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ABSTRACT

The control of linear systems with incomplete information is considered
where the unknown disturbances and/or random parameters are assumed to
satisfy some statistical laws.

The observer theory for linear systems is developed which generalizes
the concepts due to Kalman and Luenberger pertaining to the design of linear
systems which estimate the state of a linear plant on the basis of both
noise-free and noisy measurements of the output variables. The Separation
Theorem for linear system is then extended for such observers-estimators.

The problem of controlling a linear system with unknown gain is then
considered. An open-loop-feedback-optimal, control algorithm is developed
which seems to be computationally feasible. Existence of such suboptimal
control scheme is proved under the assumption that the uncertainties in the
unknown gain will not grow in time. Convergence of such suboptimal control
system to the truly optimal control system is considered. A computer pro-
gram is developed to study the control of a variety thrid order systems
with known poles but unknown zeroes. The experimental results serve to pro-
vide us with some more insights into the structure and behavior of the
open-loop-feedback-optimal control systems.
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CHAPTER I

INTRODUCTION

In recent years, deterministic optimal control theory has come to its

full maturity. Text books [57], [43] have been written which are devoted

to the theory and application of modern control theory. In deterministic

control theory, it is assumed that the future effect of any present control

action is exactly known; this class of control problems is often called con-

trol with complete information (73). In many situations, the necessity of

control arises from the fact that there are perturbing disturbances and/or

component failures in the physical system. These uncertain phenomena pre-

vent us to deduce exactly the future effect of all present actions, and

thus deterministic control theory may not be strictly applicable. The

classes of control problems where future effect cannot be predicted exactly

are called control with incomplete information. There are cases where the

uncertain phenomena can be appropriately modelled as stochastic processes,

so stochastic models and stochastic control theory can be applied [4], [74].

There are: also cases where the chance phenomena have no statistical regu-

larity, in these situations, the game-theoretic approach [65] to obtain

min-max control may be More appropriate.

In this thesis we shall study some classes of problems with incomplete

information. First we assumethat the system being controlled is linear

(either discrete time or continuous time). The disturbance and random

parameters are assumed to satisfy some statistical laws. In the beginning,

we assume that the only sources of uncertainty are the driving and/or obser-

vation disturbances. The statistical laws of disturbances are assumed to be
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known. Thcn, we shall consider the case where some parameters of the system

	

i

	

are unknown but satisfy some statistical laws.

In Chapter II, some mathematical preliminaries are collected for ease

of references. Probability theory is treated briefly from a measure-

theoretic approach. Facts about linear stochastic difference (and differen-

tial) equations, and stochastic optimization problems are included for the

sake of completeness. The sections on Generalized Riccati Equations are

new results and will be useful in later discussions. The theory for ob-

	

I

	 servers for discrete time and continuous time linear systems is developed

in Chapters III and IV. The conceptual framework is that an observer is a

device which will supply complementary information about all recoverable

uncertainties. The observer theory is applied to estimation problems where
E

we have only partial observation of the states in the presence of observa-

tion noise which may be degenerate or even totally singular. The results

	

i	
will include the Kalman filter [39], (50] as a special case.

i

In Chapter V, we consider the optimal control of linear system with

known dynamics with respect to quadratic criterion. The uncertainties

arise from driving and/or observation disturbances with known statistical

laws. One such class of problems had been considered before by Joseph and

Tou [56], Streibel [59] and Wonham [22]. They made the assumption that the

observation noise is nondegenerate Gaussian white noise process (see Section

2.2). In this work, this assumption is relaxed. It is assumed that the

observation noise may be: 1) nondegenerate Gaussian white noise, 2) de-

generate Gaussian white noise, 3) colored observation noise, 4) totally

singular (i.e., noise-free observations) or 5) the sum of colored and white

v

r^
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Gaussian noise. The approach follows that of Wonham's [22] and the tech-

nique is the dynamic programming method.

The control of linear systems with unknown gain parameters is con-

sidered in Chapter VI. The open-loop-feedback-optimal approach is used to

derive a suboptimal control sequence which appears to be computa"01--ionally

feasible. The technique used is that of the matrix minimum principle. Ana-

lytical studies on the overall suboptimal control system are carried out

and the asymptotic behavior of the overall suboptimal control system is de-

rived. Computer simulations for some third order linear systems were carried

out based on the theoretical results obtained in Chapter VI. The experi-

mental results are discussed in Chapter VII. Conclusions and some topics

for further research are listed in Chapter VIII.

The perspective and comparison of this work with published references

are done at the end of each chapter. In this contribution, we develop the

observer theory which provides a deeper understanding of the structure of

state estimators in the case of nondegenerate, degenerate, singular, or

colored observation noise. The theory unifies some seemingly different

concepts of Kalman filter, Luenberger observer and exponential estimator,

and treated them in one general framework. Then we have the extension of

the Separation Theorem for such observers-estimators. Finally, we have de-

veloped the open-loop feedback optimal control algorithm for the linear

stochastic systems with unknown constant or random gain parameters; theo

reLical and experimental studies are carried out to this class of problems

which provide us with some insights into the structure and behavior of the

overall control system.

I
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Notations:

Lower case underscored letters stand for vectors (e.g., x, Y); upper

case underscored letters stand fur matrices (e.g., A, B). Noise distur-

bances are denoted by lower case underscored Greek letters (e.g., E, n).

Lower case letters with subscripts will denote components (e.g., xi will be

the i-th component of the vector x, a ij will be the ij -th element of matrix

A) .

The transpose of a matrix A is denoted by A'. The transpose of a

column vector, x, is a row vector and is denoted by x'.

Let A be an nxn square matrix; the trace of A is defined as

n
tr A	 aii	 .

i=1

Let H(x
ll' x

12' " " xnm) be a scalar function; we shall denote it by

H(X). The gradient matrix is defined by

3H (X) - aH(x11 , ..., xnm)

DX	 a...

M will denote the set of all rtXm matrices.
nm

R will denote the product space of ordered n-tuples of real numbers,

we shall denote the elements in R
n 

by column vector x.—

I will denote the set of all integers and I
Ii,j] 

will denote the set of

integers {i, i + 1, ..., j), i <_ J.
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CHAPTER II

MATHEMATICAL PRELIMINARIES

2.1 Introduction

The purpose of this chapter is to introduce the mathematical results

which will be used frequently in the later chapters. Some of these results

are known in the literature while some are due mainly to the author.

In Section 2.2, probability theory is treated briefly using the

measure-theoretic approach. Except for the precise basic definitions, the

treatment is physical rather than mathematical. For a detailed and rigorous

mathematical treatment, see Doob [1] and Loeve [2]. A rigorous mathematical

consideration on conditional expectation and conditional distribution of a

random vector is given. In the opinion of the author, a thorough under-

standing of these concepts is vital in most stochastic optimization problems.

In Section 2.3, linear stochastic difference and differential equations

are treated to the extent that some of the discussions 3,.n later chapters

will require for the sake of completeness.

In Section 2.4, the matrix minimum principle and optimality criteria

are considered to some detail. The matrix minimum principle can allow us

to deduce the necessary conditions for optimality for some special problems,

whereas the optimality criteria provides us a test to see whether a certain

solution is optimal.

In most control and filtering problems, we shall encounter a matrix

Riccati Difference or Differential equation. To foresee there generalized

matrix Riccati difference and differential equations are investigated in

detail in sections 2.5 and 2.6. The results obtained in these sections

are new, while the approach follows that of Wonham's [32] .

-5.-
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From Section 2.2 to Section 2.4, the results are known. The discus-

sions in these sections are by no means exhaustive: detailed references

are given in Section 2.7 to indicate where more extensive results can be

found.

2.2 Probability Theory

Definition 2.2.1:	 Let 0 be a set. A a-algebra (Borel Field, a-field) on

S, F, is a class of subsets of Q, such that it has the following properties:

a) 0 e F

b) If A e F, then Ac e Ft

c) If Ai e F, i = 1, a, ..., then

CO

U Ai E F	 (1 Ai E F
i=l	 i=1

The pair (0, F) consisting " of a set 0 and a a-field F of subsets of Q

is called a measurable space. The elements of Q are called F-measurable

sets, or just measurable sets if there is no ambiguity. In probability

theory, the set 0 represents the sample space, and F represents the collec-

tions of possible events.

Definition 2.2.2: 	 Let (S21 , Fl ) and (Q 2 , F 2) be two measurable spaces. A

mapping f of Q1 onto Q 2
 i

s said to be measurable if it satisfies the condition:

f-1(A) e Fl	 for every A E F2

Definition 2.2.3:	 Let Q be a set, and 
(fi)ieI 

a family of mappings of

into measurable spaces (^2i, 
F )iel. The a-algebra generated by (fi)ieI 

is

the smallest a-algebra on Q with respect to which all functions 
(fi)ieI 

are

measurable, and is denoted by F(f i , i e I).

t 
A C denotes the complement of A.

POW	 all
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From the above two definitions, we see that if V is the o-algebra

generated by (fi)iEI, and F" is the a-algebra generated by (fi)ieI" then

V C F" if and only if V C I" while V and I" are both countable.

In general, a basic measurable space (Q. F) is assumed to be given

which describes the underlying uncertainty of random phenomena. Such a

measurable space is of an abstract nature; how the uncertainties reveal

themselves depends on the type of experiments we perform to obtain observa-

tions, the outcomes of which we usually referred to as statistics. In ab-

stract mathematical formulation, we let (011 F1) be another measurable

space, where we call 01 the observation space and F1 the collections of all

possible observations. A measurable function, f, from 0 to Q1 is called the

observation statistic. Let F C F be a sub -6-algebra, an observation

statistic, f, is said to be F-measurable if F(f) C F. Special cases of

observation statistics are random vectors (Q l = Rn) and random processes

(Q1 is the set of functions defined on [o. T] with values in e).

Definition 2.2.4: Let (Q, F) be a measurable space. A probability law

on this space is an abstract positive measure p defined on F, t and having

p(Q) = 1. The triplet (S2, F, u) is called a probability space.

Let (Q, F, u) be a basic probability space, and let (52 1 , F1) be another

measurable space representing the observations with a statistic f which maps

S2 onto 52 1 . We can define a probability law on (01, Fl) by defining

u f (A) = u(f 1 (A)); A e F1. We shall call o f the statistical law of u under

f; this law is also called the law of distribution of the statistic f.

P H is a set function defined on F with the property of countable addi-
tivity, i.e., if An e F, n e I, are disjoint, then we have

u(
 U An 1_ 1 µ (An)
n	

I	 n
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Definition 2.2.5: Let (0, F, u) be a probability space, let F 1 be a sub-

a-field of F, and let x be an integrable real-valued random vector. A

conditional expectation of x relative to F1 is an integrable Fl-measurable

real-valued random vector y such that

x (w) du (w)	
f 

y(w) dp (w)	 for every A e Fl	(2.2.1)
A	 A

By the Radon-Nikodym theorem, such a random vector, y, exists and is unique

a.s. (aimost surely): i.e., if y' is another random vector satisfying

(2.2.1). then

u{w: y(w) = y'(w)}	 1	 0	 (2.2.2)

For this reason, we may simply write such y as E{xjF l }. The conditional ex-

pectation of the indicator of A c F with respect to F1 , E{IA +F1}, _,s also
called the conditional probability of A relative to F1 . Note that this

"'probability" is a random variable defined up to an a.s. equality, and not

a number.

Lemma 2.2.6: Let (2, F, u) be a probability space. Let F l , F2 be sub-a-

algebra of F with F1 C F2 . Then

E{Ejy+F 2 11 F,I = Ely IF1}	 a.s.	 (2.2.3)

where y is any p-integrable real-valued random vector.

Proof: By definition 2.2.5, we have for all A e F2

fA
E f y) F 2 } du = 

fA  
y du	 (2.2.4)

By assumption, F 1 C F2 , therefore (2.2.4) holds for all A e F l. Therefore

r

I



-9-

f
A

E{E{YIF2f) Fljdu	
fA

=	 E1YIF2}du
J

(2.2.5)

fA
Y du = f

A 
Ej j Flj du	 A e F1

Now (2.2.4) follows from the a.s. uniqueness of (2.2.1).

Lemma 2.2.7; Let (Q, F, p) be a probability space. Let F l be a sub-a-

algebra of F. Let y be a U-integrable random variable and x is a Fl-

measurable random variable, then

EjxylFl }	 x E { y J F }	 (2.2.6)

Equation (2.2.6) is true when x is a simple function, and the general case

follows using the approximation procedure. For a detailed discussion, see

[ 1 ], [2].

Let f be an observation statistic on Q; i.e., f is a measurable func-

tion from (Q, F) onto (Q l , F1) . Let F(f) be the c#--algebra generated by f.

Such a statistic induces a conditional probability E{IA JF(Ojon F. If there

exists a function Pf(A, w) such that for each w E Q, P f (A, w) defines a

probability measure on F and for fixed A E F.

P f (A, w) = EIIA JF(f)j	 a. s.	 (2.2.7)

then Pf (A, w) is called a conditional measure on F relative to the statistics

f. 'Unfortunately, such P f (A, w) may not exist, and so it may not always be

possible to define a conditional measure on F relative to a certain sta-

tistic. 1l1 Let g be another statistic and F(g) is the a-algebra generated
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and for fixed A e F(g)

P f (A, w) = EIIA IF(f)I
	

a.s.	 (2.2.8)

then one can define the law of distribution of g in the regular manner.

Doob [l] had proved that if the statistic g is a random vector (say Y c Rn)

then the conditional measure on F(y), P f (A, w), A e F(y), exists and so the

conditional distribution of y is well defined (a.s.). Let us denote the

conditional distribution by P f (Y, w) which defines a conditional measure

on the Borel set of Rn through y. If 4^(y) is a measurable function of n-

variables with values in Rm , then almost surely, we have:[11

00^	
f

E l(D(y))F(f)} =	 ... 
J	

^(y) P f (dyl ... dyn , W	 (2.2.9)
f

We can visualize F(f) as the a-algebra which contains, in a loose sense,

all the statistical information conveyed by the observation statistic about

the total underlying uncertainty of the basic sample space. On the other hand,

the conditional measure P f (A, w), A e F(y), describes the statistical infor-

mation of f conveyed about the random vector y. In view of this intuitive

interpretation we have the following definition.

Definition 2.2.8:	 Let (0, F, u) be a probability space, and let F l , F2 and

F3 be sub-a-algebras of F. F 1 and F 3 are said to be conditionally independent

relative to F 2 if for any random vectors, Y l which is F 1 -measurable, and Y3

which is F
3
 measurable; we have

Ely, y3 I F2 f	 Elyl I F 2 I El 
1 1F

2 F2	 (2.2.10)

Let fl , f2 be two observation statistics; f1 and f2 are said to be

independent if F(f 1) and F(f 2) are conditional independent relative to

F2 = ( 0), or we say F(fl) and F(f 2) are independent.
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Let (0, F, u) be a basic probability space, and let y be a random n-

vector on Q; this induces a law of distribution on R n through the statistic

y. Let F1 C F such that F 1 and F(Y) is independent relative to F 2 {  R).

Then for arbitrary B e F1 , we have for A E F(Y), and (D(y) measurable in Rn:

B

	

E{j (y) j Fl j du = J 
B 

(y) du	 fo= IB j(y) du

_

f

		

fB

du(y) du	 (2.2.11)
B 

r
	St

J1(y) du) du	 B e F1
SZ

Therefore, we have

E1(D(y)jF11 = J
	

(D(y) du	 a.s.	 (2.2.12)

In particular if (D(Y) = IA , A e F(Y), then (2.2.11) and (2.2.12) become

u(A n B) = u(A) u(B)	 ;	 EIIAI F l. I = p(A)	 a. s.	 (2.2.13)

This implies that if F1 and F(y) are independent, the conditional distribu-

tion of y relative to F l is the same as the unconditional distribution of y.

Physically, this says that F1 reveals no information about y. In many cases,

Fl is generated by some observation statistics, fl , ..., fn; so if y is in-

dependent of F 1 = F(f i , i = 1, ..., n), this means that the observation of

fl , ..., fn reveals no statistical information about Y.

Let x be a random vector defined on the basic probability space (0, F, u).

x is called a Gaussian random vector if it has the distribution law. 
[31

ux (A) =	 1	 f	 exp - 2 (x,- m)' E-1 (xm) dx	 (2.2.14)
J1 2TrE * xEA
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where

m o E f x)	 E(w)u (dw)	 E o { (x - m) (x

St
(2.2.15)

= 1 (x(w) - m) (x(w) - m)'u(dw)	 .

m is called the mean or expectation of the random vector x, and E is called

the covariance matrix of the random vector x. From (2.2.14), we see that

the statistical law of a Gaussian random vector is specified completely by

its mean and covariance. We shall always denote a Gaussian vector with mean

m and covariance E by the symbol C# (m, E).

Two Gaussian vectors xl , x2 are independent if and only if [31

Efxl x2'
	 xl (w)E 1 (w)u(dw )	 f xl (w)u(dw) XZ(w)u(dw)

Q	 f	 St

(2.2.16)

EI xl 	E f x2 }

Let x(t), t e [t0 , T], be a random n-vector process defined on the

probability space (0, F, U). x(t) q t c [t0 , T], is called; a Gaussian random

n-vector process if for any finite set {tl , ..., tm}, ti a [0 9 T] the vector

E(tV w)
E(W)

x( tm ^ m)

is a Gaussian random nm-vector.

Another observation statistic which we shall consider in the later

chapters is the "Gaussian White Noise Process." Different interpretations

of this kind of process are available. One may view it as a formal deriva-

tive of a Wiener Process, 
[41 

or as a generalized random process 
[5) 

where the

observation space is the set of linear functional on the class of test
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functions. We shall not consider these interpretations in detail; no

matter what interpretation one adapts, a Gaussian White Noise, J(t), has

the following properties:

1)
	 f

t

t 

5(T)dT is Gaussian for all t c [t0 , T] with mean

0

	

ft

	 t

m(T)dT and covariance	 R(T)dT, R(T) is measurable and

	

t0
	
ft

in L2 locally.

	

tl	
t2	

to

2)	 EJ(T)dT,	 E(T)dT	 J(T)dT, t0 < t1 • •• < to < T,

	

t0	
t 
	 tn_1

are independent.

Let F t be the Q-algebra generated by 'L(T), t0 < T < t, then (2.2.12) and

the properties of Gaussian White Noise imply that

Q	

fQ
Ef E(T)dTIF t l = 
	

m(T)dT	 (2.2.17)
t	 t

fQ
	 6	 Q	 Q	 Q

Ef1  EL (T)dT -	 m(T)dr	 ^(T)dT - f m(T)dT^' t^ = J R(T)dT	 (2.2.18)
t	 t	 t	 t	 t

2.3 Linear Stochastic Difference and Differential Equations

Consider a discrete.-time linear system described by

x(k + 1) = AM x(k) + E(k) 	 k 0, 1,	 (2.3.1)

Let (Q, F, p) be the probability space which describes all the underlying

uncertainties. Let x(0), ^(k), k 0, 1, ... be independent Gaussian vectors

with statistical laws:
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AM	
Oso 

9 
IEO)

(2.3.2)

j(k)	 (0 j, R(k))	 k a 0, 1 9 ...	 .

From (2.3.1), since A(k) is linear transformation, x(k) is also a Gaussian

vector, k	 0, 1, ... .(3) Let f be some statistic on (Q, F, u), and let

F(f) denote the o-algebra by f. Suppose that f is independent of 9(1),

i = k, k + 1,	 then for i ? k, by (2.2.12), we have,

R(i + 11f) = A(i).^(ijf) a.s. ; R(ijf) Q E{x(i) IF(f)}	 (2.3.3)

and

(_ + 11f)	 A(i)L(iIf)A'(i) + R(i) a.s.

(2.3.4)

2(il f) = E{x(i)x' (i) jF(f))

Using (2.3.4) and (2.3.3), the conditional covariance of x(i) relative to

F(f), denoted by E c (ilf), will :satisfy

E c (i + 11f) = A(i)E c (ilf)A'(i) + R(i)	 a.s.	 (2.3.5)

In addition, if the c..,, ational distribution of x(k) relative to F(f) is

Gaussian, then for all i ? k, x(i) is a conditional Gaussian vector relative

to F(f). The statistical information of the statistic f is contained in

F(f), but the necessary statistical information of f about the uncertainty

of the future state of the system, x(i), i ? k, is contained in the con-

ditional distribution of x(k) relative to F(f); and if it is Gaussian,

k(klf) and E(klf) completely specify the conditional distribution of x(i),

k, relative to F(f) This is also referred to as the M arkov property.
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In the above discussion, the observation statistic is completely

general. If the observation statistic is linear in z(j), j - 0 1 1, ..., k,

and some other Gaussian vectors, e.g., f = {y(0), ..., y(k)), and

Y(i) - CM x(i) + nW	 i = 0, 1, ..., k	 (2.3.6)

where n(i) is F-measurable, independent of ^(j), j ? k and of Gaussian

statistical law, i - 0, 1, ..., k; then x (k) is conditional Gaussian rela-
tive to F(f). [1] There may be other kinds of statistical observations

which will induce a conditional Gaussian law on x(k), but in this thesis, we

shall only consider observation statistics of the type given by (2.3.6).

Consider a c-!ntinuous linear stochastic system described by

k(t) = AM x(t) + t(t)
	

(2.3.7)

where A ( • ) is measurable in t, and is locally bounded.

Let (0, F, p) be the basic probability space where X(t 0), C(t),

t E [t0 , T] are statistics defined on 0. The solution of (2.3.7), x(t),

is defined as a process which satisfies the integral equation

tf t
t

_x(t)	 x (t0 ) +	 A(T)x(T)dT + 
	

E(T)dr ; t E [ t0 , T]	 (2.3.8)t00
Let E(t) be a Gaussian White Noise Process with

t2
El

r
 C(T)dT }	 0	 t0 -< t  < t0 `- T	 (2.3.9)
tl	L

((t2
	

(
t2	 '	 t2

E^`I 
L(T)d-) 

I	 (T>dT) } _ ( R(T)dT	 ;	 t0 -̀ t1 < t2 <_ T . (2.3.10)
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We shall always assume that x(t 0) and C(T), -1 E [t0 , t], are independent

for all t > to . Therefore x(t 1) is independent of E(T), T E [ tl , t], for

all t > t l . We can find the solution of (2.3.11), 2(r), T e [t i , T], by

successive approximation: t e [t i t T]

	

t	 t
XG (t) _ X (tl )	 ;	 Xl(t)	 X (tl) +	 A(T)X^(T)dT +	 E(T)dT	 (2.3.12)

	

f
t
	

ft
and

rt	 t

xn (t) = x (t l ) + i	 A(T)xn-1 (T)dT +	 j(T)dT	 n - 1, 2,	 (2.3.13)

J t  —	 t1

By the assumptions on A( • ) and R( • ), this procedure will converge with

xn (t) i x(t), t E [ t l , T] a.s., and x(t) satisfies (2.3.11).

Let f be an observation statistic such that F(f) and F(E(T), T E [ t 1 , T])

are independent. Suppose that the conditional distribution of x(t ) rela-

tive to f is Gaussian. Then from (2.3.12) and (2.3.13), we see that the

conditional distribution of xn (t) for a fixed t E [t i t T] is Gaussian rela-

tive to f, n = 0, 1, ..., thus x(t), for a fixed t E [tit T], which satisfies

(2.3.11) is also conditionally Gaussian relative to F(f). Therefore the

complete statistical law of x(t) relative to f is described by its condi-

tional mean and covariance.

From (2.3.13), we see that for all n = 1, 2,
t	

Ti

	
Tn-1

Ejxn (t) IF(f)	 I+	 A(T 1 )	 A(T Z )...	 A(Tn)dTn ... dTl} • Ejx(tl) JF(f); a.s.
t l	 tl	 tl

(2.3.14)

.i
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E{xn (t)xn(t) IF(f) l

	t	
T1	 Tn-1

(I+	 A (c l )	 A(T 2 )...	 A (cn) dTn ...dT l) • E{x(tn )x' (t l )IF(f) •

	

tl	 tl	 tl

t ( T 1	 rTn-1	 t
( .I+f A(T l )I A(T 2 )...

J
	A(Tn)dTn...dT1) +	 R(T)d^^

 Jtl	 tl	 t1	 tl

t	 of	 ^n-2	 on-1
+	 A ("dA (cr 2) ... f	 A (on-1)	 R (an) dan ... dal
	tl	 tl	 itl	 tl

	

t	 of	 on-2	 6n-1
+(ft A(ol)ft A(Q2)... 	 A(Qn-1)^ R(csn)dQn...dol)	 a.s.	 (2.3.15)

l	 l	 tl	 tl

Since xn ( t) -* x(t) a.s., E{xn ( t) IF(f)} -> E { x(t) IF(f)} a.s., and

E{xn (t ) xn(t) IF(f)}	 E{x(t ) x' (t) IF(f)} a.s. Equations (2.3.14) and (2.3.15)

imply that as n	 E{x(t) + F(f)} and E { x(t)x'(t ) IF(f)} satisfy (a.s.):

X(tlF(f)) = A(t)X(tlF( f ))	 t : tl	 R(tjF(f)) ^ E{x(t) IF(f)} (2.3.16)

E(t!F(f)) = A(t)E (tlF(f)) + 2(tlF(f))A' (t) + R(t)	 t ? t1

s(tjF(f)) ^- E{x(t)x'(t)IF(f)}	 (2.3.17)

The conditional covariance of x(t), t ? t l , denoted by E c (tjF(f)) will then

satisfy

E c (tjF(f)) = A(t)E c (tjF(f)) + E c (tlF(f))A'(t) + R(t) a.s. 	 t ? tl	 (2.2.18)

In the above, the observation statistic is completely general.- If the

conditional distribution of x(t relative to f is not Gaussian, then x(t),

t ? t l , will not be Gaussian for any fixed t; however the conditional mean

and covariance of x(t), t ? t l , are still given by (2.3.16) and (2 . 3.18).

m s	
-	 r"

F39MMEW --1L
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In this thesis, we shall assume that the observation statistic is of the

form

	

Y(t)	 C (t) E(t) + n(t)	 ,	 t o [t0 , T3	 (2.3.19)

where n(t), t e [t0 , T] is Gaussian white noise with

t2

	

E{	 n(T)dT 1 = 0	 (2.3.20)
f t

(
t 2	 t2	 t2

	

E{`J n(T)dT) (	 n(T)dT)	 _	 Q(T)dT	 (2.3.21)

t 
	

t 
	

t 

and n(t), t c [t0 , T] is independent of E(t), t e [t0 , T], and x(t0). With

such observation statistic, we see that Ft	 F(Y(T), T e [ t0 , t l ]) is inde-

pendent of E(T), T e [t l , T]; furthermore x(t l jFt ) is Ft -measurable and

x(t F ) is conditionally Gaussian if x(t ) is Gaussian.[ 4] If 1
_^ t	 _ 0

t
0	 1	 2
< t < t	 < t , we have

n

Ft C Ft ... C Ft C F
1	 2	 n

In the more general nonlinear case, the system is described by

x(t) = f(t, 2(t)) + C(t)	 (2.3.22)

where E(t), t e [ t09 T], is a Gaussian white noise with statistical law

(2.3.9) , (2.3 . 10) , and f (t, x(t)) is F (E ( T ) , T e [,t 0 , t])-measurable, the

solution of (2.3.22) is defined as theprocess which satisfies

( t

	 ft

	

X(t)	 x(to) + J	 f(T^X(z )) dT + 
	

E(T)dT a.s. t e [t0 , T]	 (2.3.23)
t0	 t0

If f(t, -) satisfies the Lipschitz condition

OUR
M lima z	 ;

F
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(1f(t ^ Xl) - f(t, x2)`^ < a1lx1 - x2 II	 x1, x2 E R"	 (2.3.24)

where a is some constant; then the method of successive approximation by

setting x(t)	 K(t0) and

f
±(T,

t 	 t

xn (t) = x(t 0 ) + 	 xn-1(T))d-	 ... (2.3.25)
t0	 t0

will converge almost surely to x(t), as n 	 (6] The interpretation we

used here is Ito's; the reason for adapting this interpretation is due to

the rich mathematical properties one can deduce and utilize by using this

interpretation. Ito's theory in stochastic differential equation will not

be considered in here, the detail can be found in [1], [7], [8]'.

Let x(t) be a process described by (2.3.22) or (2.3.2.3); x(t) is

called a diffusion process.[5] ' [7] Let £(•, •) be defined on T xRn with

real scalar value, such that Cx (t, x), Ct (t, x), and Cxx (t, x) are defined

and continuous. The differential generator of x with respect to C is de-

fined by

£(C(t, x)) A- lim(s - t)-1E{C(t + At, x(t + At)) - C(t, x(t)(x 	 x}_	

s i t	
—	 — — 

(t) —

 8	
(2.3.26)..

If x(t), t E [to , T], satisfies (2.3.22), then [ 7 1 9
 [ ]

Z(C (t, X))	 2 trlR1 /2W IC (t, x)R1/2 (t)I + f(t, x)'Cx (t9 x)	 (2.3.27)

If in addition,

IC) + 1 Ct j + ^X,,C I + I1 21Cxx l < k 1 + 1x12	 (t, x) E T xR"

(2.3.28)
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then

t

	

C(t,X(t) ) = c (tl , X (tl)) +	 [ S(C(T,X(T) ) + CT (T sX(T)) IdT
tl

t
	+ 	 Cx(T,x(T))'E(T)dT 	 (2.3.29)

tl

where now the last integral must be interpreted in the sense of It6.[171

Let F1 be the sub -Q-algebra which is independent of F(E(T) z e [tl , T]).

Since [4)

rt
El

f
Cx(T, x(T))' E(T)dT'Fl 	 0	 (2.3.30)

t1

we have from (2.3.29) the Ito ' s integration formula: 
(171 9 [41

c
	
ft

EJC(t,x(t))JF1f EJC(tl,X(tl&lJ+ E{ 	 {,Z(C(T,x(T)) + CT(T'X(T)fdTIFl

t l	 (2.3.31)

2.4 Stochastic Optimization

In this section, the mathematical tools for stochastic optimization

problems are stated, and the outline of the proofs will be given. These

stochastic optimization techniques will be used in later chapters to solve

different stochastic control problems.

Since we shall be considering linear systems with Gaussian disturbances,

the process which we shall control will be Gaussian. Thus an adequate de-

scription of the process is the evolution of its mean and covariance. As a

result, we shall deal with a set of deterministic equations which describes

the "trajectory" of the mean and covariance In many cases, we can transform

r
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a linear stochastic control problem into a deterministic control problem

where the dynamics of the deterministic system are described by a set of

matrix and vector differential equations. After making such transformation,

the technique of the matrix minimum princ 2le can be used to obtain neces-

sary conditions for optimality, [9119[101 in the following way.

Discrete Time Control Problem:

A set of matrix and vector difference equations is given:

X(k + 1) - X(k) _ F(k,.X(k),.x(k),U(k))
k = 0, 1, ..., N - 1	 (2.4.1)X( , ) = 

XO' 
x( , ) -

x(k + 1)	 x(k) = f(k,x(k),X(k),q(k))

with LT(k) c S, constrained control set, X(k) s 
nm
M , x(k) c Rp . Consider the

	

—	 —

scalar cost:

N-1

J = K(X(N),x(N)) + I L(k,U(k),X(k,x(k))	 (2.4.2)

k=0

It is assumed that F(k, • ), f(k, • ), K( • ) and L(k, • ) satisfy the conditions

required by the discrete minimum principle. 
(33] 

The control problem is to

choose U 
x

(k), K = 0, ..., N - 1, such that the cost (2.4.2) is minimized sub-

ject to the constraint (2.4.1) and U (k) E S, k 	 0, ... 9 N - 1.

Define the Hamiltonian function

H(x_(k),x(k),P(k+l),p(k+l),U(k)) 	 L(k,U(k) X(k) (k))
(2.4.3)

+ f (k,X(k) ,R(k),U(k))p(k,+l)+trjF(k,X(k) x(k) U(k))P^(k+l) }

where P(k), p(k) are the costate associated with X(k) and x(k) respectively.,

.LL
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Theorem 2.4.1: (Matrix Minimum Principle: Discrete Time)

Let U (k), k = 0 9 ..., N - 1 be the optimal control and X (k), x * (k),

k = 0, ..., N be the optimal state, then there exists a costate matrix

P* (k) associated with X* (k), and a costate vector p (k) associated with

x* (k) such that the following relations hold:

1) Canonical Equations:

X*(k + 1) X*(k)	 aP(kx+ i)l	 ; x* (k + 1)	 x*{k) - a (k
1H+ 1)*	 P	 *

P * (k + 1) - P* (k) _ _ aH; P * (k + 1) - p* (k) _ _ aH
	aX(k)^	 ax(k)

(2.4.4)

2) Boundary Conditions:

X*(0) = o ; x* (0) - o	 (2.4.5)

	

P
* (N) = AL* (N) x (N))	 *(N) = aK (X*(N)^ (N))	 (2.4.6)

aX*(N)	
P	

ax*(N)

3) Minimization of the Hamiltonian:

For every U E S, and for each k = 0, 1, ..., N - 1

H(X*(k),x*(k),P*(k+l),Q (k+l),U*(k)) : H`X * (k) x*(k),P*(k+l),p*(k+l),U)
(2.4.7)

Continuous Time Control. Problems:

A set of matrix and vector differential equations is given:

X(t) = F(t,x(t),x{t),U(t))	 X (t0 ) = xD

(2.4.8)

k(t) = f (t,x(t) ,X(t) ,U(t) ) ; x (to)
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with U ( t) E S. constrained control set, X (t) E 
Mnm, x(t) 

a Rp . Consider

the scalar cost:

T
J = K(X(T),x(T)) + ft 0  L(t,X(t),x(t),U(t))dt ; T fixed	 (2.4.9)

The usual differentiability conditions for F(-), f( • ), K( • ), and L( • ) are

assumed to be satisfied. The control problem is to choose U (t), t e [to , T],

such that the cost (2.4.9) is minimized subject to the constraint (2.4.8)

^c
and U (t) a S.

Define the Hamiltonian function

H(X(t) ,x(t) ,P(t) ,p(t) ,u(t) ) o L(t,x(t) ,x(t) ,U(t) ) +
(2.4.10)

f' (t,x(t) ,X(t) ,U(t))p(t) + tr{F(t,x(t) ,x(t) ,U(t) )P' (t) }

where P(t), p(t) are the costate associated with X(t) and x(t) respectively.

Theorem 2.4.2: (Matrix Minimum Principle: Continuous Time)

Let U (t), t E [tO, T], be the optimal control and X (t), x (t),

t E [to , T], be the optimal state, then there exist costates P * (t), p (t)

such that the following conditions hold:

1) Canonical Equations:

*(t)	

D
_

3H	 9H

 ' X*(t)	 a a(X	 t)I
	 (2.4.11)

I	 pI

P(t)	
aX(t)	 P 

(t)	 ax(t)	
(2.4.12)
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2) Boundary Conditions:

	

X* (to ) _ AO	 x* (to )	 xo	 (2.4.13)

	

P* (T) = 8K(X*(T).1i*(T))	 p*(T) s 3K(X (*),X* (T))	 (2.4.14)
aX (T)	 3x (T)

3) Minimization of the Hamiltonian:

H( X*(t),x*(t),P*(t),p*(t),U*(t)} -` H(X*(t)'X*(t),P*(t),p* (t) ,U 	 (2.4.15)

for all U e S and t o [to , T].

The matrix minimum principle (both discrete and continuous) is a just straight-

forward exte-nsion of the 	 vector minimum principle, Holtzman and Halkin

[33], Pontryagin, et al. [11]. Theoretically, the justification of the

matrix minimum principle hinges on the existence of a mapping from Mnm to

em . The details were carried out by Tse [9]; see also Athans (12].

The matrix minin ►um principle only provides us with necessary conditions

for optimality. A control and its corresponding state trajectory which

satisfies the matrix minimum principle will be called extremal control and

extremal state trajectory. If one can prove the existence of optimal con-

trols and the uniqueness of extremal controls, the matrix minimum principle

also served as a sufficient condition for optimality. But, in general, the

matrix minimum principle does not provide sufficiency. It will be convenient

if one can have some sufficient conditions for optimality, so that one can

easily test to see whether an extremal control is optimal or not. It turns

out that to look for sufficient conditions, it is often easier (and more

general) if we consider the original stochastic control problem without

transforming it to deterministic description in terms of mean and covariance.

1
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Discrete Time Stochastic Control Problems:

A discrete time stochastic process is described by

x(k + 1) = f(k,x(k),u(k)) + ^(k)	 k = k0 , k0 + 1,	 (2.4.16)

with x(k) E 0, u(k) e RT . Let x(0), E(k), k = 0, 1, ... be independent

Gaussian Vectors defined on the basic probability space with statistical

law (2.3.2).

Let U(k09 k) ¢ (u(k0),u(k0 + 1),...,u(k)} denotes the control sequence,

and g(k0), g(k0 + l,u(k0)), g(k0 + 2 ,U(k0 , k0 + 1)), * _ 9 g(ksU(k09 k - 1)),

... is a sequence of observation statistics which depends on control se-

quence, such that for all control sequences F(k,U(k 0 ,k - 1) C F(k + 19U(k0,k)),

where F(g(k,U(k09 k - 1)) ^ F(k,U(ko ,k - 1)). Let{XU(k 
,k-1)(k)}k=k be the

0	 0
process described by (2.4.16) when control sequence U(k O ,N - 1) is applied.

Assume that 
X
U(k ,k-1)(k) is F(g(k,U(k 0 ,k - 1))-measurable when the control

0
is restricted to be of the form:

u(k)	 J(k,g(k,U(kO ,k - 1)) E S	 (a. s.)	 .	 (2.4.17)

The control problem is to find air optimal control law	 (k, U (k,09k-1))

such that

N-1

J(U(kO ,N - 1)I F (g(k0))	 EIK(x(N)) + I L(k,2(k) ,u(k))JF(g(k0))J (2.4.18)

k=k0

is minimized subject to (2.4.16).

Theorem 2.4.3: (Optimality Criteria: Discrete Time)

n
Suppose that there exists a control strategy 	 (i, • ): I	 xR -*. S

[k0,N-1]
n

and a scalar function C(•,•): 
I [k ,N-1]
	 -> R1 such that almost surely,

0
1)	 C(N,x) = K(x)	 (2.4.19)
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2)	 0 = E{L(k,x,^ *(k,x))+C(k+l,x*(k+l,x) IF(k,U(k0,k-1))}-C(k,x)
(2.4.20)

s E{L(k,x, u)+C(k+1,xu(k+l,x)[F(k,U(k0,k-1)}-C(k,x) a.s.

k - k09 k0 + 1 9 ..0

where for k = k09 k0 + 1 9 ..., N - 1

x* (k + l,x) = A(k)x + B(k)j (k,x) + E(k)	 (2.4.21)

	

xu (k + 1,.E) = A(k)x + B(k)u + E (k) 	 u ^(k,gk) E S

*
	i.e., u is any permissible control value at k. Then the control law 	 (•,•)

is optimal and C(k0 ,x(k0)) is the optimal cost a.s.

Proof: Let x 
* 
k k = k ....,N be the random vectors which satisfy the dif_	 o

ference equation (a.s.)

x* (k + 1) = A (k) x* (k) + B (Q) * (k, x* (k)) + E(k)

(2.4.23)
*

K (k0) = x (k0)

By using lemma 2.2.6, we have from (2.4.20) that: (a.s.)

C(k0 ,x(k0 )) = E{L(k0,x(k0),O*(k0,x(k0))+C(k{,+19x*(k+l) IF(g(k0))}

E{L(k0^X(k0))^*(k.0,x(k0)) (F(8(k0))}

+E{E{L(k0+1,x*(k0+1))I (k0+l,x*(k0+1))

+C(k0+2,x*(k0+2)) iF(k0+1,4^ *(k4sg(k0))}IF(g(k0))}

k0+1

E	 L (k , j (k)9_t * (k, x* (k))) F ($ (k )
1

0)

k=k0

	

+E{C(k0+2,x*(k0+2))jF(g(kO))}	 (2.4.24)
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Inductively and keeping (2.4.19) in mind, we have

N-1

C(k0 ,2i (k0)) = EfK( * (N))+	 L(k,2 *(k),_̂*(k,x*(k))jF(g(k0) ) 1 a.s. (2.4.25)

k=k0

Now let U  = {u°(i )}i_1 be any admissible control law of the form ( 2.4.17).

Let x (k), k = k0 , k0 + 1, ..., N be the random vectors which satisfy (a.s.)

x (k + 1) = A W x (k) + B (k)uo (k) + 4(k)	 x (k0)	 x(k0 )	 (2.4.26)

By (2.4 . 17), u (k) is F(k , U0 (k0 ,k - 1))-measurable. Using lemma 2.2.6 and

the inequality of (2.4.20), we have (a.s.),

MO ,X(k0)) S E{L(kO ,X(kO),u0 (k)+C(k0+l , x (k0+1))IF(g(k0))}

S E{L(kO ,x(kO)),u (k)IF($(k0))}+E{E{L(k0+l,x (k0+1),u0(k0+1))

+C(k0+2,x (k0+2) ) IF(k0+l ,uo(k0) ) } IF(g(ko))}

kO+1

= E{ 
I 

L(k,x (k),u (k))IF(g(k0)))+EfC(k0+2,x°(k0+2))IF(g(k0))}

k=k0	 (2.4.27)

Inductively and using (2.4.19), we have

N-1

C(kO,.X(k0)) -̀ EIK(x (N)) +

	

	 L(k,x (k),uo(k))IF(g(k0))1 a.s. (2.4.28)

k=k0

Combining (2.4.25) and (2.4.28) we have the assertion of the theorem.

Continuous Time Stochastic Control Problem:

A continuous time pr^jcess is described by

:k(t) = f(t,x(t)) + B(t)u(t) + E(t)	 (2.4.29)
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where x(t) s 0,.I(t, ) satisfies the Lipschitz condition (2.3.18).

x(t0) ti ^(^,_) and -(T), T E jtO ,T) is white Gaussian noise with statis-

tical law (2.3.9) and (2.3.10). Denote the control U[t 0 ,t) = {U(T),

T c [t0 ,t)J. Let g(t,U[tO,t)) be an observation statistic such that if

t  < t2 , F ( tl , U [ tO g t )) _°- F (g ( t0U [ t0 , t l )) C F ( g (t2 , U [t0 9 t 2 )) _° F(t2U[tO,t2));

at t = t09 g(tO9U[tO9t0)) 0_ g(t0) and is independent of control. Let

{XU[t 
,t] (t), t e [tO,T]} be the process described by (2.4.29) when U[tO,T)

0
is applied. We assume that xU[t 9t) (t) is F(t,U[t0 ,t))-measurable when the

0
control is restricted to be of the form

R(t) = $(t ' g (t g U[ tO 9 t ))) 6 S	 (a.s.).	 (2.4.30)

The control problem is to find optimal control law of the form (2.4.30)

such that the cost

T
J(U[t O ,tl) (F(g (t0 ))	 E JK (x (T) + I L(t) x(t) u(t))dtI F (g (t0 )) } (2.4. 31)

J t0

is minimized subject to (2.4.29).

