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NEW PARTITIONING PERTURBATION THEORY:

I. GENERAL FORMALISM

by,

Phillip R. Certain+ and Joseph 0. Ifirschfelder,

University of Wisconsin Theoretical Chemistry institute
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ABSTRACT

By the use of partitioning techniques, a general formalism is

developed for considering degenerate, almost degenerate ;, and electron

exchange perturbation problems. In effect, we generalize the Van Vlecka-

Kirtman approach to arbitrary orders and arbitrary normalization and

obtain three types of approximations 	 In the Modified Kirtman treatment

the functions through the N-th order are fully normalized and the

energy is obtained as the roots of the secular equation. The DE-FOP-VIM

approximation is the same except that the normalization of the functions

is energy optimized. The Kirtman approximation uses the same functions

as the Modified Kirtman but the energy is obtained as the roots of a

much simpler secular equation which results from a factorization of

the original secular equationi (except for terms of order 2N+2)." The

of
Kirtman energies are not upper bounds. Low.din's formalism is equivalent

'I

to the Modified Kirtman with the exception that Low4 in uses intermediate

normalization. Electron exchange problems are considered more explicitly

in a companion paper with the use of symmetry considerations.

.i

NSF Predoctoral Fellow, , 1965-69 Present .address.: Department of
Chemistry, University of Manchester, England,

^.	 This 'work was supported by the National Aeronautics and Space
Administration Grant NGL 50-002-001.
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IV the use ofparLILIoning,	a general formalism is

developed for coasiJering degenerate ,, almost degenerate, and electron

Iexchange perturbatiou p roblems. Our formalism is -related to the

methods of Van 'VIuck I , Kato 2 , Blocid ., Hirschfelder 4 , Kirtman 5 . and

11 6^ 7 	
I0 1	 tbe8e partitioning treatments,L wd-',,n	 In all of	 %I	 the energy is

given as the roots of a secular equation. The matrix elements of

the secular equation are a-,, ,sutaed to be analytic, in the perturbation

parameter, but neither the euorrgy nor the wave functions need

to be analytic in Lhis parameter. Thus, a partitioning formalism

can have a greater range of %ralidity than the Ray leigh-Schrodinger

procedure.

Although. our approach is quite different, we obtain a generauzation

of Kirtman's treatment s to arbitrary order and to arbitrary normalization.

Although the choice of normalization is immaterial for infinite order

calculations, it does playa role in low-order treatments and becomesY

increasingly important as the deviations from Rayleigh-Schrodinger

behaviour becomes _barge. Thus, the choice of normalization is likely

to be very important in using a low-order perturbation formalism to

consider an electron exchange problem. We obtain three types of

approximations:

1). The Modified Kirtman (MK) Approximation. The energy is

determined by a secular equation in which the basis functions are

accurate through the N-th order and fully normalized. Lowdin's

partitioning formalism is equivaler-t to the MK with the exception

that Lowdin uses intermediate normalization.
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2), The )'E-VO'V-V,--,M Approximation, Tile DE-FOP-VTM is the same

as the MK except that thc- normalization of the functions is optimized

with respc--,1t., to tt.,h.e particular state under consideration. This leads

to secular ^quatj,ons having much larger dimensionality.

3). Vie Xirtmaii (K) Approximation, The Kirtman approximation

is obtained by factoriza ,tion of the MK secular equation (ignoring

terms of order 2N+2) so that the Kirtman onergy is given as the roots

of a much simpler, secular eqimLlon. The Kirtnian enr-^rgies are not

upper bounds, However, this procedure has tile advantage thar the

energies for all of a set of degonerate states are determined by

solving a sina.le secular equation regardless of the orders in which

the degeneracies of the various states are resolved. This is to be

contrasted with the Lowdin 6 ' 7 and Choi 8 partitioning techniques

which require the solution of different secular equations for degenerate

states belonging to different classes (We have not yet seen a

preprint of the unpublished results of Goscinski, and L106din 9

In Section V of this paper ', our partitioning formalism is

modified so as to apply to electron exchange problems, This treatment

is quite general and should. 'be applicable to examples where atomic

degeneracies and/or multiconfigurational interactions are involved.

However, in any particular case, symnietry , comiide-rations can 'be used

to greatly simplify the formalism. This is done in a companion paper 22-

(Paper I'll). However, our present treatment is more general than

Paper III in the sense that our basis set is not restricted to having
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Y. General Formulation.

Consider the solution of the Schr8dinger equation

^^,.^^, ^t	 GAS ^.	 ^d•^I^ `^''

s

where the hamiltonian is the sum of two terms,

.a e" a-

H u 10) 4., x(a^ =	 Tl

The H (G) is the hamiltonian for the unperturbed system, and th,e

is a perturbation. The parameter A in some cases has

physical significance ( e a.g. field strength), but otherwise is a Formal
a

ordering parameter with }a numerical valxe of unity. The unperturbed
e	 °

hamiltonian is assumed to possess a complete set of eigensolutions,

r"

(N	 E(0)	 o.

Consider the linear manifold 	 which is spanned by	 eigen-

functions	 < S'	 , of the total SchrUdinger equation (1).

Q
^

,	 L)	 is defined to haup the nrnnarty that if af*AI'A i2	 ire /1 nan tho
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(0)
order energies C	 that are de-enc:rate or almost degenerate with

;	 i are in ,4 . The sequential labelling of the states by I LL is

for convenience and does not imply that they are the S lowest energy

states of H .

