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ERRATA WLS~TCI-363

Page correction
17 viddle of page, change '(24) with' to "(14) with N=l and"
18 Third paragraph, change "20)" to "(17)".

‘ 19 Eq. (29) should read, E4 .
Change '"(20)" to "(L7)" in two places.

21 §ixth Lline, change "(34)" to 30",
23 Line below Ea. (38), change sy to ML),
27 Ref. 4 refers to ref. 12, not 52.
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NEW PARTITIONING PERTURBATION THEORY:

%*
I. GENERAL FORMALISM
by

Phillip R. Certain+ and Joseph 0. Hirschfelder

University of Wisconsin Theoretical Chemistry Institute
Madison, Wisconsin 53706

ABSTRACT

By the use of partitioning techniques, a general formalism is
developed for considering degenerate, almost degenerate, and electron
exchange perturbation problems., In effect, we generalize the Van Vleck-
Kirtman approach to arbitrary orders and arbitrary normalization and
obtain three types of approximations: In the Modified Kirtman treatment
the functions through the N-th order are fully normalized and the
engrgy is obtained as the roots of the secular equation. The DE-FOP-VIM
approximation is the same except that the normalization of the functions
is energy optimized., The Kirtman approximation uses the same functions
as the Modified Kirtman but the energy is obtained as the roots of a
much simpler secular equation which results from a factorization of
the original secular equatiori (except for terms of order 2N+2). ' The
Kirtman energies are not upper bounds. ngdin's formalism is equivalent
to the Modified Kirtman with the exception that ngdin uses intermediate
normalization. Electron exchange problems are considered more explicitly

in a companion paper with the use of symmetry considerations.

-NSF Predoctoral Fellow, 1965-69; Present address: Department of
Chemistry, University of Manchester, England.
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By the use of partitioning techniques, a general formalism is
developed for considering degenerate, almost degenerate, and electron
exchange perturbation problems. Our formalism is related to the
methods of Van Vléekl, Katoz, Blochg, Hirschfeldef4, Kirtmans, and
ngdin6’7. In all of these partitioning treatments, the energy is
given as the roots of a secular equation. The matrix elements of
the secular equation are assumed to be analytic in the perturbation
parameter, but neither the eunergy nor the wave functions need
to be analytic in this parameter. Thus, a partitioning formalism
can have a greater range of validity than the Rayleigh-Schrgdinger
procedure,

Although our approach is quite different, we obtain a generalization
of Kirtman's treatment5 to arbitrary order and to arbitrary normalization.
Although the choice of normalization is immaterial for infinite order
calculations, it does play a role in low-order treatments and becomes
increasingly important as the deviations from Rayleigh-Schrgdinger
behaviour becomes large. Thus, the choice of normalization is likely
to be very important in using a low-order perturbation formalism to
consider an eleciron exchange problem. We obtain three types of

approximations:

1). The Modified Kirtman (MK) Approximation. The energy is

determined by a secular equation in which the basis functions are
Y B
-
i "
accurate through the N-th order and fully normalized. Lowdin's

partitioning formalism is equivalert to the MK with the exception

11 '
that Lowdin uses intermediate normalization,
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2), The DE~FOP-ViM Approximation. The DE~FOP-VIM is the same

as the MK except that the normalization of the functions is optimized
with respect to the particular state under consideration. This leads
to secular equations having much larger dimensionality.

3). The Kivtman (K) Approximation, The Kirtmao approximation
is obtained by factorization of the MK secular equation (ignoring
terms of order 2N+2) so that the Kivtman energy is given as the roots
of a much simpler secular equation. The Rirtman energies are not
upper bounds. However, this procedure has the advantage that the
energies for all of a set of degenerate states are determined by
solving a single secular equation regardless of the orders in which
the degeneracies of the various states are resolved. This is to be
contrasted with the ngdin6’7 and Choi8 partitioning techniques
which require the solution of different secular equations for degenerate
states belonging to different classes (We have not yet seen a
preprint of the unpublished results of Goscinski and ngding).

In Section V of this paper, our partitioning formalism is
modified so as to apply to electron exchange problems, This treatment
is quite general and should be applicable to examples where atbmic
degeneracies and/or multiconfigurational interactions are involved.
However, in any particular case, symmetry congiderations can be used
to greatly simplify the formalism. This is done in a companion papevcz2
(Paper III). However, our present treatment is more general than
Paper III in the sense that our basis set is not restricted to having
no more than one function of each symmetry class,

“In another companion papeer (Pape?fli), an example of an almost-
degenerate perturbation is used to illustrate each of the different

methods of solution which are given in Section IV,



I. General Forumulation,

Consider the solution of the Schridinger equation .
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where the hamiltonian is the sum of two terms,
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The H is the hamiltonian for the uuperturbed system, and the
H“) is a perturbation. The parameter A in some cases has
physical significance (e.g. field strength), but otherwise is a formal

ordering parameter withéa numerica‘{} valie of unity. The unperturbed
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hamiltonian is assumed to possess a complete set of eigensolutions,
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Consider the linear manifold "which is spanned by S’ eigen-
functions E‘C g 18 kg § , of the total Scthdinger equation (1).
J is defined to have the property that if state k in 4 nas the

\ < ’
zeroth order energy 6':“ ', then all states R  which have zeroth



order energies 6‘:) that are degencrate or glmost degenerate with
6(:) , are in',g . The sequential labelling of the states by R 1

for convenience and does not imply thac they are the S lowest energ,

states of M,
The @k constitute an orthonormal basis for manifold j + Any

other basis in j may be defined by

S P CW :

ét‘ = ﬂ:l lpﬂ clh ? . (3‘)

where the numbers Clk are elements of a non-singular transformation.

