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Eq. (2) interchange W, and W

Line below (5) interchange w+ and W

Six lines from the bottom (which now starts with (RS;B)).

This line should read: "(RS;aB) gives good values for AE

and fair values for E. The. . ."
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ABSTRACT

A system of two coupled simple harmonic oscillators where many of
the energy levels are almost degenerate doublets serves as an excellent
"suinea pig" for testing many perturbation techniques including the

Modified Kirtman, Kirtman, and DE-FOP-VIM treatments discussed by

Certain and Hirschfelder in a companion paper. These methods are com-

pared with the '"usual' approach to almost degenerate problems which
makes the zeroth order energies of the doublet pair degenerate by a
suitable choice of the zeroth order hamiltonian. In addition, four
types of Rayléigh—SchrBdinger expansions are considered. The best
values of the enérgy are given by the Kirtman treatment. However, the
DE-FOP-VIM and the Modified Kirtman procedures give values almost as
good, and have the added advantage that they give upper bounds to

the energy of the states which are considered.

NSF Predoctoral Fellow, 1965-69; Present address: Department of
Chemistry, University of Manchester, England.
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I. Introduction

In this paper, the perturbation techniques developed by Certain
and Hirsshfelder in a companion paper® (which we shall refer to as 1),
as well as verious types of Rayleigh-Schrodinger expansions, are ap-
plied to a model problem where many of the energy levels are almost
degenerate doublets. We consider the system?* composed of two coupled
simple harmonic oscillators as described by the hamiltonian
3

oo LRy L LB (-
H = c;'i(g;&néﬂ) t (e WL -yt +2xy @

Exact Solution

The Schrodinger Equation for this case is exactly solvable. By
rotating the coordinates so that x = § cosb + 1 sin® and
y = - ¢ sin® + 1 cos®, then setting tan(20) = - A/(2a), the hamil-

tonian becomes

s A% :
SN I - XN T TR I VY R T S (2)
H &.(' g& k) a.) a 4 + &(J.)-Y]
where
\/a ia,
We = L1+t (@ + 2*)?] S
This hamiltonian COfresponds to a two dimensional simplé harmonic
oscillator with thé energy levels
E_ =@+ Gu, + @+ ())u_ (%)
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where the quantum numbers n and m are either zero or positive

integers. The corresponding wave functions are

Yom = (w+w-)wum(g')um(qf) (5)

where ' = (w+) ¢ and n' = (w_) . Letting Hn(q) be the n-th

Hermite polynomial,

-l A . ql /
Unlg) = (™ Gt H () 27 P ©

When o and A are smzll, the states nm and mn (with ayn)
are closely spaced doublets. By squaring the sum and difference of w,,

and ®_ and then taking the square root of the result, we obtain

™~

: . | (7
Wy tW- = Lo+ 2a* v af(gear)? - A"“]"g‘] 2

Eq. (7) is convenient for expressing the mean energy of the doublet,
= (1 , .
(Enm + Emn) /2= ()@ +m+ 1) (w, + W) - (8)
and the energy spitting within the doublet

(B -E )= (n-m ~u) (9)

In the remainder of the paper we consider many different types of
perturbation procedures for determining the mean energy and energy
splitting of the 10,01 doublet. Tables 1 and 2 give the results which

we obtained for o = 0.1 and A varying from zero to 0.35.
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II. The Rayleigh~Schrodinger Expansions

The basic assumption of the Rayleigh~Schrddinger theory is that
the exact wave function and the exact energy may be expanded in power
series in the perturbation parameter. For the problem at hand, there
are four types of Rayleigh-Schrddinger expansions whicli we might
consider:

1) Expansion in Powers of  A(RE;1)°

The (RS;A) energles are most easlly obtalined by expanding the ex-
pressions for the exact energies, Eqs. (7) - (9), in powers of ).
This involves: {irst, the expansion of the inner square root; and

then the expansion of the outer square root in Eq., (7). Thus we

obtain:
(10)
| Y ‘ a\ A4
" - . ~ & 7
(Enm+Emn)/2 = (ntmtl) [1~ e (ig_g (!“)‘:‘2)3_._ - O(%‘)]
of
This series converges provided that:
a %
AT (1-a?) and Mot =0TL R (11)

Furthermore,

(12)

_ 2 g i L‘ |
o n? = 20000 [1 i 8«;\(1%‘) N i\ie%ec“? \?:ec“ff +O(7‘6)]

and the series converges provided that

A=)t e A (| - 347) (13)



Thus, the range of convergence for the mean erergy series is much
greater than that for the energy splitting seriesy; For example, if
o = 0.1, then the mean energy series converges if )\ < 0.99; whereas
the energy splitting series converges if )\ < 0.198. Of course, the
first few terms in these series can be used as an asymptotic approxi-
mation to the energy outside of the range of convergence. Thus, in
Table I it 1s seen that the first two terms in Eq. (10) give an ex-
cellent approximation to the mean energy for even the largest tabu-
lated value of )\ (0.35), whereas in Table 2, the first two terms of
Eq. (12) give a very poor approximation to the energy splitting for

even the smallest values of A.