The qk constttute a n orthonormal basis for manifold ^ . Any

other basis in N may be defined by

__-	
C

C,k 	
(3#t) --

where the nlfmherm 
^,(k 

are elements of a non- s ingular transformation.

Thee, if	 -1 is the inverse of the matrix

^	 S

The basis functions satisfy the coupled equations

,where	 S•,

C -i

and	 (5)

S _	 C^

Given the basis functions 41, J, the eigensolutions CE ke qk

are recovered by solving the secular equation

i



M < (ko. I }-^  	 I Ĉ _'R > 1-- v . (6)	 4

Thus, Eq. (4)	 isnd	 ( 6 ) arc e quivaltot to the S uncoupled

Schrodinger equat ions For	 rOz ;0 Vd. •lltheugh 4 b. and 4.e will

lunar be (ixpanded in powers of X , it is not assumed that Uie roots

of Eq.	 ( 6 ) are analytic in X . That is, it is atio;tlaeed that the

matr ix . elnmWts of H are nnaAytic, but not necessarily the energy

eigenvalues. An example where such ati assumption iu valid occurs for

the interaction of tw , l x/L or 2-r hydcugen t"on ►s, as discussed by

Kim and Hir.schfelder. io St% f # alas the example. in Section IV - .
At this point it is convenient to introduce a more compact matrix

notation; e.g.)

C E kja > >

^4,
	

C	
^.

In this nota-

tion, Eq.	 (4) and	 (6)_  become

H (§ = 4 s

and

1	 I(4IH-EI4)I=0.

Perturbation Expansion. however, viewed as equations for the
x

and le	 Eqs. (4) and (6" are not well-defined, since all reference

to the particular linear manifold .4	 has been lost. That is, Eq. (4)

has solutions in an S-di.nwnsional linear manifold defined by the exact

eigenfunctions of H	 Furthermore, within any particular linear

manifold, there is an infinite number of solutions of Eq. (4)

corresponding to different choices for the coefficients 	 C
:e

(4)

(6)
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The lack Of	 ^U 11q. (4)	 la obvialed by a

to ics 00I.utI0U * T-111) 1"W 11, "1111' 8;	 3rd

^q	 H

3

It i s conveoient to 4ef iiv ,	 0g_F s,i L u l,31 t flc

X

M,
PV

2. A
*0Aj

he linear maoifold	 is till

zeroth order energies

Fri . 1 5" corresponds to the	 (0) being e-. gpn.Fu,(tQ.tj oi l s of D O) vri-h

k(0)	 I-lurthermore, we assurrie that, the 6k( 	 _ "0

o r t #,) t,(,, rma I j

(0) 1 . 4tJ(0) >

(0)
here	 is the unit matrix. If the eigenvalue	 is degenerate,

k

''j"S a	 re	 d 11a.1g eigenfuactio tis are-.1tj Ct_	 atassumed 'th, &11 ' of the, core spoq

"'A 11 61tided n	 set	 in a basis of unperturbed functions

tlfe- uIpproldmate calculatlor ► of S eigenstates	 E- k
(	 k	

0:C

r i ► .c total Hamiltonian HN where E (X=O)k0) for k	 1,	 r S



(0) 

H(0)0(1)
0 0	 •

H(#)O (0) *

N
i	

`	 R

(A

jet ^fo)

^p1 ^lo) ,^ „Alo)^G)
w^

(11)

a	

p (At—J)

6a

b^A

Substituting the expansions (7) into (4)rtand setting the co.

efficient of each power of X agval to zero yields the infinite

set of perturbation equations

The first order perturbation equation(11) is equivalent to the first

order equation of Van V1eck degenerate perturbation theory' and of

the treatments of Kato `, and Block. 3 Thus the presont formalism

represents an extension of these methods to arbitrat y order.

P	 p	 ^	 5 : 	 tMultiplying the N - th order erturbation e qu =^,n

and integrating gives an expression for 	 (N)	 Making use of

the hermitean property of H(o) together with the zeroth order

verturbation equation,

	

 ^_^	 (w- JO)
^^

owe C	 I
of '	

^	 X01	 ^ N1 ^ ^o^(0)	 c	 .	 1

(12)

x

o-

I



f

6b

The energy E is then obtained in the following manner. Adding the

perturbation
 equations through the N-th order and rearranging the terms,

Nth	 ^ ^^ fN^ .,,	 ^ ^ ^t^+^^^,(g)
N	 ,	 +' 	 f	 kM a O	

a

Heno	 fter 
collecting terms according to order in Ai	

q a	
k
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Given the oolution to the perturbation equation (11) thro ,igh order

r'
N , the eigenvalues rind eigenvectors of the secular equations

I

< gf (N) I H-E	 (N)>)	 0	 14
provide a sequence of eigensotutions which, assuming convergence, approach

the exact solutions (E k .
T k)

as	 N becomes successively larger.

Eq.	 GAl ') call be thought of as arising from the use of the

variational method with the linear variational function

0
'v	

C A

LP ^ 

where the u^ are variational parameters. In this connection, the

Hylleraas-Unalieim theorem 
it 

isrelevant: if the roots of Eq. (14)

are arranged in ascending order. they provide successive upper bounds

to the corresponding exact energy eigenvalues of H of the same

symmetry. Thus, in case that the states in I are the lowest states

of H corresponding to particular symmetries, the roots of Eq. (14)

are upper bounds to the Energies which they approximate. -^^--

In case the Rayleigh-Schrtidinger expansion is possible, the 	 (N) forms

a basis for determining the 	 k accurately through terms of 4l(N.N)

Thus, by the Wig;ier theorem, regardless of the choice of 	 , the roots

of the-secular equation (13) are the energies Ek accurate through terms

Of 0(%2N+1)	 Thus a unique asymptotic expansion of (F. k) V k) is

obtained from the eigenvalues and eigenvectors of"(14)by taking successively

larger values of N .

