (£)C, (£)V, () )y, (t)
w(t) = P()2(£)+¥,(£)y,(t)

(4.3.19)

By demanding {-‘,,%C(L) to give unbiased estimates of x(t), we set (see also

section 4.5)
g(to) = l(to)—}so (4.3.20)
where I_(to) , _E_’_(to) satisfy
g(to)g(to) + _\Lz(to)_C_z(to) =1 . (4.3.21)

Using (4.3.1), ¥4.3.2), (4.3.16), (4.3.19) and (4.3.20), we have the

dynamics of the error process, e(t) & w(t) - x(t), given by: (see Appendix C)

&(t) = (A(£)-V, (£)C, (£)-B(£)T(E)L, (£)C, (£))e(t)+ (¥, (£)C, ()1 HE(L)
+R(£)I(t)L, (t)n(t) (4.3.22)

et)) = (I, = B,(08,(e))) G, = x(e))

and

~ A ) .
€, ) - Cy(t) + C (D)A(E) . (4.3.23)
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Define
T A
Ll(t) 2 P(t)T(t)Ll(t) € Mnm2 . (4.3.24)

The error covariance is given by (see chapter 2, section 2.3)

£(t) = [_A_(t)-y_z(t)gz(t)—Ll(t),C_l(t)]_Z_(t)+§(t)[A(t)—_!z(t)_é_z(t)eil(t)gl(t)]'

+[L_-¥, (£)C, (£) IR(E) [L -V, (£)C, (£)]"+L, (£)Q(E)L] (©)

(e ) = (@ - V(e DC(e )E (T = V(£ )C,(t))"

(4.3.25)
We note that the dynamics of the error covariance are dependent on Y_z(t),
t € [to,w} and_il(t), t € [to,w]. Note that yg(t) and Ll(t) are not arbi-
trary but‘zz(t) has to satisfy (4.3.10) and Ll(t) is related to Li(t)’
which is an arbitrary matrix, by equation (4.3.24). To find the optimum.
class of observers, we are to find a pair {y;(t), ;;(t)}, which may be a
nonunique pair, with the above constraints which will give the "least"
nonnegative definite covariance matrix. Each such pair {j;(t), i;(t)}
specifies an optimum class of observersf When {yz(t), ii(t)} ranges over
all constrained pairs, we generate the solution set, ét , of (4.3.25). The

o)
% ~
minimization problem is equivalent to finding {yz(t),<gi(t)} which will yield

~

the minimal function with respect to the solution set ﬁt .
0
Theorem 4.3.2: Let'g?(t)g(t)gé(t) > 03 then there exists a unique con-

* <%
strained pair {yz(t), t e [to’w]"Ll(t)’ t € [to’m]} which yield the unique

* ~ * %
minimal function, Z (t), with respect to ﬁt . yz(t), Li(t) are given by
o)

s o : -1 _
2 Co(r )(C,y(E D2 Colt D) t=t

f(t) = o 21 (4.3.26)
(Z (6)C (t) + R(£)C, ()8 " () t >t

2
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~% * -1,
() =2 (0e)(0a () £t (4.3.27)

where

A(t) & C,(B)R(E)C,(E) > O (4.3.28)

g ~
Z (t) is the minimal function with respect to Bt and is given by
o

£7(e) = (AO-REY (08O, (0)Z (D42 (8) A -R(EIEH (LT ()E,(6)
-_Z_*(t) @é(t)A—l(t)_a_z(t)+gi(t)g'l(t)£1(t));z_*(t:>+§(t)

-B(t)gé(t)A'l(t>Q2(t)B_(t>

w ~ B ' - !/ -1
E-(to) - Eo EDEQ(CO)(QZ(to)£OQQ(t0)) QQ(CO)E%
(4.3.29)

Let B, be the solution set of (4.3.25) when {XZ(t), Li(t)} ranges all
o

possible pairs; gf(t) is also the minimal function with respect to ﬁt ;
o—

thus Eﬁ(t) is the Riccati function (see definition 2.6.4).

Proof: Let ﬁt be the solution set of (4.3.25) whenA{yz(t), i&(t)} ranges
o

all possible pairs. Compare (4.3.25) and (2.6.1) with

* - ®
2T(E) e Bfe,e 5E(E))

[L,(8) 1 ¥ ()] — (O

Qz(t)‘ =1 (4.3.30)
Q) - 0
[... ;...] —4_9_(1:)
0
[Qé'(b] - 2

(e
o
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Since by assumption gQ(t)gxt)gé(c) > 0, then we have

Q(t) - 0 0 Q(t) = 0
oo T ) R0 CE] =)L T L >0 (4.3.31)
0 -0 G, (t) ' 0 G, (B)R(K)C,(E)

and so the unique minimal function is given by: (see (2.6.19) to (2.6.21))

30 = (A(-ROCHOAT(OF, (I (D4F (£) AR)-R(B)E) ()8 (0, (£))"
-2 (0) € (08 (), (0)+e] (DG (08 ()2 (+R(E)-R(DI Gy (DDA (£)C, (DIRL®)

% . ' -1
E-(to) - Ev - zogﬂ(to)(gﬂ(to)EOQZ(to)) CZ(CO)EO

—

(4.3.32)
and [LI(C) Z_y:(t)] is given by: (see 2.6.18)
k % * '] ) ) Qfl(t) . 0
L LV (B)) = I o(v)[c! . C +[0 ¢ R(t)C! (t
[Ly(6) - Y (0)] = Z (0)[C () . G, (e)]+[0 .« R(E)C ( 0 i
t >t
0
x _ . ' -1
XZ(to) B E092(to)(-g2(to)§o-c"2(ta))
(4.3.33)

%
To complete the prove of the theorem, we need only to show that yz(t)

. *
satisfies (4.3.10), and_gz(t) is related to some.Ll(t) € Mnm via (4.3.24).

1
From (4.3.32), we see that

Coe DL (£ ) =0 . (4.3.34)
Using (4.3.32), (4.3.28) and (4.3.23) we have

d L%k _ % ' -1 ~ T -1 ~
T 0z (£)) = C, ()L (£) [(ACE)-R(£)C)(£)A " (£)C, (£)) "-(C, (£)A "(£)C, (t)

-1 %
+gi(t)9 (t)_C_l(t))_Z_ (t)] , (4.3.35)
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Thus we corniclude that

Qz(t)z_*(t) =0 (4.3.36)
Therefore we have
“(t) = *)c! (6) + A(e) 18" (e = (4.3.37
C () ¥, (£) = [C,(B)L (£)C;(r) + A(E)]A (t) -;mz . .3.37)
Let
Li(6) = £ (Og ®a ) = L) . (4.3.38)

We can easily see from (4.3.30) that

(L-V, (£)C,(D)E (£)8] ()7 (1) = £ (6] ()QH(x)

(D2 (E)L; (1)

Ll(t) . (4.3.39)

*
Thus I (t), given by (4.3.321), is also the minimal function with respect to

(Bt .
o)
We now have the structure of a class of minimal order optimum observers,

C
y*?

2c, * c
ex (L), I(t) € T

% * %
O%C(L ), I(t) €& (Vv () = [0 ¢ _\_7_2(1:)]) and its associated estimators

£5(6) = (MOA®BH(OR(E-I(OL] (D)C, (DR(E))z (D+T(DL] (B)y, (8)
e’ Ko " x
T +(I_(t)g(t)gz(t)+_t£(t)y_2(t)-l(t)_lil(t)_c_l(t)_v_z(t)xz(t)
H+I(£)B(E)u(t)
% _ * = . *
W (E) = R(D)Z (6) + Vy(0y,(8) 5 2 (e, = I(t )x (4.3.40)

% %
with Xz(t), Ll(t) given by (4.3.32), (4.3.33) and (4.3.37); P(t), T(t)

satisfy
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* = . = . = . > -
T(t)V,(t) gnmz 3 G, (£)B(t) szn 3 T(e)P(t) 1m2 otz

(5.3.41)

gz(t) is continuous t € [to,m], thus we can choose P(t) which is é;ntinuous

for all t € [to,m]. From theorem 4.3.2,'y;(t) is discontinuou# at t = to’

and so from (4.3.41), T(t) is discontinuous at t,. Since gf(@) 4 gf(t) - x(t)
‘,

is continuous at t = to’ we have

2

() = B(e ) (2 (£ )-T(e )x(t ) = B(t ) (2 (E)-T(tx(t)))  (4.3.42)
and using (4.3.40) and the fact that gf(to) = Eﬁto)go, we have
X 4+ x4
21D = T )x - TV (EDy (e ) . (4.3.43)

%
We see that z (t) is discontinuous at t = to, and consists of the a priori
guess (Z(to)50> and a correction term due to perfect observation

* 4+ + . 2¢c,. * c .
CE(CO)XQ(tO)XQ(tO)). The detail structure of 8T (L), T(t) € SV*’ is shown

in Figure 4.4. What we have obtained is a class of optimum mean square

estimators among a restricted class of estimators being considered. For

example, we have not considered the class of nonlinear estimators, Now to
prove the derived minimum order optimum observer-estimator is the truly
optimum estimator, we appeal to the projection theorem. It is clear that v_z*(t)
is a linear functional of XQ(S), s € [to,t] and Xl(s)’ s ¢ [to,t], we shall
prove that the error process, g%(t) 4 y%(t) - x(t), satisfies the projection

equations

E{gf(t)zi(s)} =0 , sce [to,t) ; E{g%(t)xé(t)} =0 ,

s e [t ,t] (4.3.44)
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This implies that (see discrete analog and Appendix B) the optimum class
of observers will yield (a.s.) the conditional mean estimates of x(t), and
thus reveals the truly optimum nature of Bic(L*), T(t) € 35.

By using e;c(L*),.l(t) £ 83*, as an estimating device, the corre-

sponding error process will satisfy
&) = (A=Y} (0)E, (6)-L] (£)C, ()" (E)+(V (£)C, (=L DE(E)+L] (£)n(t)

(e = (1 - V(e )C, (e ) (x, = x(t )
(4.3.45)

where y;(t), L;(t) are given by (4.3.32), (4.3.33) and (4.3.37).

Lemma 4.3.3: Let fg%(t), t 2 to} be a random process satisfying (4. 3. 45);
and x(t), t 2 to, be described by (4.3.1) with u(t) =0, t 2 to. Then for

all t 2 t,» we have
*
E{fe(t)x'(t)} = = £ (t) . (4.3.46)
Proof: At t = t s we have from (4.3.44), (4.3.33) and (4.3.31) that

Ele"(t )x' (£ )}

' ' -1 ' ' 1
L - Co(e ), (t )z Co(t ) "C,(e JHx x'~E x(t )x'(t )}

AT (4.3.47)

Using (4.3.45) and (4.3.1) we have

dle W2 O] - a0)-v} (08, ()L (D), ()EE" ()% (©))

HWH (08, (6)-I R(EHEL” (£)x" (£) 1A' (¢)
= (A()-R(DCH (AT (D, (D)E(e” (Dx' (1))
-2 (e} (e (B)g, (DEE (D5 (0}

2" (085 (02T (08, (OB (%' (0148 (D1’ () 1A' (0)

42 (D8] (027 ()¢, (OR(D-R(HR()C (DA™ (£)C, (R(E)
(4.3.48)
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Let us define
, * * .
D(t) = £ (t) + E{e (£)x'(t)} . (4.3.49)
By (4.3.31), (4.3.47) and (4.3.48) we have

BCE) = (A(B-R(ICHOIEH(E, ()ID(E-2"(6) (] (17 ()C, (0485 (L7 (E)E, (£) -

D(£)+D' (£)A(L)

D(t) = 0
(4.3.50)
Ef(t) is the unique minimal sequence of ﬁt and so is well defined. (4.3.50)
o
implies
D(t) =0 ; t2t (4.3.51)

and (4.3.46) follows.

*
Theorem 4.3.4: Let e (t), t 2 to,'be described by (4.3.45), and y(t),

t 2 to’ be given by (4.3.1) with u(t) =0, t 2 to. Then for all t 2 tO:

E{g_*(t)zi(s)} =0 , se¢ [to,t) ; E{g*(t)zé(s)} =0 , se& [t ,t]
(4.3.52)

Proof: By (4.3.45) and (4.3.1) and the properties of Gaussian white noise:

]

Ble (D3] ()} = Ele”(0)x'(s)1¢] (s)+E{e (t)n' (s)}

b5 (t,9) [Ele ()x' (8)1C] ()41 ()Q()] s € [t ,t)
(4.3.53)

where

E(6) = A(D) - Y (D, (1) - LT (©)C, (1) (4.3.54)
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and QA(t,s) is the fundamental matrix associated with A(t). Now using

lemma 4.3.3, (4.3.53) and (4.3.27) imply
%, , * *
Ble” ()y] ()} = o5(£,8) [- 2 ()CL(s) + 2 ()CI ()] =0 . (4.3.55)
Similarly for s ¢ [to,r.], we have(by using compatibility)

Bl (03} ()} = oz (t,8)Ele” (0)x(s))C)(s) = =85 (£,8)E ()G)(s) = 0 . (4.3.56)

2

The above theorem implies that for zero control, the optimum class of
observers and their associated estimators will all generate (a.s.) the con-
ditional mean estimates of x(t). The results also holds if u(t) is a
nonzero but known deterministic control function, because we can always
subtract its deterministic contribution. The case where the control is
generated via a special class of feedback law will be considered in
chapter V. Note that we obtain the Kalman Filter as a special case when we
set _Q,Z(t) = 0 (4.3.29).

4.4 Asymptotic Behavior of Estimators

Let us first consider the asymptotic behavior of classes of observers
and associated estimators for a deterministic system § i Then, we shall
consider the asymptotic behavior of optimum classes of observers and
associated estimator for the stochastic system gg.

Definition 4.4.1: The system S; is detectable at 1 if there exists an ob-

server GéC(L) » T(t) € 33, and its associated estimator 3,:]%C(L):

2(t) = (T(t) (A(E)-L(£)C(E))P(E)+T ()P (£))z(£)+[T(t) (A(E)-L(t)C(t)) V(L)
lc . .
G (L) #E(OV(OHT(OL (g (£)+T(£)B(E) u(t)

w(t) = B(O)2(0+U(0)y(t) ;5 z(r) e S_= {L()ala e R}

(4.4.1)
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such that for all z(1) € ST, w(t) + x(t), as t >~ ». The system si is said
to be detectable if it is detectable at t e (-»,»),
We shall say a stochastic system 8; to be detectable if its determi-

. s c
nistic analog, 8

1° is detectable.

Theorem 4.4.2: The system gi is detectable if and only if there exists
an observer, @%C(L), 3;, which is uniformly asymptotically stable.
Proof: The estimation error by using any observer, @%C(L),

T(t) € gs, and its associated estimator is given by (see equation (4.3.5))

e(t) = P(t)(z(t) - T(£)x(t) & R(e)2(t,T;2)) (4.4.2)

where gﬁt,r;go) satisfies (see equation (4.2.6) and theorem 4.2,2)

2(t,132)) = [T(t) (AC)-L(E)C(E)B(OHI(DR(E) J2(t,T52)
zﬁt,r;go) = go 3 ST . (4.4.3)

Let us first assume that there exists some L(t) € Mo and V(t) € Mnm
such that an observer=®%c(L),'1(t) € 3;, is uniformly asymptotically
stable; then for all T and Z € S_, z(t,732 ) > 0 as t > », From (4.4.2)

~o > = ~o =
we conclude that S; is detectable. Conversely, if the system S; is de-

tectable, then there exists an observer, @%c(i), T(t) € Ts, such that the

¢
\j
output of its associated estimatnr will give exact asymptotic estimates

independent of when we initiate the observer state; i.e., for all 7, and

zZ €8S
o T

e(t) = P(t)2(t,132 ) *0 as t > = o (4.4.4) Dieni

where gﬁt,r;zo) is given by (4.4.3). We may assume P(t) to be of full

ranky thus (4.4.4) implies that the system (4.4.3) is uniformly asymptotically
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stable, and so the observer @%c(i),‘g(t) € 3%, is uniformly asymptotically
stable.

A linear system
x(t) = A(t)x(t) (4.4.5)

is said to be exponentially stable if there exists Ay 0y > 0 such that

—azlt-rl

FENCR R (4.4.6)

where QA(t,T) is the fundamental matrix of A(%). We alsc say that the
matrix A(t) is exponentially stable. Theorem 4.4.2 relates detectability
to the structure of the observers. Since exponentially stable implies
uniform asymptotic stability and vise versa [48], the above lemma implies
that the system S;_is~detectable if~and only ifkthere exists an observer
G%C(L),.g(t) € 33, Quéh“that the error of estimates (in the noise free
case) by using B%C(L),.g(t) € 3$,has the bound

-azlt-tOI

[lee)|] < aje (4.4.7)

where t:o is the initial time. We may call such an estimator E%C(L) an

exponential'estimator.[49]

Theorem 4.4.3: If there exists V. (t) ¢ M of rank m, and L.(t) e M ‘
—2 nm, 2 =1 nm,

such that Qﬁ(t);-.yz(t)QQ(t) - Li(t)gl(t)) is exponentially stable, then

the equivalent classes of oHservers(@%c(i),.l(t) ellg; where

v(t) = [0 . yQ(tﬂ and L(t) = [Ll(t) :,iz(t)], Li(t) arbitrary, are all

uniformly asymptotically stable and so eéc(i),ll(t) € 8$, will yield ex-

ponentially consistent estimates.
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Proof: Let us consider the class of V(t) of the form (4.3.4) with rank
Xz(t) = m,. The error, e(t) A w(t) - x(t), of estimates by using V(t)

within this class is given by (see also (4.3.22)) N\\\hxcaﬁym
&(r).= (A() - ¥, (0)C, (t) - L (6)C, (£))e(t) . (4.4.8)

By assumption, there exists yz(t) € M.nm2 of rank m, and Ei(t) € Mhmz’ such
that (A(t) -.yz(t)§2(t) - E&(t)gi(t)) is exponentially stable, chus the
theorem follows from (4.4.8) and theorem 4.4.2.

Theorem 4.4.3 gives us a sufficiency test fof detectability; it also
indicates how we can construct an exponential estimator.

For the stochastic system S;, the class of minimal order optimum ob-
servers and their associated estimators are given by (4.3.39) and (4.3.42);
the optimum error covariancelgé(t) is given by (4.3.29). We shall now
investigate the asymptotic behavior of the class of minimal order optimum

*
estimators via I (t).

*
Theorem 4.4.4: The matrix function I (t) will remain bounded for all

t € [to,m] if and nnly if there existslyz(t) € Mnm2 and Ei(t) € Mhml’

such that (A(t) - yz(t)gz(t) - Ziﬁt)gi(t)) is exponentially stable.

Proof: This follows immediately from theorem 4.3.2. The reader is re-
ferred to the proof in the discrete analog for the detailed argument. Using
theorem 4.4.2 and 4.4.3, we see thuat @%C(L*), T(t) € 33*, is uniformly
asymptotically stable.

Corollary 4.4.5: If (A(t),C(t)) is uniformly completely observable, i.e.,

there exists =« > 1 > (@ such that

t+T

M(t) = f Q&(G,t+11g'(O)Q(O)QA(O,t+T)dO s toe [to,w] (4.4.9)
t
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has rank n, then there exists L{t) & Mnm such that (A(t) - L(t)C(t)) is
exponentially stable.

Proof: Apply theorem 4.4.4 to the special case when m, = 0; i.e., all

2
observation channels are corrupted by white Gaussian noise. The optimum
error covariance will remain bounded if and only if there exists L(t) € Mnm
such that (A(t) - L(t)C(t)) is exponentially stable. If (A(t),C(t)) is
uniformly completely observable, the optimum error covariance will remain

bounded for all t ¢ [to,w]’[SO]

and so the corollary follows.
Let us consider the time invariant case where_é,,gl, and C,

are constant and bocunded matrices.

Lemma 4.4.6: 1If the pair (A,C) is observable, then the pair
el

- e
A, :'.I

is also observable.

Proof: Construct the matrix

T C
M(e ,T) = [ QA(O,T)[Qi Iléé] L}' QA(O,T)dO
t ) C
o —2
' 1
T dQA(c,T)Q_z qugA(o,T)

T
- ' ' .
ft QA(O,T)QIQIQA(G,T)do + ft i 1 do .

(e} o

(4.4.10)
n .
Let x € R such that Efﬂ(to,f)§.= 03 then from (4.4.10) we have for
G E [to,r]:
= b4 = m
QigA(O,T)ﬁv sz H EQQA(U,T)K' y e R o (4.4.11)
where y isaconstant vector. Suppose that x # 0¢ let x = QA(tO,T)§: then

% fﬁQ; let X = QA(t,T)g, T > t1 > to, also .9 # 0. Since{é is constant,
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w2 have from (9.4.11) that
‘QZ‘?‘A(G’tO)—}-{O = _C_Z_QA(O,T)gg =y ; 0O¢ [to,”:] (4.4.12)

Cod, (o, )% = G0, (05t )8, (£),TIX = Cpo, (0 + £y = £ ,t0)8,(t),T)x

_QQQA(O tt - tO,T)§_= y i g€ [tO,T -t * to] .
(4.4.13) :

Thus X » Xy are indistinguishable by observing the output in the nonzero

1

interval [to,r -t +-to]. This contradicts the assumption that (A,C) is

1

observable.

*
Lemm& 4.4.7: Let L, = 0; the solution of (4.3.29), denoted by £ (t;0) will

*
reach a steady state I which satisfies

* % - * - - *
fo,mz” + 1M ar oo n) - 2 aep e ameia e )

-
£ L = = == 2

0 = (A-R ._Qz

’lcz_g ; A=CRC!>0 (4.4.14)

- '
+R-RCIATC

if and only if there exists yz(t), ii(t) such that (A - _'\Z-z(t:)g_2 - Ll(t)gi)
is exponentially stable.
Proof: Let us consider Ef(t;g) as a minimal function with respect to the
solution set Bt . With the assumption that Eo = 0, we have Ef(to;g) =0
from (4.3.25), an so

t

20 = | 01T (08, RA V5 () L (D8 L (018" (6,204

t
O

(4.4.15)

: % . ~%
where ¢(t,t) is the fundamental matrix associated with (A - y__?_(t)g2 -ALl(t)gi),

o, ~* N
and y;(t), Lq(t) are given by




ok _ % . ~ R .

V,(t) = (2 (£50)C5 + RC)HA ™ 5 t > ¢t (4.4.16)
* _ * . ' -1 .
Li(t) =2 (650,97 5 £>¢ . (4.4.17)

% - ~*
Let yg(t) =.!2(t + o), Lz(t) =-L1<t + o), and g?(t,r) be the fundamental

matrix associated with (A —'yg(t)gz - i:(t)gi). Clearly we have
07(t,1) = ¢(t + g,T +0) . (4.4.18)

Let £°(t;0), t 2 t_ be the solution of (4.3.25) with £°(t ;0) = 0, thus

*
g?(c;g) € Bt . Since I (t) is the minimal function with respect to Bt , we

o o
have

£e;0) £ 2%(e30) 3 otz . (4.4.19)

- o
Also we have from (4.4.18) and the definition of y;(t), ég(t) that:

. t-o 3
I (t-030) = [ 47 (-0, ) {(L_~¥ (1)CIR(A -V (D)C )+ (1)Q L7 (1)1¢° " (t-0, 1) dr

‘t
o}

t
< [ ae i@ T meRA Ve (e LT e’ (e
ut :
()

Py . (4.4.20)
Combining (4.4.19) and (4.4.20) we have

% o % .
Z(t30) 2 2(t -030) 22 (t-o030) . (4.4.21)

The lemma follows from theorem 4.4.4 and the monotone nondecreasing nature
*
of £ (t;0) as t increases (4.4.21).

