General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

THEORETCAL CHEMISTRY IWSTIUVİ

THE UNVERSITY OF WISCOHSIIT

NEW PARTITIONING PERCUPBATION THEORY:
J. GENBRȦI r RCRMALESTh
by

Phillip R. Certain and joseph of Hirschfelder

ERRATA WIS-TCI-355

page

correction

Middle of page, change "(24) with" to "(14) with X=al and" Third paragraph, change "(20)" to "(17)". Eq. (29) should read, Ed. Change "(20)" to "(1.7)" in two places. Sixth line, change "(34)" to "(30)". Line below Eq. (38), change "(5)" セo "(11)". Ref. 4 refers to ref. 12 , not 52

NEW PARTITIONING PERTURBATTON THEORY:

I. GENERAL FORMALISM ${ }^{*}$
by

Phillip R. Certain ${ }^{+}$and Joseph O. Hirschfelder
University of Wisconsin Theoretical Chemistry Institute Madison, Wisconsin 53706

Abstract

By the use of partitioning techniques, a general formalism is developed for considering degenerate, almost degenerate, and electron exchange perturbation problems. In effect, we generalize the Van VleckKirtman approach to arbit:ary orders and arbitrary normalization and obtain three types of approximations: In the Modified Kirtman treatment the functions through the $N-t h$ order are fully normalized and the energy is obtained as the roots of the secular equation. The DE-FOP-VIM approximation is the same except that the normalization of the functions is energy optimized. The Kirtman approximation uses the same functions as the Modified Kirtman but the energy is obtained as the roots of a much simpler secular equation which results from a factorization of the original secular equation (except for terms of order $2 \mathrm{~N}+2$). 'The Kirtman energies are not upper bounds. Lowdin's formalism is equivalent to the Modified Kirtman with the exception that Lowdin uses intermediate normalization. Electron exchange problems are considered more explicitly in a companion paper with the use of symmetry considerations.

\footnotetext{ ${ }^{+}$. NSF Predoctoral Fellow, 1965-69; Present address: Department of Chemistry, University of Manchester, England.

This work was supported by the National Aeronautics and Space Administration Grant NGL 50-002-001. }

By the use of partitioning techniques, a general formalism is developed for considering degenerate, almost degenerate, and electron exchange perturbation problems. Our formalism is related to the methods of Van Vleck ${ }^{1}$, Kato ${ }^{2}$, Bloch ${ }^{3}$, Hirschfelder ${ }^{4}$, Kirtman ${ }^{5}$, and Lowdin ${ }^{6,7}$. In all of these partitioning treatments, the energy is given as the roots of a secular equation. The matrix elements of the secular equation are assumed to be analytic in the perturbation parameter, but neither the energy nor the wave functions need to be analytic in this parameter. Thus, a partitioning formalism can have a greater range of validity than the Rayleigh-Schrodinger procedure.

Aithough our approach is quite different, we obtain a generaiization of Kirtman's treatment ${ }^{5}$ to arbitrary order and to arbitrary normalization. Although the choice of normalization is immaterial for infinfte order calculations, it does play a role in low-order treatments and becomes j.ncreasingly inportant as the deviations from Rayleigh-Schrodinger behaviour becomes large. Thus, the choice of normalization is likely to be very important in using a low-order perturbation formalism to consider an electron exchange problem. We obtain three types of approximations:
1). The Modified Kirtman (MK) Approximation. The energy is determined by a secular equation in which the basis functions are accurate through the N-th order and fully normalized. Lowdin's partitioning formalism is equivaler to the MK with the exception 1
that Lowdin uses intermediate normalization.
2). The DE-TOP-VIM Approximation. The DEmFOP-VLM is the same as the MK except that the normalization of the functions is optimized with respeat to the particular state under consideration. This leads to secular equations having much larger dimensionality.
3). The Kintman (K) Approximation, The Kirtman approximation is obtained by factorization of the MK secular equation (ignoring terms of order $2 \mathrm{~N}+2$) so that the Kirman energy is given as the roots of a much simpler seculat equation. The Kirtman energles are not upper bounds. However, this procedure has the advantage that the energies for all of a set of degenerate states are determined by solving a single secular equation regardless of the orders in which the degeneracies of the various states are resolved. This is to be contrasted with the Lowdin ${ }^{6,7}$ and Ghoi partitioning techniques which require the solution of different secular equations for degenerate states belonging to different elasses (We have not yet seen a preprint of the unpublished results of Goscinski and Lowdin ${ }^{9}$).

In Section V of this paper, our partitionjng formalism is modified so as to apply to electron exchange problems. This treatment is quite general and should be applicable to examples where atomic degeneracies and/or multiconfigurational interactions are involved. However, in any particular case, symmetry considerations can be used to greatly simplify the formalism. This is done in a companion paper ${ }^{22}$ (Paper III). However, our present treatment is more general than Paper III in the sense that our basis set lis not restricted to having no more than one function of each symmetry class.

In another companion paper ${ }^{21}$ (Paper II), an example of an almostdegenerate perturbation is used to illustrate each of the different methods of solution which are given in Section IV.

I. General Formulation.

Consider the solution of the Schrodinger equation

$$
\begin{align*}
& \left(H(\lambda)-E_{k}(\lambda)\right) \Psi_{k}(\lambda)=0, \tag{1}\\
& \text { \& } C_{1} \text { lamalola }
\end{align*}
$$

where the hamiltonian is the sum of two terms,

$$
H(\lambda)=H^{(0)}+\lambda H^{(1)}
$$

The $H^{(0)}$ is the hamiltonian for the unperturbed system, and the $H^{(1)} \quad$ is a perturbation. The parameter λ in some cases has physical significance (e.g. field strength), but otherwise is a formal ordering parameter with ia numerical vale of unity. The unperturbed hamiltonian is assumed to possess a complete set of eigensolutions,

$$
\left(H^{(0)}-\epsilon_{b}^{(0)}\right){\underset{l}{k}}_{(0)}^{\left.f_{k}, \theta_{0}\right)}=0
$$

Consider the linear manifold $\&$ which is spanned by S eigenfunctions $\Psi_{k}, 1 \leqslant k \leqslant S$, of the total Schrodinger equation (1). \& is defined to have the property that if state k in $\&$ has the zeroth order energy $\epsilon_{k}^{(0)}$, then all states k^{\prime} which have zeroth
order energies $\epsilon_{k^{\prime}}^{(0)}$ that are degenerate or almost degenerate with $\epsilon_{k}^{(0)}$, are in 8 . The sequential labelling of the states by k is for convenience and does not imply that they are the S lowest energy; states of H.

The Ψ_{k} constitute an orthonormal basis for manifold \mathcal{S}. Any other basis in \& may be defined by

$$
\begin{equation*}
\Phi_{k}=\sum_{l=1}^{S} \Psi_{l} \widetilde{C}_{l k}^{c} \tag{Ba}
\end{equation*}
$$

where the numbers $C_{l k}$ are elements of a non-singular transformation. This, if C C^{-1} is the inverse of the matrix C \qquad
\qquad
The basis functions Φ_{k} satisfy the coupled equations \qquad

$$
\begin{equation*}
H \Phi_{k}=\sum_{l=1}^{s} E_{l} \Psi_{l} C_{l k}=\sum_{j=1}^{s} \Phi_{j} \epsilon_{j k}, \tag{4}
\end{equation*}
$$

where

$$
\epsilon_{j k}=\sum_{l=1}^{S} C_{j l}^{-1} E_{l} C_{l k},
$$

and

$$
\begin{equation*}
\delta_{j k}=\sum_{i=1}^{S} C_{j l}^{-1} C_{l k} \tag{5}
\end{equation*}
$$

Given the basis functions Φ_{k}, the eigensolutions (E_{k}, Ψ_{k}) are recovered by solving the secular equation

$$
\begin{equation*}
\left.\left|\left\langle\Phi_{k}\right| H-E\right| \Phi_{l}\right\rangle \mid=0 . \tag{6}
\end{equation*}
$$

Thus, Eq. (4) and (6) are equivalent to the S uncoupled Schrödinger equations for $\left(E_{k}, \Psi_{k}\right)$. Although Φ_{k} and $\epsilon_{k \ell}$ will later be expanded in powers of λ, it is not assumed that the roots of Eq. (6) are analytic in λ. That is, it is assumed that the matrix elements of H are analytic, but not necessarily the energy eigenvalues. An example where such an assumption is valid occurs for the interaction of two 2Ω or $2 p$ hydrogen cons, as discussed by Kim and Hirschfelder. ${ }^{10}$ See also the example in Section IV.