An alternative way to obtain the energies, which however are not

necessarily upper bounds to the exact values, is to solve the secular equation

O	 (15)



F

Here the	 (2j! I) iQ the (N) Of (9) with the N replaced by

4

14"	 El -""I') c^uq+-O' 	(IN )>	 (:ZN+I)

4- 0 (Az 'V*2) ''	
4

Thu '-'; substil p'Uttingy thlo, iuto (13) i with the terims of 0( 7,,U+2

and factoring t 	 W	 '(a At+	 from the ieterm i naut leadsor

to Li q, (a5)." 	 In thomo ca,,ie8 where Lbe -Ray le	 er ex nsi 11 -1' s	igh-Schrtiding	 pa	 o

posr,tble j 11-to roots of	 are the exact ever	 , Ek._{with 1,

	

,.Jj^O,̂ r dless of the choice of C	 The analog

of the secular equaLion (11	 in the usual, Rayleigh-Schr8dinger theory is

the partial sum of the perturbation energies. The secular equat: on (196

corresponds to the expectation value ofH with the wavefunction

throujO^, O(X")	 'Lcvau iti the !^,IayleLi gh-SchrBdinger theory, it is diff-icult

to say wilich way of computing the energy is more ac--urate. 
3 

In any case,

the roots of 'Eq^ (1#,) . differ frotu those of 'Eq- ( 15) by 
0( /%2 N+2)

In Appevdlx A,	 the perturbation equations (11) are derived

on the basis of Kirtr4an's treatment 
5 

of Van Vleck's ,Iegeuerate perturbation

theory,. 
I This is quite a di9ferent approach and helps to clarify the

significance of the partitioning technique,

Normalization conditions and the choice of the transformation

must be given to fully specify 40 (r') and	
(n)	

Cleariv ^y choic n, of

L114 consistent with the normalization of the 1^k and the Wk is,

permissable. In case-o, where the Rayleigh- Schr8dinger expansion of

(EM 4?k) 
is possible, different clioiLces of 	 have very little effect

on the accuracy of the calculated energy or wavefunction, , and	 C is frequently

chooen on the basis of mathematical convenience, as we shall see in the
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For degenerate aki a +tout-deb enera.te perturbations, full normalization

of the	 is most coriv ewie.rit since 7 t results in 	 g (n) being

hermitean. The Ki>> Wala Method" corresponds to using the full, normalization

and determining the energies from. the secular equation (15), What we

call the Modified, Kirtman 'method  corresponds Lo uAng the fu ll normaliza-

tion and, determining the energies from. the secular equation (14).

Instead of using the full norma,l,iza.ti.on,,tuhe DB- , YOV-'V1M procedure  Cor-

responds to lea,riag the integrals	 ",^.' . 	 as uncidet:erminod

parameters in (	 ( 10) to be fixed by wilai,tt izi.ng the toots r-, of the

secular equation (14), This procedure i.ta developed in more detail in

Section IV in connection with the almo&tu degenerate case and is

particularly useful for exchange perturbations (considered in a com-

panion paper).

In the usual presentation of the Rayleigh-Schr t "d:inper forma`Li.sm,

is taken to be 	 ^ a,rzd the normaLi.zation is restricted

(usua lly raven to be ritc rie iate /. the	 is detnrialnred t y

successively d.iagonalizing the matrix for different orders of the

perturbation until the degeneracy is resol.,ved. In the Mod .f ed

Kirtman treatment,	 is -varied so as to 	 the best energy but

the 'normalization is still restricted ( o full) . in the DE-FOP-Vim,

both	 and the normalization are variationally determined. Thus,

if the wave functions are truncated, after the 17-th order, the nE-FOP-VIM

Energies should be more accurate than the Modified Y Ki:rtman, which in

h ld b	 c rate than tho usual Pa lei h-Sch.rbdi.n er	 Ofturn s ou	 e more ac u	 y. g.	 g

the three methods as applied to a degenerate perturbation, the Modified

M T̀ Kirtman is the s mpl.est and the 'DF-FOP-VIM requires the most work. The

Kirtman (not Modified Kirtman) energies are not upper bounds to the

N, exact energies and therefore may be better or worsts than the energies

determined by the other three taethods

"Weis	 1^ -n	 _

9a



i

lllb^o)l^:l^M> >

^'— l	
, ^^J 

	 f z M — ĉ)

H. Full Norma)tzotion of t',je (0
	

9b

By full normalization we mean that <tifl^> = .1 and the phases

of the (	 are specified. With full normalization it is easy to show

that	 ie a hermitean matrix. From 4q. (4),

Of H / 0 > (16)
7

i

Since	 ` N f	 iu hcrmi teen,	 is hern-i Lean . Further-

,-,.
more expanding	 (!t	 in powers of X , it follows that each of the

LC (n) aT:e also hermiLean. Tf instead, we had used in termediate
NO V"

normal,.zat tors, !,^ r ^/^	 , the resulting matrix	 C
I

would be non-hermi.tean.