Theorem 4.4.8: For all Eo > 0, the solution of (4.3.29), denoted by

2 *
;_(t;go) will reach a steady state £ which satisfies (4.4.14) if and only
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there exists Xz(t)’ ii(t) such that (é_-yyg(tléz - Ei(t)gi) is exponentially
stable.

Proof: From (4.3.29) and (4.3.25) we have
v -1
. = - ! 1 © >
(630 = I, - LG (G2 Cy) "CpE 20 . (4.4.22)
Therefore, from (2.6.21) we deduce that
% 3
z (t;go) 2L (t:0), te [to,w] . (4.4.23)
X
Using the minimal property of Eﬁ(t;go), we have

] * % '
022 (552) - 2 (£30) < ¢(e,e )T (£ L)' (e,t ) (4.4.24)

-

where‘g(t,to) is the fundamental matrix associated with (A -‘y;(t:)_(j}.2 - El(t)gi)
and_yz(t), i;‘t) are given by (4.4.16) and (4.4.17). ‘Q(t,to) is exponen-
tially stable if and only if there exists yz(t), ii(t) such that
(A —,12(t1§2 - éi(t)gl) is exponentially stable. Using lemma 4.4.7, we
obtain the theoren easily.

From lemma 4.4.6, and corollary 4.4.5, we see that observability of

% ®
the pair (A,C) is sufficient to assure that E_(t;go) + I satisfying

(4.4.14) where_};O > 0 is arbitrary.

4.5 General Discussion

In this chapter, we considered the estimation of deterministic and
stochastic systems using the observer approach.
E’ ’ In the deterministic case, sufficient conditions for existence of _ .
exponential estimator have been derived; such estimators can be realized

by an observer @%C(L),_l(t) € 3;, which is asymptotically stable, and its

associated estimator e%C(L).
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In the stochastic case, the minimal order optimum observer and its
estimator are described in detail in Figure 4.4. The optimum error co-
variance,.Ef(t), is given by (4.3.29). Asymptotic behavior of the minimal
order optimum observer is investigated via the optimum error covariance
Ef(t). Necessary and sufficient conditicn for zf(t) to be uniformly
bounded have been established. The condition is related closely to the
structural property of the system 8; under consideratiormn.

In the following, we shall discuss different points which are rele-
vant to the whole development in this chapter.

(A) Unbiased Estimates and Observer-Estimator Structure

Let S; be a stochastic system described by (4.3.1) with u(t) = 0.
Let an unbiased estimator € be given by

t

w(t) = f H(t,)y(t)dt + V(t)y(t) (4.5.1)
t
0

where H(*,*) is an nxm matrix whose elements are differentiable in both

arguments. Since E{Eﬂt)} = E{g(t)}, from (4.3.1) and (4.5.1) we have

l't

I H(t,1)C(M) ¢, (1, Jx dt + V(£)C(t), (E,t Dx = g, (st Dx  (4.5.2)
o)

wherelgA(t,T) is the fundamental matrix associated with A(t). The structure

of the estimator should be independent of the mean oftg(to), X s thus

(4.5.2) implies

t

t
j H(E,1)C(1)8, (t, )dt + V(D)C(D), (6,t ) = 9, (t,£ ) . (4.5.3)
. .

Differentiate both sides of (4.5.3) in respect to t.

t ,
H(e,0)c(0)+ LD ¢(a)p, (1, ) A+ C(OH(OERHT(C(DAE) = ACE) .
Jt )

o]

(4.5.4)
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Multiplying both sides of (4.5.4) by w(t) and taking expectations

;{z {CHCE, £)C(E) V(L) C(E)HV (L) C(E)+Y () C(E)A(E)-ACE) IH(E,T)+ :"ﬂ%—%ﬁl}}azz(:)}a;
0
+(H(t, £) COE)HT(E)C L)+ (£)C ()Y (£)C(E)~A(E)IV(E)E{y (1) }=0 (4.5.5)
(4.5.5) is satisfied if H(t,T) and V(t) satisfy
(t (Si(t)ﬂ(tﬂ) + ‘ﬂ{'g(%g”)x(ﬂd‘r = - G(E)V(t)y (L) (4.5.6)

‘t
0

where y(t) is a m-vector valued function of t; and
G(t) = H(t,£)C(E) + V(E)C(t) + V(£)E(t) + V(EIC(L)A(E) - A(E) . (4.5.7)

t
Let us denote yl(t) = ; H(t,1)y(1)dT; we have
t

0

1

W, (£)

t
H(t, )y () + [ é-g-a(—z—f—)-l(r)dr

” .)\'1

i

H(t, )y () - Ziwkw, i0) - G(0)V(E)y(r) . (4.5.8)

1

The unbiased estimator is realized by

il

w(t) = - G(E)w, () + (H(t,t) - G{e)V(e))y (L)
g: (4.5.9)
w(t) = y_l(t) + V(t)y(t)

By some transformation of coordinates, the unbiased estimator € can be

t

realized by

z(t) = F(t)z(t) + D(t)y(t)

g': (4.5.10)
w(t)

P(t)z(t) + V(t)y(t)
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Since €' an unbiased estimator, we have at t =t
x, = Bzt ) + V(e HC(t )% . (4.5.11)
If.g(to) £ qu(to);m,s,n) and.g(to) is such that
Pt )T(e ) + V(e DC(t ) =1 (4.5.12)

then by setting gﬁto) = Efto)go, (4.5.11) is clearly satisfied. Also we
have E{w(t)} = E{x(t)} thus

t
gft)igF(t,to)Iﬁto)§O+Jt QF(t.T)QKT)QﬁT)QA(T.to)zodey(t)Qﬁt)éﬁ(t,to)§D

(o}

= QA(t,to)go . (4.5.13)"

&
The structure of the estimator is required to be independent of X there-

fore (4.5.13) implies

P(O)I(L) + v(£)C(e) = I (4.5.14)
where T(t) is given by
t
T(t) = sp(t,t JI(t Do, (t,t) + J 9p(6,TID(DC(T) g, (t,t)dr . (4.5.15)
t
o]

. By comparing with (4.2.4) and theorem 4.2.2, such an estimator camn be
realized by an observer O%C(L),Al(t) £ 3; and its associated estimator
lc . .
6T (L), where L(t) € Mhm is arbitrary.
Thus we see that the concept of an observer is in some sense equiva-
lent to the concept of unbiased estimator. When the a priori distribution

of_g(to) is known, the minimal order optimum observer=-filter gives un-

biased minimum mean square estimates; whereas if the a priori distribution
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oflg(to) is unknown, the minimal order optimum observer-filter will be
an asymptotically unbiased minimum mean square estimator.

(B) Estimation for Linear System

The observer theorem ifutroduced in this chapter generalizes and

unifies estimation theory for deterministic and stochastic systems. For
both deterministic and stochastic cases, the structure of the estimators

are the same. In the deterriinistic case, we are to find certain parameters,
yz(t), Li(t)’ so as to obtain exponentially consistent estimates, whereas in
the stochastic case, the optimum choice of yﬁ(t) and Ll(t) is specified by
the noise statistical law and the detailed structure of the system. Thus

we see that in the deterministic case, qualitative theory should be used

[49]

in designing well-behaved observer-estimator; whereas in the stochastic

case, optimization technique can be applied to derive the class of minimum

order optimum observer-estimator.

(C) Kalman Filtering Technique

We can also solve the stochastic problem in section 4.3 by using the

Kalman Filtering Approach.i Let us consider the system Sg with u(t) = 0.

Let T(t) € Mn(n-ml) such that
T(t)
C,(t)
is of full rank. Define
x,(£) = T()x(t) . (4.5.16)

fThis approach was suggested by I. B. Rhodes.
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Then we have
x(t) = B(£)x, (£) + ¥, (t)y,(t) (4.5.17)

where

T(t) -1

(B(t) 5 22(t>] = (4.5.18)

c,(t)
We have the equation for gl(t) and zi(t)
%) (£) = (Z(E)+T()A(E))x(£)+I(E)E(L)

= ((ORP(O+T()AEIR(E)) %) (£)H(T(EIV, (O)FT(E)A(E)V, (£)) -
¥, (4T () E(E)
-~ = 4.5.19
¥, (£)=C; (0¥, (£)y, (£) = G, (£)R(E)x, (£)+n(t) (4.5.19)
Sincelzz(t) can be observed exactly, we can assume it is known. Now
apply a Kalman filter to the system (4.5.19): the best mean square esti-

mate of Ei(t) is given by

.él(t) = Qi(tlg(t)flﬁt)é(t)ﬁ(t)1Z(t)£f(t)gi(t)gfl(t)gl(t)gﬁt))31(t)

FE(OT, (LA, (£))y, (£)

u -1 (4.5.20)
(BT (£)C, (09 1(0) (7 (£)-C; (DT, ()3, (£))
i(il.(to) - Eﬁto)zo |
and_z(t) satisfies
o) = GORO+TOA®POEE)+E(E) (R(ER(E+I()ADR(E)) “'
FL(OR(OT (D)-£(R' (£)C] (DQ ()8, (DR(DE(E) (4.5.21)

z(t ) = I(t )

(to)

z T'
o=
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The estimate of x(t) is given by
&(t) = P(D)%, (£) + ¥, (t)y,(t) . (4.5.22)
The estimation error covariance matrix is given by
2(t) = P(e)I(L)P' (1) . (4.5.23)

Therefore

il

2(t) = B(OE(E)R ()+R(E)E(E)R! ()+R()E(E)B' (t)
= (P(t)+P(E)T(E)P(E)+R(E)T(L)A(E)R(E)IE(E)R (L)
+ P(£)E(t) (B()+P(£)+T ()P (t)+P (£)T(L)A(L)P (L))"

+ R(OT(OROT (DR (O-R(HE(OR (D8 (D9 (0)¢, (DR(DE(DP (1)

(A()=Y, (£)C, (£))E(E)+2 (L) (A(t)-V, (£)C,(£)) "

+ (L, (£)0, (E)R(E) (L_-V, (£)C, (£))"=L(6)C] (£)Q ™ (£)€; (£) ()

21
(4.5.24)
The initial condition is
= - N -, - { ‘
() = (I V(e 28, (e NE (T Y, (e )C,(t D) . (4.5.25)

v

We note that the error covariance depends on_yz(t) which must satisfy

G, ()Y, (t) = _Imz . (4.5.26)
To find the minimum mean square estimates, we have the optimization problem
of choosing_yz(t) satisfying (4.5.26) and yielding the "least' nonnegative

definite Z(t). Note that (4.5.24), (4.5.25) is the same as (4.3.25) with

L () = 2ol ®a () . (4.5.27)




L

~134~

One can easily show that the optimum estimator derived by using the
Kalman filtering approach is a minimal order optimum observer-estimator.
Before comparing the merits of Kalman filtering approach and observer-
estimator approach as developed in this chapter, the author would like to
point uut the falacy of an initiative conception by using the Kalman fil-
tering approach. This is best explained but giving a specific example.

Consider a linear time invariant system described by

% (t) 0 RN £, (t)

+ : (4.5.28)
%, (t) -a;  -a,l| x,(t) £, (t)

¢

The observations are
y,(£) = [0 1)x(£) + n(e) (4.5.29)
vy () = [1 0]x(t) . (4.5.30)

The noise statistical laws are assumed to be known:

E{?t‘g(t)drs =0 ; E{([t gjt)dr>(Jt gjc)dc)'} = ne o (4.5.31)
‘ 0 o) 0 Tt

2
n(r)dT} =0 : E{(Jt n(T)dT) } = qt . (4.5.32)

o (0]

j’t
E{J
Assume that the estimation process has started at -«, and our objective
now is to find the conditional mean estimate of the state. One "intuitive'
argument using the Kalman filtering approach will be as follows. From
(4.5.30), we see that we have exact observation in xl(t), therefore we can

assume xl(t) is known. From (4.5.28) and (4.5.29), we have




e

-135-

x,(t) = - a;x (£) - ayx,(t) + £,(¢) (4.5.33)
vp(8) = %,(t) + n(t) . (4.5.34)

Since the system is linear and the noises are Gaussian, thus to find the

unbiased mean square estimate of xz(t), we may apply Kalman filter to

*

(4.5.33) and (4.5.34). The error variance, e, in the steady state will

(501]

satisfy the algebraic equation

e2 + 2a,qe - r

1 q=20 . (4.5.35)

2

Therefore the error variance is equal to

e = /éiqz + rzq - q >0 . (4.5.36)

%
One may make the conclusion that the Kalman filter for (4.5.33) and (4.5.34)
will give us the unbiased minimum least square estimates, and the minimum
mean square error is given by (4.5.36). Unfortunately, this conclusion is

in general false; the reason for this is that the Kalman filter for (4.5.33)

and (4.5.34) give us the estimate
%,(t) = E{x,(£)[F(y (0);t e [t ,))} (4.5.37)

whereas the estimate we are looking for is
ﬁz(t) = E{xz(t)IF(yz(r);T € [to,t],yl(S);s € [tb’t))} (4.5.38)
and in general we have the inclusion of o-algebra
F(y,(0)sT e [to,t))C F(yz(T);T € [to,t],yl(S);s € [’to,t)) (4.5.39)

To proceed with the example, let us define
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| xp, (8) = [k 1]x(t) (4.5.40)

where k is an arbitrary number. Using (4.5.30) and (4. 5.490), we have

0 1
x(t) = x,, (t) + y . (4.5.41)
[1] 1k [k] 2

Taking the derivative of (4.5.40) and using (4.5.28), we have

x,. (t)

i‘ 1k -(k + az)xz(t) - alxl(t) + Qz(t) - kil(t)

-(k + az)xlk(t) - (k(k + a2) + al)yz(t) + Ez(t) - kél(t) . (4.5.42)

The observation (4.5.29) becomes

X y (€)= x, (£) + ky, (e) + n(t) . (4.5.43)

Define

Since yz(s), s € [to,t], is known at t, by applying the Kalman filter to
(4.5.42) and (4.5.44), we have the steady state error variance, e, s for

the unbiased least square estimate of xlk(t) satisfying the algebraic

equation

2

2 -
e * 2(k + az)qek - q(k r, + rz) =0 (4.5.45)

and so

o 22 . 2 .
i e, = /(k+a)%q" +qk’ry +1r) - (k+a)g>0 .  (4.5.46)

To find the corresponding estimate in x, we have
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0 | 1
) =| [, +]| |y (4.5.47)
NECRNZ

where ﬁlk(t) is the estimate given by the Kalman filter for (4.5.42) and

(4.5.44). The corresponding error variance for xz(t) is

E{ (xz(t)-iz(t))z} E{(xlk(t)-:?clk(t)+ky2(t)—kyz(t))2} = E{(xlk(t)-}'clk(t:))z}

(4.5.48)

Clearly e # e for almost all k ranging from -« to =». One may then attempt

to find the optimum k which give us the smallest e This has easily been

k.
carried out by using differential calculus. The optimum value for k° was

found to be:

2 2
ajq” - qr a,q
K° = 2 2+r<f_r)- — (4.5.49)
(q + 1)) 1M TR 9T h

Substituting (4.5.49) into (4.5.46), we have the'corresponding error:

r (@ + r,)r.q
o A _ 1 2 1°2*°
e & eko —-—-—-———-—q n rlg J(qaz) + T qa, (4.5.50)

and clearly we have the strict inequality (rl >0, q>0)

o 2 latry) 2
e < (qa,)” + ——/—r,q - qa, < /(qaz) +1r,q - qa, =e . (4.5.51)
1

The inequality (4.5.51) indicates that by applying Kalman filter to (4.5.33)
and (4.5.34), we do not obtain the best mean square unbiased estimate. We

note that the optimum value of k depends on r 9 and q (assume a, is

r
1’ 2

. i o ., . .
fixed a priori). We may not conclude that the error e is the minimum
error variance because we only consider a restricted class of transformation

in x (4.5.40). The only way to check whether e is the minimum error variance

is to appealto the projection equation, or equivalently, the Weiner-Hopf equatior.

2
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Therefore, we see that conceptually, the Kalman filtering approach
is by no means simpler than the observer approach developed in this chapter;
because one may find it hard to visualize physically why one transformation
of the state is better than the other before the application of a Kalman
filter, besides, one may reach false conclusions if one is not careful
(see example). Note that one approach is as easy as the other: both in-
volve a deterministic optimization problem, and both need to verify that
the derived solution satisfies the projectioﬁ equation before we can con-
clude the truly optimum nature of the obtained estimate.‘ In terms of
derivation, the Kalman filtering approach is comparatively simpler; but
personally, the author thinks that the class of asymptotic unbiased esti-
mator is a more basic conceptual framework to many estimation problems.
The observer approach is based precisely on this conception. One dis-
tinguishing advantage of using the observer theory approach is that it
reveals the detail structural properties of the optimum estimator. This
allows us to investigate in detail the asymptotic behavior of the optimum
estimator in terms of some intrinsic functional behavior of the system
(section 4.4).

(D) Detectability and Observability

We note that observability is a stronger condition than detectability.
In section 4.4, we have shown that detectability is a necessary condition
for the minimum error covariance, gf(t), to be uniformly bounded for all
t > t . In the time invariant case, observability_is sufficient condition
for;;*(t) to be uniformly bounded and for the existence of a steady state

*
value of z (t) as t + =.
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Although a proof is not available yet, it seems very likely that
%
detectability is also sufficient to assure Z (t) to be uniformly bounded
for all t 2 ¢t .
o)

(E) Estimation in the Presence of Time-Correlated Noise

Let us consider the stochastic system Sg described by

k(6) = A(Dx(t) + B(Bu(r) + () 5 x(t) £ R
85 (4.5.52)

y(t) = C(t)x(t) + n(t) s y(t) e BT

where n(t) is a Gaussian Markov process which can be realized by:
nt) = E(e)n(e) + x(t) (4.5.53)

gﬁto), Bﬁto)’ {g(t), £ 2 to}, {y(t), £ 2 to} are independent statistics.

The statistical laws are given by

o
x(e) v GG, 20)
o
ﬂ(to) e Q(XO’ ’E‘V)
rtz tz (4.5.54)
o E(t)de ~ GO, f R(t)dt)
o ‘t t
- 1 1
rt t
2 n(t)dt ~ G(O, f 2 R (t)dt)
It £,
1 1
Define the augmented vectors
x(t)] . E(t
| _§é(t) = [....] e RO gé(t) =1...| ¢ &% (4.5.55)
n(%) y (t) |

and the augmented matrices
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X A(e) 1 0 . . B(t)

AT(E) =) ... T .. i C(t) = [C(e) @ ;mJ ;3 B(t) =]... (4.5.56)
0 . A(R) ' 0

.

We have the equations for the augmented system

12 = A% @) + B2 (o)u(r) + £3(b)

s:: (4.5.57)
y(r) = c?(e)x®(v)

We can apply the derived results to the system S:. Note that the minimal
order optimum observer-estimator has dimension n. 1In the special case
when C is a constant matrix, we can easily verify that the results obtained
agree with those obtained by Bucy [52]. In the general case, the results
agree with Bryson and Mehra who considered the problem using the weighted
least square approach.. Application of the derived results to this special
class of problems will be considered in detail in the future.

4.6 Perspective

Qualitative estimation theory for the deterministic system gf was considered
by Luenberger [35], Johnson [49]. Optimum filtering theory for stochastic
linear systems was firstconsidered by Wiener [51]. Kalman and Bucy [50]
consider the special case of estimating the state of a Gaussian Markov
process in the bresence of nondegenerate Gaussian white observation noise.
Estimation in the singular situation (i.e., noise free observation) was
considered by Root [54]. (See also Van Trees [47] for detailed bibliography.)
Estimation in the presence of colored noise only was considered by Bucy
[52], Mehra and Bryson [53], Geesey and Kailath [55]; The consideration
in this chapter provides a unifying approach to linear estimation problems
in general. This approach is valuable in the way that it reveais the in-

trinsic structural properties of the estimating device.
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The asymptotic behavior of the estimator was not investigated in
detail in the literature save for the case of estimation in the presence
of nondegenerative Gaussian white observation noise [50]. 1In this special
case, the asymptotic behavior of the optimum estimator was investigated
through its dual relation with an optimal regulation problem [50]. The
investigation in section 4.4 is original. 1In this contribution, we can
study, in all general situations, the asymptotic behavior of optimum
estimators; it also provides the concepts required for qualitative estimation

theory for deterministic linear systems.




CHAPTER V

OPTIMAL CONTROL OF STOCHASTIC LINEAR SYSTEMS WITH KNOWN DYNAMICS

5.1 Introduction

In this chapter, we are mainly concerned with the problem orf con-
trolling a linear system with known dynamics, under the assumption that
perfect information is not available. To have the problem be completely
general, we assume that there are unknown driving disturbances, and partial
observation of the state in the presence (or absence) of observation
noise. A special case of the problem was investigated by Joseph and Tou
[56], Gunckel and Franklin [58], Wonham ([22], ([27], where they assumed
that the observation noise is a nondegenerate white Gaussian process. In
our investigation, we assume that the observation noise is in general de-
generate without loss of generality; we shall model the problem as one
where some output variables can be observed perfectly (noise-free) while
the others are observed in the presence of white Gaussian noise. This
general information includes [56], [58], [27] as special cases.

The structure of this chapter is as follows. In section 5.2, we
consider the estimation problem for the discrete case where we are allowed
to use feedback control. Using the results in chapter 3, we derive a
stochastic difference equation for the conditional mean estimates of the
current state. In section 5.3, we shall state the stochastic control
problem and the optimality criteria is used to verify the optimal solu-
tion. The general results are then applied to a sbecial case where the
observation noise is sequentially correlated. In section 5.4 and section

5.5 we treat the continuous analog of section 5.2 and 5.3. The results
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can be summarized as the Separation Theorem. In section 5.6, discussions

of results and indication of some further research is given.

5.2 Estimation with Feedback for Discrete Linear Systems

Consider a discrete linear system 83 described by

x(k + 1) = A x(k) + B(k)u(k) + £(k)

S3: (5.2.1)

y{k) = C(k)x(k) + n(k)
where x(k) ¢ Rn,_g(k) £ Rr,_x(k) e R, x(0), £(k), n(k), k=0, 1, ...
are independent Gaussian random vectors with statistical law given by
(3.3.2) to (3.3.4). The control u(k) is feedback in nature. Let us denote

the control sequence by
U(d,7) & {u(),u@d@ + D,...,u@}r i>3 . (5.2.2)

The observation statistic at time k is y. (k), where the subscript
U(o,k=-1)
U(o,k-1) is to indicate that the past control sequence, U(0,k - 1), has

been applied to the system. The accumulative observation statistic at

time k is

YU(O,k-l)(k) = {Xﬁo)ng(o)(l)’"'QZU(O’k_l)(k)} . (5.2-3)

We assume that the control is of the form
u(k) = Qﬁk’YU(o,k—l)(k)) k=0,1, ... (5.2.4)

where ¢(k,*) is a measurable function from F(Y ) to RE. (5.2.4)

U(o,k-1)

implies that the control is a function of past accumulative observation

~information. In the following, we shall denote F(Y )(k)) by

U(o,k-1

F(k,U(O,k - 1)).




~144-

The information revealed by the accumulative information at time k
about the dynamical state of the system is contained in the sub-g-algebra
F(k,U(0,k - 1)). For some control purposes, the detailed knowledge of
F(k,U(0,k - 1)) is sufficient but not necessary. In most cases, since
the knowledge about the present state is necessary and sufficient for Je-
signing a feedback control strategy, then the knowledge of the conditional
distribution of the present state, x(k), is necessary and sufficient (see
chapter 2, section 2.2). In the following, we shall prove that the condi-
tional distribution of x(k) can be parameterized by some finite dimensional

quantities.

Theorem 5.2.1: For the system 83 where u(k) is of the form (5.2.4), the
conditional distribution of x(k) is a Gaussian random vector, and so is
parameterized by its conditional mean, gﬁklk), and conditional covariance

Z(k) which are given by (k = 0, 1, ...)