¥

2) Expansion in Powers of Q(RS;0)

The (RS;0) energies are also obtained by expanding the inner and
outer square roots in Eq. (7). We shall assume that A% <1 so that

c=(1- Az)% is real. Then,

(14)

(B #8072 = O oimin) [alrvcl] |4 - £ U=l o]
nm mn A (H‘C) |
and the series converges provided that a? < 1 - lk]. Fuﬁthermofe,

Gy = aom (ali-c)] [1+ S0eal® (<)
nm - mn n=m) L&l ’ 22 ¢ Ol (15)
The convergence requirementis of this series are tﬁat 02 <1 - l%l

and that o2 < (-1+4c-3c?)/be AsA2/4. From Tables 1 and 2, it is -

apparent that the (RS;o) series give give a good approximation for the



mean energy but a poo: approximation for the energy splitting. This

behaviour is similar to that for the (RS3;A).

3) Double Power Series Expansion in o and A (RS;oA)

There is no difficulty in obtaining the double power series for

the mean energy by expanding the immner and outer square roots of Eg,

(7,
‘ (16)
- <41 rp A\ Y
£ )/2 = (imtD)| | - Ao - DA _ <A LA oK
(Enm+ mn)/ : (n+m )[' S ‘a'g Q QH‘ ——,—3—%— ..‘]
This series converges if
Qo + A - af <1 and ot - N <]

Note that Eq. (16) contains no terms in o since the mean eneréy of
the doublet is independent of the value of o if A =
However, no double power series expansion can be obtained forithe
energy splitting. After expanding the inner square root in Eq. (7),
_ (17
| \ 2 a :
B = (n-—m)[d.a' + (@ e - o) ¢ (A + 0 - ) + ]
A further expansion of Eq. (17) would lead to terms involving inverse
powers of either o or A . There is a simple theoretical reason

why this double power series cannot accur:? Let us resolve the

hamilton;an into three parcs, H =Jﬁ(o> + H(l’a) +_H(1’A) where
50 . _ 1L + .L_Q' ) + L34ty | (18)
2. Axl dys 2 74 H
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, 2z 2
H(l‘“):‘-‘ (oc’*_%f)xz — (o(.,%{__),(y (19)
H<1;>») o KX?. (20)

The zeroth order energy of the doublet states is degeucrate,

S m n+n+l, The zeroth order wave functions corresponding

to these energy states are

i (Q) — . ‘ - 51
Ql& = cos0 un(x) um(y) 4 sin® um(x) un(Y)

9L2<0) =~ =-sin® un(x) um(y) + cos€ um(x) un(y)

In order that a double Rayleigh-Schrodinger power series expansion be
N

possible, it is necessary that 9L1(0) and 942(0’ be

simultanegusly the '"correct zeroth order" wave functions for the

(L) (1,%)

perturbations and H . Unfortunately, it is impossible
to find a value of © which permits both sets of conditions to be
satisfied, This is easy to see in the special case that !n - Hl{ = 1.

where the degeneracies are removed in the first order. Here "V%Ko)

and 9L;k0> would be the "'correct zeroth order" wave functions for

the two perturbations if <:‘¢z(0) {H<lﬁx)/ QL;(0?2> = 0  and

. Yoy o>
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4) Expans.on in Powers of cxf and A8 (RS; < B)

Finally. as Saul T. Epstein suggested to usylet us consider a
double Rayleigh-Schrodinger power series expans@on which exists for
both the mean energy and the energy splittings. Let us express the
problem in the § and 77‘ (in;tead of the x and y) coordinates,

Then the hamiltonian, BEq. (2), can be expressed as the sum of three

terms Fi(@): _ / gj: 9; ) +’ZL(IZ+ 7{2)
HY = gi [7%-5]

" 9
where B = Jl} 0(2 + A°. Then the e:aact energy is given by

Eqs. (3) and (4) with

= J1+ut2p]

l/z; .