ExpendiuR < 	 = I
i in powc.re of X ,

4-

Thus, toe full normalization condition only determines the real part

s ^^^	 t M̂  3
of	 1 "The imaixinar y ParL is ?ef:.- arbitrar y . This

is associated withlthe ;act that <45 could be multiplied by an

arbitrary phase factor exp(7. A(%)) .

In the present section we use full normalization and fix the

imaginary part of	 ^0	 by the conditions

tot	 (2,41 + i) >

	
,WAV*	

(A,)//	 Z
=I

(a1	 C2 -ell )
> . 	 P	 I ("") /")

 ('^

(17)

In Appendix B, expressions for	 i2n+i) and	 (2n) are

..w._
derived in terms of^,acccurate through U( n )	 The expressions

are considerably simplified by adopting the convention for the

.imaginary Hart of	 corresponding to Eq. (17). Thus,
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t tA+At I-

VI-A)	 +,Q 4- 1

t ki t al	 c V, 4) 1d;VVW 4,2+ 1

(18)

2A
where	 12.	 117	

Oda;

	2 h)	 14

	

1	 4^( h - k 0)^	 <4 k4?,A) 
I 
+"ja)f0l	

>

h r- I Rz 0

ITJ

.. ^a.^	 C h	 n 1 	 p	 tr► -^R 	 c^^-	 -	
c	

^'	 /L' ^ ^ ^^".`
	 Y + !4f\t IT'a	 ^	 `!	 f#`A :ill ^ ^	 ^ ^	 -

)>

even

Where
odd.

These formulas are derived in'ppendix B by a]-gebraic manipulations

of Eqs. f 
(11	 an4'	

in a manner completely analogous

to nonde genets tae theory, 
n'^



11

it is at first	 .fight surprisi ;* that Eq. 	 (18) and (19)

depend on a particular choice of normalization, in view of the proof

that 4(N) its sufficient to compute the energies Eh

accurate through	 O Wvfi)t regardleea of the normalization. There

iv no conflict in 1:1-ia two resuits, however, since, for example, the

off-diagonal elements of CL fzN* i ^ Rio not contribute to the roots of

Eq, (14) through 0(a9.N+1 .

So lution of the Perturbation Equations. The n-th order perturba-

tion equation ( 11 ) may be oolved exactly in terms of the eigen-

functions of the unperturbed hamiltonian H(0 ) . This is facilitaeeu

by the introduction of the r duced resolvent,

to)	 -- It, r ..__. _	 (20)

where the prime on the supum"t-i1r, means that all the members in 0(0)

are to be excluded f om the sum. Otherwise, the sum is over a complete

set of eigenstates of	 . It may be reedil.y shown that

In terns of 	 the solutions of the perturbation equations which

satisfy the normmlization conditions. 417) may be written

n-^

(n)	
(0)
	 ^^ 	

.,
 Z( -40 (to ^ ^ ^ 

(o) III 1 ON) ^ ►
's ^(2 2 )

b2= ^

V-



^ —4,- m

A

F, -,N

12

,41C-C the	 1,,-equiring that	 sa tir, f y

the	 Tl^,, explicit formula for

is, in v^rt,!ji q of lower Order tunation8,

<r4ch)	 -^, ^ *rl +
I i--ef "

wnd
	

(23)"

That	 dofiriold by 'Eq	 ac tua lly- jolves the per turbaLion

equatioa^ (11)', wL 'ti l 	 given by ,,(12)*

E, X c e p t	 r V, illip le examples^, tile 	 given above- are Of

formal interest	 since tlu-, su=iationo over excited states CO311110t

be evaluateti. in gensral ,.,	 it is	 to- obtain varia-

tional appro-ddillations to
	

"07, example t the f' st-order

functions may be dcitermined by finding the otati-onary points of the

functionals

i

ar

10"

(24)

6)j (,n

.. ...........

when +	 is q trial function corresponding to Lhe exact function

which belongs to	 It is evident that if
Aor	 ^10C )	 Cvanishes for arbitrary variations,	 in	 then

satisfies Eq. (11) for V1= I	 This is analogous to the Hylleraas

variational method 1 ", Uon- generate Rayleigh-Schr8^inger "perturbation

theory.
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f ZII. ' ...^;engrate Ferturb3tion Theory.

The focrositiann developed in Section t t.a particularly useful fer con-

aideri.ng the perturbation of degenerate states. ThP 
(g 

(n) and the

0(n) are detetinined without requiting knowledge of the "correct zeroth

,)rder" wavefunctions. Thus the eigenvalueR of either the secular

equation (14) or ;(1 S) {gives the ruergy of _a i 1 of the de generate states

accurate through a givep order of pertu rbation. Tiles eigenvet:tors of (14)

gl ve the wavte functions.