2(H) = T(k+DAK)P (K) 2 () +T (L AR Y (K)y (k)T (k1) B (k) (k)
3
8T: ( (?.2.5)
2(klk) = P2+ (K)y (k)
Ik +1) = 8(K) - ¥ (k + 1C(k + 1)A(K)
(5.2.6)
2(0) =z - vV (0)C(OI
wk;xere "
LK) £ AGIK)A (K)+R(K) y%(o> = QOQ'(O)(g(O)EOQf(O)fQ(o))'l )
| (5.2.7)
and

V) £ U (20 = (Ve M_[VIC(FDAGKIC (RHHQ(] = A(R)C' (kD) }
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P(t), L(t) satisfy the relation B(K)T(k) + V (k)C(k) = 1.

Proof: Let us break x(k) into two vectors:
x(k) = x, (k) + x,(k) (5.2.8)
where x, (k), x,(k) € R are given by
Xy (k + 1) = A(k)zz(k) + £(k) ; %,(0) = x(0) (5.2.9)
% (k + 1) = A(k)x, (k) + B(k)u(k) ; x%,(0) = 0 (5.2.10)

and u(k) is of the form (5.2.4). From (5.2.10), we note that {51(i)}§=0

is F(k,U(0,k - 1))-measurable, and so we have from (5.2.8) that
£(k|k) = E{gz(k)[F(k,u(o,k = INT + %K) . (5.2.11)
Let us define
¥o(k) = y(k) - C(k)x, (k) = C(k)x,(k) + n(k) (5.2.12)

. .\ 1K .\ 1K
and define F2<k) A F(XQ(O)"-',XQ(k))- {1}1)}i=0 and {gl(l)}i=0 are
F(U(0O,k - 1),k)-measurable, so {12(1)}§=0 is F(k,U(0,k - 1))-measurable;

therefore
F,(k) C F(k,U(0,k - 1)) : (5.2.13)
Using (5.2.4), (5.2.10) and (5.2.12) we have

) (k1) = AG)x; (OB (K,y, (04C(0)x; (0) 5.+ 0,3, (OHCIX ()

x50 =0 . (5.2.14)

Inductively, we have {gl(i)}?= is Fz(k)—measurable, and so from (5.2.12),

0
y(k) is Fz(k)—meésurable. We have then




i
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F(k,U(0,k - 1)) C F, (k) (5.2.15)
(5.2.13) and (5.2.14) imply that
F,(k) = F(k,U(0,k - 1)) : (5.2.16)
Let us define
g_z(klk) = E{iz(k)[Fz(k)} (5.2.17)
(5.2.11) and (5.2.15) give
&(k[k) = 2, (k|k) + x, (k) : (5.2.18)

Now consider the stochastic system 82 and the deterministic system g 1 described

by
xy(k + 1) = A(K)x, (k) + E(k) 5 x,(0) = x(0) ~ G(x_,Z)
82: (5.2.19)
zz(k) = Q(k)zs?_(k) + n(k)
x (k1) = AMx(K) + B(u(k) 5 x,(0) =0
5, (5.2.20)
¥, () = C(k)x, (k)

Since % (0) is known exactly, 5»1(1() can be reconstructed by any class of
observers. The conditional distribution of %, (k) given F2 (k) is Gaussian,
the conditional mean, fc_z(k]k), and the conditional covariance, L(k), are

given by: (Chapter 3, section 3.2 and section 3.3)

(k1) = (AR (k) 2, (T (HDAMY (y, (K 5 2 (0) = T(O)x

N
=
?:.a

N’

il

£, ( R ()2, (+ (1), (k)

(5.2.21)




=147~
and

E(kHL) = A(K) - ¥ (L) (kL) A (K)

(5.2.22)
2(0) =z - £ C'(0)[C(OEZ L' (0) + (01T C(0Z,
ACk) & AK)Z(K)A'(k) + R(k) (5.2.23)

V() = 2,8 (0) (C(0Z_C' (40T 5V (et) € b (B 5k = 0, 1, ...
(5.2.26)

Constructﬁﬁl(k) by using

2, (k41) = T(R+L)AKIR(K) 2, (RHT(FD ALYy, (K1) B(K) u (k)

1
8T:
%, (k) = PRz, (4 Wy, (®) 5 2,(0) =0
(5.2.25)
where {yf(k)}:=0 is given by (5.2.21) to (5.2.24). From (5.2.19), (5.2.20)

and (5.2.8), we have

y(k) =y, (k) + y,(k) . (5.2.26)
Define the vector

z(k) = Ei(k) + Eﬂ(k) . (5.2.27)

By equations (5.2.18), (5.2.21) to (5.2.26), we have the conditional mean
estimate of x(k) generated by

2z (k+1)

T(k+1)A(K+1) P (k) 2 (k) +T (k+1) A (K) VK) y (k)+T (k+1) B (k) u (k) S
| (5.2.28)

3
E-:
Poaaelw)

POz Wy | 5 2(0) = T(0)x_

with {yf(k)}zzo given by (5.2.21) to (5.2.24).
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Using equations (5.2.8) and (5.2.18), we have

2kik) = x(k) = 2, (k|k) + x, () - x, (k) - x,(k) = &, (k]k) - x, (k)
(5.2.29)
{Ejk)}:=o given by (5.2.21) to (5.2.24) is the conditional covariance of
§2(k), and so it is also the conditional covariance of x(k). Sincetgl(k)
is F(k,U(0,k - 1))-measurable, (5.2.8) implies that the conditional dis-
tribution of x(k) is Gaussian, by virtue that the conditional distribution
of gl(k) is Gaussian.

We note from (5.2.3) and (5.2.4) that the accumulative statistic at
time k depends on the control chosen which in turn depends on past
accumulative statistics. But as long as we are interested in the présent
state of the system, the information contained in F(k,U(0,k - 1)) about
x(k) is equivalent in some sense to the statistical information contained
in the conditional distribution of gﬁk). Theorem 5.2.1 says that the con-
ditional distribution of x(k) is Gaussian, and thus all the statistical
information revealed by accumulated observatjon statistics is summarized
by the conditional mean, %(k|k), and conditional covariance, Z(k). From
(5.2.21) to (5.2.23), we see that Z(k) can be precomputed before any ob-
servation is made and any ccntrol is applied. Therefore, all the statistical

information about the state at time k is summarized in the random vector

% (kik).

5.3 Stochastic Control of Discrete Linear Systems with Quadratic Criteria
In this section, we shall consider the problem of controlling the

discrete linear system 8§, with quadratic criteria:

3
N-1 ‘
3w = Efx' OF 20 +Z(5' RWxK) + v’ (U uE)) } (5.3.1)
k=0
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with F 2 0, W(k) 2 0, and M(k) > 0. We are to find a control law of the
form (5.2.4) which will minimize (5.3.1) subject to (5.2.1).

Using lemma 2.2.6 and (5.2.4), the cost J(u) can be rewritten as:

N-1
J(w) = E{E{zc_' (N)E x(N) |[F(N,U(0,N-1)} + Z E{x' (k)W (K)x(k)+u' (k)M(k)u(k)
k=0
F(k,0(0,k-1)) ]
N-1
= E[z:_ (N[N)E 2(N|N) +Z(g<_ k] R)W(R) R (k[K)+u' (k)g;(k)_q(k))}
k=0
N-1
+tr(§ Z(N) +Z _W_(k)_z_(k)) (5.3.2)
k=0

where {zﬁj)}§=o is given by (5.2.22) to (5.2.24). Since {gﬁj)}?=o is inde-

1

pendent of the control, minimizing (5.3.1) is equivalent to minimizing
N-1 |

J'(u) = E[_g_' (N|N)F R(N|N) + z (3_* (k| K)W(K)R(k[k) + u' (k)y_ck)g_(k))}
k=0 (5.3.3)

From (5.2.5), the equation for.g(klk) is given by
R(HL k) = AGE(K]K) - ¥ (k+L)C(HDACK) (R(k|K) - x(K)) + B u(k)
+ V" (HL)C(RHLE(K) + U (k1) n (k+1) (5.3.4)

*.
where V (k), k =0, 1, ..., N are given by (5.2.21) to (5.2.23). The
process {§(k)}§=o is given by (5.2.1). We have now a stochastic problem

to solve: Find a control law of the form (5.2.4) such that the cost (5.3.3)

is minimized subject to the constraints (5.3.4) and (5.3.1).

Lemma 5.3.1: The control law

u (k) = -(C)+B" (KD BN B! (KD AM) &(k[K)  (5.3.5)

K(k) = A(k) (R(k+1)-K(k+1)B (k) (M(k)+B" (k)K(k+1)B (k) )-l_fi' (k)K(k+1))

A(k)H (k) ; K(N) = F (5.3.6)
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is the optimal control law to the above stochastic control problem, i.e.,

let {u(k) }§=0 be any control law of the form (5.2.4), we have
*
J'(u) 23 (Ww . (5.3.7)

The optimal ccst-to-go is given by

N-1
Ji(k,2) & E{f&*'(NlN)E :’E*(NlN)-*Z_}_’i_*'(i!i)W(i)g‘g*(iii)-i-g*'(i)_bg(i)_g*(i)[_g*(k[k) = 5}
i=k
N-1
= E'K_(k)_fi’ftrZ(_é(i)-_?;(i+l))_1<_(i+l) . (5.3.8)
i=k

Proof: We shall prove the lemma by using the Optimality Criterion (theorem

2.4.3). Let us define for k=0, 1, ..., N
N-1
&'K(kK)X + tr E (A1) -~ Z(1 + 1))K( + 1)

=k
N-1

%
2'K(k)R + tr E (V (i + )C@E + DALKAE + 1) (5.3.9)
i=k
where {_K_(k)}i=o satisfies (5.3.6). We have from (5.3.6)

e

C(k,%)

C(N,%) = ®'F % . (5.3.10)
Let U(0,k - 1) be arbitrary control sequence, and denote
£ = E{&x(k|k)|F(k,0(0,k - 1)} = E{x(k)|F(k,U(0,k - 1))} . (5.3.11)
Let

£ (k) = AGE - V(L C(HDAK) (2-x(K)) + V' (k+1)C(kH1) £ (k)

1

+ Y+ n(k) + B(K)u (k) (5.3.12)

2 (k+1)

ARE - V(H)CRHAK) (R-x(K)) + ¥ (k+1)C (kH1)E (k)

+ Y(k41)n (k) + B)u’ (k) ©(5.3.13)
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A
where g‘(k) is given by (5.3.5) with % replacing %(k|k), and w(k) is
F(k,U(0,k - 1))-measurable function. We have from (5.3.12), (5.3.5),

(5.3.6):

E(R'W(O 2+ ' ()M (k) [F(k,U(0,k-1)} = £'K(K)Z-%'A’ (K)K(k+1)A(K)%
0™ (KB (WK (k1) A (K) &4 (M (k) u” (k)
= RRAOZ) -2 (LR (HL R (L) +u (k) (1 (K)+B' (KK (KB (K))u (k)
F2'A' (K (K1) B u® () +££{V (k+1) (k1) & (K)K (k+1) }

=_gﬂg(k)g(k)ﬁg%'(k+l)§(k+l)3%(k)+tr{(é(k)ﬁg(k+l))§(k+l)} . (5.3.14)
Combining (5.3.9) and (5.3.14) we have

tH * ’ *
E{&' W) &(K)+u ' (M) u (k)+C(k+1,% (k+1) |F(k,U(0,k-1))}-C(k,%) = O
(5.3.15)
Since E?(k) is F(U(0,k-1),k)-measurable, we have from (5.3.13), (5.3.5),

(5.3.6):

E{R'W (k) &+u® ' (R)M(k)u® (k) [F(k,U(0,k-1))} = R'K(K)E-2'A" (K)K(k+1)A(K)%

fﬁﬂé’(klﬁ(k+l)§1k)(ﬁ(k)f§'(le(k+l)§(k))—¥§'(k)§(k+l)é(k)§fg?'(k)ﬁ(k)gé(k)

= R'R(K)&-% '(k+1)K (k+1)%° (k+1)+u®
(o}

' (k) (M(k)+B' (k)K (k+1)B (k)u° (k)
+u®" (k) Q4B (K (K+1)B (k)" (k)+u ' (k) QLCK)+B ' (K)K (k+1)B (k) u® (k)
+u” (k) QUCK)+B" (KK (k1) B (k) )u" (k)+tr{ (A(K)-E (k1)K (k+1)) }

'K (k) £-2° (RFDK (k1) 2° (k1) + (0 (k) —u (k) ' (4 (k)+B" (WK (k+1)B (K)) (u° (k)

B

k) +er{AK) B (LK (L)} . (5.3.16)

Combining (5.3.9), (5.3.16) and (5.3.15) we have since M(k) > 0 and

K(k+1) 2 0:
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0 = E{&"W(K) &k ' (M) U (K)+C(KHL, 3 (k1) | F(k,U(0,k-1)) }-C(k,R)
S E{R'W(K) #+u” ' (k)M KD u® (K)+C (k+1,2° (k+1) | F(k,U(0,k-1)) }-C(k,&) .
(5.3.17)
The lemma follows from the Optimality Criterion.

*
Theorem 5.3.2: The control law u (k), k = 0, 1, ..., N given by (5.3.5)

and (5.3.6) is the optimal control law which minimizes the cost (5.3.1)

subject to (5.2.1) and (5.2.4). The optimal cost to go can be expressed

as.
N-1

5,068 = F'EOOZ + tr Y (B = ZEHDEGEH) + HWI@] + E Z®)
i=k

(5.3.18)

This follows trivially from lemma 5.3.1 and equation (5.3.2),.

Note that Z(k), A(k), K(k), k=0, 1, ..., N can all be precomputed
when the noises distribution laws and the weightings (F, W(k), M(k)) are
all given. The performance measure can be easily evaluated when the con-
ditional mean of the state vector is computed via a minimal order optimum
observer-estimator. From (5.2.27) and (5.3.5), we see that the optimal

control law can be written as

W k) = ~(M(k) + B' (K)K(k+1)B(k)) 1B (k)K (k+1)A(K)E (k) z (k)

-(M(k) +,§'(k)E(k+l)§(k))—¥§'(k)K(k+l)é(le*(k)1(k) . (5.3.19)
Denote the pure feedback portion of y_*(k) by
ur () = -0 + B' (KB B! (OKHDAKY Ry ®)  (5.3.20) o
and feedback after compensation

uy(k) = =(U(K) + B' (OK(HDB()) B! (OK(HDAMR()z(K) . (5.3.21)
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The optimal control is composed of:
* %* %
u (k) = u; (k) + u,(k) . (5.3.19")

The detail structure of the optimal control system is described in Figure
5.1.

When the observation noise is nondegenerate, i.e., Q(k) > 0,
k=0, 1, ..., we have the usual separation results first derived by
Joseph and Tou. Theorem 5.3.2 indicates that separation is true under
more general assumptions when Q(k) and R(k) are nonnegative definite and
even when they are both zero matrices. The theorem can also be applied
to the case when the observation noise is sequentially correlated. 1In the
following, we shall treat this special case in some detail.

Consider the systemé2 described by

x(k + 1) = A(k)x(k) + B(k)u(k) + £(k)
52: (5.3.22)
yk) = C(k)x(k) + n(k)

{g(k)}z=o is sequentially correlated and is described by
ntk + 1) = A(kIn(k) + y(k) . (5.3.23)

We shall assume that g(k), y(k), k = 0, 1, ..., x(0) and n(0) are inde-

rendent Gaussian random vectors with statistical laws given by (3.3.2),
%*

(3.3.3) and (3.7.14). The control problem is to find control u (k) of

the form (5.2.4) which will minimize the cost (5.3.1) subject to (5.3.22),

(5.3.23). From (5.3.22) and (5.3.23) we have the augmented system
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xk + 1) = Ax k) + B2(K)uk) + £2 (k)
S : (5.3.24)

a
y2 ) = c?(k)x® (k)

)

where
x (k) CAK) 10 B (k)
2 =17, s A% =) L. L. s B2k =]... :
n (k) | 9 . Adk) o}
% (k) 400
2w =1"..
. (5.3.25)
€ = () 1 L]
The cost (5.3.1) can be written as
N-1 '
F ) = E{f'(mzafm) +Z(§a'(k)ﬂa(k)3§a(k) + u' <k>;>_1<k>y_<k>)} (5.3.26)
k=0
where
F .0 W(k) :© O
ol A P (O I P : (5.3.27)
(U] 0o 0

The augmented control problem is to find u(k), of the form (5.2.4)

such that the augmented cost (5.3.26) is minimized subject to the aug-
mented system (5.3.25) and constraint (5.2.4). We note that the solu-
tion for the augmented control problem is the same as that of the original
control problem.

Apply theorem 5.2.3 to the augmented control problem, we have

W) = - k) + B 0K DB () TIBR (0K () AT (027 (k[K)  (5.3.28)
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K200 = A" (k) (&% (k1)K (k1) B () (M (k) 4B (K (k1) B (k) )y B2 (1)
K2 GrDA? O+ (k) K2 = % (5.3.29)
and £°(k|k) is given by:

2(k+) = T(HDAR (KRR z(K) + TRHDA )Y )y (k) + T(+1)B*(K)u’ (k)

83:
T
2k = 20z + ¥ Wy® 5 2(0) = T(0)x0
(5.3.30
2 C'(0)
v =] ... fieoz e + Mt (5.3.31)
n
2:O
22k + 1) = A%(K) - V(k + 1)c?(k + 1)8%x) (5.3.32)

2200 = A0 0AT (0 + B2 5 T+ D) e b EFW) . (5.3.33)

Lemma 5.3.3: The solution of (5.3.29) is given by

. K@) @ 0
l_(_(k) = LY ) LU (503.34)
0 I 0
with K(k) given by (5.3.6).
Proof: We shall use the induction method. At k =N, (5.3.27), (5.3.6),

and (5.3.29) give

-
o

KON : 0 S s
- (5.3.35)

~
~
=
~

L

]
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Assume that the statement is true at k + 1, we have from (5.3.25),

(5.3.27), and (5.3.29) that

K2 (k)

A () (R (kHL) K (L) B(K) (M(K)+B' (K (FL)B (k) T B! (K (k1)) A (k)i () 50

0

K 0
=) ... " ... (5.3.36)
0 . 0

-, —— -

and so the lemma follows.

Theorem 5.3.4: The control law,

W) = -M(k) + B' (KB K)) B! (K (HDAR)E (K [K)  (5.3.37)

with K(k) given by (5.3.6) and

5 - . A8
&(k|k) = [T 10 1% (k|k) (5.3.38)
is the optimal control law which minimizes the cost (5.3.1) subject to

(5.3.22), (5.3.23), and (5.2.4). The optimal cost to go is

N-1
3,08 = FREzrer )3 @)-2 (1)K (1)) 40 ()22 (1) M2 (0
i=k

(5.3.39)

This follows easily from theorem 5.3.2, lemﬁa 5.3.3, and equation (5.3.28).
Note that_g?(k) € Rp+m, and so z(k) € R" (see chapter 3). The detail

structure of optimal control system is described in detail in Figure 5.2.

5.4 Estimation with Feedback for Continuous Linear Systems

Consider a continuous linear system gg described by:
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x(t) = A(t)x(t) + B(t)u(t) + £(¢t)

g;: (5.4.1)
xl(t) _Q_l(t)ﬁ(t) + n(t)
y(t) = . = cos
x?_(t) Qz(t)i(t)
m

where x(t) e Rn,_g(t) £ Rr,_é(t) e R, n(t) e R l, y(t) e R". We assume
that_ﬁ(to), {g(t), t 2z to}, {n(t), t 2 to} are independent statistics.
_§(to) v Q(ﬁo,zo) and £(t), n(t), t 2 t, are white Gaussian noises with
properties (4.3.2). The control u(t) is feedback in nature.
Let us denote U[0,t) = {u(t):t € [0,t)}, and
YU[O,t)[O’t] = {XU[O’T)(T):T € [0,t]}. The observation statistic at time
t is EU[O t)(t) ( the subscript is to indicate that the statistic is de-
b
pendent on the past control values). The accumulative observation statistic
Cat time t is YU[O t)[O,t:]. We shall assume that the control at time t is
2

a function of accumulative observation statistic:

u(t) = ¢(t,Y [0,t]) : (5.4.2)

ufo,t)

Denote F(t,U[0,t)) = F( [0,t]). The control u(t) is a random vector

YU[O,t)
which is F(t,U[0,t))-measurable.

m
Let f(s) be continuous on [0,t] with values in R, define the exten-

sion of f(s) by

A
rt

£(s) 0=s

(m £ (s) ={ | (5.4.3)
. .g(t) t £s8 5T

th thus defined is in Cm[O,T], the class of continuous function defined

on [0,T] with values in R™. The control (5.4.2) can be expressed as
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u(®) = 86w, Yy 0 10,€]) (5.4.4)

where §ﬁ°,-) is viewed as a mapbing from R X Cm[O,T] + RY. The control
(5.4.4) is also F(t,U[0,t))-measurable. We assume that §jt,-) satisfies

a Lipschitz condition:

[13C¢e,8) - a(esed || < o l]E - g]] 5 £,8ec[0,T]  (5.4.5)

for all t € [0,T] where oy is some constant. Sometimes we shall subpress

the dependence on past control value, and write (5.4.4) as

u(t) =§(c,nty) 5 vy & {y(v):t e [0,t]} (5.4.6)

without causing confusion.