For a fixed control U0 [tO ,T) of the form (2.4.30), we have a fixed

diffusion process described by

:k(t) = f(t,x(t)) + B(t)u0 (t) + E(t)	 (2.4.32)

and we can associate with U 0 NJ] a fixed differential generator 9 o(•).
u

Let C(t,x) be a scalar function, we have

0 Mt,20 )	
2 

tr 
{R1/2(t)-Cxx(t'X)al/2(t) }+(f (t,x)+B( )u (t))' •	 (2.4.33)

U
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Theorem 2.4.2: (Optimality Criteria: Continuous Time)

Suppose there exists a control law ^ (•,•): [tC ,T) xRn -)- S with *(t,•)

n	 1
satisfying the Lipschitz condition, and a function C( • , • ): [tO ,T) xR	 R

such that

1) C(t,x), C t (t,x), CX (t,x), Cxx (t,x) are continuous and for

some k

ICI + I C t I + 1xI I C% I + 12EI 2 l-cxx I < k(1 + Lx^ 2 )	 (t,x)e[to,T)xRn	 (2.4.34)

2) C(T,x) = K(x)	 a.s.	 (2.4.35)

3) 0 = C t (t,x) + E{ .9c(C( t , x) + L(t,x,j (t,x)) IF(t,U[t0,tW

`- C t ( t , x) + E{ Z C(t,x) + L(t,x j(t,x)) jF(t,U[t0.t))} a.s. (2.4.36)

for all (t,x)e[tO ,T]xRn , and _t(t, • ) satisfies Lipschitz condition.	 j

Then	 (t,x(t)) is the optimal control law and C(t o ,x(t0)) is the optimal

cost a.s.

Proof: Let x (t) be the resulting diffusion process described by (2.4.32)

where we adapt control law 	 Using the Ito's integration formula

(2.3.31) applyi- *o the process x (t), we have

E{C(tO,x*(t0))IF(g(t0))} = C(tO,x*(to)) = E{C(T,x*(T)))F(g(t0))}

EI f T  [ Yo* (C(T,x {T)))
t0

+ CT(T,x*(T))IdT^F(g(t0))}	 a.s. (2.4.37)

By lemma 2.2.6 and Equation (2.4.35), (2.4.36), we obtain
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C ( to9X* ( t 0)) = E ( E ( C (T ,x (T)){F(x*(T))}IF(g(t0)))

T

EfEf	 [ VC(T,x*(T)))

t0

+ CT (T ,X* (T ))I dr j F (t, U [ tot t )) IF(g(t0))

f

T
E K(x*(T)) + 	 L(T,X*(z), *(T,x*(T))dTIF(g(t0))

t0

a.s.	 (2.4.38)

Let _t(t, • ) be any control law which satisfies the Lipschitz condition, and

x 
0
(t) be the resulting diffusion process described by (2.4.32) when control

law e (t,•) is used. The It6's integration formula, applied now to the
process xo (t), gives us

(T
C ( to,?(t0))	 E{C(T,xo(T)) ^F( g (t0))} - EI J [Z0o(C(T,x0(T)))

t0

+ CT(T,X0(T))JdTIF(g(t0))}

T
EI K (x(T)) +	 L(T,x000) 0 T, x ( T ) ) dr I F (g ( te)) } a. s.

ft0
(2.4.39)

where the last inequality comes from the inequality part of (2.4.36), also

lemma 2.2.6 is being used in deriving (2.4.39). Note that C(•,•) is de-

fined on [to9 T)xRn ; now equations (2.4.38) and (2.4.39) yield the statement

of the theorem.

2.5 Generalized Matrix Riccati Difference Equations

For a given sequence of matrices V k {V(k)}k=k V(k)_	 s Mnm, k k0'0 

k0 +_1, . , let {Pv(k,k0'—F)}k=k be the sequence which satisfies the linear
0

matrix difference equation:

qr
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Pv (k+1,k0 ;F) = (A(k)-V(k)D(k)A(k))Pv(k,k0;F) (A(k)-V(k)D(k)A(k))'

+(zn-V (k) D(k) )sl (k) ( -V (k)D (k)) '+g 2 (k) Q, (k)+V (k) R(k) V' (k)

P V (k0 ,k0 ;F) = F
	

(2.5.1)

where A(k) e Mnm , D(k) e mnM are bounded uniformly for all k. We assume
- 

that F, Ql(k), Q2 (k) are symmetric nonnegative definite nxn matrices with

Ql(k) < Q2 (k), k = k 0 , k0 + 1, ..., and that R(k) is symmetric nonnegative

definite mxm matrix. Since (2.5.1) is linear, therefore for any arbitrary

V(k) c Mnm , k = k0 , k0 + 1, ..., {Pv (k,kO ;F)}k-k exists, is unique and
0

Pv (k,k0 ;F) ? 0, k = k05 k0 + 1, ... .

When V(k) ranges over Mnm , k = k0 , k0 + 1, ..., we generate a solution

set J3	 = {(P (k,k ;F))
-
	{_{k) e M	 + 1	 ..}. All elements

k0	 -v	 0 - k=k0 
V	

nm'	 0' 0

in the solution set(B k is a sequence of symmetric nonnegative definite
0

nxn matrices.

Definition 2.5.1: (Minimal sequence) .Let,9k{(M(k)) k=k ^ M(k) e Mnn,
0
	

0
M (k) ? 0, k = k0 , k0 + 1, ...}; an element ( 110 (k)) k=k e k is called a

	

0	 0
minimal sequence with respect to 0k if for all (M(k) )k=k e '4k , we have

	

0	 0	 0
M°(k) : M(k), k = k 0 , k0 + 1 1 ...

For a given set 
&k , 

a minimal sequence may not exist; but if it
0

exists, it must be unique. In the following, it will be shown that the

solution set Rk has a unique minimal sequence.
0

Let us define the matrix T (V,P) by (k = k 0 , k0 + 1, ...)

Tk (V,P)	 (A(k)-V D(k)A(k))P(A(k)-V, D(k)A(k))'+(?n V D(k))g-1(k) ( In-V D(k))'

	+Q2(k)-Ql(k)+V R(k)V'
	

(2.5.2)
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where V E Mnm , P e- 'M 
nn 

Fc-- - ? fixed P e 
nn,

 define the set

is 
(P)	 E Mnm#(*)k is satisfied} where the condition (*) k is given by

O',)k V{R(k)+D(k) (gl(k)+A(k)P A' (k))D' (k) } _ (A(k)P A' (k)+R,(k) 	 (k) . (2.5.3)

We have the following lemma:

Lemma 2.5.2: (Minimum property) Let P E Mnn , and P ? 0; if V E V k(P),

then for all V E M
nm'

Y'k(V,P) ? tYk (V,P)	 k = k0 , k0 + 1 9 ...	 (2.5.4)

Proof: Let us denote

R(k, P) = R(k) + D (k) 
(Ql 

(k) + A(k) P A' (k) )D' (k)

(2.5.5)

k = k02 k0 + 1 1 ...

The condition (*) k can now be written as

(*)k	 V R	 111(k)(k,P) = (A(k)P AI(k) + QI(k)) 	 '(k)

k = k09 k0 + 1, ...

Let V r:IS (P), V must satisfy (*) k; and so for V E Mnm , we have
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Since R(k,P) : 0,	 (2.5.4)	 follows from (2.5.6).

An immediate consequence of the lemma is that

Tk (V
I 

O P) = Tk (V2 ,P)	 Vl,V2 E ^k (P) (2.5.7)

ar
Theorem 2.5.3:	 There exists a unique minimal sequence, {P 

o 
(k,k ;F)}0 —	 k=k0

with respect to the solution set R	 .
k
0

Proof:	 Let us construct the sequence {P 0 (k,k ;_K)) 
00
	 as follows:	 Set

—	 0 — k=k0

P°(k02 k0 ;F) = F, and choose V°(k0) E IS 	 (F).	 Such a V°(k0) may not be
0

unique, but by (2.5.7) and (2.5.1), this gives rise to a unique

P° (k0 + 1 9 k0 ;F) = Y	 (V°(k0)^F), V°(k0 ) E IS	 (F).
0	 0

r	 Assume that V°(k), k0 , k0 + 1,	 ..., k0 + i, have been chosen induc-

tively with V° (k) E l5 jt (P° (k,k0 ;F) and a unique sequence

P°(k+1,k0;F) = Tk(V°(k),P°(k,k0;F)) 	 ,	 k = k0 ,k0+1, ... ,k0+i	 (2.5.8)

has been constructed. 	 Choose V°{k0 + i + 1) E Is	 +
k +i+1(P^(k0

i + 19k0;F)).

By (2.5.7) and (2.5.1), 	 this gives a unique

'?°(k0+i+2,k0,F)	 Yk	 +l(V°(k0 + i + 1),e (k0+i+1,k0;F)) (2.5.9)+i
0

The sequence {P 0 (k,k ;F)}
00
	thus constructed is unique.

—	 0 — k=kd

Let V = {V(k))k=k	 be an arbitrary sequence with V (k) E Mnm , k = k0,
0

k0 + 1,	 By lemma 2.5.2,

P
v
(k

0
+1,k0 ;F) ? P°(kd+l,ko ;F) (2.5.10)

Assume that for i a 1,

Pv (k0+i,k0 ;F) >_ P°(k0+i;k0 ;F) (2.5.3 -1)
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From (2.5.1) and (2.5.2), we 	 for a given V e M
nm

Y (V , P, ) > Y (V,P 2 )	 if	 k : P 2 2:0	 k = ko ,kel ' ... . (2.5.12)

Combining (2-5.1), (2.5.2) , (2.5.4) , (2.5.11), and (2.5.12) , we have

P (k +i+l,k ;F) =' 	 (V(k +i),P (k +i,k ;F)) ? 	 (V(k +i),P 0 (k +i,k ;F))
w 0	 0— k0+i — 0 —v	 —	 k0+ — 0	 0 0—

i
k+i(V°(k0+i),P°(k0+i,k0;F)) = P°(k0+i,k0 ;F)	 (2.5.13)

The theorem follows from induction.

Definition 2.5.4: The set of equations

P(k+1,k0 ;F) 	 (1n-V(k)D(k)) (A(k)P(k,k0;F)A' (k)+Ql (k)) (In-V(k)D(k))'

+Q2 (k) Ql(k)+V(k)R(k)"V' (k) 	 1(k0,k0;F) = F

(2.5.14)

V (k) (R(k)+D(k) (A(k)P (k,k0;F)A' (k)+ql (k) )D' (k) )

= (A(k)P(k,kp;F)A' (k) + Q1 (k)) D' (k)

is called the generalized Matrix Riccati Difference equation, and the

unique solution is called the Riccati sequence, which is also the minimal

sequence with respect to '9k .
0

The above definition is meaningful because of theorem 2.5.3 In the

special case when R(k) or D(k)Ql(k)D'(k) (or both) is positive definite,

then (2.5.14) can be written as a single nonlinear difference equation:

ii aw li-looll 	 111i 

I 

III 1	 11.1--111. 0161. 
11,
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P(k+1 9 k0 ;F) = A(k)P(k9k0 ; F)A'(k)+Q2(k)-[A(k)P(k,ko;F)A'(k)+Ql(k)]D'(k)-

(R(k)+D(k) (A(k)P(k,kO;F)A' (k)+Ql(k))D' (k) }-1D(k) [A(k)P(k,k0;. )A' (k)+Ql (k) ]

F(ko sk0 ;F)	 F
	

(2.5.15)

Equation (2.5.15) is the Matrix Riccati Difference equation. [2819[291

2.6 Generalized Matrix Riccati Differential Equations

Let V(t) be arbitrary b-o-ended measurable nxm matrix defined on [to,T].

Let P
v
(t,t 0 ;F) be nxn matrix defined on [t o ,T] which satisfies

V(t,t0 ;F) = (A(t)-V(t)Dl(t)) PV( t,to;F)+Pv(t9to;F)(A(t)-V(t)Dl(t))'

+V(t)4(t)v' (t)+(In-V(t)D2(t))R(t),(In-V(t)D2(t))'

PV (to ,t0 ;F)	 F ? 0	 (2.6.1)

where A(t) is nxn, D1 (t), D=:-2 
(t)are mxn; R(t) is nonnegative definite nxn

matrix and Q(t) is mxm nonnegative definite matrix (all matrices are

assumed bounded measurable). Since (2.6.1) is linear, the solution

Pv (t,t0;F), t E [ to ,T], exists and is unique for a fixed bounded measurable

V(t) (nxm) defined on (to,T].

When V(t) ranges over the set of all bounded measurable mxm matrices

defined on [t o ,T], it generates the solution set 0T	 {Pv(t,tO F);,
0

t c [to ,T]IV(t) is bounded measurable nxm matrix defined on tto,T]I.

Definition 2.6.1: (Minimal function) Let & t = {M(t), t e [to ,T]IM(t) ' 0,
0

t R [t0 ,T7} . An element Mo ( • ) E 49t is called a minimal function with respect
0

to 9t if for all M( •) s a9t , emS M(t) t	 [t0,T7 .
0	 0

Let us define

Ut,V(t)) = A (t) - V(t)! (t)	 (2.6,2)
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Thesolution of (2.6.1) is given by [341

t
P^(t,tO ;F) - A(t,tO)F	 1(t,t0) + i(t,T){V(T)_q(r)V'_ (r) +t0

[ In - V(T)D2 (T) ]'R( T ) [In - V(T)D 2 (T) ]' }±A(t,T)dT (2.6.3)

Since F, R(T), Q(T) are all nonnegative definite matrices, we have

P
v 
(t o t 0 ;F) ? 0 t E	 [tO ,T]	 . (2.6.4)

Define the matrix

4'(t,V,P)	 (t OD!+ P A' (t ,V) + V Q(t)V' +

(ILA	
V 11

2 (t))R(t)(In - V D2 (t))' (2.6.5)

where V is bounded nxm matrix, and P is bounded nxn matrix. For a fixed

P E Mnn , define the set vt(P) _ {4' E Mnmi(*)t is satisfied where (*) t is

the condition

(*) t	 V(4(t) + D 2 (t)R(t)D2 (t)) P D1 (t) + R(OD2 (t)

Lemma 2.6.2:	 (Minimum Property) 	 Let P e Mnn , and P - 0; if V e Ist(P),

then for all V e Mnm , we have

t e NJ]	 . ( 2:6.6)

Proof:	 Let V e bt (P), by using (*)t we have

___.:... _	 .
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=T(t,v,Y)+(_v-i) (D2(t)R(t)D2(t)+,Q(t)) (Y-v)'

= A(t)P-V D,(t)P+P A'(t)-P 21(t)V'+R(t)4 D 2 (t)R(t) -R D^(t)V'

+2V(-D2

+Q(t))v'-v(D2(t)R(t)^' (t)+g(t))v'

= A(t) -VDl (t)P+P A' (t) -F D' (t)V'+R(t)-V D,,/ -R D' (t)V'

+V(D2(01R(t )DZ(t)+Q(t))_v' 	 `Y(t,V,P)	 t E [to p-[]	 (2.6.7)

Since R(t) ^ 0, Q(t) ? 0, (2.6.7) implies (2.6.6) immediately. From the

lemma, we have

= !(t 9 V 2 ,P)	 if	 V1V2 E "t(P )	 (2,6.$)

Theorem 2.6.3: There exists a unique minimal function P 0(t,t0;F),

t E [to ,T], with respect to the solution set IBt .
0

Proof: Let us construct a sequence f4(t,to ;F)}k=l as follows	 Set

P l (t,t0 ;F) = 0, choose bounded measurable Vl (t) e U t (Pl (t,to ;F) t c [to,T].

Denote P 2 (t,t O ;F)	 PVC (t,t0 ;F). Having chosen bounded measurable
1

Vi (t) t 15 t (Pi (t,t0 ; . )), t c [to>T], for i = 1, ..., k, let 4+1(t't0'F}

PVk 
(t,t0 ;F), t E [tO ,T]. Using lemma 2.6.3, for k > 1:

d(Pk(t,t0'F)-Pk+1(t,to,F))

dt	 = 
T (t'Uk-1(t) ,Pk(t, to ; 

F) )-T (t,Vk(t)'.Zc+l (t' t o ; F)

T(t,Yk(t),Pk( t,to;F))-Y(t,v_k(t) 4+1(t,t0;F))

A(t,Vk(t)) (Pk(t,to,F)-Pk+l(t,to;F))+

(Pk (t ' tO,F) Fk+l(t't0'F))A(t,Vk(t))'
	 (2.6.9)
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Since P (to) t0 ;) r P	 (t0	'.".9) implies that for k > 1:
.7-L-+l 

Rk (t ' tO .I)	 Zk+	 0	 t F, [tW T]	 (2.6.10)
-  

o. .^Therefore, there exists P
o ' " 0•,K such that

lim Pk (t)tW-' F) = P'(t^t0	 (2.6.11)
k->- 

=-	 - 

Let us define, for k > 1, the matrix P 
k (t't 0 ;F) which satisfies

kk(t, 
t.	 (t, t ;D .

1k (t
 0 2t 	 (2.6.12)

0 ;-!)	 00

Clearly, Kk(t, t 0 ; .K) a 0, t E [to) T] p and

d(P k (t)t 0 ;.!) 

dt 
-Kk(tatO;-!))	 A(t	

-I 
M( 4-1 (tilt 0 ;F)	 (tft 0 ;F))

+)	 (t	 W) -
(-Pk-1 (tt 

0 ; -K)	 '.Yk-1

(2.6.13)

Since &(t,yk1	 -	 _l(t)) is bounded measurable in [t o ,T], taking limits on both

sides of (2.6.13) and using (2.6.11), (2.6.12) we have

(t) 'e (t, t	
l,m pk (tt'	 PO (tt' ;K)0	 0;1) = "m Kk(t'tO;.')	 -	 0
k->co

(2.6.14)

where V° (t) E 1st
 

(e (t't 0 ;F), t 6 [tO)T].

Note that the choice of the sequence {V 1 (01 i=1 is nonunique and so

cothe sequence {P i (t't 0 ;F))i=l thus constructed is nonunique. Let {V i (0)

be another chosen sequence where for i z	 E: 1 t	 (t,t 0 ;.1)) and

kl (t,to ;F) = 0, F. (t'-^ t0	 -VP - . (t,t0 ;F). Let1+1 
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Then P
0
(t,t0 ; , ) also satisfies

P0 (t,t
0

;F) = Y'(t,Vo(t),Po(t,tp;F)) 	 ;	 Po(to ,tp ;F) = F	 (2.6.16)

where Vo (t) E Ut (PO (t,tp ;F)), t e [t O ,T]. Using lemma 2.6.2, we have

Po (t,t0 ;F) - P°(t,tp ;F) = Y'(t,V°(t),Po {t,t0 ;F)) - ±(t,zWte(t,t0;F))

: Y'(t,Vo (t),Po (t 9 tp ;F))	 !(t,VoWIt(t,tp;F))

= A( t , Vo (t)	 (t,t0;.) - Po (t, t0 ;F)) +

CPO ( t ,t0 ;F) - Po (t,t
0

,Vo (t))	 (2.6.17)

We conclude that P 0 (t,tp ;F) 1 Po(t,t0;.), t s [tp ,T]. We cin interchange

betweenPo (t, tp;F) and Po (t, tp ;F) in (2.6.17) to obtain P o (t, tp;F) < Po (t, tp ;F) .

Therefore we have the uniqueness of the function P0(t,tp;F).

Let V(t) be an arbitrary bounded measurable nxm matrix. We have as—

before:

P (t,t ;F)	 Po (t, t ;F) = !(t,V(t),P (t i t ; F)) - Y ( t ,Vo ( t ) Po (t, t ;F))

'_ `Y(t,V(t),Pv(t,t0 ;F)) - Y'(t,V(t),Po(t,t0;F))

_.	

= &(t,V(tMP^(t,to;F) - Po(t,t0;F))

	

+ (Pu (t, tp F) - Po(t,tp;F))A'(t,P(t))	 (2.6.17)

and so PV (t,t0 ;F) ? Po (t,tp ;F), t e [t p ,T). This completes the proof of

the theorem. Note thatthe proof also gives an explicit algorithm to find

Po(t,tp;F).
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Definition 2.$.4; The set c

(t^to;F) 	 (A(t)- -(t)Dl(t)): t 	 - ; ^)±P(t,to;P) (A(t) -_V(t)Dl(t))'

+V(t)_Q(t)V' (t)+(,in-v(t)D2(t))R(t) (In- V_(t)R2(t)) I ; P(to) t0 ;P) = F

Y(t) (-Q(t)+D2(t)R(t)D2(t)) 	 P(t^to,F)D!(t)+R(t)'D2(t) 	 (2.$.18)

is called the generalized Matrix Riccati Differential Equation. The unique

solution P(t,t 0 ;.), t s [to ,T], is called the Riccati function, which is

also the minimal function with respect to the solution setfBT
0

If A(t) !'^'! Q(t) + R2 (t)R(t)2'
2
(Q > 0, then (2.6.18) reduces to a

single nonlinear matrix differential equation:

P(t,tO ;F)	 (A(t)-R(t)D2(t)^ 1(t)Dl( t))P(t,to;F) +P(t,to;F)(A(t)

R(t)D2 (t)o-1(t)Dl(t) )'

P (t,to;F)D 1 (t) -1	os(t)Di(t)P(t,tF)+R(t)-R(t)D2(t}p-1(t}D2(t)P.(t)

P(to ,t0 ;Fj = F	 (2.6.19)

Equation (2.6.19) is the Riccati Differential Equation.
[31], [32]

In the gene' '-al case, for a fixed bounded measurable V(t) , t e [t o ,T] :
i

(t, t o ;Fl ) '_ P v (t, t0 ;F2 )	 if	 F1 ? F2	 (2.6.20)

Let 1(t) c 1st (P(t,to ;F1)), t F [to ,T), where P(t,t0 ;F1) is the Riccati

function satisfying (2.6.18). By theorem 2.6.3, we have for F 1 ? F2:

P(t,t0;F2) S (P	 t,t^;F2)	 P vl (t,tO ;Fl )	 1(t,t0 ;F1)	 t c [to,T]	 (2.6.21)
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2.7 Perspective

;Measure theoretic approaches to probability theory can be found in Loeve

[2], Doob [1]. The notion of statistics as used here was introduced by

Halmas and Savage [13]. The term observation statistic is used so as to

conform with physical interpretation. Conditional expectation and condi-

tional distribution of a random variable (or vector) are treated in detail

by Doob [1]. Conditional independence of sub. -6-algebra was treated by

Meyer [14]. This is a more general and more intuitive definition of inde-

pendence. Gaussian random vectors and Gaussian random processes are treated

by Doob [1], Loeve [2], Cramer [15], Davenport and Root [3]. Gaussian white

noise process viewed as the formal derivative of a Weiner process is

treated by Wonham [4], McKean [16], Ito [17]; Gaussian white noise process

viewed as a generalized process can be found in Tse [5], Gel'fand and

Vilenkin [18].

Linear transformation of a Gaussian Vector is treated by Davenport and

Root [3], Cramer [15], Doob [1]. Stochastic differential equations are

studied by Ito [17], Stratonovich [19], Wong and Zakai {20], Tse [5], Clark

[21]. Different interpretations to the stochastic differential equations

are possible, some are in accordance with physical interpretation [19],

[21] while some in terms of mathematical rigor. 
[17] 

In the linear case,

all different interpretations are equivalent. The treatment used in

Section 3 is consistent with all interpretations. The diffusion process is

treated following Wonham [22] using Ito's interpretation, for a, detailed

discussionon the differential operator of a diffusion process, see Dynkin

[7]. The proof of Ito's integration formula is given by Ito [17], Skorokhod

[8], Wonham [4].
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A'r	 -ions are not treated in detail in th.1atrix Riccati Differc — ,e equations	 IIe

existing literature. Deyst and Price [281, Sorenson [29] and Aok J- ( 301

considered the matrix Riccati difference equation which appears in filtering

problems. Their considerations are restricted to a special, yet a large

class of problems. The treatment given here is new, and the intrinsic

properties of the matrix Riccati difference equation are revealed. The

definition of generalized matrix Riccati difference equations and Riccati

sequences are due to the author.In the continuous case, Kleinman [31],

Wonham [32] had made detailed instigations. The approach used here is due

to Wonham [32]. The generalization given in Section 6 is new, and the

definition of generalized matrix Riccati differential equations and Riccati

functions are due to the author. The motivation for this generalization is

to bring out the most intrinsic properties of the equation and its solution.

As we shall see in later chapters, this generalization allows us to under-

stand the structural behavior of estimators and closed loop control systems.

NOW 11	 1
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CHAPTER III

OBSERVER THEORY FOR DISCRETE-TIME LINEAR SYSTEMS

3.1 Introduction

The problem of estimating the state variables of a dynamical system

given observations of the output variables is of fundamental importance

in the design of an optimal control system. If one considers the class of

linear systems, then there are two approaches available in the literature.

If the output variables can be measured exactly,and if there are no other

stochastic disturbances acting on the system, then one can use a determin-

istic observer (see references [35], [36]). On the other hand, if all the

output variables are corrupted by additive white noise, then one can use a

Kalman filter (see references [39], [40], [37], [10]) for state estimation.

There are many cases in which some of the output variables are noise-

free while others are noisy. One can argue that no measurement is exactly

noise-free. On the other hand, ttiere are many engineering systems in which

the accuracy of measuring one variable is much greater than the accuracy

of measuring some others. In such problems the measurement covariance

matrix is almost singular and it can lead to ill-conditioned matrices and

numerical problems. Thus, on p, oaa attempt to model the very accurate

measurements as being deterministic.

The main purpose of this chapter is to examine this class of problems.

In this contribution we examine the state estimation problem for linear

discrete-time time-varying dynamical systems. The continuous time case will

be considered in Chapter IV.

-43-
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The structure of this c h apter is as follows. In Section 3.2, we focus

our attention to time-varying deterministic systems, we define the notion

of a deterministic observer and estimator, the class of equivalent observers,

and the class of minimal order observers. In Section 3.3, we extend the

deterministic notion to the class of stochastic systems where we show that

the class of equivalent observers yield unbiased estimates. Then we determine

the class of observers that yield minimum variance estimates by formulating

the problem as finding the minimal sequence of a certain solution set and

then make use of theorem 2.5.3; we then prove that these observers yield

indeed the conditional mean estimates of the state. Naturally, if the obser-

vation covariance matrix is positive definite one obtains the well-known

Kalman filter. In Section 3.4, we examine in detail the case that some

measurements are noisy while others are noise free. Under these conditions

we show that the order of the minimal order observer is less than that of

the state to be estimated. In Section 3.5, the notion of detectability _is

defined and the relation between detectability and observability of dis-

crete linear system is considered; also in this section, we generalize the

results of Kalman [41] on deadbeat deterministic observers to the time

varying case. Using the concept of detectability, we derive necessary and

sufficient condition for the minimum error covariance to be uniformly

bounded and to have a steady state behavior. This is carried out in Section

3.6. In Section 3.7, we have general discussions on the approaches and re-

sults. In Section 3.8, detailed literature connected with the development

in this chapter is listed.

WO
z

Aor
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3.2 Classes of Observers for Deterministic Systems

In this section we shall consider a linear time-varying discrete system

^l described by

(state eq.) x(k + 1) = A(k)x(k) + B(k)u(k)

(output eq. ) y(k)	 C(k)x(k)	 l

where k = 0, 1, 2, ..., x(k) c Rn , u(k) e Rr , y(k) c Rm , and C(k) is of rank m.

Let Mmn be the set of all mxn matrices with real entries. If m n, the

null space of a matrix M c mn will b y denoted by N(M) = fx E R n ; Mx 0m e RIM}.

Definition 3.2.1: Let C(k) e Kmn be of rank m; the set

Q(C(k);m,s,n) = fT(k) e Msn :N(T(k))nN(C(k)) = 0n c Rn}

is called the set of complimentary matrices of order s for C(k) if s ? n - m.

We note that T (k) c O (C (k) ;m, s ,n) if and only if there exist P (k) ,

V(k) of appropriate dimensions such that

P(k)T(k) + V(k)C(k) = I 	 (I c M )	 (3.2.1)
— —	 — —	 -n	 - n nn

Definition 3.2.2: A discrete linear time varying system of dimension

s 1 n - m described by the relation

(91 :	 z(k + 1)	 F(k)z(k) + D(k)y(k) + G(k)uW	 (3.2.2)

is called an s-order observer for the system 9l if by some appropriate

choice of z(0), we have
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the observer is described to.	 refer to such an observer by the

symbol C; T.

If ©T is an s-order ob	 .ter for 3 l , then by an appropriate choice of

z(0), we can reconstruct x G by

w(k) - P(k)z(k) + V(k)y(k) - P(k)T(k)x(k) + V(k)C(k)x(k) = x(k) 	 (3.2.4)

where P(k), %'(k) are chosen to satisfy (3.2.1).

In the following theorem, we prove that a class of observers can be

constructed for any linear discrete time var y ing system.

w
Theorem 3.2.3: Let T - {T(k)}k 0 be any sequence of matrices in M ns such

that T(k) E .-(C(k);m,s,n). Then, there exists an s-order observer, GT, for

31'

Proof: The proof is a constructive one in which an explicit form of 1y 1 is

obtained.	 Let T(k) : 2(C(k);m,s,n), k = 0, 1, ..., be given.	 Pick

F(k) = T(k + 1)A(k)P(k) 	 (3.2.5)

U(k) = T(k + 1)A(k)V(k)	 (3.2.6)

G(k) = T(k + 1)B(k)	 (3.2.7)

where P(k), V(k) satisfy (3.2.1), k = 0, 1, 2, ... 	 Teen

z(k + 1) - T(k + 1)x(k + 1) = T(k + 1)A(k)P(k)(z(k) - T(k)x(k)) 	 (3.2.8)

Therefore, if we choose z(0) = T(0)x(0), we obtain

z(k) = T(k)x(k)	 k = 0, 1, 2, ...
	 (3.2.9)

1
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The observer described by the given sequence T has the explicit form:

: z (k+l.)	 T (k+l) A (k) P (k) z (k) + T (k+l) A(k) V (k)y(k) + T (k+1) B (k) u (k)

(3.2.10)

To an observerC9T, we associate an estimator e 1 described by (see Figure

3.1)

z(k+l) = T(k+l)A(k)P(k)z(k) + T(k+l)A(k)V(k)Y(k) + T(k+l)B(k)u(k)81 —	 —	 —	 —	 — —	 —	 — —

'	
(3.2,11)

T
w (k) = P (k) z (k) + V (k) y (k)

where P(k), V(k) satisfy (3.2.1) for the fixed T(k), k = 0, 1, ... . By

setting z(0)	 T(0)x(0), w(k) will equal x(k) by (3.2.4). But in most

cases, the initial state x(0) is unknown. We shall fix the initial condi-

tion for the observer 
GT 

by the relation

z (0) = T (0) a	 (3.2.12)

where the vector a is a guess for x(0). Thus a is any vector in Rn , and

the possible values of z(0) will be in the range space of T(0).

Let V ^- {V(k)}k=0 be any sequence of matrices in Mnm . Let us associate

with the given sequence a sequence of sets where

a V (k) _ { T (k) EMsn I P(k).T (k)+V (k) C (k) = In for some P (k) EMns ; s'_n-m}

k = 0, 1, ...

If T {T(k)l
c
ois a sequence of matrices in Ms n such that
k=O

T(k) E 9 V(k) , k = 0, 1, 2, ..., then we shall in short write T E 9V. Now
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observer 01 , and an estimator ET. Thus, we can associate with any fixed

V a class of observers of different orders.

Suppose that for a fixed V, the sequence of matrices {(Itt - V(k)C(k))),

k = 0, 1, 2, ..., has rank n - p; then the class HP = {(91 1T E3V , and

T(k) c 
Mn(n-p) 

has full rank, k = 0 9 1 9 ...} is called the class of minimal

!order observers associated with V.

Definition 3.2.4: Let L1 be a linear discrete system described by

xl (k +

L1:

Y1 (k)

with x1 (0) c X1 C Rn . We sl

x2 (k +

L2:

y2 (k)

with x 2 (0) c X2 C Rn , is an

ai l c Xl , there exists a R2c

1) = F 1 (k)2x1 (k) + Gl (k) u (k)

(3.2.13)

= cl (k) x1 (k) + _Dl (k) u (k)

call say that L 2 , described by

1) = F 2 (k) x2 (k) + G2 (k) u (k)

(3.2.14)

= C 2 (k)x
-2

 (k) + D2 (k) u (k)

equivalent representation of 
L1 

if for any

X2 such that

l (k 'a--V k) ^2(k,s2,uk) d uk	
{u(i)} i_0 	(3.2.15)

where	 (Ic; R i ,uk) is the outi,

control uk.

Equivaleat representations

equivalent representation of

representation of L 2 . If L1

each other, then we say that

3ut of the system Li for xi (0) Gi and applied

may not be symmetric, i.e., if L 2 is an

L1 this does not imply that L  is an equivalent

and L2 are both equivalent representations of

L  and L 2 are equivalent.
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We shall say that two	 . r ,; GT. C^„ are equivalent if P-
T 

and	
FT,

are equivalent. Let ^,f be .+, s-order observer; by some linear transforma-

tion on the state, we can ea^il ,- see that we can construct an s'-order ob-

e.rver	 which is an equivalent representation of 0T, where s' - S.

Interestingly enough, if we restrict the Possible initial conditions of the

observer state, :hen for any s-order observer, C, 1T we can find an s'-order

observer, 0T, which is an equivalent representation of 6, with s' 	 S.

Theorem 3.2.5: Let V	 {V(k)}k=0 
be a fixed sequence of matrices in Mnm'

the class of observers 1 T E TV , are equivalent.

Proof: Let P-T, FT be any two estimators, T, t E J V9 described by

z(k+l) = T(k+l) A (k)P(k)z(k) + T(k+1)A(k)V(k)y(k) + T(k+l)B(k)u(k)

(3.2.16\

w(k) = P(k)z(k) + V(k)y(k) 	 z(0) c S = {T(0)aIa E Rn}

z(k+l) - T(k+l)A(k)P(k)z(k) + T(k+1)A(k)V(k)y(k) + T(k+l)B(k)u(k)

^T.	

_	 _	 _	

(3.2.17)

w(k) = P(k i i;k) + V(k) (k) 	 z(0' E S	 {T(0) a^a E Rn}

Let z(0) = T(0)a l E S be the initial condition for GT. Choose

z(0) = T(0)a l E S he the initial condition for 6T, then for all-L(o):

w(0) = P(0)T(0)a 1 + V(0)y(0) = P(0)T(0)a 1 + V(0)y(0) = 1;1(0)	 (3.2.18)

Assume that w(k - 1) = w(k - 1), then

•w(k) = P(k)T(k)A(k)w(k - 1) + V(k)y_(k) + P(k)T(k)B(k)u(k)

P(k)T(k)A(k)w(k - 1) + V(k)y(k) + P(k)T(k)B(k)u(k)

= w(k)
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From (3.2.18) and (3 2.19) we conclude that

w(k) = w(k)	 for all 'k	 (3.2.20)

Converselyif z(0) = T(0)a 2 E S, pick z(0) = T(0)a 2 e S then we also have

that the output of 1 and that of P,T are the same. Thus ET, 
^,T 

are equiva-

lent, and (9T, (9 are equivalent.

Thus, for a fixed sequence V, we can associate with a class of equiva -

lent observers (9T, T e V When V ranges over all possible sequences, we

obtain different classes of observers parameterized by the sequence V. In

a vague sense, the class of observers (9 T , T e.^, utilize the same amount

of incoming information provided by the observations y(k), k = 0, 1, ...

The notion of efficiency of a system, as regard to the processing of in-

coming information, is(4n a loose sense)a ratio between information utilized

and the complexity of the system. Thus for a fixed V, the most efficient

system associated with it is the class of minimal order observers, 7^. In

view of the above discussion, the design of appropriate observer for esti-

mation and control purposes can be split into two distinct steps: 1) to

find the appropriate V which specifies the operating performance of the

class of observers, 2) to find an observer in +.he class of minimal order

P*.observers, 7TV

3.3 Optimum Classes of Observers for Linear Stochastic Systems

Let us consider the stochastic system c%
2 
described by

x (k + 1) = A(k)x(k)  + B(k)u(k) ' + ^ (k)
^2:	 (3.3.1)

y(k) C(k)x(k) + n (k)
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where x(0),(0), n(0),;(^^	 {:.)R ... are independent Gaussian random

vectors with statistical law:

X(0) ti V , z	 EQ > 0	 (3.3.2)

5 (k)	 (0, R(k))	 j(k) ? 0	 (3.3.3)

n (k) r (0, 0(k))	 Q(k) a 0	 (3.3.4)

The control u(k), k = 0, 1, ..., is an arbitrary but known sequence.

Let V {V(k)) w be anbitrary sequence of matrices in M	 If we
k=0	 nm

use an estimator 9T 9 T e UV , for 92 to generate an estimate of x(k), then

the error e(k) - w(k) - x(k), can be computed from (3.2.11) and (3.3.1).

By picking z(0) = T(0)x 0 , the error dynamics are given by

e(k+l) = [In-V(k+l)C(k+l))A(k)e(k)+V(k+l)rt(k+l)+(V(k+l)C(k+l)-In)E(k)
(3 3.5)

e(0)	 I?n V (0)C(0) ][xo
-x (0)]+V(0)n(o)

So explicitly(3.3.5) reveals that all estimators ET, T e V , give the same

error dynamics,which in some sense reflect the state of uncertainty of the

system c%From (3.3 5) we see that

E[e(k)]	 0	 ;	 k = 0, 1, 2,	 (3.3.6)

Thereforesassociated with an arbitrary V, we have a class of equivalent

observers whose associated estimators yield unbiased estimates Our aim

now is to find the optimum V which will result in minimum error covariance.

From (3.3.2) to (3.3.6) we see that the error covariance will propagate

according to the matrix difference equation:



-53-

Z(k+1) _ [In-V(k+l)C(k+i))[A(k).L(k)A'(k) +R(k)][In V(k+l)C(I;L+l)]'

+V(k+l)g(k+l). ' (k+l) ;	 k =	 0,	 1,	 .. .
(3.3.7)

^(o) = [In-V(o) ((o)] '—o[_In-V(o)c(0)] ' +V(0)Q(')V' (0)

where

E(k) = E{e(k)e' (k)} k = 0,	 1,	 .. (3.3.8)

Defining

A(-l) = I	 ;-n R(-1) = 0 (3.3.9)

equation (3.3.7) can be written

E(k+l) _ [In-V(k+l)C(k+l)][A(k)E(k)A'(k) +R(k)][In-V(k+l)C(k+l)]'

+V(k+l)Q(k+1)V'(k+l); k	 -1,	 0,	 1,	 ...

(3.3.10)

When V ranges over all possible nx-t matrices, we generate a solution

set R_ of (3.3 . 10). For the optimum estimation, we would like tc . find a

sequence V which will give rise to the minimal sequence with respect to

the solution set R-1. By comparing (3.3.10) with (2.5.1), we have the

following;_

Theorem 3.3.1: A unique minimal sequence {E (k)}k_0 with respectnto the

solution set S- 
1 

of (3.3.9) exists- and is given by

E`(k + 1) _ A* (k)	 V* (k + 1)C(k + 1)A* (k)	 k _ 0, 1,

(3.3.11.)

E* (0) _ E - E c' (o) [c (o) E c' (o) + g to) ] - lc (o) E
—n -o-	 — —o	 --o

,.
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where

A* (k) A A(k) z * (k)k (k) + - G-.)
	

k = 0, 1, ...	 (3.3.12)

and V (k) e 1sk-1 (E (k-1) = {k,  z M
nm IL [C (k) 4,c (k-1) C' (k)+C(k) ] = A 	 C , (k) } ,

k = 1, 2, ... .

If either Q(k) > 0, k 	 0, 1, ..,, or C(k+l)R(k)C'(k+l) > 0,

k = 0 1 1, ... (or both), then the L:ngue Riccati sequence is given by

L,s (k+1) _ L (k) -A (k) C' (k+l) [C (k+l)A (k) C' (k+1)+C(k+l) ] C (k+l) A (k)

(3.3.13)

E„ (0)	 E -E C' (0) (C(o) E C' (0)+Q(0) ] ^lC (0) E	 k = 0,

where A^(k) is given by (3.3.12), and the unique {V"(k)}k=0 which gives

rise to the Riccati minimal sequence is given by

V * (k) = A* (k	 l)C' (k) [C (k) A^ (k - 1) .q(k) + Q(k) J 1	 k = 0, 1., ...	 (3.3.14)

The proof of this theorem follows from theorem 2.5.3 directly by

identifying

C (k + 1)	 D (k)	 R(k) --► Q1 (k) = Q2 (k)	 ( 3.3.15 )

E(k) --► P (k, -1 E	 , g(k)	 R(k)	 (3..3.16)

Theorem 3.3.1 implies that an optimum class of observers is specified by

CO

an sequence {V (k)} k
-
0 where V (k) e Isk_1 (E (k 1)) inductively,

k = 0, 1, .. with E * (k) given by (3.3.11), and (3.3.12), k = -1, 0, 1,

In the special case when Q(k) > 0, or C(k + 1)R(k)C'(k + 1) > 0 5 k = 0, 1,, ...,

then there is a unique class of optimum observers specified by {V (k)}
k=0't

given by (3.3.11). In fact, one can show that an observer with an initial

Ar

1
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condition z(0) = T(0)x0
 is in some sense equivalent to the concept of un-

biased linear estimator (see Section 3.7), and thus an optimum class of

observers is also an optimum class of linear unbiased estimators. In the

rest of this section, we shall show that when u(k) is known, the estimator

generated via an observer 0T, T e 3` V* ,' and its associated estimator P T

is the conditional mean of x(k). This reflects the truly optimum nature

of the optimum classes of observers.

