June 1969

```
MISSILES & SPACEOCOMPANY
amorour divietion of lockhEEO Almcmaft comfonation
sunntwale galifornia
```

LOCKHEED MISSILES \& SPACE COMPANY
HUNTSVILLE RESEARCH \& ENGINEERING CENTER
HUNTSVILLE RESEARCH PARK
4800 BRADFORD BLVD., HUNTSVILLE, ALABAMA

PROPELLANT SLOSH COUPLING WITH BENDING

INTERIM REPORT

APPROVED BY: \qquad
A. M. Ellison, Supervisor Structural Engineering Section

Quale M: Penal

D. McDonald, Manager

Structures \& Mechanics Dept.

FOREWORD

This document presents an interim report of a research program performed by the Lockheed Missiles \& Space Company, Huntsville Research \& Engineering Center (Lockheed/Huntsville), while under contract to the National Aeronautics \& Space Administration, Marshall Space Flight Center (MSFC), Contract NAS8-21485. This report summarizes the derivation and computational procedures of a new method for studying the vibrational characteristics of a large liquid-propellant space vehicle.

Technical coordinator of the contract was Mr. Harry J. Buchanan, Aero-Astrodynamics Laboratory, NASA/MSFC.

ACKNOW LEDGMENT

The authors wish to express their sincere appreciation to Mr. W. D. Whetstone, Lockheed/Huntsville, for his valuable suggestions concerning the formulation of a coupled elastic and fluid problem.

SUMMARY

A new approach is used to study the vibrational characteristics of a large liquid-propellant space vehicle. This approach permits taking the higher slosh modes into account and using the dynamic behavior of liquid propellant contained in a tank as determined experimentally. The developed program will provide a set of system bending modes including the effect of liquid propellant in the vehicle. Lateral force distribution coefficients due to the dynamics of the liquid propellant can be computed.

Lagrange's equation is employed to formulate a coupled elastic and fluid problem. The vehicle is modeled as a series of non-uniform beams interconnected by elastic interstages. The engines of each stage may be represented as branch beams attached to the lower ends of the beams. Generalized coordinates of the system are beam end displacements, coefficients of beam deflection functions, branch beam deflection angles and coefficients of slosh modes. The kinetic and potential energies associated with the hardware of a vehicle are computed by summation along its longitudinal axis. The energies associated with liquid propellant are obtained by performing volume integration over the tank volumes occupied by the propellant.

In this study, a program called SLOSH was developed. This program computes the mass and stiffness matrices of the system associated with the liquid propellant and provides the lateral force distribution coefficients due to the dynamics of the propellant. A Lockheed/Huntsville-developed bending program (Ref. 1) was modified to a two-dimensional case in order to accomodate the additional slosh modes used in the present model. This program computes the mass and stiffness matrices of the system associated with the hardware of a vehicle. After a combination of the two sets of matrices, the bending program will solve the constructed eigenvalue problem.

A study of the vibrational characteristics of Saturn V during its firststage flight is included as an example of the new method. A user's guide of the developed digital SLOSH program is also provided.

CONTENTS

Section Page
FOREWORD ii
ACKNOWLEDGMENT ii
SUMMARY iii
NOMENCLATURE vi
INTRODUCTION
MATHEMATICAL MODEL 3
DERIVATION 10
DIGITAL COMPUTER PROGRAM 18
4.1 Program Organization 18
4.2 The SLOSH Program 20
4.3 Program Limitations 22
4.4 User's Guide for the Four-Beam Model 22
EXAMPLE 33
CONCLUSION AND RECOMMENDATION 94
REFERENCES 96
APPENDIXES:
A: Detailed Derivations of Section 3 A-1
$B:$ SLOSH Program Listings B-1

NOMENCLATURE

A	mass matrix of a system
a_{k}	$\mathrm{k}^{\text {th }}$ tank radius at the liquid propellant surface (m)
B	stiffness matrix of a system
$c_{\mathrm{km}}^{\mathrm{n}}$	eigenvectors of the $n^{\text {th }}$ slosh mode associated with the $k^{\text {th }}$ tank (dimensionless)
$\mathrm{d}_{1 k}$	distance between lower beam end and tank coordinate system of the $k^{\text {th }} \operatorname{tank}$ (m)
$\mathrm{G}_{3 k}$	distance between beam end and center of mass of the $\mathrm{k}^{\text {th }}$ tank (m)
$J_{1}\left(\mathrm{j}_{\mathrm{km}} \mathrm{R}\right)$	Bessel-function of the first kind associated with the $k^{\text {th }}$ tank
j_{km}	$m^{\text {th }}$ root of equation $J_{1}^{\prime}\left(j_{k}\right)=0$
$\mathrm{L}_{\mathbf{i}}$	length of the $i^{\text {th }}$ beam(m)
ℓ_{k}	distance between propellant surface and center of mass of the $\mathrm{k}^{\text {th }} \operatorname{tank}(\mathrm{m})$
M_{mk}	propellant mass in the first m layers of the $\mathrm{k}^{\text {th }}$ tank (kg)
N_{i}	number of fundamental deflection functions of the $i^{\text {th }}$ beam
N_{k}	number of slosh modes of the $\mathrm{k}^{\text {th }}$ tank
P	potential energy of a system ($\mathrm{kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}$)
P_{k}	potential energy of the propellant contained in the $k^{\text {th }}$ tank $\left(\mathrm{kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$
$\underline{\mathbf{Q}}$	generalized coordinate vector
\underline{Q}^{T}	transposed matrix of \underline{Q}

NOMENCLATURE (Continued)

$i^{\text {th }}$ generalized coordinate kinetic energy of a system ($\mathrm{kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}$) kinetic energy of the propellant contained in the $\mathrm{k}^{\text {th }}$ tank $\left(\mathrm{kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}\right.$)
lower end displacement of the $i^{\text {th }}$ beam (m)
upper end displacement of the $i^{\text {th }}$ beam (m) eigenvector of a system
$j^{\text {th }}$ fundamental deflector function of the $i^{\text {th }}$ beam (dimensionless)

Symbols

$\alpha_{2 i} \quad$ lateral acceleration of the $i^{\text {th }}$ beam $\left(\mathrm{m} / \mathrm{sec}^{2}\right)$
α_{3}
longitudinal acceleration of a vehicle ($\mathrm{m} / \mathrm{sec}^{2}$)
$\eta \quad$ wave height of liquid propellant (m)
$\lambda_{\mathrm{kn}} \quad$ eigenvalues of a fluid system (dimensionless)
ω
natural frequencies of a system ($\mathrm{rad} / \mathrm{sec}$)
ϕ_{k}
velocity potential of the propellant contained in the $\mathrm{k}^{\text {th }}$ tank $\left(\mathrm{m}^{2} / \mathrm{sec}^{2}\right)$
ϕ_{kn}
eigenfunctions of a fluid system (dimensionless)
$\ddot{\psi}_{i} \quad$ angular acceleration of the $i^{\text {th }}$ beam ($\mathrm{rad} / \mathrm{sec}^{2}$)
ρ_{k}
mass density of the propellant contained in the $\mathrm{k}^{\mathrm{th}} \operatorname{tank}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\boldsymbol{\xi}_{\mathrm{kn}}$
$\mathrm{n}^{\text {th }}$ slosh coefficient of the $\mathrm{k}^{\text {th }} \operatorname{tank}(\mathrm{m})$
$\zeta_{i j}$
$j^{\text {th }}$ beam deflection coefficient of the $i^{\text {th }}$ beam (m)

Section 1
 INTRODUCTION

To ensure a successful flight of a liquid-propellant space vehicle, the fundamental frequencies of the control system, liquid propellant and the hardware of the vehicle should be designed such that they are fairly widely separated. Hence, the oscillations of a vehicle will not be excited by the function of the control system. In case the vehicle is excited by a forcing function, interaction between propellant sloshing and bending must not present any large amplitude dynamic response.

In order to simulate the dynamic response of a vehicle, it has been traditional to model the vehicle as a non-uniform beam (Ref. 2). Liquid propellant contained in each tank is replaced by a mass-spring-dashpot system attached to the beam. Due to the limitations of computation time on a digital computer and the capacity of a hybrid computer (Ref.3), only the first slosh modes for some of the propellant tanks can be taken into account. The above assumptions provide a good mathematical model of a vehicle during its early portion of flight. However, when the propellant level becomes relatively low or in case of a shallow tank, the dynamic behavior of liquid propellant cannot be adequately represented by its first mode alone. Therefore, a new mathematical model is needed which includes higher slosh modes and can be computed within the capabilities of a computer.

A new approach for studying the interaction between vehicle bending and propellant sloshing is introduced in this report. Lagrange's equation is used to formulate the problem. A digital computer program which solves a maximum of 60 degrees of freedom was developed. The mass and stiffness matrices of the coupled elastic and fluid system can be accurately calculated. System bending modes with the presence of liquid propellant of a vehicle will
be provided. If a mathematical model for atmospheric flight simulation is needed, the model can be properly defined by taking into account only the first few of these modes. In general, this approach will lead to a smaller set of differential equations than the conventional approach. Consequently, the objectives of the study are to define an accurate model for analyzing the coupling between vehicle bending and propellant sloshing and to present a set of system bending modes for flight simulation.

Section 2

MATHEMATICAL MODEL

Saturn V is used as a typical vehicle in this study. With minor modifications, the presented method and the developed digital computer program may be applied to analyze other liquid-propellant space vehicles. As shown in Fig. lb, the vehicle may be modeled as a system of four non-uniform beams interconnected by elastic interstages. The engines of each stage may be modeled as branch beams attached to the lower ends of the beams. The deflection of each beam is represented by a linear combination of four fundamental deflection functions. Dynamic behavior of liquid propellant contained in each tank is described by the first one to three slosh modes. Hence, the generalized coordinates of the system are beam end displacements, engine deflection angles, coefficients of beam deflection functions and coefficients of slosh modes.

The hardware mass of the vehicle is distributed along the longitudinal axis of the vehicle. Tank configurations are approximated by simple functions such that volume integrals can be readily performed (see Figs. 2 to 5).