Theorem 5.4.1: Let‘gz(t)g(t}gé(t) > 0, and the control is of the feedback
form (5.4.6). The conditional distribution of the current state of Sg is
Gaussian random vector, and is parameterized by the conditional mean,

‘g(tgt), and conditional covariance, £(t), which are given by:

5L 2(6) = (LIDAMEDHI(DR(D)-T(OL] ()€ (DR ()2 (DL (D)y, (1)

* . ® * *
(DAY, (FT(6)V, (£)-T(£)L, (£)C, (£)V, (£))y, (£)

+T(£)B(t)u(t)

2(60) = T(t )x ~T(t )V, (£1)y, (t )

(5.4.7)

2(et) = B(0)2(0)47, (£)y, ()

E(0) = (AD-RDCH ()27 (O (£)LD+E(E) (A(D-R(DE) ()™ (0E ()"
“2(8) (B ()47 (D8, (48] (£)QH(£)C, (£))Z(E)+R(1)

~R(£)C) ()27 (£)C, (DR(E)

éfto) g Eoizogé(to)(QZ(to)Eogé(%))_¥92<t )

5 A
o°—o

5 A(8) = C(E)R(E)C, (E)

(5.4.8)
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% *
where _\lz(t) R _I:.l(t) are given by

1

x ~§09é(to)§095(t0)) d Ptet
o ' 1 .
EE)C, (8) + R(BIC ()L T (t) 5 t -t
L (e) = z(e)c! ()9 (e) ot ot (5.4.10)
=1 =1 ! ) e
and P(t), T(t) are given by
g(t)f;(t) =0 . 3 C(0B() =0 _ ;5 I(BE() =TI t 2t
2 2 2
(5.4.11)
Proof: Let us break x(t) into
x(t) = gl(t) +_§2(t) (5.4.12)
and x,(t), x,(t) are given by
%, (6) = A(D)x, () + B(B)u(e) 5 x,(t) =0 (5.4.13)
x,(t) = A(t)x,(£) + E(¢) ; ,§z(to) =_§(to) (5.4.14)

u(t) is of the form (5.4.6) and is F(t,U[0,t))-measurable; thereforelﬁl(t)

is F(t,U[0,t))-measurable. From (5.4.12), we deduce
x(t]t) = x, (£) + E{_}gz(t)IF(t,U[O,t)} . (5.4.15)

Let us define

n(t)
7,(0) = C(0)x, (6) 5 y,(t) = y(t) - y,(t) = C(E)x,(t) + [] . (5.4.16)

0
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Let Fz(t) = F(zﬂ(r),r e [0,t)). Since {zﬁs),zi(s)}gzo are F(t,U[0,t))-

measurable, then {zz(s)}:=0 is F(t,U[0,t))-measurable and so
Fz(t) C ¥(t,ul0,t)) . (5.4.17)

From (5.4.16) and (5.4.13), we have

t
y(t) = y,(t) + C(e) [ 9, (£, )B(1)u(r)dr (5.4.18)

t
o)

where u(t) is of the form (5.4.6). Equation (5.4.18) is an integral equa-

tion. By the Lipschitz assumption, equation (5.4.18) can be solved by

| 161

successive approximations to yield a unique y € Cm[O,T Setting

iﬁo)(t) z 0 and

O <t>+C(t>ft (6,088 (,m_y " yar
z X’Z N . QA » /22 _@ ’ Ty

¢}

Il

te [0,T] 3 v=1,2, ... . (5.4.19)

Inductively, {va)(s)}:=o is Fz(t)—measurable for v=1, 2, ...; and so
iy(s)i= lim.X(V)(S)};=O is also Fz(t)—measurable, and
e

Fz(t) D F(t,U[0,t)) . (5.4.20)
Combining (5.4.17) and (5.4.20), we have

F2(t) = F(t,0[0,t)) . (5.4.21)
Equation (5.4.15) becomes

x(elt) = %, (0) + E{_}iz(t)in(t)} . (5.4.22)

Now consider the systems:
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_igl(t) = _&(t)zsl(t) + B(t)u(t) ; -’El(to) =0

8 (5.4.23)
31 (6) = C(e)x, (£)
. %, () = A(t)x,(t) + E(t) x,(e ) = x(t ) G HI)
Sy (5.4.24)
Q(t)gc_z(t) + n(t)
¥,(t) =

gz(t)gc_z(t)

Apply obserzvers theory to the deterministic system Si and stochastic

systems S; (see chapter 4, sections 4.2, 4.3). In this manner we prove

the theorem easily. For detail procedures the reader is referred to theorem
5.2.1, where we have proved the discrete analog in great details,

5.5 Stochastic Control of Continuous Linear Systems with Quadratic Criteria

. . i c
We consider the problem of controlling the continuous linear system 83
with quadratic criteria

T

3% = E{x' (T)E x(T) + J X' (OW(E)x(t) + u' (OM(Bu(t)dd  (5.5.1)
t
O

with F 2 0, W(t) 2 0 and M(t) > 0. We are to find a control of the form
(5.4.4) and (5.4.5) such that (5.5.1) is minimized subject to (5.4.1).

For any control of the form (5.4.4) and (5.4.5) we have from lemma
2.2.6 that

T

) = E{E{gg' (T)F §(T)|F(T,U[O,T])}+J E{x' (t)ﬂ(t)g{_(t)+u'(t)_I:{__(t)g(t)l

t
o

F(t,U[O,t))}dt}




~164-

: S LI :
= E{"(TIT)E R(T:T)+: &' (7 e)H(e)x(e ) +u' (e)M(e)u(t)de}
‘t
¢T
+er{F D(TIT)+! W(E)E(e)de} (5.5.2)
‘t
Q

where L(t), t 2 to’ is given by (5.4.8). We note from (5.4.8) that Z(t)
is independent of the control function; thus to minimize (5.5.1) is equiva-

lent to minimizing

T
3 (u) = E{g'(TfT)_E_g(T}TH{ 2 (eledH(E)R(ele)+u' (o)M(E)u(e)de} . (5.5.3)

‘t
(o]

From (5.4.7), we can easily derive the differential equation for g(tlt):
2(el0) = AR D+, (D, ()L (D)€ () R(e] £)=x(£)47; ()8, (£)E(E)
+L_i<t)_q(t>+§(t)_g(t) (5.5.4)

with_éz(t) = QQ(t) +'g2(t)§(t), and x(t), t 2 tys is a diffusion process

given by (5.4.1). We have now a stochastic control problem: Find a control

lay of the form (5.4.4) and (5.4.5), such that the cost (5.5.3) is minimized

subject to the constraints (5.5.4), (5.4.1).

Lemma 5.5.1: The control law

wie) = M B (E)R(E)R(E] ) (5.5.5)

“R(£) = A" ()K(E)HKR(E)A(E)-K(E)B(EDM T (£)B' (O)K(E)HH(E) § K(T) = E
; (5.5.6)
| is the optimal law for the above stochastic control problem, i}e., if

gé(t) is a control of the form (5.4.4) and (5.4.5), then

JC'(}_{*) : JC' (}—1.0) . (5.5.7)




-165-

The optimal cost-to-go is

1

T
# % * * y % *
E{ '(I|T)F _fg‘('r}tm[ £ EIDHE (I)4u (DN Y (2)ds
' 4
t

¢, A
Jo ' (E,8)

£ (ele) = 2}

T

1

P | Z , # g 2] b 1] *'
SR | (108, (ORNC (DT, ()

t

+Ly (DML ' (1)K(r)de : (5.5.8)

Procf: As in the discrete analog, we shall make use of the Optimality
Criterion (theorem 2.4.4) to prove the lemma. Let us define for all

(t,2) ¢ [0,T] x R™:

T k. * * )
C(t,%) = ’?«:'K(t)i-%tr{l (V, (t)C. (T)R(T)CL(TIV, " (t)+L, (1)Q(T)L, ' (1))K(1)dx;
BT RSVETER) et et RS 21 1 o
(5.5.9)
where K(t) satisfies (5.5.6). From (5.5.8) and (5.5.9), we have
f
C(T,8) = 8'F & . (5.5.10)
b
v Let U[0,t) be an arbitrary control function and denote
£ = E{x(t)|F(t,U[0,t))} = &(t|t) . (5.5.11)

*
Let u (t) be given by (5.5.5) with &(t|t) replaced by %. Denote the dif-
ferential generator of _)_“{_(tlt) by S,u(-), we have from (5.5.4), (5.5.5),

(5.5.6):

B{S _#(G(£,2))+2 H(E)ku ' (DM(E)U" (£) |F(E,U0,))}

v

er{ (¥, (£)C, (DR(E)C) ()T, (£)+L7 (D)Q(EILY (DK (E) H22"A' (D)K(£) %+

|

o

z_u_"‘v (£)B' (£)R(E)ZHR'W (L) tu ' (t)_bi('t);(t)

er{ (7, (£)C) ()R(E)C) ()T (£)+L7 (DQ(OL " (EK(D) -2 R(DR . (5.5.12)
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Combining (5.5.9) and (5.5.12) we have
% ,
Ct(t,_}f:_)+E{S,u*(C(t,3)+§'ﬂ(t)§+_\._x_ "Ce)MCE)u(e) |F(e,U0,63)} = 0 . (5.5.13)

Let g?(t) be any F(t,U[0,t))-measurable function, we have from (5.5.4),

(5.5.5) and (5.5.6)
¢ P At A 0/ (o]
E{£ o(C(t,R)+R W (L) Zru (e)M(e)u” (t) [F(t,U[0,£))]
= tr{ (KZ(t)Qz(t)B,(t)_Qé(t)y;' (t)+;:_"l‘<f;}g(t>;§' (£))K(E) -2 K(£)R(E)
F ()-u" (£)"M(E) (2 (B)-u" (£)) . (5.5.14)

Since M(t) > 0, (5.5.13) and (5.5.14) imply

O
]

0, (£, D4ELL 5 (C(e, 2R H(E) 2+ ' (IM(D)w (£) [F(£,0[0,8))}

1

C, (£, R)+E{SL o (C(t,£))+2"H(t)&hu”" (£IM(e)u®(£) [F(e,UL0,8))} . (5.5.15)

The lemma follows from (5.5.10), (5.5.15), (5.5.9) and the Optimality
Criterion (theorem 2.4.4).
From lemma 5.5.1 and equation (5.3.2). we have easily the following:

Theorem 5.5.2: The control law{gé(t) given by (5.5.5) and (5.5.6) is the

optimal control law which min.imizes the cost (5.5.1) subject to the con-
straints (5.4.1), (5.4.4) and (5.4.5). The optimal cost=to-go can be ex-

pressed as

. T J‘ . , _=v¢
Jo(6,%) = £'K(O)%+tr F _Z,(T)+J [W(DZ ()Y, ()€, (DR(DIC) (1Y, (DK (1)
. ,
[}

+L7 (DQ(OL; (DK (D) Jdt (5.5.16)
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% #
where E(1), yé(r), L{(r) are given by (5.4.8) to (5.4.10), and K(t) is
given by (5.5.6).
The structure of the optimal control system for Sg is described in

Figure 5.3, where we have decomposed the control law into
¥ % % \
u () = u () + u,(t) (5.5.17)
%
gl(t) is the pure feedback from the noise-free observation:
* -1, . *
u, (t) = -M "(£)B' (£)R(t) ¥, (t)y, (t) (5.5.18)
and E;(t) is a feedback after compensation:
wy(t) = =M (B (DK(DR(Dz(E) . (5.5.19)

In the special case when gz(t) = 0, i.e., all observation is noisy, we
have the usual separation results due to Wonham [27].

The general results can be applied to the case where we have time-
correlated observation noise.

Consider the system Sg described by (4.5.52), the statistical law of
underlying certainties are given by (4.5.53) and (4.5.34). From these
assumptions we can form the augmented system S: given by (4.5.55)-

(4.5.57). Let us define

a W) ¢ 0 . [E 0
Wiy =< s Fr= L0 : (5.4.20)
o 0 o . 0

We form the augmented cost

T
J§<3)=E{3<_a'<u:)ga§a<rr>+f (O (O (O+u' (OM(Du(t)de}) . (5.4.21)

t
o
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The augmented control problem is to find a control of the form (5.4.4),
(5.4.5) which will minimize (5.4.21) subject to the constraint (4.3.53).
Note that the solution for the augmented control problem is the same solu-
tion for the original control problem where we are to find control of
form (5.4.4), (5.4.5) so as to minimize (5.5.1) subject to the dynamical
system

Apply theorem 5.5.2 to the augmented control problem, we have the

optimal control law given by
ue) = - B (0K (023 (e] ©) (5.4.22)

£ (t) = 4% (0K (O (A ()-8 (OB (O T (DB (EF O+ ()

k*(m = @ (5.4.23)
and_g?(t!t) the conditional mean of g?(t), and is generated via a minimal
order optimum observer-estimator (see theorem 5.4.1).

Lemma 5.5.3: The solution of (5.4.23) is

N R
K7 () =f... " .. (5.4.24)
[
with K(t) satisfying (5.5.6).
Proof: Partition gé(t) into
. K1 () Ky (0
) =1 ... ... | (5.4.25)
Ry1(8) ; Kpp(®)

(5.4.23) gives:
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“'l'éll(t) = _r}.'(t)ﬁll(t)tl_{n(t)&(t)z&ll(t)ﬁ(t)}fl(t)g'(t)ﬁll(t)+jg_(t) ;
K (M =E
(5.4.26) _: e N -1, ., o
£,(6) = AT (DK, (94, (OR(O-K, | (DBON OB (0K, (0
R,M =20
Ko, (£) = E' (DK, (0)4K, o ()A(E) K, (D)B(EOM T ()B(K , (£)
Kyp(M =0
_.K_ZJ_(t} = -'IS‘]'.Z(C)
Comparing with (5.5.6), we see that
K, (0 = K@) . (5.4.27)

From the second equation of (5.4.26), we deduce
Eiz(t) =0 (5.4.28)
substituting (5.4.28) into the third equation of (5.4.26) and then we have
.Kzz(t) =0 . (5.4.29)

Combining (5.4.25) to (5.4.28), we have (5.4.24).
Using lemma 5.5.3, theorem 5.5.2 and equation (5.4.22), we have the

results:

Theorem 5.5.4: The control law

uie) = (B (DRDR(E]E) (5.4.30)

with K(t) satisfying (5.5.6) and
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&(efe) = [T 2 0I% (t]t) = E{x(t) |F(t,u"[0,£]) (5.4.31)

is the optimal control law of the form (5.4.4), (5.4.5) which minimizes

(5.5.1) subject to the dynamical constraints ég, (4.5.28). (See Fig. 5.4.)

5.6 General Discussions

In this chapter, we considered the problem of controlling a linear
system with quadratic criteria under the assumptions that

1) System dynamics are known,

2) Statistical laws of underlying uncertainties are known.
It has been shown that under fairly general assumptions on the noise
structures, the optimal control strategy can be split into two distinct
procedures:

1) Find the conditional mean estimates of the current state

2) optimally feedback as if the conditional mean estimate

of the current state is the true state of the system.

[32]

This result is generally referred to as Separation Theorem or Certainty-

[43]

equivalence principle. Theorem 5.3.2 includes as special case the re-

[56] [27]

sults obtained by Joseph and Tou, Gunckel and Franklin; and theorem

5.5.1 generalized that of Wonham's.[27]

In the following, we shall discuss
some further extensions of the research related to this chapter.

(A) Different Cost Criteria

In this chapter, we have considered exclusively quadratic criteria.

The first reason for doing this is motivated by the perturbation guidance

[43]

approach to many guidance control problem, where we try to keep a

stochastic system on a precomputid nominal trajectory. Such an approach

will naturally lead to the problem of controlling a time-varying linear
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system with quadratic criteria. There is also the reason that control
with quadratic criteria is one special case where we can derive explicit

results.

[59]

The approach taken in this chapter follows that of Streibel in

[32]

the discrete case, and that of Wonham in the continuous version.

Theoretically, we can easily extend sections 5.3 and 5.5 to more general
situations where the cost criteria is not necessary quadratic. The main
difficulty that we shall face is the existence problem, which is a mathe-
matical rather than conceptual issue. In general, we shall have to formu-
late and solve a new stochastic control problem where the process being
controlled is the "estimated'" process %(t|t), rather than the process x(t).

! [32]

a
The interested readers are referred to Streibel[s’ and Wonham for de-
tail discussions.

(B) Terminal Time N -+ «(T - =)

In the discrete case, let us define K(k,N;F) as:
K(,0GE) = A' (k) (R(k+L, N3 F) =K (kt1, N3 F) B(k) (M(K)+B' (k) K (k+1,N;F)B(k))
B' (K)K(k+1,N;E)A(K)+HW (k) ; K(N,N;F) = F . (5.6.1)

From the separation results, the overall control system can be studied
separately by first considering the minimal order optimum observer-
estimator, and then the feedback control. In the case when N - «, the
error covariance will remain bounded if and only if the system 82 is de-
tectable (see chapter 3). Thus detectability is necessary in order we
can reasonably talk about controlling the system during an infinite time

span. Next, we have to consider under what appropriate conditions the

P
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feedback gain will remain bounded. We note that this is equivalent to
consider under what assumptions will K(k,N;F) remain bounded as N + e,

Comparing (5.6.1) with (2.5.15) where we replace
A(N-k+k ) — A'(k)
_Q. - _Ql(k)

WN-ktk ) — Q, (k)
(5.6.2)
M(N-ktk ) — R(k)

B(N-ktk ) — A'(K)D' (k)
R(¥-ktk_,N;F) — P(k,k_3E)

We can view K(k,N;F) as the minimal sequence with respect to a certain
solution set. This allows us to consider the asymptotic behavior of
K(k,N;F) as N » =, From section 4.6, we see that a necessary and suf-
ficient condition for 1im K(k,N;F) to remain bcunded and satisfy a steady-

N-+wo
state difference equation is that there exists some matrix‘g(k),

k= ..., -1, 0, 1, ... such that
_azji—j!
oz (L, 1] < ape (5.6.3)
where
1) = A00-BGM) 5 83,3 = AMEG-D...AG) . (5.6.4)

Note that (5.6.3) and (5.6.4) are equivalent to saying that there exists

G(k) such that if we use the control
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u(k) = ~-G(k)x(k) . (5.6.5)

The resulting system
x(k + 1) = (A(k) - B(K)G(k))Ix(k) + £(k) (5.6.6)

is uniformly asymptotically stable. We shall call such a system

stabilizable. Thus detectability and stabilizability are necessary and

sufficient conditions which allow us to consider control of discrete
linear system over an infinite time span.
In the continuous time case, let us define K(t,T;F) as the solution

of
-K(t,T;F) = _é._"(t)g_(t,T;_E)+§(t,T;,E)_é(t)-g_(t,T;E)g(t)gfl(t)g'(t)'
K(t,T;F)4W(t) 3  K(t,T;F) = F . (5.6.7)

In order that we can consider the problem of controlling the continuous
linear system sg during an infinite time span, first we have to require
that the error covariance will remain bounded as T > «. A sufficient con-
dition for this is detectability of the system Sg. Next, we have to con-

sider the asymptotic behavior of K(t,T;F) as T » «», Comparing (5.6.7)

with (4.3.29) where we replace

A'(-t) — A(t)
0 — C,(v)
B'(-t) — _C_l(t)

(5.6.8)
M{-t) — Q(t) |

W(-t) — R(t)
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We have from theorem 4.4.4 that lim K(t,T;F) will remain bounded if and
Troe

only if there exists a G(t) such that (A(t) - B(t)G(t)) is exponentially

stable. This is equivalent to the condition that there exists a feedback

control

u(t) = -G(t)x(t) (5.6.9)

such that the resulting system

x(t) = (A(t) - B(t)G(t))x(t) + E(t) (5.6.10)

will be uniformly asymptotically stable. We shall call such a system
stabilizable. Therefore, in the continuous case, detectability and
stabilizability are sufficient conditions which allow us to consider comn-
trol of continuous linear system over an infinite time span.

With the assumptions on detectability and stabilizability, the asymp-

totic optimal cost rate is (see (5.3.18))

N-1
lim —5— J.(k,%) = lim —=— tr Y (A(1) - L(A+LKEHL) + H(LZ())
I AR N -k CLs TS T
oo N —
* (5.6.11)
in the discrete case, and (see (5.4.16))
1 (T % %
lim Er*'J (t,%) = llm = tr | [W(T)Z(T)+V, (t)C, (T)R(TIC! (t)V, ' (T)K(T)
o T- Tom T i 2- =2 2+ %2

Ly (DQL; (DK 1dr  (5.6.12)

in the continuous case. We note that the asymptotic optimal cost rate is
independent of X.
In the time invariant case, detectability and stabilizability imply

(see chapters 3 and 4)
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1) We have a time invariant, minimal order, optimum observer-
estimator which generates the conditional mean estimate
of the current state.

2) We have a constant feedback gain.

Therefore, the optimum control system is also time invariant where one

can write transfer functions for it.

The study on the stochastic stability is a topic for further research.

5.7 Perspective

The Separation Theorem, or certainty-equivalence principle, was

stated for discrete linear systems by Joseph and TOu,[Sé] Gunckel and

(58] (59]

Franklin, Streibel, and for continuous linear systems by

Wonham.[ZZ}’[27] The assumption was that the observation noise is non-

-

degenerate white Gaussian process.
The consideration in [56], [58], and [27] is that of quadratic

criteria and the approach is straightforward application of the Optimality

[22]

Criterion. The investigations by Streibel[59] and Wonham include more

general cost criteria; the approach takéen is that of first finding an
equation for the conditional mean of the current state, and then formulate
a new optimal control problem where the process being controlled is the
conditional mean process; finally, appeal to Optimality Criterion.

The approach taken in this chapter is that of Wonham's.[zz]. The cost
criteria we considered is quadratic, but one can easily extend the results
to more general cost criteria. The assumption that the observation noise
is a nondegenerate white Gaussian process was relaxed. It was proved
that Separation holds when the observation noise is one of the

following:

1) regular white Gaussian process




3

4)

5)
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degenerate white Gaussian process

totally singular situation (i.e., noise-free observation)
colored noise (i.e., sequentially correlated or time-
correlated)

summation of colored and white Gaussian noise.




CHAPTER VI
CONTROL OF DISCRETE TIME LINEAR SYSTEMS WITH

UNKNOWN GAIN PARAMETERS

6.1 Introduction

We have considered the control of linear systems with unknown dynamics
in the last chapter. Now we shall relax scme of the assumptions that all
dynamics are known. In many practical control problems, we are confronted
with the problem of controlling an unknown linear system. We may have a
crude idea about the dimension of the system but the zero and pole loca-

tions may not be fully known. In this chapter we shall consider linear

systems whose poles are known but whose zeroes are unknown. We shall

generalize this to the case of a dynamical system in which the gain vector
is uﬁknown. Admittedly, the situation in which we are to control a linear
system with unknown gain is rare; however, this research effort is neces-
sary and of importance in guiding our way to the problems of controlling
an unknown linear dynamical system.
The structure of this chapter is as follows. In section 6.2, we

clearly state the problem under investigation.. In section 6.3 we formu-
late the control problem and state the solution . The approach taken is

that of Open-Loop Feedback Optimal (0.L.F.0.) control (see section 6.2).

Using the Discrete Matrix Minimum Principle, we derive the O0.L.F.0. con-
trol sequence in section 6.4. The existence and uniqueness of 0.L.F.O.
control is studied in detail in section 6.5, and the asymptotic conver-
gence properties of the overall system in section 6.6. Section 6.7 is

devoted to the discussion of approaches and of the results. Detailed

references are given in section 6.8.
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Theoretical results derived in this chapter will be applied to the
control of third order linear systems with unknown gain. The computer
simulation results and discussions will be treated in the next chapter.

6.2 Problem Statement

Let us consider the discrete linear system

x(k + 1) = A(k)x(k) + b(k)u(k) + £(k)
g: (6.2.1)
y(k) = c(k)x(k) + n(k) .
where x(k), &(k) € Rn,'x(k), n(k) € R", A(k) is a known nxn matrix, C(k)

is a known mxn matrix, and u(k) is a scalar control. We assume that the

"gain' vector h(k) is unknown, but we know that it satisfies the difference

equation
b(k + 1) = G(k)b(k) + y(k) (6.2.2)

where G(k) is a known nxn matrix and y(k) € R". It is assumed that the
vectors {x(0), Eﬁp), E(k), n(k), y(k); k =0, 1, ...} are independent

Gaussian random vectors with known statistical laws:

x(0) ~ Gz »Z ) (6.2.3)
b(0) ~ Qb ,Z, ) (6.2.4)
£(k) v G(O,R(K)) | (6.2.5)
R (k) v G0,Q(k)) (6.2.6) :
(k) v G(O,N{k)) (6.2.7)

v
o

> 0, R(k) 2 0, Q(k) 2 0, N(k)
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Our objective is to find a control sequence {u(0), ..., u(¥ - 1):

such that the cost
N=1

Blx' (OE 20 + ) (' (OU(0EG) + h(u’ 0}
k=0

is minimized subject to (6.2.1) and (6.2.2). The expectation is taken

J(u) =

o =

over all underlying random quantities. We shall assume that F, and W(k)
are nonnegative definite symmetric matrices, and that h(k) is a positive
scalar for each k.

Depending on the kinds of admissible controls that we are allowed to

choose, different formulations of the stochastic optimization problem are
possible. In the most general setting, we may assume that the control is

a random function of the observed data, i.e., u(k) = p(u’F(U(O,k - 1),k)

is a conditional probability measure on the control space. If the condi-
tional probability measure is regular, then the control is said to be a
mixed control law. If the conditional probability measure is singular
(Radon measure), then the control is said to be a pure control law. Un-
fortunately, little can be done at this level of generality where we con-
sider both mixed and pure control laws.

In the next level of generality, we may confine ourselves to consider
only pure control laws to be admissible, i.e., the control at each instant
is a fixed function of the.observed data; in this case, the resulting con-
trol will be a random variable through its dependence on the random ob-
served data. This type restriction of admissible control leads to Bellman's
equation [25] whose solution may only be approximated.