Since u(k), k = 0, 1, ..., are known a priori, we may assume them to

be zero without loosing generality. Now consider cS 2 with control sequence

equal to zero. By the Gaussian assumption, the conditional expectation of

x(k), denoted by

X(k[k)	 E{x(k) F(k) }	 F(k) © F(y(i) , i = 0, 1, .. , , k) 	 (3.3.17)

kequals almost surely to some linear functional of {y(0), ,,.) y( )},[l]

Lemma 3.3.2: (Weiner-Hopf Equation) Let 
{w(k))k=0 

be a sequence of random

ver•tors such that w(k) is a linear functional of y_(0); 	 , y(k). If in

eddition, w(k) satisfies for k 	 0, 1, ...

E[w(k)y'(i)] = E[x(k)y.'(i)] 	 i	 0, 1, ..., k	 (3.3.18)

then w(k)	 x(klk) a.s. for all k.

The proof is given in the Appendix B. An immediate consequence of this
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z
Theorem 3.3.3:	 (Projection	 eat) ;,}	 fw(k)) k-0 be a sequence of random

vectors such that w(k) is a ' 	 r furl Clonal of (y(0), ..., y(k)). Let

u (k) Q w(k) - x (k) , k - 0 9 1.	 f e; (k) satisfies, for all k,

E(e(k)y'(I)J	 t)	 ;	 I. - 0 9 1, ..., k
	

(3.3.19)

I

then w(k)	 x(klk) almost surely for al.l k. [We shall refer to Equation

(3.3.19) as the Projection equation.]

For any fixed sequence V - fV(k))k-0' the output of the estimator

E;2, T E' U V , at time k is clearly a linear functional of fy.(0), ,,,, y(k)),

In the following, we shall prove that

	

E{d*(k)y'(i)) - u	 i - 09 It ..., k
	

(3.3.20)

where a * (k) the error of estimates if we adopt? ^, T E T V*, as an estimating

*
device, and 6 (k) is given by (see 3.3.5)

P * (k+l) a ( IT - V  (k+l)C(k+1)](A(k)A *(k) - r(k)) + G*(k+l)n(k+l)

(3.3.21)

6*(0) - (1,n - V* (0)C(0)1(x. - x(0)) + V*(0) ►,1(0)

and V * (k) F Uk l ( * (k - 1)) inductively, k - 0 9 1 0 ..., with E * (k) given by

(3.3.11), (3.3.12). Let us first establish a lemma and a corollary which

will be useful in later discussions.

Lemma 3.3.4 1 Let ( i(k)) k-0 be a sequence of random vectors satisfying

(3.3.20). Let (x(k))k-0 be given by (3.3.1) with u(k) - 0, K - 0 9 I t ...,

then for all k - 0, I t ...

{g*(k)x'(k)) - - i * (k)	 (3.3.22)

where * (k) is given by (3.3.11), (3.3.12).

(

•
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Proof: We shall use induction on k. For k	 0, using (3.3.21), (3.3.1), 	 J,

(3.3.17) and the given statistical law:

E [6 (0)Y' ( 0 )J = (1 - V^(0)C(0)){xoxo - E[x(0)x' (0)];

(3.3.23)

	

- ^ + Vx (0)C(0) E _ -	 (0)

Assume that (3.3.,22) is true for k	 0 1 1, ... , n. Using (3-3-21), (:.3.1),

(3.3.11), (3.3.12) and the given statistical law, we have:

E[6e (n+l)x' (n+l) ] = [I n-Vx (n+1)G(n+l) ] [A(n)E{e ^ (n)x' (n) )A' (n) -R(n)

(3.3.24)

= -[A (n)-f (n+l)C(n+l)p.^(n)] _ -£^ (n+l)

The lemma is proved by induction.

Corollary 3.3.5: Let {&(k)} 	 be a sequence of random vectors satisfying—	 k_:0

(3.3.21) where	 (k) e U
k-1 

(Z ` (k	 1)) with E (k	 1) given by (3.3.11) and--

(3.3.12). Let {y(k)}k=0 be given by (3.3.1) with u(k) 	0, k	 0, 1,

Then for all k = 0, 1,

J.

E{e., (k)y' (k) } = 0
	

(3.3.25)

Proof: We shall use induction on k. For k 0, since using (3.3.21),

(3.3.1), (3.3.22) and the given statistical law, we have

E{e ^ (0)y' (0)) = E{e ms (0)x' (0) }C' (0)+E{e n (0)rt' (0) }

(3.3.26)

Assume that (3.3.25) is true for k 	 0, 1,	 , n. Since V (n+l) c 'V 
(2: *
2: (n)),

using lemma 3.3.4, (3.3.11) and (3.3.1), we have

i
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E {e*(n+i).' (n+1)}	 E4 A (n+1)x' (n+].)	 ' (n+l)+E { d*(n+l)ri' (n+1)}

(n+1.)! ' (n+I )+Vh(n+l)Q(n+l)

- * (n+]) .' (n+l)+Q*(n+1)C' (n+l)4*(n+l)C.(n+1)E*(n)C' (n+l)

-F:*(n+l )C' (n+1)+F:*(n+1)C' (n+l)	 0	 (3.3.27)

the corollary is proved by induction.

We are now in a position to prove (3.3.20). The results are stated as

a theorem.

Theorem 3.3.6: Let {d*(k))k-0 be given by (3.3.21), where V * (k) F Vk-1 (Z (k-1))

with Z * (k-1) given by (3.3.11) and (3.3.12). Let {y'(k))c.
be given by

*
(3.3.1) with u(k) a 0, k - 0, 1, ...	 Then for all k - 0, 1,	 ;k)

satisfies the projection equation; i.e.,

E{6*(k)yr'(i)) - 0	 1 - 0, 1 9 ..., k
	

(3.3.28)

Proof: We shall use induction on k. By Corollary 3.3.5, (3.3.27) is true

when k a 0.

Assume that (3.3.27) is true when k w 0, 1, ..., n. For i - 0, 1,..., n,

we have from (3.3.21) and the induction hypothesis that

E±d*(n+l)y'(i)}	 (In - V*(n+l)C(n+l)A(n)E{d*(n)y'(1.)} - 0 	 (3.3.29)

For i w n + 1, Corollary 3.3.7 gives

Efd* (n + 1)y'(n + 1)} a 0	 .
	 (3.3.30)

Combining (3. 3.29) and (3.3.30), we have that (3. 3.28) is true ;and the

theorem is proved by induction.

i
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in view of the Projection Theorem, this means that the estimate w (k)

generated via eT, T e J , is the a. s. conditional mean of Ak),k-0, 1,.., .

The results are also true when u(k), k = 0 0 1, .., is a nonzero but known

control sequence, for one can always subtract off the deterministic contri-

bution due to the nonzero known control sequence. The 	 general situation

where the u(k), k = 0 1 1, ..., are generated by feedback of the observation

sequence, shall be considered in detail. in Chapter 5.

From the above discussions, we note that in the general cage, t?-ere is

more than one optimum classes of observers which will yield the same per-

formance; only in the special case when Q(k) > 0 o C(k+l)R(k)C'(k+l) ^, 0,

k = 0, 1, ... (or both), there exists a unique optimum class of observers.

3.4 Minimal Order Optimum Observers for Stochastic Systems

Let V (k) e Vk-1(E (k	 1)), k	 0, 1, 2, ..., specify	 an optimum

class of observers. The class of minimum order c-,timum observer s associated

with {V n (k) )C 	is ,rP * , where p is the minima?- axrd:r, v for dimension)	 To
	k=0	 V

find the number p amounts to finding the rar le-	 't'8 matrix [In V (k) C (k) J

We shall see that, depending on the observation noise, we have that the

minimal order optimum observers will have order which ranges from n m to n.

Let us assume that the observations are partly deterministic, i.e.

Yl (k)	 Cl (k)i71(k)
y (k) =	 _	 ...	 x (k) +	 ..	 (3.4.1)

Y2 (k)	 C2 (k)	 0

where	 (k) F_ R 	 (k) e R 
2. 

The vector Y (k) is the noise-free component1	 22
(Figure 3.2)	 This assumption has no loss of generality, for by appropriate

transformation of the observation vector, all problems where the observation

MI M
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noise is degenerate can be put into this form. We shall assume that

nl (k)

0

has covariance matrix Q(k).

1(k)	 0

Q(k) _	 Ql(k) > 0	 ;	 Ql(k) e m m	 . (3.4, 2)

0	 0	
1 1

--"'2m2

Definition. 3.4.1:	 A system with output w(k) is called compatible with

respect to the noise-free observation Y2 if for k = 0, 1,	 ...

C2 (k)Ta(k)	 C 2 (k)x(k) = ^2 (k)	 a. s.	 (3.4.3)

We shall also say that an observer & T , T e 3 V , is compatible with re-

spect to Y 2 -, f its associated estimator eT , T c 3 V , is compatible with respect

to Y2.

Theorem 3.4.2	 Let V (k) e is	 (Z (k - 1)), with E (k - 1) given by (3.3.11)k-1 --

and (3.3.12); any 02 , T e 3V;^ is compatible with respect to the noise-free

observation Y-2.

pvnn .	 TTo	 Q r. ..^ 1, ntre
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Equation (3.4.4) implies

(k) 1 (k) = ,. G .	 ' ; :)	 k _ 0, 1,	 (3.4.6)

0
r% m2 — z

 (k) k = 0 1,	 (3.4.7)

where	 (k) satisfies (3.3.11) and (3.3.12) . The theorem follows from

(3.4.7).

In the following, we shall consider the special case where the sequence

of matrices (R(k) L	are all positive definite. The general case can be

Lreated in a similar approach. Since by assumption R(k) > 0, k = 0, 1, ...,

(k) is given by equation (3.3.13) , and t' (k) given by (3.3.14) specifies

the unique optimum class of observers.

Lemma 3.4.2-: Let R(k) > 0, k = 0, 1,	 If the noise-free observation
m^

Y-2 (k) s R ", k _ 0, 1, ..,, 14 .hen Z (k) given by (3.3.13) is of rank n	 m2,

k = 0, 1,
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where

A.^ (k)
	 {O1(k)+C1(k) [ p` 

(k-1) -Q* (k-1) C2 (k)

(C 2 (k)A (k-1)C2(k))-12(k)c(k-1)JCl(k)}_1 > 0

k = 0, 1 1	 (3.4.10)

(In deriving (3.4.9) from (3.3.14), a fair amount of matrix algebra is

needed.) Let us define the matrix r (k 1) by

r* (k-1) p A*(k-1)C2(k)(C2(k)A*(k-1)C2(k))-1C2(k) A* (k-1)

k = 0, 1,	 (3.4.11)

Now equation (3.4.9) can be written as

C1(k)£.^(k) = Q
1 (k)A(k)C1 (k)[A (k-1)-r (k- 1) 	 ; k =	 0,	 1 1	 ... (3.4.12)

We note from	 (3.4.11) that if a vector v e NQ (k - 1))	 then 4-_t must be true
 n

that A (k - 1)v E N(C 2 (k)).	 Now suppose that the same vector v E N(Z	 (k));

then, from (3.4 .9) , we conclude that

,,.	 J.
41 (k)A (k)Cl (k) A (k-1) v = 0 p (ks1)v E N ( ql (k) )

k = 0, 1,	 ... (3.4.13)

Therefore,

A (k - 1)v E N(C(k)) k	 0, '1,	 .. (3.4.14)	 ,.

But from	 (3.3.11), we have

x	 0 = A (k - 1)v ;	 k 0,	 1 1	 .. (3.4.15)

I

.i.
moo
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Since	 (k - 1) -0 N k, we ;	 have v	 0
	

Thus,

N(I (k - 1)) "l N(' (k)) _ fO)
	

k - 0, 1 9 ...	 .
	 (3.4.16)

Clearly, the rank of I' (k - 1) is m 2 , and so N(T' (k - 1)) hac dimension

n - m2 (3.4.16) implies that

*
rank (E (k)) :: n - m.	 k = 0, 1, ...	 (3.4.17)

Equations (3.4.8) and (3.4.11) imply that rank E*(k) = n - m2,

Theorem 3.4.3: Let R(k) > 0, k - 0, 1 0 ... . If the noise-free observation

m

Y-2 (k) 
E R 

2, 
k	 0 0 1 0	 then the class of minimal order observers is

of order n - m2.

Proof: From the remark made at the beginning of this section, one needs

only to prove that the matrix r l - V* COMM  has rank n - m 2 , k - 0, 1, ...

(3.3.13) and (3.3.14) give us

	

( ,Ir,A - V * (k)C(k) j,, * (k - 1) - E * (k)	 ,	 k - 0, 1 9 as .	 . ( 3.4.18)

*
By assumption, R(k) > Q, k - 0, 1 9 ...; thus G (k) has full rank for all k.

,.
By lemma '.4.2, L (k) has rank n - m2 , k = 0 9 1, ...; therefore,

(1%. - V (k)C(k)] has rank n - m2.

To end this section, we shall give one explicit minimal order opti:::um

observer and its associated estimator for each :are:

Case 1: m2 - 0

The class of minimal order optimum observer is of order n, and one

explicit optimum estimator of minimal order can be constructed:

P, : w* (k+l) - (In-V*(k+l)C(k.+l))A(k)w*(k)+V*(k+l)y(k+l)+B(k)+i(k) (3.4.19)

e•



1
r

where V (k) lk=0 is given by (3.3.11) to (3-3-13). -Ue ngti.Ce .that this

is the Kalman estimator [39). (Figure 3.3.)

Case 2: ml = 0

The class of minimal order optimum observer is of order n - m, i.e.,

there must exist P(k) e '^S n (n-m)	 (n-m) nand T(k) e M	 , k	 0, 1,	 such that
--	 `	 - 

T (k)

[P (k)	 V^(k)	 I	 (3.4.20)
C (k)

Since T(k) e M (n-m)n and C(k) e mnM , (3.4.20) also implies that- 

T (k) V ,. (k)	 0	 T(k)-P(k)  = I _	 C (k) P (k)	 0	 (3.4.2l)--m (n-m)	 -	 -n m	 - -	 --m (n-m)

n
To specify one explicit minimal order optimum observer, let IIP(k))	 be

k-0 

any sequence of matrices such that

PC(k)	 (k) = 0	 ,.._ -"	 --^n (n_m)	
k	 0, 1,	 (3.4.22)

Let IT (k))k=0 be the solution. of

T (k) V : (k)	
0 (n-m)m ' T^ (k)PJ (k) = In-m	 k = 0, 1,	 (3.4.23)

The solution for (3.4.23) exists and is unique because we know a priori that

(3.4. 21) must have solutions (nonunique). The choice of [P * (k) kTO

is nonunique, and is usually chosen so as to simplify computation.

Note that the condition C(k)V (k) = I is automatically implied by
compatibility.

f

4r
.^
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Case 3 • 0 < m2 < m

The class of minimal order optimum observer is of order n - m 2 , i.e.,

there must exist P(k) s M	 and T(k)* M	 , k	 0, 1, ... suchn (n-m2 )	 —	 (n-m2) n
that

T (k)

[ P (k) V (k)J ... = I (3.4.24)- n f

C (k)

and T(k) is of rank n - m 2 .	 Choose T(k) such that

Tl (k)
T(k) _ ... T2 (k) E M (n_m)n (3.4.25)

T2 (k)

and

12(k)

C(k)

is of rank n; thus T1(k) must be given by

Cl (k)
T (k) _ [Kl (k) K q (k) ] ... K (k) C (k) (3.4.26

C 2 (k)

where Kl (k) E Mm m '	 (k)	 Partition
E m m	

Partition
—

P(k) into
1 l 1 2

P (k) = [P 1 (k)	 P 2 (k) J, P (k) c M P (k) E M
-2	 n (n-m)

(3.4.27)
—1	 nmZ

Equations	 (3.4.24)	 to	 (3.4.27) imply also that
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12 
(k)

[P 2 (k) : Pl (k):" : k) + V* (k.)	
_ In	

(3.4.28)
C (k)

Since

T2 (k)^

nn
C(k)

(3. 4.28) also implies

T,)(k)P2(k) n-m	 C(k)P2(k)	 0m(n-m)

T 2 (k)P 1 (k)K(k)-F-T 2 (k)V (k) = 0(n-
(n
	 C(k) P1(k) K(k)+C(k)K*(k)	

111

(3.4.29)

Partition V (k)[V 1{k) V2 (k)], Vl (k) s 
nm 

V2 (k) E Mm compatibility
•	 1	 2

implies:

C2 (k)P 1 (k)	 -`gymm	 C2 (k) V1(k) = 0	 C2 (k)V2 (k) _ T(3.4.30)
2 1	 2

Using (3.4.30), the last equation of (3.4,29) can be reduced to:

C l (k)P, (k)K2 (k) + C
l 

(k)V
-2
  (k)	 Om m	 (3.4.31.)

1 2

Cl (k)P l (k)K1 (k) + C 1 (k)V1(k)	 Im	 (3.4.32)l
Now to specify one explicit minimal order optimum observer let us

J
choose =P (k))k 

O such that

P.. (k)
	 [P. (k)	 P 2

2 (k)	
P:

—1 	 nm 	—2
(k)	 M	 P^ (k) s M 

n	
(3.4.33)

—1	 —	 (n-m)1
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andP2(k), P2(k) satisfy:

C(k)p 2 (k) 	 0	 ;
 C2
	 Ll(k) = 0	 (3.4.34)..2 	--m (n-m)	 --2 —	

'?I
Let T*(k) e M(k) e M	 K (k) e M	 be the solution of the--2	 (n-m) n' -1	 m1ml' K2 	 mlm2
following:

Cl (k) P l (k.) K2 (k) + C 1 (k) V2 (k) = Om m
l 2

C1 (k) F (k) K1(k) + C 1 (k) V2 (k) _
IUL

l

J

T2 (k) pl (k) KI (k) + T2 (k) V1(k)	0 (n-m) m1

T2 (k) P' (k) K2 (k) + T2 (k) V2 (k) = 0 (n-m)m
2

J
T2 (k)P2(k) - Inwm

k	 0, 1, 2, ...	 (3.4.35)

Solution for (3.4.35) exists and is unique,since we know a priori that

there are solutions for (3.4.29). The choice of {P"(k))k_O is nonunique,

and is usually chosen so as to simplify computation. One minimal order

optimum estimator is P,T , where

K* (k) C (k)
,5., 

(k) _	 ...	 (3.4.36)
12 (k)

and K(k), 
12 

(k) are given by the solution of (3.4..35). (Figure 3.4.)

3.5 Detectability and Observability of Linear Systems

Let us consider the totally noise free situation, i.e., R(k) = 0,

Q(k) = 0, k = 0, 1,	 We shall discuss the notion of detectability and

observability of the deterministic system 
,3 

in terms of its structural

properties,;

' 	 l
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Definition 3.5.1: The system 3 1 is said to be detectable at k  if for

x(ko ) e Rn arbitrary, there exists an estimator-, 1T described by

Z0+1) = T (j+I)A(j ) p (j i=,(j ),+T (j+l) A(j )_v (j )x(j) ±T ( j+1) B (j) u (j )

H(j)	 '(j)Z(Q)+V(j)y(j) ; i (ko ) e S 	 = (T(k0 )RI ot s Rn^t
0

such that w(j) -, x(j) as j -r ^=. The system 91 is said to be detectable

if it is detectable at all ko = ..., -1 1 0, 1,

Definition 3.5.2: The system l is said to be completely observable at k

of index v if for x(k) s 0 arbitrary, we can deduce x(k) by observing

Y(k) y (k + 1) , ... , y.(k + v- )

One can easily show that an equivalent definition of observability

is: [421

Definition 3.5.2'; The system 
81 

is said to be completely observable at

k  of index v if there exists v <- such that

Qk v	 {ko) :c ' (ko ,ko )C' (ko+1) ...: ^' (ko+v-2,ko).C'' (ko+v-1) ]	 (3.5.2)
o,

has rank n, where

JA(i,j) - A(i,)A(i-1) ... A( j)( , +l)	 T	 i ^ j '- k	 (3.5.3)
A	 -n	 -	 o

The system 
91 is said to be completely observable if it is completely ob

servable at all ko with index v	 1ko, k,o 	, - 0, 1, ..

From the above definition, we cannot conclude a priori any relation

between delectability and observability of the linear system. Intuitively,

we may think complete observability implies detestability but at first sight,

this implication is not obvious. In this section, we shall investigate the

relation between observability and detestability.

.^
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	Without loss of generality, we can set k	 0, and for simplicity write

_qk = ^,'k	 (0) *fit' (0,0)C' (1):	 ,"' (k-2,O)^g (k7l))	 (3.5.4)
:-x-A	

. . .
;LIN

We shall assume that AM is invertible for all k.	 -1, 0, 1,	 Let

us denote for j --' i:

--1
	

-1
	 -1
	 AU ' j)	 (j,i) = A (j) ... A (j); 	

1)	 In 	(3.5.5)

If we assume some a priori distribution on the initial condition of x(0),

then we can make use of the results in Section 3.3 to obtain the equation

for the error covariance, this is given by [see (3.3.11), (3.3.12))

	

(k+l)	 (k)	 (k+I)C(k+!)A (k) 	 k = 0, 1,

(3.5.6)

	

(0)	 E 0 - z 
0 
CI(0)(C(0)Z

'0 C
'(0))-10(0) 

0

where

L	 (k) (k) Z	 (k) A' (k) k	 1 5	 2, (3.5.7)

and

V (k) Isk_,(LI-	 (k-1)) (V E M	 LV(.q(k)A*(k-l)C'(k.)1 A	 (k-l)C'(k))
nm

k	 0, 1,

Theorem 3.5.3:	 Let	 (Z
r.

(k)j be a sequence satisfying (3.5.6) and	 (3.5.7)
0

with V (k)	 s"(Z(kk1 -	 1)). I f Z	 > 0 (but arbitrary), then the null
--o

space of
J.

-6	 (k) equals to the range space of 1!
A

(O,k - 1) -Qk , k = 0,	 1,

Proof: We shall use induction on k.	 For k	 0, we have from (3.5.6)

(0)-Q z	 (0)C I (0) E C'(0) C' (0)	 0 (3.5.8)o

ti

4r
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Thus we conclude that

N(E * (0)) D Ra(Qo) ; dim N(. * (o)) '_ dim Ra (
0o

) = m	 (3.5.9)

where Ra (-) denotes the range space. By assumption, Z0 0, thus from

(3.5.6) we have

N(E*
(0)) n N (tC' (0) (C(0) zvC' (0))-1C(0)EO)	 {0}	 (3.5.10)

C(0) is of range m, therefore (3.5.10) implies

m ? dim N(E * (0))	 (3.5.11)

Equation (3.5.9) and (3.5.11) imply that

N(Z*(0)) _ 
Ra(^ ) = R(^' (0^-1)o	 (3.5.12)

Let us assume that for k i, we have

N ( E * (i)) = IF, 	 (0 i	 l)gi ),	 .	 (3.5.13)

From (3. 5.4) and (3.5.5)

CA 1(i))'lq(O,i - 1)0. _ V (0,i) 13.5.14)

Let v E Ra(i1i'A (O,i)Qi ), then there exists some x E Rn such that

v =	 'A(0,i)Q.x = (A-A 1(i))'^iA(O,i - 1)4ix (3.5.15)

and so A'(i)v E: Ra (IA(O,i - 1)Oi ), and, by the induction hypothesis, we also

have A'(i)v E N(E (i)) orv E N(A * (i)). By (3.5.6), we conclude v E N(E * (i + 1)).

Also, by compatibility, the null space
:c

of E (i + 1) includes the range space

of C`(i + 1).	 Combining the two, we have
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N (E (i + 1)) DR ('` ' (0, i) +l)	
(3.5.16)

We also have the inequality

dim N (Z
., 
(i + 1)) '_ dim R(tA(0, i)-.i+1) 	 (3.5.17)

n	 nLet Si = {v c R j v c Ra (E %^ (i)) n N (C (i + 1) A(i)) } . Since R is finite

dimensional, from the induction hypothesis (3.5.13), we have

Ra (_ (i)) = N(_Q' (O,i	 1)). Therefore any v c S i is described by

C(i+l)A(i)v= 0	 (^ A (O,i-1)v = 0	 +1jA(O,i)A(i)v = 0	 (3.5.1.6)

Since by assumption A(i) is nonsingular, equation (3.5.18) implies that

dim Si = dim V()4
1^-
'A(O, i)) = n - dim Ra (V^A (O ' 1)i+l)	 (3.5,19)

-1
Let Si be the image of Si through the transformation Z (i)A'(i); i.e.,

S 1	 n '
-1 be the subspace which is1	 f  t R	 OA'(i)w v ; v € S 1,}, Let S 

	

-1	 *	 -1
equal to S, modulo the null space of	 (i)A'(i). S has the same dimensioni

	

i	 — 
as S, and so

dim S it 
= n - dim Ra(''(O'1)gi+l) 	

(3.5.20)

Now let w e S. , w j 0; then from the definition of S. and S 1 , we have
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Therefore, the null space of E (i + 1) and the space S i have only the zero

element in common; thus

dim N (E * (i + 1)) < n - dim S1 1 = dim R (0A(o, i)Qi+l)

Equations (3.5.16), (3.5.17), and (3.5.23) imply

N(E (i + 1)) = Ra(t^iA(O,i)Qi+1)

The theorem follows from induction.

(3.5.23)

(3.5.24)

A direct consequence of the above theorem is the following result :

Theorem 3.5.4: Let c% 1 be completely observable at time k of index v k ; then

there exists an optimum observer 0' T c^ V , which will reconstruct the

exact state, 2(Q), in at most v  steps (i.e., at time k	 j ^ k + vk).

Thus if 
&1 

is completely observable at time k of index vk, then % 1 is de-

tectable at time k; if S1 is completely observable, then S1 is detectable.

Theorem 3.5.4 generalizes Kalman's results [41) in deadbeat estimator s;

for this reason, we may refer to such an optimum observer 0T, T e *, as a

deadbeat observer. Clearly there is more than one class of deadbeat ob-

parameterized • by {V	
00	

(k)s 15
k-1

(E (k	 1) 9 k = 1, 2, ... .

Among these, we shall find the simplest deadbeat observer.

Theorem 3.5.5: Let c%
1 be completely observable, the class of minimal order

	
i

deadbeat observer's is of order n-m

Proof: Clearly, the class of minimal order deadbeat observer must be of

order greater than orequal to n - m. To prove the theorem, we need to

CO
find a sequence {V1(k) }k_C U1 (k) E ^k-1 Q* (k - 1)) , k = 1, 	such that

the matrix (In - Vl (k)C(k)) has rank less than or equal to n - m for all
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Construct

V1(k) = A*(k-1) C, (k) (C (k)A* (k-1)C' (k))# + C (k) (C (k) C' (k)) -1 •

(3.5.25)

(Im - C(k)A *(k-1)C'(k)(C(k)A*(k-1)C'(k)# 	 k = 1, 2, ...

where N-1# denotes the pseudoinverse of a matrix M. Using the properties of

pseudoinverse (see Appendix A) we have

V,(k)C(k)Ak(k-1)C'(k) = A*(k-1)C'(k)(C(k)d*(k-1)C'(k))C(k)A *(k-1)C'(k)
A

= V* (k) (C (k) A * (k-1) C' (k)) (C (k) A * (k-1) C' (k))C (k) (k-1) q (k)

V(k)C(k)d*(k-1)C'(k) _ A*(k-1)C'(k); k = 1, 2,

(3.5.26)

Therefore Vl(k) E U`t-1 (E (k - 1)), k = 1, 2,	 . From (3.5.25), we deduce

C (k) (In - V1(k) C (k) = C (k) - C (k)	 0	 . '	 (3.5.27)

S'	 C(k)f	 k	 (3 5 27)	 1 .	 hince	 is o ran m,	 imp ie5 t at

	rank (I	 V1(k)C(k)) S n	 m	 (3.5.28)

and the theorem follows.

Finally, we would like to derive a test for the detectability of linear

systems. Using (3.3.7), we have easily the followings

Theorem 3.5.6: A.system IS is detectable if and only if there exists a

uniformly bounded sequence {V(k))k=O such that

< -a 2I1-j('

	

(,J)(I	 ale	 a19a2 > 0	 (3.5.29)
v

Air
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where for i -' j:

8k (V (k+l)) -6 A(k) - V (k+l) C (k+l)A (k)

8 j (V (j+l) )

6 (i, j) L	 (V_(i+1))_1(V( ))
v

(3.5.30)

3.6 Asymptotic Behavior of Optimum E:,',.' ma tors

In this section, we shall investigate the asymptotic behavior of an

optimum estimator eT, T c Jj *, for the stochastic system 82 . We shall say

that the system c% 2 is detectable if its deterministic correspondence, 91,

is detectable. The investigation is carried out by considering the minimal

Riccati sequence {C (k)}k=O which describes the evolution of the minimum

error covariance.

First, let us assume that the initial time is ko, and consider the

behavior of E * (k), as k ^, where Z " (k) satisfies

Z* (k+l) = A * (k) - V*(k+l)C(k+l)0*(k)

(3.6.1)

(ko ) = ro - C' (k o ) [ C (ko ) ^C' (ko ) + Q(ko)JC(ko) ro

and V (k) c Vk-1 (E (k	 1)) , k	 k  + 1, k  + 2,

Theorem 3.6.1: The minimum covariance error E (k), will remain bounded

for all k = k  + 1, k  + 2,	 if and only if the system R 2 is detectable.

Proof	 If 2 is detectable, then from theorem 3.5.6, we note that there

must exist a uniformly bounded sequence {V(k)}k-0 such that the resulting

solution of (3.3.7) (with ko replacing 0) will remain bounded for all

k = ko, ko + 1, ... 	 Since {Z*(k)}k-0 satisfying (3.6.1) is the minimal

sequence with respect to the solution set of (3.3.7) we conclude that

E (k) must also be bounded for all k _= k, k + 1,
0 0

r
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Conversely, if Z (k) remains bounded for all k = ko , k  + 1, ... then

from (3.3.7), we have

11 6 (i'J)II 
< ale-ali-ai	 a1 ,a2 > 0	 (3.6.2)

v*

and so S2 is detectable.

Next, we shall assume that the present time is k, and assume that the

initial time k
0

Let us rewrite (3.3.9) in a more suggestive form: (set k' A k  - 1)

I" (k+l,k';Z ) _ (A(k)-V(k+l)C(k+l)A(k))E (k+l,k';E )(A(k)-V(k+l)C(k+l))'
=v 	 o --o	 ---v	 o —o 	 —

+(I -V(k+l)C(k-Fl))R(k) (I -V(k+l)C(k+1))'+V(k+l)C(k+l)V' (k+l) k 	 k' ,k'+1, .. .-.n	 --n	 o 0

(ko,ko^) =	 (3.6.3)

As we have noted, (3.6.3) is the same as (2.5.1) except for some changes in

the symbol (3.3,14), (3.3.15). We shall still use the symbol as defined

by (2.5.2) with the obvious change (3.3.14). As usual, we shall denote the

minimal Riccati sequence with respect to the solution set of (3.6.3) by

CO

{Z (k,k'o ;Zo)}k=k'.
0

Lemma 3,6.2: There exists an unique bounded sequence {E (k;0) }k__.O such

that
i



r

-7g-

Proof: Let us denote

	

6k () !L:A(k)	 v C(k+1)A(k) ; k	 ko, ko + 1,	 (3.6.6)

Using lemma 2.5.2 and Equation (3.6.3), we have the inequality

(V*(k,k'-1;0))( (k-l,k'-1;0)-- (k-1,k';0))`6' (*(k,k'-1;0))--=k- ?	 0	 0	 -	 o	 --k-1	 0

	

< E^(k,ko-1,.)-Z (k,ko;0) 	 . (3.6.7)

Since ZY(k',k'-1;0)	 0 and*(k',k';0) = 0, (3.6.7) implies that
o a	 —	 — 0 0 —

J.

%^(k,k -1;0) > Z * (k,k ,• 0)	 for all k'_ k	 (3.6.8)

If P2	 gis detectable, then by using theorem 3.6.1, z (k,k o ;0) will be

bounded for a fixed k and all ko k. By the monotone convergence theorem

of nonnegative operators (32], we conclude that there exists an unique

^(k;0) such that

l m E-(k,k';Q) _ 	 (k;0) > ^ (k,k ;0)	 ;	 k > _	 (3.6.9)

	

o — — —	 o	 0k' -*-CO
0

Let us define

^ (k+1 0)(V (k+l) , L (k; 0) 	 V' (k+l) E V (E (k; 0)) 	 (3.6.10)-Tk

By lemma 2.5.2 and (3.6.8) we have for all k' > -m
0

^{k+1;0)-E^(k+1; 0)

	

:S 	 Ck^O)) 4(V*(k+1,k';0)`,E (k,ko;Q))

(V^(k+1,k';0),En(k;0))-^(V^(k+l,k';0) L (k,ko '0)) 	 (3.6.11)

Vf (k,ko-i 0) c -1( ' (k-l,ko-; 0) )`	 ,	 i	 0, 1

jW

	

	

Air

i'77.y
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Since (1,,k' ;0)	 (k;0) as k'	 (3.6.11) implies
o	 --	 o

(3.6.12)

From (2.5.12) (3.6.9) and lemma 2.5.2, we have for all ko:

(k+1;0)? k (V (k+1), (k,ko;0))',Jk(V (k+1,ko;0)j (k,ko^0)) _ Z*(k+l,ko,0)

(3.6.13)

and so taking k' -)- -co:
0

	

E(k+1;0)	 E(k+1;0)
	

(3.6.14)

Combining (3.6.12) and (3.6.14) we obtain (3.6.5).

Conversely if (3.6.4) and (3.6.5) are true, then it must be true that

_a21i_Jl

1 1^e, (i ,j) j j -` ale	 al,a2 > 0	 (3.6.15)
v,r

and so 
92 

is detectable by theorem 3.5.6.

Theorem 3.6.3: There exists a unique sequence JZ (k)}k_-W such that

	

lim E,. (k , k0 ;E	 E„(k)	 for all k	 (3.6.16)
k'-}—

0
J

with 1 '- 0. ; and Z (k) satisfies

Z (k+l) = 
^k (v,. 

(k+l) ,E* (k)) _ A* (k)-V (k+l) C (k+l) A^ (k)	 V^ (k+l) e 1s k
	
(k) )

if and only if the system c%
2 
is detectable.

Proof: Using lemma 2.5.2, we have

(v (k ,k , L ))(E (k ,k ,Z )-E (k,k ,0))8 (^ (k,k	 ))-E {k+1,k ,E
-k —	 o - o	 o —o	 o,	 k	 o --o	 o --o

J

E^(k+1,ko,0)-`0k{ *(k,k';0))CE*(k,ko^ )-E (k,ko;O))O(^k(k k';O))

(3.6.18)

y;
j

I
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Since(ko' ko;Eo ) 	 E° -' 0, then (3.6.18) implies that

0 < Z * (k+l,ko;Z - Z*(k+1,ko;0)	 (k,ko)Z J' (k,ko)

where

1 8 (k,k') 
^ ^

k (V* (k ,k' ;. ) )4

If the system S 2 is detectable,

J jj8 (k , ko) jj 4

-l(V*(k-l,ko;0)...4,(Vk(ko,ko';0) 	 (3.6.20)
0

then by theorem 3.6.1, we must have

-a2Ik-k''l
x 
1 
e	 a1,a2 > 0	 (3.6.21)

and so using lemma 3.6.2 and equations (3.6.19), (3.6.21), we have

lim Z (k,k' E )	 lim E (k,k';0) _	 (k;0)	 E (k)	 (3.6.22)
k 1 -}-^	 ° —°	 kt^"	 °

0	 0

Equation (3.6.17) follows from (3. 6.5).

The proof in the reverse direction is the same as in proving lemma

3.6.2.

Finally, we shall consider the time invariant case where A, q, !^?, R

are constant and bounded matrices. In this case

(k,k';Z ) _ E*(k-k',O;E )	 (3.6.23)
o -o	

0,_,_o
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VC

A Z * A' + R

nm

(3.6.25)

(3.6.26)

if and only if the system S2 is detectable.

Proof: In the time invariant case

-Ok (-V) = !k+1 (-V)	 6 (-V)

	
(3.6.27)

Using lemma 2.5.2, we have

J.

(k+1,0;0) 	(k, 0; .q) ' 0 Q^ (k, 0; 0) ) (Z (k,0;0) - E (k-1,0;.0))

.4el 
(v.(k,0;0))

Since
J.

 (1,0-0) a 0, (3.6.28) implies that

(k+l, 0; .9.) 2: Z (k, 0; .0)	 k = 0, 1, 2,

(3.6.28)

(3.6.29)

By theorem 3.6.1, Z (k,0;0) will remain bounded if and only if c% 2 is de-

tectable, and so by (3.6.29), one concludes that there exists Z such that

lim	 (k, 0;.Q) 	 E	 (3.6.30)
k-+co

Using (3.6.23) and lemma 3.6.2 9 	 satisfies the algebraic equation

E	 9E	 A	 V C A	 V C VZ	 (3.6.31)

and L is given by (3.6.26) if and only if 9 2 is detectable. Using theorem

3.6.3 we have the desired results.

Theorem 3.6.5: If 1 2 is detectable, there exists only one nonengative

definite matrix Z which satisfies (3.6.25), (3.6.26).

--Jim



Proof: Let us define

z°-0	 VosV(0)
	

(3.6.32)

-83

and

z 

By (3.6.30), such a

satisfies (3.6.25),

Let E 2^ 0, and E sa

_ ^(Vi-1,Ei_1 ) 	
V  t U(Z i )	 (3.6.33)

constructed sequence of it will converge to . , which

(3.6.26).

tisfies (3.6.25), (3.6.26); i.e.,

= IS!)	 ;	 V e V(E)	 .	 (3.6.24)

By lemma 2.5.2, we have

0 
(v> ( _ ^i-1 ) 

0 (v) { £ — Ei < e_(Vl) ( — i—l) ' (v' )
	

(3.6.35)

By construction, Eo 0, thus
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3.7 General Discussion

In this chapter, we have obtained an optimum unbiased estimator for

the stochastic system %2 , where the observation noise may be degenerate

(Q(k) _' 0) or singular QQ(k) 0). In essence, the optimum estimator is

specified by the relations:

z* (k+l) = T(k+l)A(k)P (k) z * (k)+T (k+1)A(k)V* (k)y (k) +T(k+l) B(k) u(k)

ET.

	 ._...	 -	 ._	 -'	 -	 -	 (3.7.1)

%A(k)	 P (k) z* (k) +V* (k) y (k)	 a(0)	 T (0) xo

where N%I , (k) is the optimal estimates of x(k). (See Figure 3.4.) The matrices

P(k), T(k) satisfy

	

P(k)T(k)  + V * (k) C (k)	 In	 (3.7.2)

and V
„
(k) is given by (see theorem 3.3.1)

V * (k) s 1 _ l ( (k-1))	 k	 1, 2 1 Y ( 0 ) = 0C ' (0) IC(0) C (0)+^ ( 0 ) J-1

E (k+) = A (k) -V (k+l) C (k+l)A ( k) ;

-Y0)	 O- Z
-O
C ' (0) [C(0) z

oc' ( 0)+Q(0) ]-lc(0)z 
(3.7.3)

t, (k) C A(k)£*(k)A(k)+R(k)

*
Note that {V (k)}k=o can be precomputed when the structure of S 2 and the

statistical law of the uncertainties are known. In general, {V W) k-0

may not be unique In the special case when _Q(k) > 0 or C(k+l)R(k)C'(k+l) > 0

*
we have uniqueness in {V (k)}

1^:=0 
(see theorem 3.3.1).

Co

- 

Once {V (k)}k=0 is found, we can choose different {P(k)}k_0 and

f' T(k)^k_0 uch that (3.7.2) is satisfied, and so one can construct different

IT _.
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optimum estimators F , where the dimension of the observer state vector

A(k) are different depending on the choice of {T(k)}k_ 0 , T(k) s 3 ^jr(k),

It has been shown that in the special case when R(k) - 0, the minimal

order optimum observer is of dimension n m 2 where m2 is the number of

noise-free channels available. Though the proof is given for the special

case, it is conjectured that the resUts will be true in the general case

when R(k) ? 0 or even R(k) = 0.

Finally, the asymptotic behavior of E (k) given by (3.7.3) was con-

sidered in great i^tail. Necessary and sufficient condition were derived

for £ * (k) to be uniformly bounded and existence of its steady behavior.

In the following, we shall discuss some of the relevant points in the

development of this chapter.

(A) Discussion of Approaches

Different approaches are available to filtering problems. The

Projection approach was used by Kalman to first obtain the Kalman filter.

The starting point of this approach is the Projection Theorem (Theorem

3.3.2). There is also the Baysian approach [43] where one computes the

conditional expectation of the state, x(k). Also, a max-likelihood

approach [44] is available to filtering problems. Then, there is the

approach of unbiased minimum error covariance estimates [10], and of

weighted least square estimates [43] 	 In the linear-Gaussian case all

these approaches will yield the same solution (see also section 3.3). It

is hard to argue which of the above approachs to the problem is more funda-

mental than the other, for this highly depends on one's philosophical

viewpoint to the problem. One may argue that the Baysian approach is the

most fundamental approach. This is true to the extent where one can justify
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the knowledge on a priori distribution of all the underlying random

vectors.

The approach used in this chapter Seems to be a new approach to

the problem where one starts from deterministic consideration This is

true in some sense. If the knowledge on the a Lr iori distribution of the

state x(0) is correct, then the approach is equivalent to that of unbiased

minimum error covariance. To verify this statement let us consider the

stochastic system 
,2 

(with u(k) -E 0). We look for an unbiased estimator

which is nonanticipative. In general, such an estimator is described by [45];

z (k+l)	 F (k) z (k) + G (k)y(k) 	 z (k) e Rs

E:

	

	
(3.7.4)

w (k) = P (k)? (k) + V (k) y (k)

The initial condition of z(0) is some linear transformation of x ; i.e.,

z(0) = T(0)x
0
	(3.7.5)

and for all k -' 0, we want E{w(k)) = Efx(k)). With this restriction we

have
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k-1

P(k) [jF (k-1,0)T(0)xo +^ IF(k-1,;.+1)G( )C(i)^A(i-1,0)xo]
i=0

+ V(k)C(k)IA (k-1,0)x0 = IA (k-1,0)x0	(3.7.8)

If A(k) are invertible for all k, and the structure of the estimator is

independent of x0 , then (3.7.8) implies that

k-1

P(k) [tF(k-1,0)T(0) jA(O,k-1) +E tF(k-1,i+l)G(i)C(i), (i,k-1)
i=0

(3.7.9)+ V (k) C (k) = In

De f ine

k-1

T(k) jF (k-1,0)T(0)jA(O,k-1) +E JF(k-l,i+l)G(i)C(i)_A(i,k-1)
i=0

Then T(k) E Q(C(k);m,s,n) and T(k) satisfies:

(3.7.10)

T(k + 1)	 F(k)T(k)A-1(k) + D(k)c(k)A 1 (k)	 (3.7.11)

Such an estimator can be realized by picking

F(k)	 T(k +1)A(k)P(k)	 D (k) = T(k + 1)A(k)V(k) 	 (3.7.12 )

Comparing with theorem 3,2.3, we see that all unbiased, nonanticipative

estimators can be realized by an observer (9T, T g 3V9 and its associated
estimator ^T . Therefore ,the restriction of using an observer and its

associated estimator as an estimaing device is the same as restricting

ones attention to only unbiased state estimator s.