This, if @-1 is the inverse of the matrix @ ’
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Given the basis functions ék ,» the eigensolutions

are recovered by solving the secular equation
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(e, -6 18 )in0, () ;

Thus, Bq. (%) and (6) are equivale.t to the S uncoup led

Schrodinger equations for (E& : ‘l;}h) Althcugh é.k and 6&.1 will
later be expanded in powers of A, it is not assumed that the roots

o[ Eq. (b) are a“ﬂly!‘:il‘: in A o 'rhat 18, iL 18 -lh';l'md Ch.t the

matrix elements of M are anamiytic, but not necessarily the emergy

eigenvalues. An example where guch an assumption is valid occurs for
the interaction of two 24 ov 2p hydrogen ¢-oms, as discussed by
Kim and Hirach[elder.ia See also the example in Section’ 1IV.

At this po;nt j.t: is convenient to introduce a more compact matrix

notation; e.g.,

K;‘iﬁ‘,’z: —C = ( €re ) >

Bold Frow - b
Spph T8 % (G in (S S, ... 38;)

In this nota~

tion, Eq. (4) "-and (6_)‘_ibecome
He = @€ (4)

and

1@ |H-E|D) = 0. (6)

’
Perturbation Expansion. However, viewed as equations for the (p

and €*.e , Eqs. (4) and (6) are not well-defined, since all reference

to the particular linear manifold J has been lost. That is, Eq. (4)

has solutions in any S-dimensional linear manifold defined by the exact
eigenfunntions of H . Furthermore, within any particular linear
manifold, there is an infinite number of solutions of Eq. (4)

corresponding to different choices for the coefficients C:‘e& .
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The lack of unlquevnss in g, (43 is obviated by a pesturbaticn

approach to ics solutlon. The foil 'ting expanpions dre assuned;
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The linear manifold /5 is aniryely detepmived by ppeaifving rhe

zeroth order energles

(o) : o Y e . Q@‘)
é'» = Cp " B, ,
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R
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Fa. (8) corresponds to the %( ) being elzenfunctions of i ) with

Y2 anargy € k(O) . furthermore, we agsume that the (.31) (0 AL
ar.lwnermal, ’ ,
(Y| @) = 4
, o~
| - (10}
: D e ) : e (0)
vhere is the unit matrix. If the eigenvalue & K is degenerate,

"

nait vt xs assumed that alL of the i‘@t‘i‘uﬁp&)"lding eigenfunctions are

mnludad @(0) The set @( ) i8 a basis of unperturbed functions

X § ;
T 3 2
a

B

mr"tuo appvn«cimate calculaLion of § elgeﬂstates (Ek(\), ‘,{’ (7\)) of

B

tie total Hamiltonian H()\) where Ek(?v'O) ra é (0) for K = 1, ... , S .
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Substituting the expansions (7) into (4).and setting the co-
efficient of each power of )\ equal to zero yields the infinite

8et of perturbation equations

. ww@w; O
H(l)@(o) + H(")d;") @m 6(0)_'_ @M@M
| e o o | (11)
| N V~40)
W), ywa) - > d®P e
+ H - Z 1
H @™+ H"¢ £

|

The first order perturbation equation(ll) is equivalent to the first
order equation of Van Vleck degenerate perturbation theoryl and of
9
the treatments of Kato and Block‘3 Thue the presant formalism
represents an extension of these methods to arbitrary order.
(o) +
Multiplying the N -th order perturbation equziion ay
‘ ()
and integrating gives an expression for (EE .  Making use of

(0)

the hermitean property of H ‘togethar with the zeroth order

" perturbation equation,

é(N) — <@(¢JIHW @(h’-/)> Z<¢(0’! @M)) €
‘ G(OH' < @(o), @(M) > < @lo) ’ ¢(N)> éw)

(12)

(N-4)
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The energy E 18 then obtained in the following manner. Adding the

perturbation equations through the N-th order and rearranging the terms,

Nel  N=h~l
\ ' (2+.0+¢) vy
o) = FOVEW) ¥ A"“{ (W gy~ ), 3 go“t’ i

Hence after collecting terms according to order in A :
L ‘ '

(«ECNHH t\&EcN)> <<§;m)l@m)>(&m> E)

- L(13)

'\')N“Z} é\(#(”)‘ (\)\@(")>
__i '-Zj?-<q>(r) Gb(.v\h-?fz)> @;C”'X)Z

p=0 2’0

M‘ 2_.2 ?(4‘“’”&“’&@‘")) Sno
h=o ’ |
S5 aamigenrie s



Given the solution to the perturbation equation (11) through order

N , the eigenvalues and e¢igzenvectors of the secular equations

’<@(N)| H-E | @(N)>’ =0

provide a sequence of eigensolutions which, assuming convergence, approach

the exact solutions (Ek’ Wk) as N becomes successively larger.

o TP < Eq. (m) can be thought of as arising from the use of the

variational method with the linear variational function

A~ S T R 4Q‘ . ‘A
P = Z’.\. P, @

where the &’h are variational parameters. In this connection, the

:(14) !

Hylleraas~Undheim theoremu "io relevant: 1f the roots of Eq.
are arranged in ascending order. they provide successive \_xgp_g_;_p_ggml_[
to the corresponding exact energy eigenvalues of H of the same

symmetry., Thus, in case tha” the states i“/X are the lowest states
‘of H corresponding to particular symmetries, the roots of Eq. (14)

are upper bounds to the ¢nergies which they approximate, -~~~
In case the Rayleigh~Schrdinger expansion is possible, the @ (N) forms
a basis for determining the ‘Pk accurately through terms of n(ku) 5

Thus, by the Wigner theorem, regardless of the choice of C , the roots

of the secular equation (13) are the energies Ek accurate through terms

2
of O(AM N-H) + Thus a unique asymptotic expansion of (Ek’ Pk) is

_obtain_ed from the eigenvalues and eigenvectors of‘f (14) by taking successively

larger values of N .

