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1	 Eq. (2) interchange w+ and w{
^r
,x

	

2	 Line below (S) interchange w+ and w
,^,	 34

	13	 Six lines from the bottom (which now starts with (RS;Q)).

This line should read: "(RS;ac) gives good values for AE

and fair values for E. The.	 ."
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ABSTRACT

A system of two coupled simple harmonic oscillators where many of

the energy levels are almost degenerate doublets serves as an excellent

"guinea pig" for testing many perturbation techniques including the

Modified Kirtman ., Kirtman, and DE-POP-VIM treatments discussed by

Certain and Hirschfelder in a companion paper. These methods are com-

pared with the "usual" approach to almost degenerate problems Which

makes the zeroth order energies of the doublet pair degenerate by a

suitable choice of the zeroth order hamiltonian. In,addition, four-

types of Rayleigh-5chro6dinger expansions are considered. The best

values of the energy are given by the Kirtman treatment. However, the

DE-FOP-VIM and the Modified Kirtman procedures give values almost as

good,, and have the added advantage that they give upper bounds to

the energy of the states which are considered.
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I. Introduction

In this paper, the perturbation techniques developed by Certain

and Hirschfeldet in a eompdtiion paper' (which we shall refer to as 1),

as well as verious types of Rayleigh-Schro"dinger expansions, are ap-

plied to a model problem where many of the energy levels are almost

degenerate doublets. We consider the systemz composed of two coupled

simple hatwonic jsu'illators as dL-,,4(ribed by the hamiltonian

;L 2^ 	 1
+	 X '.	 + A 	 (1)

^L

I.

Exact Solution

The Schr'O'dinger Equation for t1jis case is exactly solvable. By,

rotating the coordinates so that % - t, cosh + it sine and

y	 sinO + n cosOo then setting tan(20) 	 X/(2a), the hamil-

tonian becomes

4-	 W	
(2)

4-^

where

y	 I/

E i + oo- t	 +	 21	 (3)

This hamiltonian corresponds to a two dimensional simple harmonic

oscillator with the energy levels

4
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I,

where the quantum numbers n and m are either zero or positive

integers. The corresponding wave functions are

AP M rm	 ( W4-W )", U M ('g') 1 ,(I-')

where 4' == (w+) ^ and -n	 (w_)	 Letting hn (q) be the n-th

He' mite polynomial,

when a and X are small, the states nm and mn (with nf^n)

are closely spaced doublets. By squaring the sum and difference of co',.

and w and then taking the square root of the result, we obtain

^ B^, b^^h	
C 7 )

Eq. (7) is convenient for expressing the mean energy of the doub l eL,

(Enm + mn) /2 = ( } (n + m -i- 1) (W+ + wr )	 ($)

and the energy spitting within the doublet

(Enm mn) = (n - m) (w+ - w_)

In the remainder of the paper we consider many different types of

perturbation procedures for determining the mean energy and energy

splitting of the 10,01 doublet. Tables 1 and 2 give the results which

we obtained for a = 0.1 and a varying from zero to 0.35.

2

(5)

(6)

L



and	 4 (11)
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II. The RaYleiRh-Schr*O* din&er Expansions

The basic assumption of the Rayleigh-Schr lo'dinger theory is that

the exact wave function and the exact energy may be expanded in power

series in the perturbation parameter. For the problem at hand, there

are four types of Rayleigh-Schr'O'dinger expansions which we might

consider:

1) Expansion in Powers of A(RF,

The (RS;X) energies are most easily obtained by expanding the ex-

pressions for the exact energies, Eqs. (7) - (9), in powers of X.

This involves: Urst, the expansion of th y! 	 square root; and

then the expansion of the outer square: 	 in Eq. (7). Thus we

obtain:

(10)

4
(E +E	 2 = (n+m+l)
nm mn

^f

This series converges provided that

Furthermore,

(12)
4

(E 
nm 

-E 
mn	

2 ot (n-m)	++
1 2. ? QL4	 13

	 ^^^^)
R'("Lo - ce)	 j

and the series converges provided that

(13)and
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Thus, the range of convergence for the mean energy series- is much

greater than that for the energy splitting series # For example, if

a w 0.1, then the mean energy series converges if X < 0. 99; whereas

the energy splitting series converges if a < 0.198. Of course, the

first few terms in these series can be used as an asymptotic approxi-

mation to the energy outside of the range of convergence. Thus, in

Table I it is seen that the first two terms in Eq. (10) gave an ex-

cellent approximation to the mean energy for even the largest tabu-

lated value of a (0.35) , whereas in Table 2, the first two terns of

Eq. (12) give a very poor approximation to the energy splitting for

even the smallest values of X.