Tf either the secular. equation(14) «r(15) iR solved by expanRton in

powers of X t the +isual•GayleLgh-Sch0dinger perturbation theory for the

states in .-4 in obtained. One must then determine the correct zeroth

order wavefunctiuns, which depend nn the order in which t'he degeneracy

to lifted. Hilrschfelder ? hart' givAn a very thorough discussion of the

complicated equations %*.Lch ronult. The prevent formalism is much wimrier

becautie it does not contemplate the rxponstor of the nee 411$1 1r eq,rn:{un. wht.01

tney he solved byr other procedures, 16
^ r,1

For a degenerate perturbation problem, the special set of s:tnt.es
^t

is defined to be any linearly independent set which spans precisely t.ie

same space at the .,,,7 ► eigenfunctions of the S-fold degenerate ie uel of

the urgerturb d linmiltoni.an

r	 H
	

(25;

It is convenient to choose the t ^°) to be orthonoru^al/'s	 0), but it is

not necessary to assume any other special properties.
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O'lourly wa are u8ia5 s- partitioiOng 	 The basic notion,

	

1	 7	 18
of partitiouing goes tjack to Van Vleok, Le"oll"Jvd—Jolle's) 

1 
Brillmtin,*

and othtra W tho early days of qtiantUm	 Lbwdin and hi4 ro-

workers 
6 
have developed the partitiouiog	 to  very elegant

and powerful approaches to perturbation Uiu ,,,, ,.,e^^ (!hcy, Pqnatioas appoor

to be quiLe differevit' from L8wdin l ,-,,	 ty(Vmlta must be similar.

Thus it is interesting tau aompare the 1--Tio 	 Inplace of tha

LOVIdin 801ve$ thO '^Oclf i il: e(fl lsecular equation (13

j

whore

and

W1 .	 4-1 top V- E + C(E)

Since	 is a function of	 Eq. (26) i.8 ivL^^t au ordinary,:t- seeulajr

equation, Nevertheless, it can be solved in av iLerative fashiou, lit

contrast ) the matrix elements of '
11
( 14) or (15) are Unear, 

in 
the energy PV

Never thel es.9 ,0
 
in Appendix C it is shown that the L13wdin -ecular equat-io-O

factors Into the product of a non.-vans 	 determiriant times	 seculax

equation equivalent to ('14)	 Thus the equivalevkac of the two treatments

is established,

Milli
OTOOMMIM! lip	 kN1	 Nam
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IT Almalt:06SQ11frate'' Venurbatio" ThATY

In. m4 ay ways, almon-dogenorate ninen are more dif"QUIL to

treat thaq degenerate statua. Wis is We unae where two or move

states Weraot sufficiently that the Rayieigh-&WdfuLer

expansions do not apply, One of the wtandaW tothniquen in to

manipulate the zeroth order hamiltoulus in otdon to make Lhe IN

of olmost-degenerate levels appeak dayoner at_ . MejAv GO lo a

type of problem whore pootitioalng WnWfl its=u,,_; uhottltj be a1p):4iod.

And, as we shall nee ) uar formali8m Q psnWe" A w y k vu, z"I^

For at
	

perturbation

(0)
of states to	 S defNed to be	 sLALOR 1.1g, IQ of tho

unperturbed hamiltoeiau,

which are almost deganer;te it the venbo that the ratiou

toe

are largc. Vor Umpli alt yp It io mumed WaL epub of the leveln (7-10,

is itself non-degenerate and that	 oftee oil (0)

Again the general eqvatioas to be solved are QS'

coil (15)". These equations are similar to Lhe degenerate

case, except that now (1('0) 
is 

diagonal but it is not a uraltiple of

the unit mat rix. Furthermore; the perturbation energies are Pot

fixed by requirements of mathematical conslat&cy,
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ti

Oval elementa of	 are 
not 

fixed t- !, therhus the off-dia^

formalism. Each choice 
of 
Lb,a"r en t C- eae number reaolta itj a, dift	 x-

pansion of 41 and. CE .' Although the rooL6 ol - the 9a(!uj,a^ oquaLion

X14) obtained by different choices differ otily by ''higher-order

terms" ) it is of interest to examine ` various ways of fixing the off-

diagonal elements of (S

The Dt-POP-VIM Formalism.	 'A general method of hatidling the

011indeterininancy in (I is to solve for each	 as an IMPI'l-C-LL

function of the off-diagonal elements (E^	 Then these quantities

can be determined by miiii,mizing the roots of the secular eqiiation

(14Y with respect to variations in the

To gain insight into this procedure co'n .siler the solution of

first ordek—pe l):'turbation equation ( -Li) with	
A^	

^	 ,	 ara ay t«x ^ c d ,
k

The general solution may be written

E-1
+

0)

v,;	 where	 satisfies
r.

o



r -,m

and ak is au ari)itrary aoewnaizwLia t, onst,	 the

S-dimensional vaviatiorial basis sut

INI,

which leads to the SxS secular equition ' . (24) with	 replaced
ri

Ably	 is clently eqiiival ant to the, 2S-dimen- ,8ional bas 

and

This leads to the U 2 8ecular,equation

17

doh ^	 ,^	 ^ ^^ ^^^ ^.
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The Eq.: (28) appears also in Hirschfelder ' s DE - VOP-VIM

'4
formalism	 for degenerate and almost-degenerate perturbation problems.

It is easily seen that the extension to N -th order of this method o..

choosing	 leads to an (N+I)s 'A ( N +1 ) s	 Aecul nr equation,

roots of which give the desired energies accurate through 0 (A'a

The DE-FOP-VIM method i.a simplest to apply in case that the

states k in	 are the lowest energy scares of H corresponding to

particular symmetries. Tlien, by Hylleraas . -Undheim theorem, the S.

smallest roots of the UE -FOP-VIM secular equation can 1-e identified

as the approximations to the corresponding exact energies. in ern e

that there are lower energy states of H than the states in 4 ,

the interpretation of the roots of the DE-FCP-VIM secular equation

can become ambiguous. Clearly, the DE- FOP-VIA procedure cannot be

applied to the secular equation: ( 15) since this equation cannot be

derived from the variational method.