An alternative way to obtain the energies, which however are not

necessarily upper bounds to the exact values, is to solve the secular equation

| €avn-Ell = 0 Can
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Here the @ (ANly  ie the (g (N) of (9) with the N replaced by

20+l . According to By, (129,

<P ansn) | H-E | Panr) >
= S {en D)) @?mmo) [@(zw/) E]
n O(%ZN-‘HZ)

Thus, substituting this into (13), with the terws of O(N ‘ZN& ‘

) omitted,
55’« %"%“?3}3 @(Jﬂ‘f‘i)> from the determinant leads

to Bq. (15). In these cases where the Rayleigh-Schriidinger expansion is
I3 v

and factoring the 5

a

possible, the roots of Eq. (il) ave the exact energies B {with 1€ k€ 8)

N1

accurate throegh O(h "~ ) vegardless of the choice of @ - The analog

of the secular equation (1) in the usual Rayleigh-Schxidinger theoxy is
the partial sum of the perturbation energies. The secular equation (l'ﬁs‘}
& (‘@ﬁ H (0\‘;(' I”Gl//’tr,
corresponds to¢ the expectation value of J§ with the wavefunction accurate
through O(’?\.N) . FBven in the Rayleigh-SchrbUdinger theory, it is difficult

. 13
to say which way of computing the euergy is more accurate. in any case,

: : R & . o~ s on 242,
the roots of Edq. {lﬂjadt&.ffzer frow those of Bq. (1§) by O(M N ) .
Lo Appendix A, ¥q. ?(14} and the perturbation equations (11) are derived
4 “ pur & » ) 5 .
on the basis of Rirtman's treatwent”™ of Van Vleck's slegenerate perturbation

‘theory.}“ This 18 quite a different approach and helps to clarify the

slgnificance of the partitioning techunique.
s . A4
Normalization conditions and the choice of the transformation @

%) and @'(n) . Clearly way choice of

must be given to fully specify @<
@ consistent with the rm:&malizatioﬁn of the 61( _and the @k is,
parmisséble, T cases where the Rayleigh- Schr8dinger expansion of

(Ek'“ Efzifk) is possible, different choices of @ have very little effect .

on the accuracy of the calculated energy or wavefunation} and‘ | @ is frequently
chosen on the 'basis of mathematical convenience, as we shalli see in the

next two sections. In cases where the Rayleigh-Schrbdinger expansion

does not counverge, the choice of @ is more critical.

FORRE WL v e AR - PR
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For degenerate and almost-degenerate perturbations, full normalization
of the @ 18 most convenient siuce it results in (€ (n) being
i V R 5 ! . ®
hermitean., The Kiitman method” corresponds to using the ful) normalization

and determining the energies frow the secular equation (15), What we

call the Modified Kirtman method corresponds to using the full normaliza-

tion and determining the energies from the secular equation (14).
Instead of using the full normalizatioun,the DE-FOP-VIM procedurea cor~
responds to leaviug the integrals <i‘Qé§5y} Qégai> as undetermined
parameters in Gi;(ﬁn to be fixed by minimiziﬁg the roots Ek of the
secular equation (14), Thig procedure is developed in more detail in

Section IV in connection with the almost degenerate case and {is

particularly useful for exchange perturbations (considered in a com-

panion paper).

In the usual preseutation of the Rayleigh-Schr!'dinger formalism,
?(0) o
@g’ is takeu to be Qj and the normalization is restricted

(0 .
(usually taken to be intermediate). The @; ia determinad by

"successively diagonslizing the matrix forﬂdifferent orhersﬂof the
perturbation until the degeneracy is resolved. In the Modified

Kirtman treatment, Q; 18 varied so ag to give the best energy but
the ‘normalization is still restrictedk6§gﬂﬁgll). In the DE-FOP~VIM,
both @; and the vormalization are variationally determined. Thus,
Lf the wave functions are truncated after t@e N-th order, the DE-FOP~ViM
energies should be more accurate than the Modiéied«Kirtman, which in
turn should be more accurate than the usual Rayleigh-Schrbdinger. Of
the three methods as applied to a degenerate perturbation, the Modified
Kirtman is the eimplest and the DE-FOP~VIM requires the most work. The
Kirtman (not Modified Kirtman) energies are not upper bounds to the

exact energies and therefore may be better or worse than the energies

determined by the other three'methods.



II. Full Normalization of the Cqs : 9t

By full normalization we mean that <‘d5[@>=1and the phases

of the @ are specified. With full normalization it is easy to show

that G is a hermitean matrix. Frowm Eq. (4),

EIHIP> = <&l@>& it
Since <¢’H,@> is hermitean, é ie hernitean. rurcher-,

followe that each of the

I!

P
more expanding (& in powere of A , it

G ®) are also hermitean, 1f instead, we had used intermediate

() ) N
normalization, <¢ /(H/>~ , the resulting matrix e
would be non-hermitean.

Expanding <¢} ¢>=ﬂ in powers of A , "~
CHOIG™> + LBIBO> = ~ )7 <Xl >
4=/

Thus, tne full normalization condition only determines the real part

©) ) b (7
of <¢ /¢ ),, Fhe imaginary part is left arbitrary. This

is associated withtthe fact that @S could be multiplied by an

arbitrary phase factor exp(i AQ\)) .