Expanding &/, through terms of the thixd order ( o( BJ where 1+3'< 3)

='t§'+§} é—"*"*é'té’*wo

These series converges for ( o( << 1. The advantage of the
(RS; o B) treatment is that the double power series expansion

exists for both the mean enérgy and the energy splitting of a doublet,

ITI. The Kirtman, Modifigd‘Kirtmah» and De-FOP-VIM Approximations

Next, let us apply the Kirtman (K), Modifiéd Kirtman (MK), and

DE-FOP-VIM approximations developed in-the compénion paper I. Taking
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A ae the perturbation parameter, the unpsrturbed hamiltonian is

(23)

(o) 2t ., 2% I 110,12 Lt
H =~i—(&)ﬁz+‘;62)+§-(l+d) Xt 4+ 5 (1=4)Y

and the perturbation is

r{(l) —- )(1?

The eigentolutions of the unperturbed problem are

(o)
émo/m = (M+:z’-)(/+o()+(ﬂ”+z')(l“°‘) (24)
and ' q
‘ A@ ‘ P /
¢ = (1= U, (X7 Uy (97
Mmh | (25)
where - :.c' - (1-0-49()1/2 % gnd y' = (1-:*0( )1/2}{.



‘Let us apply each of the perturbation techniques to the doublet

pai¥ 10 and 01 ¢

Kixtman Approximation

Tn vector notation, the zeroth ovder function for the 10 and

q)(o) — (o) o (o) ‘)
, Po :

Using the full normalization condition, so that ‘(G@(O)i€@<l>7 a‘O,;

01 atates is

@ [ are O o
o -

The solution of the first order equation (I~11) % is

¢ = "[aJ 3.(;-@)1 (¢ )

o |
"= . arr::z“r‘

ali ""d." © /

-t .
e®< [T wi=® © (26)

o -—
4(1- «?) .
, \
@(3) = ° AR 3”-) N
160 1~ ,L})"/& © /



To this order, the energy of the Kirtman formalism is given by th:

roots of the secular equation (I-29) which yields

H PR T % &
E&c:(m “3 Y(|-a2) jata’*—[a_ﬁwotl)'/l * ‘6(1*41)3’,9‘]

(27;
Modified Kirtman Approximation

Alternotively, the modified Kirtman secular equation (T~l4) witrh

N =» 1 reduces for this case to

{4+ <" YN+ ne" -E1) + N + Ve ] -

which has the roots
A

» . - 2
F(MK\ = BT RS

L

(28)

P

o C e [ -

Since the 10 and 0l states are the lowest energy states with their
symmetry, the roots (28) are upper bounds to the exact energies.,
Clearly, the modified Kirtman roots (28) differ from the Kirtman

roots (27) by terms of order 'A?.

_DE-FOP-VIM Approximation

For the application of DE-FOP-VIM to this example, the secular

equation to be solved is Eq. (I-28). Sibstitution of the proper
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quantitiés and transforming to the crthonormal set of functians

q) (0) CP (0) (O @G0)

16 > Yo1 2 Xay s Yo yields the 4 x 4 secular equation for the
energy
g+e-E A i O
. (1| —aL?)e (a(i-a?)]"
. v Q- «E Q IR S
a (1 -ak) Lads .
W = |
Y. O Y4+ ~E I W
[a(‘ “*z)] V'z’ ( - d}«.}"}m
o . W . Yoo~k
Cati-a?% (V7

Note that of the four energy roots, the only two which are significant

approach aig) and Eég) in the limit as A - 0.

IV. Reduction to Degenerate Perturbation

As explained in Paper I, the almost degeneracy of the doublet 10
and 0l can be transformed into a true degeneracy by using the zeroth

order hamiitonian

-q-(o) (0) (—-_ E(O))¢(O) <°) (30)
+(€-€9) <\>‘°’ ¢
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where H(O) is the H(O) of Eq. (23). Clearly, ﬁ(O) ¢§ 0) =0 (0)

O " b\rlr
and H(O) ¢<0) ¢(8i The energy € is arbitrary. Thus, it may

be taken to be the mean unperturbed energy of the doublet pair,
€ = q(sig) + Eég)) = 2, or € may be considered to be a variational
parameter, Corresponding to HCO) is the first order perturbation
potentilal ﬁ<l) =H - ﬁ(O).