I5

The Kirtman Formalism.' 	 Another method of chOOSIng the uff-

diagonal. elements of 	 is by analogy with the degenerate case. The

full normalization conditions (20) ^' unique'ly fix all elements of

gust as in the degenerate case. Furthermore, in the present cuee C

is hermitean and the formulas ^ M(18) and	 (19) ` for (7;^" 	 i unLinite. to

hold if the wavefunction is required to satisfy Eq.`(17) .
ti

5
This method of fixing (k was first discussed by Kirtman ' in his

extension of Van V'eck degenerate perturbation theory to the almost

degenerate case. Kirtman considered in detail the calculation of the

energy through third order, which in his formalism is given as a

toot of the secular equation

se

I
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(am)	 (1)	 ^7 , (z) + 
	

3 ;f , 1=- Q	 l )

which is Eq.	 (15)	 for- ^^ = I .

Hence the Ki rr.man formal i^;m w1 11 ienot e t1w t:rc- 1 meuc of a iploat

degenerate perturkation problems b y the seclrla , -quaLion (15)	 with

the full normal i zat ion condi f ions (20) .

The modified Ki r tmatr f'+ sir, i g rn wi 1.1 he used to lal-el the t. r•ex+tme^nL

based on the secular equation (1a ► 	 wiih the full normal al

conditions (20) .

The advantage of the Kirtman or modl.fied Kirtman forrrnli.!zm iu

that the energy is ob:a;.ned is a root of au SxS secular egriation,

rather than the	 x	 s^'-cIliar equation for Lhe llL-rOP--

'JIM formalism. The roots of the DE-POI'-`."iM sectilar eq,)ar • n are

necessarily more accurnte than the cor, esponding roots of the m-difled

n



Pr

2 ()

Kirtman g ecuIAr equet inn in Ca;,'-^ t,.; , I t. 1.11C lowf , sI ener):,y brat# , y of I 

are being treated. In any case t he corre.-p 11 ndfiig roots of t 6 three

diftetenL eq:,ations differ by 0(A )
	 Thus,	 it ule	 almost

degenerate- blovk of states is well separated from the remaining; unper-

turl,ed . t a te!i , the energies obta i ned by the three m ,,thodb d i f J.er by

Yer.^ which are, by hypothesis, negligible.

Trans forma t-Lon to an Fxac. L ly Degenerate Prob lem . The lack 01-

unl queiie8t3 of the off--r! tagonm1 elemetits of Q 	 ,-an ba a^, :Jed b,

def lning a new split of H into ar ► unperturbed hams It nian and a

perturbation, buck that the uti petturbed limit is exactly degenerate.

in some cases thf.re is N natural choice for the new unpert ► ,it"%ed

hamiltornfan rind (?igenf uric ttons. 11,, wever ) it is always possible to define.

:icy
1

And

H
itl	 — L C.

where

and	 ;,,iy	 be t'sC	 ALt crturl)ed cne-_ ..
.Y ^

(33)
Jz	 t

or E (^^ -A-i he t.ak ,_en to 1)(, VL C.r'l Oti c't1al- nary- r fi^ x'.

- 

ie
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Then all of the states 9i	 44-00, d0ganerate with rf^speet

to a

f

50 thatthe formalism o	 CP i H^'; '	 ^ c ' r ',.i " ` f' ?may ? i ? `	 q L? ^.,':I d	 This met' ^ kjd of
c

handling alcmost -degen t-acy i t u r cp r ^.a. «?	 r , t ;	 a_

Let a bear denote iLns -m

based on Eq. 	^, N?

A	 w:xm	 ¢4..f !S	 a	 ..	 :	 c Aft	 8 t	 f 'r1	 pct	

`

and

0

Through first orders	 hd	 r,^r,	 ' ° n
t

Eq.'; (I8) a',

67,
E 	 i	 b'y	

' wu

so that

With the normali.zati{ 

s	 Y	 order equation ̀	 l ) aan -be written

_	
( 3

IVA
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r

Eq. (34) reveA ls ti-at	 enters into ^^,t 	 and hence

f2l	 in e non-trivi ri1 wa	 so that rht+ lr ► t'ry,	 ^	 quantities

are not simply relat-!d tr 4)
	

and	
.(2}	

'Thus, it to pos sible
to energy Optimise the !

The t3olut.ion of th n almost-degenerate perturbation problem is

thus reduced to ti n e Solution of an equivalent degenerat— perturbation

and the techniques of Section M tnny be tippiied.

The relationsh ip between the DE-FOP-VIM, Kirtman, and modi f ic,d

Kirtman formalisms at; well a s th( , redaction to a truly degenerate

problem is hest understood by considering the example given i.n the

following c.ompnnlon pNner.^ (^ PA , r '^



r
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v.	 EIvctron Exchange Pcj:1, i l .,: i( c )'c-0,ie;rti.

!n t.hiti svct.oti, t h v prt't .r!-at ion tormai Isle v,ivc n in Section 1

i	 hc"icraI ized so as to he sitita 1, 1c foi a wide range o  electron

r-xchange problems incbidi;^g those whi:h lovclve Configurational

interactions.	 The d1m:.ns10!1dIir.y cat 1. 11 	 1,11- rq11alio11s Which

we der-i ve cfln he F;l ea t 1 v rF • dnct.• ,.l by wak i g ty i;se of symnetry CLIIIS i.ic• ► .1' c

22

!'hi p i5 done in tht c.0mpani:w rmI - . I "I^^.