Suppose that $\underline{A}, \underline{B}$ and \underline{Q} are the mass matrix, stiffness matrix and the generalized coordinates vector of the system, respectively. The kinetic energy of the system may be expressed as

$$
\begin{equation*}
T=1 / 2 \dot{\underline{Q}}^{T} \underline{A} \underline{\dot{Q}} \tag{2.1}
\end{equation*}
$$

where $\underline{\dot{Q}}^{T}$ is the transposed matrix of \dot{Q} and $\dot{\mathbb{Q}} \equiv \frac{\mathrm{d} \underline{Q}}{\mathrm{dt}}$. The potential energy of the system is

Fig. 1 - Saturn V Vehicle Configuration

Fig. 2 - S-IVB Tank Configuration

Fig. 3 - S-II Tank Configuration

Fig. 4 -S-IC LOX Tank Configuration

Fig. 5 - S-IC Fuel Tank Configuration

$$
\begin{equation*}
\mathrm{P}=1 / 2 \underline{\mathrm{Q}}^{\mathrm{T}} \underline{\mathrm{~B}} \underline{\mathrm{Q}} \tag{2.2}
\end{equation*}
$$

For a conservative system, Lagrange's equation is

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)+\frac{\partial P}{\partial q_{i}}=0 \quad i=1,2, \ldots, n \tag{2.3}
\end{equation*}
$$

where q_{i} is the $i^{\text {th }}$ element of Ω. If Eqs. (2.1) and (2.2) are used, Eq. (2.3) becomes

$$
\begin{equation*}
\underline{A} \underline{\ddot{\theta}}+\underline{B} \underline{Q}=0 \tag{2.4}
\end{equation*}
$$

The solution of the above equation may be taken as

$$
\begin{equation*}
\underline{Q}=\underline{X} \sin \omega t \tag{2.5}
\end{equation*}
$$

where \underline{X} and ω are the eigenvectors and the natural frequencies of a system, respectively. Substituting Eq. (2.5) into Eq. (2.4), one finds

$$
\begin{equation*}
\left(\omega^{2} \underline{A}-\underline{B}\right) \underline{x}=0 \tag{2.6}
\end{equation*}
$$

Detailed derivations of matrices \underline{A} and \underline{B} are given in Section 3 and the Appendix. Subprograms which compute these matrices are discussed in Section 4. Routines which solve the system of Eq. (2.6) are described in Ref.l.

Section 3

DERIVATION

Lagrange's equation is used to define a mathematical model for studying the vibrational characteristics of Saturn V. The structure of the vehicle is considered as a series of elastic non-uniform beams interconnected by elastic interstages. The engines of each stage may be represented by a mass which is attached to the beam through a rigid rod and a torsional spring (see Fig. lb). The vehicle is assumed to be axisymmetric and restricted to plane motion. Liquid propellants contained in the tanks of Saturn V are considered incompressible, inviscid fluids. Furthermore, small oscillations and irrotational flow are assumed.

The kinetic and potential energies of a vehicle are computed in the following manner. Energies associated with the hardware are obtained by integrating along the longitudinal axis of the vehicle. Energies associated with the liquid propellant are computed by performing volume integration over the tank volumes occupied by the propellant. The total energy of a vehicle is represented by the sum of these energies. The kinetic and potential energies of the hardware of a vehicle are defined in Ref. 1. Except that a few notations may differ from those used in this report, the reader will not have any communication difficulty.

As shown in Fig. 6, the kinetic energy of the propellant contained in the $k^{\text {th }}$ tank can be expressed as a volume integral

$$
\begin{equation*}
T_{k}=1 / 2 \rho_{k} \int_{V}\left[v_{r}^{2}+v_{\theta}^{2}+v_{z}^{2}\right] d V \tag{3.1}
\end{equation*}
$$

Fig. 6 - Coordinate Systems of $k^{\text {th }}$ Tank
where

$$
\left\{\begin{array}{l}
v_{r}=\left[\dot{u}_{i}^{\ell}+\frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{l}}{L_{i}}\left(d_{l k}+x_{3}^{*}\right)+\sum_{j=l}^{N_{i}} \dot{\zeta}_{i j} Y_{i j}\right] \sin \theta-\frac{\partial}{\partial r} \int \phi_{k} d t \tag{3.2}\\
v_{\theta}=\left[\dot{u}_{i}^{\ell}+\frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{l}}{L_{i}}\left(d_{l k}+x_{3}^{*}\right)+\sum_{j=1}^{N_{i}} \dot{\zeta}_{i j} Y_{i j}\right] \cos \theta-\frac{l}{r} \frac{\partial}{\partial \theta} \int \phi_{k} d t \\
v_{z}=-\frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{l}}{L_{i}} x_{2}-\frac{\partial}{\partial x_{3}} \int \phi_{k} d t
\end{array}\right.
$$

and

$$
\begin{equation*}
\phi_{k}=-\sin \theta \sum_{n=1}^{N_{k}} \frac{a_{k}}{\lambda_{k n}} \ddot{\xi}_{k n} \phi_{k n} \tag{3.3}
\end{equation*}
$$

Notations used in the above equations are defined below:
$\rho_{\mathrm{k}} \quad$ mass density of the propellant contained in the $\mathrm{k}^{\text {th }}$ tank
$u_{i}^{\ell} \quad$ lower end displacement of the $i^{\text {th }}$ beam
$u_{i}^{r} \quad$ upper end displacement of the $i^{\text {th }}$ beam
$L_{i} \quad$ length of the $i^{\text {th }}$ beam
$d_{1 k}$ distance between lower beam end and tank coordinate system of the $k^{\text {th }}$ tank
$N_{i} \quad$ number of fundamental deflection functions of the $i^{\text {th }}$ beam
$\zeta_{i j} \quad j^{\text {th }}$ beam deflection coefficient of the $i^{\text {th }}$ beam
$Y_{i j} \quad j^{\text {th }}$ fundamental deflection function of the $i^{\text {th }}$ beam
$\phi_{k} \quad$ velocity potential of the propellant contained in the $k^{\text {th }}$ tank $\mathbf{N}_{k} \quad$ number of slosh modes of the $k^{\text {th }}$ tank
$a_{k} \quad k^{\text {th }}$ tank radius at the liquid propellant surface
$\boldsymbol{\lambda}_{\mathrm{kn}} \quad$ eigenvalues of a fluid system
$\xi_{\mathrm{kn}} \quad \mathrm{n}^{\text {th }}$ slosh coefficient of the $\mathrm{k}^{\text {th }} \operatorname{tank}$
$\phi_{\mathrm{kn}} \quad$ eigenfunctions of a fluid system

The eigenfunctions $\phi_{k n}$ of Eq. (3.3) can be chosen in the following form

$$
\begin{equation*}
\phi_{k n}=\sum_{m=1}^{5} c_{k m}^{n}\left(\frac{r}{a_{k}}\right)^{2 m-1}+\sum_{m=6}^{10} c_{k m}^{n} J_{1}\left(j_{k m} \frac{r}{a_{k}}\right) e^{j_{k m}\left(\frac{x_{3}}{a_{k}}-\frac{\ell_{k}}{a_{k}}\right)} \tag{3.4}
\end{equation*}
$$

where $c_{k m}^{n}$ and $J_{1}\left(j_{k m} \frac{r}{a_{k}}\right)$ are the eigenvectors of the $n^{\text {th }}$ slosh mode and Bessel function of the first kind associated with the $k^{\text {th }}$ tank, respectively. The notation ℓ_{k} is the distance between propellant surface and center of mass of the $k^{\text {th }}$ tank and $j_{k m}$ is the $m^{\text {th }}$ root of the equation

$$
\begin{equation*}
J_{l}^{\prime}\left(j_{k}\right)=0 \tag{3.5}
\end{equation*}
$$

The superscript "prime" of J_{1} denotes a differentiation with respect to its argument. The functions of Eq. (3.4) give an excellent solution for liquid contained in an axisymmetric tank with arbitrary height. Substituting Eqs. (3.2) - (3.4) into Eq. (3.1), the kinetic energy T_{k} may be written in terms of the generalized coordinates $u_{i}^{\ell}, u_{i}^{r}, \zeta_{i j}$ and $\xi_{k n}$.

$$
\begin{align*}
T_{k}= & -\pi a_{k}^{3} \rho_{k}\left\{v_{k}^{p p}\left(\dot{u}_{i}^{\ell}\right)^{2}+v_{k}^{p q} \dot{u}_{i}^{\ell} \dot{u}_{i}^{r}+v_{k}^{q q}\left(\dot{u}_{i}^{r}\right)^{2}\right. \\
& +\sum_{j=1}^{N_{i}}(U L B)_{i j} \dot{u}_{i}^{\ell} \dot{\zeta}_{i j}+\sum_{j=1}^{N_{i}}(U R B)_{i j} \dot{u}_{i}^{r} \dot{\zeta}_{i j} \\
& +\sum_{j=1}^{N_{i}} \sum_{m=1}^{N_{i}}(B B)_{i j m} \dot{\zeta}_{i j} \dot{\zeta}_{i m}+\sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} s_{k n}^{p} \dot{u}_{i}^{l} \dot{\xi}_{k n} \\
& +\sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} s_{k n}^{q} \dot{u}_{i}^{r} \dot{\xi}_{k n}+\sum_{j=1}^{N_{i}} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}}(B S)_{k j n} \dot{\zeta}_{i j} \dot{\xi}_{k n} \\
& \left.+\frac{1}{2} \sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}}{ }_{\sum_{k n}}^{\lambda_{k n}} \lambda_{k m} s_{k n m} \dot{\xi}_{k n} \dot{\xi}_{k m}\right\} \tag{3.6}
\end{align*}
$$

Detailed derivations and expressions of $V_{k}^{p p}, V_{k}^{p q}, V_{k}^{q q},(U L B)_{i j}$, $(U R B)_{i j}$, $(B B)_{i j m}, s_{k n}^{p}, s_{k n}^{q},(B S)_{k j n}$ and $s_{k m n}$ are given in the Appendix.

The potential energy of the propellant contained in the $\mathrm{k}^{\text {th }}$ tank is expressed as a surface integral integrated over the static free surface of the propellant (Ref. 4).

$$
\begin{equation*}
P_{k}=\frac{1}{2} \rho_{k} \alpha_{3} \int_{S} \eta^{2} r d \theta d r \tag{3.7}
\end{equation*}
$$

where

$$
\eta=\sin \theta \sum_{\mathrm{n}=1}^{\mathrm{N}_{\mathrm{k}}} \xi_{\mathrm{kn}} \phi_{\mathrm{kn}}
$$

is the wave height of liquid propellant (see Fig. 6) and α_{3} is the longitudinal acceleration of a vehicle. Similarly, Eq. (3.7) can be written in terms of the generalized coordinates of the system.

$$
\begin{equation*}
P_{k}=\frac{\pi}{2} \rho_{k} \alpha_{3} a_{k}^{2} \sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}} p_{k n m} \xi_{k n} \xi_{k m} \tag{3.8}
\end{equation*}
$$

The quantities $p_{k m n}$ and the intermediate steps which lead to Eq.(3.8) are given in the Appendix.