At this point it is convenient to introduce a more compact matrix notation; e.g.,

Boll Face
epsilon
$-\epsilon=\left(\epsilon_{k l}\right)$,
Bold Far
Coy ph e $-\Phi=\left(\Phi_{k}\right)=\left(\Phi_{1}, \Phi_{2}, \ldots \Phi_{S}\right)$.

$$
\begin{equation*}
H \Phi=\Phi \mathbb{E} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
|\langle\Phi| H-E| \Phi\rangle \mid=0 . \tag{6}
\end{equation*}
$$

Perturbation Expansion. However, viewed as equations for the and $E_{\text {ff }}$, Eqs. (4) and (6) are not well-defined, since all reference to the particular linear manifold has been lost. That is, Eq. (4) has solutions in any S-dimensional linear manifold defined by the exact eigenfunntions of H. Furthermore, within any particular linear manifold, there is an infinite number of solutions of Eq. (4) corresponding to different choices for the coefficients

The lack of uniquoneru to Hq. (4) du obviated by a perenthaten

$$
\begin{align*}
& H=H^{(0)}+A H^{(1)} \\
& \dot{H}=\sum_{n+0}^{b^{1}} \lambda^{n} t^{(n)} \tag{7}\\
& \left(\xi=\sum_{n=0}^{\infty} A^{n} e^{(n)}\right.
\end{align*}
$$

 zeroth order energies

$$
\begin{equation*}
\epsilon_{k l}^{(0)}=\epsilon_{k}^{(o)} s_{k D} \tag{09}
\end{equation*}
$$

Fa. (9) corresponds to the (0) being etgenturtetons of $\mathrm{H}^{(0)}$ with ira anargy $\in_{k}{ }^{(0)}$. Furthermore, we assume that the $\phi_{k}(0)$ ara ar, lobermal,

$$
\begin{equation*}
\left\langle q^{(0)} \mid g^{(0)}\right\rangle=\theta \tag{10}
\end{equation*}
$$

where \mathcal{A} is the unit matrix. If the eigenvalue $\mathbb{C}^{(0)}$ is degenerate, their it is assumed that all of the corresponding eigenfunction are
 moneapporimate calculation of S eqgenstates ($\mathrm{E}_{\mathrm{k}}(\lambda), \mathbb{U}_{\mathrm{k}}(\lambda)$) of tic total Hamiltonian $H(\lambda)$ where $E_{k}(\lambda=0)=\epsilon_{k}(0)$ for $k=1, \ldots, S$.

Substituting the expansions (7) into (4) and setting the coefficient of each power of λ equal to zero yields the infinite aet of perturbation equations

$$
\begin{align*}
H^{(0)} \Phi^{(0)} & =\Phi^{(0)} \Theta^{(0)} \\
H^{(1)} \Phi^{(0)}+H^{(0)} \phi^{(1)} & =\phi^{(1)} \epsilon^{(0)}+\Phi^{(0)} \mathbb{E}^{(1)} \\
\cdot & \cdot H^{(1)} \phi^{(N-1)}+H^{(0)} \Phi^{(N)} \tag{11}
\end{align*}=\sum_{l=0}^{N} \Phi^{(l)} \epsilon^{(N-l)} .
$$

The first order perturbation equation (11) is equivalent to the first order equation of Van Vleck degenerate perturbation theory ${ }^{1}$ and of the treatments of Rato ${ }^{2}$ and Block. ${ }^{3}$ Thus the present formalism represents an extension of these methods to arbitrary order.

Multiplying the N-th order perturbation equstitan by and integrating gives an expression for $\mathbb{C}^{(N)}$. Making use of the hermitean property of $H^{(0)}$ together with the zeroth order $\boldsymbol{E}^{(N)}=\left\langle\Phi^{(0)}\right| H^{(1)}\left|\phi^{(N-1)}\right\rangle-\sum_{\mathcal{K}=1}^{N-1}\left\langle\phi^{(0)} \mid \phi^{(k)}\right\rangle \epsilon^{(N-k)}$

$$
\begin{equation*}
+\mathbb{E}^{(0) t}\left\langle\phi^{(0)} \mid \phi^{(N)}\right\rangle-\left\langle\phi^{(0)} \mid \phi^{(N)}\right\rangle \mathbb{E}^{(0)} \tag{12}
\end{equation*}
$$

The energy E is then obtained in the following manner. Adding the perturbation equations through the N-th order and rearranging the terms,

$$
H \Phi(N)=\Phi(N) \mathbb{E}(N)+\lambda^{N+1}\left\{H^{(1)} \phi^{(N)}-\sum_{k=0}^{N-1} \lambda^{k} \sum_{k=0}^{N-k-1} \phi^{(k+l+1)} \mathbb{E}^{(N-l)}\right\}
$$

Hence after collecting terms according to order in λ

$$
\begin{aligned}
\langle\Phi(N)| H-E|\Phi(N)\rangle & =\langle\Phi(N) \mid \Phi(N)\rangle(\mathbb{(N) - E)} \\
+ & \lambda^{N+1} \sum_{n=0}^{N-1} \lambda^{n}\left\{\left\langle\phi^{(n)}\right| H^{(1)}\left|\phi^{(N)}\right\rangle\right. \\
& \left.-\sum_{p=0}^{n} \sum_{q=0}^{N-n+p-1}\left\langle\phi^{(p)} \mid \phi^{(n+1-p+q)}\right\rangle \epsilon^{(N-q)}\right\} \\
& +\lambda^{2 N+1} \sum_{n=0}^{N-1} \lambda^{n}\left\{\left\langle\phi^{(N)}\right| H^{(1)}\left|\phi^{(N)}\right\rangle \delta_{n 0}\right. \\
& \left.-\sum_{p=0}^{N-n-1} \sum_{q=0}^{p}\left\langle\phi^{(p+n+1)} \mid \phi^{(N-p+q)}\right\rangle \epsilon^{(N-q)}\right\} .
\end{aligned}
$$

Given the solution to the perturbation equation (11) through order N , the eigenvalues and eigenvectors of the secular equations

$$
\begin{equation*}
|\langle\Phi(N)| H-E| \Phi(N)\rangle \mid=0 \tag{14}
\end{equation*}
$$

provide a sequence of eigensolutions which, assuming convergence, approach the exact solutions $\left(\mathrm{E}_{\mathrm{k}}, \mathbb{Z}_{\mathrm{k}}\right)$ as N becomes successively larger. mol iP Eq. (24) can be thought of as arising from the use of the variational method with the linear variational function

$$
\tilde{\Psi}=\sum_{k=1}^{S} \Phi_{k}(N) \tilde{a}_{k}, \quad \text { l.c. } A
$$

where the \tilde{a}_{k} are variational parameters. In this connection, the Hy1leraas-Undheim theorem is relevant: if the roots of Eq. (14) are arranged in ascending order, they provide successive upper bounds to the corresponding exact energy eigenvalues of H of the same symmetry. Thus, in case that the states in $\&$ are the lowest states of H corresponding to particular symmetries, the roots of Eq. (14) are upper bounds to the energies which they approximate.
In case the Rayleigh-Schr甘dinger expansion is possible, the (N) forms a basis for determining the Ψ_{k} accurately through terms of $O\left(\lambda^{N N}\right)$. Thus, by the Wigner theorem, regardless of the choice of \mathbb{C}, the roots of the secular equation (13) are the energies E_{k} accurate through terms of $O\left(\lambda^{2 N+1}\right)$. Thus a unique asymptotic expansion of $\left(E_{k}, \Psi_{k}\right)$ is obtained from the eigenvalues and eigenvectors of (14) by taking successively larger values of N.