In the present section we use full normalization and fix the

imaginary part of <¢{0)/¢(M)> by the conditions
<¢to)/¢(zm+:)> = Zm: Q/¢u//¢<2~*'~4)>
A= |

@(o)/¢(¢41)> = 1 <¢(M)/@(”V>
_Z<¢(U/ ¢(z~~4)>

x=i

(17)

In Apperndix B, expressions for E jenti) and e(Zn) are

derived in terms of ds acccurate through O(hn) . The expressions

are considerably simplified by adopting the convention for the

PRI e ¥ =
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where {Wﬁ?‘k wjimf.};i«” b odd;
€2 = 4 [(ah PO D) ¢ (B W i) ]
h o Rel
A --% z: g‘:{ ))»ng%}(h'«ﬁ)‘ bfﬁ h“ﬂ)). 4 {@iﬁww ENN m%ﬂ'lwﬁ)} € LR/j
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N-) [:z .
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=
ME,&M

5" (e caw'%w (=) (] 6P

J (19)

, B2t b even
g] = J 77
where [ a:j k)
- é »;L ? Odd
N

im&é‘w—o‘----

o S i R

These formulav axe dear ;aved in Appendix B by a]gebralc man‘ipulatmons

of Eqgs. 1(11,) ,",, (12) ; andrt \(17) in a manner completely analogous
) ‘*12 |

>y

to nondegenerate t heor V-

‘e



It is at first sight surprisi g that Eq.} (18) and (19)

depend on a particular choice of normalization, in view of the proof

3 " v v that C§(N) is sufficient to compute the energies Ek ’
accurate through OIAM”), regardless of the normalization, There

ie no conflist in rhe two resuits, however, since, for example, the

(4
off-diaSOnal elements of & Mt do not contribute to the roots of

.

Eq. (14)_ through O(A"NH‘),

Solution of the Perturbation FEquations. The n~th order perturba=-

tion equation - (11) may be volved exactly in terms of the eigen~
functions of the unperturbed hamiltonian HM). This 18 facilitated

by the introduction of the r.duced resolvent,

(o (e)
Z" [ R"O<H" | o

(e (o) i
h 6 ? eh .

io)
R

where the prime on the summation means that all the members in ¢c°)

are to be excluded from the sum. Otherwige, the sum is over a complete

[+]
set of eigenstates of H‘ ). It may be readily shown that

R(O) ¢(°) - O : \\‘ (21)

(‘l_‘(o) 49) ) R(O) = ‘¢lo7><c¢‘°)‘

Ih termg of R(” the solutions of the perturbation equations which

= Rsa .- —-.-._‘

satisfy the normalization conditions sk(17) may be written
N =

‘b(") = R® { Hmd, -8 Z 4)(“'” &(u)} 4“) N(n) ‘:-(22{

%L s —————
R=1
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Except for siuple examples, the ewmpresgions given above are of
formal intereat only

v, since thye summatioy
be evaluated. In gene

over excited states canuok
al, however, it iz p '
. ; (#
tional approximations to 6$ 2

hile o obtain varia-

For ewxample, the first~order
functions may be detevmined by finding the stationary points oi the
functionals

T, LH"]

By )
#’ﬁ}g (o) 6((4);4};’8) Y g <fi)“) H“)E (o ::

(24)
(TR ﬁ,z,fw ”>+<«fo<°"s<;m %
4

lk“
where C%(u iz a telal function corresponding to the exact fun

which belongs to @"')o It is evident that if

S
vanishes for arbxtrary variations $4>
satisfies Eq.$

4
Cthﬂ

o 3 ‘-‘h\—\ y/{?.a)
\ .a g h -} o I
e e G

in qii:“, then ¢ka)

(11) for =1 . % 5 ar
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generate &ay?elgh Sohrﬁdlnger perturbation
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:III-; Degencrate Perturbation Theory.
The formalism developed in Section | is particularly useful frr con-
sidering the perturbation of degenerate states. The & () and the
: d’(") are determined without requiring knowledge of the "correct zeroth
arder" wavefuncrions. 'Thus the eigenvalues of either the secular
equation (14&) or le);sivea the energy of ail of the degenerate states
accurate through a givep order of perturbation. The eigenvectors ofklé) -
glve the wavefunctione,
1f either the secular equation (14) or {15) is solved by expansion in
powers of X\ , the usual Rayleigh-Schridinger perturbation theory for the
states in .é? is obtained. One must then determine the correct zeroth
order wavefunctiovns, which depend on the order in which the degeneracy
is lifted. Hitnchfeldetls has given a very thorough discussion of the
complicated equations which result. The present formalism {8 much simpley
beccause it does not contemplate the expansior of the secolar equation, which
may be solved by other procedurel.16
For a degenerate perturbation problem, the special set of states @(q)

is defined to be any linearly'independent set which spans precisely tue

same space as the ‘; eigenfunctions of the S~fold degenerate level of

the urperturbed hamiltoniaa

( H(c) e 56(03 > 4;?) -0 s \¢Rk € S = ;”(2‘5)

-

If is convenient to choose the d’(o) to be orthonormal’(lo% but it is

not necessary to assume any other special properties.
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e

Clearly we axe using a partitloeing teclintique. The basic notion:
e I T R ¥ VPO .
of partiticning goes back to Vaa Vleck, Lewuard=Jones,” Brillouin,
and otherd in the early days of quantum mechanica. Lbwdin and hig co-
6 k E { P4 @

workers have developed the partitioning techniguus {into very elegant
and powerful approaches to perturbation theozy. Our equations aprear
to ‘be quite differeur from Liwdin'a althonyh the pasules must be similar.
Thus it is interesting Lo compare the two troeaiments.  In place of the

secular equation (13); LBwdin solves the sccular equation

¥
s (0) o~ k B 70 TN RN T
K1 R - e lag =0 o
where x
?1‘, - |+ () H n
and

W=l -
T(E) = R® 2 [(V-E+€)R"

m=0

sy = (Y% Bt
4 ;