Tn order to apply to eIt•ctron ex-hams'. jwoblc s 	 tht . p.4rli I iOuiu;.:

forma 1 i 5m developed i n Sec t i ott I acct, t Le mod i i i cd c n the f, 1 1)wing ways

t).	 The zeroth order functions0 ) 	 ,. ,	 ,^^^)	 n^^

longer need to i e e i iten f unc t i otis of the samw zero Lh

order- fiami I ton iait.	 Thus,

( 0)	 _	 (0)	 (tai(it 
(0)Ck
	 )	 k	 = U	 (35)

2). In order to express the per turbc 1 d tiami I ton i ar it ► tht-

fo rm

H = H l (0) +	 /^ ► : l MI: ... :: II' (+i) } ^I ► ` ^ l)	 (36)

the perturbation parameter A can only have the valu,,

of unity.

3). The zetoth order functiow-,	 t	 ^j	 are
5

normalized but not or Lhognnal , rims ,

1^ ^ j (0) 1 Ok (0) > = S jk	 (37)

Here S k k = 1, bctt the overlap matrix	 AV f5 r► ot

imitary.
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These modifications do not lead to any major changes in the

treatment.	 As in Section I,

E (0) 	
(0)

ki	 k O ki (9)

Section
The only difference in the perturbation equation in^I and the equations

here are the subscripts on 141 (0) and If (". 'Thus, cor -esponding to	 Eq. ('11,),

'	 we now have

(0)- C (0 ^)	 (i1) + N ( 1 )(H
k

(n-'L) = (^)^^^ (18)k	 k k
,=O J=1 ]C.

Note that Eq. (38) reduces to Eq. (5) . Multiplying Eq. (38) by
s

Ski 10i(0)	 and integrating, we obtain
i=1

PO) 	 CMS	
t©> t 7 ^ ^)
	 ^ M "" ^^

 >

corresponding to Eq.(12). Adding together the first N perturbation

eqpatiuns,	
/Y  
	 a rQ^

H N ""

2: +
0_I

C

The energy is then determined accurately through terms of u(^ +^)

by solving the secular equation

^ j^ H-E
14)O

Iti
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The presentation in the companion paper 
22 

iu given from the

Kirkman-Van Vl.eck approach considered in Appendix A. As. ;toted in

Appendix A, the two approaches lead to the same working equa tions.

Now Let us consider the first order perturbation equation,

F,q . (38) with n=1,	 j

	

N	 ,^ (
0 )	 (ti)	 (1,) o (0)-	

s	
(0)	 w)(Hk " ek }Ok + Hk	 k.	 ^ ^. ^ J l

	

A= 1 	 `l

The most general expression for Ok (1) is

C EM

Ik

(42)

A

Here Ok (1	 is the first order polarization function which ..s

orthogonal to Ok (0) and satisfies the equation,

n) n (^	 0) lob	 U)	 ^o)	 <0^

	

H;	 +	
tl^ t

^x	 s	
X43)

(1)
In both Eqs. (42) and (43), the 	 mean that the summation is to

J
be taken over all states j (including k) such that

((o,	
(^))	 (^)	 0	 (44)= 4	 ^	 k

2)
The	 is the summation over the remainder of the s basis

functions. The functions 	
U

are the exchange functions which are

orthogonal to 
Ok(0) 

and satisfy the equation

	

A	 Cn)	
CO
	 lo)

 
(45)

(4^.}
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The constants Ce,	 and	 are beat determined by opt	 zfimin ,̂ e thejk	 ^k

energy E for the state under consider.ation. This corresponds to

the DE-FOP-VIM procedure. Thus, different values of both the 
Oeik

and 4E (1) are obtained for each state. 	 5ubstituting (42) into^k

(41) and making use of Eris. (43)-(4,5), it follows that for tho -se states

j in sub-set (1).
(2.

O	 S
A	 01	 (46)

-t

I
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A. Derivation of Secular Equation and Perturbation Lquations
	 30

, p ing Kirtman-Van Vleck Approach.

Consider a complete set of funcL,ons, which is s-31it into two
.	 rep

clssses, (	 and 	 , and which spans the Hilbert space of the

hanilton'an	 +AA 1 "'	 we have already disci+seed

the(0 
(0) 
	 The retaining functions (lr. general, ..if is i :e in

numper) which coxmplet p the met are denoted by

Ll fats.

i.".thvL, t :.oss of	 it is ea yumed that

A'+ e

`°' >	 (A. 2 )

wv►lo-:ts (D is the null matrix. No other assumptions are made regarding

Y40) . ; 
in particular ., -LNe (0) is not necessarily an eigenfunction

of H`

In 	 to compute i the	 Ek	 b^ a Knctly, it is necessary
fe)

a.:. con.;Mer both	 end ^ sinze the interaction elements

4" ) I 14 1 x   >	 are non-vanishing. Then the E h are

roots of the infinite -dimensional secular equation

<4 
(a) I 14-E 1 4(p) >

Q	 (A.3)

N " E 14 lo) (%W` "-E, xm)

Following Van Vleck l and Kirtman; s ,the solution of Eq.`(A.3)

i, •,+,rn^^wd by transforming the initial basis into the nc74 set	 1



(a)	 1)a(Nc 	 ( A

The functions 4(k> 	 are chosen so as to make: the over	 ary.

hamiltonian matrix elements c onnecting	 and	 PWI^ vanisti

through terms 0 (,\N):

..fin the leading contribution of the functions X(N) to the energies

E	 <	 4 ,^ , i s proportional to

r

Hence the roots of the ,5	 secular equation,

	

< CN) L H - F_	 0.)

are accurate through a	 2N¢
,a	

To obtai•	 n equations for	 W ^' c^"^a it i convenient to

introduce -the projector onto the set 	 (N)

.r ( A .7)

now

c^ =	 c	 a

FIFIM&I .	 .0 n



The perturbation t erni4 of X(N) a1 v giv- , 11 by

which assures ortfigonalit:y	 4w)"l,tl ,Y (N) thr.augli	 A".).