An alternative way to obtain the energies, which however are not necessarily upper bounds to the exact values, is to solve the secular equation

$$
\begin{equation*}
E(2 N+1)-E 1 \mid=0 \tag{15}
\end{equation*}
$$

Here the (20 (2) is the (N) of (9) when the N replaced by 2 NHL . According to Eng (4)

$$
\begin{gathered}
\langle\alpha(2 N+1)| H-E|O(2 N+1)\rangle \\
\cdots(O)(2 N+1)|\oiint(2 N+1)\rangle[E(2 N+1)-E] \\
+O\left(2^{2 N+2}\right)
\end{gathered}
$$

Thus, substituting that into (13), with the terms of $0\left(\lambda^{2 N+2}\right.$) omitted,
 to Eq. (15). In those cases where the Rayleigh-Schrbanger expansion is possible, the roots of LC (1) are the exact energies $E_{k \text { (with } 1 \leq k \leq s) ~}^{k}$ (accurate through $0\left(A^{2 N+1}\right.$, regardless of the choice or C The analog of the secular equation (1) in the usual Rayleigh-Schrydinger theory is the partial sum of the perturbation energies. The secular equation (14) corresponds to the expectation value of $H H_{\text {with }} H$ (he wavefunction accurate through $O\left(\lambda^{N}\right)$. Ever att the Ray de gh-SchrBdinget theory, it is difficult to say which way of computing the energy is more accurate. ${ }^{13}$ In any case, the roots of Eq. (HW differ frow those of Eq. (15) by $0\left(\lambda^{2 N+2}\right)$.

In Appeadize A, Mf. (14) and the perturbation equations (11) are derived on the basis of Kirman's treatment ${ }^{5}$ of Van vieck's regenerate perturbation theory. ${ }^{1}$ This ta quite a different approach and helps to chaxify the afgndicance of the partitioning technique.

Normalization conditions and the choice of the transformation must be given to fully specify din $^{(n)}$ and $\mathcal{E}^{(n)}$. clearly cay choice of © consistent with the normalization of the $\bar{\Phi}_{k}$ and the \mathscr{Y}_{k} is. permissable. Tn cases where the Rayleigh- SchrOdinger expansion of $\left(E_{k},{ }_{K}\right)$ is possible, different choices of have very little effect on the accuracy of the calculated energy or wavefunction, and is frequently chosen on the basis of mathematical convenience, as we shall see in the next two sections. In cases where the Rayleigh-Schrbdinger expansion does not converge, the choice of $(\mathbb{C}$ is more critical.

For degenerate and almostedegenerate perturbations, full normalization of the if most convendent since it results in $\mathbb{E}^{(n)}$ being hermitean. The Kiftenan method ${ }^{5}$ consesponds to using the full normalization and determining the energles from the seculax equation (15). What we call the Modified Kirtman method corresponds to using the full normalization and determining the energies from the seculax equation (14). Instead of using the full normalization, the DEFFOL-VIM procedure ${ }^{4}$ corresponds to leaving the integrals $\left\langle\phi_{i}^{(0)} / \phi_{\infty}^{(0)}\right\rangle$ as undetermined parameters in $\underset{\mathbf{q}}{ }(\mathbb{N})$ to be fixed by mintinizing the roots E_{k} of the secular equation (14), This procedure io developed in more detadin in Section IV in connection with the almost degenerate case and is particularly useful for exchange perturbations (considered in a companion paper).

In the usual presentation of the Rayleigh-Schr dinger formalism, (is taken to be $\mathcal{C}^{(0)}$ and the normalization is restricted (usually taken to be intermediate). The $\mathbb{C}^{(0)}$ is deternined by successively diagonalizing the matrix for different orders of the perturbation until the degeneracy is resolved. In the Modified Kirtman treatment, C is varied so as to give the best energy but -t the normalization is still restricted (so fuli). In the DE-FopwIM, both (C and the normalization are variationally determined. Thus, If the wave functions are truncated after the 1 -th order, the DE-FOP-VIM energies should be more accurate than the Modified Kirtman, which in turn should be more accurate than the usual Rayleigh-SchrBdinger. of the three methods as applied to a degenerate perturbation, the Modified Kirtman is the simplest and the DEFOP-VIM requires the most work. The Kirtman (not Modified Kirtman) energies are not upper bounds to the exact energies and therefore may be better or worse than the energies determined by the other three nethods.
II. Full Normalization of the

By full normalization we mean that $\langle\overline{\langle } \mid \bar{\omega}\rangle=1$ and the phases of the are specified. With full normalization it. is easy so show that \mathcal{G} is a hermitian matrix. From Eq. (4),

$$
\begin{equation*}
\langle\Phi| H|\Phi\rangle=\langle\Phi \mid \Phi\rangle \epsilon=E \tag{16}
\end{equation*}
$$

since $\langle\Phi / H / \oint\rangle$ is hermitean, \leftrightarrows is hernitean. Furthermore expanding in powers of λ, it follows that each of the (n) are also hermitean. If instead, we had used intermediate normalization, $\left\langle\hat{\phi}{ }^{(\nu)}\right|(\hat{Q}\rangle=\hat{H}$ would be non-hermitean.

$$
\begin{aligned}
& \text { Expanding }\langle\phi \mid \dot{\phi}\rangle=\phi^{(0)}\left|\phi^{(m)}\right\rangle+\left\langle\sum_{k=1}^{(m)} \mid \phi^{(0)}\right\rangle=\sum_{k=1}^{m-1}\left\langle\phi^{(k)} \mid \phi^{(m-k)}\right\rangle
\end{aligned}
$$

Thus, the full normalization condition only determines the real part
 is associated withe fact that could be multiplied by an arbitrary phase factor $\exp (i . A(\lambda))$.

In the present section we use full normalization and fix the imaginary part of $\left\langle\left(\phi^{(0)}\left|\phi^{(m)}\right\rangle\right.\right.$ by the conditions

$$
\left\langle\phi^{(0)} \mid \phi^{(2 m+1)}\right\rangle=-\sum_{k=1}^{m}\left\langle\phi^{(k)\left|\phi^{(2 m+1-k)}\right\rangle} \begin{array}{l}
\left\langle\phi^{(0)} \mid \phi^{(2 m)}\right\rangle=\frac{1}{2}\left\langle\phi^{(m)} \mid \phi^{(m)}\right\rangle \\
>\sum_{k=1}^{m-1}\left\langle\phi^{(k)}\right| \phi^{(2 m-k)\rangle}(17) \tag{17}
\end{array}\right.
$$

In Appendix B, expressions for $\mathbb{E}^{(2 n+1)}$ and are derived in terms of accurate through $0\left(\lambda^{n}\right)$. The expressions are considerably simplified by adopting the convention for the

$$
\begin{aligned}
& \mathbb{G}^{(2 n+1)}=\left\langle d^{(n)}\right| H^{(b)}\left|\phi^{(n)}\right\rangle \\
& -\frac{1}{2} \sum_{k=1}^{n} \sum_{\sum=1}^{k=1}\left\{\epsilon^{(\beta)}\left\langle\phi^{(n+l+1-k)} \mid \phi \phi^{(n-\beta)}\right\rangle+\left\langle\phi^{(n-l)}\right| \phi^{(n+l+1-k)\rangle} \epsilon^{(k)}\right\} \\
& -\frac{1}{2} \sum_{k=2}^{n}\left\{\sum_{1=0}^{1} \epsilon^{(k)}\left\{\left\langle\phi^{(n+l+1-k)} \mid \phi^{(n-1)}\right\rangle-\left\langle\phi^{(n-l)} \mid \phi^{(n+l+1-k)}\right\rangle\right\}\right. \\
& +\frac{1}{2} \sum_{k=2}^{n} \sum_{i=0}^{\left\{k^{n}\right\}}\left\{\left\langle\phi^{(n+l+1-k)} \mid \phi^{(n-k)}\right\rangle-\left\langle\left\langle\phi^{(n-l)}\right| \phi^{(n+l+1-k)\rangle}\right\} \mathbb{c}^{(k)},\right.
\end{aligned}
$$

where

$$
\left\{\frac{k_{1}}{2}\right\}=\left\{\begin{array}{lll}
\frac{2-3}{2} & , k \text { even } \tag{18}\\
\frac{k y}{2} & , k \text { odd; }
\end{array}\right.
$$