If Eqs. (3.6) and (3.8) are substituted into Eq. (2.3) and differentiated with respect to the appropriate coordinates, the elements of the mass and stiffness matrices associated with the propellant will be found. After a combination with the corresponding matrices associated with the hardware, a matrix equation which governs the vibrational characteristics of a system (Eq. (2.6)) will be obtained. The method of solving this equation is given in Ref. 1 .

Lateral force distribution coefficients due to the dynamics of the liquid propellant are computed in the same fashion as in Ref. 4. However, a maximum of three slosh modes per tank can now be included. It can be shown that the lateral force exerted on the $k^{\text {th }}$ tank wall due to the motion of the first m layers of the propellant (measured from the tank bottom) is

$$
\begin{equation*}
\left(m_{2}^{F^{\prime}}\right)_{k}=\left(m^{A} \alpha_{k} \alpha_{2 i}+\left(m_{m}^{B}\right)_{k} \ddot{\psi}_{i}+\sum_{n=1}^{N_{k}}\left(m_{\xi}\right)_{k n} \xi_{k n} \alpha_{3}\right. \tag{3.9}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left(_{m} A_{\alpha}\right)_{k}=-M_{m k}+\pi a_{k}^{2} \rho_{k} \sum_{n=1}^{N_{k}} l_{k} b_{n}\left(\sum_{j=1}^{10} c_{k j}^{n} I_{k j}\right) \\
& \left(_{m} B_{\psi}\right)_{k}=-G_{3 k} M_{m k}-\pi a_{k}^{4} \rho_{k} \oint z^{2} R d R \\
& -\pi a_{k}^{2} l_{k}^{2} \rho_{k} \sum_{j=1}^{9} q_{j} \int_{m}\left(\frac{\partial f_{j}}{\partial R}+\frac{f}{f}\right) R d R d Z \\
& +\pi a_{k}^{2} \rho_{k} \sum_{n=1}^{N_{k}} \ell_{k}\left[G_{3 k} b_{n}-\ell_{k}\left(b_{n}-h_{n}\right)\right]\left(\sum_{j=1}^{10} c_{k j}^{n} I_{k j}\right) \\
& \left({ }_{m} C_{\xi}\right)_{k n}=\pi a_{k}^{2} \rho_{k} \sum_{j=1}^{10} c_{k j}^{n} I_{k j} \\
& I_{k j}=\int_{\mathrm{m}}\left(\frac{\partial \phi_{\mathrm{kn}}}{\partial \mathrm{R}}+\frac{\phi_{\mathrm{kn}}}{\mathrm{R}}\right) \operatorname{RdRdZ} \\
& R \equiv \frac{r}{a_{k}} \\
& Z \equiv \frac{x_{3}}{a_{k}}
\end{aligned}
$$

and ${ }_{m}$ A denotes an integration over the first m layers of the propellant in a tank. Notations $\alpha_{2 i}$ and $\ddot{\psi}_{i}$ are the lateral and angular accelerations of the $i_{i}^{\text {th }}$ beam, respectively. $G_{3 k}$ and $M_{m k}$ are the distance between center of mass and beam end and the propellant mass in the first m layers of the $k^{\text {th }}$ tank, respectively. Definitions of b_{m}, q_{j}, k_{m} and f_{j} which are all related to the $\mathrm{k}^{\text {th }}$ tank can be found in Ref. 4. Consequently, the lateral force in the $m^{\text {th }}$ layer of the $k^{\text {th }}$ tank is calculated by subtracting $\left(m-1 F_{2}^{\prime}\right)_{k}$ from $\left(m F_{2}^{\prime}\right)_{k}$ or

$$
\begin{equation*}
\left(m_{m} F_{2}^{*}\right)_{k}=\left(m-1 F_{2}^{\prime}\right)_{k}-\left(m_{m} F_{2}^{\prime}\right)_{k} \tag{3.14}
\end{equation*}
$$

Section 4
 DIGITAL COMPUTER PROGRAM

4.1 PROGRAM ORGANIZATION

A program called SLOSH was developed in this study. Detailed discussions are presented in Section 4.2. This program computes the lateral dynamic force distribution coefficients due to the propellant of a vehicle, and provides the information with regard to the dynamic behavior of the liquid propellant contained in a rigid tank. If the SLOSH program is used as a subprogram of a modified Lockheed/Huntsville bending program (Ref. 1), it will compute the mass and stiffness matrices associated with the liquid propellant of a vehicle. With these matrices, the bending program will solve the constructed eigenvalue program and provide the free vibrational characteristics of a vehicle.

The overlay configuration of the modified bending program is shown in Fig. 7. The functions of the principal subroutines are briefly outlined below:

Function

MAINX Directs logic flow to other routines

BDAT
C56Y
C56D
NPUT
C56A

SLOSH

Sets up control information
Generates fundamental beam deflection functions
Computes integral terms associated with the hardware
Reads in data and sets up problem definition
Computes mass and stiffness arrays associated with the hardware

Computes mass and stiffness arrays associated with the liquid propellant and the lateral force distribution coefficients due to the dynamics of propellant

Fig. 7 - Program Overlay Configuration

Deck Name

SUB2
SUB3
SUB4
CLVT
C56K

Function

Generates slosh normal modes
Performs line integrals associated with the propellant Describes tank configurations

Solves the constructed eigenvalue problem
Plots beam properties, displacement functions and mode shapes.

4.2 THE SLOSH PROGRAM

The SLOSH program serves the following purposes:

1. To read in certain output and intermediate data of Lomen's program (Ref.4) such that the computation time of the modified bending program can be greatly reduced. In the future, if the SHARE simultaneous equation package (SOLVE) and the SHARE eigenvalue routine (RWEG2F), which are in the MAP symbolic language, of Lomen's program could be coded in the Fortran IV language or substituted by other standard routines, the function of Lomen's program may be readily replaced by the SLOSH program. It is expected that the SLOSH program will take less computer time than the Lomen program.
2. To compute the mass and stiffness matrices associated with the liquid propellant of a vehicle.
3. To provide the lateral force distribution coefficients due to the propellant dynamics.

Input data which are now furnished by the Lomen program are listed on the following page.

Variable Name	Variable Name	Description
(Lomen program)	(SLOSH program)	
TEMP(2)	DBTBCM(I)	Distance between tank bottom and center of mass
VALP	PEV(I, J)	Eigenvalues of a fluid system
CNK(J, K)	C(I, J, K)	Eigenvectors of a fluid system
HN(J)	HN(I, J)	see p.3-9 of Ref. 4
ARG2	TTFCB(I, J)	$\pi a_{k}^{2} \ell_{k}^{2} \sum_{j=1}^{q} q_{j} \int_{m A}\left(\frac{\partial f_{j}}{\partial R}+\frac{f_{i}}{R}\right)$
		RdRdZ (see second term of Eq. (3.11))

Note that the Lomen program has some errors in the computation of the lateral force distribution coefficients. His program has also been slightly modified in order to obtain the above variables.

Unfortunately, due to the complexity of the bending program, it will not be able to evaluate the integrals of Eq. (A-4) in the bending program for the moment. Currently, the fundamental deflection functions which are generated from subroutine C56Y are approximated by straight-line segments in order to perform the integrations of Eq. (A-4) in the SLOSH program. Each deflection function associated with a tank is represented by three straight-line segments. The ordinates of the terminals of the straight lines are shown by the dots along the x_{3}^{*} axes in Figs. 2 through 5. In general, these segments should be chosen to give the best approximation of the portion of a deflection curve where the integration over the propellant volume is actually taking place.

The tank configurations of Saturn V are specified by simple curves (Figs. 2 through 5). Bessel functions which are represented by series form (Ref. 5) are included as a subroutine of the SLOSH program. Finally, the line integrals of Eqs. (A-3) through (A-6) are evaluated by the Gauss mechanical quadrature formula (Ref.6).

4.3 PROGRAM LIMITATIONS

The present IBM 7094 version of the modified bending program is designed for a four-beam model, see Fig. 1-C and Section 5. The DIMENSION statements which are used in the SLOSH program require the following limitations to be observed:

Variable
Name
NSMODE
NPT(I)
NCOR

Description
Number of slosh modes per tank
Number of partitions per tank
Total number of degrees of freedom

Maximum
Capacity
3
32
60
4.4 USER'S GUIDE FOR THE FOUR-BEAM MODEL

4.4.1 Input

The sequence and format of an input data deck for a particular flight time are shown below:

$\frac{\text { Data }}{\text { Set }}$	No. of Cards	Format			Description
1	1	12A6	Title Ca		
2	1	1216	Column	Value	
			1-6	1	Rotary inertia is included.
				0	Rotary inertia is not included.
			7-12	1	Fundamental deflection functions are printed.
				0	Fundamental deflection functions are not printed.
			13-18	1	Shear deflections are included.
				0	Shear deflections are not included.

$\frac{\text { Data }}{\text { Set }}$	$\frac{\text { No. of }}{\text { Cards }}$	Format			Description
2	1	1216	Column	Value	
			19-24	0	Only problem definition data printed.
				1	Integral terms are printed.
				2	Mass and stiffness arrays are printed.
				3	Intermediate eigenproblem array and all accuracy check arrays are printed.
			25-30		Not operational
			31-36	N	N modes are plotted.
			37-42		Not operational
			43-48		Not operational
			49-54		Not operational
			55-60	1	Output tape in Stodola format is generated.
				0	Tape is not generated.
			61-66		Not operational
			67-72	0	Slosh coordinates are not included.
				3	Slosh coordinates are included.
3	Variable	4 El 8.8			Mass distribution of a vehicle
4	Variable	7E11.7			Mass distribution of the hardware of a vehicle
5	1	8 IL 0	1-10	N	$\mathrm{N}^{\text {th }}$ stage of flight
			11-20	N	N cases
			21-30	N	N slosh modes per tank
			31-40	0	Propellant mass is included in the bending program.

$\frac{\text { Data }}{\text { Set }}$	$\frac{\text { No. of }}{\text { Cards }}$	Format			Description
5	1	8 IL 0	Column	Value	
				1	Otherwise
			41-50	0	No lateral force distribution coefficients printout
				1	Otherwise
			51-60	0	Zero length interstage
				1	Otherwise
			61-70	0	No normalized slosh normal modes printout
				1	Otherwise
			71-80	0	No intermediate computation printout
				1	Otherwise
6	1	8E10.6	Column		
			1-10	Flight	
			11-20	Longit vehicle	nal acceleration of a
			21-80	Propel	t levels
7	1	8E10.6	Propellant mass densities		
8	1	8E10.6	Distance between tank bottom and center of mass for all tanks		
9	1	8E10.6	Beam lengths		
10	1	8E10.6	Distance between tank coordinate system and beam end for all tanks		
11	Variable	8E10.6	First three eigenvalues of a fluid system for all tanks		
12	Variable	10E8.4	First three eigenvectors of a fluid system for all tanks		
13	Variable	8E10.6	Abscissas of approximate fundamental deflection functions		
14	Variable	8E10.6	Ordinates of approximate fundamental deflection functions		
15	1	8110	Number of partitions of each tank		

$\frac{\text { Data }}{\frac{\text { Set }}{}}$	No. of Cards	Format	Column
16	1	8E10.6	Partition heights of all tanks
17	Variable	8E10.6	HN(I, J), see Section 4.2
18	Variable	8E10.6	TTFCB(I, J) , see Section 4.2

In case of multiple runs, input data decks for different flight times may be stacked together. In addition, the Stodola tape is used to generate the fundamental deflection functions. As an example, the data deck for Saturn V at flight time $t=0$ is given on the following pages.