[

-
N
E-

g

b O

)

-

N

27)
F . . s
Since F{ is a function of K, Eq. (26) iz uot an oxdimary .- seculay

equation. Nevertheless, it can be solved in an iverative fashioun. Iu

contrast, the matriz elements of (14) or (15) are linear in the energy =

Nevertheless,in Appendix C it is shown that the L#wdin gecular equation

factors into the product of a non~vanishing determinant timeslﬂ secular
{ equation equivalent to (14). Thus the equivalente of the twe treatmeuts
Lo |

" 1B established.
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+ IV, Almpst-Degenerate Pecburbation Theory

In many ways, almostedegenerate uialegs arc more ditiieult Lo
treat than degenerate states. -‘Lhie s the wase where two or more
states interact sufficiently that the Rayleigh=Sushubldiupor
expansions do not apply. One of the standard pechulques {0 te
manipulate the zeroth order hamilbtouluan in ovder te mobe the set
of almost-~degenerate levels appear Jdegenerate. Gleaciy thie {o a
type of problem where poititioniung tonbuigues ohould be applied.

And, as we shall see, our fermaliam Lg porcticotoric wuoinl
For an ultwostedegeunsrale perturbation prohlew, che gpesia? gat
of states @ ig defined to be § states i S0y e off the

unperturbed hamiltoalan, A

-

it

/ ¢ . ) w

kwhich are almost degeverate in the sgense thar the patlos

4(4)(&)‘ H( 6 %q)(a),ﬁ

€.

R"‘é

1 b‘ﬁ‘ = *
(0 s 1 wimb%

\ ‘ ‘ . . [
are lavge. Tor simpliclty, {t Ls aspuned thab coch of the levelsn &,

is itself nq\nwdegenerate and that <<¢"f"’}§ {Ié:; C‘:’?} e ‘2{3

Again the generdl equatlons to be solved are Egs, (11) and

I - '
i J&) gu (1J> These equations are similar to the degenerate
1\ Y » e

case, excepL that now (§( °) is diagounal but it is not a multiple of

the unit matrix. Furthermore, the perturbation emergles are wnot

fixed by requirements of mathematical coﬁéiatéﬁcyg
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¢ur 74 Thus the off~-diagonal elements of & are not fixed L the

formalism. Rach choice of these numbers resulte in 8 dlfferent ex~
pansion of éE and @& . Although the rools ol the secular equation
”\14) obtained by diffexrent choilces differ only by “higher-order
terms", it is of interest to examine various ways of fixing the off-
diagonal elenents of & .

The DE-FOP-VIM Formalism. A general method of handling the

indeterminancy in (? is to solve Eor each 6# “as an impiicit

(h) A
function of the off-diagonal elements €jR~ . Then these quantities

can be determined by min1mizing the roots of the secular egnation

;ﬂ””;“” o o ] €. (n)
(14) - with respect to variations in Lhe Jh -

?ﬁa ol

To gain lnsight into this procedure, consider the solution of the

first order pe»turbation equation (11) with 6%7%? (' ?94&) arbiluirary,

The general solution may be written

l s {a) ' (0); | (0 € \

o o ] (2T HVI >—€ OPRE
d;(l) — a # Ty J B+ @,

. = e Z R Tk,

, o) _ (o)
1FR 33 €" = &

I

.) ¢
where Ch; " gatisfies



L7

s
HOL e () ggz cn§ - T ‘("} (ol (l) (o
(H )‘i{) + ; Ch <¢,} | H @; )

C” (#(ﬁ?> = O . “53: 68{

(1)

and ‘lk ls an arbitrary wormalization constant., ‘Yhen the

S-dimensional vavdational basgig set

» J . K2y o
A 4 s;f; Sh ey
4) R 4: g} R {j ? & N } a & }1

which leads to the S5 secular equation (24) with d@(‘) replaced

AL
by db‘", is clearly equiva’ent to Lha ?S dimengional basis

@‘.’6; and‘@éi}i’, B | 55'?. £ E;
Py S 4 l ?;

This leads to the 25x25 secular equation

GOIH-E1D) (4P IH-E4")

(@ H-ENG@Y (M u-e g™

sESMGpmepstgy T e

. Q‘/xf“s roots o/ Eq x(zg) .. are identical to the roots of hqa(la) f

“‘ "“y;,g I l B o b e it i “
T* S b s 2 0 - ﬁ"fe)

Lf in the 1atter equation N = l and the éﬁ and are

e
i

,Wyﬁrieﬁ,freely_a&dwiﬂ%?Pﬁndeﬂ%¥V"F° a B?at#SQQrY_EQlﬂﬁr

A
ok
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The lq.;\ (28) ‘cppun also in Hirschfelder's DE-VOP-VIM
forulll; : for dcgomnto and almost-degenerate perturbation problems.
It is easily seen that the extension to N-th order of this method o.
choosing & leads to an (N#1)S x (N#+i) 8 secular equation, g
roots of which give the desired ewergies accurate through O/A"w").