The perturbation terms of 44.1) are aeternilo-id by

The ^,(N) is a c omp lete set of funcLions in ti-t- Qpace vi CIIO+ -Olwkl to

a (N)	 if overlap ji	 with all of	 ^lN)	 t,1^i.Nii^•; , Clts^i

` dI(N) must be ex ret;a ibte as, a li-ilear rocnhii;arion o,' t.';,

Thus, Lq.	 (A.9) is equivfilent:

rl

where the elements of	 a (N) are numbers to L t- diet:erruiw-• I.

limit IV-+ oo	 , Eq. (p, 10) clearly becomet- ► ;'q. ( 4 )

i
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APPENDIX Bi Proof of ) qs- , ; , (18) and

(2N) and

Eqs. (18) ' av-4 (19) tire very important in the applicatiou of our

formalism. When. this fo-mallsm ;.s extendo-eA to th-e calc,,ilation of

physical properties otherthatt energy it- vill be wcesf3ary to make

use of additional expressions for theo p-(Amem,,lv vatrioes^ Theco,

are derived 
in 

this- Appendix.

First, however j it is convcn ont to (, ►Stablish soplo

results. By taking the add oin,t of Eq. :(11) And additx i:"' t to the

original, equation, one obtains

m

>	 >014"



,,rhe followin8

H e)	 "k) >



	

and ma y l.t "l n^r the xi-	 -th order equation from the°left by

and in te.gra t ng o

H to) 0"') +	 I H
(B-4)

Takitg the ad,joint of Eq. (B.3) and. aubtractin^'' .n-q, (B.4) from it

yields Lq. (B.2).
y

b	 "	 c
S	 n

	

APP l cat°Ion of Eq. ( B .2)	 times: to Lq. ( 12)yielas

^,)	 [ 3	 t	 ^)
	
(pot

MM,w ___  	 I

"

ei

a^

4

M

x

r

4

,
If	 )



interchanging the order of st ► nimatiotl gives

4Q), 4 r

=o	 ^t= o

k:.tl 
Q ^o

The final term vanishes by Lite normalization condition Eq. (B.O.

Fur the rmore,	
(n)	 jE (n) 1. . Hence,

(L...^

`	 (k) I	 C^ _gip_ 
b ^^ ^ 

(k^

= 0 Q"v

17,,q. (1.8) then follows from Eq. (B-5) by setting 	 p - 2n + 1 ,

q c rr, and making; u g e, of Eq- (17)	 Similarly E q;. (19) follow.,; Pram

Eq. (B.5) by Netting 	 p - 2n , q	 n - 1 and making udc of Lq.(17) .
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APPENDIX C, Comparison with 'LOwdin larti.tioning.	 7
In order to compare o(r Lreatment with Lbwdial s it iR !scessary

that we switch from full to	 ate norwalitatiou.T'o avoid

confusion with the results using fail l normalization., subac,ripLb

rather than superscripts will be used to denote order in inter-

mediate normalization, It is also convenient to absorb X a 'r► to the

definitions of the perturbation t3erum Aad to define	 V

u

For intermediate normali,zatiott

Multiplying Eq. (11) from the left by 	 and iategratv:.ng

^C.

E . C1 allows 	 to be omitted' q .(. ) ` 	 from Hcj . X(22 ) ^=R ao that the

perturbation wavefun+ctions are

Y1i1	
0 V 0+,n

	 = 1



T (F ) V40 ►,. ►
h= U

Fr,->tn h,q3. (29) and (C 3) (usini, the f'.,e-t that

L 2-

4	 ) ^

^.,.-..—._,...r,.
SubStI tution nt tll i.. resultesult JoLo Eq. , ( 2fi ) ' is'ic't usi ng F: q. ( C."),  rân dd

rearranging the r enw4 gi.veA

2 N 41

C..._, d h -	 t	 U
h=^

Q=1	
h Y ► 	 ^.= 1	 i^t ' t

aN_^-	 7.^1--Y1-•7	 '^'	 '^	
:^7.rl -n- tip- t

+	 > Z
n-1	

f 
a	 ^t.= o "U=o	 k 1

W.
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It is nov	 ill the	 over	 tbo Appel: il,"-kiG

H 4.

may be rovl weed by, PO4 + I	 if t1orma	 '7 Uwe neglected.

Benda,

V,	 I

AN-,

r% U,

t 6-h

+
A

Assuming tbat the ftr^.'t determir) ,00t is	 Y'170148

'44 A, z

Hence, the energies det.en.-iiined by Bq 	 (26) are identical, with U i,

energies determined by Eqi	 (C,4) through	 'Vurt,T,),P'1-

more, it was shown in Chapter Two that the change fro -m -intermediate

-t8 the roots of. Eq,.; 0.5)	 byto full normalization also a^f ea

0 (A —f4 ;2-)	 term.s. Tlen(;e, ft follows that L  routs of secular

equations t(26) and'," (15) differ by	 O^ Az"	 terms
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