4.1.2 Output

All of the input information will be provided. By taking the proper options in the input data cards, the following output may be obtained:

1. Mass and stiffness properties of a vehicle
2. Frequencies, mode shapes and generalized mass printout and plots
3. Lateral force distribution coefficients due to the propellant dynamics
4. Other pertinent intermediate computations.

[^0]

$3676798+04$
$5691991+04$
$1805218+05$
$1251239+05$

 $1198098+05$

$1008330+05$ | I |
| :---: |
| + |
| + |
| + |
| d |
| 0 |
| 0 |
| 0 |
| o |
| in |
| | ${ }_{c}^{0}$

+
+

N
N
N 2329117+04
 +
+
+
H̃
0
N
N
N
 \pm
+
+
N
N
N
N
N
N

\pm
0
+
0
0
0
0
0
0
0

 \begin{tabular}{c}
T

+

+

N

0

0

N

N

\hline

\pm

+

+

H

+

0

0

0

\hline
\end{tabular}

 0
0
+
+
0
0
N
N

\pm
+
+
N
O
0

 +
+
+
0
0
0
0
N
N $\rightarrow 0+68011 t+t$

 $\rightarrow 0+\angle 85$ टeI己 m
0
+
+
0
\vdots
0
0
0
0

 M
+
+
\vdots
0
0
0
0
0

$2362664+04$	$2357329+04$	$2703625+04$	$3162870+04$
$3940540+04$	$4253641+04$	$4539970+04$	$4801157+04$
$6158648+04$	$6682865+04$	$7753863+04$	$9087982+04$
$2392470+05$	$2949527+05$	$3281589+05$	$2168793+05$
$1267396+05$	$1283460+05$	$1183944+05$	$1083324+05$
$9729587+04$	$8016660+04$	$6041035+04$	$5475306+04$
$4421236+04$	$4086905+04$	$3843915+04$	$3681305+04$
$2755130+04$	$2425473+04$	$2355891+04$	$2324547+04$
$2380366+04$	$2439381+04$	$2466912+04$	$2450909+04$
$2193359+04$	$2206759+04$	$2323240+04$	$2400114+04$
$2356534+04$	$2349195+04$	$2407920+04$	$2706428+04$
$3001454+04$	$2817608+04$	$2794316+04$	$2773356+04$
$3225903+04$	$3410575+04$	$3594730+04$	$3121640+04$
$2763669+04$	$2638750+04$	$2421537+04$	$2204325+04$
$2237248+04$	$2061996+04$	$1881272+04$	$2012736+04$
$1202769+04$	$1003441+04$	$1023453+04$	$1155532+04$
$1423460+04$	$1438551+04$	$1459826+04$	$1454201+04$
$1068331+04$	$1100685+04$	$1141640+04$	$1194593+04$
$1234824+04$	$1268167+04$	$1356095+04$	$1330764+04$
$9270659+03$	$1000005+04$	$1055217+04$	$1052449+04$
$1028641+04$	$9911980+03$	$8044316+03$	$6397859+03$
$7893804+03$	$7834043+03$	$7774281+03$	$7829938+03$
$1405180+04$	$2031468+04$	$1860984+04$	$1543943+04$
$1336432+04$	$1545437+04$	$1783198+04$	$2069752+04$
$1494398+04$	$1703843+04$	$2110725+04$	$2694384+04$
$3652418+04$	$3976929+04$	$4098880+04$	$4241032+04$
$7964889+04$	$6119897+04$	$5182223+04$	$4713619+04$
$3470692+04$	$3040553+04$	$2980363+04$	$2847768+04$
$1911360+04$	$1748816+04$	$1756118+04$	$2194160+04$
$2562127+04$	$2612086+04$	$2533406+04$	$2433839+04$
$1452153+04$	$1454892+04$	$1443585+04$	$1157585+04$
$6196536+03$	$6422464+03$	$6197802+03$	$5929664+03$
$6551211+03$	$6561265+03$	$6609403+03$	$6268683+03$
$6049189+03$	$5788119+03$	$5998770+03$	$6394252+03$
$5744168+03$	$5737438+03$	$5970099+03$	$5942383+03$
$6061074+03$	$5682015+03$	$5600915+03$	$5909148+03$
$6879129+03$	$7805318+03$	$9284964+03$	$9996209+03$
$8889571+03$	$9400376+03$	$9983440+03$	$1203282+04$
104			

 \pm
0
+
+
0
0
0
0
0
\pm
\pm
\vdots
-
-

 m
0
+
+
0
N
N
N
0
M
M
 $4141925+03$
$4871510+03$ $4412739+03$ $5594894+03$ $1390660+04$ $3710768+03$ M
0
+
+
0
0
10
0

10 | M |
| :---: |
| 0 |
| + |
| M |
| 0 |
| N |
| 0 |
| \pm |
| \pm |
| \vdots | m

0
+
0
0
\vdots
N
\vdots
\vdots
n

\pm
0
+
+
0
\vdots
0
0

0
+
0
0
N
M
0
1

M
0
+
0
0
n
0

o
+
+
0
0
0
0
0
0
0

10 | m |
| :---: |
| 0 |
| + |
| + |
| 10 |
| 0 |
| 0 |
| 0 |
| |
| 0 |
| 0 |

 $1337765+03$

$135234+02$	$155011+02$	$16919+02$	$17745+02$
$129386+02$	$104702+02$	$776504+01$	$505881+01$
$190812+04$	$213262+04$	$228939+04$	$237614+04$
$173983+04$	$141068+04$	$102577+04$	$612205+03$
$486374-03$			
$727003+02$	$838783+02$	$925297+02$	$983975+02$
$85673+02$	$758617+02$	$644455+02$	$520009+02$
$131242+01$	$376999-05$		
$224911+04$	$260438+04$	$291676+04$	$318317+04$
$376578+04$	$372814+04$	$363977+04$	$350168+04$
$212004+04$	$172008+04$	$129438+04$	$874142+03$
$709305+03$	$825171+03$	$92623+03$	$10113+04$
$117106+04$	$114794+04$	$110686+04$	$104839+04$
$535686+03$	$411094+03$	$291931+03$	$184559+03$

$\begin{array}{llll}245042+01 & 529698+01 & 825329+01 & 110622+02 \\ 179549+02 & 175535+02 & 165604+02 & 150034+02 \\ 264904+01 & 868492+00 & 327218-01 & 294694-05 \\ 424226+03 & 866266+03 & 126976+04 & 161906+04 \\ 239135+04 & 233438+04 & 220553+04 & 200636+04 \\ 29562+03 & 102769+03 & 17328+02-103933-01 \\ 140977+02 & 293034+02 & 447096+02 & 594357+02 \\ 101375+03 & 10147+03 & 987661+02 & 934213+02 \\ 392098+02 & 268438+02 & 15757+02 & 689365+01 \\ 488752+03 & 968504+03 & 142603+04 & 185476+04 \\ 340128+04 & 356944+04 & 368653+04 & 375201+04 \\ 331516+04 & 308178+04 & 280337+04 & 248202+04 \\ 496566+03 & 201406+03 & 28799+02 & 696182-04 \\ 14122+03 & 290307+03 & 439039+03 & 580035+03 \\ 107941+04 & 112984+04 & 116207+04 & 117583+04 \\ 973274+03 & 882393+03 & 776822+03 & 659537+03 \\ 955375+02 & 318436+02 & 137338+01 & 89407-06\end{array}$

Section 5

EXAMPLE

Vibrational characteristics of Saturn V first stage flight are studied in this section. The vehicle is modeled as a series of four beams rigidly connected to each other (see Fig. lc). Two cases of one slosh mode per tank and three slosh modes per tank are investigated. The longitudinal acceleration of Saturn V is shown in Fig. 8 and the first three slosh frequencies of the tanks of the vehicle are shown in Figs. 9 through ll. Most of the slosh modes, it was found, came before the vehicle bending modes. In the latter portion of the flight, however, some of the slosh modes (mainly higher modes) will mingle with the vehicle bending modes. Further observations will be made in the second phase of the present contract. It is to use the system bending modes obtained from this program to develop a hybrid simulation program for Saturn V atmospheric flight.

The first 25 modes of the case having three slosh modes per tank at flight time $t=0$ are shown in Figs. 12 through 36. The corresponding frequency and generalized mass of each mode are given on the top of each plot. The first three vehicle bending modes of this case are also indicated in these figures. Similarly, the first 13 modes of the case having only one slosh mode per tank are presented in Figs. 37 through 49. Mass and stiffness properties of the vehicle for the above cases are provided in Figs. 50 through 53. For comparison, the mass distribution and vehicle bending modes of the vehicle at flight time $\mathrm{t}=40$ are shown in Figs. 54 through 57.

The lateral force distribution coefficients due to the liquid propellant of Saturn V are computed. It is found that the influence of higher slosh modes to the coefficients $m^{A}{ }_{\alpha}$ and $m^{B}{ }_{\psi}$ is small and diminishes rapidly for layers away from the propellant-free surface. These coefficients which take the first three slosh modes into account and the coefficients $\left({ }_{m} C_{\xi}\right)_{i}, i=1,2,3$, are shown in Figs. 58 through 67.