$$
\begin{aligned}
& \mathbb{E}^{(2 n)}=\frac{1}{2}\left\{\left\langle\cos ^{(n-1)}\right| H^{(1)}\left|\alpha_{i}^{(n)}\right\rangle+\left\langle\phi \rho^{(x)}\right| H^{(0)}\left|\phi^{(n-1)}\right\rangle\right\}
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{2} \sum_{k=1}^{n-1} \sum_{k=0}^{\left[\begin{array}{l}
n \\
n
\end{array}\right]}\left\{\varepsilon^{(k)}\left\{\left\langle\phi^{(n-1)} \mid \phi^{(n-k+\ell)}\right\rangle-\left\langle\phi^{(n-k+1)} \mid \phi^{(n-l)}\right\rangle\right\}\right. \\
& +\frac{1}{2} \sum_{k=1}^{n-1} \sum_{l=0}^{\left[\frac{k}{2}\right]}\left\{\left\langle\phi^{(n-\alpha)} \mid \phi^{(n-k+l)}\right\rangle-\left\langle\phi^{(n-k+l)} \mid \phi^{(n-l)}\right\rangle\right\} \mathbb{E}^{(k)} \tag{19}
\end{align*}
$$

where $\left[\frac{k}{2}\right]=\left\{\begin{array}{l}\frac{k-2}{2}, k \text { even } \\ \frac{k-1}{2}, k \text { odd. }\end{array}\right.$

These formulas axe derived in Appendix B by algebraic manipulations of Eqs. $(11) ;{ }^{(12)}$, and $1(17)$ in a manner completely analogous to nondegenerate theory.

Xt is at first sight surprising that Eq. (18) and (19) depend on a particular choice of normalization, in view of the proof Ynviv that $\Phi(N)$ is sufficient to compute the energies E_{k}, accurate through $O\left(\lambda^{2 N+1}\right)$, regardless of the normalization. There Is no conflict in the two results, however, since, for example, the off-diagonal elements of $\epsilon^{(2 N+1)}$ do not contribute to the roots of . Eq. (14) through $O\left(\lambda^{2 N+1}\right)$.

Solution of the Perturbation Equations. The $n-t h$ order perturbation equation (ii) may be solved exactly in terms of the eigen functions of the unperturbed hamiltonian $H^{(0)}$. This is facilitated by the introduction of the reduced resolvent,

$$
\begin{equation*}
R^{(0)}=\sum_{k}^{\prime} \frac{\left|\phi_{k}^{(0)}\right\rangle\left\langle\phi_{k}^{(0)}\right|}{\epsilon^{(0)}-\epsilon_{k}^{(0)}} \tag{20}
\end{equation*}
$$

where the prime on the summation means that all the member in $\phi(0)$ are to be excluded from the sum. Otherwise, the sum is over a complete set of eigenstates of $H^{(0)}$. It may be readily shown that

$$
\begin{gather*}
R^{(0)} \phi^{(0)}=0 \tag{21}\\
\left(H^{(0)}-\epsilon^{(0)}\right) R^{(0)}=\left|\phi^{(0)}\right\rangle\left\langle\phi^{(0)}\right|-1
\end{gather*}
$$

In terms of $R^{(\infty)}$ the solutions of the perturbation equations which satisfy the normalization conditions (17) may be written

$$
\begin{equation*}
\phi^{(n)}=R^{(0)}\left\{H^{(1)} \phi^{(n-l)}-\sum_{k=1}^{n-1} \phi^{(n-k)} ⿷^{(k)}\right\}+\phi^{(0)} N^{(n)} \tag{22}
\end{equation*}
$$

 $N^{(n)}$ is y in ter es of lower order functions,

$$
\begin{equation*}
N^{(a n+1\rangle}=\sum_{k=1}^{n}\left\langle\alpha^{n}(h) \mid \cos ^{n}(\operatorname{con}+1-k)\right\rangle_{,} \tag{23}
\end{equation*}
$$

and

$$
\mathbb{N}^{(2 n)}=\frac{1}{2}\left(\phi^{(n)}\left|\phi^{(n)}\right\rangle-\sum_{n^{3}}^{\infty}\left\langle\phi^{(n)} \mid \phi^{(2 n-k)}\right\rangle\right.
$$

That of ${ }^{(b)}$ defined by th. " (2 2) actually solves the perturbation equation (11), when (u) given by (12) ,

Except for staple examples, the expressions given above axe of formal interest only, since the summations over excited states cannot be evaluated. in genera, however, it is possible to obtain variational approximations to $\phi^{(n)}$. Tot example, the first-order functions may be determined by finding the gethionary points of the functional

$$
\begin{align*}
& +\left\langle\phi_{k}^{(0)}\right| H^{(1)}\left|\tilde{\phi}_{k}^{(1)}\right\rangle-\sum_{i=1}^{S}\left\{\left\langle\hat{\phi}_{k}^{(1)} \mid \phi_{d}^{(0)}\right\rangle+\left\langle\phi_{l}^{(0)} \mid \tilde{\phi}_{k}^{(1)}\right\rangle\right\}_{k}^{(1)} \tag{24}
\end{align*}
$$

where $\tilde{\psi}_{k}^{(1)}$ is a trial function corresponding to the exact function $\phi_{k}^{(1)}$ which belongs to $\phi(1)$. It is evident that if J_{k} vanishes for arbitrary variations $\delta \tilde{\phi}_{k}^{(1)}$ in $\tilde{\phi}_{k}^{(1)}$, then $\tilde{\phi}_{k}^{(1)}$ belt satisfies Eq. (11) for $n=1$. This is analogous to the Hylleraas variational method in nonmegenerate Rayleigh-Schrbdinger perturbation theory. 12,14
III. Degenerate Perturbation Theory.

The formalism developed in Section i is particularly useful fer considering the perturbation of degenerate states. The (B) and the of. (n) are determined without requiring knowledge of the "correct zeroth order" wavefunctions, Thus the eigenvalues of either the secular equation (14) or (15) gives the energy of all of the degenerate states accurate through a given order of perturbation. The eigenvectors of (14) give the wavefunctions.

If either the secular equation (14) or (15) is solved by expansion in powers of λ, the usual-Raylelgh-Schr8dinger perturbation theory for the states in of is obtained. One must then determine the correct zeroth order wavefunctions, which depend on the order in which the degeneracy is Lifted. Hirschfelder ${ }^{15}$ has given a very thorough discussion of the complicated equations which result. The present formalism is much simpler because it does not contemplate the expansion of the secular equation, whit h may be solved by' other procedures. 16

For a degenerate perturbation problem, the special set of states $(\mathbb{A}(0)$
is defined to be any linearly independent set which spans precisely tine same space as the S eigenfunction of the S-fold degenerate level of the unperturbed hamiltonian

$$
\begin{equation*}
\left(H^{(0)}-\epsilon^{(0)}\right) \phi_{k}^{(0)}=0, \quad 1 \leqslant k \leqslant S . \tag{25}
\end{equation*}
$$

It is convenient to choose the (0) to be orthonormal, (10), but it is not necessary to assume any other special properties.

Clearly we axe thing a partitioning techuthte. The basic notion of partitioning goes back to Van Vleck, ${ }^{1}$ Lemartatones, ${ }^{17}$ Brillouin, ${ }^{18}$ and others the the early days of quantum mechandes. LBwdin and his cow workers ${ }^{6}$ have developed the partitioning techniques into very elegant

 Thus it is interesting to compare the two trationta. in place of the secular equation (13), LBtodn solves the borax equation

$$
\begin{equation*}
\mid\left\langle\phi^{(o)}\right| \tilde{H}-E\left|\phi^{(c\rangle}\right|=0 \tag{20}
\end{equation*}
$$

Where

$$
\tilde{H}:=H+H M(E) H,
$$

and

$$
\begin{equation*}
T(E)=R^{1 O M} \sum_{M=0}^{\frac{2 N-1}{2}}\left[\left(V-E+E_{d}\right) P^{6 \theta}\right]^{\infty}+O\left(A^{2 N}\right) \tag{27}
\end{equation*}
$$

since \hat{H} is a function of E, Eq. (26) is not an ordinary secular equation. Nevertheless, it can be solved in an iterative fashion. du contrast, the matrix elements of (14) or (15) are linear in the energy Nevertheless, in Appendix C it is shown that the LUwdin secular equation factors Into the product of a non-vanishing determinant times a secular
\square equation equivalent to (14). Thus the equivalence of the two treatments is established.