Finally, we may restrict ourselves to consider only deterministic open

loop controls to be admissible; this egsentially means that we ignore the
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zero-mean random vectors and assume that the system will behave according
to its average behavior. Of course, this may not lead to a good control
system, especially whenever the covariances of the disturbances are large.
To compensate for this, we shall recompute the open-loop optimal deter-
ministic control after reevaluating the state of uncertainty of the system
at each and every step (time). A control sequence which is optimal in

this manner will be called the open-loop feedback optimal (0.L.F.O.)
[26],[63]

control. Another interpretation of 0.L.F.0. control is the
following. Assume that we are to control a system without knowing whether
any further observations will be available, or if available, we do not
know exactly when the data will be observed. Under this situation the

principle of optimality is difficult to apply. One logical, and in some

sense optimal approach, is to design an optimal control strategy based on

the total information available up to the present time, and continue to

use this strategy until new information becomes available ; then we

change our control strategy accordingly.
In this chapter, we shall look for the O.L.F.O. control. We shall
see that such a control sequence is, in some sense, “adaptive" in nature.

6.3 Formulation of Control Problem and its Solution

The present time is indexed by k. Let us assume that the control
% % % %
sequence U (0,k - 1) £ {u (0), u (1), ..., u (k - 1)} has been applied
to the system, and that the observation sequence

(0,k) & ~l)(i)}§%0 observed. We would like to find a

0% (0,k-1) {Xu*(o,i

o .
"future" control sequence U (k,N - 1) & {u(k), ..., u(N - 1)} so as to

- minimize the future cost (cost to go) conditioned on the total available
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information at the present time. Let us denote the s-algebra generated

by the observed data Y {0,k) as F(k,UA(O,k - 1)); the symbol

U*(0,k-1)
U"(O,k - 1) is used to denote that the data is really dependent on the

past control history. Our aim now is to find the control sequence

U(k,N - 1) such that the cost to go |

N-1 !
J(UGN-1)3U7 (0, k-1) k) & 2 B{x' (DE 3<_<N>+Z§' (DG xG) [ F&,U7(0,k-1))}
j=k
N-1
+2 ) i’ (6.3.1)
j=k

is minimized subject to the constraints (6.2.1) and (6.2.2). The cost has

the simple form (6.3.1) because the future control sequence U(k,N - 1) is

assumed to be deterministic. (If the future controls were assumed to de-

pend on observed data, we could not take the last term of (6.3.1) outside
the expectation operation.) It is now possible to formulate the problem
so that deterministic optimization techniques can be applied.

Let us define for j z k,

2G5 k,U7(0,k-1)) & E{x(3) |F(k,U"(0,k-1)} (6.3.2)
B(3la,0" (0,k-1)) & E{b(§) |F(k,U"(0,k-1))) (6.3.3)
. * A o .”” * | .
e (3]k,U7(0,k-1)) & &(3|k,U"(0,k-1)) - x(3) (6.3.4)
x ~ *
gb(jik,u (0,k-1)) 2 6(3|k,U (0,k-1)) - b(3) (6.3.5)

* *
We note that &(j|k,U (0,k - 1)) is F(k,U (0,k - 1))-measurable if j 2 Kk,

so for j 2 k, we have
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E{x' GOM x() |FG,U7(0,k-1))) = 245 ]%,07 (0,k-1))4 2(5|k,07 (0,k-1)) +
E(e/(3 ]k, 0" (0,k-1)M e (3 ]k,U"(0,k-1)) [F(k, 0" (0,k-1))}  (6.3.6)

where M is an arbitrary nxn matrix. If we define the state-error second-

moment matrix

* % % %
L (3%, U7 (0,k-1)) & Efe, (3]k,U"(0,k-1))e; (5]k,U"(0,k-1)) |F(k,U (0,k-1))}
(6.3.7)
then using (6.3.6) and (6.3.7), the conditional cost (6.5.1) can be written

as follows

J(UCk,N-1) 30" (0,k-1),k) = %Qg'(N]k,U*(O,krl))E.g(le,U*(O,k—l))

N-1

> tr £ 2 0k, 07 (0,k-1)) +%Z (&' Gk, U7 (0,k-1)HE)xG [k,U7(0,k-1)) +
j=k

er WL Gk,07(0,k-1)) + h(§)u’(4)} (6.3.8)

To complete the formulation, we shall have to derive dynamical equations
% %
satisfied by £(j|k,U (0,k-1)) and gx(jlk,u (0,k-1)).
Since all the noise sequences are assumed to be uncorrelated and

white, we have (see chapter 2, section 2.3)

o %
E{£(3)|F(k,U (0,k-1))} = 0 3 E{y(§) |F(k,U (0,k-1))} =0 , j 2k
(6.3.9)
The admissible control is assumed to be deterministic; hence, (6.2.1),

(6.2.3) and (6.3.9) imply that, for j 2 k,

2+ ]k, U (0,k-1)) = ARGk, U (0,k=1)) + B |k, U7 (0,k-1))u(§)

(6.3.10)
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b(j + llk,U*(O,k - 1)) =_§<j)§(j|k,u*(o,k - 1)) (6.3.11)

k)

with initial condition (at the present time j

£(k|k,U7(0,k-1)) = E{x(k) [F(k,U0"(0,k-1))}  ;

(6.3.12)

Bk|k,U"(0,k-1)) = E{b(k) |F(k,U" (0,k-1))}
From equations (6.3.2) to (6.3.5), (6.2.1), (6.2.2), (6.3.10), and (6.3.11),

we obtain the difference equation for the error vectors for j 2 k:

e, G+, U (0,k-1)]  [AG) [ uI]fe, Glku"©0,k-1)] [EG)
. =]... cos oo -1 ... (6.3.13)
e, G+1k, U7 (0,k-10) Lo 1 e Jle,Gleu ok-10) Ly

The initial error at j = k only depends on {£(i), y(i)}, i £ k - 1, and

v

{n(i)}, 1 £ k, and so it is independent of {£(i), y(i)}, j 2 k. Also,
since all noises are uncorrelated, zero mean, and white Gaussian, (6.2.6)

and (6.2.7) imply that

E{£(3)E" () |k, U (0,k-1))}

R(3) ;
(6.3.14)
E(y (1)y' () |F(k, U (0,k-1))}

N(3)

If we define the second-order moment matrix (for j 2 k)
L L

e Glu oKDy |
| [e! (31,07 (0,k-1)) e (3], U7 (0,k-1)) ]

. |
Z(jlk, 0 (0,k-1)) = E

% »
e, (3]k,U" (0,k-1)) )

1
i

|F(k, U (0,k-1)) (6.3.15)
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Equations (6.3.13), (6.3.14) and the independence of initial error
%
(j = k) and of the future noise sequence imply that Ejjlk,U (0,k-1)),

j 2 k, is generated by (see chapter 2, section 2.3)

£GHL R, U (0,k-1)) = AG,uGIG KU (0,k-1)A" (5,u(§)) + R()

- (6.3.16)
where
AG) D w@dI] R P Q]
AGG,u(G)) & ... oo | s R@ AL .l . (6.3.17)
0 I &) 0 N@)

The initial condition is given by

o

Eév(k|k,U*(0,k-l))
% X b * *
Z(k[k,U(0,k-1)) = E o le) (k[k,U7(0,k-1)) e/ (k[k,U"(0,k-1)) ]
e, (k[k,U%(0,k-1)) o

IE(k,U" (0,k-1)) (6.3.18)

*
From (6.3.12) and (6.3.18), we see thatlg(klk,U (0,k-1)) and
%
.g(klk,U (0,k-1)) are the conditional means of x(k) and b(k), respectively,
% ,
while_é(klk,U (0,k-1)) is the conditional covariance matrix of the aug-

mented vector
% (k)
b (k)

These quantities can be generated by the following identification equations,

; %
(6.3.19)-(6.3.23), once the past control U (0,k-1) has been chosen:
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£(i+1 (141,07 (0,1))
* * ~ ~ *

= [L, -¥ (+1]1,U7(0,1))C(H+1) JA(L,u (1))e

B(i+1]i+1,0" (0, 1))

.g(ili,U*(O,i—l))

. +V (411,07 (0,1))y(+1) 3 i =10, 1, ..., k-1
~ *
b(i]i,U (0,i-1)

2(00,0%(0,-1) _g(o!orl x ~2_C'(0) (C(0)Z,_C' (0)+Q(0) ™ (C(0)x_~3(0))
b(0 0,U"(0,-1) 5(0[0) b,

(6.3.19)
where
CA+1) A[ci+1):0 ] : i=0,1, ..., k-1 (6.3.20)

-mn

% *
and yﬁ(i+l[i,U 0,i)), i =0, 1, ..., k = 1, is a solution of the following

equations:
2%(i+l|i,U*(O,i))(é(i+l)§(i|i,U*(0,i))§f(i+l)fg(i+l)) =_§(i|i,U*<0,i))§'(i+1)
; i=0,1, ..., k-1 (6.3.21)
~ * ~ * * ~ %* -
A(]1,U7(0,1)) = A(d,u (1))Z(1]i,U (0,i-1))A'(i,u (i)) + R(1)
i=0,1, .v., k-1 (6.3.22)

£(i41]141,07(0,1)) = A¢41,07¢0,1))-v" (i+1]4,07(0,0))EE+1A 1,07 (0,4))

i=0,1, «.o., k-1 (6.3.23)
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ex o ' € -1 \"l .
. 202, L (0 (C(OE, CT(0)+Q(0)) "C(O)E, .+ O
(0 0,U (0,-1 & z(0l0) =
8 Zy

Referring to chapter 3, section 3.3 we note that the identification

equations represent an optimum observer-estimator for the augmented

x@] O, x(4) £(1)
b(i+1) b(i) y (i)

system:

]

3 (6.3.24)
N x(1)
y(i) = C(i) + n(i)
b (i)
If either Q(4) » 0, i = 0, 1, ..., k = 1, or C(i+1)R(1)C' (i+l) > O,
» * %
i=0,1, «.., k= 1 (or both), the unique V (i+ili,Uu (0,i)) which
satisfies (6.3.21) to (6.3.23) is given by
_V_A(J'_+l]i,U2(O,i)) = _Z;(i}i,u"'(o,i))_é_' (i+1)e
5 - 9 - -
o [C(+1)A(E|1,U (0,k-1)E" (A+1)+Q(i+1) ] 1
i=0,1, ..., k=1 (6.3.25)

and the identification equations specify a Kalman filter for the aug-
mented system §.
In all cases, where the driving and/or observation noises may be

degenerate, the conditional covariance, gﬁk{k,U“(O,k—l)), given by (6.3.21)-

- (6.3.23) is unique; and the conditional mean
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2k |k, U" (0,k-1)

B (k|k,u”™(0,k-1)

is unique almost surely.(see chapter 3). Thus, we may assume that these
*
quantities are known if U (0,k - 1) has been chosen. We can then formu-

late the following deterministic control problem at the kth-step:

Open-Loop Control Problem (k £ § S N - 1):

Given: 2(i+L|K)" = ARG K + b(|K)u() (6.3.26)
B(3+1]Kk) = ()b (F k) (6.3.27)
ZGHL|K) = AGGLuGNEGKIA' (F,u(d)) + R@) (6.3.28)

with known initial conditions at j = k

2(k[0) = 20|k, U7 (0,k-1) 5 B(k|K) = Bk|k,0"(0,k-1))

-

Tk|k) = Z(k|k,U"(0,k-1)) . (6.3.29)

We are to find a deterministic control sequence U(k,N - 1) such that it

minimizes

J(U(k,N-1) ;U (0,k-1),k) = %{g' (NJK)E R(N|K) + tri{F s} +
N-1
Z &' GREGDRG K + tr{W(J)z(Jik)}+ h(j)u (3)} (6.3.30)
j=k

subject to the constraints (6.3.26) to (6.3.28), where the matrices F and

W(j) are defined by

TWe shall not explicitly stress the dependence on the past control history
U*(0,k-1); for this reason the symbol U*(0,k=1) shall be dropped without
causing any confusion.
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F O . W) 0
_ DG = (6.3.31)
00 0 O

For the above deterministic control problem, we shall denote its optimal con-

=F

trol sequence by u° (k,N-1) & {uo(jlk)}?;i, where the superscript o is used to

denote optimal for the open—loop control problem; the symbol uéijlk) is used

to indicate that the control is open-loop optimal conditioned on the obser-

vation up to the present time k.

The solution for the above deterministic optimal control problem is
given below; the detailed Jerivations will be carried out in section 6.4.

The optimal control sequence, Uo(k,N-l), is given by
. ! = - A ~0 ., -1
WGk = -G 04 GIORGEH0R Gl 17

23|k = lk)]
B2 GRRGHL K @ (3 ]k —ﬁ(jlk)_c_i_'(j-i-l)L... |
a° (k) a° (5| k)_l

—

(6.3.32)

wherelg(jlk), j=k+1, ..., N=-1, satisfies the matrix difference

equation
RGK) = @' G0 RGH =R G+L]K)EC G 1K) (G [0)48° G 0ORG+L]0)5° (3 1) 37
. ) ) F 0 ... 0
B 'GIRRGHKI@ Gl+D(Gi|k) 3 K®Wk) ={0 0 ... 0 (6.3.33)
o B

and for j =k, ..., N~1
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@Gl = AG-G R TG a G+

AG) 0 ... O

. 0 A(j)eg,, ... Alle
AG) = A OO (6.3.34)
g -A-(j)gln e s A_(j )gnn
DGR = B3 - dG+DR (3[04 (G+1) (6.3.35)
] |
- o Ba 1
AG-1S (e nGlog el
43) = ; e ¥ PG = et
A(-DSG)e | Ly (08" e,
22, (Gle, .
® (k) = ; (6.3.36)
T Gloe,
(6.3.37)

h(3k) = h(§) + er{z0 (508G}

The matrices g;(j|k),_§(j +1), j=k, k+1, ..., N-1, are given by

LG = 6 Gl WG § =k ey N= 1
(6.3.38)

o _ . %
Z (klk) = 2, (k|k,U (0,k-1))

8(3) = A"(HSG+HDAG) + W) j=ky oo, N-1 ;
(6.3.39)

“and the vector E?(jfk) satisfies

» € represent the natural basis in Rh.

TThe vectors e,, e,, ...
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BOGHLIK) = G(NB(IK) , 3=k, eeey N-1 5 BO(k|K) = B(k|k,UT(0,k-1)) .
(6.3.40)
To find the O0.L.F.0. control sequence, we have to solve the abuve
open loop control problem for k = 0, 1, ... . The 0.L.F.0. control

{“*(k)}g;é is then given by
u (k) = uO(k]k) k=0,1, ..., N-1 (6.3.41)

where uo(klk) is given by (6.3.32) to (6.3.40). The structure of the
0.L.F.0. control system is described by Figure 6.1. Though the equations
are complicated, the digital computer implementation of O0.L.F.0. control
sequence is actually straightforward. A flow chart description of the
O.L.F.0. control is given in Figures 6.2 and 6.3. 1In the following, we
shall outline the computational procedure to find the O0.L.F.O. contrel
sequence.
1. If k =0, y(0) is observed, and 2(0]0,U" (0,-1),
5(0]0,07(0,-1), £(0]0,U"(0,-1) are given by (6.3.19)
and (6.3.23). If k > 0, assume that U*(O,k—l) is
chosen and YU*(O,k—l)(O’k) is observed; compute
2(k|k, U7 (0,k-1), b(k|k,U (0,k-1), &ad
.E(klk,U*(O,k—l)) using the identification equations
(6.3.19) to (6.3.23).
2. compute @ (j|k), D(|K), B (3]k), h(j|k) for
j =k, k+1, ..., N~ 1 using equations (6.3.34)
to (6.3.40).
3. Compute K(k+1lik) using (6.3.33), and the 0.L.F.O.

control to be applied at step k is given by (6.3.41).
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4, Advance k -+ k + 1 and repeat 1 through 3 until
k =N- 1.

We note that the 0.L.F.0. control sequence U*(O,N - 1) is adaptive
in nature.

Before we go into the derivation of the 0.L.F.O. control, let us
first look into the solution carefully and discuss some of its implications.

In essence, we are forcing some sort of 'separation' in cur formula-
tion. The overall control problem is split into an identification and a

deterministic control problem. However, the effect of the identification

error will be taken into accourt in the deterministic control problem.

Thus, this does not correspond to pure separation as it is in the case of
stochastic control of linear system with known dynamics(chapter 5).
Let us first look into the identification equations (6.3.19)-(6.3.23).

Suppose that Q(k) > 0. If u(i) = O, then from (6.3.21), we have
%
v, (+1[1,0(0,1))

y%(i+lli,U(O,i)) = s (6.3.42)
0

and so (£.3.19) implies
b(i+1]i+1,0(0,1)) = G(i)b(i]i,U(0,i-1)) : (6.3.43)

Therefore, a nonzero input is necessary to identify the gain parameter

vector b(k). From the equation (6.2.1), we see that if u(i) is very large,

then for the most part the value of x(i + 1) will be due to b(k)u(k),

and so the observation y(k) will contain a large amount of information

about the gain parameter b(k). Therefore, we would expect that large input
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magnitudes will be helpful for the identification of b(k). For a control
sequence {u(k)}i;é, if its total energy is high, we would expect such
control sequence to be useful for identification purpose. But large con-
trol energy will also give rise to a high cost (6.3.1). From the control
point of view, we would like to use just enough control energy to regu-

late the state of the system. In general, there is a conflict between

identification and control, and a reasonable control sequence should

appropriately distribute its total energy to identify and/or control of

the system §.

Let us consider (6.3.32)-(6.3.33). Comparing with the Levis'[75]
results, we note that uo(j!k) is the optimal control for the problem of

controlling the system S

k:
2°(3+1]K)
S0 xG+o = A@zGI0 + BGIouGIo 5 zGalo & L.
) % (§+1]k
(6.3.44)
with the cost criteriap
N-1
I -2l 3‘“"‘)*2{3““‘)-@““‘)3(1|k>+ﬁ<j [ (428" (0D k) }
ok (6.3.45)

Therefore we can visualize h(j|k) as the modified relative weighting on

the control. From (6.3.31), we note that h(j|k) relates in a direct

manner with zg(j{k). In a statistical sense, gb(k{k) reflects the level

of confidence we have about the estimate of b(k). The modification on the

relative weighting on the control is such that heavy weighting is put in

the control if we have little confidence on the estimate of b(k); therefore,
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the control action will be very cautious and control energy will not be
used unless it is very necessary.

Let us write

u*(kik) =

*

— (R ¢k ]K)+b° " (kKR (k+1]K)b° (e ]1)) 1B (kKR (k1 [ K) @ (k|K)
1 o0&k

o‘ -

oo - B R GHLK)E (kK)) T R (k1K)
Lo @ oLk
0 0 "2° (k| k)
O &l |... ]+ lw)a’ (k1) : (6.3.46)
- 0 1L a° (kk)
We shall call the row vector (1xn)
) y
$0) & = (RCk[0+°" (e [IOR (e kDB (e [k)) 1B (k1) B (kb [ k) @ (k| k)
- 0
the 0.L.F.0. adaptive gain. and the term (6.3.47)
WS Cklk) = ~{ (Blk[R) BT (kKR (et 1) B k1) 1B (k1)K (k1K) @ (ke [K)
0 £ (k[k)
e +h(k k) d! (k) (6.3.48)
P L a° (k[k)
the correction term.

Thus, the 0.L.F.0. control, (6.3.46), becones

w(k]k) = o(k|k)RO(k[K) + uC(k|k)

(6.3.49)
*
From (6.3.33)-(6.3.37), we note that Eb(klk,U (0,k-1)) affects indirectly

the O.L.F.0. adaptive gain and the correction term. The cross-error
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covariance, Exb(k!k,u*(o,k-l)), only affects the correction term; and if
Exb(kfk,U*(O,k—l)) is zero, then from (6.3.36) and (6.3.48) we conclude
uC(klk) = 0.

Assume that4§b(klk,U*(O,k-l)) = 0, then from (6.3.33)-(6.3.37), we

have inductively

K@) . 0
K(klk) =|... or (6.3.50)
o . 0

where K(k) is given by (5.3.6), and from (6.3.4/), the O.L.F.0. adaptive

gain is
8(K) = -(h(k) +b' (K + Db()) b (WK(k + DAK)  (6.3.51)

which is the truly optimum gain (see chapter 5, section 5.3). The assump-

) * % .
tion that gb(k[k,U (0,k-1)) = 0 also implies ﬁwh{k[k,u (0,k-1)) = 0, and

so the correction term is zero, and
u*(k{k) = -(h(k) +‘g'(k)&(k+l)p(k))-;gf(k)g(k+l)§(k)§?(k}k) . (6.3.52)

Thus we see that if for some k, the identification of b(k) is assured to

N S

be exact, i.e., the level of confidence on the estimated gain parameters

is very very high, then the O,L.F.O. control will act optimally and use

the obtained estimate of b(k) as if it were the true gain vector.

Finally, we would like to comment on the computational requirements
of the proposed scheme. The computation of the 0.L.F.0. control is done

on-line. At each time uni# k, we have to solve a one step 2n-vector dif-

J”f ference equation and a one step 2n x 2n matrix difference equation,
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(6.3.19)-(6.3.23); computing the parameters, (6.3.34)-(6.3.40), which in-
volve some one step computation, (6.3.34)-(6.3.37), and an N - k steps
n-vector difference equation (6.3.40) and an N - k steps nxn matrix dif-
ference equation (6.3.38); finally we have to solve an N - k step

(n + 1)n x (n + 1)n matrix difference equation (6.3.33). (Note that the
matrix difference equation (6.3.39) can be precomputed off~line.) The
0.L.F.0. control is then computed using (6.3.32). The total stnrage
capacity needed corresponds to the storage of the state and parameter
estimates (2n) and the error covariance matrix (2n % 2n). The capability
of computing the 0.L.F.0. control sequence in almost real time will de-
pend on the complexity of the system being considered and the computation
speed of the digital computer used to implement the O.L.F.0. control (see
also chapter 7).

6.4 Open-Loop Optimal Control

In this section, we shall derive the open-loop optimal control for
the deterministic control problem (6.3;26)—(6.3.31). The deterministic
formulation allows us to use the discrets matrix minimum principle
(theorem 2.4.1) to derive the set of necessary conditions for optimality.

Let us form the Hamiltonian for the deterministic control problem

(6.3.26)-(6.3.31) for j =k, k+ 1, ..., N - 1.