The DE-FOP-VIM method is simplest to apply in case that the
states k th are the lowest energy states of H corresponding to
particular symmetries. Then, by Hylleraas-Undheim theorem, the ,S
smallest roots of the DE-FOP-VIM secular equation can be identified
as the approximations to the' corresponding exact energies. 1In case
that there are lower energy states of H than the states in ,5 :
the interpretaticn of the roots of the DE-FCP-VIM secular equation
can become ambiguous. Clearly, the DE-FOP-VIM procedure camnot be
applied to the secular equation : (15) since this equation cannot be
derived from the variational ,me‘thod.u

The Kirtman Fomliamfi?. ."‘Another method of choosing the off-

diagonal elements of € is by analogy with the degenerate case. The

I ————

"‘!‘

full normalization condit:lonng (20) ‘uniquely fix all elements of &

kg

just as in the degenerate case, Furthermore, 1n tha present case &
is hermitean and the formulas' N(IB) and (19) for &m, contlnue tou
hold if thc wavefunction is required to satisfy Eq. (17)

This method of fixing & was first discussed by Kir"mans' in his
extension of Van V'%eck degenerate perturbation theory to the almost
degenerate case. Kirtman considered in detail the calculation of the

energy through third order, which in his formalism is givén as a

root of the secular equation
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£5) a2 » (2) o9 A 3) - -
\ @‘”4—,\({—{ »A?‘_c - Y& =~ t‘—-O

which is Eq.  (15) for N = 1.

Hence the Kirtman formalism will denote the Lrestment of almosat

degenerate perturbation problems by the secular equation (15) with
the full normalization conditions (20) .

The modified Kirtman formalism will be ugsed to label the treatmen

based on the secular equation (14) with the full normali-at o
conditions (20) .

The adv;nggge of the Kirtman or modified Kirtman formalism is
that the energy is obiained as a root of an Sx5 secular equation,
rather than the (MN#1)8 x (N+1)S secular equation for the DE-TOP
VIM formalism. The roots of the DE~-FOP-VIM secular equation are

necessarily more accurate than the corresponding roots of the modified
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Kirtman secular equation in case t 1t the lowest energy states of |
are being treated. 1In any case the corresponding roots of the three
different equations dilfev by éj(ﬂzhv*'z) . Thus, if the almost
degenerate block of states is well separated from the remaining unper-
turbed states, the energies obtained by the three m:thods differ by
teriis which are, by hypothesis, negligible,

Transformation to an Exactly Degenerate Problem, The lack of

———

uniqueness of the off-diagonal elements of & can b2 avoided by
defining a new spiit of H into an unperturbed hamiltonian and 'a
perturbation, such that the unperturbed limit is exaclly degenerate

In some cases there is & ratural choice for the new unperturbed
hamiltonian and eigenfunctions, However, it is always possible to defins

-”'l. o) = (o o . ol (@)
H;‘) = H(o) + ‘a:.( \>} @() = ‘»Q(O)_;} {("‘, n}

and
O = aHY + 1d@> [ e9- @ | (e,

where
CO = e 4 i;
7
and €€ may be taken to be an averaged unperturbed cneiyy,
S(/“ 0\(-‘.
: o = 2
€ = S Z €p (32)
k=1

or (;(o) may be taken to be a variational pararecter,
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Then all of the states &%ém} are o Laetly degenerate with respect e

— — (e
(W“’*} e ) e o,

so that the formaliam of Sections ,ngcwgﬁ;ww o applied. This methed of

IR a

i A

handling almost~degenavacy is sugyectod {n mont cextbooks. :
.
Let a bar denote perturbation teswms in the ewpansion of Ei; EHT

&  based on Eq,, (’3‘“* 2

'...zmm,.u

%J bt éﬁé% led o &_gigz\ a2 a0 0@ 3

and
@ - @(g) 4 @}fl} e @‘:9') A s m e

i

Through first Ofdefs ﬁéi:@) dnes nok eont 2ibuto te e afpes, 7»,

+

e -

gt
Eq-,,{‘g(lB) I

e _._a.u.a..,u" -

LR

EM = (PO IHD S ey g g

s8¢ that ’ '

. -— — 0y _ LGy . Abd
€ + € ) = & v A&

With the normalizaucn (16) ,i, '{‘3 b i Q&J“}\ = L, the £7re

o - P

order equationw (11) ean be:”writt:en

tef, L .

( ) ) _ {0; ) @{53 e g_g (0 @Cﬁ} - @(g} ,:“{33 _

(343
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:7:0" . (!)
Eq. (34) reveals that = enters into <z$> , and hence
o——
6(2, , in a non-trivial way, so that the latter quantities
(1) (2)
are not simply related to Qd> and GE Thus, it is possible

———
(0)
to energy optimize the E ;
The solution of the almost~degznerate perturbation problem is
thus reduced to the solution of an equivalent degenerate parturbation

and the techniques of Section 111 way be applied

The relationship hetween the DE-FOP-VIM, Kirtman, and modi | ed
Kirtman formalisms as well as the reduction to a truly degenerate

problem is best understood by considering the example given in the

o '
following companion paper. ‘( Pe - ? 1),



V. Electron Exchange Perturbation Problems,

In this section, the perturbation tormalism given in Section 1

iz generalized so as to be suitable for a wide range of electron

exchange problems including those which invelve configurat

interactions. The dimensionality ot the secular equations

we derive can he greatly reduced by making use of symnetry

)9
This is done in the companion paper 111

In order to apply to electron ex hange problems, the

formalism developed in Section I wmust be modified in the |

ional

which

considerations.

partitioning

ollowing ways:

(0) (0)
1). The zeroth order functions | = a3 ¢5‘ no
8

longer need to be eigenfunctions of the same

order Hamiltonian. Thus,

6@ - €9 . 0

zeroth

(35)

2). In order to express Lhe perturbed Hamiltonian in the

form

H

(0) ieg =
H) + 7LH1 = .= H +AH

(1) (36)

the perturbation parameter 7\can only have the valuc

of unity.