Fig. 8 - Longitudinal Acceleration of Saturn V

Fig. 9 - First Mode Slosh Frequencies of the Tanks of Saturn V

Fig. 10 - Second Mode Slosh Frequencies of the Tanks of Saturn V

Fig. 11 - Third Mode Slosh Frequencies of the Tanks of Saturn V

Fig. 12-1st Mode Shape (three slosh modes per tank)

LMSC/HREC D148988

SA-3n3 4-beam model $T=0.0$
3/00/69
MOOE (2)
FREQUENCY = 0.000

Fig. 13 - 2nd Mode Shape (three slosh modes per tank)

Fig. 14 - 3rd Mode Shape (three slosh modes per tank)

Fig. 15 - 4th Mode Shape (three slosh modes per tank)

Fig. 16 - 5th Mode Shape (three slosh modes per tank)

Fig. 17 - 6th Mode Shape (three slosh modes per tank)

Fig. 18 - 7th Mode Shape (three slosh modes per tank)

Fig. 19 - 8th Mode Shape (three slosh modes per tank)

Fig. 20 - 9th Mode Shape (three slosh modes per tank)

Fig. 21 - 10th Mode Shape (three slosh modes per tank)

Fig. 22 - 11th Mode Shape (three slosh modes per tank)

Fig. 23 - 12th Mode Shape (three slosh modes per tank)

Fig. 24 - 13th Mode Shape (three slosh modes per tank)

Fig. 25 - 14th Mode Shape (three slosh modes per tank)

LMSC/HREC D148988

Fig. 26 - 15th Mode Shape (three slosh modes per tank)

Fig. 27 - 16th Mode Shape (three slosh modes per tank)

Fig. 28 - 17th Mode Shape (three slosh modes per tank)

Fig. 29 - 18th Mode Shape (three slosh modes per tank)

Fig. 30 - 19th Mode Shape (three slosh modes per tank)

Fig. 31 - 20th Mode Shape (three slosh modes per tank)

Fig. 32 - 21 st Mode Shape (three slosh modes per tank)

LMSC/HREC D148988

Fig. 33 - 22nd Mode Shape (three slosh modes per tank)

Fig. 34 - 23rd Mode Shape (three slosh modes per tank)

Fig. 35 - 24th Mode Shape (three slosh modes per tank)

Fig. 36 - 25th Mode Shape (three slosh modes per tank)

Fig. 37 - 1st Mode Shape (one slosh mode per tank)

Fig. 38 - 2nd Mode Shape (one slosh mode per tank)
sA-s03 4-8EAM MOOEL $\quad 1=0.0$
HODE(3)
Facevency $=0.339$
GEN. MASs $=1.344 \times 10+07$

Fig. 39 - 3rd Mode Shape (one slosh mode per tank)

Fig. 40 - 4th Mode Shape (one slosh mode per tank)

Fig. 41 - 5th Mode Shape (one slosh mode per tank)

Fig. 43 - 7th Mode Shape (one slosh mode per tank)

Fig. 44 - 8th Mode Shape (one slosh mode per tank)
sa-903 -seam moect $\quad 1=0.0$
moot 4

- Acevamer 1.011

Fig. 45 - 9th Mode Shape (one slosh mode per tank)

Fig. 46 - 10 th Mode Shape (one slosh mode per tank)

Fig. 47 - 11th Mode Shape (one slosh mode per tank)

Fig. 48 - 12th Mode Shape (one slosh mode per tank)

Fig. 49 - 13th Mode Shape (one slosh mode per tank)

Fig. 50 - Fundamental Deflection Functions, Mass and Stiffness Properties of Beam 1

VEMICLE DEFEREMCE TATION = 39.75

Fig. 51 - Fundamental Deflection Functions, Mass and Stiffness Properties of Beam 2

Fig. 52 - Fundamental Deflection Functions, Mass and Stiffness Properties of Beam 3

VEHICLE REFEREMCE -TATION 3 7.2s

Fig. 53 - Fundamental Deflection Functions, Mass and Stiffness Properties of Beam 4

Fig. 54 - 19th Mode Shape (three slosh modes per tank)

Fig. 55 - 22nd Mode Shape (three slosh modes per tank)

Fig. 56 - 23rd Mode Shape (three slosh modes per tank)

Fig. 57 - Fundamental Deflection Functions, Mass and Stiffness Properties

Fig. 58 - Lateral Force Distribution Coefficients ${ }_{m} A_{\alpha}(\mathrm{kg})$ for Secondand Third-Stage Tanks

Fig. 59 - Lateral Force Distribution Coefficients $\mathrm{m}^{\mathrm{B}}{ }_{\psi}(\mathrm{kg} / \mathrm{m})$ for Second-
and Third-Stage Tanks

Fig. 60 - Lateral Force Distribution Coefficients $\left(\mathrm{m}_{\xi}\right)_{1} / \alpha_{3}(\mathrm{~kg} / \mathrm{m})$ for Second-
and Third-Stage Tanks

Fig. 61 - Lateral Force Distribution Coefficients $\left({ }_{\mathrm{m}} \mathrm{C}_{\xi}\right)_{2} / \alpha_{3}(\mathrm{~kg} / \mathrm{m})$
for Second- and Third-Stage Tanks

Fig. 62 - Lateral Force Distribution Coefficients $\left({ }_{\mathrm{m}} \mathrm{C}_{\xi}\right)_{3} / \alpha_{3}(\mathrm{~kg} / \mathrm{m})$

Fig. 63 - Lateral Force Distribution Coefficients ${ }_{m} A_{\alpha}(\mathrm{kg})$ for S-IC Tanks

Fig. 64 - Lateral Force Distribution Coefficients ${ }_{m}{ }^{B}{ }_{\psi}(\mathrm{kg} / \mathrm{m})$ for S-IC Tanks

Fig. 65 - Lateral Force Distribution Coefficients $\left({ }_{m} C_{\xi}\right){ }_{1} / \alpha_{3}(\mathrm{~kg} / \mathrm{m})$ for S-IC Tanks

Fig. 66 - Lateral Force Distribution Coefficients $\left({ }_{m} C_{\xi}\right) / \alpha_{3}(\mathrm{~kg} / \mathrm{m})$ for S-IC Tanks

Fig. 67 - Lateral Force Distribution Coefficients $\left({ }_{m} C_{\xi}\right)_{3} / \alpha_{3}(\mathrm{~kg} / \mathrm{m})$ for S-IC Tanks

Section 6 CONCLUSION AND RECOMMENDATION

A new method was derived to study the vibrational characteristics of a coupled elastic and fluid system idealized from a liquid-propellant space vehicle. This method presents a consistent formulation for the physical problem and has less restrictions in application than the conventional mechanical model approach. In addition, the method provides a possibility that just a few system modes which are influencing the vehicle dynamics will be needed to define a mathematical model for flight simulation of a space vehicle. Consequently, it will not only lead to a simple and reliable model but also meet the limitations of a computer. For instance, the limited capacity of a hybrid computer and excessive computation time required on a digital computer are the problems which are commonly encountered in flight simulation.

Due to the complexity of the computer program, certain possible improvements of the program are not able to be made in this contract. Specific areas are simplification of the input data deck, possible savings of computer time and to evaluate the integrals of Eq. (A.4) in a better manner. However, the method was demonstrated in this preliminary study that it is a logical approach to solve the coupled bending and sloshing problem of a large-liquid propellant space vehicle.

For an axisymmetric tank, the velocity field of the fluid can be expressed by Eqs. (3.2), (3.3) and (3.4). The eigenvectors $c_{k m}^{n}$ and slosh frequencies λ_{kn} can be obtained from Ref. 4. In case of an arbitrary tank which does not possess a nice geometric symmetry, seeking an analytic expression of the velocity potential of the fluid is almost impossible. Perhaps, to define an empirical equation based on experiment is the only solution to the problem. Once the velocity potential of a fluid system is given in an explicit form, the
kinetic and potential energy terms associated with a tank can be readily computed. Hence, the presented method may be used to study non-beamlike vehicles whose propellant tanks do not have symmetric properties. Furthermore, utilization of the current capability of the developed program, the Saturn V vehicle may be modeled more accurately than the present four-beam model.

REFERENCES

1. Whetstone, W.D., and M. L. Pearson, "Vibrational Characteristics of Large Complex Space Vehicles," LMSC/HREC A783589, Lockheed Missiles \& Space Company, Huntsville, Ala., December 1966.
2. Abramson, H. N., Editor, "The Dynamic Behavior of Liquids in Moving Containers," NASA SP-106, National Aeronautics and Space Administration, Washington, D. C., 1966.
3. Ryan, R.S., and A. W. King, "The Influential Aspects of Atmospheric Disturbances on Space Vehicle Design Using Statistical Approaches for Analysis," NASA TN D-4963, National Aeronautics \& Space Administration, Washington, D. C., January 1969.
4. Lomen, D. O., "Analysis of Fluid Sloshing," GDC-DDE66-018, General Dynamics/Convair Division, San Diego, Calif., June 1966.
5. Abramowitz, M., and I. A. Stegun, Editors, Handbook of Mathematical Functions, National Bureau of Standards, Washington, D. C., August 1966.
6. Lowan, A. N., N. Davids and A. Levenson, "Table of the Zeros of the Legendre Polynomials of Order 1-16 and the Weight Coefficients for Gauss' Mechanical Quadrature Formula," Bull. Am. Math. Soc., Vol. 48, No. 10, pp. 739-743, October 1942.

Appendix A

DETAILED DERIVATIONS OF SECTION 3

Appendix

Substituting Eqs. (3.2) and (3.3) into Eq. (3.1), the kinetic energy of the $k^{\text {th }}$ tank can be expressed as

$$
\begin{aligned}
& T_{k}=\frac{1}{2} \rho_{k} \int_{v}\left\{\left(\dot{u}_{i}^{\ell}\right)^{2}+2 \dot{u}_{i}^{\ell} \frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{\ell}}{L_{i}}\left(d_{1 k}+x_{3}^{*}\right)+\left(\frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{\ell}}{L_{i}}\right)^{2}\left(d_{1 k}+x_{3}^{*}\right)^{2}\right. \\
& +2 \dot{u}_{i}^{\ell} \sum_{j=1}^{N_{i}} \dot{\zeta}_{i j} Y_{i j}+2 \frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{l}}{L_{i}}\left(d_{l k}+x_{3}^{*}\right) \sum_{j=1}^{N_{i}} \dot{\zeta}_{i j} Y_{i j}+\sum_{j=1}^{N_{i}} \sum_{m=1}^{N_{i}} \dot{\zeta}_{i j} \dot{\zeta}_{i m} Y_{i j} Y_{i m} \\
& +2\left[\dot{u}_{i}^{\ell}+\frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{\ell}}{L_{i}}\left(d_{1 k}+x_{3}^{*}\right)+\sum_{j=1}^{N_{i}} \dot{\xi}_{i j} Y_{i j}\right]\left[\sum _ { n = 1 } ^ { N _ { k } } \frac { 1 } { \lambda _ { k n } } \dot { \xi } _ { k n } \left(\sin ^{2} \theta \frac{\partial \phi_{k n}}{\partial R}\right.\right. \\
& \left.\left.+\cos ^{2} \theta \frac{\phi_{k n}}{R}\right)\right] \\
& +\sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}} \dot{\xi}_{k n} \dot{\xi}_{k m}\left[\sin ^{2} \theta \frac{\partial \phi_{k n}}{\partial \mathrm{R}} \frac{\partial \phi_{k m}}{\partial \mathrm{R}}+\cos ^{2} \theta \frac{\phi_{\mathrm{kn}}}{\mathrm{R}} \frac{\phi_{\mathrm{km}}}{\mathrm{R}}\right. \\
& \left.+\sin ^{2} \theta \frac{\partial \phi_{\mathrm{kn}}}{\partial Z} \frac{\partial \phi_{\mathrm{km}}}{\partial Z}\right] \\
& \left.+\left(\frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{l}}{L_{i}} r \sin \theta\right)^{2}-2 \frac{\dot{u}_{i}^{r}-\dot{u}_{i}^{l}}{L_{i}} r \sin ^{2} \theta \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} \dot{\xi}_{k n} \frac{\partial \phi_{k n}}{\partial Z}\right\} a_{k}^{3} \operatorname{Rd} \theta d R d Z
\end{aligned}
$$