H, i = <p (3H1]K),AG)2G 045G [ u(3)-23 [0>+<p, (+1[1),6()bG [k)-

A

b(jlk)>+tr {@_(j L UGN ZGRA (F5u(d))+RG)-2( k)R] <j+1lk>}

+2ezG0, @G 0> + 2 0@ @) + 1 e EHEGI0 (6.4.D)
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- where Rx(jlk) is the costate vector associated with|§(jfk), Eb(j‘k) is

the costate vector associated withkﬁjjfk) and gjjlk) is the costate

matrix associated with Z(j|k). Use of the discrete matrix minimum prin-

ciple leads to the following relations

(a)

(b)

B

(c)

The canonical equations are:

22341k = ARG + B2 e G k) (6.4.2)
B2+l = (1B (3 [k) (6.4.3)
22GHK) = AG,uGINZCG A G,u°GIR) + RG) (6.4.4)
2 (31K = A'(Dp,(+1[K) + WX (k) (6.4.5)
PR = 8" Wpd L[k + p2G+1]K)u’ (5K (6.4.6)
PGl = 3 GG IR 4L AG, 0 GlI0) + 5 HG)  (6.4.7)

The boundary conditions are:
at time k: £°(k|k) = &(k|k,U" (0,k-1))35° (k|k) = B(k|k,U"(0,k-1)) ;
o * .
I (k|k) = Z(k|k,U (0,k-1)) (6.4.8)
P (o} . Q ety & 0,..
at time N: p_x(N]k) =F & (le);gb(N]k) =0 ;
o 1l -
P(Nk) = F (6.4.9)

In minimizing the Hamiltonian, we set (for j 2 k)

oH
du(d)
u® (j [k)
6G)Zy (3110BT, (G+1L[K) Hu® (3 k) + th(§)+er(22) (3 [RT; (+1[1) 1} = 0

= 57" (3]1p, (1 [y +2er{B]) GHLIAGZ G+

(6.4.10)
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where we have decomposed the costate matrix as

follows

o ,. . 50 .
PGl LR, GR)
P°Glk) = ... (6.4.11)
o ,. .« 5O .
By GlK) 1 By, (GiK)
From (6.4.7) and (6.4.9), we deduced that,g?(jlk) is nonnegative definite

since F and W(j) are assumed to be nonnegative definite. Therefore,

2
a"iz*’"lzj) = h(3) + 2 ex{Z  GE]; G + 1[0} > 0 (6.4.12)

u® (3 |k)

and so the conﬁrol uo(jlk) given by
CGR) = ~ThG)+2er GRS G410 17T B (3 [opg (341 k)+
2er (), (G+L[AM IS, (FI+6() 2y (5KIB], (3+1[k))} 5
jzk (6.4.13)

indeed minimizes the Hamiltonian.

From (6.4.4) we obtain equations for gib(jlk) and gg(j!k) for j 2 k:

I (LK) = A GlE' () + uo(jlk)_ﬁ_g(j k)G' (1) (6.4.14)
IpGHLK) = (GG () + N (6.4.15)

with initial conditions

0 oy * . 50 = * -
2o (klk) = 2 (k|k,U (0,k-1)) 5 2 (k[k) = Z, (k|k,U7(0,k-1)) . (6.4.16)
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From equations (6.4.7) and (6.4.9), we obtain the equations for

P, (3]K) and B, (3]K) for 3 =k, k+ 1, ..uy N:
B2 (Gl = AT(DES GH1[AG) + 3 H(G) (6.4.17)
22,1k = AT (DR, ARG + v (G RAT (1R, (Hlk)  (6.4.18)
B, (N[k) = ]ig ; RL( =0 . (6.4.19)

We note from (6.4.13) to (6.4.19), that the values of Eg(jlk) and
E;z(jlk) are irrelevant in computing the open-loop optimal control se-
quence uo(j[k). From (9/4.17), gzl(jlk) i independent of the observa-
tion and the control, and thus it can be precomputed. To emphasize this

fact, we define

s() 22 Glwzo 5 N (6.4.20)

v
w

v

o

and so S(j) satisfies the matrix difference equation
S(3) = A'(3)S(3 + L)A@G) + ¥W(H) ; S(N) =F . (6.4.21)

From (6.4.15), E;(jlk) only depends on the observationj thus it is

meaningful to define a '"modified control weighting':
BGl) 2 h@G) + e @lsSG + 1) >0 . (6.4.22)
Let us define

o . e
o 2212(3“‘)—8-1 , 2
¢ (Jlk) = € R . (6.4.23)
287, ke,

Then by using (6.3.34) to (6.3.36), (6.4.2), (6.3.13) to (6.4.23), we obtain

the set of matrix difference equations: j =%k, k+1, ..., N - 1.
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= (341]K) 2% (3] k) 22 (3+1]k)
@Gl ... | - PG IRT GBS Gk
Gl T ° (3 ]k) 4° (3+1]K)
(6.4.24)
B (K P, (3+1]K) 22331
=@ 'K + DGR ... (6.4.25)
G 4°(3+1]k) G x)

with boundary conditions at time N:

B, (M]k] F 0 072 i)
. 1= 10 o . (6.5.26)
+° (N ]k DU | A
2 0 9

From (6.4.24) to (6.4.26) and (6.4.8), (6.4.16), we can solve for

ﬁo(j[k) and‘g?(j+l’k). To 'bypass''the two point boundary

. Glk), 8°G 0,

value problem, we define the matrix_g(j]k) by

P, (3 [k 22 (3 ]k
= K(j|k) : (6.4.27)
$° (31K o’ (il

Substituting (6.4.27) into (6.4.24) and (6.4.25) we obtain
£GH] 2GR,

=@<jlk>

[+ B2 R G 0B (5 KRGHL|K) ]

° (3+1|k) o (G |k)
| | | (6.4.28)
(3417
[K@G|k) - DGk =®'GlwRkGH|] ... . (6.4.29)
N a” (341 k)
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1f [}y+‘Eé(j]k)ﬁ_l(j]k)ﬁ?'(j]k)g(j+l]k)] has an inverse, then (6.4.28),

(6.4.29) imply that
R 0-DG 0~ @ ' GTORGH [ [45° G 051G 0B GI0EGH IO @ Gl )

22331

]
lo

(6.4.30)
3]k

Since g?(j|k), g?(j]k) can be arbitrary, (6.4.30) implies that the matrix

difference equation holds:

R0 =@ ' GlK) @GO -RGE+LB° G 1) (R [0+8° (5 [OEG+1]K5° (3 1k 17

ul -

F 0 0
B2 GloRGH ) @ GG 5 K@k = o 0 0
o 0 0
¢ (6.4.31)
| o . [66] ‘
where we have used the matrix identity:
(I +AB) 1 =1 -AQ +B'AB' ; ABeM (6.4.32)
-n  — = -n —=>=r —-= =’ == nr )

i

The identity (6.4.32) is true provided one of the inverses exists. The

two point boundary problem is now transformed to the problem of finding a
solution of the matrix difference equation (6.4.31). The existence and
uniqueness of (6.4.24) to (6.4.26) and (6.4.8), (6.4.16) can be deduced
from the existence and uniqueness of.g(jlk), N 2 j 2 k, satisfying (6.4.31).

The optimal open-loop control is given by: (N -1 2 j 2 k)
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Py (341K 2l
CEl = -G B2 Gl L [
3° (3+1]k) o’ (3]

TG 00 G ORGH k) [I45° G0 E G 0B (G oRG+H k) 17

220 27 (3] k)
@Gl ... |-hrgloa gl ... (6.4.33)
- o (3]%) o (3 k)

Using (6.4.32) and also the matrix identity[66]

Y

I-AA+B F=3@+A" 6.4.34)

(6.4.33) becomes (N - 1 2 j 2 k)

Wl = ~mG 0+ GIORGH OB G 0T8T G RG] @ (k)

2°(3 ]k £ (31
-ﬁ_l(jlk)g_' G+l ... (6.4.35)
a®(3]k) 0° (5K

We have thus showzn that if the solution of (6.4.31) exists and unique,

the open-loop optimal control must be given by (6.4.35); and the 0.L.F.O.

control is given by (6.3.41). We shall consider the question of existence

and uniqueness of 0.L.F.0. control in the next section.

6.5 Existence and Uniqueness of 0.L.F.0. Control

From equation (6.3.41), we see that if the optimal open loop control
{uo(j}k)}?;i exists and is unique for all k =0, 1, ..., N - 1, we can

* i
conclude that the 0.L.F.0. control {u (k)}i=i exists and is unique. If the

solution of (6.3.33), i.e., the matrix gﬁjlk), exists and is unique, then

the control law given by (6.3.32) and (6.3.33) is the unique globally optimal
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f open loop control. Since,ﬁ(jlk) is an indefinite matrix, the solution of
(6.3.33),_g(j!k) (if it exists), is not necessary nonnegative definite; in
fact it is always indefinite. Therefore, we cannot a priori conclude that

Ch(yk) + é?'(j‘k)ﬁ(j+llk)§?(jlk) will always be nonzero, and thus deduce

that‘g(j]k) will remain bounded in finite time. In this section, we shall

establish the existence and uniqueness of the solution of (6.3.33), g(jﬁk),
for'the case where the terminal time is finite (N < «); this result will

then be used to prove the existence and uniqueness of the O. L. F. O. control.
Let us define
% (k)
0,. L0, 00, o,. . ~ 0,. 2
Lo (3]k) =<2 (G]K),H(GDR GlR>+20” GlR)<) ..o 1LAGH>+h(G ) (u (3 ]K))

0" (31 (6.5.1)

Lemma 6.5.1: If h(2|k) + §?'(£|k)g(%+1'k)§?(llk) is nonzero, % = j, j + 1,

., N - 1, then

Falay Gl pPanin 27 (5+1{K)
oG e =<| ... , KRGl ... - , KGHLK] ... >
(31K ° (3 ]k) 0° (3+1]k) 1° (341 k)
(6.5.2)

Proof: Using (6.3.32), (6.3.33), (6.3.35), and (6.5.1), we have

2° (5| LGl (PGl
Gl =<| ... |, Dbyl ... P cer | L@ "GIORGHKIB G K) -
a°Glk) °(3|K) ®Glky)

B0+ GIORGH KB G 1)) TG k) GG R0+5° (G RRG+L] k) -

IV § ~

2% (3 |%)
B2'GIRRGHI ® Glxw| ... |> | (6.5.3)
i 0% (3] k).
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By (6.4.34), (6.4.28), and (6.4.31), equation (6.5.3) becomes
| EELD) GO RG] K ' 2% (3+1 k)
LG lK) =< , (i) >~< , E(3+1]Kk) »
a°GlK) °Glrl  Le®G+lk) o (3+1 k)
(6.504)
Lemma 6.5.2: For'all'i =k, k+1, ..., N - 1 we have
N-1 N-1
er{E £ (N]k) +Z ﬂ(j)_z_xmk)} = tr{s(i)z, (1[k) +Z_ (8(3 + LR(3) +
3=t j=1
x(3]k)
, 4G+ D>+ uP(DSG + D, 3 (6.5.5)
, N -1, is an arbitrary control sequence and

where u(j), j = 1i, 1 + 1,
| %(3[K)
g;;ik)
is the resulting trajectory.
Proof: Using (6.3.28), we have (W(N) & F)
er(EGHDE, (L110) = er{a' (DEGHAGL GIRH@EGHE, G0+
ceey N =1 (6.5.6)

HGHDR(D+20(DAGHIAGDE , GO} 5 5 =1, 1+ 1,

By applying (6.3.28) repeatedly, (6.5.6) yields
3
trfo) (1, WG+ g, (3,12, (1 lk>+§ (95 (3, 4+H(3+1)
2=1

(6.5.7)

tr(ﬂ(j+1)§x(j+1[k))

8, (3,ADRA2u(0) 9] (3, HDUGHD S, (3, DAL, (8]0)+u” (98] (5,2+1)H(5+1)

0, Gy N}
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fFrom (6.3.19), we have for all j < N - 1 that

N-1
S) = 4L OFLE 6, (1,3 + ) 61 (L DEMIE, (-1,1) . (6.5.8)
2=

{ Summing (6.5.7) over j =i, i + 1, ..., N - 1, and using (6.5.8) and (6.3.36),
~ we obtain (6.5.5) after a fair amount of straightforward manipulation.
To describe the performance of the optimal open-loop control sequence,

. we shall introduce the notion of '"conditional open loop optimal cost to go."

Definition 6.5.3: The conditional open-loop optimal cost to go for the de-

terministic control problem, (6.3.26)-(6.3.31);

Jz!k(}_(i]k) A(i]K)) 2 min %— R' (V| K)F 2RO k)+erf £ (N]k)
u(j):j=i,...,N-1

N-1
£ D IR GOEMEG 0+ BEHLG 0 ()) (6.5.9)
j=1i

where‘g(ifk),lgﬁilk) satisfy the set of equations (6.3.26)-(6.3.28).

Note that J? From

x R".
ilk (2n)*(2n)
(6.3.28), we see that £(jlk) 20, =i, i+ 1, ..., N - 1, if and only if

(*,*) is defined as a function on M

Z(i]k) 2 0. Thus, from (6.5.9) we have
ngk(g,g) 20 ifrzo . (6.5.10)

By lemma 6.5.1 and lemma 6.5.2 we immediately deduce:

Theorem 6.5.4: TIf h(2|k) +‘E?'(llk)§(2+l|k)§?(£|k) is nonzero, % =i, i + 1,

++» N -1, then the conditional open-loop optimal cost to go has the closed

form
v ' N-1 2 21 ;
33 B = 2 trfz S(1) +Z SR} + 3 <[T] , K(i]k) [T]>
j=i 9— .g.
- (6.5.11)
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where
L Zp®
_Z_X = [}_n olzy. 5 }‘_I,Xb = [_En 3y O F : . (6.5.12)
0 L .,e
—_ —xb—m-

We shall now make use of (6.5.11) and (6.5.10) to establish the exis~-

tence, uniqueness and boundedness of K(j|k), j =k, k+ 1, ..., N - 1;

k = 0, l, L ) N - lo’
Lemma 6.5.5: Let G(j)B G'(j) £ B, for all1 B 20, j =%k, ..., N- 1. Then
we have h(i|k) + B°' GWRG+L[KB (i]k) > 0, § =k, ..., N - 1.
Proof: If F Z 0, then since h(N - 1) > 0, we have
BO-1]K) 45 (-1 R 10B° (8%-1[k) = h(¥-1)+tr (2, (8-1]K)E)
+° ' (N-1|k)F B°(N-1]|k) > 0 (6.5.13)

Now assume that h(&]k) + B'°(&|K)R(e+1]1)B°(2]k) > 0 for £ =4, i + 1, ...,

¥ -1 (k <1i). Consider the special case: R(j) =0, j =k, ., Nj; then,

by the induction hypothesis, theorem 6.5.4 and (6.5.10) imply that

Jz{k(ﬁ_(i—l[k) b (i-1k) = tr(ggci-llk)_g(i))+§'°(1-1|k)_fg<i|k>§°<i-1{k) 2 0
. (6.5.14)

where we have chosen

Zy (1-1[k)
Z(i-1'k) = oo
LG(i-1)Z, (3+1 Ik)

(Zp (1-1]k)

_g(i—l)gﬁ (i-1]k)

: g;(i-llk)g' (i-1)

v

P Ip(d-1]k)
DI (=16 (4-1)
(6.5.15)

D G- (-1]k)E8" (i-1




-211-
Eand since h(i - 1) > 0, we have from (6.3.37) that

BE-1]0)+5° ' (1-1] KK (1 [))B° (1-1]k) = h(1-1)+J;'k(_i_(i-1lk) 6% (i-1]k)) - 0
(6.5.16)

;Thus the lemma is proved by induction.

‘ We can now easily prove the existence and uniqueness of the solution of

(6.3.33), {E(jlk)}?;l];, k=0,1, ..., N = 1.

‘Theorem 6.5.6: (Existence and Uniqueness) Let B 2 G(j)B 6'(j), j =0, ...,

fN - 1 for all B 2 0. The solution of (6.3.33), {g(j]k)}?;t, exists, is

F unique and is bounded, (N < ), if‘gg(k[k), ﬁ?(k[k),_&(k), W(k), F N(k) and
5 h(k) are bounded, k = 0, 1, ..., N = 1.

5.25992: The equation (6.3.33) can be written as a set of two equations (see

j chapter 2, section 2.5)
KGR = (@ G0)-B°GRY G+1[k)) "R+ (@ Gl0)-B° (0¥, (3+1))

+§(j]k)+y(')(j+1)ﬁ(j}k)_\go(jﬂ[k) s K(m|k) = F ; 3§ =k,kt#l,...,N-1
k = 0,1,..-,N-l

(6.5.17)

VOGHK) = (G045 GIRRGH 0BG [0) 75 G IR GH ) @ (k)
(6.5.18)

-

From (6.3.38), (6.3.40) and the assumption on boundedness, we have that
b°(§|k) and h(j|k) is bounded for j =k, k + 1, ..., N =13k =0, 1, ...,
N -1. By lemma 6.5.5 yo(j+l|k) exists, is unique and is bounded. The

assertion follows from the linearity of (6.5.18) and the fact that N < =,
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Corollary 6.5.7: The optimal open-loop control, {uo(jik)}?;i, exists, is

unique and is bounded if the assumptions in Theorem 6.5.6 are satisfied;

bk * o *
furthermore, (kik,U (0,k-1)), Z(k]k,U" (0,k-1)), b(k|k,U (0,k-1)) are
bounded.

Theorem 6.5.8: Let B 2 G(j)B G'(j), j =0, 1, ..., N~-1, forall Bz 0

—

and A(k), R(k), N(k), Q(k), W(k), h(k), F are bounded, k=20, 1, ..., N~ 1;
then the 0.L.F.0. control, u*(k), k=0,1, ..., N~ 1, exists, is unique and
is bounded.
Proof: We shall use induction on k. When k = 0, x(0|0) and b(0]0) are
bounded almost surely; also £(0|0) is bounded; thus by corollary 6.5.7,
uO(O}O) exists, is unique and is bounded a.s. By (6.3.41), u*(O) exists,
is unique and is bounded. Assume the statement of the theorem is true .Jonr
k=0, ..., 23 £ < N - 1. By the assumptions and the induction hypothesis,
the identification equations, (6.3.19)--(6.3.23), imply that gﬁl+l[£+l,U*(0,2))
and b(i+1]i+1,U" (0,2)) are bounded a.s., and that g(z+1lz+1,u*(o,z)) is
bounded, thus corollary 6.5.7 implies that uo(2+ll£+l) exists, is unique
and is bounded a.s.; by (6.3.41) the assertion of the theorem holds for
W), k=0, 1, ..., 2+ 1.

One would like to extend the results to the infinite time case with
N - », TUnfortunately, this is seldomly possible. From (6.3.39), we note
that if we let N » », S(j) will remain bounded if and only if A(k) is ex-
ponentially stable; thus, the solution of (6.3.33), gﬁj)k), with N » « will
not be meaningful unless A(k) is asymptotically stable. In many cases of

interest, the system to be controlled is unstable. Therefore, we shall not

investigate the solution of (6.3.33) with N » «,
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6.6 Asymptotic Behavior of the Identifier

Ta this section, we shall study the asymptotic behavior of the identi-
fication equations. The results will allow us to consider the problem of

controlling the system § over an infinite time interval (N » =),

Definition 6.6.1: {(A(k), Qﬁk))}:=0 is said to be completely observable

of index v at k if the observation matrix

My Uev) = L7001 oi(k,k)C (e 1) 1 ees Dotk v - 208" (k + v - 1))
(6.6.1)

is of full rank n. {(é(k)lg(k))}:=0 is said to be uniformly completely

observable of index v if the pair is completely observable of index v for

all k =0, 1, ... .

Theorem 6.6.2: Let {(é(k),gﬁk))}:=o be uniformly completely ohservable of

index v, and suppose that A(k), G(k) are nonsingular, k =0, 1, ... . If
u(k) # 0, k=0, 1, ..., then {(A(k,u(k)),éjk)}:=o is uniformly completely
<

observable of index v', v' £ 2v.

Proof: By (6.3.17) and (6.3.20), we have

[C(k) + 0 )

Q(k+1)gA(k,k) ! C(k+1)u(k)

MR, g(ks2v) = : kti+l

| C(k+3) ¢, (k+i~1,k) Y, Clk+i)g, (ebj-1,0+1)u(R)g £2-1,Kk)

| : o=k b

| : k+2y-2

| Clkt2v-1) 9, (k+2v-2,k) . 37 Ck#2v-1) $, (k+2v-2,841)u(8) 9, (2~1,k)
’ © 4=k )

(6-6.2)
By assumption, the first mv rows of vectors contains at least n independent

vectors. Among the rows vectors C(k + v + j)iA(k + v+ 3j~1,k), let

i
i
|
i
|

i e s e
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! +v+ e (k+v+j- N v o+ +v+3-1,k
%j(l)(k v+ 5)g, (k F j - 1,k), %j(vj)(k+v Dk + v+ 3 ,k),
be the vj vectors which are independent of the row vectors:

C(k + vng(k + v -1,k), Ck +v - 1)QA(k + v,k)y .. Ck+ v+ 4 -1)

gA(k +v+3j-2,k), =1, ..., v - 1; where

gi(k + v+ 3)

Ck+v+3) = . (6.6.3)
E%(k + v + j)

k=0

is uniformly completely observable of index v, it follows that Vi # 0,

and cj(') is some permutation of {1, 2, ..., m}. Since {(A(k),C(k),

i=1, ..., v - 1, and that
m + vy + vy + ... Voo =@ . (6.6.4)
Assume that we have the dependence
vt+i-1

1 , s - N . . . < < 6.
Qp'<s)(k+v+3)QA(k+v+J 1,k) E _gi(J,s)§(k+1)gA(k+1 1,k); 1l Z>2s = vj (6.6.5)

J 1=0
where the only possible nonzero entries of g&(j,s), i=0, ..., v+3j -1, are

those corresponding to independent rows of C(k + i)gA(k +i-1,k), i =0,
ceey, V+ j - 1. If there exists no gi(j,s), i=0, ..., v+ 3j -1, which
bears the relation (6.6.5), then the (m(v + j - 1) + p(s))th row vector of
'gi’&(k,Zv) is independent of the first m(v + j - 1) row vectors. If there
exists_gi(j,s), i =0, ..., v+ j - 1 which gives the dependence (6.6.5),

then such a dependence is unique by construction. Now assume that the

(m(v + 3 - 1) + p(s))th row vector of Mi é(k,Zv) is dependent on the first
’

m(» + 3 - 1) row vectors, then we must also have the dependence




s
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kuti-1

Z _9_‘; . (s) (ktvt3 )QA(I,&\H'-']’l»9“"1)0(9»)96(1-1,1() =
L=k 3
vt+j-1 k+s-1

E gé(j,s) E Qﬁk+i)gA(k+i-1,1+l)u(£)gc(£-l,k) . (6.6.6)
i=1 L=k
Since.é(k)’is nonsingulpr, by (6.6.5) we have
r+j%1 k+v+j-1

Z Z o} (3,8 (eH) g, k-1, HD (D) g (0-1,1) = O (6.6.7)
i=0 L=k+i

where

¥, (1,3) = gfl(i)éfl(i +1) ... éfl(j) : i> 3 . (6.6.8)

Since {Qﬁ(k),g(k))}zzo is uniformly completely observable, the vector
s 1
C PO RN CIC FOIRREEE ROY (6.6.9)

cannot be the zero row vector, s =1, ..., vj. By assumption G(k) is
nonsingular, therefore (6.6.7) is true if and only if u(k + i) = 0, i = 0,

1, ..., j which is a contradiction. This result applies for s

l, ...’ \)j;
j=0,1, ..., v -1, Together with (6.6.4) and the remark made at the
beginning of the proof, we have that Mﬁ é(k,Zv) will have rank 2n if

u(k +1i) #0, i =0, 1, ..., v-1. The theorem follows from the assumption

that u(k) # 0, k =0, 1, ...

Corollary 6.6.3: Let A(k), G(k) be bounded and nonsingular. If

{(é(k)tg(k))}§=0 is uniformly completely observable of index v, the error
covariance matrix, Z(k|k,U(0,k-1)) which satisfies (6.3.21) to (6.3.23), will

remain bounded for all k = 0, 1, ... where u(k) is any bounded but nonzero

control for all k =0, 1, ...
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Lemma 6.6.4: Suppose that G(k) satisfies

G(K)B G'(k) < B BeM , B20 . (6.6.10)

nn

Let Y(k) £ 0, i.e., there is no driving noise in gain dynamics; then for

any control sequence, we have
_Z_‘b(k+1lk+1,U(0,k)) S g:_b(klk,u(o,k)) . (6.6.11)
Proof: From (6.3.23) and (6.3.21), since N(k) = 0, we have
. . :
_z_,o(k+1lk+1,U(o,k)) = _C_;_(k)_z_b(klk,U(O,k-l)_G_' (k)-[0:1 ]V (k+1]k,U(0,k))

0
(C(FL) B (k [k, U(0,K))E" (kL) +Q (1)) ! (k+1 |k, U (0, k) )[ "] (6.6.12)
I

I
*

where V (k+1|k,U(0,k)) satisfies (6.3.21)-(6.3.23), using (6.6.10), (6.6.11)

follows immediately from (6.6.12).