But if the a priori assumption on x is different from the true mean

of x(0), then it is not unbiased minimum mean square error approach. In

-	
I
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fact in this situation, nearly all the approaches mentioned above may not

be justified. But we shall see in discussions that under some mild

conditions	 our approach is still valid even with incorrect

on ar̂ iori distribution on the initial state x(0).

(B) Dimension of Observers

From the point of memory storage, we would like to find the minimal

order optimum observer; but from the point of view of computation, one

may not want to find the minimal order optimum observer. f One may want to

look for those observers (9T , T e ^V ; where the number of nonzero entries of

T (k + 1) A(k) P (k) , T(k + 1) A(k) V(k) , and P (k) is kept to a minimum. No

systematic way of finding such observers is available; in general this will

depend on the specific problem under consideration.

(C) Detectability and Observability

Detectability is a weaker condition than observability (see theorem

3.5.4). Essentially, detectability implies that in noise free situations,

one can deduce the current state (but not the initial state) of the system

if given infinitely long observation period, and so it is not the same as

"asymptotic observability" (if such a concept can be defined). In all

sequential estimation problems, one is interested to estimate the current

state rather than the initial state of the system, so one would expect

that detectability would be the intrinsic property which will assume nice

behavior of the minimum error covariance when noises are present. This

physical intuition was verified in section 3.6. We showed that detecta-

bility of linear system gives the necessary and sufficient condition for
I

This viewpoint is due to F.C._Schweppe



-89-

uniformly bounded Z * (k) and the existence of its steady state behavior.

Observability implies that in the noise free situation, we can deduce

the initial state of the system if given a long enough observation period.

Of course, knowing the initial state will enable us to deduce the current

state; but as long as sequential estimation is the goal, the knowledge

of initial state will be nice but not absolutely necessary. Except in the

smoothing estimation, where we are interested in finding not only the

current estimate, but the whole trajectory estimate; thus in this situa-

tion, detectability may not be enough to assure the "nice behavior" of

E (k); we need observability of the system.

In the development, we assume an a priori distribution on the initial

state x(0). This assumption can only be justified if . as time advances

and information accumulates, the resulting performance will be independent of

the a priori distribution of x(0). Assume that the true mean of x(0) is

but we guess its mean to be x o . Since the mean of the state of ,%

satisfies (a.s,) the deterministic equation described by ,% 1 (see section

2.3), then detectability implies that even with a wrong assumption on the

mean of x(0), the optimum observer will give an asymptotically unbiased

estimate	 Thus as k } ^,	 (k) truly represents the error covariance.

From theorem 3.6.3, we see that in the steady state period, the error

covariance is independent of the covariance of x(0) Therefore if ,2 is

detectable the performance will "merge" when information accumulates even if

we started off with different assumptions on the statistical law x'(0).

Thus detectability justifies the assumption on knowing the mean and co-

variance of x(0)

r	 _	 ^

Y

1
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(U) Sequentially-Correlated Observation Noise

The derived results are also applicable to the case when the observa-

tion noise satisfies: [see equation (3.3.1) for 91

n (k + 1) = A(k)n(k) + y (k)	 ;	 n (k) e Rm	 (3.7.13)

where {y(k)}^_ , r ► (0),	 , and {^(k) }
CO
	 are independent with statistical

	

k-0	
—x(0)	

k=0

law (3.3.2) , (3.3.3) and

n (0) ', Ck N o Lo)	 Y (k) ti (0,A(k))	 (3.7.14)

We can define

	

x (k)	 A (k)	 0

x  (k)	 ; Aa (k)

	

n (k)	 0	 A(k)

(3.7.15)

(k) R(k)

e (k)	 ...	 sa (k)	 ..

	

UL (
k)	 0 	

I

Then we have the augmented system

x a (k + 1) = Aa (k) + a (k) u (k) + a (k)

	

S2	 (3.7.16)

y (k) = [ q (k) . -lM ] x  (k)

We can apply the derived results to the above system ^2. Note that

xa (k + 1) s R
a+m , 

but since the noise free observation is of dimension m,

the minimum order optimum observer is of order n. This problem has also

been considered by Henrikson [46], Bryson and Ho [43] 'using a different

approach. We can easily verify that the results obtained by applying the

,I

_,	
4

J
l

,,r
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derived results to this special class of problem	 they are the same as those

obtained by Henrikson. This special application will be considered in a

future investigation.

3.8 Perspective

Observers for a linear system Caere introduced by Luenberger (35],

[36]. He only considered continuous,linear,time invariant systems. Ob-

servers for discrete,linear,time invariant systems were discussed by Aoki

and Huddle [37] in relation to a constrained estimator problem. Observers

for discrete linear time varying system were first introduced and studied

by Tse and Athans [38].

Optimum linear filtering for discrete linear time varying systems was

investigated by Kalman [39], [401 using the projection theorem approach.

Deadbeat estimator for discrete time invariant system were derived by Kalman

[41]. The unbiased approach to optimum linear filtering problems was used

by Athans and Tse [10], Tse and Athans [38]; the unbiased approach to non-

linear filter was used by Athans, Wishner, Bertolini [42].

Detectability was first introduced by Wonham [32] as the dual concept

of stabilizability. Detectability as defined by definition 3.5.1 seems

to be more appropriate and more general than that of Wonham's (Wonham con-

sidered only the time invariant case).

The asymptotic behavior of minimum error covariance for discrete

linear systems were not investigated in full detail in the current litera-

ture. Deyst and Price [28], Sorenson [29], and Aoki [30] considered to

some extent the asymptotic properties of the minimum error covariance. They

confine themselves to consider the special case when the observation noise

is regular (Q(k) > 0). Little or no attention is paid to the case when the

I

_._.. 	 _ .x.	 ..
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CHAPTER IV

OBSERVER 'THEORY FOR CONTINUOUS TIME LINEAR SYSTEMS

4.1 Introduction

The problem of state estimation for discrete linear systems was con-

sidered in detail in Chapter III. In this chapter, we shall consider the

state estimation problem for continuous time linear dynamical systems.

Aside from the fact that state estimation is of prime importance in the

design of optimal control systems,the problem in itself is of great impor-

tance in the design of modern communication systems.

The structure of this chapter is as follows. In section 4.2, we con-

sider time-varying deterministic linear systems; the notion of a determin-

istic observer and estimator for a continuous linear system is defined and

we prove that classes of observers and estimators can be constructed if

the dynamics of the system are known. Equivalent classes of observers and

the classes of minimal order observers are defined and some preliminary

results on parameterizing equivalent classes of observers are obtained. In

section 4.3, we extend the deterministic notions to stochastic systems

where we show that some classes of observers yield unbiased estimates. By

some physical considerations, we restrict the classes of observer-estimators

that shall be considered. We then determine the class of minimal order

observers that yield minimum variance estimates by formulating the problem

as finding the minimal function of a certain restricted solution set and

then, using theorem 2.6.3. We then show that the class of minimal order

optimum observer-estimators yields the conditional mean estimates of the

stage. This reveals the true nature of the derived minimal order optimum

-93-
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observer-estimator. In section 4.4, the notion of detestability of con-

tinuous linear time system is defined, and the asymptotic behavior of the

optimum estimator is studied in terms of detestability and observability

of the system. In section 4.5, we have some general discussions on the

approaches, results and further applications. In section 4.6, detailed

literature connected with the development in this chapter is listed.

Conceptually, there is little difference between discrete and con-

tinuous time linear systems; therefore we would expect the results obtained

in this chapter will be quite similar to those of Chapter III. One marked

difference between the discrete and continuous time cases is that for the

discrete time case, the observation statistic is sequential, and so each

bit of observation conveys finite amount of information in an accumulative

manner; whereas in the continuous time case, we have only a priori - infor-

mation before any observation is made, and when 
an 

observation is made at the

initial time we have a sudden increase of information within a very small

interval of time due to some noise-free observation component We would

expect this "jump" in information to be reflected in the initial condition

of the optimum observer-estimator.

4.2 Classes of Observers for Continuous Linear Systems

In this section, we shall consider a linear time-varying continuous

system 
l 

described by

(state eq.)	 k(t)	 A(t)x(t) + B(t) u(t)

(output eq.)	 Y(t)	 C(t)x(t)
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where x(t) E Rn . We shall assume that C(O is a differentiable time-

varying nxm matrix of rank m, for all t ,, (tQ , } (n 4 m)	 For a fixed.

t s [t 
0$

-] the set of complementary matrices of order s for C(t) is denoted

by (C(t) ;m,s,n) = (T(t) s 'isn : N(T(t)') n N(C(t)) = On #^, Rn	 We note

that T(t) s y(C(t);m,s,n) if and only if there exist matrices P(t),

L'(t) (of appropriate dimensions) such that

p (OTW + _v(t)C(t) = I 
	 (4.2.1)

Definition 4.2.1 : A linear time varying system of dimension s a n m

.x.
(9s: ;z(t) = F(t)_z(t) + D(t)y(t) + G(t)u (t) ; z(to)	

z	
(4.2.2)

is an s-order observer for the system g, if for some choices of zo , the

solution, z_(t) of (4.2,2) equals

z(t)	 T(0.2 (t)	 t > to	 (4.2.3)

for some T(t) s n(C(t);m,s,n), t > t 	 We shall. also say that the observer
—	 —	 o

is described by T(t), t > t
0
 and refer to such an observer by the symbol

c
T .

Let T(t) be an sxn matrix which satisfies the differential equation

(t > to)
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thQn, using (4. 9-4), we have

Wt)2^(t) - Z(0) ) = F(t) 	 - Z(0)
t

(4.2.6)

	

and if we choose T x(t) 	 z(t), then T(t)x(t) = S(t)o t > t
0	 0	 0	 0

Therefore ' will be an s-order observer for 8 c if by some appro-
S	 1

priate choices of L(t),.I(t), b(t), T'0 the solution, IL(t) of (4.2.4) will

be in the set of complemep.tary matrices of order s for C(t), t > to.

w ;	By assumption,.q(t) is differentiable for all t	 [to , ] thus there

exists a function I(t) f .':-,.(q(t);m,s,n), t > tQ, such that t(t) is

differentiable.

Theorem 4.2.2*. Let i(t) e ^i(C(t);m,s,n), t > to , and T(t) is differentiable

in the interval (t 0 )-) . Then, there exists a class of s-order observers

which are all described by T(t) t > t0 for the system 9

Proof: Let P(t), V(t), t > t 
0 , 

be matrices of appropriate dimension such

that

	

(t) +	 t > t	 (4.2-7)
0

Choose for t > t
0
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and L(t) is an arbitrary nxm matrix.

To , we have the solution of (4.2.4)
With these choices of D(t), F(t), and

t

_C )	 ^F t . o)-..•r o)4, o )	 ^F C 	 ) [_ C )^C) 
dddT	

( )_C ) ] A C ^,t)d.T t =	t t Tt	 t t+	 t T T T A T+	 V z C T	 z
t

(4.2.12)

where F (t,to)  and 4(t,to) are fundamental matrices associated with F(t)

and A(t) respectively. Using (4.2.7) and (4.2,.9) the integrand of (4.2.12)

becomes

t	 t	 d^	 t)

-+-^F(t'^) [TC^)ACT) + 
da(^r) 

VCS) cC^)]^AC^,t)dT - ^ ^^FCt,i)T(T)	 AdT — +
f	 J +t	 t0	 0

d^

^'F(t; 	
daT T) A(,t) + _F (t,T)dT	 T(T)¢A(T,t)}dr	 T(t)-F (t,to)T(to)rA(to,t)

(4.2.13)

Combining (4.2.12) and (4.2.13) we have

T(t) = T(t) s Q(C(t) ;m,s,n)	 t > 
t 
	 (4.2.14)

So an s-order observer can be constructed by (4.2.5). We note that by

choosing different L(t) E Mnm , t > to , we obtain a class of observers de-
scribed by the same T(t), t > to. For a fixed T(t) E P(C(t);m,s,n),

t > t o , and a fixed L(t) E 
Mnm, t > to, we shall use the symbol (9T c( L) to

represent the observer which is specified by T(t) and L(t), and

(9T c =: {(9Tc(L)/L(t) E Mnm } the clans of observers which is specified by i(t) .
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If we know x(to), then by setting

z(t') = T(t+ )x(t+)	 (4.2.16)
o	 — o	 0

we have from (4.2.6) and (4.2.16) that

w(t)	 P(t)T(t)x(t) + v(t)C(t)X(t) = x(t) 	 (4.2.17)

But usually x(t 0
4) is unknown, and so if we want to use E lc (L) as an esti-

mating device, we would restrict the initial condition of z(t o) to be in

the range space of T(to)

Let V(t) E Mnm , t > t o , be a fixed differentiable matrix. Associated

with it is a set of matrix functions 3 c= {T(t) E Msn, t > to/T(t) is di.f--

ferentiahle on (to,-) and P(t)T(t) + V(t)C(t) 	 In for some

P(t) E Mns , t E (to ,-);s ? n - m). For a fixed T(t) . U c we can associate

with it a class of observers (9T c and a class of estimators

9Tc = {
glc(L)/L(t) s Mnm}. Therefore, for a fixed V(t), t we can associate

with it different classes of observers (9T c , T(t) E 5 
V, 

of different orders.

For a fix,.:, '(t), t > to suppose that (I n - V(t)C(t)) has rank

n - P, (p < m)	 then the class Try (L) = {GTc(L)/T(t) 
E j V and T(t) E M	

Pn(n- )—	 — 

has full rank, t E (t ,-) I is called the class of minimal order observers
0

associated with V(t) and parameterized by L(t). We can define the notion

of nnttival ont	 no 4-n 4-110 Ai cnroto nnca (ilo i ni ti nn	 7 rid
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I.emma 4.2.3: For a fixed 'r), r_	 t o such that I - V(t)C(t) has rank

n - p, t = t 	 (9T c (L) ,	 t) _: ` be a given cbserver of order

S _ n - p. Then there exists a n - p order observer 0T c (L), T(t) E. J  such

that ST	 lCc(L), G (L) are equivalent.

Proof: Let Gc (L) be a given s-order observer; its associated estimator

ETc (L) is described by

z(t) = (T(t)(A(t)-L(t)C(t)P(t)+T(t)P(t))z(t)+(T(t)(A(t)-L(t)C(t)
lc

^T (L) '

	

	 V(t)+t(t)V(t)y(t)+T(t)B(t)u(t)	 z(t0)E=S = {T(t0)uJuF-Rn}

w(t) = P(t)z(t)+V(t)y(t)

(4.2.8)

with P(t), T(t) satisfying (4.2.1) and z(t) c R s , s _ n - p. Since

I - V(t)C(t) has rank n - p, we may assume without loss of generality- t	—

that P(t) is of rank n - p. P(t) is a time var-jing linear transformation

from Rs - Rn . We can break the transformation into two steps: map R s to

Rn p by a time invariant transformation K, them from R n p to R" by an appro-

priate time varying transformation P(t) i.e.,

P(t) = P(t)K	 P(t) a Mn(n-p)	 K E M (n-p)s .	 (4.2.1(j)

Let us construct an n - p order observer &
I
^ (L) with T(t)	 K T(t) and

n
the restricted observer's state initial condition t(t+) e S	 {K T(t 0 )a,a E R ,.

First we see from (4.2.19) that

P(t)T(t)+V(t)C(t) . P(t)K T(t)+V(t)C(t) = P(t)T(t)+V(t)C(t) = In

(4.2.20)

thus we conclude that T(t) .9 c . Let C Tc( L) be the estimator associated

with t , c (L). To prove the lemma, we need to verify that w(t) - w(t) for

•
y
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all possible u(t) and Y(t) where w(t) is the output of F T c (L) . Let

z(t
+
) = T(t+)a for some a E Rn and pick z(t

+
) = K T(t+)a; then one can_ o _ o —	 —	 — o — — o

easily show that by construction

i(t) = K z(t)	 t > t 	 (4.2.21)

for all y(t) and u(t). Then we have

w(t)	 P(02(t)+v(t)Y(t) = P(t)K z(t)+V(t)Y(t) = P(t)z(t)+V(t)Y(t) = w(t)

(4.2.22)

Conversely, if z(t+) = K T(t+)a, pick z(t
+
) = T(t+)a;then we have (4.2.21)

	

o -- o —	 o — o —

and (4.2.22) in the same manner, and the lemma is proved.

Theorem 4.2.4: Let V(t) E nm, t > to , such that the rank of V(t) and

In - V(t)C(t)  are p and n - p, respectively. For a fixed L (t) e M m
 the

class of observers (9Tc (L), T(t) E TV are all equivalent.

Proof: Let P(t) E M	 T(t) E M	 such that—	 n(n-P) —	 (n-p)r►

T (01

	

P (t) T ( t ) + V (t)C( t )	 {P (t)	 V ( t)	 ...	 _ In .	 (4.2.23)
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with 1 (t) e Mnp and of rank p, while

	

V 2 (t) = Kl (t)M(t)	 M(t) E Mp(m-p)	 (4.2.26)

The matrix C(t) is also rearranged accordingly (if necessary); we may assume

C l (t)
C ( t )	 .'	 C1(t) s 

P	
_

n	
_	 C2(t) e ^1(m-1'1(m 	

(4.2.27)_	
CZ(t) 

Since C(t) is of full rank, (4.2.23) implies that

C (t)	 N(t)T(t)	 N(t) e M	 (4.2.28)
—2	 — —	 —	 (m-p)(n-p)

Using (4.2.23) to (4. 2.28), we have for a fixed t:

T(t)
[P(t)	 Vl (t)] •	 = In	 (4.2.29)

C1 (t ) + M(t)N(t)T(t)

Since [P (t)	 Vl (t)] E rnn' (4. 2.29) implies that

	

T(t)P(t)	 In-p	
T(t)V1(t)	 0(n-p)p

C1(t)V (t) + M(t)N(t)T(t)V 1 (t) = C1(t)Vl(t)I p 	(4.2.30)

From (4.2.25), (4.2.26) and (4.2.30), we have

T (t)P(t) = In-p	 T(t)V(t) = 0(n-p)m	 (4 2 .31)

i	 We note that under the assumption on V(t), (4.2.31) is true for all

t l t .	 ..
o

From lemma 4.2.3, we see that to prove the theorem we need only to

prove that all observers (9T c (L) e iT (L) are equivalent.

Let Cc(L) s 
71 

(L) be arbitrary, i	 1 2. The associated estimators
1

are described by

all Iw u .	 ._ w ._ ._.. wo
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i.1 (t) _ (T i (t) (A(t)-L(t)^(t))P..(t)+!. (t)P.(t))z(t)+(?i(t)L(t)+Ti(t)V(t)

E TC (L) '	 +T. (t) (A(t)-L(t)c(t))v(t))x(t)+T. (t)B(t)u(t)

wi (t) = Fi M zi (t)+v(t) -(t) ; zi (t0 )ESi = {TIi (t0 1.2ERn3

(4.2.32)

Without loss of generality, we may assume that the P i (t) e Mn(n- )P
are of rank n - p. Then there exists a nonsingular matrix K(t) E M(n-p)(m-p)'

such that

al(t) = P ,(t)K(t)P2(t) = P l (t)K 1(t)	 (4.2.33)

and so we also have	 1

K(t)Tl (t)	 T2 (t) 	 11(t)	 K 1 (t)T 2 (t)	 (4.2.34)

Let us define

	

z(t) = K(t)Al (t)	 (4.2.35)

Using 0.2.32) to (4.2.35), we obtain the equation for i(t):

z(t) _ (T2(t)(A(t) L(t)C(t))P(t)+K(t)T1(t)P2(t)+K(t)K 1(t))z(t)

+(T2(t)L(t)+K(t)Tl(t)^(t)+T2(t) (A(t)-L(t)c(t))v(t))y(t)

+T2(t)B(t)u(t)

Z( to) = K(to).11(to)a _ T 2 (to)a a S 2 	(4.2.36)

since P i (t), T (t) satisfy (4.2.23), i = 1, 2; thus, by (4.2.31), (4.2.33)	 Y

and (4.2.34) we can easily show that

K(t)Tl (t)P2(t) + K(t)K 1(t)	 '2(t)P2(t)-	 (4.2.37)

I
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K(t)Tl ( t)V(t) = K(t)T2 (t)V(t)	 (4.2.38)

Substituting (4.2.37), (4.2.38) into (4.2.36) and comparing with (4.2.32),

we see for any given z(t o), we can pick an appropriate

z 2 (to) t S 2 (z(to) = z 2 (to)) such that

E(t) = z2(t)
	

(4.2.39)

and so

	

w(t) = P l (t}z l (t) + V(t)y(t)	 P 2 (t)K(t)z l (t) + V(t)(t)

	

= P2 (t) z 2 (t) + V(t)y (t)	 w2 (t)
	

(4.2.40)

Therefore F Tc (L) is an equivalent representation of P_Tc (L); similarly, we

	

2	 2
can prove 81c (L) is an equivalent representation of elc (L) and the theorem

	

T 1	T2

follows.

Note that the -results are different from those in the discrete case.

We see that only in some special cases equivalent classes of observers

are parameterized by V(t) E n1
nm	 nm

and L(t) E M	 Because of this difference,
—	 '

our approach to the problem of designing "nice-behaved" observers and

associated estimatorsfor the continuous system 81 will be slightly different

from that used in the discrete case.

4.3 Optimum Class of Observers for Linear Stochastic Systems

Consider a stochastic system S2 described by	 (Figure 4.2)

X(t) _ A(t)x(t) + B(t)u(t) + z(t)
gc	

(4.3.1)
2'

cl(t)x(t) + n(t)

C2(t)x(t)

N	 ills 11

4

_» .. ............ c	 .yam	 .w.	 x	 .+ w.x.....esa

,q....	 ,
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m
where x(t) e Rn, u(t) E Rr, (t)	 Rn , n(t) . R 1 , Y(t) E Rm , (m m1)

We assume that x(t o),	 t	 to }, tn(t), t ? to ) are independent

statistics. x(t 0)is a Gaussian random vector with mean xn and covariance

(t), n(t), t ? to are white Gauss an noises with properties

lt2	 t2	 ^t2	 t2E li	 ^(t)dt l	 0	 E{(	 E(t)at)(	 E(t)dt	 =	 R(t)dt	 t2 > t1
t1	

t1
	 i t 	 111

	

f t 

EJ
^t2 n_(t)dt	 0	 E

l 

(^t2 n(t)dt)( 
t2 

n(t)dt	 = t2 
Q( t)dt	 t2 > t 

1n	 —	 C	 3	 --

	

f tt11
	

f t 

(4 3.2)

where R(t) > 0, R(t) E Zinn and Q(t) > 0, Q(t) c M n m	 The control u(t) is
1 1

known function of time.

Let us denote the noisy observation by y1 (t) and the noise-free obser -

vation by Y2 (0:

	

.Yl (t) = C 1 (02( t) + n(t)	 Y-2(t) = C2 (t)x(t)	 (4.3.3)

Our objective is to find a "filter" whose output will be an unbiased

minimum mean square estimates of x(t) . Since x(t) is a Gaussian random

process (see Chapter 2, section 2.3), we may restrict ourselves to consider

onl linear filters [47] 	 Thus we ma assume that the estimate of x(t) is

given by

f

(t,T,)Y(T)d-r
t

P,: w(t) =	 x 	 + v_(t)y(t)	 (4.3.4>t0

where H( • , • ) is an nxm matrix whose elements are differentiable in both

arguments. If we demand the system P to yield unbiased estimates of x(t),

then F, can be realized by an s-order observer (T c (L)^ and its associated

The superscript 2 is to indicate that system ,% is considered.

......	 JIM,, j,ij,Jjj ,,, ,_1 ....... 1 1=01_,,,11,_
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estimator E^Tc (L) (see section 4.5). For this reason, we may view observer

estimators as estimating devices.

Let us restrict ourselves only to some special classes of observers.

First we note that in the discrete analog, the optimum observers are

compatible with respect to the noise-free observation, This is one in-

trinsic property of the optimum observers, and this property should be

preserved when we pass from the discrete to the continuous. Thus, we shall

only consider observers which are compatible` with respect to the noise

free observation Y2 (t). Since yl (t) contains white noise in the measure-

ment, therefore, in order to obtain reasonable estimate, we shall not $assIt

V1(t) without filtering. These physical consideration allow us to consider

only those observer P,T c (L) which are compatible and parameterized by

L(t) e 
Mnin arbitrary and V(t) of the form

V(t)	 [0 V2 ( t ) ]	 V2(t) e Mn(m-m)	 (4.3.4)1

All such V(t) are of rank :i m ml m2.

Theorem 4.3.1: Let V(t) be of the form (4.3.4), if there exists an observer

0 (L), T(t) E 5V, which is compatible, then rank V(t) = m2 and rank

(In - V(t)C'(t)) = n - m2.

Proof By lemma 4.2.3, we may assume that there exists & lc (L) E 7TVc(L)

which is compatible. Let f,T c (L) be the associated estimator and w(t) the

resulting estimate. Using (4.3.4), we have

e(t) = _w(t)-x(t) = P(t)z(t)+V(t)y(t)-x(t)

P(t) Z(t)+V2(t)C2(t)x(t)-x(t) 	 P ( t) (?(t)-T(t)x(t))	 (4.3.5)

' Compatibility is defined as in discrete case. See section 3.4.

MISS

I

srt..	 , 	 A	 ^_ _ °.
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1

B y compatibility we must have

C2 (t)e(t)	 C2 (t)P(t) (z(t)

Thus in particular if E(t) = O, n(t)

C2(t)P(t)'F (t,to)T.(to ) a = 0

where F(t) is given by (4.2.9). Sinc

be assumed to be of full rank, and so

c2(t)P(t)

- T(t)x(t)) = 0	 a,.s.	 (4.3.6)

0, (4.3.6) implies that

a e 0 arbitrary	 (4.3.7)

& 2c (L) e iT 
PVC (L), therefore T(to)  may

(4.3.7) implies that

0	 (4.3.8)

Using (4.3.5), we have

C 2 (t)e(t)	 c 2 (t)V 2 (t)c2(t)x( t) - c 2 (t)>*) 	 0
	

a. s.	 (4.3.9)

X(t) can be an arbitrary vector in R n ; so we conclude that

g2 (t)V2 (t) = 
IM
	 (4.3.1.0)_	
2

and that rank V2(t) =M2,

From (4.3.8), we have

C 2 (t)P(t)T(t)	 0	 rank P(t)T(t) < n - m2
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By theorems 4.2.4 and 4.3.1, we

can be classified into two classes:

uncompatible or all (9
2
T c (L) , T(t) E ZY,

We may call the former class of V(t)

see that all V(t) of the form (4.3.4)

either all (9 2c (L), T(t) -- 5V are all

are all compatible and equivalent.

uncompatible and the latter class of

V(t) compatible. Thus,the classes of observers which we shall consider are

parameterized by L(t) e Mnm and compatible V(t) of the form (4.3.4).

Let V(t) be a fixed, differentiable matrix function of the form (4.3.4)

which is compatible; and let L(t) e Mnm be arbitrary. From theorem 4.2.4,

all observers 0 2c (L), T(t) E Jc are equivalent and thus yield the same error

dynamics. Let	 (9Tc(L) E ffm2c (L)^ its associated estimator FTc (L) is

described by:

z(t) = (T(t) (A(t)-L(t)C(t))P(t)+T(t)P(t))z(t)+(T(t) (A(t)-L(t)C(t))V2(t)

el 
2c
T	 +T(t)V2(t)+T(t)L2(t)) y_2( t)+T(t)Ll(t)yl(t)+T(t)B(t)u(t)

w(t) = P(t)z(t)+V2(t)Y-2(t)

(4.3.14)

where

L(t)	 {Ll (t)	 L2 (t)^	 L1(t) E n	 L2 (t) 
E nm	 (4.3.15)

m1	 2

P(t) E Mn (n-m2) ,T	 (n-m`) n(t) E M	 satisfy (4.3.12) and, in addition, they

satisfy:

T(t)V2(t) Onm	 92(t)P(t) - ^m n ' g2 (t)V2 (t) = -IM2	 2	 2
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T(t)L(t)C(t)P(t) = T(t) (Ll (t)91 (t)+L 2 (t) C2 (t)) P (t) = T(t)Ll(t)Cl(t)P(t)

(4.3.17)

T(t)L2 (t) - T(t)L(t)G(t)V 2 (t) = -T(t)L1 (t)C1 (t)V 2 (t)	 (4.3.18)

Substituting (4.3.17), (4.3.18) into (4.3.14), the structure of the estimator

ETc (L) is given by (Figure 4.3)

z(t) = (T(t)A(t)P(t)+T(t)P(t)-T(t)L1(t)C1(t)F(t))z(t)+T(t)B(t)u(t)

P-2c(L)T	 +T(t)Ll(t)yl( t)+(T(t)A(t)V2(t)+T(t)V2(t)-T(t)Ll(t)Cl(t) 2(t))^2(t)

w(t) = P(t)z(t)+V2(t)Y-2(t)

(4.3.19)

By demanding f^T c (L) to give unbiased estimates of x(t), we set (see also

section 4.5)

z(to)	 T(to)_o 	(4.3,20)

where T (to ), P(to) satisfy

P(t0)T(to) + V2(to)C2(to) = I
n	 (4.3.21)

Using (4.3.1), ';;4.3.2), (4.3.16), (4.3.19) and (4.3.20) we have the

dynamics of the error process, e(t)	 w(t)	 x(t), given by: (see Appendix C)-

e(t)_ _ (A(t)-V2(t)c (t)-P(t)T(t)Ll(t)'.Cl(t)) e(t)+(V2(t)C2(t)-in)C(t)

+P(t)T(t)L, (t)n(t)	 (4.3.22)
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De f ine

Ll(t)	 P(t)T(t)L1(t) e 
Mnm

- - -	 2

The error covariance is given by (see chapter 2, section 2.3)

(4.3.24)

(t) _ [A(t)-V 2 (t)C 2 (t)-Ll (t)Cl (t) ]E(t) +E(t) [A(t) -V 2 ( t)C 2 (t)-L1 (t) cl (t) J'

[In-V2(t)C2(t)JR(t) [In-V2(t)C2(t) ]'+Ll (t)Q(t)L1(t)

Z(to)	 (-In	 V2(to)C(to))-'-O(?n - V2(to)C2(to))'

(4.3.25)

We note that the dynamics of the error covariance are dependent on Vp),

t £ [t0 -] and Ll (t), t c [t 0 -]. Note that V2 (t) and Ll (t) are not arbi-

trary but V2 (t) has to satisfy (4.3.10) and Ll (t) is related to L1(t),

which is an arbitrary matrix, by equation (4.3.24). To find the optimum. 	 -

clan of observers, we are to find a pair {V 2 (t), Ll (t)), which may be a

nonunique pair, with the above constraints which will give the "least"

nonnegative definite covariance matrix. Each such pair {V 2 (t), L1 (t)}

specifies an optimum class of observers. When {V2 (t), Ll (t)} ranges over

all constrained pairs, we generate thesolution set, a t , of (4.3.25)	 The
p

minimization problem is equivalent to finding{V2(t), L * (t)) which will yield

the minimal function with respect to the solution set 2t .
0

Theorem 4.3.2: Let C2(t)R(t)C'(t) > 0; then ` there exists a unique con-_ -

strained pair { V2 (t)', t s [t o ,_], L*-1 {t), ,t c [to ,-]) which yield the unique

minimal function, L * (t), with respect to t	 V2(t), L1(t) are given by
0

*	 LC2 (t) (C 2 o( t	 C o) z	 ' (t))	 t	 ta	 o	 o
V (t) _	 (4.3.26)
2	

(Z*(t)C'(t) + R(t)C'(t))A-1(t)
	

t > to

Aw
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Lilt} _ ^`(t)cl(t)R 1 (t)	 t , to	 (4.3.27)

where

G(t)	 C 2 (t)R(t)c2(t) > 0
	

(4.3.28)

i.^(t) is the minimal function with respect to 8t and is given by—	
o

z:e(t) — (A(t)—R(t)c2(t)d-1(t)c2(t))E" (t)+Z^(t) (A(t)—R(t)C2(t>^-1(t)^2(t)),

Z * (t) (c2(t)G-1(t)c2(t)+cl(t)R-1(t)cl(t))z(t)+R(t)

R(t) C2 (t)h-1 (t) C2(t)R(t)

Z"(t } = z - E C'(t )(^ (t ) c'(t ))
-1c (t )

o	 —o —o-2 o -2 o ) 	 0	 --2 o —o

(4.3.29)

Let 
5t 

be the solution set of (4.3.25) when (.y 
2 
(t), Ll (t)} ranges all

o	 "
possible pairs; E (t) is also the minimal function with respect to IRt

o—
thus Z * (t) is the Riccati function (see definition 2.6.4).

Proof: Let 8 t be the solution set of (4.3.25) when {V 2 (t), L1 (01 ranges
0

all possible pairs. Compare (4.3.25) and (2.6.1) with

E"(t)	 a.j, -$-"jt,to;E"(to))
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Since by assumption C 2 (t)R(t)C2(t) > 0, then we have

4( t )	 0	 g(t)	 0
' .	 +R(t) [0	 G' (t) -	 ...	 > 0 (4.3 31)

	

0	 0 1	 C2(t)	 2	 0	 C2(t)R(0 t (t)

and so the unique minimal function is given by: (see (2.6.19) to (2.6.21))

(t)	 (A(t)-R(t)C2(t)A 1(t)Yt))L.ti(t)+£^`(t) (A(t)-R(t)C2(t)A-1(t)c2(t)),

-^*(t) (C 2 (t)Q-1 (t)C 2 (t)+Cl(t)Q 1(t)Cl(t))E*(t)+R(t)7R(t)C2(t)A-1(t)C2(t)R''-)

	

*(to)	
--oz - 2 (to ) (C2(to)'C2(to))-1C2(to)ro

(4.3.32)

and [L (t)	
V2 

(t)] is given by: (see 2.6.18)

1(t)	 0
	[Ll(t)	 v_2(t)] _*(t)[C1(t)	 C 2 (t)]+[0	 R(t)c2(t)	 ...	 ...

0	 o-1(t)

t > t0

J

V2 ( to ) 	 ^^2(to)(C2(to)EoC2(to))-1

(4.3.33)

*
To complete the prove of the theorem, we need only to show that V2(t)

T	 ^C

satisfies (4.3.10), and Ll(t) is related to some L l(t) E Mnm via (4.3.24).
1

From (4.3.32), we see that
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Thus we conclude that

C2(t}E(t) = 0	 (4.3.36)

Therefore we have

c2(t)v2(t) 	 [c2(t)E*(t)cl(t) + o(t) 
^A-1(t)	 (4.3.37)

2

Let

L1(t) = E* (t)C1(t)Q 1 (t) = L1(t)	 (4.3.33)

We can easily see from (4.3.30) that

T(0)P{t)L (t)	 ( -v2 {t)c2(t))L^(t)q, (t)-(t)	 E*(t)C1(t)Ql(t)

L(t)	 (4.3.39)

Thus- E 
*

(t), given by (4.3.31), is also the minimal function with respect to

^t
0

We now have the structure of a class of minimal order optimum observers,

O^ c (L*) , T (t) e SV.*' (V* (t)	 [0	 V-2(t)])  and its associated estimators

e (L ) , T (t) c c'V*
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T(t)Y2(t)	 -Onm	 C2(t)P(t)	 M n	 T(t)P(t)	 --in	 t > t¢,

2
1(4.3.41)

1
C2 (t)is continuous t e [ to ,-], thus we can choose P(t) which is 'continuous

for all t E [to,. From theorem 4.3.2, V 2 (t) is discontinuous! at t = to,

and so from (4.3.41), T(t) is discontinuous at tO. Since e (t) 0 w (t) 	 x(t)

is continuous at t = to , we have

	

e ` (to )	 P(to )(z (to)-T(to)x(to)) 	 P(to)(z*(t^)-T(to)x(to))	 (4,3.42)

and using (4.3.40) and the fact that z (to ) = T(to)xo , we have

z"(to )	 T(to)^ - T(t o )V2(to,
Y-2

(to )	 (4.3.43)

We see that z (t) is discontinuous at t = t o , and consists of the a priori

guess (T(t 0 )x0 ) and a correction term due to perfect observation

(T(to)VZ(to)y2 (to)). The detail structure of 8T^(L
x
 ), T(t) E J ^, is shown

in Figure 4.4. What we have obtained is a class of optimum mean square

estimators among a restricted class of estimators being considered. For

example, we have not considered the class of nonlinear estimators. Now to

prove the derived minimum order optimum observer-estimator is the truly

optimum estimator, we appeal to the projection theorem; It is clear that w " (t)

is a linear functional of Y2(s), s E [t o ,t] and Y
l
(s), s s [to,t], we shall

prove that the error process, e*(t) = w* (t) - x(t), satisfies the projection

equations

E{e * (t)v_' (s) I= 0	 s F (t .t)	 E(e^(t)v'_ (t)} = 0
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This implies that (see discrete analog and Appendix B) the optimum class

of observers will yield (a.s.) the conditional mean estimates of x(t), and

thus reveals the truly optimum nature of £T
c
(L ), T(t) e c.

By using g2c(L ), T(t) e gc*, as an estimating device, the corre-

sponding error process will satisfy

e* (C) _ (A(t) -V2 (t)C2(t)-L1( t) C1(t))e*( t)+(v2(t)c2(t)-zn)(t)+L1(t)n_(t)

ee * (to )	 (?n	 V2 (to ) C2 (to ) ) (xd - X(to ) )

(4.3.45)

*	 *
where V 2 (t), Li (t) are given by (4.3.32), (4.3.33) and (4.3.37).

Lemma 4.3.3: Let { e * (t), t - t } be a random process satisfying (4.3.45);
0

and x(t), t ^ t o , be described by (4.3.1) with u(t) =- .Q,  t '- to . Then for

all t ' t o , we have

E{e(t)x,'(t)) = - E * (t)	 (4.3.46)

Proof: At t	 -t0, we have from (4.3.44), (4.3.33) and (4.3.31) that

E{e*(t)X'(t)) _ {I - ^ C I (t 	 2 oC(t)(C{t) z CZ o	
2 o	 O(t)C(t)}{Xxo	 o_E
	 x(to	 o	 n	

o)}

Using (4 3.45) and (4.3.1) we have

J
dose( dt (t)}

at	
(A(t)-V22 (t)C 2
	 1

(t)-L1(t)C1 (t))E{etc(t)x'(t)}

+(V2(t)C2(t)-1 )R(t)+E{e*(t)x' (t) }A' (t)

(A(t) R(t)C2(t)A-1(t)C2(t))E{e*(t)x'(t)}

_E (t) C' (t)_Q 1(t)g1(t)E{e*(t)x' (t)}

E k-(t)C2(t)A-1(t )C2(t)E{e*(t)x' (t))+E{e*(t)x'(t) }A' (t)

r	 +IZ (t)C' (t)A-^ (t)C (t)R(t)-R(t)+R(t)C' (t)L1-1 (t)q (t)R(t)2	 2	 2	 2

-(4.3.48)

_	 _._
Aw-
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Let us define

D(t) _ * (t) + E{e*(t)x' (t) )
	

(4.3.49)

By (4.3.31), (4.3.47) and (4.3.48) we have

D(t) _ (A(t) R(t)C2(t>-1(t>c2(t))D(t)-*(t) Cc1(t)^^ 1(t)^i(t)+c2(t)..(t)2(t» .

D(t)+D' (t)A(t)

D (ta) = 0

(4.3.50)

L ,t (t) is the unique minimal sequence of 0 t and so is well defined. (4.3.50)
0

implies

and (4.3.46) follows.

Theorem 4.3.4: Let. e (t), t ? t0 , be described by (4.3.45), and y(t),

t z t0 , be given by (4 3.1) with u(t)	 0, t ? to . Then for all t ? tO:

E{e*(t)yi(s)} = 0 , s E [to ,t)	 E{ (t) 	 0, s	 [ to,t)
(4.3.52)

Proof: By (4.3.45) and (4.3.1) and the properties of Gaussian white noise: 	
1

E{e*(t)1(s))	 E {e* (t)x' (s) }Cj (s)+E{e ('t)n' (s) }

jK(t,$) [E{ t (s)X'(s))C'(s)+Ll(s)g(s)l	
s 

s [tort)

(4.3.53)

where

A(t)	 A(t)	 V2(0) (t) - L1(t)C1 (t)	 (4.3.54)
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and ;-A (t,$) is the fundamental matrix associated with A(t). Now using

lemma 4.3.3, (4.3.53) and (4.3.27) imply

Ef *(t)y1(s)) = 1-(t^s) [— Z*(s)C V (s) + E*(s)gI(s) ]	 0	 (4.3.55)

Similarly .fors e [t 
0  

t ] , we have(by using compatibility)

Ele* (t)Y2(s)) = ^A(t,$)E{e*(t)x' (s)) r ' (s)	 1-(t,$)E*(s)_C2'(s) _ 0 . (4.3.56)

The above theorem implies that for zero control, the optimum class of

observers and their associated estimators will all generate (a.s.) the con -

ditional mean estimates of x(t). The results also holds if u(t) is a

nonzero but known deterministic control function, because we can always

subtract its deterministic contribution. The case where the control is

generated via a special class of feedback law will be considered in

chapter V. Note that we obtain the Kalman Filter as a special case when we

set C- (t) = 0 (4.3.29).

4.4 Asymptotic Behavior of Estimators

Let us first consider the asymptotic behavior of classes of observers

and associated estimators for a deterministic system 	 Then, we shall

consider the asymptotic behavior of optimum classes of observers and

associated estimator for the stochastic system %c

Definition 4,4.1: The system c%1 is detectable at T if there exists an ob-
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such that for all Z (T) a S T , w(t) -r x(t) , as t	 The system 9c is said

to be detectable if it is detectable at t e

We shall say a stochastic system 82 to be detectable if its determi-

nistic analog, 3c , is detectable.