$$
\begin{aligned}
& =\pi a_{k}^{3} \rho_{k} \int\left(\dot{u}_{i}\right)^{2}\left[1-2 \frac{d_{1 k}}{L_{i}}-2 \frac{a_{k}}{L_{i}} Z^{*}+\left(\frac{d_{1 k}}{L_{i}}\right)^{2}+2 \frac{d_{1 k}}{L_{i}} \frac{a_{k}}{L_{i}} Z^{*}\right. \\
& \left.+\left(\frac{a_{k}}{L_{i}} Z^{*}\right)^{2}+\frac{1}{2}\left(\frac{a_{k}}{L_{i}} R\right)^{2}\right] \\
& +\left(\dot{u}_{i}^{r^{2}}{ }^{2}\left[\left(\frac{d_{1 k}}{L_{i}}\right)^{2}+2 \frac{d_{1 k}}{L_{i}} \frac{a_{k}}{L_{i}} Z^{*}+\left(\frac{a_{k}}{L_{i}} Z^{*}\right)^{2}+\frac{1}{2}\left(\frac{a_{k}}{I_{i}}\right)^{2}\right]\right. \\
& +2 \dot{u}_{i}^{\ell} \dot{u}_{i}^{r}\left[\frac{d_{1 k}}{L_{i}}+\frac{a_{k}}{L_{i}} Z^{*}-\left(\frac{d_{1 k}}{L_{i}}\right)^{2}-2 \frac{d_{1 k}}{L_{i}} \frac{a_{k}}{L_{i}} Z^{*}-\left(\frac{a_{k}}{L_{i}} Z_{i}^{*}\right)^{2}-\frac{1}{2}\left(\frac{a_{k}}{L_{i}}\right)^{2}\right] \\
& +2 \dot{u}_{i}^{\ell} \sum_{j=1}^{N_{i}} \dot{\zeta}_{i j}\left[1-\frac{d_{1 k}}{L_{i}}-\frac{a_{k}}{L_{i}} Z^{*}\right] Y_{i j}+2 \dot{u}_{i}^{r} \sum_{j=1}^{N_{i}} \dot{\zeta}_{i j}\left[\frac{d_{1 k}}{L_{i}}+\frac{a_{k}}{L_{i}} Z_{i}^{*} Y_{i j}\right. \\
& +\sum_{j=1}^{N_{i}} \sum_{m=1}^{N_{i}} \dot{\zeta}_{i j} \dot{\zeta}_{i m} Y_{i j} Y_{i m} \\
& +\dot{u}_{i}^{\ell} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} \dot{\xi}_{k n}\left[\left(\frac{\partial \phi_{k n}}{\partial R}+\frac{\phi_{k n}}{R}\right)\left(1-\frac{d_{1 k}}{L_{i}}-\frac{a_{k}}{L_{i}} Z^{*}\right)+\frac{a_{k}}{L_{i}} R \frac{\partial \phi_{k n}}{\partial Z}\right] \\
& +\dot{u}_{i}^{r} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} \dot{\xi}_{k n}\left[\left(\frac{\partial \phi_{k_{n}}}{\partial R}+\frac{\phi_{k n}}{R}\right)\left(\frac{d_{1 k}}{L_{i}}+\frac{a_{k}}{L_{i}} Z^{*}\right)-\frac{a_{k}}{L_{i}} R \frac{\partial \phi_{k n}}{\partial Z}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{j=1}^{N_{i}} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} \dot{\zeta}_{\mathrm{ij}} \dot{\xi}_{\mathrm{kn}}\left(\frac{\partial \phi_{\mathrm{kn}}}{\partial \mathrm{R}}+\frac{\phi_{\mathrm{kn}}}{\mathrm{R}}\right) \mathrm{Y}_{\mathrm{ij}} \\
& +\frac{1}{2} \sum_{\mathrm{n}=1}^{\mathrm{N}_{\mathrm{k}}} \sum_{\mathrm{m}=1}^{\mathrm{N}_{\mathrm{k}}} \frac{1}{\lambda_{\mathrm{kn}} \lambda_{\mathrm{km}}} \dot{\xi}_{\mathrm{kn}} \dot{\xi}_{\mathrm{km}}\left[\frac{\partial \phi_{\mathrm{kn}}}{\partial R} \frac{\partial \phi_{\mathrm{km}}}{\partial \mathrm{R}}+\frac{\phi_{\mathrm{kn}}}{\mathrm{R}} \frac{\phi_{\mathrm{km}}}{\mathrm{R}}\right. \\
& \left.\left.+\frac{\partial \phi_{\mathrm{kn}}}{\partial Z} \frac{\partial \phi_{\mathrm{km}}}{\partial Z}\right]\right\} \text { RdRdZ } \tag{A.1}
\end{align*}
$$

where

$$
z^{*}=\frac{G_{3 k}-d_{1 k}}{a_{k}}+z \text { and } \quad d Z^{*}=d Z
$$

If Eq. (3.4) is used and integrations with respect to Z are performed (Ref.6), Eq. (A-1) may be further reduced to the following form.

$$
\begin{aligned}
T_{k}= & -\pi a_{k}^{3} \rho_{k}\left\{V_{k}^{p p}\left(\dot{u}_{i}^{l}\right)^{2}+V_{k}^{p q} \dot{u}_{i}^{l} \dot{u}_{i}^{r}+V_{k}^{q q}\left(\dot{u}_{i}^{r}\right)^{2}\right. \\
& +\dot{u}_{i}^{l} \sum_{j=1}^{N_{i}}(U L B)_{i j} \dot{\zeta}_{i j}+\dot{u}_{i}^{r} \sum_{j=1}^{N_{i}}(U R B)_{i j} \dot{\zeta}_{i j} \\
& +\sum_{j=1}^{N_{i}} \sum_{m=1}^{N_{i}}(B B)_{i j m} \dot{\zeta}_{i j} \dot{\zeta}_{i m}+\dot{u}_{i}^{l} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} S_{k n}^{p} \dot{\xi}_{k n}
\end{aligned}
$$

$$
\begin{align*}
& +\dot{u}_{i}^{r} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}} S_{k n}^{q} \dot{\xi}_{k n}+\sum_{j=1}^{N_{i}} \sum_{n=1}^{N_{k}} \frac{1}{\lambda_{k n}}(B S)_{k j n} \dot{\zeta}_{i j} \dot{\xi}_{k n} \\
& \left.+\frac{1}{2} \sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}} \frac{1}{\lambda_{k n} \lambda_{k m}} S_{k m n} \dot{\xi}_{k n} \dot{\xi}_{k m}\right\} \tag{A.2}
\end{align*}
$$

where

$$
\begin{align*}
& \left(V_{k}^{p p}=v_{k}^{q q}+\oint\left[1-2 \frac{d_{1 k}}{L_{i}}-\frac{a_{k}}{L_{i}} z^{*}\right] Z^{*} R d R\right. \\
& \left\{V_{k}^{p q}=-2 V_{k}^{q q}+\oint\left[2 \frac{d_{k}}{L_{i}}+\frac{a_{k}}{L_{i}} z^{*}\right] z^{*} R d R\right. \\
& \mathrm{v}_{\mathrm{k}}^{\mathrm{qq}}=\oint\left[\left(\frac{\mathrm{d}_{1 k}}{L_{i}}\right)^{2}+\frac{1}{2}\left(\frac{a_{k}}{L_{i}} R\right)^{2}+\frac{d_{1 k}}{L_{i}} \frac{a_{k}}{L_{i}} z^{*}+\frac{1}{3}\left(\frac{a_{k}}{L_{i}} z^{*}\right)^{2}\right] z^{*} R d R \tag{A.3}\\
& (U L B)_{i j}=-2 \int_{S} Y_{i j} R d R d Z-(U R B)_{i j} \\
& (U R B)_{i j}=-2 \int_{S}\left[\frac{d_{1 k}}{L_{i}}+\frac{a_{k}}{L_{i}} Z^{*}\right] Y_{i j} R d R d Z \\
& (B B)_{i j m}=-\int_{S} Y_{i j} Y_{i m} R d R d Z Z^{*} \\
& (\mathrm{BS})_{k j n}=-\int_{S}\left[\frac{\partial \phi_{\mathrm{kn}}}{\partial R}+\frac{\phi_{\mathrm{kn}}}{R}\right] Y_{i j} \operatorname{RdRdZ} \tag{A.4}
\end{align*}
$$

$$
\begin{align*}
& \left\{s_{k n}^{p}=-s_{k n}^{q}+\sum_{j=1}^{5} c_{k j}^{n}\left\{2 j \oint R^{2 j-1} z^{*} d R\right\}\right. \\
& +\sum_{j=6}^{10} c_{k j}^{n}\left\{\oint\left[\left(R J_{1}^{\prime}\left(i_{k j} R\right)+\frac{1}{j_{k j}} J_{1}\left(j_{k j} R\right)\right] e^{j_{k j}\left(Z-\frac{\ell_{k}}{a_{k}}\right)} d R\right\}\right. \\
& \left\langle s_{k n}^{q}=\sum_{j=1}^{5} c_{k j}^{n}\left\{2 j \oint\left[\frac{d_{1 k}}{L_{i}}+\frac{1}{2} \frac{a_{k}}{L_{i}} z^{*}\right] z^{*} R^{2 j-1} d R\right\}\right. \\
& +\sum_{j=6}^{10} c_{k j}^{n}\left\{\oint \left[\left(R J_{1}\left(j_{k j} R\right)+\frac{1}{j_{k j}} J_{1}\left(j_{k j} R\right)\right)\left(\frac{d_{1 k}}{L_{i}}-\frac{a_{k}}{L_{i}} \frac{1}{j_{k j}}+\frac{a_{k}}{L_{i}} z^{*}\right)\right.\right. \\
& \left.\left.-\frac{a_{k}}{L_{i}} R^{2} J_{1}\left(j_{k j} R\right)\right] e^{j_{k j}\left(Z-\frac{\ell_{k}}{a_{k}}\right)} d R\right\} \tag{A.5}
\end{align*}
$$