An immediate consequence of lemma 6.6.4 is that if (6.6.10) is true and

(k) = 0, then there exists §-b such that

' - = ! (6.
lim gb(k}k,U(o,k 1) =z, . (6.6.13)

koo
Note that (6.6.13) is true independent of the observability of {(A(k) ’—C-(k))}:=0'
In the following theorem, we shall give sufficient conditions under which
E'b = 0. |
Theorem 6.6.5: Let y(k) = 0, A(k), G(k) be bounded and nonsingular and

G(k) satisfies (6.6.10), k = 0, 1, ... . 1f { (A(k) ,Q(k))}:___o is uniformly
completely observable of index v and u(k) is any bounded but nonzero control

for k=0, 1, ..., then

lim g_b(klk,U(O,k -1))=0 . (6.6.14)

ko=
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Proof: Let € > 0 such that

LAY

|i;b(k+2v|k+zv,u(o,k+zv-1))- gb(k{k,U(o,k-l»ll € (6.6.15)

where ||°[[ is the spectral norm. Since Eb(klk,U(O,k-l)) 20, k=0,1,

.y (6.6.11) and (6.6.15) imply that we have the inequality
H_E.b(k‘fjlk-*j.U(O,k-rj-l) - ;_b(k+j-1|k+j-1,u(o,k+j-2)l| <e
J =1, 2, ceey 2V . (6.6.16)
;Using equation (6.6.12), we have
;e: > [l[_o_;;n]_\f‘(kﬁik+j-1,u(o,k+j-1)-(_f;(k+j)_5_(k+j-1|k+j—!1§,u(o,k+j-1))o
C' (k+j) +_g(k+j))yf'(k+j]k+j-1,u(o,k+j-1;)[£§]]] . (6.6.17)

fo corollary (6.6.3), C(k+j)A(k+j-1]|k+i~-1,UC0,k+§-1))C"' (k+j) + Q(k+j) can

~be uniformly bounded, so

| 07
ll(§(k+j)§(k+j-1ik+j-1,u(o,k+j-1))§xk+j)fg(k+j)1yf'(k+j[k+j-1,U<o,k+j-1))[;T] || =
; 1

I
; 1

; ll(Q(k+j)§(k+j-1]k+j-1,u(o,k+j-1)§xk+j)+g(k+j»?| o || (C(k+3) A (k+j-1|k+j-1,U0(0,k+j-D)
| 1 .

P —2'* .Q_

CC' (k) HQ(kH )V (ktj | k+5-1,U€0,k+5-1)) ...} ||

; L

| < /e A 6 () 4= 1,2, ey v (6.6.18)

| Gj(e) is continuous in e and Gj(e) >0ase~>0, j=1, ..., v. Using

(6.3.21), (6.6.18) can also be written as follows
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i 1C(k+3)A(k+3-1) (k+j=1]k+j=-1,U(0,k+j=2))G" (k+j-1)+u(k+j=-1)C (k+j)*

“xb
Zy (b3 =1[keri=1,U(0, kj-2 8" (k#3=1) | | £ 6, (e)
J=1, e, v (6.6.19)

*
Since V (k+j |k+3=1,U(0,k+3i-1)) is bounded for j = 1, ..., therefore

(6.6.17) and (6.3.21) imply that

]{[_g:_;_n]g*(kﬁ[k+j-1,U(o,k+j-1))_6_(k+j)A(k+j-1ik+j-1,u(o,k+j-1)) d 10 8y (e)

: ‘%H .

(6.6.20)

1
o
- |

I [_I_nlg]i*(k-fj | k+3-1,0(0,k+j=1))C(k+j) A (k+j=1]|k+j=1,U(0,k+j=1))

Fe

b3 Bz(a) (6.6.21)

where Bi(e) is continuous in €, Bi(e) +0ase~+>0,i=1, 2, ... . By using

(6.3.23), (6.6.20) and (6.6.21) and the assumption that G(k) is nonsingular,

the inequality (6.6.19) implies

sz(k+1|k+1,U(0,w)
[[1e@k+1 ¢ 0] IEEXG (6.6.22)
Lgb(k+l[k+lpu(0,k))ﬁ |
k+j-1
NG ), (k=1 k+1) JC(k+3) E QA(k+j-l,£+l)u(£)%(2-l,k+l)]
2=k+1 T
_Z_xb(k-i-l]k+l,U(0,k))
|| = fj(E) |
zb(k+1}k+1,u(o,k» : -

j= 2y, 35 eeey 2V (6.6.23)
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where fi(e) is continuous in €, fi(a) +Qas e~ 0, i =1, 2, ..., 2v.

Equations (6.6.22) and (6.6.23) imply

_Z_xb(k+1]k+1,U(0,k))
|| My g (k+1,2v) Il < £(e) (6.6.24)
-y
_z_b(k+1lk+1,U(o,k))
where £f(e) - 0 when € -~ 0 and is continuous in €. By theorem 6.6.2,

gﬁ é(k + 1,2v) is of full rank, so we have
llgxb(k+1]k+1,u(o,k>)[! £ 8" (e) 6'(e) 0 as e+ 0 (6.6.25)
|}_§_b(k+1|k+l,U(0,k))H 2 8" (e) §"(e) 0 as e~ 0 . (6.6.26)

Now the conclusion of the theorem follows from (6.6.13).
Theorem 6.6.5 can be extended to the case where u(k) is bounded but

nonzero control for all but a finite number of k's. Since Z(k|k,U(0,k-1)) 2 0,

(6.6.14) also implies

lim gxb(klk,U(o,k-ln -0 (6.6.27)

koo

if the conditions feor theorem 6.6.5 hold.

Let us consider an observable system 8, (6.2.1), the gain parameters

are assumed to be unknown and satisfy
b(k + 1) = G(k)b(k) (6.6.28)

with G(k) satisfying (6.6.10). Assume that we want to control the system S
over an interval N < «, 1In the beginning, the modified weighting on the

control is high, and thus in general, the control magnitude will be low at
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the beginning. Thus, the trajectory of the overall control system would
be pretty much the same as the input-free trajectory of the system 8. If
the matrix A(k) is exponentially stable, the true state of the system will

evolve toward zero by using negligibly small control magnitudes (even zero).

N-1
k=0

and identificaticn purposes. We would expect that the estimated parameters

The result is that little effort of the input, {u(k)} is spent for coatrol
will hardly converge to the true parameters, b(k). On the other hand if
A(k) is not exponentially stable, then the true state of the overall system
will diverge. This diverging phenomenon will be noticed by the identifier,
thus resulting in a high control magnitude because of (6.3.32). Since
little is initially known about the gain parameters, the high magnitude con-
trol will be utilized mainly for identification purposes. Therefore the
control will be kept bounded away fiom zero as long as exact identification
of b(k) has not been obtained. Using theorem 6.6.5, we predict that the
estimated parameters of b(k) will converge to the true gain parameters
before the control magnitude goes to zero.

Analytical studies of the convergence rate of the O0.L.F.0. system are

not yet available. From the above discussion, we may predict roughly that

the convergence-rate for unstable system will be relatively fast depending

on "how stable' the system is; and the convergence-rate for stable system

will be very slow.

For control over an infinite time period, see section 6.7(C) for de-
tailed discussions.

Finally, we shall discuss some interesting impliéétions of theorem

6.6.5, Consider an observable system 8, (6.2.1), with unknown gain
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parameters satisfying (6.6.28) and with G(k) satisfies (6.6.10). Let
Qk(gﬁk[k,ﬁﬂkik),Eb(k]k,U(O,k-l)) be any ad-hoc control law which is 'put"
after the identifier (see Figure 6.4) and with the following properties
(k 2 0):

IDEE NN R" x R® x M_ >R

2) .Qk(.’.‘.*ﬁ’_z.) #0, x¢ R, be R, LeM »X $0;Z #0

3) 8, (x,5,0) = =(h(k)+b' (K+LDB(K)) b (K(HDAME

X E Rp, be R

From condition 2, we see that Eb(k!k,U(O,k-l)) + 0 as k + » (6.6.14); and
so from condition 3, the ad-hoc control scheme will converge to the optimal
control strategy when the full dynamics become known. This indicates thar
the ad-hoc scheme Qk(g(k!k),ﬁﬂk!k),gb(klk,U(O,k—l)) can provide reasonable

simulation results.

6.7 General Discussion

In this chapter, we investigated the problem of identification and
control of discrete linear systems with unknown gain from the theoretical
standpoint. The control is open-loop feedback optimal. The implementation
of such a control (0.L.F.0. control) was described to some detéil. The
actual implementation for O0.L.F.0. control for third-order systems will be
discussed in more detail iﬁ chapter 7. As we shall see later, such a
proposed scheme appears to be computationally feasible and that the results
are reasonable and appealing. A deeper theoretical understanding of the
derived 0.L.F.0. control is possible grom the results in sections 6.4 and
6.5. The questions of existence, uﬁiqueness of O0.L.F.0. control are con-
sidered in great detail. The asymptotic behavior of such control systems

was treated in section 6.6; some of its extensions will be discussed later

in this section.
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(A) Discussion on Apnroaches

The problem of combining identification and control of linear system
with unknown gain have been considered by several people. Farison [60]
considered an ad-hoc procedure which basically assumes the separation be-
tween identification and control. Murphy [61] considered the approximate
effect of iteration between control and identification and he pre=-supposed
that the control was a pure feedback of the estimated states. Gorman and
Zaborszky [62] used a similar approach to that of Murphy and obtained a
suboptimal control which required the solution of a sequence of two point
boundary value problems. Essentially, [61] and [62] are approximately
Bellman's equation. The approach taken in this chapter is different from.
those in [60], [61], and [62].

Bar-Shalom and Sivan+ [(63] also used the O.L.F.0. control approach tc
consider control problems with random parameters. They derived a general
solution but made no attempt to study analytically the derived‘résults. The
approach taken in this chapter is primarily motivated by computational
feasibility

From the discussion made at the end of section 6.6, we can see why
different computation schemes suggested by Farison, Murphy, Gorman and
Zaborszky will all be expected to give reasonable simulation results. It
is hard to quantitatively compare our zpproach with theirs without extensive =

simulation experiments. One computation advantage of our results over those

+This reference was brought to the author's attention when most of the
theoretical work of this chapter (sections 6.2 to 6.5) had been completed.
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of Murphy, Gorman and Zaborszky is that we replace a sequence of two point
boundary problems by solving a sequence of matrix Riccati type difference
equation of dimension (n + 1l)n x (n + 1)n, (6.3.33). This matrix Riccati
difference equation is solved backward in time starting from the terminal
time to the present time k; i.e., an N - k steps computation, where k = 0,
1, ..., N - 1. Computational wise, this is easier than solving a two point
boundary problem. In our approach, the theoretical proof on the existence
and uniqueness of 0.L.F.0. control sequence is available; this gives us
confidence in trying out the suboptimal control scheme using a digital
computer. Also, we can deduce and predict roughly the behavior of the over-
all 0.L.F.0. control system (section 6.6) from the derived eduations (section
6.3).

(B) Vector Control

In our investigation, we assumed that the control is scalar. However,
the approach can be extended in & straightforward conceptual manner to the
vector control case. First, a’set of identification equation is derived
which will generate the estimate of the current state, the current estimate
of the unknown gain matrix and the different cross-error-covariance matrices.
An open-loop control problem is formulated as in section 6.3, equations
{(6.3.20) to (6.3.31) and discrete matrix minimum principle is used to obtain
the extremal solution. The results will be similar to those of scalar con-
*trol case. However, the equations in the vector confrol case will be more
complicated.

(C) Control Over Infinite Interval

Let us consider the problem of controlling the cystem S, which is time

invariant and unknown ccnstant gain b, over an infinite interval, i.e., N » =,




It was pointad out (in section 6.5) that the problem will not be very
meaningful in many cases if we just onsider the obtained results (section

6.3) and let N - =, Ve suggest the window-shifting approach. Assume that

at all times, we have N more steps to control (see Figure 6.5), thus at all
times we solve an open-loop control problem over an interval of N steps.

This approach is motivated by computational consideration and the theoretical
results derived in section 6.6.

We nore that in the O.L.F.0. approach, we have to resolve the open-loop
control problem at all time k so as to adjust the control scheme accordingly.
In our case, we have to compute K(k|k) in a backward direction starting from
the terminal time N to k for each k. If N is very large, this computation
will require a very long time to accomplish. From a computational stand-
point, we would like to "cut back" the termimal time. Conceptually, in
trying to control over an infinite time period, the controller looks into
all future effects caused by present action, and decides on the optimum
move. The w;ndow—shifting approach suggests that instead of looking at all
future effects, the controller looks at only near future effects caused by
present actions and decides on suboptimal moves. One may view such an
approach as a '"short term adaptive scheme." Note also that we can adjust the
"window width' according to computational capability. At all times, we need
only to solve for K(k|k) in a backward direction starting from N + k to k.
Thus from a conceptual and a computational point of view, such an approach
may be desirable.b

"Assume that the time invariant system 8 being controlled is observable
and controllable. 1If b is known exactly, then if we consider control over

infinite time period, the optimal feedback gain is constant and is given by
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¢ ==(h+Db'Kb) b'KA (6.7.1)

= A
Kiyg =27 - Kb Ky

DA+ W __1§0=_F_ (6.7.2)
(see chapters 3 and 4). Let N be the integer such that for n 2 N,

s g ; £ > O . (6'7'3)

[

:lx

Such an integer N can be found experimentally off-line. Adjust the window
width to equal to N, and apply the window-shifting approach. Add some
nonzero control for identification purpose if it is necessary (see also
chapter 7). Using the results in section 6.5, the existence and uniqueness
of such control sequence is guaranteed. By theorem 6.6.5, the estimate in

A *
b will converge asymptotically, and so when b(k|k,U (0,k - 1) > b, we have

K(k,N+k3;F) . O
K(k|k) ~
9 -0

where K(k,N + k;F) satisfies
K(k,N+k;F) = A' (K(k+1,N+k;F) - K(k+1,N+k;F)b(h + b'K(k+L,N+k;F)b) ++

b'K(kHL,N+KE))A + W 3 R(N+k,N+k;F) = F (6.7.4)

and

W k|k) > ()R (k k) = -(h + b'K(k,N+k;F)b) b 'K (k,Mk;F)A £°2(k k) (6.7.5)

(See discussion at the end of section 6.3.) Comparing (6.7.2) and (6.7.4),

we note that

&
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K(k,NHE) = Ko = K . (6.7.6)

Thus asymptotically, we have a time invariant overall control system.

(D) Convergence-Rate

We have not studied in detail (analytically) the convergence-rate
of the sutoptimal O0.L.F.0. control system. We can only deduce and predict
some rough qualitative estimates about convergence-rate for stable and un-
stable systems. We shall study the question of convergence-rate via simula-
tions; some conclusions and discussion will be included in the next chapter.

(E) Conditions for Convergence

From theorem 6.6.5, we note that if y(k) = O, the sufficient conditions
for convergence are observability, nonzero control and (6.6.10). The first
two conditions are relatively easy to understand and intuitively appealing.
The third condition needs some explanation.

Suppose that G(k) satisfies (6.6.10); then by taking B = ln’ we have
G(k)G' (k) = ln . (6.7.7)
Thus, we have

llek) || =1 (6.7.8)

l is the spectral norm. Equation (6.7.8) provides us with the

where l
necessary condition for (6.6.10) to hold. Intuitively, (6.7.8) means that
the uncertainty of b(k) cannot grow.

Let G(k) be an nxn matrix such that

N

Gk)x <x ; xeR . (6.7.9)

"This discussion was motivated from a suggestion made by Prof. J. C. Willems.
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If B2 0, then B = DD' for some D e M . Let D = [3 . é ], equation
- - - - - nm - =1 -~m

¥ ¥
(6.7.9) implies

G(k)DD'G' (k) £ DD' (6.7.10)

—— ——

and so G(k) satisfies (6.6.10). Thus (6.7.9) provides a sufficiency test
for (6.6.10). Geometrically, (6.7.9) implies that G(k) is a linear transfor-
mation which is directionally invariant but shrinking or retaining the

~ length of each vector. Some weaker sufficiency tests which have some
physical interpretations will be explored in future research efforts.

(F) Different Cost Criterion

The approach can be applied to the more general case where a cost
criterion other fhan quadratic is being considered. The identification
equations remain unchanged but the open-loop control problem thus formu-
lated will be different from (6.3.26)-(6.3.31). By using the discrete
matrix minimum principle, we shall obtain a set of equations which define
a two point boundary values problem.

6.8 Perspective

The problem of stochastic control of linear systems with unknown gain
was also treated by Florentin [64], Farison [60], Murphy [61], Gorman and
Zaborszky [62]. The approach in [61]-[64] is that of approximating the
solution of Bellman's equation. [60] presuppose separation.
vOpen—loop feedback controller was described by Dreyfus [26]. Open-
loop feedback optimal control approach was also used by Bar-Shalom and f ~

Sivan [63] in considering control of discrete-time linear systems with random

parameters.
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To the author's knowledge, for this particular problem of Qéhtrolling
linear system.yitp unknown gain, the investigations in sections 6.5 and 6.6
represent the first extensive analytical studies on the derived suboptimal
solution. The contributions being that a plausible computationally feasible
suboptimal solution is derived using the O.L.F.O. approach, extensive
analytical studies on the derived solution are carried out, and from the
derived results some rough behavior of the overall suboptimal control

system can be deduced; also we have a deeper understanding on the effects

(qualitatively) of uncertainties on the control action.




CHAPTER VII

CONTROL"OF THIRD ORDER SYSTEMS WITH UNKNOWN ZEROES:
NUMERICAL EXAMPLES

In the last chapter, we have studied theoretically the problem of
control of a discrete time linear system with unknown gain under the
quadratic criterion. A suboptimal adaptive control system was derived
using the O.L.F.0. approach, and the asymptotic behavior of the control
system was discussed. There are still some important questions which have
not been treated theoretically. For example, the rate of convergence of the
suboptimal control system is in general of great interest, but was not
treated in detail. Computer studies were carried out on some specific
examples of third order systems. The main purpose for these studies is to
provide us with some qualitative ideas about the rate of convergence of
the suboptimal control system for different types of third order plants.

Let us consider a stochastic continuous time-invariant linear system

described by:

%.(0) = A x (6) + boou (6) +d. £ () 5 x(0) v GO, I ) .

ye(e) = ' x(e) + N (t) b v GO, 2, )

where gf(t) is a scalar driving white Gaussian noise, nf(t) is the
scalar observation white Gaussian noise. The statistical laws of '§f(t)

and nf(t) are assumed to be known

t t

2 2
[ egmaenglo, [ roar) (7.2)
t t ,
1 | 1
) 5
] naoae vgfo, [ g at) (7.3)
tl tl
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From (7.1), we have

At t A
| 2¢t. . Sf - 2f
xf(t) = e Ef(o) + fo e ‘bfuf(r) dt + IO r gfgf(T)dT (7.4)

(t - 1) t A_(t - 1)

Assume that we take observations only at discrete instants of time ¢t = A,
2A, 3A ...; A 1is assumed to be small such that u(t) = u(kd), £(t) = £(ka),

t € [ka, (k+1)A]:

éfA _éf(kA) kA éf(kA - 1)
X¢ (k+1)A = e [e §f(0) + IO e gf uf(T)dT
kA éf(kA - 1)
+ [, e de £ (1)dr]
A Ao A Ao
2f 2f
+ f 0 © do - kf uf(kA) + IO e do - gf Ef(kA) (7.5)
Defining
A.A A Ao
x(k) = x.(kd) ; A= et ; b= IO e’ do° be
A <éf° (7.6)
d = fo e do -d. 5 E(k) = £ (k) ;5 u(k) = ug(kp)
(7.5) becomes
x(ktl) = Ax() + b ulk) +de (&) 5 x(0) ~ GO, £ ) (7.7)
Defining
y(k) = Yf(kA) ;3 n(k) = nf(kA) (7.8)
The observation sequence is
y(k) = c”x(k) + n(k) (7.9)

The statistical laws of ¢£(k), n(k) are

£(k) ~ G(O, ra) (7.10)
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n(k) ~ G0, qa) (7.11)

The gain vector is assumed to be unknown but constant, therefore the

equation for the unknown gain is
b(k+1) = b(k) 5 b(O) ~ Gb,,s Iy ) (7.12)

We can now apply the results in chapter 6 to equations (7.6), (7.9), (7.10)-
(7.12).

A computer program was designed which operates as follows:

(1) Read in Ay 9{’ c, gf, Y, qQ, ,

the different weightings W, h, F, and covariances gx

X s po, the final time N and

o’ Ebo'

(2) A subroutine, which was developed by Levis [75], was used to
convert the continuous version, (7.1), to the discrete time
sample data version (7.6). The covariances of £(k), n(k) are
computed using (7.10), (7.11).

P (3) The true value of x(k) was recorded. Using a noise generating

subroutine, a sample value of zﬁk) was obtained. Assume that
2 (k-1/k-1), B(k-1/k-1) are recorded. A subroutine for the
identification equations (6.3.19)-(6.3.23) was used to obtain the
current estimates 2(k/k), 6(k/k), and the error covariance
matrix gjk/k) recursively. These values were also recorded.

(4) A subroutine based on (6.3.32)-(6.3.41) was used to obtain the
adaptive control u*(k).

(5) The control u*(k) was applied to the system (7.6), using a
noise generating device to obtain a samplé value of ¢(k); then
by (7.6), we obtained the value =x(k+l).

(6) We advance k - k+1 and repeat (3) through (5) until we get to

th final time k = N-1, v
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The program was written in such a way that if we set ‘E(k/k) = b, and
o T 0, then the ?rocedures (3) through (6) will give us the truly optimal
stochastic control when b is known. Using a plotting subroutine we can
plot out the truly optimal trajectories vs. the O0.L.F.0, trajectories; the
true b vs. the estimated b, and optimal feedback gain vs. adaptive gain
(it was noted that the adaptive correction term will converge to zero quite
fast), under the requirement that the same noise samples (£(k), n(k)) were
used for both the known b and unknown b cases. These plots provide us
with qualitative understanding on the rate of convergence of the overall
suboptimal O0.L.F.0. control system.

In all the computer simulations, unless otherwise mentioned, we set

the values:

1 1
b=0.2sec, r=005 q=0.45 d = [2] , % = [1] ;
1 1 (7.13)

F= _1.3’ W= .I'.y 2:-b0= Exoz 4 .1_'.3’

Example 1: _Unstable System

It is assumed that

A=loo 1] s b.o=1l2l 5 n=1 ; x@ = 1| (.14
£ |53 R -t

such a system has a transfer function (see Fig. 7.1)

(s + 3)(s + 2)
(s - 1)(s2 + 2s + s)

Hl(s) = (7.15)

so that it has an unstable pole at s = 1. 1Initially, we set

~ 0 : |
b (0/0) = [-(x)] | (7.16)
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Fig. 7.1la POLE ZERO PATTERN FOR EXAMPLE 1: UNSTABLE SYSTEM
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Fig. 7.1h POLE ZERO PATTERN FOR EXAMPLE 2: STABLE SYSTEM
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i.e. we started out with an initial guess that the system has no zeroes.
The final time is N = 40,

Many computer runs have been made on the same system with different
noise samples. The plots for one particular sample experiment, which
represents a fairly good average behavior, are shown in Figs. 7.2-7.4.
From the experimental data (which are not shown completely), we can obtain
a rough idea about the behavior of the suboptimal O.L.F.0. control system.