Theorem 4.4.2: The system di is detectable if and only if there exists

an observer, GIc (L), ac , which is uniformly asymptotically stable.

Proof s The estimation error	 by using any observer, G 
lc (L),

T(t) E ac and its associated estimator is given by (see equation (4.3.5))

e(t) = P(t)(z(t) - T(r_)x(t) 4 P(t)i(t,T;zo )	 (4.4.2)

where z(t,T;zo ) satisfies (see equation (4.2.6) and theorem 4.2.2)

z(t,Tze ) _ [T(t)(A(t)-L(t}C(t))P(t)+T(t )P(t)}?(t^T.?,o)

	

2(tV -r;20 ) = Zo E S T	 (4.4.3)

Let us first assume that there exists some L(t) a 1 +nm and,V(t) a Mlm

TVsuch that an observer C9 1c (L), T(t) E:,7 c , is uniformly asymptotically

stable; then for all T and zo a S T , z(t,T;i0 -^ 0 as t	 From (4.4.2)

we conclude that 8i is detectable. Conversely, if the system Si is de-

tectable, then there exists an observer, G lc (L), T(t) e TS , sucli that the

output of its associated estimator will give exact asymptotic estimates

independent of when we initiate the observer state; i.e., for all T, and

z e S_ p	 T

e(t)	 P(t)z(t T;z )	 0	 as t -^ ^	 (4.4.4) 3
-	 -,o	 -	 -

where z(t,T; zo ) is given by (4.4.3). We may assume P(t) to be of full

rank; thus (4.4.4) implies that the system (4.4.3) is uniformly asymptotically

Ar
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stable, and so the observer (9T c (L), T(t) a US,i s uniformly asymptotically

stable.

A linear system

X(t) - A(t)X(t)	 (4.4.5)

is said to be exponentially stable if there exists al, a 2 > 0 such that	 p

(I.JA(t,T)II 

<a21tT)
- ale	 (4.4.6)

where A (t,T) is the fundamental matrix of A(',. . We alscc say that the

matrix A(t) is exponentially stable. Theorem 4.4.2 relates detectablity

to the structure of the observers. Since exponentially stable implies

uniform asymptotic stability and vise versa [48], the above lemma implies

that the system $_is detectable if and only if there exists an observer

bT c (L), T(t) a jc such that the error of estimates (in the noise freeVO

case) by using elc(L), T(t) c .7V ,has the bound
-a (t-t

Il e (011 < ale 2	 c'	 (4.4.7)

where to is the initial time. We may call such an estimator ET c (L) an

exponential	 or. 
[491

estimat

	
_.

Theorem 4.4.3: If there exists V 2 (t) E M lm	 2of rank m and L1 (t) e Mnm
2	 1

	__2 _2 	- _l —1 	 stable, thensuch that (A(t)	 V (t)C (t)	 L (t)C (t)) is exponentially

the equivalent classes of 'observers (9T c (L), T(t)- C 5^, where

V 	 = [0	 V2 (01 and L(t) = [L 1 (t)	 ?_2(t)] L 2 (t) arbitrary, are all
lc	 c

uniformly asymptotically stable and so e (L), T(t) € J will yield ex-

ponentially consistent estimates.

x

-
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Proof: Let us consider the class of V(t) of the form (4.3.4) with rank

V2 (t)	 m2 . The error, e(t) ^ w(t) - xrt), of estimates by using V(t)

within this class is given by (see also (4.3.22))

e(t), _ (A(t) - V2 (t)C2 (t)	 Ll (t)C1 (t))e(t)	 (4.4.8)

By assumption, there exists V2(t) E 
Mnm of rank m2 and L l (t) s Mnm , such_	

2	 2
that (A(t)	 V2 (t)C2 (t)	 L1 (t)Gl (tj) is exponentially stable, thus the

theorem follows from (4.4.8) and theorem 4.4.2.

Theorem 4.4.3 gives us a sufficiency test for detectability; it also

indicates how we can construct an exponential estimator.

For the stochastic system S2, the class of minimal order optimum ob

servers and their associated estimators are given by (4.3.39) and (4.3.42);

the optimum error covariance E 
*
(t) is given by (4.3.29). We shall now

investigate the asymptotic behavior of the class of minimal order optimum

estimators via E (t)

Theorem 4.4.4: The matrix function E^(t) will remain bounded for all

t s [to ,-] if and only if there exists V 2	nm(t) e M	 and Ll (t) c M2	 1
such that (A(t) - V 2 (t%(t) - Ll (t)C1 (t)) is exponentially stable.

Proof: This follows immediately from theorem 4.3.2. The reader is re-

ferred to the proof in the discrete analog for the detailed argument.
2c *	 ctheorem 4.4.2 and 4.4.3, we see that T "(L ), T(t) e SVx, is uniformly

asymptotically stable.

Corollary 4.4.5: If (A(t),C(t))- is uniformly completely observable, i.e.,

Us ing



r

-124-

has rank n, then there exists L(t) E Mzm such that (A(t) - L(t)C(t)) is

exponentially stable.

Proof: Apply theorem 4.4.4 to the special case when m2 `= 0; i.e., all

observation channels are corrupted by white Gaussian noise. The optimum

error covariance will remain bounded if and only if there exists L(t) a Mnm

such that (A(t) - L(t)q(t)) is exponentially stable. If (A(t),C(t)) is

uniformly completely observable, the optimum error covariance will remain

bounded for all t e [to,-],[501 and so the corollary follows.

Let us consider the time invariant case where A, C1 , and C,.^

are constant and bounded matrices.

Lemma 4.4.6 I, the pair (A,C) is observable ' then the pair

C

C2

is also observable.

Proof: Construct the matrix

T	 C
'M(to) T) _	 ^A(6,T) [C	 C ] —

1• A(6,T) do

to	 C2

f

T	 (T d^'(a,T)C'2	 dC2 A(a, T)

A(cr, T) 1 1 A (Q ' T) d6 + J	 do	 d¢	 d6t	 t
0	

0	 (4.4.10)

Let x c R 
n

such that x'M(to' ")x -- 0' then from (4.4.10) we have for

C E [t
0 

,T]

clJ-A(6,T)x	 Om	 C2j A (a, T)x = y e Rm	(4.4.11)
2

where y is a constant vector. Suppose that x 0 0 let x = ^A (to,T)x; then

x 
	 0; let xl iA (t ' T)x ' T > t l > to , also xl	 0. Since A is constant'
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vra have from (4.4.11) that

	

C 2
!

A (a,to )xo = C 2AA (o,T)x =	 ; a s {t o ,T]	 (4.4.12)

92 1A (a 0 to )xl = C21A (a' 9 'c o) A (tl ,t)x = C2-^A (a + t l - to,tl)'A(tl,")x

c-2!A(a+tl -to , T ) x = v 	 as [ t o , -t
1 +t

0 ]— 
(4.4.13)

Thus xo , xl are ri,d^.stinguishable by observing the output in the nonzero

interval [t o ,T - G l + to ]. This contradicts the assumption that (A,C) is

observable.

Lenwta 4.4.7:  Let E	 0; the solution of (4.3.29), denoted by .L (t O) will

reach a steady state E which satisfies

0 = (A-7R C'A 1C A)E + Z (A-R C'A -1C A)' - E * (A'C' A -1C A+C'Q-lC )E*— — — —2- —2—	 —	 2— —2—	 — — —2— --2— —1 —1 --

+ R-P C2^7 1C 2R	 A = C 2R C2 > 0	 (4.4.14)

if and only if there existsV2(t), L. (t) such that (A - V2(t}C2
	 L1(t)C1)

is exponentially stable.
^e

Proof: Let us consider Z t;O) as a minimal function with respect to the

solution set 03t 	With the assumption that E = 0, we have E (t o ;0)	 0

0
from (4.3.25) and so

f t
E (t;o)	 (t,T){(I-V2(T)C2>R(I -V 2 (T)C2)'+Ll (T)4 L1 ' (T)} ' (t ,-)d.t -	 -

o	 (4.4.15)

where ^(t,T) is the fundamental matrix associated with (A V 2 (t)C' 2 - Ll(t)C1).,

and V (t) , Ll (t) are given by
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V2(t) - ( E (t;0)C 2 + R C2)p-1	 t > to 	(4.4-.16)

L(t)	 (t;o)el 
g-1	

t > to 	.	 (4.4.17)

LetV 2 (t)	 V2 (t + a), Ll (t) =	 Q)L1 (t +	 , and	 (t,T) be the fundamental

matrix associated with (A - V2(t )C 2 - Li(t)cl). Clearly we have

	

6 (t,T) = ^(t + 6, T + o)	 (4.4. 18)

Let E o (t;0), t a t be the solution of (4.3.25) with E c (t ;0) = 0, thus

(t;0) E 8	 Since. E (t) is the minimal function with respect to 53 , we
0	 0

have

E(t;0)	 Eo (t;0)	 t ' to	 (4.4.19)

Also we have from (4.4.18) and the definition ofV2(t), Li(t) that:

T
t- CT

L" (t-o ;C) = (	 o(t-o,T){(I-V2(T)C2)R(I -V 2 (T)C 2)+Li(T)4 Li t (T)}^6'(t-o,T)dr
^t

0

t

-̀ ^(t,Y) ((I -VZ(Y)C 2)R(,-V 2 (Y)C 2 )+Ll (Y)Q L1 (Y) } ^ (t,Y)dY
t	 -

0

*
E	 (t) (4.4.20)

Combining (4.4.19) and (4.4.20) we have

E yY (t;0) ? ECT	 - 0;0) a E	 (t - 0;0)	 .	 (4.4.21)

The lemma follows from theorem 4.4.4 and the monotone nondecreasing nature

*
of `Z	 (t;0) as t increases (4.4.21).

Theorem 4.4.8: For all EE	 > 0, the solution of (4.3.29), denoted by

Z (t;Z	 will reach'a steady state E	 which satisfies (4.4.14) if and only

-1



-127-

there exists V
2
 (t), L1 (t) such that (A - V 2 (t)62 - L1 (t)C 1) is exponentially

stable.

Proof: From (4.3.29) and (4w3.25) we have

E 
x 

t	 - E
*
 t . 0 = E - E C' C E C' lC £? 0	 4.4.2 2( o ^ 0	 — ( o ) -0 --o_2 (-2-0-2) -2--o

Therefore, from (2.6.21) we deduce that

E * (t;0) >- E* (t;o) ,	 t C [toP oo ]	 (4,4.23)

Using the minimal property of E (t;'0), we have

0 < E^` {t;E )	 E (t;0) -̀ ^(t,t )z* (t ;E )1`(t, t >	 (4.4.24)

where ^(t,to) is the fundamental matrix associated with (A - V*Z(t)C2 - Ll(t)C1)

and V 2 (0, L l (t) are given by (4.4.16) and (4.4.17). ±(t,t o ) is exponen-

tially stable if and only if there exists V 2 (t), Ll (t) such that

(A - V2 (t)C 2 - L^(t)C l) is exponentially stable. Using lemma 4.4.7, we

obtain the theorem easily.

From lemma 4.4.6, and corollary 4.4.5, we see that observability of

the pair (A,C) is sufficient to assure that E * (t;Eo) -^ E* satisfying

(4.4.14) where 0 > 0 is arbitrary.

4.5 General Discussion
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In the stochastic case, the minimal order optimum observer and its

estimator are described in detail in Figure 4.4. The optimum error co-

variance, .E (t), is given by (4.3.29). Asymptotic behavior of the minimal

order optimum observer is investigated via the optimum error covariance

S * (t). Necessary and sufficient condition for Z * (t) to be uniformly

bounded have been established. The condition is related closely to the

structural property of the system &2 under consideration.

In the following, we shall discuss different points whi ch are rele-

vant to the whole development in this chapter.

(A) Unbiased Estimates and Observer-Est ?.m,aor Structure

Let 92 be a- stochastic system described by (4.3.1) with u(t)	 0.

Let an. unbiased estimator E be given by

t
W(t)	 H(t ,T)Y(T)d-r + V(t)y(t)	 (4.5.1)

f t0
where H( • , • ) is an nxm matrix whose elements are differentiable in both

arguments. Since Ejw(t)} 	 E f x(t)j , from (4.3.1) and (4.5.1) we have

It H{t, T )C( T ) pA( T ,to ) xo dT + V(t);C(t) A (t,to)x _ A (t,to )xo	(4.5.2)
,t

0

where ^ (t,T) is the fundamental matrix a^,sociated with A(t). The structure

of the estimator should be independent of the mean of x(t o ) , x-0 , thus

(4.5.2) implies

t
H(t,T)C(T)jA (T,to)dr + V(t)c(t)^A(t,to) _ JA (t,to )	 (4.5.3)

t0

Differentiate both sides of (4.5.3) in respect to t.

H(t,t)c(t)+.t a (t>T) c(T) (T,t) dT+v(t)c(t)+V(t)c(t)+V(t)c(t)A(t) 	 A(t)
i t dt	 - - A

a (4.5.,4)
n_
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Multiplying both sides of (4-5-4) by W(t) and taking expectations

t
0

+ (H(t, t).q(t)+v (t).q(t)4^V (t) (t)4:y(t).q(t) -^A	 VO 1=0

(4.5.5) is satisfied if. H(t,T) and V(t) satisfy

[ t 	 + IH(tj T))y(,r )d-r 	G(t)V(t)Y(t)
t
o

where y(t) is a m-vector valued function of t; and

(4.5.5)

(4-5.6)

H (t, t) C (t) + V (t) C (t)  + V(t)C(t) + V(t)C(t)A(t) -	 (4.5.7)

Let us denote w (t) = f	 H(t,T)y(T)dT; we haveit

0

l(t,t)y(t) 
+ ft 3H(t,,c)
 at 	Y-(-c) d-r

(t 0 Y (t)	 .2(t)V(t)Y(t)	 (4.5.8)

The unbiased estimator is realized by

ca(t)	 q(t)H1(t) + Q!(t,t) - G(t)LI(t))y(t)
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Since V an unbiased estimator, we have at t = t 0

?{o = P(t0Wt0) + V(t0). ) x 
0

If T(to ) e 5I(C(t0);m,e,n) and P(to) is such that

P ( t )T(t ) + V(C )C(t ) = T
0	 0	 0	 0	 -n :

(4.5.11)

(4.5.12)

then by setting z(t
0	 0 o
) = T(t )x , (4.5.11) is clearly satisfied. Also we—

have E{w(t)) = E{x(t)) thus

t

P(t)
F (t,to) (to )-xo + t JF (t,T)D(T)C(T)JA

 (T,t 
o o
)x dT+v_(t)C(t)^

A 	 o 
(t o t )x

— 
0

= IA(t,to)-x-o	 (4.5.13)

The structure of the estimator is required to be independent of xo, there -

fore (4.5.13) implies

p (t)T(t) + V(t)C(t)
	

(4.5.14)

where T(t) is given by

t

T(t) = jF ( t , t o )T(t o)jA ( to , t) + 
J 

JF (t,,T)D(T)C(T)jA (T, t)dT 	(4.5.15)
t0

By comparing with (4.2.4) and theorem 4.2.2, such an estimator can be

realized by an observer 01C (L), T(t) e 9c and its associated estimator

P, T c (L), where L(t) e nmi s arbitrary.

Thus we see that the concept of an observer is in some sense 'equiva-

lent to the concept of unbiased estimator. When the a priori distribution

of x(t o) is known, the minimal order optimum observer= filter gives un-

biased minimum mean square estimates;whereas if the a_priori-distribution

,,
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of x(to ) is unknown, the minimal order optimum observer-filter will be

an asymptotically unbiased minimum mean square estimator.

'B) Estimation for Linear System

The observer theorem _-',.ztroduced in this chapter generalizes and

unifies estimation theory for deterministic and stochastic systems. For

both determiriistie and stochastic cases, the structure of the estimators

are the same. In the deterministic case, we are to find certain parameters,

V 2 (t), Ll (t), so as to obtain exponentially consistent estimates, whereas in

the stochastic case, the optimum choice of L,(t) and L 1
 (t) is specified by—`

tae noise statistical law and the detailed structure of the system. Thus

we see that in the deterministic case, qualitative theory should be used

in designing well-behaved observer-estimator; 
[491 

whereas in the stochastic

case, optimization technique can be applied to derive the class of minimum

order optimum observer-estimator.

(C) Kalman Filtering Technique

We can also solve the stochastic problem in section 4.3 by using the

Kalman Filtering Approach.' Let us consider the system S2 with u(t) = 0.

Let T(t) c M
n(n-ml) 

such that
— 

T(t)

C2(t)

n --P 41.11 ,t__I-	 T.. .9-*
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Then we have

X(t) = P(t)x1 (t) + 
—V2(t)Y-2(t)
	 (4.5.17)

where

T(t) -1
[P (t)	 V2 (t) J -	 (4.5.18)

e2 (t)

We have the equation for x l (t) and Yl(t)

xl (t) = (T(t)+T(t)A(t))x(t)+T(t)&(t)

= (T(t)P(t)+T(t)A(t)P(t))x1(t)+(T(t)V2(t)+T(t)A(t)V2(t))-

Y2(t)+T(t)^(t)

-!1(t)7—Cl(t)V2(t)Y-2(t)^l(t)P(t)xl(t)+n
(t) 	 (4.5.19)

Since 
Y2 

(t) can be observed exactly, we can assume it is known. Now

apply a Kalman filter to the system (4.5,19): the best mean square esti-

mate of xl(t) is given b

X1 (t) _ (T(t)P(t)+T(t)A( t)P(t)—L(r_)P' (t)Cl (t)g(t)Cl(t)P(t))xl (t)
+(T (t)V 2 (t)+T (t)A(t) V 2 (t) )y 2 (t)_	

(4.5.20)

1 (t3{v, (t) -c, (t)v„(t)v„(t))
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The estimate of x(t) is given by

x(t)	 P(t)xl (t) + V2(t)Y2(t)

The estimation error covariance matrix is given by

E (t)	 P (t) E (t)P' {t)

(4.5.22)

(4.5.23)

Therefore

(t) = P(t)E(t)P' (t)+P(t)E(t)P' (t)+P (t)E (t)P' (t)

= (P (t)+P (t)T'(t)P (t)+P (t)T (t)A(t)P (t}) E (t)P' (t)

+ P (t)E (t) (P (t)+P (t)+T(t)P (t)+P (t)T(t)A(t)P (t) )'

+ P(t)T(t)R(t)T' (t)P' (t)-P{r_)E(t)P' (t)C (t)Q 1 (t)Cl (t)P(t)L(t)P I (t)

(A(t)-v2(t) 2(t))E(t)+E(t) ( (t)-_v2(t)C2(t>)'

(I -V2( t)^2(t))R(t) ( In-V2(t)C2(t))' E(t)cl(t)Q 1(t)cl(t)E(t)

(4 5.24)

The initial condition is

E(t )	 (I - V (t V (t ) ) E (I	 V (t )C (to ))'
(4.5.25)

o	 —n —2 0 —2 o —o —n 	 2 0 —2 o

We note that the error covariance depends on V 2 (t) which must satisfy

g2(t)y2(t) 2	
(4.5.26)

To find the minimum mean square estimates, we have the optimization problem

of choosing V2 (t) satisfying (4.5.26) and yielding the "least" nonnegative

definite E(t). Note that (4.5.24), (4.5.25) is the same as (4.3.25) with

Y0	 E (t)C1(t)Q ;l (t) _	 (4.5.27)_

MM

ti

T*	 yy	 >	 :s
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One can easily show that the optimum estimator derived by using the

Kalman filtering approach is a minimal order optimum observer-estimator.

Before comparing the merits of Kalman filtering approach and observer-

estimator approach as developed in this chapter, the author would like to

point jut the falacy of an initiative conception by using the Kalman fil-

tering approach.	 This is best explained but giving a specific example.

Consider a linear time invariant system described by

x	 (t) 0	 1	 x (t)
1

^	 (t)1
1 =	 + (4.5.28)

x2 (t) -a1	 -a2 	x2 (01 Yt)

The observations are

yl(t) = [0	 1]?Y0 + n(t) (4.5.29)

Y 2 ( t) =	 [1	 01x{t) . (4.5.30)

The noise statistical laws are assumed to be known:

ft
t t	 Tlt

}(o) d6)
0

El	 7( T ) dt^ = 0 E^( f 	(T)dT^ _ (4.5.31)
o O O	 0 'L 2 t

t	 t	 2

E{ J n(T)dT }	 0	 E  `f n(T)d-c	 qt	 (4.5.32)
0	 0

Assume that the estimation process has started at -, and our objective

now is to find the conditional mean estimate of the state One "intuitive"

argument using the Kalman filtering approach will be as follows. From

(4.5.30), we see that we have exact observation in x 1 (t), therefore we can

assume x1 (t) is known. From (4. 5.28) and (4.5.29), we have

Will III W-0011101 . 777 7 .
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x2 (t) 	 a1x1 (t)	 a2x2 (t) + 2 (t)	 (4.5.33)

yl (t)	 x2 (t) + n(t)	 (4.5.34)

Since the system is linear and the noises are Gaussian, thus to find the

unbiased mean square estimate of x 2 (t), we may apply Kalman filter to

(4.5.33) and (4.5.34). The error variance, e, in the steady state will

satisfy the algebraic equation [50]

e 2 + 2a1ge - r 2 q = 0	 (4.5.35)

Therefore the error variance is equal to

e = 3a2g2 + r2  - a1  > 0	 (4.5.36)

One may make the conclusion that the Kalman filter for (4.5.33) and (4.5.34)

will give us the unbiased minimum least square estimates, and the minimum

mean square error is given by (4.5.36). Unfortunately, this conclusion is

in general false; the reason for this is that the Kalman filter for (4.5.33)

and (4.5.34) give us the estimate
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xlk (t) = [-k l7x(t)	 (4.5.40)

where k is an arbitrary number. Using (4. 5. 30) and (4. 5. 40), we have

0	 l

	

X(t)	 l Xlk (t) + k y2	 (4.5.41)

Taking the derivative of (4. 5.40) and using (4. 5.28), we have

klk (t) -(k + a2)x2 (t) - a 
1 
x 
1 
M + C2 (t) k^1W

	-(k + 
a2 )Xlk (t)	 Wk + a

2 ) + al)Y 2 (t) + ^ 2 (t)	 k^ 1 (t)	 (4.5.42)

The observation (4.5.29) becomes

Yl (t)	 Xlk(t) + ky2(t) + n(t)	 (4.5. 43)

Define

ylk(t)	
yl(t)	

ky2 (t)	
xlk(t) + TI(t)	 (4.5.44)

Since y 2 (s) , s F, [t o' t], is known at t, by applying the Kalman filter to

(4.5.42) and (4.5.44), we have the steady state error variance, e k , for

the unbiased least square estimate of xlk (t) satisfying the algebraic

equation	
1
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M

0	 l
R  

_ 1 
xlk (t) + k

[]y2
	 (4.5.47)

where xik (t) is the estimate given by the Kalman filter for (4.5.42) and

(4.5.44). The corresponding error variance for x 2 (t) is

E{(x2(t)-x2(t))2}	 E{(xlk (t)-xlk (t)+ky 2 (t)-ky 2 (t)) 2 }	 (t)EI(xlk-xlk(t))2I

= e 	 (4.5.48)

Clearly e  # e for almost all k ranging from 	 to -. One may then attempt

to find the optimum k which give us the smallest ek . This has easily been

carried out by using differential calculus. The optimum value for k  was

found to be

2 2
aq	 qr	 aq

ko	 2	 2+ r (q + r)	 q+ r	
(4.5.49)

(q + r1 )	 1	 1	 1

Substituting (4.5.49) into (4,5.46), we have the corresponding error:

o	 r1	 2	 (Q . .+ rl)r2q

	

e A 
eko	 q + r 	 (qa2) +	

r1	 qa2	
(4.5.50)

and clearly we have the strict inequality (r 1 > 0, q > 0)

e  <	 2	 (Q + rl)
	 2

	(qa2) +	 r	
r2  - qa2 < 3(Qa2 ) + r2 	 qa2	 e	 (4.5.51)	 _I

1

The inequality (4.5.51) indicates that by applying Kalman filter to (4.5.33)

and (4.5.34), we do not obtain the best mean square unbiased estimate We

note that the optimum value of k depends on rl , r2, and q (assume a2 is
fixed a priori). We maynot conclude that the error eo is the minimum

error variance because we only consider a restricted class of transformation

in x (4.5.40)	 The only way to check whether e° is the minimum error variance

is to appealto the projection equation, or equivalently, the Weiner-Hopf equatio21
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Therefore, we see that conceptually, the Kalman filtering approach

is by no means simpler than the observer approach developed in this chapter;

because one may find it hard to visualize physically* why one transformation

of the state is better than the other before the application of a Kalman

filter, besides, one may reach false conclusions if one is not careful

(see example). Note that one approach is as easy as the other: both in-

volve a deterministic optimization problem, and both need to verify that

the derived solution satisfies the projection equation before we can con-

clude the truly optimum nature of the obtained estimate. In terms of

derivation, the Kalman filtering approach is comparatively simpler; but

personally, the author thinks that the class of asymptotic unbiased esti-

mator is a more basic conceptual framework to many estimation problems.

The observer approach is based precisely on this conception. One dis

tinguishing advantage of using the observer theory approach is that it

reveals the detail structural properties of the optimum estimator. This

allows us to investigate in detail the asymptotic behavior of the optimum

estimator in terms of some intrinsic functional behavior of the system

(section 4.4)

(D) Detectability and Observability
I

We note that observability is a stronger condition than detectability.

In section '4 4, we have shown that detectability is a necessary condition

for the minimum error covariance, E (t), to be uniformly bounded for all

t t	 In the time invariant case, observability.is sufficient condition
0

for - * (t) to be uniformly bounded and for the existence of a steady state

value of Z (t) as t -.
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Although a proof is not available yet, it seems very likely that

detectability is also sufficient to assure C (t) to be uniformly bounded

for all t	 t .
0

(E) Estimation in the Presence of Time-Correlated Noise

Let us consider the stochastic system $3 described by

x(t)	 A(t)x(t) + B(t)u(t) + &(t)	 ;	 x(t) C Rn

39 :	 (4.5.52)

y(t) = C(t)x(t) + n(t)	 Y(t) e Rm

where n(t) is a Gaussian Markov process which can be realized by:

n Ct) = —I(t)n(t) + -Y(t) 	 (4.5.53)

x(to), n(to), {(t), t ' t o }, {Y(t), t ' to } are independent statistics.

The statistical laws are given by

x(to)	 q(--ox
 ' -Z
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A(t)	 0	 B(t)
Aa (t)	 ...	 .,.	 ; Ca (t)	 [G(t)	 -Zm ]	 Ba(t) _	 (4.5.56)

0	 A(t)	
_	

_	 0

We have the equations for the augmented system.

Xa (t)	 Aa (t)xa (t) + Ba(t)u(t) + a(t)

Sc :	 (4.5.57)
a

Y(t ) _ Ca(t)xa(t)

We can apply the derived results to the system 9a. Note that the minimal

order optimum observer-estimator has dimension n. In the special case

when C is a constant matrix, we can easily verify that the results obtained

agree with those obtained by Bucy [52]. In the general case, the results

agree with Bryson and Mehra who considered the problem using the weighted

least square approach. Application of the derived results to this special

class of problems will be considered in detail in the future.

4.6 Perspective

Qualitative estimation theory for the deterministic system 1 was considered

by Luenberger [35], Johnson [49]. Optimum filtering theory for stochastic

linear systems was firstconsidered by Wiener [51]	 Kalman and Bucy [50]

consider the special case of estimating the state of a Gaussian Markov

process in the presence of nondegenerate Gaussian white observation noise.

Estimation in the singular situation (i.e., noise free observation) was

considered by Root [54). (See also Van Trees [47] for detailed bibliography.

Estimation in the presence of colored noise only was considered by Bucy

[52], Mehra and Bryson [53], Geesey and Kailath [55]. The consideration

in this chapter provides a unifying approach to linear estimation problems

in general This approach is valuable in the way that it reveals the in-

trinsic structural properties of the estimating device.

1
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The asymptotic behavior of the estimator was not investigated in

detail in the literature save for the case of estimation in the presence

of nondegenerative Gaussian white observation noise [54] 	 In this special

case, the asymptotic behavior of the optimum estimator was investigated

through its dual relation with an optimal regulation problem [50]. The

investigation in section 4.4 is original. In this contribution, we can

study, in all general situations, the asymptotic behavior of optimum

estimators; it also provides the concepts required for qualitative estimation

theory for deterministic linear systems.

NO10

i
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CHAPTER V

OPTIr1AL CONTROL OF STOCHASTIC LINEAR SYSTEMS WITH KNOWN DYNAMICS

5.1 Introduction

In this chapter, we are mainly concerned with the problem of con-

trolling a linear system with known dynamics, under the assumption that

perfect information is not available. To have the problem be completely

general, we assume that there are unknown driving disturbances,and partial

observation of the state in the presence (or absence) of observation

noise. A special case of the problem was investigated by Joseph and Tou

[56], Gunckel and Franklin [58], Wonham [22], [27], where they assumed

that the observation noise is a no,ndege ne rate white Gaussian process. Ia

our investigation, we assume that the observation noise is in general de-

generate without loss of generality; we shall model the problem as one

where some output variables can be observed perfectly (noise-free) while

the others are observed in the presence of white Gaussian noise. This

general information includes [56], [5$], [27] as special cases.

The structure of this chapter is as follows. In section 5.2, we

consider the estimation problem for the discrete case where we are allowed

to use feedback control. Using the results in chapter 3, we derive a

stochastic difference equation for the conditional mean estimates of the

current state. In section 5.3, we shall state the stochastic control

problem and the optimality criteria is used to verify the optimal solu-

tion. The general results are then applied to a special case where the

dobservation no ise is sequentially correlated. In section 5.4 an -section

ri ri r.7a t-ranf- t- Inn or%"Ytirniinria ^3rnnlna of cat, P4 	 ri	 1 '2	 Tha ractilt•c
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can be summarized as the Separation Theorem. In section 5.6, discussions

of results and indication of some further research is given.

5.2 Estimation with Feedback for Discrete Linear Systems

Consider a discrete linear system 93 described by

x (k + 1) = A  x (k) + B (k)u(k) + ^ (k)

S3;

	

	 (5.2.1)

1(k) = C(k) x(k) + n (k)

where x(k) c Rn, u(k) c Rr, Y(k) e Rm. x(0), L(k), n(k), k 	 0, 1, ...

are independent Gaussian random vectors with statistical law given by

(3.3.2) to (3.3.4). The control u(k) is feedback in nature. Let us denote

the control sequence by

U(i,j) © {u(i) :u( + 1),...,'u(J)}	 i > j	 (5.2.2)

The observation statistic at time k is YU(o,k-1)(k), where the subscript

U(o,k-1) is to indicate that the past control sequence, U(O,k 1), has

been applied to the system. The accumulative observation statistic at

time k is

Y	 -(k)	 { (Cj) ',Yu	 (l) , .	 ,y-U(o,k-1) (k)
	

(5.2.3)

We assume that the control is of the form
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The information revealed by the accumulative information at time k

about the dynamical state of the system is contained in the sub-Q-algebra

F(k,U(O,k - 1)). For some control purposes, the detailed knowledge of

F(k,U(O,k - 1)) is sufficient but not necessary. In most cases, since

the knowledge about the present state is necessary and sufficient for ue-

signing a feedback control strategy, then the knowledge of the conditional

distribution of the present state, x(k), is necessary and sufficient (see

chapter 2, section 2.2). In the following, we shall prove that the condi-

tional distribution of x(k) can be parameterized by some finite dimensional

quantities.

Theorem 5.2.1: For the system 
%3 

where u(k) is of the form (5.2.4), the

conditional distribution of x(k) is a Gaussian random vector, and so is

parameterized by its conditional mean, x(klk), and conditional covariance

2(k) which are given by (k = Q, 1,	 )

z (k+l) = T (k+1) A(k) P (k) z (k)+T (k+l) A (k) V k (k) y (k)+T (k+l) B (k) u (k)
E.T

J.

x (k t k)	 P(k)z(k)+V (k)y

(k + 1) A(k)	 V" (k + 1) C (k + 1)A(k)

(5.2.5)

(5.2.6)
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P(t), I(t) satisfy the relation P(k)T(k) + V " (k)C(k)	 In.

Proof: Let us break x(k) into two vectors:

x(k)	 xl (k) + x 2 (k)
	

(5.2.8)

where xI (k), x2 (k) E Rn are given by

x2 (k + 1) = A (k) x 2 (k) + ^ (k)
	

x2 (0) = x(0)	 (5.2.9)

xl (k + 1) = A(k)El (k) + B(k)u(k)
	

x1 (0)	 0	 (5.2.10)

and u(k) is of the form (5.2.4). From (5.2.10), we note that {x1O}i=0

is F(k,U(O,k	 1))-measurable, and so we have from (5.2.8) that

R(k1k) = E{x 2 (k)IF(k,U(O,k - 1))} + xl (k)	 (5.2.11)

Let us define

.Y2 (k) = y (k) - C (k) xl (k) = C (k) XZ (k) + n (k)	 (5.2 .12)

and define F 2 (k)	 F(Y2(0),...,y2(k)). {y(i) }i_0 and {x1 (1)} =0 are

F(U(O,k - 1),k)-measurable, so {Y2(i)) =0 is F(k,U(O,k 	1))-measurable;
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F (k, U (O, k - 1)) C F2 (k)

(5.2.13) and (5.2.14) imply that

F 2 (k) = F(k,U(O,k - 1))

Let us define

x2(kIk) = E{X2(k)IF2(k))

(5.2.15)

(5.2.16)

(5.2.17)

(5.2.17.) and (5, 2.15) give

x(kIk) _ x2 (k(k) + x1 (k)	 (5.2.18)

Now consider the stochastic system 92 and the deterministic system 1 described

by

x2 (k + 1) = A(k) x 2 (k) + (k) 	 ? 2(0) = x(0) 	 q(-x-, ,-Z-O )
9 2 :	 (5.2.19)

y2 (k) = C (k) x 2 (k) + n (k)

xl (k + 1) = A(k)x(k) + B(k)u(k) 	 2x1(0)	 0

91 :	(5.2.20)
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and

Z (k+l) = A (k)	 V (k+1) C (k+l)A(k)

(5.2.22)
z ( 0) = E  - E 0C 1 (0) ( .q(0) E 

0 C' (0) + Q(0) } - "yo) z 0

A(k) d A(k)E.(k)A' (k) + R(k)	 (5.2.23)

V^^ (0) = zC' (0) (C (0) E C' (0) +4(0)) l	 V (k+l) e Uk (Z (k)) ; k = 0, 1, ...

(5.2.24)

Construct x1 (k) by using

zl (k+1) = T(k+l)A(k)P(k)zl(k)+T(k+l)A(k+l)V(k)y1(k)+'C(k+l)B(k)u(k)

Els
T

XlkK)	 rkKJZ1^K)tV ^KJ 2 ^K)	 Zlku)	 V

(5.2.25)

CO
where {V(k)}k=0 is given by (5.2.21) to (5.2.24). From (5.2.19), (5.2.20)

and (5.2.8) , we have

1
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Using equations (5.2.8) and (5.2.18), we have

R (k k) - x (k) = X2 (k I k) + xl (k) - xl (k)	 x2 (k) = x 2 (k 1 k) - x 2 (k)

(5.2.29)

^(k)}k
yO
 given by (5,2.21) to (5.2.24) is the conditional covariance of

x2 (k), and so it is also the conditional covariance of x(k). Since Al(k)

is F(k,U(O,k - 1))-measurable, (5.2.8) implies that the conditional dis-

tributior. of x(k) is Gaussian,by virtue that the conditional distribution

of xl (k) is Gaussian.

We note from (5.2.3) and (5.2,4) that the accumulative statistic at

time k depends on the control chosen which in turn depends on past

accumulative statistics. But as long as we are interested in the present

state of the system, the information contained in F(k,U(O,k - l)) about

x(k) is equivalent in some sense to the statistical information contained

in the conditional distribution of x(k). Theorem. 5.2.1 says that the con-

ditional distribution of x(k) is Gaussian; and thus all the statistical

information revealed by accumulated observation statistics is summarized

by the conditional mean, x(k!k), and conditional covariance, E(k). From

(5.2.21) to (5.2.23), we see that E(k) can be precomputed before any ob-

servation is made and any control is applied. Therefore,all the statistical

information about the state at time k is summarized in the random vector

x(kIk)

5.3 Stochastic Control of Discrete Linear Systems with Quadratic Criteria

In this section, we shall consider the problem of controlling the
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with F 0, W(k) a 0, and M(k) > 0. We are to find a control law of the

form (5.2.4) which will minimize (5,3.1) subject to (5.2.1).

Using lemma 2.2.6 and (5.2.4), the cost J(u) can be rewritten as;

N-1

J(u) = E IE{x' (N)F x(N) IF(N 0 U(0 0 N-1) + E E{x' (k)W(k)x(k)+u' (k)M(k)u(k) ,

k=0

F(koU(0,k-1)) 11
N-1

= E x' (NJN)_F x(NIN) +r(X' (k k)W(k)X(kIQ+u' (k)M(k)u(k)))

k=0
N-1

	

+tr F Z(N) + 

	

H(k)Z(k)	 (5.3.2)

k=0

where {E(Dlj= is ,given by (5.2.22) to (5.2.24). Since (E(j))N 	 is inde-

pendent of the control,	 minimizing (5.3.1) is equivalent to minimizing

N-1

J' (u) = E x' (N (N) F x (N (N) +^^ x' (k J k)W(k) x (k J k) + u' (k)M(k) u(k)))

k=0
(5.3.3)

From (5.2.5), the equation for x(k1k) is given by

4

x(k+llk+1)	 A(k)x(k)k)	 V*(k+l)C(k+l)A(k) (x(k'k) - x(k)) + B(k)u(k)

J.
+ V (k+l)C(k+l)E(k) + V (k+1)n(k+l)	 (5.3.4)

where V (k), k = 0, 1, ..., N are given by (5.2.21) to (5.2.23). The

process 
{x(k)}k=0 

is given by (5.2.1). We have now a stochastic problem

to solve: Find a control law of the form (5.2.4) such that the cost (5.3.3)

is minimized subject to the constraints (5.3.4) and (5.3,1)

Lemma 5.3.1: The control law

u(k) _ -(M(k)+B' (k)K(k+l)B(k)) 1B' (k)K(k+l)A(k)x(k^k) 	 (5.3.5)

K(k) = A(k) (K(k+1)-K(k+l) B(k) (M(k)+B' (k)K(k+l)B(k))-1B' (k)K(k+1))

	

A(k) FW(k)	 ;	 K(N)	 F	 (5.3.6)
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is the optimal control law to the above stochastic control problem, i.e.,

let {u(k))N 	be any control law of the form (5.2.4), we--	 k=0
have

J' (u*) <- J' (u) (5.3.7)

The optimal ccat-to-go is given. by

N-1

JI(k,x)	 Q E x
*

' (NIN)E X*(NIN)+	 x*' (i i)W(i)x*(iIi) +u*' (i)M(i)u (i) Jx (k1k) = x

i=k
N-1

= x'K(k)x+tr(L1(i)-E(i+1))K(+l) (5.3.8)

i=k

Proof:	 We shall prove the lemma by using the Optimality Criterion (theorem

_	 2.4.3).	 Let us define for k = 0,	 1,	 ..., N

N-1

C(k, Z) =A x'K(k)x + tr Fa (p(i) - E(i + 1))K(i + 1)

i=k
N-1

x'K(k)x + tr	 (V*(i + 1)C(i + l)A(i)K(i + 1)
u

(5.3.9)

i=k
where {K(k)} k_ 0 satisfies	 (5.3.6).	 We have from (5.3.6)

C (N, x) = x' F x (5.3.10)

Let U(O,k - 1) be arbitrary control sequence, and denote

R = E{X(klk)IF(k,U(O,k - 1)} = E {x(k)I F (k , U (O, k - 1))}	 . (5.3.11)

T of
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where u* (k) is given by (5.3.5) with 9 replacing x (k k) , and u° (k) is

F(k,U(O,k	 1))-measurable function. We have from (5.3.12), (5.3.5),

(5.3.6) ;

MVW(k)x+u " ' (k)M(k)u (k) IF(k,U(O,k-l)} = x'K(k)x-x'A' (k)K(k+1)A(k).^

(k) B' (k) K (k+l) A(k) x+u*'(k)rl(k) u* (k)

x'K(k)x(k)-R"' (k+l)K(k+1)x (k+l)+u(k) (Mi(k)+B' (k)K(k)B(k))u*(k)

+x'A' (k)K(k+l)B(k)u (k)+tr{V(k+1)C(k+l)d(k)K(k+l) }

= X'K(k)X(k)-x*'(k+l)K(k+l)x*(k)+tr((A(k)-B(k+l))K(k+l)} 	 (5.3.14)

Combining (5.3.9) and (5.3.14) we have

J.

E{x'tl(k)x(k)+u*' (k)M(k)u° (k)+C(k+l,x*(k+l) IF(k,U(O,k-1)))-C(k,x) = 0

(5.3.15)

Since uo (k) is F(U(O,k-1),k)-measurable, we have from (5.3.13), (5.3.5),

(5.3.6):

E{X'W(k)x+u°' (k)M(k)uo(k) (F(k,U(O,k-1)) } 	 x'K(k)x-x'A' (k)K(k+l)A(k)x

+x'A' (k)K(k+l)B(k) (M(k)+B' (k)K(k+l)B(k))-1B' (k)K(k+l)A(k)x+u ' (k)M(k)u (k)

x'K(k)x-^c (k+l)K(k+l) ^ (k+l)+uo ' (k) (M(k)+B' (k)K(k+l)B(k) °(k)

+u' (k) (M(k)+B' (k)K(k+l)B(k))u*(k)+u*' (k) (M(k)+B' (k)K(k+l)B(k))uo(k)

+u:Y (k) (M(k)+B' (k)K(k+l)B(k))u(k) +tr{ (A(k)-E(k+1)K(k+l)) }

x'K(k)x-x (k+l)K(k+1)u (k+l)+(u (k)-u (k))' (M(k)+B' (k)K(k+l)B(k)) (uo(k)

u^ (k))+tr{A (k) -E (k+l) K(k+l) } 	 (5.3.16)	 -

Combining (5.3:9), (5.3.16) and (5.3.15) we have since M(k) ? 0 and

K(k+l) ? p;

._	 .



-152-

0 = BIR'W(k)x+u ' (k)M(k)u*(k)+C(k+1,x*(k+l) F(k,U(0,k-1)))- C(kIx)

B(x'W(k)x+u'' (k)III(k)u°(k)+C(k+l xa(k+l) f F(k,U(0,k-1))}-C(k,x)

(5.3.17)

The lemma follows from the Optimality Criterion.