In many ways, almostodegenerafe witted are mote diticett bo treat than degenerate states. "find da the babe where two of more states interact sufficiently that the layledghomondrager expansions do not apply. One of the atantare beehnidnce to to

 unperturbed hamiltonian,
(which ane almost degenerate in the gen ge that the mat ion

 is itself non degenerate and that $\langle\cos / \cos \rangle=1$

Again the general equations to be solved are tags. (11) and (14) or (15). These equations are sinitat to the degenerate case, except that now $G^{(0)}$ is diagonal but it i not a multiple of the unit matrix. Furthermore, the perturbation energies axe not fixed by requirements of mathematical consistency.
 formalism. Each choice of these numbers repute in a different exmansion of Φ and \mathbb{C} : Although the roots of the secular equation (14) obtained by different choices differ only by "higher-order terms", it is of interest to examine various ways of Effing the offdiagonal elements of \mathcal{F}.

The DE-FOP-VIM Formalism. " "A general method of handling the indeterminancy in (6 is to solve for each $d^{(n)}$ as an implicit function of the off-diagonai elements $\epsilon_{j k}^{(n)}$, Then these quantities can be determined by minimizing the roots of the secular equation (14) With respect to variations in the $\epsilon_{j k}^{(n)}$.

To gain insight into this procedure, consider the solution of the first order perturbation equation (11) with $\subset f(\mathcal{f})(2 \notin)$ arbitraxy
$\{$ The general solution may be written

$$
\hat{\phi}_{k}^{(1)}=\phi_{k}^{(1)}+\sum_{j \neq k}^{S} \phi_{j}^{(0)}\left[\frac{\left\langle\phi_{j}^{(0)}\right| H^{(0)}\left|\phi_{k}^{(0)}\right\rangle-\epsilon_{j k}^{(0)}}{\epsilon_{k}^{(0)}-\epsilon_{j}^{(0)}}\right]+a_{k}^{(1)} \phi_{k}^{(0)}
$$

where $\phi_{k}^{(1)}$ satisfies

$$
\begin{aligned}
\left\langle H^{(0)}-\epsilon_{k}^{(0)}\right) \phi_{k}^{(1)}+H^{(0)} \phi_{k}^{(0)} & =\sum_{j=1}^{g} \phi_{j}^{(0)}\left\langle\phi_{j}^{(0)}\right| H^{(1)}\left|\phi_{k}^{(0)}\right\rangle \\
\left\langle\phi_{k}^{(1)} \mid \phi_{j}^{(0)}\right\rangle & =0, \quad 1 \leqslant j \leqslant S,
\end{aligned}
$$

and $a_{k}^{(1)}$ is an arbitrary noembleation constants then the S.dimenstonal variational bastia seta

$$
\Phi_{k}(b)=\phi_{k}^{(0)}+\lambda \delta_{k}^{(6)}, 1 \leqslant k \leqslant S_{2}
$$

which leads to the Sw s secular equation (24) with di(replaced by $\hat{\phi}^{(1)}$, is clearly equtvatent to the $2 S$ dimensional basis

$$
\phi_{k}^{(o)} \text { and } \phi_{k}^{(1)}, 1 s k \leqslant S
$$

This leads to the 25×25 secular equation

$$
0=\left|\begin{array}{ll}
\left\langle\phi^{(0)}\right| H-E\left|\phi^{(0)}\right\rangle & \left\langle\phi^{(0)}\right| H-E\left|\phi^{(1)}\right\rangle \tag{289}\\
\left\langle\phi^{(1)}\right| H-E\left|\phi^{(0)}\right\rangle & \left\langle\phi^{(0)}\right| H-E\left|\phi^{(1)}\right\rangle
\end{array}\right|
$$

NuTS $<$ s roots 0 Eq. (28) are identical to the roots of Eq. (14) :
if in the latter equation $N=1$ and the $\operatorname{man}_{6}^{8}$ and $a y$ are 1) varied freely and independently to a stationary point.

The Eq. (28) appears also in Hirschfelder's DE-VOP-VIM formalism for degenerate and almost-degenerate perturbation problems. It is easily seen that the extension to N-th order of this method on choosing $\&$ leads to an $(N+1) S \times(N+1) S$ secular equation, S roots of which give the desired energies accurate through $O\left(\lambda^{2 N+1}\right)$.

The DE-FOP-VIM method is simplest to apply in case that the states k in $\&$ are the lowest energy states of H corresponding to particular symmetries. Then, by Hylleraas-Undheim theorem, the S smallest roots of the DE-FOP-VIM secular equation can be identified as the approximations to the corresponding exact energies. In case that there are lower energy states of H than the states in 8 , the interpretation of the roots of the DE-FCP-VIM secular equation can become ambiguous. Clearly, the DE-FOP-VIM procedure cannot be applied to the secular equation (15) since this equation cannot be derived from the variational method.

5
The Kirtman Formalism. Another method of choosing the offdiagonal elements of \mathbb{E} is by analogy with the degenerate case. The full normalization conditions (20) uniquely fix all elements of $\&$, Just as in the degenerate case. Furthermore, in tha present case Is hermitean and the formulas (18) and (19) for $\mathbb{G}^{(n)}$ continue to hold if the wavefunction is required to satisfy Eq. (17) .

This method of fixing G was first discussed by Kirtman in his extension of Van V.eck degenerate perturbation theory to the almost degenerate case. Kirtman considered in detail the calculation of the energy through third order, which in his formalism is given as a loot of the secular equation

$$
\begin{equation*}
\left|\epsilon^{(0)}+\lambda \epsilon^{(1)}+\lambda^{2} E^{(2)}+\lambda^{3} \varepsilon^{(3)}-E\right|=0, \tag{29}
\end{equation*}
$$

which is Eq. (15) for $N=1$.
Hence the Kircman formalism will denote the trestment of almost degenerate perturbation problems by the secular equation (15) with the full normalization conditions (20).

The modified Kirtman formalism will be used to label the treatment based on the secular equation (14) with the full normalization conditions (20).

The advantage of the Kirtman or modified Kirtman formalism is that the energy is obiained as a root of an $S \times S$ secular equation, rather than the $(N+1) S \times(N+1) S$ secular equation for the $D E-F O P-$ VIM formalism. The roots of the DE-FOP-VIM secular equation are necessarily more sccurate than the corresponding roots of the modified

Kirtman secular equation in case that the lowest energy states of H are being treated. In any case the corresponding roots of the three different equations differ by $O\left(\lambda^{2 N+2}\right)$. Thus, if the almost degenerate block of states is well separated from the remaining unpercurbed states, the energies obtained by the three methods differ by terns which axe, by hypothesis, negligible.

Transformation to an Exactly Degenerate Problem. The lack of uniqueness of the off-diagonal elements of \mathbb{G} can ba avoided by defining a new split of H into an unperturbed hamiltonian and a perturbation, such that the unperturbed limit is exactly degenerate In some cases there is a natural choice for the new unperturbed hamiltonian and eigenfunctions. However, it is always possible to define

$$
\begin{equation*}
\overline{H^{(0)}}=H^{(0)}+\left|a^{(0)}\right\rangle\left[\overline{e^{(0)}}-\varepsilon^{(0)}\right]<\left.\phi^{(0)}\right|_{9} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
H^{(1)}=\lambda H^{(1)}+\left|\epsilon \phi^{(0)}>\left[E^{(0)} \bar{\epsilon}^{(0)}\right]<\phi^{-1}\right| \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{(z(0)}=E(0) d \tag{32}
\end{equation*}
$$

and $\bar{\epsilon}(0)$ may be ta'cen to be an averaged unperturbed energy,

$$
\begin{equation*}
\bar{\epsilon}(0)=S^{-1} \sum_{k=1}^{S} \epsilon_{k}^{(0)} \tag{33}
\end{equation*}
$$

or $\mathcal{C}(0)$ may be taken to be a variational parameter.