From the experiments, it was found that in the beginning, the O.L.F.O.

adaptive gain is approximately zero (Fig. 7.4) and the O.L.F.0. trajectory

follows closely to the input-free trajectory (Fig. 7.2). The diverging

phenomenon is detected by the identifier; controls of considerably high

magnitude are then applied for a few steps. This is indicated by the fact

that there are sharp jumps in the state trajectories. Experiments show
that these jumps are not caused by bad noise sample because the same
phenomenon appears in different sample runs at approximately the same time

interval. The high magnitude control serves mainly for identification

purposes, this is revealed by the fact that at the next time unit, the
estimates of b closely agree with the true b (Fig. 7.3). As was

predicted in chapter 6, section 6.3, the 0.L.F.0. adaptive gains do con-

verge to the truly optimum gains (Fig. 7.3). The correction term vs. time

is not shown in the figure, but simulation results indicate that the
correction term goes to zero very rapidly after the identification of b
is essentially completed.

Another set of simulation experiments was carried out where we kept
the same sample noise but varied the weighting h, (h > 0). It was found
from the experiments (not reported in here) that the maximum magnitude of

the overshoot in the 0.L.F.O. trajectories varied inversely with the value
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of h; if h was large, we have relatively "lower" overshoots; whereas, if
h was small, we had relatively high overshoots. Also, the experiments seem
to indicate that the convergence rate and the final estimation error in b

seem to depend on the value of h we chose; with large h, we have relative~

ly slow convergence rate and relatively big final estimation error in b;

if h is small, we have a relatively fast convergence rate and relatively

small final estimation error in b.

In the next set of experiments, we kept the weighting fixed (h = 0.1),
and repeated the first set of experiments with larger driving noise co-
variance (r = 0.45) while using the same observation noise sample. The
experimental results (not reported in here) seem to indicate that the in-

crease in driving noise covariance has little effect on the convergence

rate of the 0.L.F.0. control system.

It is of interest to find out whether the initial guess on bf will

be sensitive to the resulting O.L.F.0. control system. We carried out a

set of experiments where we fixed

0 0 1 0
b, = 0 3 A. = 0 0 1 (7.17)
L - 5 -3 -1
The transfer function is
-1

Hi(s) = — 5 (7.18)
gs - 1)(s” + 2s + s)

Ly

The initial condition on §f(0)' was kept fixed, and using the same sample

noise, we varied our initial guess in b The same runs seem to indicate

——f"

that though the sample O0.L.F.0. trajectory varied with different initial

guesses in b.; the convergence rate was quite insensitive to the guess in

.S

b..
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ExampleyZ: Stable System

It is assumed that

0 1 o] [1] [6
A= |lo o 1] 5 b= 2| 5 x.(0= |-3 (7.19)
=t -5 -7 -3 £ -7 =t 12

The true transfer function for the system is (Fig. 7.1)

(s + 3;(s + 2) (7.20)
(s + 1)(s” + 25 + s)

HZ(S) =

The system is stable.

In the first set of experiments, we initially guess

) 2 .
b,(0/0) = [1] (7.21)
-6

i.e. that the zeroes are located at —'%-+-\/:%2 and - %--V/:%— . The

weighting on the control is h = 1, We take the final time N = 40.
Sample runs for the same system with same initial guess (7.21) were

made and the plots for one particular sample are shown in Figs. 7.5-7.7.

As opposed to the unstable case, the O. L. I'. O. adaptive gain is some nonzero

vector, and so the value of the 0.L.F.0. control is not zero at the

beginning (Fig. 7.7). The control is used both for identification and

control purposes. The system is stable, and since no large magnitude
control is applied, the O0.L.F.O. trajectory decays down to zero (see

Fig. 7.5). This decaying phenomenon is noticed by the identifier, and

thus the control is kept near zero to save energy. Therefore, after a

certain time interval, when the 0.L.F.0. trajectory goes near the origin,
the 0.L.F.0. control will remain zero for most of the time. The system

behaves aimost like an input—-free system. In‘fact, this is also what the
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#ruly optimum system will do. We note from Fig. 7.6 that the identification
process of the unknown gain b stops at about k = 20, which is the
approximate time unit when the 0.L.F.0, state trajectory begins to stay

around zero. If we consider control over an infinite interval (say using a

window-shifting approach) we may expect awfully slow convergence rate in the

‘estimation of b to the true b, and a slow convergence rate of 0.L.F.O.

control system to truly optimum control system.

In the second set of experiments, we have the same noise samples as

before but startirg with the initial condition

2
%:(0) = -1 (7.22)
4
- The initial guess on bf was
- 0
b.(0/0) = | O (7.23)
.._.f ‘.2

i.e. there are no zeroes. The weighting on the control is h = 1, and we
~

take the final time N = 60. The plots for one typical sample experiment

~ are shown in Figs. 7.8-7.10. (The sample noise for the sample run shown

in Figs. 7.8-7.10 is the same as that shown in Figs. 7.5-7.7.) Comparing

this set of experiments with the last, we note that more or less the same

phenomenon occurred in both sets of experiments. The final estimate in b

A P
is way off its true value, in fact bl(k/k) and bz(k/k) are opposite in

sign with those of bl and b2 respectively; but interestingly enough

the adaptive gains are adjusted accordingly so that the values of the

0.L.F.0. control sequence and the truly optimal control sequence are almost

the same. This set of experiments indicates yet slower convergence (if

”

there is any).
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T'ote that in both sets of experiments even if the estimate of b does

not converge to the true b, the truly optimal trajectory and O0.L.F.O,

trajectory are almost the same after the transient period.

Intuitively, the results are reasonable. Since we have not told the
problem to identify b, it will not do so unless the identification is
absolutely necessary. The experimental results verified our theoretical
deduction (see chapter 6, section 6.6).

The experiments seem to indicate that for stable system, the choice of

initial guess will not greatly influence the O0.L.F.0., trajectory, but will

affect the convergence rate for the estimate in the gain parameters, b.

Remark: 1In each set of experiments discussed above, the number of
sample runs is not enough to enable us to draw specific statistical con-
clusions; yet the regularity in the sample runs enable us to draw some crude
conclusions.

From the experiments, we may draw the following conclusions regarding
the O0.L.F.0. control system,

(1) The rate of convergence seems to be very dependent on the
stability of the system. For unstable systems, the convergence
rats seems to be faster compared to that for stable systems.
This verifies our theoretical predictions made in chapter 6,
section 6.6.

’(2) It seems that large controls will help identification of the
unknown gain parameters, and sc convergence rate seems to relate
directly to the magnitude of the comntrol action. This again
agrees with our intuitive remark made in chapter 6, section 6.3.

(3) For unstable systems, the rate of convergence seems to be

fairly independent of the initial guess on the unknown gain,
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(5)

(6)
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whereas for stable systems, the convergence rate may be quite
dependent on the initial guess on the unknown gain.

For unstable systems, the O.L.F.0. trajectory will depend on the
the initial guess in Qf, but then for stable systems, the 0.L.F.O,
trajectory will not vary drastically when we vary the initial
guess in kf.

For the unstable system, the O,L.F.0., trajectory seems to follow
closely its input-free trajectory in the beginning, until the
diverging phenomenon tells the identifier to send back large
controls for identification purposes. This causes some overshoots
in the trajectory. The magnitude of the maximum qvershoot seems
to relate inversely with the values for the weighting constant h
on control. For stable systems, simultaneous identification and
control seem to be carried out in the beginning. Since the system
is stable, with little control energy, the state will go to zero,
so after some time period when the state is near the origin,
approximately zero control is applied thus terminating the
identification of b.

Lastly, the author would like to comment on the computational
feasibility of the proposed scheme. The above experiments were
simulated using an IBM 360/64/40 system. it was found that

the actual computation of the O.L.F,0. control sequence can be
carried out almost in real time for N = 40; i.e. in about 0.2
seconds, the following tasks were ;ccomplished: Oné step computa-
tion of (6.3.19)-(6.3.32) (6 vector difference equation and 6 x 6

matrix difference equation), the parameter computations (6.3.34)-

(6.3.37), and the computation of K(k/k) (6.3.32), 5(k)(6.3.39)
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(one 12 x 12 matrix difference equation and one 3 x 3 matrix difference
equation, computed in a time-backward direction directly for L < 40 steps,
kv:O’ l’ s ey N-l)-

Further Experimental Studies

The following experiments are suggested so as to provide a deeper
understanding on this class of problems.

(1) Implement a window-shifting O0.I1.F.0. control sequence as was sug-

gested in section 6.7. This will allow us to consider control
over an infinite time span for k=0, 1, ... . To increase the

convergent rate, apply control sequence

u*(k) if u*(k) > e

T ) = (7.24)

£ if u*(k) < g

if Hgg(k/k)ll > 6, and T (k) = u (k) f |2, /)] < 8.
The values for & and € are adjusted thymupn experimentation.

(2) Design a computer program which will ei. “ie vs 20 study the
statistical behavior of the O.L.F.0. control system. For a
fixed assumed structure of the system and the same weighting
constants, study the statistical behavior of the system and the
average convergence rate of the suboptimal control system to the
optimal system. Vary the weighting constant h on the control,
and investigate, in a statistical sense, how it affects the
average maximum overshoot in the trajectory.

(3) To avoid large overshoots in the beginning for the unstable
System, ohe may wish to have a large weighting factor h for

the control energy in the beginning, and when the true value of
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b is exactly recovered, we may want h = 0.1. Thus we may

prefer h to be time varying
h(k) = g(k) + 0.1 (7.25)

where g(k) is nonincreasing and g(k) - 0 as k - «, Such an

ad-hoc approach may lead to a well behaved 0.L.F.0. control

system, g

The assumption that b ~ Q(ED, Ebg is made for mathematical con-

venience. In actual practice, b and I, may not be available.
-o ~bo

With the results in chapter 3, observability of the pair (A, C)
is sufficient to assure that independent of the guess on bo’
asymptotic convergence of the estimate of b is obtained. But
it would be important to find out how different assumptions on

b and I, will effect the rate of convergence for both stable
-0 —do

and unstable systems.

By varying the sampling rate, one can study the effect of sampling

period to the behavior of the overall suboptimal O.L.F.0. cormntrol

system,




CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOPR FURTHER RESEARCH

The observer theory for discrete and continuous time linear systems
have been developed in parallel. We showed that one can view an observer-
estimator as a learning device which is used to learn all recoverable
uncertainties while taking the statistical behavior of all inherent
disturbances into consideration. The class of observers-estimators which
will do the learning optimally in the mean square sense is also derived.
Such optimal classes of observers-estimators can be incorporated in the
overall optimal control system, and for this reason analytical studies on
the optimum class of observers-estimators was carried out in detail. It is
noted that observers theory includes Kalman filitering and deterministic
exponential estimation as special cases.

The stochastic control of linear systems with known dynamics was
treated in detail. For this class of problems, we have imperfect informa-
tion due to the fact that there are inherent noise disturbance and unknown
initial condition of the system being controlled. It was proved that for
quadratic criteria the optimal controller consists of a ''learner" and a set
of feedbaqk gains. The learner is realized by an optimum observer-estimator.

The result is also known as the Separation Theorem. Physically, the

operating function of the optimum observer-estimator is to learn the éurrent
state of the system. It can be shown that if the current state of the
system is asymptotically recoverable and if the system can bg stabilized

by adapting some feedback gain, then the overall optimal stochastic system
will have nice behavior. The approach taken in studying this specific

class of problems can be extended to more general classes of problems

where the cost criteria are other than quadratic.

-271-
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In the next level, we considered control of linear discrete systems
with unknown gain parameters. Since the truly optimal control sequence
cannot be obtained because of the '"curse of dimensionality." we look for a
computationally feasible suboptimal control sequence. Prompted by
physical consideration and computational considerations, we used the open-
loop feedback optimal approach to derive the 0.L.F.0. control sequence. It
was proved that the O0.L.F.0. controller consists of a learner, which we call
an identifier, and a feedback gain plus correction term. The identifier
is realized by an optimal observer-estimator whose operating function is to
learn the current state and current unknown gain. Analytical studies were
done on the overall O0,L.F.0. control system. It was proved that if the
initial state and unknown gain parameters are recoverable, then the overall
0.L.F.0. control system will asymptotically converge to the truly optimal
stochastic control system. The derived fesults seem to be computationally
feasible. The coﬁputation of the O0.L.F.0. control is done on-line. For
all time k=0, 1, ..., N-1, we have to compute a one-step 2n-vector
difference equation and a one-step 2n % 2n matrix difference equation
(identification equations), then a (N - k)-steps n-vector difference equa-
tion and a (N - k)-steps n X n matrix difference equation (parameters
computation), and finally a (N - k)-steps (n+l)n x (n+l)n matrix difference
equation (computation of .ﬁ (k/k) (see Fig. 6.2 and Fig. 6.3). The vectors
and matrices being stored as time unit advances are x(k/k), b(k/k), and
z(k/k) which require a total of (2n2 + 3n) memory locations. (Note that
Z(k/k) . is symmetric and this cuts down the storage memory requirements.)

Using the theoretical results‘derived, a computer program is developed

“to study the control of a variety of thirdrordef éy;tems with known poies

B ; but unknown zeroes. Sample runs were made mainly to study the convergence
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rate of the G.L,F.0. control system to the truly optimal system. The
experimental results seem to indicate that the rate of convergence depends
' on the structure of the system: stable plants appear to have ‘slow con-

j vergence, whereas unstable plants will result in fast convergence. For

~ stable system, the convergence rate depends highly on the initial guess of
| the unknown zeroes locations; but for unstable stable, it appears that the
rate of convergence is quite insensitive to the initial guess of the
unknown zeroes locations. More experiments must be performed so as to
obtain a deeper understanding cn this class of preblems and obtain
engineering rules—of-thumb.

Directions of further research which are related directly to this
work are suggested near the end of each chapter when appropriate. 1In the
follewing, a list of topics is given, which the author thinks is a continua-
tion of this present work. iSqme possible approaches to these different
problems are suggested and the applicability of the results obtained in
this thesis to these different problems is discussed.

(A) Stochastic Control of Continuous-Time Linear Systems With Unknown Gains

We consider a continuous analog of (6.2.1)

x(t) = A(0)x(t) + b(t)u(e) + E(v) 5 =x(t) ~ G, L )

Sc; (6.8.1)
y(t) = c(t)x(t) + n(t)

the gain vector b(t) 1is unknown but satisfies the stochastic differential

equation:

b(t) = G(O)b(t) + y(t) 5 b(t) ™~ G, (6.8.2)

-—bo

The noises, £(t), n(t), and y(t) are assumed to be white Gaussian with

known statistical law. The performance measure is
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T

1) = E{x"(1) F x(T) + [ [x"(t) H(t) x(t) + uz(t)h(t)] dt}  (6.8.3)
t
(o)

The control problem is to find u(t), T ¢ [to, T), such that (6.8.3) is
minimized subject to dvnamic constraints, (6.8.1) and (6.8.2). Instead of
first taking a sample data version of the problem and then applying the
derived results in chapter 6 (see chapter 7), we can apply the 0.L.F.O.
approach to the continuous time system directly. One would then obtain a
continuous time identifier which estimates the current state and current
gain in continuous time. The results in chapter 4 can be applied. As
analogous to the discrete time version, we would then formulate a deterministic
(continuous-time) open-locp control problem. One may expect the overall
0.L.F.0. control system in the continuous-time case will be similar in
structure to that in the discrete version. The main difficulty lies in the
capability of computing the 0.L.F.0. adaptive gain and the correction term

in continuous time. Some modifications can be made which take computation

capability into account. One approach may be that we resolve the open-loop
problem only in discrete time, t = 0, A, 2A, 34, ..., even though we bhave
continuous time observation.

(B) Control With Unknown Dynamics

Consider the problem of controlling an unknown system &, (6.2.1),

where the matrix A(k), k 0, 1, 2, ..., is unknown but satisfies some

linear difference equation. The statistical laws of the noise are assumed

known. Our objective is to control the system 8 wusing ﬁhe quadratic i
criteria. Formally, the truly optimal control can be obtained if ﬁe can

solve Bellman's equation. Unfortunately, this is impossible with the

present stage of development of computer technology. Therefore, one can

- look for suboptimal but computationally feasible solutions to the pfoblem.




-275-

It would be desirable if we can have analytical studies on the derived
suboptimal control system. Different approaches guided by engineering
intuition are possible. An approach, which is a combination of maximum
likelihood and 0.L.F.0. is suggested where an analytic study of the be-
havior of the overall suboptimal system may be possible.

Consider the augmented system 5 given by (6.3.24). Let U(0, k-1)

be applied and Y _l)(O,k) is observed. The most probable estimate

U0,k
(maximum likelihood estimate) of {é(i)}:‘l, which is denoted by {éﬁ(i)}k'
=o i=

is obtained by picking‘ {A(i)}k—l to maximize the conditional probability
n i=0
density p({é(iﬂk 1|YU(O,k-1)(0’R)) subject to a certain difference equa-
i=0

tion describing the evoluation of A(i), i =0, 1, ..., k-1. Extrapolate

the estimate of {é(i)}m and the estimates are denoted by {éﬁ(i)}m
i= i=k"

k
Assume that {é;(i)}:=0 is the true A(i), i =0, 1, ..., and apply the
results of chapter 6. The whole procedure is repeated at every step,
k=0,1, ....

Theoretically, this approach has some advaﬁtageous features. Using
Wald's Theorem [68], one will obtain‘asymptotic consistent (with probability
1) estimate of {é(i)}io

i=0
obtain overall asymptotic optimal control system.

; one can then apply the results of section 6.6 to

The difficulty lies in the real time computation of {éi(i)}:;o,
k=0,1, .... using a computef: For ref;;enéés-in maximum likelihood
estimation, see Kashyap [67], Wald [68], Rauch, Tung, and Striebel [44];
for evaluation of likelihood functions of a Gaussian process, see also
Schweppe [69].

(C) Control With Unknown Gain and Imperfectly Known Disturbance

Assume that the matrices A(k), k = 0, 1, ..., are known, the gain

vectors b(k), k = 0, 1, ..., are assumed to be unknown but described by

1
9
0
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(6.2.2), (6.2.4), and (6.2.7). The vectors n(k), &(k), y(k), k=0, 1, ....
are independent Gaussian vectors with unknown means and/or covariances. It
is necessary for us to recover the true means and covariances of the noise
vectors. A combination of maximum likelihood and 0.L.F.0. approach can be
applied to such class of problems.

For references which are related to this class of problems, see Saga
and Husa [70], Taran [71], Kashyap [67].

With some thorough understanding in the problems (A) and (B), we can
then start to investigate the problem of controlling a system where A(k),
b(k), =0, 1, .... are unknown but satisfy some difference equations, and

the noise vectors are independent Gaussian vectors with unknown means and

variances.




APPENDIX A

ON THE PSEUDO-INVERSE OF A MATRIX

Let A be an n x m matrix which maps R™ » R®, The pseudo-inverse

of A 1is denoted by 15# and satisfies the conditions:

#

(1) AA&x=x ; v xE®R(@QA) (A.1)
(2) _A#g =0 5 Vv 2 e N(A-) (A.2)
(3) ﬁ‘:#(}i +2z) = ,é#x + A'#z ; v Le R (A), ze N@AT) (a.3)
With this definition, we have the following properties:

@ @ht-a (A.4)
@) At aaf =4 (A.5)
© aata=a (A.6)

(E) Let A be an n xXm matrix (n > m) of rank m. Then

INERC R (A.7)

For the proofs of (A.4)-(A.7), see Zadah and Desoer [48], Levine [23]; for

a different approach to generalized inverse of a matrix, see Penrose [72].
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APPENDIX B

WEINER~-:OPF EQUATION

Let F(k) - F(y(4); 1 =0, 1, ..., k), we have F(1)C F(it+l),
i =0, 2, +u.y k=1, and so y(i) is F(k)-measurable for i =0, 1, ..., k.

Using lemma 2.2.6, and lemma 2.2,7, we have

Ef{x(k) y* (1)} = E{E{gc_(k) y @/F = Bxl/i0 y () (8.1)
1=1, ..., k

By assumption, w(k) satisfies (3.3.18), thus
E{f(W(k) - x(k/K))y ()} =0 1=0,1, ..., k; k=0,1, .... (B.2)

Since both Ww(k), éﬁk/k) are linear functioals of y(0), ..., y(k), (B.2)

also implies
Ef(w(k) - x(k/K)) (ulk) - x(k/k)7} =0 k=01, .... (B.3)

Thus Ww(k) = x(k/k) a.s.
The proof of Weiner-Hopf equation for the continuous case is the
same with slight modification, the induced c¢-algebra F(k) 1is replaced

by F

¢ F{zi(r), e [t, t), 7,(1), T e {t, tl}. And so if

w(t); t >t is a random process such that for ¢t 2t w(t) 1is a

linear functiomal of y, (1), 7 e it , t), and y, (1), 1€ (e, s t]; and

w(t) satisfies

B 31} =Ex® ) telt, v 3 ot (B.4)

E{_‘_\’_(t) 15(1)} ={E x(t) li('r)} T € [to, t]

(a4

> to (B.5)

then w(t) = éﬁt/t) a.s., t z_to. (B.4), (B.5) imply the projection

equations (4.3.44).
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APPENDIX C

EQUATION FOR ERROR PROCESS (CONTINUOUS TIME CASE)

Let x(t) be a random process given by (4.3.1), and Ww(t) be a
random process satisfying (4.3.19), (4.3.20), and (4.3.16). Define
e(t) éig(t) - x(t). Differentiating e(t) and using (4.3.19), (4.3.1),

and (4.3.12):

e(t) = B(t) z(t) + B(t) T(t) ACt) w(t) - B(E) T(t) L, (t) €, (t) w(t)
+ P(E) T(t) B(t) z(t) + B(t) T(E) V,(t) C,(t) x(t)
+ P(t) I(t) L, (t) C,(¢) x(t) + B(t) T(t) L,(t) n(t)
+ P(t) T(t) B(t) u(t) +1'7_2(t) C,(t) x(t) + V,(¢) _('3_2(1:) x(t)
T V() C,(e) ACE) x(£) + ¥, (t) C,(t) B(t) u(t) +V,(t) C,(t) £(t)
- A(t) x(t) - B(t) u(t) - £(t)
= (B(6) + R(6) (6 B(D)) 2(t) - (2(6) T(t) + B(v) (e) B(®) I(v))
» x(t) + B(t) I(t) A(t) e(t) - B(t) T(t) L,(t) G,(r) e(t)

+ R(6) T(t) Ly (8) n(e) - R(r) T(6) E(E) (C.1)
Since P(t), T(t), Vz(t), gz(t) also satisfy (4.3.16), we have

T(e) B(E) + T(t) B(E) =0 5 Cy(t) B(t) + Cy(t) B(t) = 0 (c.2)
and so we have

P(t) + P(t) T(t) P(t) = (Ln - g(t) T(t)) _f’_(t):= v,(t) C,(t) }.’_(t)

= = Y,(t) E,() B(E) | (c.3)

B(t) T() + B(E) T(t) B(t) T(t) = = ¥, (&) C,p(£) B(r) I(t)

= - U, (6) Cy(e) + Vo (8) &y(8) Vy(t) Cy(t)  (C.4)
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Substituting (C.3) and (C.4) into (C.l) and noting w(t) = P(t) z(t)

+_22(t) Xg(t)» wve have

&(t) = (A(D) - ¥,(6) §,(6) = B(£) I() Ly(E) C; () e(t)

+ (U, (0) Cy(t) = L) E(E) + B(£) T(£) Ly (£) n(t) (c.£)
The initial error is

et ) = B(t ) z(t)) + L () Cy(t M(x(t ) - x(t )

= B(t ) 1_?(1:0) &, - 3‘-("0)) = - Y_z(to) gz<t0))(§o - z(to))(c.e)
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