3). The zeroth order functions ¢1(0), se w3 ¢S(O) are

normalized but not orthogonal. Thus,

<<j q‘j(O) / ¢bk(0).;> £

(37)

Here S = 1, but the overlap matrix Aﬁ? is not

kk

unitary.
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These modifications do not lead to any major changes in the

treatment. As in Section I,

0) _ (0) '
ke 61« Skz (9)

Sec
The only difference in the perturbation equation 1q’1 and the equations

here are the subscripts on H(O) and H(l). Thus, corsesponding to Eq. (11),

we now have

0 = (0 ) 1 -1
@ @ . €Oy B &y D ¢k<§ ) .

n-1 o
=4V G o
x |

£=0

Note that Eq.(38) reduces to Eq.(5). Multiplying Eq. (38) by

8 .
” - *
ZE: S t i(O) and integrating, we obtain

<HIBIE + <eI] a2
— Z <¢(o)/¢(1)> ¢ ™4

(39)

corresponding to Eq.(12). Adding together the first N perturbation

equations,

Hé,,gN) = H“’ ¢"”+ Z:ON f@ ;i_‘f‘j’) eﬂ’

Z‘ @meg (N) + o)
hd J

The energy is then determined accurately through terms of 0()62§+i)

(40)

by solving the secular equation

’< @) | H-E| @(N)>I =0 -
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\ . : 22 , .

The presentation in the companion paper is given from the
Kirtman-Van Vleck approach considered in Appendix A. As uoted in
Appendix A, the two approaches lead to the same working equations,

Now let us consider the first order perturbation equation,

Fq.(38) with n=1,

e
© . & ©, B P n @O -

The most general expression for q&k(l) is

s . .
. PO ey

A= A

| (2) (1)
?’LCI) - (t) Z ?'(0)0(0”(_ ;C‘/)u e}/k

(42)

Here (jgk(lj is the first order polarization function which is

orthogonal to 96 (©) and satisfies the equation,

( H©@)_ ¢ © ) cﬁ A1) e élo} Z ¢(0)(¢fof/ HB>

& 9::! 43)
| @) |
In both Eqs. (42) and (43), the ;Z:: mean that the summation is to
J

be taken over all states j (including k) such that

2)
The ‘ﬁé? is the summation over the remainder of the s basis
functions. The functions LLiE are the exchange functions which are
orthogonal to gék(o) and satisfy the equation

(1) ,
14 (0) (o) - A0 _ ()
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The constants (Kjk andfgéi) are best determined by optimizing the
energy E for the state under consideration. This corresponds to
the DE-FOP-VIM procedure. Thus, different values of both the O(BK
and (Elét) are obtained for each state, Substituting (42) into

(41) and making use of Eqs, (43)-(45), it follows that for those states
j in sub-set (1),

(2]
O = YOI 4> - 35 €

ﬂ& (46)
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PRECEDING PAGE BLANK NOT

(SENOIL A. Derivation of Secular Equation and Pertur®ation Lquationa
Jting Kirtman-Van Vlieck Approach.

Gonsider a complete set of functions, which is s»lit into two

(o) o
classes, ¢ and X 4 , and which spans the Hilbert space of the

haniltonian H(A) = H’”"‘ 2 H") . We have already discvssed

(0) :
the . The remaining functions (irn general, .afinite in

number) which complete the set ave denoted by

0 gl SHC s ces LS

5&“{1( Fﬂu.
be ok

Vithoet Loss of generality, it is assumed that

1 (A.1)

(K* | x'co))
a~d

O : = )

%

(X | )

where © is the nuli matrix. No other assumptions are made regarding

(-} :
X . 3 in particular, the X:) is not necessarily an eigenfunction

.°’ v - S S——r— s ————— e — : o
oo - - g
. % = e - “/

-

rIn 2ensral, to compute ! the (E.l ’ II,’h) exactly, it is necessary

= 4
Lo consider both ‘t’ 5 and xm since the interaction elements
<¢"“) [ - X‘n> are non-vanishing. Then the Ek are

roots of the infinite~dimensional secular equation

(4| w-e \4”> (4“1 H-EIX?
\ = O. ;SA.B)

(K2 1H-El ) (x“’m-a\x“’ﬁ

| i

: T [ v
Following Van Vlecﬁ-l and Rirtmn’;s ‘the solution of Eq.i(A.Z&)

———— T

30

— ___ ie ohetained bv transformine the initial bdei'g- into the ncv set |



C@‘N) and

o ~ N N
X (N) = %“’) 4 }%‘” b oA X, (A4

The functions d#)(k), x(&) are chosen go as to make the oveyiap aud

hamiltonian matrix elements connecting & (M) and WINy vanish

through terms O()sN):

|-
(@(N) | H-E \ix;;(N)>= O (W), (8.5)

Ti2n the leading contribution of the functions X(N) to the energies

E'h. s 1€ R$ S , is proportional to

Pt
o
2l

\(@(m HIXmdlE= O0re)y,

Hence the roots of the SXS' secular equation,

(@M I H-E G w0dl= 0, s
" are accurate through | O (2 2”*9: ) .
To obtain equations for ‘35{’“ (k; K‘k); it i convenient to

introduce the projector onto the set @(N):

cﬂcﬂ (92
/

MVM' | (9@(»4) @(N)

(A.7)
/ -



The perturbation terms of X.(N) are given by
X(N) = (1= ¢ ) K(N) (A.9)

which assures orthgonality batween @(N) and X(N) through G’(XN)
The perturbation terms of @(M} are determined by

\ |
z.l

~r ’ \ = /\o’f’ / (A,
|{ap )} H T X ) = OiN") :
The X(N) is a complete set of functions in the space orthogonal to

q(N) « ILf overlap of H@(“‘) with all of J(N) vanishbes, then
HaP (N) must be expressible as a linear combination of th G}'_ (N) .