Then all of the states $\boldsymbol{c}^{(6)}$ are act ely degenerate with respect

$$
(\bar{H} \cos -\cos) d \theta d \theta
$$

 handing almost-degeneracy is seqgederat in mot bexthooks. 20

Let a bar denote perturbation tern in the papansion of G Gun e based on Eq. (Sst

$$
\text { Io }=0
$$

and

$$
G=\alpha(0)+\overline{z^{2}}+(2)+\bar{a}+0 .
$$

 Eq. (18)

$$
\bar{G}^{(1)}=\left\langle\phi \phi^{(0)}\right| H^{(\theta)}|\cos \rangle=N\left(e^{(0)} \cos ^{\cos)}\right.
$$

so that

$$
\overline{\mathcal{Z}}(a)+\overline{(E}(0)=\operatorname{c}^{\sin }+\lambda \varepsilon^{(1)}
$$

With the normalization $(16), \quad\left\langle\cos ^{2} y\right| t h=0$, the fete order equation (II) can be written

$$
\begin{equation*}
\left(H^{(0)}-\epsilon(\infty) \bar{\phi}^{(1)} H^{(1)} \operatorname{ch}^{(0)}=\operatorname{tos}(0) \cos ^{0}\right. \tag{34}
\end{equation*}
$$

Eq. (34) reveals that $E(0)$ enters into , and hence
 $E(2)$
 , in a non-txivial way, so that the latter quantities are not simply related to (<) and $\overbrace{}^{(2)}$. Thus, it is possible to energy optimize the (0)
 The solution of the almost-deganerate perturbation problem is thus reduced to the solution of an equivalent degenerate perturbation and the techniques of section III may be applied.

The relationship between the DE-FOP-VIM, Kirtman, and modified Kirtman formalisms as well as the reduction to a truly degenerate problem is best understood by considering the example given in the following companion paper. ${ }^{2}(P$ en $7 \pi)$.

V. Electron Exchange Perturbation Problems.

In this section, the perturbation formalism given in Section 1 is generalized so as to be suitable for a wide range of electron exchange problems includiag those which involve configurational interactions. The dimensionality of the secular equations which we derive can be greatly reduced by making use of symmetry considerations. This is done in the companion paper III ${ }^{22}$.

In order to apply to electron ex-hange problems, the partitioning formalism developed in Section I must be modified in the following ways:
1). The zeroth order functions $\phi_{1}^{(0)}, \ldots, \phi_{\mathrm{s}}^{(0)}$ no longer need to be eigenfunctions of the same zeroth order Hamiltonian. Thus,

$$
\begin{equation*}
\left(\mathrm{H}_{\mathrm{k}}^{(0)}-\epsilon_{\mathrm{k}}^{(0)}\right) \oint_{\mathrm{k}}^{(0)}=0 \tag{35}
\end{equation*}
$$

2). In order to express the perturbed Hamiltonian in the form

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{1}^{(0)}+\lambda_{H_{1}}^{(1)}=\ldots=\mathrm{H}_{\mathrm{S}}^{(0)}+\lambda_{H_{S}}^{(1)} \tag{36}
\end{equation*}
$$

the perturbation parameter λ can only have the value of unity.
3). The zeroth order functions $\varnothing_{1}^{(0)}, \ldots, \varnothing_{\mathrm{s}}^{(0)}$ are normalized but not orthogonal. Thus,

$$
\begin{equation*}
\left\langle\phi_{j}(0) \mid \phi_{k}^{(0)}\right\rangle=s_{j k} \tag{37}
\end{equation*}
$$

Here $s_{k k}=1$, but the overlap matrix $\int^{\text {is not }}$ unitary.

These modifications do not lead to any major changes in the treatment. As in Section I,

$$
\begin{equation*}
E_{k \ell}^{(0)}=E_{k}^{(0)} \delta_{k \ell} \tag{9}
\end{equation*}
$$

The only difference in the perturbation equation in \bar{T} and the equations here are the subscripts on $H^{(0)}$ and $H^{(1)}$. Thus, corresponding to Eq. (11), we now have

$$
\begin{equation*}
\left(H_{k}^{(0)}-\epsilon_{k}^{(0)}\right) \boldsymbol{\phi}_{k}^{(n)}+H_{k}^{(1)} \phi_{k}^{(n-1)}=\sum_{l=0}^{n-1} \sum_{j=1}^{s} \phi_{j}^{(l)} E_{j k}^{(n \cdots l)} \tag{38}
\end{equation*}
$$

Note that Eq. (38) reduces to Eq. (5). Multiplying Eq. (38) by $\sum_{i=1}^{s} S_{j i}^{-1} \phi_{i}^{(0) \%}$ and integrating, we obtain
corresponding to Eq. (12). Adding together the first N perturbation

$$
\begin{align*}
H \Phi_{k}(N) & =H_{k}^{(1)} \phi_{k}^{(N)}+\sum_{k=0}^{N} \sum_{j=1}^{s} \Phi_{j}(N-l) \epsilon_{j k}^{(l)} \\
& =\sum_{j=1}^{s} \Phi_{j}(N) \epsilon_{j k}(N)+O\left(\lambda^{N+1}\right)
\end{align*}
$$

The energy is then determined accurately through terms of $0\left(\lambda^{2 N+1}\right)$ by solving the secular equation

$$
\begin{equation*}
|\langle\Phi(N)| H-E| \Phi(N)\rangle \mid=0 \tag{14}
\end{equation*}
$$

The presentation in the companion paper ${ }^{22}$ is given from the Kirtman-Van Vleck approach considered in Appendix A. As noted in Appendix A, the two approaches lead to the same working equations.

Now let us consider the first order perturbation equation,
Eq. (38) with $n=1$,

$$
\begin{equation*}
\left(\mathrm{H}_{\mathrm{k}}^{(0)} \cdot E_{k}^{(0)}\right) \boldsymbol{\phi}_{k}^{(1)}+\mathrm{H}_{\mathrm{k}}^{(1)} \phi_{k}^{(0)}=\sum_{i=1}^{s} \mathscr{P}_{i}^{(0)} E_{j k}^{(1)} \tag{41}
\end{equation*}
$$

The most general expression for $\boldsymbol{\phi}_{\mathrm{k}}^{(1)}$ is

$$
\begin{equation*}
\phi_{k}^{(1)}=\hat{\phi}_{k}^{(1)}+\sum_{j}^{(1)} \phi_{j}^{(0)} \alpha_{j k}-\sum_{l}^{(2)} \omega_{k l} \epsilon_{l k}^{(1)} \tag{42}
\end{equation*}
$$

Here $\phi_{k}^{(1)}$ is the first order polarization function which is orthogonal to $\boldsymbol{\phi}_{k}(0)$ and satisfies the equation,

$$
\left.\left(H_{k}^{(0)}-E_{k}^{(0)}\right) \phi_{k}^{1(1)}+H_{k}^{(1)} \phi_{k}^{(0)}=\sum_{j=1}^{(1)} \phi_{0}^{(0)}<\phi_{j}^{(0)} / H_{k}^{(1)} \phi_{k}^{(0)}\right\rangle
$$

In both Eqs. (42) and (43), the $\sum_{j}^{(1)}$ mean that the summation is to be taken over all states j (including k) such that

The $\sum_{l}^{(2)}$ is the summation over the remainder of the s basis
functions. The functions $\mathcal{W}_{k \ell}$ are the exchange functions which are orthogonal to $\boldsymbol{\phi}_{k}(0)$ and satisfy the equation

$$
\begin{equation*}
\left(H_{k}^{(0)}-\epsilon_{k}^{(0)}\right) \omega_{k l}=\phi_{l}^{(0)}-\sum_{j}^{(1)} S_{j l} \phi_{j}^{(0)} \tag{45}
\end{equation*}
$$