Theorem 5.3.2: The control law u (k), k = 0 1, ..., N given by (5.3.5)

and (5.3.6) is the optimal control law which minimizes the cost (5.3.1)

subject to (5.2.1) and (5.2.4). The optimal cost to go can be expressed

as:

N-1

J* (k, x) = x' K(k) x + tr E [ (A(i) - E (i+l)) K (i+l) + W (i)B(i) ] + F E (N)

=k (5.3.18)

This follows trivially from lemma 5.3.1 and equation (5.3.2).

Note that E(k), A(k), K(k), k = O, 1, ..., N can all be precomputed

when the noises distribution laws and the weightings (F, W(k), M(k)) are

all given. The performance measure can be easily evaluated when the con-

ditional mean of the state vector is computed via a minimal order optimum

observer-estimator. From (5.2.27) and (5.3.5), we see that the optimal

control law can be written as

u (k) _ LM(k) + B' (k)K(k+l)B (k)) -1,B' (k)K(k+l)A(k)P (k) z (k)

- (M (k) + B' (k) K (k+l) B (k)) -lB' (k) K(k+l) A (k) V* (k) (k)
	

(5.3.19)
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The optimal control is composed of:

u (k)	 ul (k) + u2 (k)
	 .	 (5-3-19')

The detail structure of the optimal control system is described in Figure

5.1.

When the observation noise is nondegenerate, i.e., Q(k) > 0,

k = 0, 1, ..., we have the usual separation results first derived by

Joseph and Tou. Theorem 5.3.2 indicates that separation is true under

more general assumptions when Q(k) and R(k) are nonnegative definite and

even when they are both zero matrices. The theorem can also be applied

to the case when the observation noise is sequentially correlated. In the

following, we shall treat this special casein some detail.

Consider the system g2 described by

A (k + 1)	 A (k) x (k) + B (k) u (k) + E (k)

S2 ;

	

	 (5.3.22)

y (k) = C (k) x (k) + n (k)

{n(k)} k_0 is sequentially correlated and is described by

Ti (k + 1) = ,A(k)n(k) + y(k) 	 (5.3.23)

We shall assume that E(k), Y(k), k 0, 1, 	 x(0) and n(0) are inde-

pendent Gaussian random vectors with statistical laws given by (3.3.2),

(3.3.3) and (3.7.14)	 The control problem is to find control u (k) of

the form (5,2.4) which will minimize the cost (5.3.1) subject to (5.3.22),

(5.3.23). From (5.3.22) and (5.3.23) we have the augmented system

7
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a	 + a	 +(k + 1) = Aa (k) xa (k) B (k) a (k) Fx	 `a (k)

9a'

	

	 (5.3.24)

Y (k) = Ca(k)xa(k)

where

	

x (k)	 A(k)	 0	 B (k)
x  k = ...	 ;	 Aa (k) _ .,.	 ...	 Ba(k) _ ^...

	

.n(k) 	 0	 A (k)	 0

a	 ^ (k)
(k) _

	

	 (5.3.25)a (k)

	

C a (k) _ [C (k)	 Tn]

The cost (5.3.1) can be written as

N-1
r

J  (u) = Ej xa' (N) Faxa (N) + F(,a ' (k)Wa (k) xa (k) + u' (k) L1(k) u (k))' (5.3.26 )

k= 0	 1

where

F	 0	 W (k) 	 0

	

Fa -	 .. '	 ; Wa (k)	 ..	 (5.3.27)

o	 0	 o

The augmented control problem is to find u(k), of the form (5.2.4)

such that the augmented cost (5.3.26) is minimized subject to the aug -

mented system (5.3.25) and constraint (5.2.4). We note that the solu-

tion for the augmented control problem is the same as that of the original

control problem.

Apply theorem 5.2.3 to the augmented control problem, we have

u (k)' = - (M(k) + B a ' (k)Ka (k+l)Ba (k))-
lB a ' (k)Ka (k+l)Aa (k)xa (kJk) (5.3.28)
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Ka(k)	 Aa ' (k) (Ka (k+l)-Ka (k+l)B a (k) (LA (k) 	 (k)K(lc+l)Ba(k))-^Ba' (k)

Ka (k+l)Aa (k)+Wa (k)	 ;	 Ka(N) = Fa 	(5.3.29)

and xa(k1k) is given by

z (k+1) T (k+1) Aa (k) P (k) z (k) + T (k+1) Aa (k) V * (k)y(k) + T (k+l.) B a (k) u* (k)
^T;

xa (k j k) = P (k)? (k) + V* (k)y(k) ; z (0)	 T (Q) xa

{5.3.30

E C'(0)

V"(0) =	 ...	 {C(o)E0C I O) + Eo }
-1 	

(5.3.31)

En
0

Ea (k + 1) = A a (k) - V(k + 1)Ca (k + 1)Aa (k)	 (5.3.32)

Aa (k)	 Aa (k) E a (k) Aa ' (k) + Ra (k)	 Vk (k + 1) e Ifk (Ea (k))	 (5. 3.33)

Lemma 5.3.3: The solution of (5.3.29) is given by

K (k)	 0
Ka (k) _	 ...	 ...	 (5.3.34)—	 0	

0
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Assume that the statement is true at k + 1, we have from (5.3.25),

(5.3.27) , and (5.3.29) that

Ea	
A(k) (K(k+l)-K(k+l)B(k) (M(k)+B' (k)K(k+l)B(k))-1B' (k)K(k+l))A(k)+W(k) 0

x (k) =
	

...
0	 0

[

K(k)	 0`
...	 ..	 (5.3.36)

0	 0

and so the lemma follows.

Theorem 5.3.4: The control law,

u '* (k) = - (M(k) + B' (k) K (k+l) B (k)) lB' (k) K (k+l)A(k) R (k I k)
	

(5.3.37)

with K(k) given by (5.3.6) and

R(k' k)	 [I n 	 O lm ) xa (k J k)
	

(5-3.38)

is the optimal control law which minimizes the cost (5.3.1) subject to

(5.3.22), (5.3.23), and (5.2.4). The optimal cost to go is

N-1

T (k R)	 x'K(k)x+trV[(Aa(')-Ea(`+1))Ka('+l))+Wa(i)Ea(1)]+FaEa(N)
i=k	

(5 3.39)

This follows easily from theorem 5.3.2, lemma 5.3.3, and equation (5.3.28).

Note that xa (k) E Rn+m, and so -z(k) E Rn (see chapter 3)	 The detail

structure of optimal control system is described in detail in Figure 5.2.

5.4 Estimation with Feedback for Continuous Linear Systems

Consider a continuous linear system^3 described by:

._..	 ift, NOW
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x(t)	 A(t)x(t) + $(t)u(t) + ^(t)
Vi c • (5.4.1)
3'

y1(t) Cl(t)x(t) + n(t)

Y-2( CZ(t)X(t)

where x(t) e Rn , u(t) c Rr ,	 ^ (t) E Rn ,
M

n (t) c R 1 , y(t) c Rm.	 We assume

that X(t0 ) ,	 {E(t)  ,	 t ?	 tc ),	 [TI (t) ,	 t ? t0 ) are independent statistics.

x(to )	 q(x Z ) and E(t),	 n(t),	 t	 > to are white Gaussian noises with

properties	 (4.3.2). The control u(t) is feedback in nature.

Let us denote U[O,t) =	 (u(T):T c [O,t)),	 and

YU[O,t)[O,t]	 {yU[O,°r)( ,r):T	
c	 [O,t]). The observation statistic at time

t is 
yU[0 

t) (t) ( the subscript is to indicate that the statistic is de- 

pendent on the past control values). The accumulative observation statistic

at time t is YU[O,t) [O,t].	 We shall assume that the control at time t is

a function of accumulative observation statistic:

U (t)	 = ^(t'YU[O,t) [ O , t ])	 (5.4.2)

Denote F(t,U[O,t)) _ F(Y	 [O,t]).U[O,t) The control u(t) is a random vector--

which is F(t,U[O,t)) -measurable.

Let f(s) be continuous on	 [O,t] with values in Rm , define the exten-
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u(t) _ ^(t'7TtYU[O,t) [O,t])	
(5.4-.4)

where ^(•,•) is viewed as a mapping from R x C m [0,T] -i- Rr . The control

(5.4.4) is also F(t,U[O,t))-measurable. We assume that (t,•) satisfies

a Lipschitz condition:

	

11$(t,f) - ,$(t g)jl < aI 'I f - g II	 f,g E Cm[0,T]	 (5.4.5)

for all t t [O,T] where al is some constant. Sometimes we shall subpress

the dependence on past control value, and write (5.4.4) as

u(t)	 (t,ff tY)	 ; Y	 fy(T):T E [O,t]}	 (5.4.6)

without causing confusion.

Theorem 5.4.1: Let C Z (t)R(t)C2(t) > 0, and the control is of the feedback

form (5.4.6). The conditional distribution of the current state of a 
c
3 is

Gaussian random vector, and is parameterized by the conditional mean,

X(t1t), and conditional covariance, Z(t), which are given by:

P, Tc (L*) : z (t) = (T (t)A(t)I (t) +T (t)P (t)-T(t)L1(t).ql(t)P(t))?(t)+T(t)L1(t)y1(t)

+(T(t)A(t)_v(t)+(t)v (t) -T

+T(t)B(t)u(t)

z ( to)	 T(tQ )x-T (to )V2 (t+	 (to)



-1.61-

J.
where V 2 (t), Ll (t) are given by

E C2(to )zC; (t	 t
o	

o) )_1
	

t = o

V2 (t) =

Q (t)C2(t) + R(t)C2(t))L 1(t) ; t	 to

	

L1 (t) = E(t)C^(t)C 1 (t)	 t > to

and P(t), T(t) are given by

T(t)V *2 (t)	 -0-nm	 C2	 m n	 -m(t)P(t) 	 O	 , T(t)P(t)	 -I
2	 — —	 2	 — —	 2

Proof: Let us break x(t) into

x(t) = xl (t) + X2 (t)

(5.4.9)

(5.4.10)

t 2: to

(5.4.11)

(5.4.12)

and xl(t),.x2(t) are given by

x1 (t) = A(t) xl(t) + B (t)u( t )	 x1 (t0 ) = 0 (5.4.13)

x2 (t) = A ( t)x2 ( t ) + C(t)	 ;	 x2 (to) = x(to ) (5.4. 14)

u(t) is of the form (5.4.$)	 and is F(t,U[0,t)) =measurable= therefore xl(t)

is F(t,U[O,t))-measurable. From (5.4.12), we deduce

X(tlt) = .x1 (t) + E{x2 (t) ^F( t ,Uj0, t )} (5.4.15)

Let us define

n (t)
l (t)	 C(t)xl(t) 2 (t) Y(t) - Y-l (t) = C(t)x2 (t) + .. (5.4.16)

4

0

n
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Let F2 (t) F(y2(),T	 [O,t)). since {Y(s),Yl(s)}s=0a are F(t,U[O,t))

measurable, then'Y2(s)}s=O is F(t,U[O,t))-measurable and so

F2(t) C F(t,U[O,t))	 (5.4.17)

From (5.4.16) and (5.4.13), we have

t

y. ( t ) = Y-2 (t) + C(t) A^A (t,T)B(T)u(T)dT	 (5.4.18)
t0

where u(T) is of the form (5.4.6). Equation (5.4.1$) is an integral equa-

tion. By the Lipschitz assumption, equation (5.4.18) can be solved by

successive approximations to yield a unique Y e Cm[O,T]. [61 Setting

Y(o) (t)	 0 and

t	 ,
Y(v) ( t )	 Y2 (t) +C(t)	 'A(t,T)B(T) (T, TT Ty^V^1))d-r

t
0

t e [09T]	 v	 1 2 3 ...	 (5.4.19)

Inductively, {YM (s)}S_ O is F 2 
(t)-measurable for v = 1, 2, ..:; and so

"Y(s)}= lm Y(v)(s)}s=0 is also F2 (t)-measurable, and

F2 (t) D F(t,U[O,t))	 (5.4.20)

-9
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k(t) = A(t)xl (t) + B(t)u(t)	 x1 (to)= o
c	 (5.4.23)

Yl (t) = C(t)Xi(t)

h2(t)	 A(t)x2 ( t ) + E(t) 	 x2(to)	 x(to) 
r,,
	 -0

aZ;

	

	 (5.4.24)

C(t)x2 (r) + n(t)

Y-2 (t) _	 .. .

q2 (t)x2(t)

Apply observers theory to the deterministic system C%i and stochastic

systems 9Z (see chapter 4, sections 4.2, 4.3). In this manner we prove

the theorem easily. For detail procedures the reader is referred to theorem

5.2.1, where we have proved the discrete analog in great details.

5.5 Stochastic Control of Continuous Linear Systems with quadratic Criteria

We consider the problem of controlling the continuous linear system %3

with quadratic criteria
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sT

E l (T T)F (T T) 	 ( t a t)tt(t)a(tpt)+u' (t)f(t)u(t)dt}

,T

+trIF -(TIT)+' W(t)^;(t)dt}	 (5.5.2)
t
— T

0

where Z(t), t	 to , is given by (5.4.8). We note from (5.4.8) that (t)

is independent of the control function; thus to minimize (5.5.1) is equiva-

lent to minimizing

T
Jc ' (u) = E{X'(T€T)..^F x(TIT)+	 X' (tIt)W(t)X(tIt) +u' (t) Îj(t)u(t)dt}	 (5.5.3)

t
0

From (5.4.7), we can easily derive the differential equation for X(tjt):

x (tf t)	 A(t)x( t t)+(v2(t)C2 (t) L1(t)Cl(t))(XytIt)-x(t>)+_v2(t)C,(t)^(t)

+Ll(t)n(t)+B(t)u(t) 	(5,5.4)

with C 2 (t) = C2 (t) + C2 (t)A(t), and x(t), t	 t0, is a diffusion process

given by (5.4.1). We have now a stochastic control problem: kind a control

law of the form (5.4,4) and (5.4.5): such that the cost (5.5.3) is minimized

subject to the constraints (5.5,4), (5.4.1).

Lemma 5.5.1: The control law

u (t) _ _ l (t)B' (t)X(t)X(tI t)	 (5.5.5)

1
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The optimal cost-to-ao is

T
J* f (t,X)	 E l 

Xe, 
(^l T}F x(1`}T) +f x ' (TlT)w O * (-° .)+u ` ' (-)M( - )u (-)d,.

't

Xc (t l 0 
= X.

= x:K(t):R+tr T(^^2(r>cz(r>x(T)c' (T)v ' (T)
^- --	 zt

+L1 (rt) ,Q(T)I (T))K(T)dT	 (5.5.8)

Proof: As in the discrete; analog, we shall make use of thy: Optimality

Criterion (theorem 2.4.4) to prove the lemma. Let us define for all

(t,X) s [Q,T] x 
in

rT

C(t,:Q	 VK(t)] +rr(v2(r)C2(T)I (T)C' (T)v*' ' (T)+L1(T)g(T)L1' (T))K(r)a,1t
(5. .9)

where K(t) satisfies (5.5.6). From (5.5.6) and (5.5.9), we have

C (T, x)	 ' F x
	

(5.5.10)

Let U[©,t) be an arbitrary control function and denote

R	 F{x(t)jF(t,U[O,t))}	 R(tit)
	

(5.5.11)

Let u (t) be given by (5.5.5) with x(tlt) replaced by R. Denote the dif-

ferential generator of x(tIt) by 9, ), we have from (5.5.4), (5,5.5),

(5.5.6)

E{Y, *(C(t X))+R'w(t):k+u*' (t)M(t)u (t) jF(t,U[O,t))}

= tr{(VL(t)C2(t)R(t)C^(t)U2'(t)+Lei(t)S(t)Ll(t)K(t)}+2x'A'(t)K(t)x+
J2u^' (t)B' (t) K( t)x+x'W(t)x+u^' (t)M(t)u (t)

tr{ (v2(t)C2(t)R(t)c2(t)v2(t)+L1(t)_q(t)L' (t))K(t) } -X K(t)x	 (5.5.12)

Wo __
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Combining (5.5.9) and (5.5,12) we have

Ct(t, x ) +E[S.0*(C(t,X)+ ' W ( t ). +U*' (t)Ll(t)u(t) IF(t,U[O,t))}	 0 . (5-5.13)

Let uo ( t) be any F(t,13[0,t)) -measurable function, we have from (5.5.4),

(5.5.5) and (5.5.6)

E{£uo(('(t ,X) + 	 (t)X±u (t)M(t)_u°(t) (F(t,U[O,t)))

tr{ (^2(t)2(t)R(t)^2(t)ez' (t)+L(g(t)Ll' (t))x(t) }-x(t)Y(t)

+(u°(t)-U*W) I M( t ) (uo(t)-u*(t))
	

(5.5.1.4)

Since M W > 0, (5.5.13) and (5 . 5.14) imply

0 = Ct( t,X)+EfZu;(C(t,X))+^' w( t)X±u (t)M(t)u*(t) jF(t,U[a,t)))

-a Ct (t,X)+F{ uo(C ( t,x)) +g'w(t)1+u"(t)M(t)uo(t)IF(t,U[O,t))}
	

(5.5.15)

The lemma follows from (5.5.10), (5.5.15), (5.5.9) and the Optimality

Criterion (theorem 2.4.4).

From lemma 5.5.1 and equation (5.3.2)-. we have easily the following:

Theorem 5.5.2: The control law u^(t) given by (5.5.5) and (5.5.6) is the
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r
where Eft), 

V2 (r) ,
given by (5-5-6).

The structure

Figure 5.3, where

^c
k(T) are given by (5.4.8) to (5.4.10), and K(t) is

of the optimal control system for 3 c is described in

we have decomposed the control law into

u
*
(t)	 111(t) + u2(t)	 (5.5.17)

ul(t) is the pure feedback from the noise-free observation:

ul (t) = _M 1(t)B' (t)K(t)VZ(t)Y2 (t)	 (5.5.18)

and u
2 
(t) is a feedback after compensation:

J
u2('t) _ -M 1 (t)B' (t.)K(t)P(t)z(t)	 .	 (5.5.19)

In the special case when C 2 (t) = 0, i.e., all observation is noisy, we

have the usual separation results due to Wonham [27].

The general results can be applied to the case where we have time-

correlated observation noise.

Consider the system 3c described by (4.5.52), the statistical law of
3

underlying certainties are given by (4.5.53) and (4.5.34). From these

assumptions we can form the augmented system ga given by (45.55)-

(4.5.57). Let us define-

W(t)	 0	 F0
Wa	 F{t)	 .,,	 a	 ...	 (5.4.20)'

0	 0	 0	 0

We form the augmented cost

T
J c (u) = E xa, (T)Faxa(T)+

f t
xa '(t)Wa (t)xa (t)+u'(t)M(t)u(t)dtf	 (5.4.21)

a  
0

'Now	 go W-00
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The augmented control problem is to find a control of the form (5.4.4),

(5.4-.5) which will minimize (5.4.21) subject to the constraint (4.3.53).

Note that the solution for the augmented control problem is the same solu-

tion for the original control problem where we are to find control of

form (5.4.4), (5.4.5) so as to minimize (5.5.1) subject to the dynamical

system

Apply theorem 5.5.2 to the augmented control problem, we have the

optimal control law given by

u^(t) 	 M l(t)Ba'(t)Ka(t)^a(t,t)	 (5.4.22)

-Ka (t) = Aa ' (t)Ka('t)+Ka (t)Aa(t)-Ka(t)Ba(t)M l(t)Ba' (t)Ka(t)+Wa(t)

Ka (T) = Fa	 (5.4.23)

and xa (tlt) the conditional mean of xa (t), and is generated via a minimal

order optimum observer-estimator (see theorem 5.4.1).

Lemma 5.5.3: The solution of (5.4.23) is

r
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-K11 (t) =ter (t)K11 (t)+K11 (t)A(t)-K11 (t)$(t) '^1 1(t)B' (t)K^7 (t)+W(t)

'
Ll (T) = F

(5.4.26) -K12 (t) = A' (t)K12(t)+K12(t)A(t)-K11(1:)R(t)M 1(t)B^ (t)K12(t)

K12 (T)	 0

-K22(t)	
A^ (t)K22 (t) +K22(t)A(t)-K21('t)B(t)M 1(t)B (t)K12(t)

K22 (T) = 0

-K21 (t) = -E1'2(t)

Comparing with (5.5,6), we see that

K11 (t)= K(t)
	

(5.4.27)

From the second equation of (5.4.26), we deduce

K12 (t) = 0	 (5.4.28)

substituting (5.4.28) into the third equation of(5.4.26) and then we have

K22 (t) _ 0
	

(5.4.29)
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x(tjt) - [In	 01xa(t1t) = E{x(t)IF(t,U* [O,tl)r	 (5.4.31)

is the optimal control law of the form (5.4.4), (5.4.5) which minimizes

(5.5.1) subject to the dynamical constraints 9C, (4.5.2$). (See Fig. 5.4.)

5.6 General Discussions

In this chapter, we considered the problem of controlling a linear

system with quadratic criteria under the assumptions that

1) System dynamics are known,

2) Statistical laws of underlying uncertainties are known.

It has been shown that under fairly general assumptions on the noise

structures, the optimal control strategy can be split into two distinct

procedures:

1) Find the conditional mean estimates of the current state

2) optimally feedback as if the conditional mean estimate

of the current state is the true state of the system.

[321This result is generally referred to as Separation Theorem 	 or Certainty

equivalence principle. [43] Theorem 5.3.2 includes as special case the re-

sults obtained by Joseph and Tou, [561 Gunckel and Franklin;
[
271 and theorem

5.5.1 generalized that of Wonham's.
[271 

In the following, we shall discuss

some further extensions of the research related to this chapter.

(A) Different Cost Criteria

In this chapter, we have considered exclusively quadratic criteria.

The first reason for doing this is motivated by the perturbation guidance

approach to many guidance control problem, 
[43] 

where we try to keep a

stochastic system on a precomputed nominal trajectory. Such an approach

will naturally lead to the problem of controlling, a time-varying linear

Millis
v	 k
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ô

II	 ^r Ij
I

o IZ

v

I >'
_ z

i w II	 ^,,^ ai WaI of o °,-4
I	 I —

a-I
g - --c -- H H

i	 I 4.1

^ I `' I ^ ^' ^ )^ H va^ al iI } ml "m1 H

II ZO

a
(	.JI

^I W I I	 W II
I	 I + v̂

I
(I ^11 ^i

a
I

+ II II
II II

W
+ Ln

---

I
ml

I	
I

v

I
f.^`
^a

II `.'

^^I
^

II_
ml L,^ N i>t

l F I I	
^+

w



-173-

system with quadratic criteria. There is also the reason that control

with quadratic criteria is one special case where we can derive explicit

results.

The approach taken in this chapter follows that of Streibel [591
 in

the discrete case, and that of Wonham
[321

 in the continuous version.

Theoretically, we can easily extend sections 5.3 and 5.5 to more general

situations where the cost criteria is not necessary quadratic. The main

difficulty that we shall face is the existence problem, which is a mathe-

matical rather than conceptual issue. In general, we shall have to formu-

late and solve a new stochastic control problem where the process being

controlled is the "estimated" process X(tjt), rather than the process x(t).

The interested readers are referred to Streibel [S91 and Wonham
[321 for de-

tail discussions.

(B) Terminal Time N -> o(T -* oo)

In the discrete case, let us define K(k,N;F) as:

K(k,N;F) = A'(k)(K(k+1,N;F)-K(k+1, N; F)B(k)(M(k)+B'(k)K(k+1,N;.)B(k)) l.

B' (k)K(k+l,N;F)A(k)+W(k) 	 K(N,N;F) = F	 (5.6.1)

From the separation results, the overall control system can be studied

separately by first considering the minimal order optimum observer-

estimator, and then the feedback control. In the case when N 	 the

error covariance will remain bounded if and only if the system 92 is de-

tectable (see chapter 3). Thus detectability is necessary in order we

can reasonably talk about controlling the system during an infinite time

span. Next, we have to consider under what appropriate conditions the

,:_	
F	 w	 Ar
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feedback gain will remain bounded. We note that this is equivalent to

consider under what assumptions will K(k,NF) remain bounded as N ^.

Comparing (5.6.1) with (2.5.15) where we replace

A (N-k+ko ) -- A' (k)

	

0	 Ql (k)

W (N-k+ko ) --> Q2 (k)

(5.6.2)

	

M(N-k+ko )	 R(k)

	

!(N-k+ko )	 A'(k)D'(k)

K(N-k+ko ,N;F) -- P(k,k0;F)

We can view K(k,N;F) as the minimal sequence with respect to a certain

solution set. This allows us to consider the asymptotic behavior of

K(k,N;F) as N x . From section 4.6, we see that a necessary and suf-

ficient condition for lim K(k,N;F) to remain bounded and satisfy a steady-
N,-

state difference equation is that there exists some matrix G(k),

k	 ., -1, 0, 1, ... such that

-0'2 ^ _J
I' I"b-(i__i) I I <_ at- P-	 (5.6.3)
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u(k)	 -G(k)x(k)	 (5.6.5)

The resulting system

x (k + 1) = (A (k)	 B (k) G (k) ) x (k) + E (k)	 (5.6.6 )

is uniformly asymptotically stable. We shall call such a system

stabilizable. Thus detectability and stabilizability are necessary and

sufficient conditions which allow us to consider control of discrete

linear system over an infinite time span.

In the continuous time case, let us define K(t,T;F) as the solution

of

4(t,T;K) = A' (t)K(t,T;F)+K(t,T;F)A(t)-K(t,T;F)B(t)ii 1 (t) B ' (t)'

K(t,T;F)+W(t)	 K(t,T;F) = F	 (5.6.7)

In order that we can consider the problem of controlling the continuous

linear system %3 during an infinite time span, first we have to require

that the error covariance will remain bounded as T	 A sufficient con-

dition for this is detectability of the system 83. Next, we have to con-
sider the asymptotic behavior of K(t,T;F) as 'T 	 Comparing (5.6.7)

with (4.3.29) where we replace
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We have from theorem 4.4.4 that lim K(t,T;E) will remain bounded if and
T-

only if there exists a G(t) such that (A(t)	 B(t)G(t)) is exponentially

stable. This is equivalent to the condition that there exists a feedback

control

u(t)	 G(t)x(t)	 (5.6.9)

such that the resulting system

X(t) = (A(t) - B(t).q(t))x(t) + E(t)	 (5.6.10)

will be uniformly asymptotically stable. We shall call such a system

stabilizable. Therefore, in the continuous case, delectability and

stabilizability are sufficient conditions which allow us to consider con-

trol of continuous linear system over an infinite time span.

With the assumptions on detectability and stabilizability, the asymp-

totic optimal cost rate is (see (5.3.18))

N-1

lim N 1 k J* (k, x) = lim V 
l k tr
	 (A (i)	 L (i+l)K ( i+l) + W(i)I(i))

i=k
(5-6-11)

in the discrete case, and (see (5.4.16))

1 T
lim T-t ic(t,x)	 lim alt tr 1 [W(T)^(T)+V2(t)C2(-r)R(-r)C' (T)V 2 ' (,r)K(T)

' t
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1) We have a time invariant,minimal order,optimum observer

estimator which generates the conditional mean estimate

of the current state.

2) We have a constant feedback gain.

Therefore, the optimum control system is also time invariant where one

can write transfer functions for it.

The study on the stochastic stability is a topic for further research.

5.7 Perspective

The Separation Theorem, or certainty-equivalence principle, was

stated for discrete linear systems by Joseph and Tou, [561 Gunckel and

Franklin, 
[581 

Streibel, [591 and for continuous linear systems by

[22],[27]
Wonham.	 The assumption was that the observation noise is non-

degenerate white Gaussian process.

The consideration in [56], [581, and [27] is that of quadratic

criteria and the approach is straightforward application of the Optimality

Criterion. The investigations by Streibel [591 and Wonham [221 include more
general cost criteria; the approach taken is that of first finding an

equation for the conditional mean of the current state, and then formulate

a new optimal control problem where the process being controlled is the

conditional mean process; finally,	 appeal to Optimality Criterion.
The approach taken in this chapter is that of Wonham`s. [ 2 2] . The cost
criteria we considered is quadratic, but one can easily extend the results

to more general cost criteria. The assumption that the observation noise
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CHAPTER VI

CONTROL OF DISCRETE TIME LINEAR SYSTEMS WITH

UNKNOWN GAIN PARATMETERS

6.1 Introduction

We have considered the control of linear systems with unknown dynamics

in the last chapter. Now we shall relax some of the assumptions that all

dynamics are known. In many practical control problems, we are confronted

with the problem of controlling an unknown linear system. We May have a

crude idea about the dimension of the system but the zero and pole loca-

tions may not be fully known. In this chapter we shall consider linear

systems whose doles are known but whose zeroes are unknown. We shall

generalize this to the case of a dynamical system in which the gain vector

is unknown. Admittedly, the situation in which we are to control a linear

system with unknown gain is rare; however, this research effort is neces-

sary and of importance in guiding our way to the problems of controlling.

an unknown linear dynamical system.

The structure of this chapter is as follows. In section 6.2, we

clearly state the problem under investigation.. In section 6.3 we formu-

late the control problem and state the solution 	 The approach taken is

that of Open-Loop Feedback Optimal (O.L.F.O.) c.ontrol (see section 6.2).

Using the Discrete Matrix Minimum Principle, we derive the O.L.F.O. con-

trol sequence in section 6.4. The existence and uniqueness of O.L.F.O.

!1111'1 +'YA1 `I L -+'11A4 -A 4- lie+-^4 1 4 .1	 -- A 4-U- n n.-+-4-4 n n11111fA Y.
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Theoretical results derived in this chapter will be applied to the

control of third order linear systems with unknown gain. The computer

simulation results and discussions will be treated in the next chapter.

6.2 Problem Statement

Let us consider the discrete linear system

x(k + 1) = A(k)x(k) + b(k)u(k) + E(k)
(6.2.1)

y (k) = C (k)x(k) + n (k)

where x(k), _^(k) E Rn , y(k), n(k) c Rm, A(k) is a known nxn matrix, G(k)

is a known mxn matrix, and u(k) is a scalar control. We assume that the

gain" vector h(k) is unknown, but we know that it satisfies the difference

equation

b(k + 1)

where G(k) is a known nxn matrix

vectors { .x(0) , b (D) , ^(k) , n (k) ,

Gaussian random vectors with knot

x(0)

= G(k)b(k) + y (k)	 (6 2.2)

and Y(k) t Rn. It is assumed that the

Y(Q ; k	 0 ) 1, ...1 are independent

an statistical laws:

-- q(-x0,zXo)	
(6.2.3)
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Our objective is to find a control sequence (u(0), ..., U(N - 1);

such that the cost

N-1
J(u)	 2 E;x' (N)F x(14) + 	 (x' (k)W(k)x(k) + h(k)u2(k)}

k=0

is minimized subject to (6.2.1) and (6.2.2). The expectation is taken

over all underlying random quantities. We shall assume that F, and W(k)

are nonnegative definite symmetric matrices, and that h(k) is a positive

scalar for each k.

Depending on the kinds of admissible controls that we are allowed to

choose, different formulations of the stochastic optimization problem are

possible. In the most general setting, we may assume that the control is

a random function of the observed data, i.e., u(k) = u(ulF(U(O,k - 1),k)

is a conditional probability measure on the control space. If the condi-

tional probability measure is regular, then the control is said to be a

mixed control law. If the conditional probability measure is singular

(Radon measure), then the control is said to be a pure control law. Un-

fortunately, little can be done at this level of generality where we con

sides both mixed and pure control laws.

In the next Level of generality, we may confine ourselves to consider

only pure control laws to be admissible, i.e., the control at each instant

is a fixed function of the observed data; in this case, the resulting con-

trol will be a random variable through its dependence on the random ob-

served data. This type restriction of admissible control leads to Bellman's

equation [25] whose solution may only be approximated.

Finally, we may restrict ourselves to consider only deterministic open

loop controls to be admissible,  this essentially means that we ignore the
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zero-mean random vectors and assume that the system will behave according

to its average behavior. Of course, this may not lead to a good control

system, especially whenever the covariances of the disturbances are large.

To compensate for this, we shall recompute the open-loop optimal deter-

ministic control after reevaluating the state of uncertainty of the system

at each and every step (time). A control sequence which is optimal in

this manner will be called the open-loop feedback optimal (O.L.F.O.)

control. [261,[631 Another interpretation of O.L.F.O. control is the

following. Assume that we are to control a system without knowing whether

any further observations will be available, or if available, we do not

know exactly when the data will be observed. Under this situation the

principle of optimality is difficult to apply. One logical, and in some

sense optimal approach, is to design an optimal control strategy based on

the total information available up to the present time, and continue to

use this strategy until new information becomes available; 	 then we

change our control strategy accordingly.

In this chapter, we shall look for the O.L.F.O. control. We shall

see that such a control sequence is, in some sense, "adaptive" in nature.

6.3 Formulation of Control Problem and its Solution

The present time is indexed by k. Let us assume that the control

sequence U (O,k - 1)	 (u (0). u (1) ..., a (k - 1)) has been applied

to the system, and that the observation sequence

(i)}k observed. We would like to find a
YU"(O,k-1)(0'k^	 (YU^(O,i-1)	 i=0

"future" control sequence U (k,N	 1)	 (u(k), ..., u(N	 W so as to

minimize the future cost (cost to go) conditioned on the total available

SIMMONS
...,.	 w;

N
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information at the present time. Let us denote the algebra generated

by the observed data Y(O,k) as F(k,U^(O,k - 1)); the symbol
U'(O,k-1)

U (O,k - 1) is used to denote that the data is really dependent on the

past control history. Our aim now is to find the control sequence

U(k,N - 1) such that the cost to go

N-1

	

J(U(k,N-1);U•r(O,k-1),k) 	2 El x'	 ('N)F x(N)+D' (j)W(j)x(j) 1, F(k,U (O,k-1))E

j=k
N-1

2 rh(j)u 2 {j)	 (6.3.1)
1.../
j=k

is minimized subject to the constraints (6.2.1) and (6.2.2). The cost has

	

the simple form (6.3.1) because	 the future control sequence U(k,N	 1) is

assumed to be deterministic. (If the future controls were assumed to de-

pend on observed data, we could not take the last term of (6.3.1) outside

the expectation operation.) It is now possible to formulate the problem

so that deterministic optimization techniques can be applied.

Let us define for j ? k,

	

X(jlk,U^(O,k-1))	 E{x(j)IF(k,U (O,k-1)}	 (6.3.2)

	

j;,``(O,k-1))	 E{b ( j ) IF(k,U"(O,k-1)) }	 (6.3.3)
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E{x ' ( j )M x(j)IF(k,U"(O,k-1))} = XfjIk,U* (O,k-1))M x(jIk,U*(O,k-1)) +

E fe/Q Ik,U*(O,k-1))M e (j Ik,
U*

(O,k-1)) IF(k,U*(O,k-1)))	 (6.3.6)

where M is an arbitrary nxn matrix. If we define the state-error second-

moment matrix

Qj k,U*(O,k-1)) 1 E{ex(jlk,U*(O,k- 1))el(j lk,U*(O,k-1))IF(k,U ^ (O,k-1))}

(6.3.7)

then using (6.3.6) and (6.3.7), the conditional cost (6.a.1) can be written

as follows

J(U(k,N-1);U*(O,k-1),k) = 2 x' (Njk,U*(O,k-	 x1))F (NIk,U*(O,k-l))

N-1

2 tr F -E^c(Nlk,U*(O,k-1)) + 2	 {X^ (j Ik,U-^(O,k-1))W(j)x(j lk,u*(O,k-1)) +
j=k

tr W(J) E (j l k , U (O,k-1)) 
+ h(j)u2(j)}	 (6.3.8)

To complete the formulation, we shall have to derive dynamical equations

satisfied by x(jlk,U (O,k-1)) and Zx(jlk,U (O,k-1)).

Since all the noise sequences are assumed to be uncorrelated and

white, we have (see chapter 2, section 2.3)

E { 7(J)I F (k , U (O,k-l))} = 0	 E {YCj)I F(k)U (o,k-1))} -0	 j '- k
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b(j + 1+k,U * (O,k - 1))	 G(j)b(j lk,U(O,k - 1))	 (6.3.11)

with initial condition (at the present time j = k)

x(klk,U*(O,k-1)) = E{x(k)IF(k,U*(O,k-1)))

(6.3.12)
J.

b(k+k,U'.(O,k-1)) = E{b(k) IF(k,U*(0,k-1))}

From equations (6.3.2) to (6.3.5), (6.2.1), (6.2.2), (6.3.10), and (6.3.11),

we obtain the difference equation for the error vectors for j ? k:

J

ex(J+lik,U.:(O,k-1))	 A(j)	 u ( j ) I - e (J lk,U(0 9 k-1))	 (J)
_	 ...	 ...	 (6.3.1.3)

eb (j+1 k,U^(O,k-1))	 0	 G(j)	 %(j j k ,U (O ,k-1))	 Y0

The initial error at j = k only depends on {E(i), y(i)}, i : k - 1, and

{n(i)l, i <_ k, and so it is independent of {E(i), I(i)}, j ? k. Also,

since all noises are uncorrelated, zero mean, and white Gaussian, (6.2.6)

and (6.2. 7) imply that

E(^Q)^' Q) j F(k,U*(O,k-l))}	 R(j)
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Equations (6.3.13), (6.3.14) and the independence of initial error

( j	 k) and of the future noise sequence imply that E (j k,U (O,k-1)) ,

j ? k, is generated by (see chapter 2, section 2.3)

Z(j+ljk,U*(O^k-l)) 	 A(j,u(j))E(j jk,U (O,k-1))A' ( j ^u(j)) + R(j)

(6.3.16)

where

A(j) u (j) In 	 0)	 G

A(j, u ( j ))	 ..	 ;	 R(j) Q	 (6.3.17)

0	 G(j)	 0	 N(j)

The initial condition is given by

e^c (k1k,U* (O,k l))
C	 E(klk,U (O,k-1)) _ E	 .	 [e''(klk, U*(O,k-1)):e'(kIk,U (O,k-1)))

eb (klk,U (O,k-1))

IF(k,U (O,k-1))	 (6.3.18)

r	 From (6.3.12) and (6.3.18), we see that x(kjk,U (0,k-1)) and

b(k lk,U (O,k-1)) are the conditional means of x(k) and b(k), respectively,

while E(klk,U (O,k-1)) is the conditional covariance matrix of the aug-

mented vector

x(k)

b (k)

0
These quantities can be generated by the following, identification equations,

(6.3.19)-(6.3.23), once the past control U*(O,k-1) has been chosen;

ri

i
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x(i+14+1,U (0.i))
[I2n V* ( +lli,iJ*(0"))C(i+1)]A(i,u*(WO

b ( i+1 I i+1, U* (0., i)

x(ili,U (0,i-1))

...	 +V(i+lli,U`(O,i.))y(i+l) 	 0, 1, ..., k - 1
b(iLi,U(0,i-1)

x(OIO,U* (O, l	 X(010)	
xo ^co C' (0) (C(0)Z C' (0)+Q(0))-1(C(0)^-y.(0))

b(0 O,U*(02-1)	
.(010)	

b

(6.3.19)

where

1)	 [C (i + 1)	 -0i = 0, 1, ..., k	 1	 (6.3,20)

:r	 :c
and V (i+lli,U (0,1)), i = 0, 1, ..., k = 1, is a solution of the following

equations;

	

V`(i+Ili,U*(0, ))(C(i+l)h(ili,U*(O,i))C'(i+l}+Q( +l)) 	 b(ili,U*(O,i)}C'(i+1)

i = 0, 1, ..., k	 1	 (6.3.21).
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"xo

	

-Z C'(0)(20)" (0) (C (0)^:0CI (0)+Q (0) 
j..l^ 

(0) .xo	 0
--

	

(0 0,U. (0,-1 i"i, z (0 0) =	 ...

0	
40

Referring to chapter 3, section 3.3 we note that the identification

equations represent an optimum observer-estimator for the augmented

system:

A(i,u W)_	 +

	

lb (+l) 	 lb (i)	 y O
(6.3.24)

x(i)
E (i )	 c (i)	 + n (i)_	 b (i)

If either 0(i) > 0, i = 0, 1, ..., k	 1, or C(i+1)R(i)C r (i+l) > 0,

i	 0, 1, ..., k - 1 (or both), the unique V (i+ili,U (O,i)) which

satisfies (6.3.21) to (6.3.23) is given by

V^ 0+11 i,U^ (O,i)) = ^ (i l i,U^.(O,i.) )C' (i+1)r

r^[C(i+1)©(iji,U (O,k-1)C' (i+l) +g(i+1)} 1
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x(k1k,U*(O,k-1.)

b (k1k,U*(O,k-1)

is unique almost surely.(see chapter 3). Thus, we may assume that these

quantities are known if U (O,k - 1) has been chosen. We can then formu-

late the .following deterministic control problem at the kth-step:

Open-Loop Control Problem (k < j s N - 1)

Given: x(j+11k)'	 A(j)x(j 1k) + b(j (k)u(j)	 (6.3.26)

b(j+llk)	 G (3)b(j 1k)	 (6.3.27)

E(j+l 1k) = A(j,u(j))E(j I k)A' (j ^ u (j)) + R(j)	 (6.3.28)

with known initial conditions at j = k

X(k1k) = X(klk,U*(O,k-1)) ; b(kjk) 	 b(klk,U*(O,k-1))'

E(klk)	 E(k`1k,U*(O,k-1))	 .	 (6.3.29)

We are to find a deterministic control se uence U(k N 1) such that it

minimizes

J(U(k,N-1)	 U*(O,k-1),k) 	 2 R'(N1k)F x(N1k) + trj F(Nlk)l+
N-1

k _	 k	 k + h(j)u 2 (j)	 (6.3.30)

j=1:
subject to the constraints (6.3.26) to (6.3.28), where the matric es F and

W (j) are defined by

t
We shall not explicitly stress the dependence on the past control history
U (O,k-1); for this reason the symbol U (O,k-1) shall be dropped without
causing any confusion.

POW
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F 0 	 W(j) 0
F =	 ca(j)

0 0 	 1 0	 0
(6. 3.31)

For the above deterministic control problem, we shall denote its optimal con-

trol sequence by U0(k,N-1) 6- (uo (jIk)}j_k, where the superscript o is used to
denote optimal for the 02en-loop controlproblem; the syTbol u (ilk) is used
to indicate that the control is open-loop optimal conditioned on the obser-

vation u p to the pres ent time k.