and

$$
\begin{aligned}
S_{k n m}= & \sum_{j=1}^{5} \sum_{i=1}^{5} c_{k j}^{n} c_{k i}^{n}\left(4{ }_{j i}-2 j-2 i+2\right) \oint R^{2 j+2 i-3} z^{*} d R \\
& +\sum_{j=1}^{5} \sum_{i=6}^{10}\left(c_{k j}^{n} c_{k i}^{m}+c_{k j}^{m} c_{k i}^{n}\right) \oint\left[(2 j-1) J_{1}^{\prime}\left(j_{k i} R\right)+\frac{1}{j_{k i} R} J_{1}\left(j_{k i} R\right)\right] \\
& \cdot R^{2 j-1} e^{j_{k i}\left(Z-\frac{\ell_{k}}{a_{k}}\right)} d R
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{j=6}^{10} \sum_{i=6}^{10} c_{k j}^{n} c_{k i}^{m} \oint\left[j_{k j} j_{k i} R J_{1}\left(i_{k j} R\right) J_{1}^{\prime}\left(j_{k i} R\right)\right. \\
& \left.+\left(j_{k j} j_{k i} R+\frac{1}{R}\right) J_{1}\left(i_{k i} R\right) J_{1}\left(j_{k i} R\right)\right] \frac{1}{j_{k j}+j_{k i}} \cdot \\
& \cdot e^{\left(j_{k j}+j_{k i}\right)\left(Z-\frac{\ell_{k}}{a_{k}}\right)} d R \tag{A.6}
\end{align*}
$$

The potential energy of the $k^{\text {th }}$ tank (Eq. (3.7)) can be written in the following form

$$
\begin{align*}
P_{k} & =\frac{1}{2} \rho_{k} \alpha_{3} a_{k}^{2} \int_{F S}\left[\sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}} \xi_{k n} \xi_{k m} \phi_{k n} \phi_{k m}\right] \sin ^{2} \theta R d R d \theta \\
& =\frac{\pi}{2} \rho_{k} \alpha_{3} a_{k}^{2} \sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}} p_{k n m} \xi_{k n} \xi_{k m} \tag{A.7}
\end{align*}
$$

where

$$
p_{k n m}=\int_{0}^{1} R \phi_{k n} \phi_{k m} d R
$$

Substituting Eq. (3.4) into the above equation, one finds

$$
p_{k n m}=\sum_{j=1}^{5} \sum_{i=1}^{5} c_{k j}^{n} c_{k i}^{n} \int_{0}^{1} R^{2 j+2 i-1} d R
$$

A-6

$$
\begin{align*}
& +\sum_{j=1}^{5} \sum_{i=6}^{10}\left(c_{k j}^{n} c_{k i}^{m}+c_{k j}^{m} c_{k i}^{n}\right) \int_{0}^{1} R^{2 j} J_{1}\left(j_{k i} R\right) d R \\
& +\sum_{j=6}^{10} \sum_{i=6}^{10} c_{k j}^{n} c_{k i}^{m} \int_{0}^{1} R J_{1}\left(j_{k j} R\right) J_{1}\left(j_{k i} R\right) d R \\
& =\sum_{j=1}^{5} \sum_{i=1}^{5} c_{k j}^{n} c_{k i}^{m} \frac{1}{2(i+j)} \\
& +\sum_{j=1}^{5} \sum_{i=6}^{10}\left(c_{k j}^{n} c_{k i}^{m}+c_{k j}^{m} c_{k i}^{n}\right) \int_{0}^{1} R^{2 j} J_{1}\left(j_{k i} R\right) d R \\
& +\sum_{j=6}^{10} c_{k j}^{n} c_{k j}^{m} \frac{1}{2 j_{k i}^{2}}\left(j_{k j}^{2}-1\right)\left[J_{1}\left(j_{k j}\right)\right]^{2} \tag{A.8}
\end{align*}
$$

Appendix B

SLOSH PROGRAM LISTINGS
\$IBFTC SLOSH DECK

NCOR	$=$ TOTAL NUMBER OF DEGREES OF FREEDOM OF BEAM END DISPLANCE-
	MENTS AND BEAM DEFLECTION FUNCTIONS
NPT(I)	$=$ NUMBER OF PARTITIONS OF THE I-TH TANK
NSFLIG	$=$ STAGE OF FLIGHT
NSMODE	$=$ NUMBER OF SLOSH MODES CONSIDERED
NTANK	$=$ NUMBER OF TANKS
PEV(I $J)$	$=$ J-TH PRELIMINARY EIGENVALUE ASSOCIATED WITH I-TH TANK
RHO(I)	MASS DENSITY ASSOCIATED WITH I-TH TANK
TTFCB(I $N)$	
ZINC(I) THIRD TERM OF COEFFICIENT B-THETA-N ASSOC WITH I-TH TANK	

[^1]
13 MCASE

107	INDF $=2$
	$P I=3.1415927$
	DO $113 \mathrm{~K}=1$, NTANK
	PLEVEL $=A L L(K)$
	CALL CINTL (K, PLEVEL)
	PIRALS $(K)=P I * R A L S(K) * * 2$
	PPVOL $(K)=$ VOL
	DO $113 \mathrm{~N}=1 \cdot \mathrm{NSMODE}$
	SUM1 $=0.0$
	SUM2 $=0.0$
	OMEGA $(K, N)=\operatorname{SQRT}(A C C L * P E V(K, N) / R A L S(K))$
	DO 111 I $=1.10$
	DO $109 \quad J=1.10$
109	SUM2 $=$ SUM2 $+C(K, N, 1) * C(K, N, J) * V ~(I, J) ~$
111	SUM1 $=$ SUM1 $+C(K, N, 1) * V(1,1)$
113	$B N(K, N)=P I R A L S(K) * R A L S(K) * S U M 1 /(P P V O L ~(K) * G A M M A ~(K, N)) ~$
	$I N D F=0$
	DO $165 K=1$, NTANK
	PLEVEL $=A L L(K)$
	CALL CINTL (K, PLEVEL)
	DO $139 \mathrm{M}=1 \cdot \mathrm{NSMODE}$
	DO 135 N=M,NSMODE
	SUM1 $=0.0$
	SUM2 $=0.0$
	DO 115 I = 1, 10
	DO $115 \mathrm{~J}=1.10$
	SUM1 $=$ SUM1 $+C(K, M, I) * C(K, N, J) * U(I, J)$
115	SUM2 $=$ SUM2 $+C(K, M \cdot I) * C(K, N, J) * V(I, J) ~$
	$S(K, M, N)=S U M 1$
135	$P(K, M, N)=$ SUM2
	SUM1 $=0.0$
	SUM2 $=0.0$
	DO $137 \quad \mathrm{I}=1,10$
	SUM1 $=$ SUM1 $+C(K, M, I) * S P U(I)$
137	SUM2 $=$ SUM2 $+C(K, M \cdot I) * S Q U(I)$
	$\operatorname{SP}(K, M)=$ SUM 1

$139 \begin{aligned} & \text { SQ(K,M) }=\text { SUMZ } \\ & \text { CONTINUE }\end{aligned}$

B-12
$N=1, N S M O D E$

BSNT INUE
$\begin{array}{ll}K 1 & =6 \\ K 2 & \\ 1\end{array}$

$\vec{N} \underset{\sim}{N}$

둗

11

I	
n	n
0	0
	n

（21
12）

$A I J(I 1, J)=2 \cdot 0 *\left(B B\left(K_{1}, L, M\right)+B B(K 2, L \cdot M)\right)$ （r．II）riv＝（lior）riv（r ・ヨN• II）ai

$K=1$, NBEAM
$L=1$, NBDLF 0

$$
\begin{aligned}
& \text { にーーム } \\
& \begin{array}{l}
\text { ISL } \\
192
\end{array}
\end{aligned}
$$

$K=1$, NBEAM
$L=1$, NBDLF

I 12

(10E13.4))
COMPUTATION OF LATERAL FORCE DISTRIBUTION COEFFICIENTS

$$
\begin{aligned}
& \text { PLEVEL }=\text { ALL }(K) \\
& K K=\operatorname{NPT}(K)
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF (KK•GT• } 50 \text {) KK = NPTMAX } \\
& \text { DO } 275 \text { I=1,KK } \\
& \text { CALL CONTR(PLEVEL, ORLS,K) }
\end{aligned}
$$

$$
\text { RADIUS }=\text { ORLS }
$$

$$
\text { IF (I EQ. 1) RALS }(K)=\text { ORLS }
$$ PLEVEL = PLEVEL - ZINC(K) PLEVEL $=$ PLEVEL - ZINC(K)

DO 267 N=1,NSMODE
SUM $3=0.0$ DO $263 \quad J=1$
263 SUM3 $=$ SUM3 $+C(K \cdot N \cdot J) * U F(J)$ FASUM(N) = SUM3
DO $271 \quad \mathrm{~N}=1 \cdot$ NSMODE
SUM $1=$ SUM $1+$ BN(K.
SUM $1=\operatorname{SUM} 1+\operatorname{BN}(K \cdot N) * F A S U M(N)$
uUu
271 SUM2 $=\operatorname{SUM2}+(G 3(K) * B N(K, N)-\operatorname{DBLSCM}(K) *(B N(K, N)-H N(K, N)))^{*}$

$\begin{aligned} \operatorname{AALPN}(K, I) & =-\operatorname{RHO}(K) * V N+\operatorname{PIRALS}(K) * R H O(K) * D B L S C M(K) * S U M I \\ 275 \operatorname{BTHEN}(K, I) & =-\operatorname{RHO}(K) * V F * P I R A L S(K) * * 2 / P I-G 3(K) * R H O(K) * V N\end{aligned}$ $1+$ PIRALS $(K) * R H O(K) *$ DBLSCM $(K) * S U M 2$
279 CONT INUE
281 CONT INUE