Having reduced the problem to a degenerate perturbation, we

have a nuwber ok choices as to the method of solution. Let us use

the modified Kirtman approach. Then, from Eq. (I~22) and the re~

cursion relations for Hermite polynomials, it follows that

“) a(e - e(o)) q)m\

c.) 2.(6 cu) - q)‘” (31)

Warning: In general, one should not expect a simple relationship
] . (¢5) . | |
such as (31) between the ¢k and the ¢k which results from
the simple harmonic nature of both H(O) and H . The energy is then

given by

| <o u-el d0) > |
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Evaluating the matrix elements leads to the 2 x 2 secular equation,

() F P )
+
€®) + Ars +s*ef p(4 +st)
- E()+s*)
() = ¢ {0\ (32)
€9 + [Frs +t€?
Y‘(-!ii-st) o N
E(i+t) :
where )
1/ !
- fa
r= A(]=-a?)
(o
s = Y‘f_I(EE‘” ))
t= p[@(€-€9)
Eq. (32) gives the two energy roots ElO(E3 and EOI(E). These
energies are upper bounds to the exact energy for the states 10 and
01 since: (1) The approximate wave functions for the 10 &nd Ol
states are orthogonal to the 00 ground state wave function; and
(2) the H matrix component linking the approximate 10 (or 01 )
wave function with the 00 is zero. Thus, € can be assigned a reason- =«
able value such as 6£<0) (O)) or € can be taken as a varia-
tional parameter. The best (or lowest) value of Elo is obtained for

a different value of 'E than that which gives the best (or lowest)

value of EOl'
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The degenerate problem can also be treated by the usual Rayleigh-
Schrodinger treatment. Since the degeneracy of the 01 and 10 states
is resolved in the first order, it is not difficult to detérmine the
wave functions accurate through the first order. These wave functions
are then used to determine the energy correct through the third order.
Numerical results corresponding to € = 2 are given in Tables I and II

If we had used the DE-FOP-VIM method of approximating the ;nergies
of the degenerate perturbation, we would have obtained the secular equa-
tion (29) and the same energies which result from using the DE-~FOP-VIM
approximation without making the reduction to the degenerate problem.
However, this equality is not general, but rather it is a result of the

proportionality of the Eél) and the ¢£l> as given by Eq. (31).

V. Numerical Calculations

The results of the various perturbation treatments are compared

numerically in Tables I, II, and III for o = 0.1 and 0 < A < 0.35.

———

The mean energy of the doublet, E = %(E is given in Table T;

10 t Epp)

the energy splitting, AE = E , is shown in Table II; and the

10 ~ Fo1
optimum values of € for the two states appear in Table IIT.

First, let us considér the Rayleigh~Schrodinger expansions. The
(RS;a) gives excellent values for E but poor values for AE . The
(RS;B) gives excelleht values fé6r AE but poor values for E . The
(RS;2) gives fair values for E but very poor values for AE . The
(853)0) gives almost the same fairﬂvalues for ;E— as does (RS;)\), but
rthe (RS:Aa) perturbation series for AE does not exist.

"All of the rest of the perturbation procedures (K, MK DE-FOP-VIM,

and the reductions to a degenerate problem) give essentially the same
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results: good to very good values of the splitting AE, and fair value:
of the mean energy E . Although the DE-FOP-VIM gives slightly better

energies than the MK (as itrmust) for buth the 10 and 0l states,

the DE-FOP-VIM values for AE are not as good as the MK values. Thus,
as far as this example is concerned, DE~FOP-VIM is not worth the extra
effort. The Kirtman (K) values are slightly better than the Modified .
Kirtman (M) values for both E and AE . However, the Kirtman
values tor che ensrpies of the 10 and of the 01l states, ludivigwalse. |
are not upper bounds. This is the big advantage of the Modii.ed Kiroman
treatment. The reduction to a degenerate problem required considerably o
more work and the results were about the same.

It is difficult to generalize these resultg to other problems.
However, we are digappointed that no oné methoed shiowed itselr to be

outstandingly better than the others.
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The Optimum Values of € for o = 0.L using ﬁ(o) of Eq. (30)
followed by MK treatment.

Table II1

A State 10 0l
.05 2.096 1.915
.10 2.057 1.929
.15 2,013 1,949
.20 1.970 1.972
.25 1.933 1.996
.30 1.901 2.022
.35 i 1.873 2.046

17
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Footnotes
1.) P, R, Certain and J. O, Hirschfelder, J. Chem. Phys. (preceding

companion paper; Paxt I).

2.) J. 0. Hirschfelder, W. Byers Brown and S. T. Epstein, Adv. in

Quant. Chem, 1, (P. O. Lowdin, Ed., Academic Press, New York,

‘
1964). See p. 297.
»
. 3.) The notation (I-1l) should be read: "Paper I; equation (11)".
v 4.) See, for example, A. Messiah, Quantum Mechanics, (Wiley, New York,
1964), Vol. 2, p. 711,
1 .
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