The constants $\alpha_{j k}$ and $\mathcal{E}_{l k}^{(1)}$ are best determined by optimizing the energy E for the state under consideration. This corresponds to the DE-FOP-VIM procedure. Thus, different values of both the $\alpha_{j k}$ and $E_{l k}^{(1)}$ are obtained for each state. Substituting (42) into (41) and making use of Eds. (43)-(45), it follows that for those states j in subset (1),

$$
\begin{equation*}
\left.\epsilon_{j k}^{(1)}=\left\langle\phi_{j}^{(0)}\right| H_{k}^{(1)}| |_{k}^{(0)}\right\rangle-\sum_{l}^{(2)} s_{j l} \epsilon_{l k} \tag{46}
\end{equation*}
$$

Referencen

1. J. H. Van Vleck, Phys. Rev. 33, 467 (1929); see also ref. 11, p. 394.
2. T. Kato, Prog. Theor. Phys. 4, 154 (1980); see also ref, 20, p. 712-20.
3. C. Bloch, Nucl. Phys. 6, 329 (1958): Bee also ref. 20, p, 719-20.
4. J. O. Hirschfelder, J, Chem. Phys. 39 , 2000 (1963); see also mot. 52, p. 312.
5. B. Kirtman, J. Chem. Phys. 49, 3890 (1968); 1bid. 3895 (1968).
6. P.-0. LUwdin in Perturbation Theory and in Quantum Mechanics.
C. H. Wilcox, ed. (WLley, New York, 1966) and refetences contained therein.
7. P.-0. Lywdin, J. Math. Phys. 6, 1341 (1965).
8. J. H. Choi, J, Math. Phys. ('o be published); see also Univ. of Fla. Quantum Theory Project Preprint No. 89, 1966 (unpublished).
9. S. O. Goscinski and P.-O. LUwdin, Univ. Uppsala Quant. Chem. Reports No. 205 and 206, 1.969 , (unpublished).
10. H. Kim and J. O. Hirschfelder, J. Chem, Phys. 46, 4553 (1967).
11. E. C. Kemble, Quantum Mechanics (Dover, New York, 1958), p. 4 15.
12. J. O. Hirschfelder, W. Byers Brown, and S. T. Epstein, Adv. in Quant. Chem. 1, P.-0. LBwdin, Ed. (Academic Press, New York, 1964).
13. Ref. 12, p. 359 and p. 267.
14. E. A. Hylleraas, Z. Physik 48, 469 (1928) and 65, 209 (1930);
also, "The Variationai Principle in Quantum Mechanics", Rept.
No. 1, Inst. Theoret. Phys, University of Oslo (1961).
15. J. O. Hirschfelder, Int. J. Quant. Chem. - 3 , 731 (1969).
16. J. H. Wilkenson, The Algebraic Eigenvalue Problem (Clarendon Preas, Oxford, 1965).
17. J. E. Lennard-Jones, Proc. Roy. Soc. (London) 129 , 604 (1930).
18. L. Brillouin, J. Phys. radium (7) 3, 373 (1932).
19. P.fo. LJwdin, J, Math, Phys, 3, 939 (1962).
20. Ref. 12, p. 297.
21. P. R. Certain, D. R. Dion, and J. O. Herschfelder, J. Chem. Phys. (companion paper
 paper; paper yin.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

PRECEDING PAGE BLANK NOT FILMED.

- PhPIXA. Derivation of Secular Equation and Perturbation Equations

Cong Virtman-Van Vleck Approach.

Consider a complete set of functions, which is split into two classes, $\subset^{(0)}$ and $X^{(0)}$, and which spans the Hilbert space of the hamiltonian $H(\lambda)=H^{(0)}+\lambda H^{(1)}$. We have already discussed the $\phi^{(0)}$
number) which complete the set are denoted by

Bold Face hic, chi

Whet loss of generality, it is assumed that

$$
\begin{equation*}
\left\langle x^{(0)} \mid x^{(0)}\right\rangle=1 \tag{A.1}
\end{equation*}
$$

ลาะ

$$
\begin{equation*}
\left\langle x^{(0)} \mid \phi^{(0)}\right\rangle=0, \tag{AB}
\end{equation*}
$$

where (1) is the null matrix. No other assumptions are made regarding $X^{(0)}$; in particular, the $\chi_{k}^{(0)}$ is not necessarily an eigenfunction of $H^{(0)}$ -

In zenaral, to compute the $\left(E_{k}, \Psi_{k}\right)$ exactly, it is necessary to consider both $\phi^{(0)}$ and $X^{(0)}$ since the interaction elements $\left\langle\phi^{(\dot{)}}\right| H\left|X^{(0)}\right\rangle$ are non-vanishing. Then the E_{k} are roots of the infinite-dimensional secular equation

$$
\left\langle\phi^{(0)}\right| H-E\left|\phi^{(n)}\right\rangle\left\langle\phi^{(0)}\right| H-E\left|X^{(0)}\right\rangle
$$

$$
\begin{equation*}
=0 \tag{A.3}
\end{equation*}
$$

Following Van Vleck and Kirkman, ${ }^{5}$ the solution of Eq. (A.3)
$\Phi(N)$ and
\qquad
The functions $\phi^{(k)}, \chi^{(k)}$ are chosen so as to make the over lap am e hamiltonian matrix elements connecting $\Phi(N)$ and $\mathbb{C N}(N)$ vanish through terms $O\left(\lambda^{N}\right)$:

$$
\begin{equation*}
\langle\Phi(N)| H-E|X(N)\rangle=O\left(\lambda^{N+1}\right) . \tag{A.5}
\end{equation*}
$$

Then the leading contribution of the functions $X(N)$ to the energies $E_{k}, \quad 1 \leqslant k \leqslant S$, is proportional to

$$
|\langle\Phi(N)| H| X(N)\rangle\left.\right|^{2}=O\left(\lambda^{2 N+2}\right) .
$$

Hence the roots of the $S \times S$ secular equation,

$$
\begin{equation*}
|\langle\Phi(N)| H-E| \Phi(N)\rangle \mid=0, \tag{100}
\end{equation*}
$$

are accurate through $O\left(\lambda^{2 N+2}\right)$.
To obtain equations for $\mathcal{A}^{(k)} \mathbb{X}^{(k)}$, it i convenient to introduce the projector onto the set $\Phi(N)$:

The perturbation terms of $\mathcal{X}(N)$ are given by

$$
\begin{equation*}
\chi(N)=(1-0) x(N) \tag{A.8}
\end{equation*}
$$

which assures orthogonality between $\Phi(N)$ and $X(N)$ through $O\left(\lambda^{N}\right)$. The perturbation terms of $\Phi(N)$ are determined by

$$
\begin{equation*}
|\langle\Phi(N)| H| X(N)\rangle \mid=O\left(\lambda^{N+1}\right) \text {. } \tag{A.9}
\end{equation*}
$$

The $X(N)$ is a complete set of functions in the space or thogonal to $\Phi(N)$ - If overlap of $H \Phi(N)$ with all of $X(N)$ vanishes, then $H \Phi(N)$ must be expressible as a linear combination of the $\Phi(N)$. Thus, Eq. (A.9) is equivalent to

$$
H \Phi(N)=\Phi(N) \mathbb{E}(N)+O\left(\lambda^{N+1}\right)
$$

where the elements of $\mathbb{G}(N)$ are numbers to be determined. In the limit $N \rightarrow \infty$, Eq. (A.10) clearly becomes Eq. (i) .

```
APPENDIX B. Proof of 1 (is, (18) and (19 )for Expressing
    \((2 N)\) and \((4 N+1)\)
```

Eqs. (18) and (1,9) are very important in the application of our formalism. When this formalism is extended to the calculation of physical properties other than energy the will be nacegsaxy to make use of additional expression for these merge matrices. These are derived in this Appendix.