Thus, Eq. ' (A.9) is equivalent "o

HB ) = @W)EMN + OON)

where the elements of (E(N) are numbers to be determined. In ti

limit N=> o , Eq. (A.10) clearly becomes . (4
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APPENDIX B. Proof of Eqsw (18)znmi%(19xfor Expressing

€™M a4 @)

Eqs. (18) and (19) are very lmportant in the application of our
formalism. When this formalism .s extaended to the calculation of
physical properties other than energy it will be unecessary to make
uge of additional expressions for these anergy watrices., These
are derived in this Appeundix,

First, nowever, it is convendent to establich some Lurermediate
results, By taking Fhe adjoint of Eqa;(17} aﬁd adding .t to the

L

original equation, one obtains

ij <¢>w/ > =0, mro

A 20

(B.1)



34

The follewing relation will be noeded later:

<¢#(ﬂ~l)‘ H(;) l ¢meﬁ)> - <{&%} (L)g W ) @(nfﬂéﬂb

(1.2)

A i
W-g -
- ™ . , ) 7. L3 x\é"‘"‘i " 7 % 1 5 ;, L ,».‘
T I B M (2 1 te T R
— PO NG e ), EF G e

%

k=0 fr=o

£

This is proved by multiplyiong the /f~th vrder perturbation equalion
G #TE ) ) g“""}\ -
(11)?§from the left by ﬁ#) &fi and iutegrating,

SoEA 0 IRAT S &

. e e

I
ik

o (“t‘m“ml Hio) l@fu)k)«fv‘(&-jp"”“«(’»} i 1y 8} X(_;%) {”l)[\

=

R
3o
ok
§

?

T E}o <fdf’(%_““ | .cq%‘ff,‘-’""m> e &
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av - LL&-W—;’—»}-'

and multiplying the (v-gf )-th order equation from the-left by d})‘m‘k

and integrating, v

<_d#(z)} (02 ;,g#cn»;,)> + <¢<£) | H (v ] 4) (m*&«|)>
(B.4)

n-g o
- 2% <c¢ (R) l #(h-ﬁ‘h)>@(h)‘

Taking the adjoint of Eq. (B.3) and eubtractingﬂ“\\gq, (B.4) from it

yields 5q. (3.2).

s AL L

T N " i v
Bt U TR WP L3 PALPPUU

Application of Eq. (B.2) i ‘qo-t) Cimesfjto“Eq‘. (lZﬁ) yields

R ;
&' = (B n |- +i PN e® @P(ﬁ”@l@c'?“ﬁ};&
. | ‘2o k=e |

B . " | ‘ | - Y |
3 B (qmigtnyet S agoiatne
) £=1 k=o - B | o ,h=‘?

9



Interchanging the order of summation gives

= /cq, %)I H (nlcp(f 3.‘)>+ ﬁ 6‘!)*2 <¢w)l CSF% h-l>

R=o =0

b 3 B
..i ;z <¢(Q)I¢(f-ﬂ—h)>&<fg)._z 12-:0@”@“"“%? _
ot kot

The final term vanishes by the normalization condition kEq. (B.1).

t
Furthermore, (E(n)r @(n) . Hence,

\

% Gk
€0 = (P |@H > D e ®. T (401D
=0 Q=0

(B.>)

...)T".ZE" i @t,(ﬂ) \4)(4"-,0— h)> Ce(k)

zo f{=o0

Eq.: (18) then follows from Eq. (B.5) by setting p =2n+ 1,
q = r and making use of Eq. (17) \ Similarly Eq. (19) follows from

Eq. (B.5) by setting p = 2n , ¢ = n = 1 and making use of Eq. (17) .,
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APPENDIX C. ’Comparison with Lbwdin Yarticioning. 37

In order to compare our treatment with Lbwdin's it iz nzcessary
that we switch from full to iantermed!ate normalization,To avoid

confusion with the results using full normalization, subscripts

rather than superscripts will be used to denote order in inten-

¥

mediate normalization. It 18 also convenient to absorb )\ intoe the

¥

* definitions of the perturbation terms and to define

V = ,3* Hu>i

V/= V- (B o)

" For intermediate normalization

. <:G#c:‘ q*,’.>‘ = 2 5 ni, (C.v)

Multiplying Eq. (11) from the left by (ﬁbv. and integrating gives

RCE,, = <~“’4>o {V % Cﬁ’ma > . (c.-z*;

. » m B ’ . Tox
Eq. (C.1) allows lﬁJ‘ ) to be omitted from Eq. (22)%s0 that the

perturbation wavefunctions are

P il

s

‘%. RoV'd, f E}‘R « Fnov € .

Iterating this equation, it follows that

B

Lo Cael heg
: el
47”“ (RoV’) b, — | Z}) g;.‘(R V7). Ro@hﬂ-,lﬂz‘fw (C.3)
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| (0 ()
From Eqs. (29) and (C.3) (using the fact that K )Qb‘ )-.-.- O \

ON -

- . .
T(E>V‘d’o = ZJ ‘#nu &
: n:o
a'M:"' Wl 4 p ,

Substitution of this resull into Eq. '(26) and using Eq. (C.Z’), and

rearranging the terms gives

ANt
Z;o(gh-(:_:_ + O()2N11>
aN-1 W -
0= +Z;‘ Z;‘ Cd dab 0 Z !
aN-~  AN-n-2 .,m,
+§l Gvn J‘Zo -LZ;O gOQ‘Pu““Zo(V‘Ra)t]Q 4l zr/l gh



It 148 now cleay that, ia the o

wnmabtilony over h

BT

, the upper ivaib

may be replased by AN=l  if terms OO e neglected,
Hence,
.uM n
(RPAARC AL Iy
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Assuming that the first determipant is nonvanishiug yields
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more, it was shown in Chapl;ar Two that the change from in‘bermediate

to full pormalization also affects the roots of Lq, (L5) “bya

O (AQN"" ?-'/) terms. }Iemc;e, it follows that the roots of secular
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