300 FORMAT(1HO, 47H THIRD TERM OF FORCE COEFFICIENT B-THETA(KG-M) //

	WRITE(6,304) (OMEGA (I,J), $1=1, N$ TANK)	
304	FORMAT($1 \mathrm{HO}, 32 \mathrm{H}$ NATURAL FREQUENCIES(RAD/SEC)	, 6E16.8)
	GO TO 307	
305	WRITE(6,302) (OMEGA $1, \mathrm{~J}), \mathrm{I}=1, \mathrm{NTANK}$)	
307	CONTINUE	
	DO $311 \mathrm{I}=1$, NPTMAX	
	IF(I .NE. 1) GO TO 309	
	WRITE(6,308) (AALPN(K,I), $K=1, N$ TANK)	
308	FORMAT (1HO, 32H COEFFICIENTS A-ALPHA-N(KG)	- 6E16.8)
	GO TO 311	
309	WRITE(6,302) (AALPN(K,I), $K=1, N$ TANK)	
311	CONTINUE	
	DO $317 \mathrm{I}=1$, NPTMAX	
	IF(I .NE. 1) GO TO 315	
	WRITE (6,314) (BTHEN(K,I), $K=1, N T A N K)$	
314	FORMAT ($1 \mathrm{HO}, 32 \mathrm{H}$ COEFFICIENTS B-THETA-N(KG-M)	, 6E16.8)
	GO TO 317	
315	WRITE(6,302) (BTHEN(K,I), $K=1, N$ TANK)	
317	CONTINUE	
	DO $323 \mathrm{~J}=1$, NSMODE	
	DO $323 \mathrm{I}=1$, NPTMAX	
	IF(I .NE. 1) GO TO 321	
	WRITE(6,320) J, (CXIN(K,J,I), $\mathrm{K}=1$, NTANK)	
320	FORMAT(1HO, 54H COEFFICIENTS C-XI-N ASSOCIATED	WITH SLOSH MODE(KG/
	1M) , 12 // 32X. 6E16.8)	
	GO TO 323	
321	WRITE(6,302) (CXIN(K,J,I),K=1,NTANK)	
323	continue	
5991	continue	
	RETURN	

	D0 $6005 \mathrm{~N}=2,7$
6005	SUM $=$ SUM + A ${ }^{\text {a }}$) *T** (2*N - 2)
	$B J 1=A J N R * S U M$
	$\operatorname{PHI}(M)=B J 1 / E X P(R J 1 P(L) * A B S(D L(1)-Z(1)))$
	GO TO 6017
6009	$T=3.0 / A J N R$
	SUMI $=0.0$
	SUM2 $=$ AJNR
	DO $6013 \quad \mathrm{~N}=1.7$
	SUM $_{1}=\operatorname{SUM}_{1}+B(N) * T * *(N-1)$
6013	Sum2 $=$ Sum2 + O(N)*T**(N-1)
	BJ1 $=(1.0 /$ AJNR $* * 0.5) *$ SUM $1 * \cos ($ SUM2 $)$
	$\mathrm{PHI}(\mathrm{M})=\mathrm{BJI/EXP}(\mathrm{RJIP}(\mathrm{L}) * A B S(D L(I)-\mathrm{Z}(\mathrm{I})$))
6017	continue
	RETURN
	END
\$IBFTC SUB3 DECK	
	SUBROUTINE CINTL (K• PLEVEL)

C GAUSSIAN QUADATURE FORMULA IS USED IN THIS SUBROUTINE TO EVALUATE LINE
C INTEGRALS WITH AREITRARY LIMITS (P, Q).
C

$$
\begin{aligned}
& 1 \operatorname{URB}(6.4) \\
& \text { COMMON } / C L 9
\end{aligned}
$$

$$
\begin{aligned}
& \text { COMMON /CL9/ IDXB, RORALS } \\
& \text { COMMON /TEMP/BJIPA } 5,21), \text { BJOA }(5,21) \\
& \text { BOA }=0.70698979 \\
& \text { AORS }=(4.9784 / \text { RALS }(K)) * * 2 \\
& \text { RIOVRP }=1.0 \\
& \text { IF(INDF •EQ. } 1) \text { RIOVRP }=\text { RADIUS/RALS(K) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { COMMON /CL5/PL(4), QL(4), } \operatorname{QMP}(4), V Z(4,16)
\end{aligned}
$$

0.0

 0.0RIOVRP
0.0
RIOVRP
0.0
0
.EQ. 1)
085.6085
DTB(K)/BL
RALS (K)
97
DTB(K)/BL
RALS (K)
97
DTB(K)/BL " " " " " 0

IF (INDF •EQ. 1) GO TO 6097
GO TO $(6085,6085,6089,6089$.
$(6085,6085,6089,6089,6093,6093), K$
DTB(K)/BL(3)
$=$ RALS $(K) / B L(3)$
097
RALSBL $=$ RALS(K)/BL(1) 9061
(TO (6101,6141,6147,6155,6161,6161), K
PL(1) $=\operatorname{SQRT}(10.903204-($ PLEVEL +1.0414$) * * 2) /$ RALS (K) 3.1334786/RALS(K)
$=$ RALS (K)/BL
DTB(K)/BL(1)
EVEL .GT. 7.8486) GO TO 6107 $3.1334786 /$ RALS (K)
QL(1)
RI OVRP
6109
$Q L(1)=3.1334786 /$ RALS (K)
$P L(2)=Q L(1)$
$Q L(2)=3.302 / R A L S(K)$
$P L(3)=Q L(2)$
$Q L(3)=R I O V R P$
$P L(4)=R I O V R P$
$Q L(4)=0.0$

4
6111
3
TKCONF
BESSEL
CF
\perp 77VO III9
$=$ IIN 6019
$0 \perp 09$
$=I I N$
NII $=4$
GO TO 6111
6109 NII $=3$
6111 CALL TKCONF (NII, PL, QL, QMP, VR,VZ, CMH, BOA, AORS, PLEVEL,K)
DELR $=(1.0-E P S) / 20.0$

M
N
\cdots
0

6129 SUM1 = SUM1 + QMP(L)*G(LL)*(RJ1P(II)*RJIP(JJ)*VR(L, LL)*BJIP(L, II ! 1 LL)*BJ1P(L.JJ•LL) + (1.0/VR(L!LL) + RJ1P(II)*RJIP(JJ)*VR(L•LL))* 2 BJI(L,IIML)*BJI(L,JJMLL)*(1•O/(RJIP(II) + RJIP(JJ)))*EXP((RJIP 3 (II) + RJIP(JU))*(VZ(L.LL) + CMH)
IF(J.EQ. I) GO TO 6133 $U(J, I)=U(I, J)$
$V(I, J)=0.0$
$V(J, I)=0.0$
DO $6135 L=1$.NII
SUM2 $=$ SUM2 + QMP(L)*G(LL)* (DTBBL* (VR(L.LL)*BJ1P(L•II•LL) + BJI(L) III,LL)/RJIP(II)) - RALSBL*BJI(L•II•LL)*VR(L,LL)**2 + RALSBL* (2 VZ(L.LL) - 1.0/RJIP(II))*(VR(L.LL)*BJIP(L.II•LL) + BJI(L.II•LL)/ 3 RJIP(II))) *EXP(RJIP(II)*(VZ(L,LL) + CMH))
SUM3 $=\operatorname{SUM3}+\operatorname{QMP}(L) * G(L L) *(V R(L, L L) * B J I P(L, I I \cdot L L)+B J I(L \cdot I I \cdot L L) /$
1 RJIP(II))*EXP(RJIP(II)*(VZ(L,LL)+CMH)) SQU(I) = SUM2
$6137 \mathrm{~V}(\mathrm{I} \cdot \mathrm{I})=0.5 *(1.0-1.0 / \mathrm{RJIP}(\mathrm{II}) * * 2) * B J 1 A(I I \cdot 21) * * 2$

(1)
$=Q L$
$=R 1$
6109
0
0
0
\circ
-
0
0
8)

IF(ABS(RORALS - ROROLD) •GT. O.0001) CALL BESSEL(VR.BJI•BJIA•BJIP:
NII)

DO $9221 \quad J=1, N B D L F$
(URB(K.J) + DELR*RSUM1*(DTBBL + RALSBL*Z)*YJ*DELZ URB $(K, J)=$ URB $(K, J)+$ DELR*RSUM $1 *(D T B B L+R A L S B L * Z) * Y J * D E L Z ~$ ULB $(K, J)=$ ULB $(K, J)+D E L R * R S U M 1 * Y J * D E L Z$ DO 9211 $1=J, N B D L F$ $Y 1=(Z-B F O R D S(I, I S E G)) / B F S L P S(I, I S E G)$ $B B(K, J, I)=B B(K, J, I)+0.5 * D E L R * R S U M 1 * Y J * Y I * D E L Z$ $I F(I \cdot N E \cdot J) B B(K, 1, J)=B B(K, J, 1)$ CONTINUE DO 9261 .

RINC + DELR
$\stackrel{\alpha}{\alpha}$
DO 9221
$Y J=(Z$

C this subroutine provides the radius of the liguid surface

$$
\begin{aligned}
& C 1=10.9032 \\
& c 2=4.9784 \\
& c 3=3.51967
\end{aligned}
$$

$$
\begin{aligned}
& c
\end{aligned} \quad \begin{aligned}
C 1 & =10.903204 \\
c 2 & =4.9784
\end{aligned}
$$

6411
$\begin{aligned} & 6413 \\ & 6415 \\ & 6417 \\ & 6421\end{aligned}$

$$
Z=I>
$$

$C 2$
RETURN
TLS =
TURN
TURN
IPLEVEL
IPLEVE
'PLEVE
TO 16
S $=$ C
TURN
IPLEVEL
PLEVVEL
PLEVEL
TO 16463
S = C)
1 $=1$
$1 \exists 8$
780
$1 \exists 8$
780

[^0]:

[^1]: DIMENSION $C(6,3,11), ~ E T A(6,4,24)$, ETAMAX $(6,3), \operatorname{PEV}(6,3)$ DIMENSION DBLSCM(6), DBTBCM(6), P(6.3.3), RHO (6), S(6.3.3). 1 SP(6.3), SQ(6.3), PPVOL(6) DII ENSION ELEMA $(24,24)$. ELEMB $(24,24)$. AIJ $(60,60)$. BIJ $(60,60)$

 DIMENSION AALPN $(6,32), \operatorname{BN}(6,3), \operatorname{BTHEN}(6,32), \operatorname{CXIN}(6,3,32)$, 1 FASUM (3).
 $2 \operatorname{TTFCB}(6,32$
 ALL (6)
 (ALL(1), $1=1$, NTANK)

 $$
 \begin{aligned}
 & 1 \text { ALL (6) } \\
 & \text { COMMON /CL8/ BB }(6,4,4), \operatorname{BFORDS}(4,3), \operatorname{BFSLPS}(4,3), \operatorname{ULB}(6,4), \\
 & 1 \quad \operatorname{URB}(6,4)
 \end{aligned}
 $$

 (ELEMB $(1,1), \operatorname{BS}(1,1,1) \cdot \operatorname{CXIN}(1,1,1)),(\operatorname{GAMMA}(1,1), \operatorname{SP}(1,1))$,
 SXONI