First, however, it ts convenient to establuels sone intermediate results. By taking the adjoint of Eq. (17) and adding to to the original equation, one obtains

$$
\begin{equation*}
\sum_{k=0}^{m}\left\langle\phi^{(k)}\right| \phi^{(m-k)\rangle}=0, n>0 \tag{E,1}
\end{equation*}
$$

The following relation will be receded later:

$$
\begin{align*}
& \left\langle\phi^{(l-1)}\right| H^{(1)}\left|\phi^{(n-l)}\right\rangle=\left\langle\phi_{1}^{(l)}\right| H^{(1)}\left|\phi^{(n-l-1)}\right\rangle \tag{3.2}
\end{align*}
$$

This is proved by multiplying the \mathcal{P}-th otter perturbation equation (11) from the left by $\alpha \phi^{i n t h}$ and integrating.

$$
\left\langle\phi^{(n-2)}\right| H^{(0)}\left|\phi^{(0)}\right\rangle+\left\langle\phi^{(n-2)}\right| H^{(n)} \mid \phi^{(a-1)\rangle}
$$

$$
=\sum_{k=0}^{\ell}\left\langle\alpha^{(n-l)} \mid \phi^{(\ln k)}\right\rangle c^{(k)}
$$

and multiplying the ($n-\ell$)-th order equation from the left by $\phi^{(0)}$ and integrating,

$$
\left\langle\phi \phi^{(l)}\right| H^{(0)}\left|\phi \phi^{(n-l)}\right\rangle+\left\langle\phi^{(l)}\right| H^{(1)}\left|\phi^{(n-l-1)}\right\rangle
$$

$$
\begin{equation*}
=\sum_{k=0}^{n-l}\left\langle\phi^{(l)} \mid \phi^{(n-l-k)}\right\rangle \mathbb{e}^{(k)} . \tag{B,4}
\end{equation*}
$$

Taking the adjoint of Eq. (B.3) and subtracting Eq. (B.4) from it yields Eq. (B.2).

Application of Eq. (B.2) $q(p-1)$ times to Eq. (12) yields

$$
G^{(p)}=\langle\phi(q)| H^{(1)}|\phi(p-q-1)\rangle+\sum_{l=0}^{q} \sum_{k=0}^{l} \mathbb{E}^{(k) \dagger}\left\langle\phi^{(l-k)} \mid \phi \phi^{(q-k)}\right\rangle
$$

$$
-\sum_{l=1}^{8} \sum_{k=0}^{p-l}\left\langle\phi^{(l)} \mid \phi^{(p-l-k)}\right\rangle \epsilon^{(k)}-\sum_{k=0}^{p-1}\left\langle\phi^{(0)} \mid \phi^{(p-k)}\right\rangle(p)
$$

Interchanging the order of summation gives

$$
\begin{aligned}
\epsilon^{(p)} & =\left\langle\phi^{(q)}\right| H^{(1)}\left|\phi^{(p-q-1)}\right\rangle+\sum_{k=0}^{q} \epsilon^{(k)} \sum_{l=0}^{q-k}\left\langle\phi^{(l)} \mid \phi^{(p-k-l)}\right\rangle \\
& -\sum_{k=0}^{p-q-1} \sum_{l=0}^{q}\left\langle\phi^{(l)} \mid \phi^{(p-l-k)}\right\rangle \epsilon^{(k)}-\sum_{k=p-q}^{p-1} \sum_{l=0}^{p-k}\left\langle\phi^{(l)} \mid \phi^{(p-l-k)}\right\rangle \epsilon^{(b)} .
\end{aligned}
$$

The final term vanishes by the normalization condition Eq. (B, 1). Furthermore, $\mathcal{E}^{(n)}=\mathbb{E}^{(n) t}$. Hence,

$$
\begin{equation*}
\sigma^{(p)}=\left\langle\phi^{(q)}\right| H^{(1)}\left|\phi^{p-q-1)}\right\rangle+\sum_{k=0}^{q} \epsilon^{(k)} \sum_{l=0}^{q-k}\left\langle\phi^{(l)}\right| \phi^{(p-k-l)\rangle} \tag{B.5}
\end{equation*}
$$

$$
-\sum_{k=0}^{p-q-1} \sum_{l=0}^{q}\left\langle\phi^{(k)} \mid \phi^{(p-l-k)}\right\rangle \xi^{(k)}
$$

Eq. (18) then follows from Eq. (B.5) by setting $p=2 n+1$, $q \equiv r$ and making use of Eq. (17); Similarly Eq. (19) follows from Eq. (B.5) by setting $p=2 n, q=n-1$ and making use of Eq. (17).

In order to compare our treatment with LUwdin's it if necessary that we switch from full to intermediate normalization. To avoid confusion with the results using full normalization, subscripts rather than superscripts will be used to denote order in intermediate normalization. It is also convenient to absorb λ into the definitions of the perturbation terms and to define

$$
\begin{aligned}
& V=\lambda H^{(1)} \\
& V^{\prime}=V=\left(E-\epsilon_{0}\right)
\end{aligned}
$$

$$
\mathcal{E}_{k}^{\prime}=\left\{\begin{array}{c}
\epsilon_{0}+\sigma_{1}-E_{k}, k=1 \\
\epsilon_{k}, k \neq 1
\end{array}\right.
$$

For intermediate normalizations

$$
\left\langle\phi_{0} \mid \phi_{n}\right\rangle=0, \quad n \geqslant 1 .
$$

Multiplying Eq. (11) from the left by $\boldsymbol{\phi}^{\frac{7}{~}}$ and integrating gives

$$
\begin{equation*}
\varepsilon_{n}=\left\langle\phi_{0}\right| \cdot V\left|\phi_{n-1}\right\rangle \tag{0.2}
\end{equation*}
$$

Eq. (C.1) allows $\mathbb{N}^{(m)}$ to be omitted from Eq. (22) so that the perturbation wavefunctions are

$$
\phi_{n+1}=R_{0} V^{\prime} \phi_{n}-\sum_{k=1}^{n} R_{0} \phi_{n+1-k} \mathbb{E}_{k}^{\prime}
$$

Iterating this equation, it follows that

From Eqs. (29) and (C.3) (using the fact that $R^{(0)} \phi^{(0)}=0$)

$$
\begin{aligned}
\Gamma(E) V \phi_{0}= & \sum_{n=0}^{2 N-1} \phi_{n+1}+ \\
& +\sum_{n=1}^{2 N-1} \sum_{l=0}^{n-1} \sum_{k=1}^{n-l}\left(R^{(0)} V^{\prime}\right)^{\ell} R^{(0)} \phi_{n+1-l-k} E_{k}^{\prime}
\end{aligned}
$$

$$
+O\left(\lambda^{2 N}\right)
$$

Substitution of this result into Eq. (26) and using Eq. (C.2), and rearranging the terms gives

$$
0=\begin{gathered}
\sum_{n=0}^{2 N+1} G_{n}-E \\
\quad+\sum_{n=1}^{2 N-1} \sum_{l=1}^{n}\left\langle\phi_{l} \mid \phi_{n+1-l}\right\rangle \sum_{l=1}^{2 N-n} \mathbb{E}_{R}^{\prime}
\end{gathered}
$$

$$
+\sum_{n=1}^{2 N-2} \mathbb{E}_{n}^{\prime} \sum_{p=0}^{2 N-n-2} \sum_{t=0}^{p} \sum_{v=0}^{p-t}\left\langle\phi_{v+1}\right| R_{0}\left(V^{\prime} R_{0}\right\rangle^{t}\left|\phi_{p-t+1-2 v}\right\rangle \sum_{k=1}^{2 N-n-\gamma_{1}-1} \mathbb{E}_{k}^{\prime}
$$

 may be replanted by $2 N+1$ if taxis $O\left(\lambda^{2 H+2}\right)$ are neglected: Hence,

$$
\begin{aligned}
& x\left|\sum_{n=0}^{2 N+1} G_{n}-E+O\left(\lambda^{2 N+2}\right)\right|
\end{aligned}
$$

Assuming that the first determinant is nonvanishag y Lain

$$
\begin{equation*}
0=\left|\sum_{n=0}^{2 N+1} E_{n}-E+O\left(\lambda^{2 N+y_{2}}\right)\right| \tag{1}
\end{equation*}
$$

Hence, the energies determined by Eq. (26) are identical with the energies determined by Eq. (C.4) through $O\left(\lambda^{2 \mu s t i}\right)$, Hathor more, it was shown in Chapter two that the change from intermediate to full normalization also affects the roots of Eq. (15) by $O\left(\lambda^{a N+2}\right)$ terms. Hence, it follows that the roots of secular equations (26) and (15) differ by $O\left(\lambda^{2 A+2}\right)$ terms.