The solution for the above deterministic optimal control problem is

given below; the detailed lerivations will be carried out in section 6.4.

The optimal control sequence, U 0 (k,N-1), is given by

^i (j ?k)	 - C h (j Ik) +b o ' ( j l k) K ( j+l lk)b0 (j Ik)I -1.

x0 Cj i k >'	 rxo C j I k >

b Q Ik)K(j+llk) (OD Ik	 h(j Ik) d (j+1)

Lao
...

G  Q I k ) 	 (j I k)^
(6.3 32)

where K(jlk), j = k + 1, ..., N 	 1, satisfies the matrix difference

equation
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® (j I k) = A(J	 (j Ik)h-1 (j I k)d' (j+l)	 f	 c

0 	 A(J) g11 	 A(j)gnlA (j)	 ...	 ...	 ...(6.3.34)
0	 A(j)gln 	 A(j)gnn

D ( j Ik) = WQ)	 4(j+1)h-l (j Ik)a' (j+1)	 (6. 3.35)

^	 I

0	 I bp i (j I k)

A (j -1) s (j )e	 (j I!k)G' (j)e
d (j) _	

e Rn(n+1)	
b°(j Ik) =	

E Rri(n+l)

A(j-1)SO)e	 0Q k) G' (j)

	

a°  (j I k) _	 (6.3.36 )

—xb (] I k)

h(j I k ) = h(j) + tr{'(j Ik)S(j+l)}	 (6.3.37)

The matrices 4 ( J lk), S(j + 1) 9 j = k, k + 1 9 ..., N - 1, are given by

r
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bo (j+lk)	 G (j )bo (j j k )	 j = k_, ..., N - 1	 ho(k }k) = 6(kjk,U*(O,k-1))

(6.3.40)

To find the O.L.F.O. control sequence, we have to solve the above

open loop control problem for k = 0, 1, ... 	 The O.L.F.O. control

(u (k)) N-1 is then given by

u* (k) = u° (k ( k)	 k = 0, 1,	 , N	 1
	

(6._3.41)

where uo (k1k) is given by (6.3.32) to (6.3.40). The structure of the

O.L.F.O. control system is described by Figure 6.1. Though the equations

are complicated, the digital computer implementation of O.L.F.O. control

sequence is actually straightforward. A flow chart description of the

O.L.F.O. control is given in Figures 6.2 and 6.3. In the following, we

shall outline the computational procedure to find the O.L.F.O. control

sequence.

1. If k = 0, y(0) is observed, and x(OJO,U (0,-1),

b(010,U*(O,-1), E(010,U*(0,-1) are given by (6.3.19)

and (6.3.23)	 If k > 0, assume that U (O,k-1) is

chosen and YU*(O,k-1)(O,k) is observed; compute

x(kjk,U (O,k-1), b(k,k,U (O,k-1), 64--id
J.

Z(k+k,U"(O,k-1)) using the identification equations

(6-3-19) to (6.3.23)

2. Compute _ ® ( j l k), 5(j 1k), ]O (j 1k), h (j 1k) for

k, k + 1, ..., N	 l using equal ons (6.3.34)

to (6.3.40).

3. Compute K(k+lfk) using (6.3.33), and the O.L.F.O.
i

control to be applied at step k is given by (6._3.41).
i

won-,
:.r
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INITIAL CONDITIONS

k n 0
Y.10)

INIT,ALIZE CONDITIONS FOR IDENTIFIER

XIkIk) ` xo - FxoC' 1 °> I^to)^xo c ^( o) + 4(o)'1(c(o)><o- Ylo)1

b (klk) _ bo
C_t0)

F7co'r,,, S- (o)(C(o)Eoc' (o)+4(°lrlC(o)E.o l u	 stop
;(Wk) 

0.	 1 A.	

$k L—fk_—lk+
1

 I

C(Wk)	 xlWk)	 W) a	 Ylk +l)

	

E(Wk)	 x (Wk)	 Nr	 observation-	 -	 ^lWkl =E

Exb(Wk) =(bn;ol^lWk1[0.

16̂ -
(k )	 ulWk)In	 Q Rlk1i
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4. Advance k r k+ 1 and repeat 1 through 3 until

k = N - 1.
^c

We note that the O. -L.F.O. control sequence U (O,N - 1) is adaptive

in nature.

Before we go into the derivation of the O.L.F.O. control, let us

first look into the solution carefully and discuss some of its implications.

In essence, we are fording some sort of "separation" in cur formula-

tion. The overall control problem is split into an identification and a

deterministic control problem, However, the effect of the identification

error will betaken into accourt in the deterministic control problem.

Thus, this does not correspond to pure separation as it is in the case of

stochastic control of linear system with known dynamics(chapter 5).

Let us first look into the identification equations (6.3.19)-(6.3.23).

Suppose that Q(k) > 0. If u(i) = 0,. then from (6.3.21), we have

x
V (i+1'i9U(O,i)) _	 (6.3.42)

0

and so (6.3.19) implies

b(i+lji+l,U(O,i)) = G(i)b^(ij ,U(O,i-1)) 	 (6.3.43)

Therefore, a nonzero input is necessary to identify the gain parameter

vector b(k). From the equation (6.2.1), we see that if u(i) is very large,

then for the most part the value of x(i + 1) will be due to b(k)u(k),

and so the observation y(k) will contain a large amount of information

about the gain parameter b(k). Therefore, we would '.expect that large input
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magnitudes will be helpful for the identification of b(k). For a control

sequence (u(k)}k=0, if its total energy is high, we would expect such

control sequence to be useful for identification purpose. But large con-

trol energy will also give rise to a high cost (6.3.1). From the control

point of view, we would like to use just enough control energy to regu-

late the state of the system. In general, there is a conflict between

identification and control, and a reasonable control sequence should

appropriately distribute its total energy to identify and/or control of

the system $.

Let us consider (6.3.32)-(6.3.33). Comparing with the Levis'(751

results, we note that u (jJk) is the optimal control for the problem of

controlling the system Sk:

x (j+llk)

Sk :	 x(j+l k) = A(j)x(j k) + 1?( j fk)u(jIk)	 X(j+llk)	
ao(j+l k

(6.3.44)

with the cost criteria

N-1

J	 x'(Nlk)F X(NJk)+E{X(iJk)W(i+k) x(iJk)+h(jJk)u2(Jlk)+2x'(i,k)d(i+l)u(ilk)}

i=k	 (6.3,45)

Therefore we can visualize h(j'k) as the modified relative weighting on

the control. From (6.3.31), we note that h(jJk) relates in a direct

manner with E(jlk. In a statistical sense, 
Zb

(k+k) reflects the level

of confidence we have about the estimate of b(k). The modification on the

relative weighting on the control is such the heavy weighting is Rut in

the control if we have Little confidence on the estimate of b(k); therefore,

.r
I
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the control action will be very cautious and control energy will not be

used unless it is very necessary.

Let us write

u"(klk) = -(h(klk)+bo '(klk)K(k+llk)bo (klk)) 1 •b°'(klk)k(k+llk) O (klk)

I	 0 x° (k f k

	

...	 - (h(kl k)+bo'(k'k)K(k+ljk)b°'(klk))- lK(k+llk)
0	 0° (k [ k

0	 0	
,xo(klk)

Q (kIk) ...	 .. +h_1(klk)d'(k+l)	 ...	 (6.3.46)
0	

1n	 60 (k' k)

We shall call the row vector (lxn)

I_	 -- n
e(k) ^= -(h(klk)+bo` (kik)K(k+1Jk)b°(klk)) 1• bo ' (kjk)x(k+ilk) (a) (kjk)

_	
0

the O.L.F.O. adaptive gain., and the term	 (6-3.47)

uc (k k) = -{(h(k+k)+b 0 '(kjk)K(k+ljk)bo (kjk)} -1• bo1 (kjk)K(k+l(k) 0 (k]k)

0	 0	 xo(k k)

...	 +h(k{k)d' (k+1)	 ...	 (6-.3.48)
0	 In	 coo (kl k)

the correction germ. Thus, the O.L.F.O. control-, (6.3.46) , becoD.es

u (k1k) = j(kjk)xo (klk) + uc (klk)	 .	 (6.3.49)
I

From (6.3.33)-(6.3.37), we note that 4(klk,U (O,k-1)) affects indirectly

the O.L.F.O. adaptive gain and the correction term. The cross-error

7
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covariance, Zxb (kjk,U (O,k-l.)), only affects the correction term; and if

Xb (klk,U* (O,k-1)) is zero, then from (6.3.36) and (6.3.48) we conclude

uc (k1k) = 0.

Assume that 4(klk,U*(O,k-1)) _ 0, then from (6.3.33)-(6.3,37), we

have inductively

ro

0

K(klk) =..	 .	 (6.3.50)

 0.

where K(k) is given by (5.3.6), and from (6.3.4'#'), the O.L.F.O. adaptive

gain is

	

^(k) _ -(h(k) + b' (k)K(k + 1)b(k)) lb' (k)K(k + 1)A(k)	 (6.3.51)

which is the truly optimum gain (see chapter 5, section 5.3) The assump-

tion than E b (k k, U * (O , k-1))	 0 also impliei 	 .;'k k,U * (O, k-1)) _ 0, and

so the correction term is zero, and

i

	

u*(k1k) = -(h(k) + b' (k)K(k+l)b(k)) lb' (k)R(k•+-l)A(k)xo(k1k)	 (6.3.52)

Thus we see that if for some k, the identification of b(k) is assured to

be exact, i.e., the level of confidence on the estimated gain parameters
f:

is very very high, then the O.L.F.O. control will act optimally and use

the obtained estimate of b(k) as if it were the true gain vector.

Finally, we would hike to comment on the computational requirements
i,

of the proposed scheme. The computation of the O.L.F.O. control is done

on-dine. At each time unit k, we have to solve a one step 2n-vector dif -

ference equation and a one step 2n x 2n matrix difference equation,
j

r
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(6.3.19)-(6.3.23); computing the parameters, (6.3.34)-(6.3.40), which in-

volve some one step computation, (6.3.34)-(6.3.37), and an N	 k steps

n-vector difference equation (6.3.40) and ni N - k steps nxn matrix dif-

ference equation (6.3.38); finally we have to solve an N - k step

(n + 1)n x (n + 1)n matrix difference equation (6.3.33). (Note that the

matrix difference equation (6,3.39) can be precomputed off-line.) The

O.L.F.O. control is then computed using (6.3.32). The total storage

capacity needed corresponds to the storage of the state and parameter

estimates (2n) and the error covariance matrix (2n x 2n). The capability

of computing the O.L.F.O. control sequence in almost real time will de-

peed on the complexity of the system being considered and the computation

speed of the digital computer used to implement the O.L.F.O. control (see

also chapter 7).

6.4 Open-Loop Optimal Control

In this section, we shall derive the open-loop optimal control for

the deterministic control problem (6.3.26)-(6.3.31). The deterministic

formulation allows us to use the discrete matrix minimum principle

(theorem 2.4.1) to derive the set of necessary conditions for optimality.

Let us form the Hamiltonian for the deterministic control problem
i

(6.3.26) - (6.3.31) for j	 k, k + 1, ..., N - 1,

H41k - <p (j+l k),A(j) X (j I k ) +b (j Ik)u(J)-X(J Ik)>+	 ( j +l C k ) ^^( j ) ^ Q ^k}
^,	 —

b(j lk)>+tr l(A(j,u(j))Z(j ( k) ' (j,u(j))+R(j)-E(j Jk))P' (j+llk)l
l	 1

+ 1 <RQ (k) W(j ) :k (,i Ik)> +' 1 h(j)u2(j) +-! tr ^(j )'E( j jk)	 (6.4.1)
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where x(j lk) is the costate vector associated with x(j l'k), Pb (j Rk) is

the costate vector associated with ^ (-"k) and P(j lk) is the costate

matrix associated with E(jlk). Use of the discrete matrix minimum prin-

ciple leads to the following relations

(a) The canonical equations are:

x (j+llk) = A(J)k0 (J lk) + b°(J lk) u°(J lk)	 (6.4.,2)

b°(J+llk) - G(J)
b
o(J 1 k)	 (6.4.3)

E°(j+llk) = A (J,u° (J 1 k))E° (J l k)A' (J,u(j 1k)) + R(j )	 (6,4.4)

p_°(J 1 k)	 ?► ' fJ)°CJ+11k) + W(j)x (j 1k)	 (6.4.5)

Pb(J l k) - G' (J)pb(J +llk) + EO(J+l lk) u°(j lk)	 (6.4.6)

f
Po (J lk) = A' (J, u°(J lk))P'(J+llk)A(j,u (J lk)) +2 W(j ) (6.4.7)

(b) The boundary conditions are:

at time k: PC°(klk) - R(klk,U*(O,k-l));bo(k[k) 	 b(klk,U*(O,k-1))

E°(k1k) = E(klk,U*(O,k-1))	 (6.4.8)

at time N p° (N 1 k) - F Sc° (N 1 :k) 
;P-b

0 (N l k) = 0
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where we have decomposed the costate matrix as

follows

P11(' I k)	 P 12 (j k)

If (j 1 k)

p21 (^^ k) : P22(j+k)

(6.4.11)

From (6.4. '7) and (6.4-9), we deduced that Po Ol k) is nonnegative definite

since F and W (j) are assumed to be nonnegative definite. Therefore,

2
u 2 (	 _ h (j ) + 2 

tr{4 (j I k)Plll (j + 11 k) } > 0	 (6.4.12)
^u ^)

and so the control u0 (ilk) given by

uo (j [k) = - [h(j)+2tr(E0(j Ik)PO (j+llk)) 1 { bo ' (j Ik)p'(j+llk)+

2tr(Po1(j+l,k)A(j)-ZO (—j (k)+G(j)Eb(J lk)P1 2 (j+llk)) }

j = k	 (6.4.13)

indeed minimizes the Hamiltonian.

From (6.4.4) we obtain equations for Z0 (ilk) and Eb0 01k) for j ? k:
xb

E0 ( j+ll k) = A(J)Zo (j f k)G'(j) + uo (j jk) Z j +k)G' (j)	 (6.4.14)

Eb(j+Ilk) _ G(j)E.oh (j (k)G' (j) + N(j)	 (6.4.15)

with _initial conditions

E xb (k k)	 Z (k l k,U* (O,k-1))	 0 (k`Ik)	 ^ (k I k,U* (O,k-1))	 (6.4.16)

3

^a
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From equations (6.4.7) and (6.4.9), we obtain the equations for

P° (	 k)--11 j and P°.12 (	 k) for_	 j = k, k + 1, ...,	 N:

10711  Ik) a A' 
(j) P 11 (j+l I k)A(j ) + 2 W(j)	 (6.4.17)

PO Q Ik)	 A' (j)P Q12 +11k)G(j) + uo ( j I k)A' (j)pll(j+1 k)	 (6.4.18)

Po (NIk) a	 F	 Po (NIk) - 0	 (6.4.19)
—11	 2	 —12

We note from (6.4.13) to (6.4.19) , that the values of per° (j k) and

K022 (ilk) are irrelevant in computing the open-loop optimal control se

quence uo (jlk). From (6;4.17),Pl l (jlk) is ''dependent of the observa-

tion and the control, and thus it can be precomputed. To emphasize this

fact, we define

S(j)	 2P11 (j I k) 2:0	 N 1 j? 0	 (6.4.20)

and so S(j) satisfies the matrix difference equation

s(j) = A' ( j )S(j + 1)A(j) + W( j )	 S(N)	 F	 (6.4.21)

From (6.4.15), 4(jlk) only depends on the observation; thus it is

meaningful to define a "modified control weighting":

h (j lk)	 h(j) + tr( O(j lk)S(j + 1)) > 0 	 (6.4.22)

Let us define

2P12 (j I k) el	 2
£ R

	

^o (j' I k) _	 ^	
n	

(6 ..:4.23)

2P12 (7 I k) en

Then by -using (6.3.34) to (6.3.36) , (6.4.2) ,_ (6.3.13) to (6.4.23), we obtain

	the set of matrix difference equations; j k, k + 1, 	 N - 1..	
I
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(j+l k)	
XRk^ 	0 (j+l]k)

0 (j lk)	 so (j I k)h 1(j I k):e' (j I k)

0 Q+1 k]	 o° (j I k)j	 (j+1 I k)j

(6 4.24)

0	 0	 --0

	

Rx (i k	 Rx (j+1 I k)- 	x (j lk)

. .	 =0 '(i(k)	 ...	 + bQ 1k)	 ...

(j k)L	 I'	 _e (j+1 I k)	 as (j I k)j

(6. 4. Z. )

with boundary conditions at time N:

0	 ^

-Rx 
(Njk) 	 F	 0	 xo0 	 (111k),lk)

	

0	 0	 ...	 .....
0	 (6.4.26)

Le (N kj	 ...	 ...	 ...	 ... La— (Nlk)]

0

From (6.4.24) to (6-4.26) and (6.4.8), (6.4.16), we can solve for

Rx

0 
(jjk),	

^o 
Q I k) and 6° (j+llk). To'bypass"the two point boundaryQ k) x

value problem, we define the matrix k(jlk) by

	

0	 -0

	

Q k !'	 x Q Lk)-x

k(jlk)	 (6.4.27)
0

	

° ( j k).	 Q k)._

Substituting (6.4.27) into (6.4.24) and (6,.4...25) we obtain

	

- 
Q+llk	 ^--Ro (j I k)

Q	 Q+	 lk)^-llk)0

^0
X

'(jlk)kQ+llk)]	 Qlk)
0

	

Q+llk	 0(j I Qj

(6.4.28)
-^O

(il k)	 (j+llk

I.K(jlk)	 b(jlk)]	 ...	 =(D '(jlk)k(j+llk)	 ...	 (6.4.29)
L,.cy° Q k)]	 LI 0 Q+l k]
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if [I + b o (j lk)h-1 (j lk)b°' (j jk)K(j+ljk) ] has an inverse, then (6.4.28),

(6.4.29) imply that

{ K (j l k) -D(J Ik)-0 (ilk) k(j+l I k) [I+b o (j lk)h 1 (j l k)b°' ( j Ik)kQ+VIk) 
]-1® 

Q Ik) }.

x°(j k)
0	 .	 (6.4.30)

Cyo (j lk)

Since x (jlk), 6°(jlk) can be arbitrary, (6.4.30) implies that the matrix
i	 —	 —

difference equation holds:

i

K(j lk) =®' (j lk) (K(j+llk)-k (j+l l k ) bo ( j l k) {h ( j l k)+bo ' ( j lk)K(j+llk)bo(j lk))-1.

v F	 0	 ...	 0

	

b o ' (j lk)K(j+llk)) (D (j lk)+D(j lk)	 K(Nlk) =	 0	 0	 ...	 0

...	 ...	 ...

0	 0	 0

(6.4.31)

where wehave used the matrix identity: [66]

( I + A B') 1 = I	 A(I + B'A)
-1

B'	 A,B E M	 (6.4.32)-n — —	 --n — r	 — — n r

The identity (6.4.32) is true provided one of the inverses exists. The

two point boundary problem is now transformed to the problem of finding a

solution of the matrix difference equation (6.4.31). The existence and

uniqueness of (6.4.24) to (6.4:26) and (6.4.8), (6.4.16) can be deduced

from the existence and uniqueness of K(jlk), N ? j ? k, satisfying (6.4.31).

The optimal open-loop control is given by: (N 1 a j 2 k)

f
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ExQ+1 l k 	 x° C j lk)
uo (j lk)	 -h-^'(j l k) bo ' (j k)	 ...	 +d' (J +l)

°(j+l{k) _.	 a0(J I k).
I

-h-I CJ l k)	 (J l k)K ( j+1 l k) [I+b° (J j k) h 1 (J 1 k) bo (j k) K (j+ k) ] -1

x^ (j l k) o (j l k)

(g) Q l k)	 ...	 h-1 ( j l k) d' (j +1)	 ...	 (6.4.33)

0 Q lk).	 CT (j k)

Using (6.4.32) and also the matrix identity[66]

I - A(A + B) - = B (B + A) -1	 (6.4. 34)

(6.4.33) becomes (N	 1 ? j ? k)

uo ( j l k) _ - (h (j l k)+b" ( j l k) K (j+1 l k) ho ( j l k)) lbo ' (j l k)K(j+1 l k) (^ (j l k)

Xo ( j l k)	 x (j l k)
...	 -h-l (j lk)a' (j+l)	 ...	 (6.4.35)

0 (j l k)	
0

_ 	( j l k)

We have thus shown that if the solution of (6.4.31) exists and unique,

the open-loop optimal control must be given by (6.4.35); and the O.L.F.O.

control is given by (6.3.41). We shall consider the question of existence

and uniqueness of O.L.F.0. control in the next section.

6.5 Existence and Uniqueness of O.L.F.O. Control

From equation (6.3.41), we see that if the optimal open loop control

°(jlk)}N_ l(u	 exists and is unique for all k = 0, 1, ..., N - 1, we canJ-k

conclude that the O.L.F.O. control {u*(k)}k=o exists and is unique. If the

solution of (6.3.33), i.e,., the matrix x(jl'x), exists and is unique, then

the control law given by (6.3.32) and (6.3.33) is the unique globally optimal

-	 --,



open loop control. Since A(jIk) is an indefinite matrix, the solution of

(6.3.33), K(jlk) (if it exists), is not necessary nonnegative definite; in

fact it is always indefinite. Therefore, we cannot a priori conclude that

h(jlk) + b°'(jIk)K(j+llk)b°(jIk) will always be nonzero, and thus deduce

that K(jIk) will remain bounded in finite time. In this section, we sha ll

establish the existence and uniqueness of the solution of (6.3.33), K(jk),

for the case where the terminal time is finite (N < -) this result will,

then be used to prove the existence and uniqueness of the 0. L. F. 0. control.

Let us define

x° (j I k) '
Lo ( j Ik) = <x^ Q Ik) ,w(j)y(j Ik)>+2uo (j Ik)<	 ...	 ,d(j+1)>+h(j Ik) (u Q Ik))2

(j I k)	 (6.5.1)
Lemma 6.5.1	 If h(RIk) + b°'(k I k)k ( k+ll k)b° (Q, Ik) is nonzero, k	 j, j +

N - 1, then

x ( j Ik	 x (j Ik	 x ( j+1 l k )	 Xo(j+ljk)

Lo (j 1 k) =<	 ...	 , K ( j Ik)	 ...	 >-	 K(j+l Lk)	 >

a Q L k)	 6° (j I k)	 Qo ( j+l I k)	 ?0 Q+1 1k)

(6.5.2)

Proof: Using (6.3.32), (6.3.33), (6.3.35), and (6.5.1), we have

X (j Ik)	 X (j Ik)	 -ko Q I k)
L 

o
(j Ik) =<	 • •	 , D(j Ik)	 .	 >	 0 ' Q I k)k(j+llk)0Q Ik)'—

6^ ( j L k)	 a^ (j I k)	 a° (j I k)

(h ( j Ik) +b° ' (j I'k)K(j+1 1 k) `b° (j I k) ) -lh(j I k) (h(j I k)+^0' Q IQkQ +1I k) •

° (j I k)
b°' (j Ik)K(j+lIk) ® (j I k)	 ...	 >	 (6.5.3)

o°(j Ik)	
i

_ry
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By (6,,4.34) , (6.4.28) , and (6.4.31) , equation (6.5.3) becomes

	

xo (j l' k)	 x° (j I k) xo ( j+1 k)	 xo (j+1 k)

L0 (j l k) =<	 ...	 , K(j l k)	 > -<	 , F,(j+1 k)

	

cr 0 (j I k)	 cr0 (j l k)	 CT0 (j+1 k)J	 cr0 (j+11 k)

(6 5 4)

Lemma 6.5.2: For all i = k, k + 1 0 ..., N - 1 we have

	

N-1	 N-1
lltr{F Ex (Nik) +^ W(j)Ex(j l k)! _ trIS(i ) Ex (ilk) +21 (S(j + 1 ) R(j) +

j =i	 j=i

X( j lk)`
2u (j)<	 d(j + 1)> + u2 (j )' S (j + 1)Eb (j)}	 (6.5,5)

o (j k)

where u(j) j	 i, i + 1, , .., N - 1, is an arbitrary control sequence and

-x (j )K)

^(jlk)

is the resulting trajectory.

Proof: Using (6.3.28), we have (14(N)	 F)

tr(W(j +l)Z%(j +llk,)) = trjA' ( j )W( j+l ) A (j ) Ex (j lk) +u ( j )W(j +1).Lb (j lk)+

W(j+l)R(j)+2u(j)'r1(j+1)A(j)Exb (j lk)}	 j	 i, i+ 1, ..., N	 1 (6.5.6)

By applying (6.3.28) repeatedly, (6.5.6) yields

J

rtr (W (j+l )'Z (j +lll,,)) = tr J JA (j , i) W ( j+l ) tA ( j , i )E( l k)+Lq, (j'z+1)W(j+l)
Q=

±A (i , 9,+1) R(2)+2u(Q)JA(j , Q+1)W(j '}1)JAQ , Q+l)A(Z) Exb Q( l k)+u2 M4 (j_,Q+1)W (j+l)

IA (j , Z+1 ) b(9,f k))}	 (6.5.7)
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From (6.3.19), we have for all j : N - 1 that

N-1

S(j)_ ^A(N-1 ,j)F A (N-lpj ) + A(.-1,^)W(SG)A(k-l^)
k=J

. (6.5.8)

Summing (6.5.7) over j = i, i + 1, .0. 1 N - 1, and using (6.5.8) and (6.3.36),

we obtain (6.5.5) after a fair amount of straightforward manipulation.

To describe the performance of the optimal open-loop control sequence,

we shall introduce the notion of "conditional open loop optimal cost to go."

Definition 6.5.3: The conditional open-loop optimal cost to go for the de-

terministic control problem, (6.3.26)-(6.3.31);

J°, k(L(lk),R(ilk)) p	 min	 2 x'(Nlk)F R(Nik)+tr y' E(Nlk)
u(j):j=i,...,N-1

N-1

+ E[R l (jlk)W(j)R(j lk)+tr W( j )E( j lk) +h (j) u2 (j) l	 (6._5.9)

j=i

where R(ilk), E(ilk) satisfy the set of equations (6.3.26)-(6.3.28).

Note that J il k( • , • ) is defined as a function on M	 x. Rn . From(2n) x (2n)

(6.3.28) , we see that E (j (k) ? 0, j = i, i + 1, ... , N - 1, if and only if

E (i lk) ' 0. Thus, from (6.5.9) we have

J° lk (E,^) > 0	 if E ? 0
	

(6,5.10)

By lemma 6.5.1 and lemma 6.5.2 we 'immediately deduce:

Theorem 6.5.4: if h(klk) + 0'(k,lk)K(k+1lk)0(klk) is nonzero, k	 i + 1,

..,, N 1, then the conditional open-loop optimal cost to go has the closed

form

N-

Jil kE X	 2tr^.E S i +ES +1R } +
2	

. Kilk

.	 a	 a
=i	 -

(6.5.11)

AIr
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where

I	 0

_x
(1	o^^ ... b = Cxn Olz

0	 Z

xb'k
r	 (6.5.12)

-^xb- n

We shall now make use of (6.5.11) and (6.5.10) to establish the exis-

tence, uniqueness and boundedness of K(jlk), j = k, k + 1, ..., N - 1;

k = 0, 1 ..., N	 1.

Lemma 6.5.5: Let GQ ).j G' (j) < B, for all B ? 0, j	 k, ... , N - 1. Then

we have h (j [k) + b o ' (j j1')K(j+ljk)0(j 1k) > 0, j = k, ..., N - 1.

Proof; If F 1 0, then since h (N - 1) > 0, we have

h (N-1 j k)+b o ' (N-1' k)K(N j k) 0 (N-1 j k) 	 h(N-1)+tr( O (N-1 l k) F)

+b o '(N-1jk)F b o (N-11k) > 0	 (6.5.13)

Now assume that h(kjk) + b' o (Qjk)K(Z+1Jh)bo (k1k) > 0 for Q = i, i + 1 1 ...,

N	 1 (k < i)	 Consider the special case: R(j)	 0, j	 k, ..., N; then,

by the induction hypothesis, theorem 6.5.4 and (6.5.10) imply that

J° ilk (E`(i-11k),b o (i-11k) = tr( (i-l+k)S(i))+b'°(i-1lk)K(i+k)bo(i-1'k) ? 0

(6,5,14)

where we have chosen
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and since h(i - 1) > 0, we have from (6.3.37) that

h( -ilk)+b°' (i-Ilk)K(ilk)b°(i-llk) = h(i-l)+J°	 jk),b°(i-ljk))	 0

(6.5.16)

Thus the lemma is proved by induction.

We cannow easily prove the existence and uniqueness of the solution of

(6.3.33), {k(jlk) }N_1, k = 0, 1, ..., N - I.J=k

Theorem 6.5.6: (Existence and Uniqueness) Let B ? G(j).B G'(j), j - 0, ....

N - 1 for all B ? 0. The solution of (6.3.33), {k(jIk)}N_1, exists, isj=k

unique and is bounded, (N < w) , if (k l k) , b° (k lk) , A(k) , W(k), F A(k) and

h(k) are bounded, k = 0, 1, 	 , N - 1.

Proof: The equation (6.3.33) can be written as a set of two equations (see

chapter 2, section 2.5)

Y
K( j Ik) = ((D (j Ik)-b° ( j JQ Vo (j+llk))'k(j+l l k) ((D ( j Ik) -b (j I k) V Q+l))

+D(jIk)+(j+1)h( j (k)Vo (j+1lk)	 k(nIk) = F ; j = k,k+1,...,N-1.

k = 0,1,...,N-1

(6.5.17)

V ( j+1 k)	 (h (j k) +0' (j I Q (j+lLk)b° (j (k)) lb° . ( j I k) K(j+l l k)	 ( j Ik)

(6.5.18)

From (6.3.38), (6.3.40) and the assumption on boundedness, we have that

Ik)	 d h( Ik) 4 b	 d d f	 - k k+ 1	 N	 1 • k= 0 1CL"	 Zs oun a	 or j

N 1. By lemma 6.5.5 V 0+11k)- exists, is unique and is bounded. The

assertion follows from the linearity of (6.5.18) and the fact that N < ^.

WWO F, - 4^^- _	
-
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N-
Corollary 6.5.7. : The optimal open-loop control, ',uo (j j1 k)1 

1
exists, is

unique and is bounded if the assumptions in Theorem 6.5.6 are satisfied;

furthermore, R(k k,U * (O,k-l)) $ 1"'(kjkU * (0,k-l)) j b_(kjk,U*(0,k-1)) are

bounded.

Theorem 6.5.8: Let B 2: G(j)Ba l (j), j = O, 1, . * 4 P N - 1, for all B Z 0.

and A(k), j(k) ) E(k), Q(k), W(k) ) h(k), F are bounded, k = 0, 1, N - 1;

then the O.L.F.O. control, u (k), k = 0, 1, ...) N - 1, exists, is unique and

is bounded.

Proof: We shall use induction on k. When k = 0, x(010) and b(010) are

bounded almost surely; also Z(010) is bounded; thus by corollary 6.5.7,

u 
0 
(0!0) exists, is unique and is bounded a.s. By (6.3.41), u * (0) exists,

is unique and is bounded. Assume the statement of the theorem is true '),)r	
I

k = 0, . . . , Z; t < N - 1. By

the identification equations,

and b(Z+1!Z+1,U (0 Q)) are bo

bounded, thus corollary 6.5. 7

the assumptions and the induction hypothesis,

(6.3.19)--(6.3.23), imply that X^(L+llk+I,TJ*(O,Z))

ended a.s., and that E(Z+l t+I,U (0,0) is

implies that u 
0 (Z+llk+l) exists, is unique

and is bounded a.s.; by (6.3o41) the assertion of the theorem holds for

u (k), k = 0, 1,	 + 1.

One would like to extend the results to the infinite time case with

N	 Unfortunately, this is seldomly possible. From (6.3.39), we note

that if we let N	 SQ) will remain bounded if artd only if A(k) is ex-

ponentially stable; thus, the solution of (6.3.33), K(jlk), with N 	 will

not be meaningful u-Aess A(k) is asymptotically stable. In many cases of

interest, the system to be controlled is unstable. Therefore, we shall not

investigate the solution of (6.3.33) with N

ter
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6.6 As rtptotic Be i.avior of the Identifier

Tn this section, we shall study the asymptotic behavior of the identi -

fication equations. The results will allow us to consider the problem of

controlling the system 9 over an infinite time interval (N

coDefinition 6.6.1: f(A(k), C(k)))k=0 is said to be completely observable

of index v at k if the observation matrix

riAl ^(k, v ) = [C' (k) : A(k,k)C' (k + 1)	 ^f (k + v - 2,k)C' (k + 'y - 1).	 —	 .	 —
(6.6.1)

is of full rank n. ((A (k)  ,C(k)) }k,0 is said to be uniformly completely

observable of index v if the pair is completely observable of index v for

all k = 0, 1,

Theorem 6.6.2: Let {(A(k),C(k))}k=0 be uniformly completely observable of

index v, and suppose that A(k), G(k) are nonsingular, k = 0, 1, 	 If

u(k) ^ 0, k	 0, 1, ..., then {(A(k,u(k)),C(k))k=0 is uniformly completely

observable of index v', v' " 2v.

Proof: By (6.3.17) and (6.3.20), we have

.0 (k)
	

0

C(k+l)JA(k,k)	 C(k+l)u(k)

IAA (k , 2v)	 k+j+1
C(k+j)JA (k+j-1,k)	 :	 C(k+j)jA(k+j-1,f,+l)uMjG(k-1,k)

k=k
•	 k+2v-2

C(k+2v-1)_A(k+2v-2,k)

	

	 C(k+2v-1)jA(k+2v-2,Q+.1)u(0G (Z-1,k)
Q=k

(6.6.2)

By assumption, the first my rows of vectors contains at least n independent

vectors. Among the rows vectors C(k + v + j)JA(k + v + j - l,k), let
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^! 3 (1) (k + v + j) A (k + v + j	 1, k),	 c_p'a (v,) (k + v + j)..jA(k + v + j	 1^ k)

be the v  vectors which are independent of the row vectors:

C(k + v)^A(k + v - 1.,k), C(k + v - 1) jA (k + v ,k),	 C(k + v + j - 1)

A (k + v + j - 2,k), j = 1, ..., v - 1; where.

cl(k + v + j)
C(k + v + j) _

	

	 (6.6.3)

cm'(k+v+j)

and c j ( • ) is some permutation of 11, 2, ..., m}. Since ((A(k),C(ki)'k=0

is uniformly completely observable of index v, it follows that vi ^ 0,

v - 1, and that

m + vl + v +nvV-1 

Assume that we have the dependence

v+j-1
C'	 (k+v+j)l^(k+v+j-1,k)	 _ate'. (j,$)C(k+i)iA(k+i-1,k)
—P i (s)

i=0

(6.6.4)

1 - s `— V  (6.6.5)

where the only possible nonzero entries of ^a!(j,$), i = 0, ..., v + j 	 1, are

those corresponding to independent rows of C(k + i)cLA(k + i - l,k),	 = 0,

+ j	 1. If there exists no a Q ,$), i	 0, ..., v + j	 1, which

bears the relation (6.6.5), then the (m(v + j	 1) + p(s)) th row vector of

III -(k,2v) is independent of the first m(v, + j - 1) row vectors. If there_A

exists pc'(j,$), ;,	 0,	 ., v + j	 1 which gives the dependence (6.6.5)

then such a dependence is unique by construction. Now assume that the

(m(-;% + j - 1) + o (s)) th row vector of MA C -(k, 2v) is dependent on the first

r	 m(-> + j	 1) row vectors, then we must also have the dependence

F

-G

Air
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k+v+j-1

cP.(s)(k+v+j)±A(k+v+j-1,Q+1)u(Z)^G(k-1,k)

k=k	 3
v+j--1	 k+s-1

Fa
i (j,$)	 C(k+i)±A(k+i-l,k+l)u(t)±C(Z-1,k) 	 (6.6.6)

i=1	 k=k

Since A(k) is nonsingular, by (6.6.5) we have

r+j 1 k+v+j-1

a 	 O

	

(j,$)C(k+i)t^iA(k+i-1,Q+1)u(Q) 	 n	 (6.6.7)

i=0 k=k+i

where

4

JA(i,j) = A- 1 (i)A 1 (i + 1) ... A-1(J)	 ► 	 i > j	 (6.6.8)

Since {(A(k),C(k)))k=0 is uniformly completely observable, the vector

a' f ( j ^ s )	 [ , (j,$) ...	 a (j,$))	 (6.6.9)

cannot be the zero row vector, s = 1 9 009 9, v j . By assumption G(k) is
nonsingular, therefore (6.6.7) is true if and only if u(k + i) = 0, i = 0,

1, ..., j which is a contradiction. This result applies for s 	 1, ..., vj;

j = 0, 1 9 .0. 9, v - 1. Together with (6.6.4) and the remark made at the
beginning of the proof, we have that MA ^(k,2v) will have rank 2n if

u(k + i) # 0, i	 0 9 1, ..., v - 1. The theorem follows from the assumption
that u(k) 0 0, k 	 0, 1, ...

Corollary 6.6.3: Let A(k), G(k) be bounded and nonsingular. If

f(A(k),q(k)) k= o is uniformly completely observable of index v, the error
covariance matrix, E(kjk,U(O,k-1)) which satisfies (6.3.21) to (6.3.23), will

remain bounded for all k 0, 1,	 where u(k) is any bounded but nonzero

a'

;<:



Lemma 6.6.4: Suppose that G(k)

G(k)B G' (k) :^ B

Let Y(k)	 0, i.e., there is no

any control sequence, we have

Eb (k+l I k+l,U (0,
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satisfies

B E Mnn , B ? 0	 (6.6.10)

driving noise in gain dynamics; then for

k))	 Z (klk,U(O,k))	 (6.6.11)

Proof: From (6.3.23) and (6.3.21), since N(k) = 0, we have

4(k+1lk+1,U(O,k)) = G(k).Eb(kik,U(O,k-1)G'(k)-[Q:In]V*(k+llk,U(03,k))

0
(C(k+l)A(klk,U(O,k))C'(k+l)+Q(k+l))y '(k+1lk,U(O k)) 	 (6.6.12)_	 I

-n

where V (k+1lk,U(O,k)) satisfies (6,3.21)-(6.3.23), using (6.6.10) 3, (6.6.11)

follows immediately from (6.6.12).

An immediate consequence of lemma 6.6.4 is that if (6.6.10) is true and

1(k) = 0, then there exists E-b such that

lim Z (klk,U(O,k	 1)) _ E-ii	
(646.13)

CO

k-^

Note that (6.6.13) is true independent of the observability of {(A(k),C(k)))k=0'

In the following theorem, we shall give sufficient conditions under which
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Proof: Let c > 0 such that

JJZ (k+2v l k+2v,U(O,k+2v-1)) - 4 (kj k,U(O,k-1))j j	 E	 (6.6.15)

where 11'11 is the spectral norm. Since Eb(k1k 9U(O,k-1)) ? 0 9 k - 0 9 19

eas t (6.6.11) and (6.6.15) imply that we have the inequality

1-Lb (k+j lk+j,U(O,k+j-1) - 4(k+j-llk+j-1 9 U(O,k+j-2) 1' ^ E

j - 1 9 2 9 seat 2v	 a	 (6.6.16)

'Using equation (6.6.12), we have

11[O .I ] V*(k+jl k+j-l,U(O,k+j' -1) (C(k+j)p(k+j -llk+

O
C'(k+j) + 4(k+j))V*'(k+jlk+j-1,U(O,k+j-1)) ,.. !1	 (6.6.17)—	 —	 I

By corollary (6.6.3), 6(k+j) Z(k+j-llk+j-l,U(O,k+j-1))C'(k+j) + g(k+j) can
be uniformly bounded, so

Li

11(C(k+j)Z(k+j-llk+j-1,U(O,k+j-1)) cYk+j)+Q(k+j))V*'(k+jlk+j-1,U(O,k+j-1))

1
y

1 1(C(k+j)h(k+j-llk+j-1,U(O,k+j-1)C'(k+j)+Q(k+j))21 ^1 • 1 . 1 (C(k+j)p(k+j-llk+j-1,U(O,k+j-3)
1 0

C'(k+j)4-a(k+j))2V*(k+jlk+j-1,U(O,k+j-1))... 1
I
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IC(k+j)A(k+j-l);-llk+j-1,U(O,k+j-2))G'(k+j-1)+u(k+j-1)C (k+j)-

Z b (k+j-Ilk+j-1,U(O,k+j-O)G' (k+j-1) I 1	 6 j (e)

j	 1, ..., 2v	 (6.6.19)

Since V (k+jak+j-1,U(0,1<+j-1)) is bounded for j = 19, ..., 	 therefore

(6.6.17) and (6.3.21) imply that

Li

II[. In)V (k+jlk+j-1,U(O,k+j-1))C(k+j)A(k+j-llk+j-1,U(O,k+j-l))}^ _` 1(e

(6.6,.20)
0

11[.1:01 . (k+jlk+j-1,U(O,k+j-1))C(k+j)d (k+j—llk+j-1,U(O,k+j-1)) ... ^)
I

< a2 (e)	 (6.6.21)

where si(e) is continuous in e, sl(e) 	0 as e - 0, i = 1 2 2 9 ...	 By using

(6,3.23), (6.6.20) and (6.6.21) and the assumption that G(k) is nonsingular,

the inequality (6.6.19) implies

Exb (k+l jk+l,U(O,k))
(l[C(k+l	 01 
	 f1(E)	

(6.6.22)

L4 (k+l I k+1 1 9U(0,k) )
k+j -1

(+ CC(k+j) A (k+j-1,k+1) :C(k+j) , IA(k+j-1,k+1)u(Q)(Q-l,k+1)]
Q=k+1

ry (k+lIk+l U{0 k))1--xb	 9	 9
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where fi (e) is continuous in c, f i (e) -1, 0 as e -> 0, i = 1, 2 1 ..., 2v.

Equations (6.6.22) and (6.6.23) imply

Z(k+ljk+1,U(O,k))

M- - (k+1, 20

	

	 f (e)	 (6.6.24)

4(k+lIk+l9U(01,k))

where f(e) -; 0 when a -* 0 and is continuous in e. By theorem 6.6.2,

r1	 (k + 1,2v) is of full rank, so we have
A,C

1 Z (k+llk+l,U(0,k)) j ! ` 6'(E:) 	 6' (e) -^ 0	 as a -* 0	 (6.6.25)

".Eb(k+l'k+1,U(0,k)) I I ^ 6"(e)	 6''(E) -* 0	 as a -)- 0	 . (6.6.26)

Now the conclusion of the theorem follows from (6.6.13).

Theorem 6.6.5 can be extended to the case where u(k) is bounded but

nonzero control for all but a finite number of k's. Since E(k1'k,U(O,k--l)) ? 09

(6.6.14) also implies

kb (k1 k,U(O,k-l)) -^- O	 (6.6.27)

if the conditions for theorem 6.6.5 hold.

Let us consider an observable system S, (6.2.1), the gain parameters

are assumed to be unknown and satisfy

b (k + 1) = G(k)b(k)	 (6.6.28)

with G(k) satisfying (6.6.10) 	 Assume that we want to control the system S

over an interval N <	 In the beginning, the modified weighting on the

control is high, and thus in general, the control magnitude will be low at

^,	 s ,	 r



the beginning. Thus, the trajectory of the overall control. system would

be pretty t; ►uch the same as the input-free trajectory of the system g. If

the matrix A(k) is exponentially stable, the true state of the system will

evolve toward zero by using negligibly small control magnitudes (even zero).

The result is that little effort of the input, fu(k) N-1 is spent for control

and identification purposes. We would expect that the estimated parameters

will hardly converge to the true parameters, b(k). On the other hand if

A(k) is not exponentially stable, then the true state of the overall system

will diverge. This diverging phenomenon will be noticed by the identifier,

thus resulting in a high control magnitude because of (6.3,32). Since

little is initially known about the gain parameters, the high magnitude con-

trol will be utilized mainly for identification purposes. Therefore the

control will be kept bounded away from zero as long as exact identification

of b(k) has not been obtained. Using theorem 6.6.5, we predict that the

estimated parameters of b(k) will converge to the true gain parameters

before the control iaagnitude goes to zero.

i= Analytical studies of the convergence rate of the O.L.F.O. system are

not yet available. From the above discussion, we may predict roughly that

the convergence-rate for unstable system will be relatively fast depending

on "how stable" the system is; and the convergence-rate for stable system

will be very slow.

For control over an infinite time period see section 6.7(C) for de-

tailed discussions.

fFinally, we shall discuss some interesting implications of theorem

6.6.5. Consider an observable system $, (6.2.1), with unknown gain
.	 .Y

i

•	 I

ReM
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parameters satisfying (6.6.2$) and with G(k) satisfies (6.6.10). Let

k (x(klk,b(klk),Eb (kik,U(O,k-1)) be any ad-hoc control law which is "put"

after the identifier (see Figure 6.4) and with the following properties

(k > 0) :

2) c k (x,b, )	 0,	 x e Rn , b e Rn, E E Mnn , x # 0; £ # 0

3) Jk(x,b,0) s -(h(k)+b'(k)K(k+l)b(k)) 1b'(k)K(k+l)A(k)x

x e Rn , b e Rn

From condition 2, we see that Eb(k'k,U(O,k-1)) - 0 as k -; - (6.6.14); and

so from condition 3, the ad-hoc. control scheme will converge to the optimal

control strategy when the full dynamics become known. This indicates than

the ad-hoc scheme Jk ( x(k11k),b{k'k),Eb (k^k,U(O,k-1)) can provide reasonable

simulation results.

6.7 General Discussion

In this chapter, we investigated the problem of identification and

control of discrete linear systems with unknown gain from the theoretical

standpoint. The control is open-loop feedback optimal. The implementation
I;

{
'	 of such a control (O.L.F.O. control) was described to some detail. The

actual implementation for O.L.F.O. control for third-order systems will be

discussed in more detail in chapter 7. As we shall see later, such a

proposed scheme appears to be computationally feasible and that the results

are reasonable and appealing. A deeper theoretical understanding of the

derived O.L.F.O. control is possible from the results in sections 6.4 and

6. 5. The questions of existence, uniqueness of O.L.F.O. control are con-

sidered in great detail. The asymptotic behavior of such control systems

was treated in section 6.6; some of its extensions will be discussed Eater

in this section.

AWN	

'I

1,00
;.

r



F

-222-

^N

01 Y.
aI

S ^1
,^

W
+

W.
ZOW^ +^ ^tV

GC)
C
ow

I

? Q .^. W I cs E u

Z j a v Y • ° tV <A I <AI

W p U. Y t N W^ O
OC v O WI ^n o I tai H

jig j
N

Y jig

♦ V

Y U
x''

UI Ad

^tl

w

♦ d

Q ^ A

w dl o
O

WI W
aor4{	

.Y X
w

o
W i

d:
"'^

ac

CSI

IW

.moo



r	 -

—223--

(A) Discussion on &proaches

The problem of combining identification and control of linear system

with unknown gain have been considered by several people. Farison [60]

considered an ad-hoc procedure which basically assumes the separation be-

tween identification and control. Murphy [61] considered the approximate

effect of iteration between control and identification and he pre-supposed

that the control was a pure feedback of the estimated states. Gorman and

Zaborszky [62] used a similar approach to that of Murphy and obtained a

suboptimal control which required the solution of a sequence of two point

boundary value problems. Essentially, [61] and [62] are approximately

Bellman`'s equation. The approach taken in this chapter is different from.

those in [60], [61], and [62].

Bar-Shalom and Sivant [63] also used the O.L.F.O. control approach to

consider control problems with random parameters. They derived a general

solution but made no attempt to study analytically the derived results. The

approach taken in this chapter is primarily motivated by computational

feasibility

From the discussion made at the end of section 6.6, we can see why

different computation schemes suggested by Farison, Murphy, Gorman and

Zaborszky will all be expected to give reasonable simulation results. It

is hard to quantitatively compare our approach with theirs without extensive `—

simulation experiments. One computation advantage or ourresults over those
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of :iurphy, Gorman and Zaborszky is that we replace a sequence of two point

boundary problems by solving a sequence of matrix Rccati type difference

equation of dimension (n + 1)n x (n + l)n, (6.3.33). This matrix Riccati

difference equation is solved backward in time starting from the terminal

time to the present time k i.e., an N - k steps computation, where k = 00

1 9 ..., N	 1. Computational wise, this is easier thain solving a two point

boundary problem. In our approach, the theoretical proof on the existence

and uniqueness of O.L.F.O. control sequence is available; this gives us

confidence in trying out the suboptimal control scheme using a digital

computer. Also, we can deduce and predict roughly the behavior of the over-

all O.L.F.O. control system (section 6.6) from the derived equations (section

6.3)

(B) Vector Control

In our investigation, we assumed that the control is scalar. However,

i
	 the approach can be extended in a straightforward conceptual manner to the
r

vector control ease. First, a set of identification equation is derived
i

which will generate: the estimate of the current state, the current estimate

of the unknown gain matrix , and the different cross -error-covariance matrices.

An open-loop control problem is formulated as in section 6.3, equations

(6.3.20) to (6.3.31) and discrete matrix minimum principle is used to obtain

the extremal solution. The results will be similar to those of scalar con

`trol case. However, the equations in the vector control case will be more

complicated.

(C) Control Over Infinite Interval

Let us consider the problem of controlling the system S, which is time

invariant and unknown constant gain b, over an infinite interval, i.e., N ^ ^.

Ar
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It was pointed out (in section 6.5) that the problem will not be very

meaningful in many cases if we just onsider the obtained results (section

6.3) and let N -r -. We suggest the window-shifting approach. Assume that

at all times, we have N more steps to control (see Figure 6.5), thus at all

times we solve an open-loop control problem over an interval of N steps.

This approach is motivated by computational consideration and the theoretical

results derived in section 6.6.

We nol-e that in the O.L.F.O. approach, we have to resolve the open-loop

control problem at all time k so as to adjust the control scheme accordingly.

In our case, we have to compute K(kJk) in a backward direction starting from

the terminal tr.me N to k for each k. If N is very large, this computation

will require a very long time to accomplish. From a computational stand-

point, we would like to "cut back" the terminal time. Conceptually, in

trying to control over an infinite time period, the controller looks into

all future effects caused by present action, and decides on the optimum

move. The window-shifting approach suggests that instead of looking at all

future effects, the controller looks at only near future effects caused by

present actions and decides on suboptimal. moves. One may view such an

approach as a "short term adaptive scheme." Note also that we can adjust the

"window width" according to computational capability. At all times, we need

only to solve for K(k1k) in a backward direction starting from N + k to k.

Thus from a conceptual and a computational point of view, such an approach

may be desirable.

Assume that the time invariant system S being controlled is observable

and controllable. If b is known exactly, then if we consider control over

infinite time period, the optimal feedback gain is constant and is given by
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^ = -(h + WK b) -lb'K A	 (6.7.1)

where K is given by the steady state solution of

Ki- A'(Ki -
Kib(h + b'Kib) -1b'Ki)A + W	 ;	 Ko = F	 (6.7.2)

+1

(see chapters 3 and 4). Let N be the integer such that for n > N,

JJK.-n - Kn-1 ' (	 E	 E > 0	 (6.7.3)

Such an integer N can be found experimentally off-line. Adjust the window

width to equal to N, and apply the window-shifting approach. Add some

nonzero control for identification purpose if it is necessary (see also

chapter 7). Using the results in section 6.5, the existence and uniqueness

of such control sequence is guaranteed. By theorem 6.6.5, the estimate in

b will converge asymptotically, and so when b(klk,U (O,k - 1) 	 b, we have

K(k,N+k;F)	 0

K(k' k)	 .	 ...

0	
0

where K(k,N + k;F) satisfies
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K(k,N+k;F) _	 = K	 (6.7.6)

Thus asymptotically, we have a time invariant overall control system.

(D) Convergence-Rate

We have not studied in detail (analytically) the convergence-rate

of the suboptimal O.L.F.O. control system. We can only deduce and predict

some rough qualitative estimates about convergence-rate for stable and un-

stable systems. We shall study the question of convergence-rate via simula-

tions; some conclusions and discussion will be included in the next chapter.

(E) Conditions for Convergence 

From theorem 6.6.5, we note that if y(k) = 0, the sufficient conditions

for convergence are observability, nonzero control and (6.6.10). The first

two conditions are relatively easy to understand and intuitively appealing.

The third condition needs some explanation.

Suppose that G(k) satisfies (6.6.10); then by taking .!j In , we have

G(k)G'(k) _< In	(0.7.7)

Thus, we have

^^G(k)^( ` 1	 (6.7.8)

where	 is the spectral norm. Equation (6.7.8) provides us with the

necessary condition for (6.6.10) to hold. Intuitively, (6.7.8) means that

the uncertainty of b(k) cannot grow.

Let GM be an nxn matrix such that

G(k)x <_x	 xERn	 (6.7.9)

This discussion was motivated from a suggestion made by Prof. J. C. Willems.
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If B ? 0, then B DD'for some D e Mnm . Let D = [ 1 ... ^ ], equation
y	 7

(6.7.9) implies

G(k)DD'G'(k) < DD'
	

(6.7.10)

and so G(k) satisfies (6.6.10). Thus (6.7.9) provides a sufficiency test

for (6.6.10). Geometrically, (6.7.9) implies that G(k) is a linear transfor-

mation which is directionally invariant but shrinking or retaining the

length of each vector. Some weaker sufficiency tests which have some

physical interpretations will be explored in future research efforts.

(F) Different Cost Criterion

The approach can be applied to the more general case where a cost

criterion other than quadratic is being considered. The identification

equations remain unchanged but the open-loop control problem thus formu-

lated will be different from (6.3.26)-($.3.31). By using the discrete

matrix minimum principle, we shall obtain a set of equations which define

a two point boundary values problem.

6.8 Perspective

The problem of stochastic control of linear systems with unknown gain

was also treated by Florentin (64], Farison [60], Murphy [61], Gorman and

Zaborszky [62]. The approach in [61]-(64] is that of approximating the

solution of Bellman's equation. [60] presuppose separation.
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To the author's knowledge, for this particular problem of controlling

linear system with unknown gain, the investigations in sections 6.5 and 6.6

represent the first extensive analytical studies on the derived suboptimal

solution. The contributions being that a plausible computationally feasible

suboptimal solution is derived using the O.L.F.O. approach, extensive

analytical studies on the derived solution are carried out, and from the

derived results some rough behavior of the overall suboptimal control

system can be deduced; also we have a deeper understanding on the effects

(qualitatively) of uncertainties on the control action.



CHAPTER VII

CONTROL* 'OF THIRD ORDER SYSTEMS WITH UNKNOWN ZEROES:

NUMERICAL EXAMPLES

In the last chapter, we have studied theoretically the problem of

control of a discrete time linear system with unknown gain under the

quadratic criterion. A suboptimal adaptive control system was derived

using the O.L.F.O. approach, and the asymptotic behavior of the control

system was discussed. There are still some important questions which have

not been treated theoretically. For example, the rate of convergence of the

suboptimal control system is in general of great interest, but was not

treated in detail. Computer studies were carried out on some specific

examples of third order systems. The main purpose for these studies is to

provide us with some qualitative ideas about the rate of convergence of

the suboptimal control system for different types of third order plants.

Let us consider a stochastic continuous time-invariant linear system

described by

xf (t)	 Af xf (t) + bf uf (t) + dd Ef (t)	 X(0) ``' Q(0' -E_Xo)
(7.1)

(t) = c' xf (t) + of (t)	 b ti Q(O, Ebo)

where f(t) is a scalar driving white Gaussian noise, nf (t) is the

scalar observation white Gaussian noise. The statistical laws of Mt)

r
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From (7 1), we have

Af t	 t Af (t - T)	 t Af (t - T)
x f (t) = e	 2^f (0) + f e	 b u f (T) dT + f 0 r	 d f (T)dT (7.4)

0

Assume that we take observations only at discrete instants of time t = A,

2A, 3A ...; A is assumed to be small such that u(t) = u(kA), E(t) _ 9(ko),

t E [kA, (k+l)AI

AfA Af (kA)	 kA Af (kA - T)
x f (k+1) A= e	 le	 x f (0) + f 0 e	 b f of (T) dT

kA Af (kA - T)
+ f0 a	 df Ef(T)dTl

A Afa	 A AfQ
+ f 0 e da	 b f u f (kA) + f o e da	 d f f (kA)	 (7.5)

Defining

AA	 A Acr
x (k) WkA) ; A = e ; b = " j0 a do- b f

A Afa	 (7.6)
d	 f o e	 da	 d f	 ^ (k) _ f (kA)	 u (k) = u f (kA)

(7.5) becomes

x (k+l) = A x (k) + b u (k) + dE (k) ; x(0) q(0, Exo )	 (7.7)

Def ininQ
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n(k) `v Q(0, qA )	 (7.11)

The gain vector is assumed to be unknown but constant, therefore the

equation for the unknown gain is

b(k+l) = b(k) ; b (0) ti 0t(bo, moo)	 (7.12)

We can now apply the results in chapter 6 to equations (7.6), (7.9) 9 (7.10)-

(7. 12) .

A computer program was designed which operates as follows:

(1) Read in Af , b	 c, df , r, q, , x^, b^, the final time N and

the different weightings W, h, F, and covariances Exo' z=bo'

(2) A subroutine, which was developed by Levis 175], was used to

h	 i	 (7 1)	 h A ivert t	 ont n	 suou	 version,	 , to te 	 iscrete tmecon	 e c

sample data version (7.6).	 The covariances of	 C(k), n(k)	 are

I

computed using (7.10),	 (7,11).

(3) The true value of 	 x(k)	 was recorded.	 Using a noise generating

subroutine, a sample value of	 y(k)	 was obtained.	 Assume that

R(k-1/k-1), t(k-1/k-1)	 are recorded.	 A subroutine for the

identification equations (6,3.19)-(6.3.23) was used to obtain the

current estimates	 R(k/k), 6(k/k), and the error covariance

matrix	 E(k/k)	 recursively.	 These values were also recorded.

(4) A subroutine based on (6.3.32)-(6.3.41) was used to obtain the

adaptive control	 u (k).

(5) The control	 u (k)	 was applied to the system (7.6), using a

noise generating device to obtain a sample value of 	 E(k); then

by (7.6), we obtained the value 	 x(k+l)

(6) We advance	 k - k+l	 and repeat (3) through (5) until we get to

th	 final time	 k = N-1.	 -
I

M...
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The program was written in such a way that if we set b(k/k) = b, and

-:%o= 0, then the procedures (3) through (6) will give us the truly optimal

stochastic control when b is known. Using a plotting subroutine we can

plot out the truly optimal trajectories vs. the O.L.F.O, trajectories; the

true b vs. the estimated b, and optimal feedback gain vs. adaptive gain

(it was noted that the adaptive correction term will converge to zero quite

fast), under the requirement that the same noise samples Q (k), n(k)) were

used for both the known b and unknown b cases. These plots provide us

with qualitative understanding on the rate of convergence of the overall

suboptmal_O.L.F.O. control system.

In all the computer simulations, unless otherwise mentioned, we set

the values:

0.2 sec, r = 0.05, q _ 0.45, d f 	[21 , xo	 1

	

l	 1	
(7.13)

F I3 , W = I3, 
Ebo

= moo = 4 I3 , c' = L1 0 01

Example l Unstable System.

It is assumed that

101
A,F = 100  0 11	 b;F =	 21

2
ii	 1	 ;	 x^ (0) _ -1	 (7.14)
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Fig. 7.1a POLE ZERO PATTERN FOR EXAMPLE 1: UNSTABLE SYSTEM
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GRAPH A

OPTIMAL "TRAJECTORY WHEN b IS KNOWN

-- O.L.F.O. TRAJECTORY WHEN b IS UNKNOWN

1.

4	
^I

1 ^
1
^ I

3
	

I

1

..	 o
0

110	 20	 30 '^

' (	 /	 (4sec)	 TIME UNIT --♦

11-2

II
it

_3
I^

-4

I
-	 II

II
II

11

Nr-5

Fig.	 7.2	 C014PARISON BETWEEN THE OPTIMAL TRAJECTORY WHEN THE GAIN IS KNOWN
t	

A'D THE O.L.F.O. TRAJECTORY ASSUMING THE GAIN IS UNKNOWN. THE SYSTEM
BEING CONTROLLED IS UNSTABLE WITH SYSTEM FUNCTION- 	 (S+3) (S+2) 	 I

(S-1)	 (S +2S+5) '
THE SkXPLE NOISE IS THE SAME FOR BOTH CASES.
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i.e. we started out with an initial guess that the system has no zeroes.

The final time is N - 40.

Many computer runs have been made on the same system with different

noise samples. The plots for one particular sample experiment, which

represents a fairly good average behavior, are shown in Figs. 7.2-7.4.

From the experimental data (which are not shown completely), we can obtain

a rough idea about the behavior of the suboptimal O.L.F.O. control system.

From the experiments, it was found that in the beginning, the O.L.F.O.

adaptive gain is approximately zero (Fig. 7.4) and the O.L.F.O. trajectory-

follows closely to the input-free trajectory (Fig. 7.2). The diverging

phenomenon is detected by the identifier; controls of considerably high

magnitude are then applied for a few steps. This is indicated by the fact

that there are sharp jumps in the state trajectories. Experiments show

that these jumps are not caused by bad noise sample because the same

phenomenon appears in different sample runs at approximately the same time

interval. The high magnitude control serves mainly for identification

purposes, this is revealed by the fact that at the next time unit, the

estimates of b closely agree with the true b (Fig. 7.3). As was

predicted in chapter 6, section 6.3, the O.L.F.O. adaptive gains do-con

verge to the truly optimum gains (Fig. 7.3). The correction term vs. time

is not shown in the figure, but simulation results indicate that the

correction term goes to zero very _rapidly after the identification of b

is essentially completed.

Another set of simulation experiments was carried out where we kept

the same sample noise but varied the weighting h, (h > O). It was found

from the experiments (not reported in here) that the maximum magnitude of

the overshoot in the O.L.F.O. trajectories varied inversely with the value

MINA

.!	 I
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of h; if h was large, we have relatively "lower'' overshoots; whereas, if

h was small, we had relatively high overshoots. Also, the experiments seem

to indicate that the convergence rate and the final estimation error in b

seem to depend on the value of h we chose; with large h, we have relative-

ly slow convergence rate and relatively big final estimation error in b;

if h is small, we have a relatively fast convergence rate and relatively

small final estimation error in b.

In the next set of experiments, we kept the weighting fixed (h = 0.1) ,

and repeated the first set of experiments with larger driving noise co-

variance (r = 0.45) while using the same observation noise sample. The

experimental results (not reported in here) seem to indicate that the in-

crease in driving noise covariance has little effect on the convergence

rate of the O.L.F.O. control system.

It is of interest to find out whether the initial guess on b  will

be sensitive to the resulting O.L.F.O. control system. We carried out a

set of experiments where we fixed

 0
b
f 
	 ;	 [00 0	 1	 (7.17)

11001	5 -3 -1

The transfer function is

H - (s) (7`.18)-
2

(s - 1) (s	 + 2s + s)

The initial condition on	 x (0) was kept fixed, and using the same sample

noise, we varied our initial guess in	 b^. The same runs seem to indicate'

that though the sample O.L.F.O. trajectory varied with different initial

guesses in b.; the convergence rate was quite insensitive to the guess in

b.
_f

e MUNI ,...	 ;
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GRAPH A

OPTIMAL TRAJECTORY WHEN ji IS KNOWN

-'	 O.L.F.O. TRAJECTORY WHEN I IS UNKNOWN

Fig. 7.5 COMPARISO N OF OPTIMAL TRAJECTORY WHEN'

THE GAIN VECTOR IS KNOWN AND THE O.L.F.O.
TRAJECTORY ASSUMING THE GAIN VECTOR IS
NOT KNOWN. THE SYSTEM BEING CONTROLLED
IS STABLE AND HAS SYSTEM FUNCTION

(S+3) (S+2)	 WE GUESS INITIALLY
(S+1) (S2+2S+5)'

THAT THE ZEROES ARE LOCATED AT
-7/4- v'--39/4. THE NOISE SAMPLE IS THE
SAME FOR BOTH CASES.
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Example 2s Stable System

It is assumed that

	

0 1 0	 1	 6
A	 0 0 1	 ;	 b=	 2	 ;	 x (0)	 -3	 (7.19)-f	

15 _7 _3	
-f	 _7	 12

The true transfer function for the system is (Fig. 7.1)

H2(s)	
(s + 3) (s + 2) 	

(7.20)
(s + 1) (s + 2s .+ s)

The system is stable.

In the first set of experiments, we initially guess

2
b
f
(0/0)1 	 (7.21)

16

i.e. that the zeroes are located at -.4 +	 4 9 and - 4 -	 49	 The

weighting on the control is h = 1. We take the final time N = 40.
i
i

Sample runs for the same system with same initial guess (7.21) were

made and the plots for one particular sample are shown in Figs. 7.5-7.7.

As opposed to the unstable case, the O. L. h` . O. adaptive gain is some nonzero

vector, and so the value of the O.L.F.O. control is not zero at the

beginning (Fig. 7.7). The control is used both for identification and

control purposes. The system is stable, and since no large magnitude

control is applied, the O.L.F.O. trajectory decays down to zero (see

Fig. 7.5). This decaying phenomenon is noticed by the identifier, and

thus the control is kept near zero to save energy. Therefore, after a

certain time interval, when the O.L.F.O. trajectory goes near the origin,

the O.L.F.O. control will remain zero for most of the time. The system

r.	 behaves almost like an input-free system. In fact, this is also what the

. 	 w
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,truly optimum system will do We note from Fig. 7.6 that the identification

process of the unknown gain b stops at about k = 20, which is the

approximate time unit when the O.L.F.O. state trajectory begins to stay

around zero. If we consider control over an infinite interval (say using a

window-shifting approach) we may expect awfully slow convergence rare in the

estimation of b to the true b, and a slow convergence rate of O.L.F.O.

control system to truly optimum control system.

In the second set of experiments, we have the same noise samples as

before but starting with the initial condition

2
xf(0)	 -1	 (7. 22 )

The initial guess on b was

0
bf (.0/0) = 	 (7.23)

[021

i.e. there. are no zeroes. The weighting on the control is h = 1, and we
^.

take the final time N = 60. The plots for one typical, sample experiment

are shown in Figs. 7.8-7.10. (The sample noise for the sample run shown	
d^

in Figs. 7.8-7.10 is the same as that shown in Figs. 7.5-7.7.) Comparing

this set of experiments with the last, we note that more or less the same

phenomenon occurred in both sets of experiments. The final estimate in b

is way off its true value., in fact b1(k/k) and b 2 (k/k) are opposite in

sign with those of b and b2 respectively; but interestingly enough

the adaptive gains are adjusted accordingly so that the values of the

O.L.F.O. control sequence and the truly optimal control sequence are almost

the same. This set of experiments indicates yet slower convergence (if

there is any) .
r`
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:Tote that in both sets of experiments even if the estimate of b does

not converge to the true b, the truly optimal trajectory and O.L.F.O.

traj ectory are almost the same after the transient period.

Intuitively, the results are reasonable. Since we have not told the

problem to identify b, it will not do so unless the identification is

absolutely necessary. The experimental results verified our theoretical

deduction (see chapter 6, section 6.6).

The experiments seem to indicate that £o: stable system, the choice of

initial guess will not greatly influence the O.L.F.O. trajectory, but will

affect the convergence rate for the estimate in the gain parameters, b.

Remark: In each set of experiments discussed above, the number of

sample runs is not enough to enable us to draw specific statistical con-

clusions; yet the regularity in the sample runs enable us to draw some crude

conclusions.

From the experiments, we may draw the following conclusions regarding

the O.L.F.O. control s;;stem»

(1) The rate of convergence seems to be very dependent on the

stability of the system. For unstable systems, the convergence

rate seems to be faster compared to that for stable systems.

This verifies our theoretical predictions made in chapter 6,

section 6.6.

(2) It seems that large controls will help identification of the

unknown gain parameters, and so convergence rate seems to relate

directly to the magnitude of the control action. This again

agrees with our intuitive remark made in chapter 6, section 6.3.

(3) For unstable systems, the rate of convergence seems to be

fairly independent of the initial guess on the unknown gain,	
I
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whereas for stable systems, the convergence rate may be quite

dependent on the initial guess on the unknown gain.

(4) For unstable systems, the O.L.F.O. trajectory will depend on the

the initial guess in b . but then for stable systems, the O.L.F.O.

trajectory will not vary drastically when we vary the initial

guess in b^

(5) For the unstable system, the O.L.F.O. trajectory seems to follow

closely its input-free trajectory in the beginning, until the

diverging phenomenon tells the identifier to send back large

controls for identification purposes. This causes some overshoots

in the trajectory. The magnitude of the maximum overshoot seems

to relate inversely with the values for the weighting constant h

on control. For stable systems, simultaneous identification and

control seem to be carried out in the beginning. Since the system

is stable, with little control energy, the state will go to zero,

so after some time period when the state is near the origin,

approximately zero control is applied thus terminating the

identification of b.

(6) Lastly, the author would like to comment on the computational

feasibility of the proposed scheme. The above experiments were

simulated using an IBM 360/64/40 system. it was found that

the actual computation of the O.L.F*O. control sequence can be

carried out almost in real time for N = 40; i.e. in about 0.2

seconds, the following tasks were accomplished: One step computa -

tion of (6.-3.19) - (6.3.32) (6 vector difference equation and 6 x 6

matrix difference equation), the parameter computations (6.3.34)-

(6.3.37) , and the computation of K(k/k) (6.3.32) , S (k:) (6.3.39)>

I

 ter
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(one 12 x 12 matrix difference equation and one 3 x 3 matrix difference

equation, computed in a time-backward direction directly for ? < 40 steps,

k = 0 9 1 1, ..., N-1).

Further Experimental Studies

The following experiments are suggested so as to provide a deeper

understanding on this class of problems.

(1) implement a window-shifting O . h.F.O. control sequence as was sug-

gested in section 6 . 7. This will allow us to consider control

over an infinite time span for k = 0, 1,	 To increase the

convergent rate, apply control sequence

u* (k)	 if u* (k) > c
U* (k) _	 *	 ( 7 .24)

if u (k) < E

if JJZb(k/k)JJ 1 6, and u * (k) s u*(k) 15 1(-b(k/k) ^ < 6.

The values for 6 and a are adjusted tb>o14,, experimentation.

(2) Design a computer program which will	 ,^tu4 _:j study the

statistical behavior of the O.L . F.O. control system. For a

fixed assumed structure of the system and the same weighting

constants, study the statistical behavior of the system and the

average ct.)nvergence rate of the suboptimal control system to the

optimal system. Vary the weighting constant h on the control,

and investigate, in a statistical sense, how it affects the

average maximum overshoot in the trajectory.

(3) To avoid large overshoots in the beginning for the unstable

system, one may wish to have a large weighting factor h for
i

the control energy in the beginning, and when the true value of
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b is exactly recovered, tae may want h 0.1. Thus we may

prefer h to be time varying

h (k) = g (k) + 0.1	 (7.25)

where g (k) is nonincreasing and g (k) 4-0 as k ->	 Such an

ad-hoc approach may lead to a well behaved O.L.F.O. control

system.	 r
i

(4) The assumption that b q(b^, Zboi s made for mathematical con-

venience. In actual practice, bo and Ebo may not be available.

With the results in chapter 3, observability of the pair (A, C)	 `

is sufficient to assure that independent of the guess on b^,

asymptotic convergence of the estimate of b is obtained. But

it would be important to find out how different assumptions on

by and Z will effect the rate of convergence for both stable

and unstable systems.

(5) By varying the sampling rate, one can study the effect of sampling

period to the behavior of the overall suboptimal O.L.F.O. control

system.

r
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CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

The observer theory for discrete and continuous time linear systems

have been developed in parallel.. We showed that one can view an observer-

estimator as a learning device which is used to learn all recoverable

uncertainties while taking the statistical behavior of all inherent

disturbances into consideration. The class of observers-estimators which

will do the learning optimally in the mean square sense is also derived.

Such optimal classes of observers-estimators can be incorporated in the

overall optimal control system, and for this reason analytical studies on

the optimum class of observers-estimators was carried out in detail. It is

noted that observers theory includes Kalman filtering and deterministic

exponential estimation as special cases.

The stochastic control of linear systems with known dynamics was

treated in detail. For this class of problems, we have imperfect informa-

tion due to the fact that there are inherent noise disturbance and unknown

initial condition of the system being controlled. It was proved that for

quadratic criteria the optimal controller consists of a "learner" and a set

of feedback gains. The learner is realized by an optimum observer-estimator.

The result is also known as the Separation Theorem. Physically, the

operating function of the optimum observer-estimator is to learn the current

state of the system. It can be shown that if the current state of the

system is asymptotically recoverable and if the system can be stabilized

by adapting some feedback gain, then the overall optimal stochastic system

will have nice behavior. The approach taken in studying this specific

class of problems can be extended to more general classes of problems

where the cost criteria are other than quadratic-

-271
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In the next level, we considered control of linear discrete systems

with unknown gain parameters. Since the truly optimal, control sequence
5

cannot be obtained because of the "curse of dimensionality." we look for a

computationally feasible suboptimal control sequence. Prompted by

physical consideration and computational considerations, we used the open

loop feedback optimal approach to derive the O.L.F.O. control sequence. It

was proved that the O.L.F.O. controller consists of a learner, which we call

an identifier, and a feedback gain plus correction term. The identifier

is realized by an optimal observer-estimator whose operating function is to

learn the current state and current unknown gain. Analytical studies were

done on the overall. O.L.F.O. control system. It was proved that if the

initial state and unknown gain parameters are recoverable, then the overall

O.L.F.O. control system will, asymptotically converge to the truly optimal

stochastic control system. The derived results seem to be computationally

feasible. The computation of the O.L.F.O. control is done on-line. For

all time k = 0, 1, . , N-1, we have to compute a one-step 2n-vector

difference equation and a one-step 2n k 2n matrix difference equation

(identification equations), then a (N - k)-steps n-vector difference equa-

tion and a (N - k)-steps n x n matrix difference equation (parameters

computation) , and finally a (N k)-steps (n+l)ti x (n+l)n matrix difference

equation (computation of K (k/k) (see Fig_. 6.2 and Fig. 63). The vectors

and matrices being stored as time unit advances are x(k/k), b(k/k), and

Z(k/k)-which require a-total of (2n2 ± 3n) memory locations. (Note that

Z-(k/k) is _symmetric and this cuts down the storage memory requirements

Using the theoretical results derived, a computer program is developed

to study the control of_a variety of third order systems with known poles'

but unknown zeroes. Sample runs were made mainly to study the convergence

Now	 _ r-
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;rate of the O . L.F.O. control system to the truly optimal system. The

experimental results seem to indicate that the rate of convergence depends

on the structure of the system: stable plants appear to have slow con-

vergence, whereas unstable plants will result in fast convergence. For

stable system, the convergence rate depends highly on the initial guess of

the unknown zeroes locations; but for unstable stable, it appears that the

rate of convergence is quite insensitive to the initial guess of the

unknown zeroes locations. More experiments must be performed so as to

obtain a deeper understanding on this class of problems and obtain

engineering rules-of-thumb.

Directions of further research which are related directly to this

work are suggested near the end of each chapter when appropriate. In the

following, a list of topics is given, which the author thinks is a continua-

tion of this present work. ' Some possible approaches to these different

problems are suggested and the applicability of the results obtained in

this thesisto these different problems is discussed.

(A) Stochastic Control of Continuous -Time Linear Systems With Unknown Gains

We consider a continuous analog of (6.2.1)

k(t) _ A(t)x(t) +b(t)u(t) + E(t)	 x(t0) ti (xO , Xo)
^ c :	 (6.8.1)

Y( t) -- C( t )x(t) + n(t)

the gain vector b(t) is unknown but satisfies the stochastic differential

equation:

S(t) = G(t)b(t) + y (t)	 -;	 b(to) ti Q(b	 Ebo )	 (6.8.2)

i
The noises, E(t), n(t), and y(t) are assumed to be white Gaussian with

known statistical law. The performance measure is
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i

T
c (u)	 x(T) + f [x—'' (t) W(t) x(t) + u2 (t)h(t)JdtJ	 (6.8. 3)--	 t	 —

0

The control problem is to find u (T) , T E jto , T) , such that (6.8.3) is

minimized subject to dynamic constraints, (6.8.1) and (6.8.2).	 Instead of

first taking a sample data version of the problem and then applying the

derived results in chapter 6 (see chapter 7), we can apply the O.L.F.O.

approach to the continuous time system directly. One would then obtain a

continuous time identifier which estimates the current state and current

gain in continuous time. The results in chapter 4 can be applied. As
i

analogous to the discrete time version, we would then formulate a deterministic

(continuous-time) open-loop control problem. One may expect the overall

O.L.F.O. control system in the continuous-time case will be similar in

structure to that in the discrete version. The main difficulty lies in the

capability of computing the O.L.F.O. adaptive gain and the correction term

in continuous time. Some modifications can be made which take computation

capability into account. One approach may be that we resolve the open-loop

problem only in discrete time, t 	 09, A, 2A,; 3A9 	 ,, even though we have

continuous time observation.

(B) Control With Unknown Dynamics

Consider the problem of controlling an unknown system a, (6.2.1),

where the matrix A(k), k = 0, 1, 2, ..., is unknown but satisfies some

linear difference equation. The statistical laws of the noise are assumed

known. Our objective is to control the system c% using the quadratic

I` criteria. Formally, the truly optimal control can be obtained if we can

solve Bellman's equation. Unfortunately, this is impossible with the 	
-^

present stage of development of computer technology. Therefore', one can

look for suboptimal but computationally feasible solutions to the problem.

Ar
"	 W	 _^
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It would be desirable if we

suboptimal control system.

intuition are possible. An

likelihood and O.L.F.O. is

havior of the overall subop

Consider the augmented
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can have analytical studies on the derived

Different approaches guided by engineering

approach, which is a combination of maximum

suggested where an analytic study of the be-

timal system may be possible.

system g given by (6.3.24). Let U(0, k-1)

be applied and YU(O,k-1)(O,k) is observed. The most probable estimate

c k-1^ which is denoted by AkO^ k-1,
(m J=O
aximum likelihood estimate l of ^A(i)

// 	 i=0

is obtained by picking JA(i)}
k-1 to maximize the conditional probability
i=0

density p(JA(i)t-lJYU(O9k-1) (0, 4)> subject to a certain difference equa-
i-0

Lion describing the evoluation of A(i), i = 0, 1, ..., k-1. Extrapolate

the estimate of {A(i)l 00
	

and the estimates are denoted by JAO,
i=k	 i-

-
k'

Assume that	 Aô(i)}	 is the true A(i), i	 0, 1, ..., and apply the=-lc	 =0
results of chapter 6. The whole procedure is repeated at every step,

k = 0, 1,

Theoretically, this approach has some advantageous features. Using

Wald's Theorem [68], one will obtain asymptotic consis.tent (with probability

1) estimate of { A(i)} OO ,• one can then apply the results of section 6.6 to
i=0

obtain overall asymptotic optimal control system.

The difficulty lies in the real time computation of Ak(?)ri-0'

k 0, 1,	 using a computer. For references in maximum likelihood

estimation, see Ka.shyap [67) , Wald [681, Rauch, Tung, and Striebel [44]';

-or evaluation of likelihood functions of a Gaussian process, see also

Schweppe [69].

(C) Control With Unknown Gain and Imperfectly Known Disturbance

Assume that the matrices A(k), k = 0, 1, ..., are known, the gain

vectors b(k), k = 0, 1	 are assumed to be unknown but described by
I
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(6.2.2) , (6.2.4) , and (6.2.7) . The vectors n (k) , E (k) , Y (k) , k = 0, 1,

are independent Gaussian vectors with unknown means and/or covariances. It

is necessary for us to recover the true means and covariances of the noise

vectors. A combination of maximum likelihood and O.L.F.O. approach can be

applied to such class of problems.

For references which are related to this class of problems, see Saga

and Hasa 170] , 'Taran 171] , Kashyap 1671.

With some thorough understanding in the problems (A) and (B), we can

then start to investigate the problem of controlling a system where A(k),

b(k), 1c = 0 9, 1 1, .... are unknown but satisfy some difference equations, and

the noise vectors are independent Gaussian vectors with unknown means and

variances.



APPENDIX A

ON THE PSEUDO-INVERSE OF A MATRIX

Let A	 be an	 n x m	 matrix which maps	 Rm -> Rn .	 The pseudo-inverse

of	 A	 is denoted by	 A, 	and satisfies the conditions:

(1)
A^Ax = x	 V x e Ra (A') (A•1)

(2) A # z _ 0	 ;	 d Z C N(A, ) (A.2)

(3) A# (y + z) = A#y + A # z	 y	 e R
a 

CA) , z E N(A') (A.3)

With this definition, we have the following properties:

(A) (A# # = A (A.4)

(B) A A A 	 A^ (A.5)

(C) A A# A = A (A.6)

(E) Let	 A	 be an	 n X m	 matrix (n -> m) of rank m. 	 Then

A	 _ (.A' A) ^1 A' (A.7)

For the proofs of (A.4)-(A.7) , see Zadah and Desoer t48) , Levine [23] ;	 for

a different approach to generalized inverse of a matrix, see Penrose [721.
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APPENDIX B

WEINER-1hOPF EQUATION

Let F (k) d F (y (i) ;	 0, 1, .	 k) , we have F (i) C F (i+l)

a _ 0 9 " , . s . , k-1,  and so y(i) is F (k)-measurable for i = 0, 1 9 960 t k.

Using lemma 2.2.6, and lemma 2.2.7, we have

E{x(k) y '(i)}	 E J E x(k) y 4 (i) /; (k) ^	 E{x(k/k) y ,'(i)l	 (B.1)

i - 1, 000 9 k

By assumption, w(k) satisfies (3.3.18), thus

E 1 (W (k) - x (k/k) )Y' (i) f = 0 	 1 = 0, 1, . . . , k ; k - 0, 1, 0000	 (Be 2)

Since both w(k), x(k/k) are linear functioals of y(0), .., y(k), (B:2)

also implies

A

EI(w(k) - x(k/k))(w(k) - x(k/k)	 0 k = 0 9 1, ....	 (B. 3)

Thus w(k)	 x(k/k) a.s.

The proof of Weiner-Hopf equation for the continuous case is the

same with slight modification,

by Ft A Fly l (T), T e Ito, t),
W(t): t > to is a random pr,

linear functional of Yl (T) , T

the induced cr-algebra

Y-2(T), T e [to , t]l

Dcess such that for t

E lto , t), and y2(T)

F(k) is replaced

And so if

> to, w(t) is a

T e [ to , t]'; and

w(t) satisfies

= E x t) ' (T)}	 T E [t	 t > t	 (B.4), t)	 'E{w(t)1(T)	 _( ^1	 0	 0

EJw(t) Y2(T)} =JE x(t) y2-(T)}	 T e [to , t]	 t > to	(B.5)

then w(t)	 x{t/t) a.s., t > to. (B.4), (B.5) imply the pro jection

equations (4.3.44).A

-278
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APPENDIX C

EQUATION FOR ERROR PROCESS (CONTI10JOUS TIME CASE)

Let x(t) be a random process given by (4.3.1), and w(t) be a

random process satisfying (4.3.19), (4.3.20), and (4. 3.16). Define

e(t) h w (t)	 x(t).  Differentiating e(t) and using (4.3.19) , (4.3.1) ,

and (4.3.12)

e(t)` = P(t) z(t) + P(t) T(t) A(t) w(t) - P(t) T(t) Ll(t) C l (t) 1(t)

+ P(t) T(t) P(t) z(t) + P(t) T(t) Y2 ( t ) c 2 (t) x(t)
+ P(t) T(t) 11 (t) cl (t) x(t) + P(t) T(t) Ll (t) n 

+ P(t) T(t) B 	 u(t) + v2 (t) c2(t) x(t) + v_2 (t)c2 (t) x(t)

+ 12 (t) c
2 (t ) A(t) x(t) 

+ Y2 
(t)!2(t) B(t) u(t) + 

12 (t) 
C 2 (t) s(t)

A(t) x(t) — $(t) u(t)	 E(t)

WO + P(t) i(t) E(t)) E(t) - (^ (t) T(t) + P(t) T (t) P (t) T(t)

x(t) + P(t) T(t) A(t) e(t) - P(t) T(t) Ll(t) Cl (t) e(t)

+ P(t) T(t) Ll (t) n(t)	 F (t) T(t) (t)	 (C.1)

Since P(t), T(t), V 2 (t), C 2 (t) also satisfy (4.3.16), we have

T(t) P(t) + T(t) P(t) _ 0	 92(t) P(t) + Qt) P(t)	 0	 (C.;2)

and so we have
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Substituting (C.3) and (C.4) into (C.1) and noting i (t) = P(t) z(t)
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