9

2) Expansion in Powers of a(RS^U)

The (RS;a) energies are also obtained by expanding the inner and

outer square roots in Eq. (7). We shill assume thgt X2 < 1 so that

C = (1	 X 2 ) ^ is real. Then,

(14)

(E um mn+E ) /2 4-(h) (n+m+l)

and the series converges provided that d, 2 < 1 - I X I . Fir thermore,

	

(E -E_ ) (n-m ) au ' C^ 	 } cc (1+ G) 	+	 o."
nm mnI 	 2	 oC	 (15)2 X-C

The convergence requirements of this series are that a2 < 1 - 1a1

and that a2 < (-1+4c-3c 2 ) Ac- Z X 2 /4. From T bles 1 and 2, it is ----

apparent that the (RS;a) series give give a good approximation for the

4
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mean energy but a Pooi approximation for the energy splitting. This

behaviour is similar to thatfor the (RS;A) .

3) Double Power Series Ex ansion in a and A (R.S i a X)

There is no difficulty in obtaining the double power series for

the mean energy by expanding the inner and outer square . hoots of Eq.

(7)

(16)
a

	

(E +E ) /2	 (n+ml-l)nm mn	 ...

This series converges if

	

<	 and	 4'C4 a. _. 
^a < Ca

Note that Eq. (16) contains no terms in an since the mean energy of

the doublet is independent of the value of a if A = 0.

However, no double power series expansion can be obtained for the

energy splitting. After expanding the inner square root in Eq. (7),

(17)

	

E -E= n-m d.°t' +	 2.aL°L + ^a — c(4 +° -^ c^.nLa. +	 d.y }
run mn	 (	 A_	 ... I

A further expansion of Eq. (17) would lead to terms involving inverse

^ ►

	

	 powers of either a or A 	 There is a simple theoretical reason

why this double power series cannot occur: 2 Let us resolve the

hamiltonian into three par us,, Ii H( ^) + H (10a) + H (1 ' A) where
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(1 .49
C< 	 )A

H (19)

(20)

The zeroth order energy of the doublet states is degoacrate,

(0 )	 (0)	 The zeroth order wave functions corresponding11m	 mn

to these energy states are

ti	 (0) cose an (X) um (Y)	 s inO um 
(X) u n(y)

li
ii

(0) (x) u (Y) + COSO u	 L12	 -sing u	 (X)	 (Y)n	 m	 ni	 n

In order that a double Rayleigh-Schrodinger power series expansion be

possible ,,	 it is necessary that	 (0) and	
2 

(0) be

simultaneously the "correct zeroth order" wave functions for the

perturbations	 H	 ^ and	 H	 Unfortunately, it is impossible

to find a value of	 9	 which permits both sets of conditions to be

satisfied.	 This is easy to see in the special case that In - ml

where the degeneracies are removed in the first order. Here

40)and 2 would be the "correct zeroth order" wave functions for

the two perturbations if	 C T (0)	 H (1 " ^`^' T
2 
(0) > 0	 and

<,/, (0)	 H a	 (0) >	 0.
2
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4) Ex pans ion in Potpiers ^af O and 	 )

Finally, as Saul T. Epstein suggested to usplet us consider a

double Rayleigh-Schrodinger power series expansion which exists for

troth the mean energy and the energy spli.ttings, Let us express the

problem in the S and '^' (instead of the x and y) coordinates.

Then the hamiltonian, Eq. (2), can be expressed as the sum of three

ter'nis

H 	`..	 L

 ^.'(0) 	 +	 Z + *^ 
4)^7

	

H maw	 E	
5z] I

t

1

L

where	 =	 4 0( ^ +	 Then the e-, act energy is given by

Eqs . (3) and (4) with

W4- 

Expanding W+ through terms of the third order ( a< i P a where i+j < 3)

1.,	 z	 e	 l

These series converges for (OC 2 -^3) 2 < 1. The advantage of the

(RS;o^ P) treatment i4 that the double power series expansion

exists for both the mean energy and tha energy splitting of a doublet.

III. The Kirtman, Modified Kirtman, and De-FOP-VIM_ Approximations

Next.. let us apply the Kirtman (K), Modified Kirtman (MK), and

DE-FOP-VIM approximations developed in-the companion paper T. Taking



^'	 a

J

x

`a

as the perturbation parameter, the unperturbed hamiltonian is

]y4

21. dx 	, (23)s.
y

4
and the perturbation is

}
r.

p
The eigenvolutions of the unperturbed problem are

and

^►^+/rh (25)

{1

where x'	 (1+e()1/2 x" and y' _ (1i oC) 2y .

G

}q

i	 •

i

i

„

7
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Let us apply each of the perturbation techniques to the doublet

pair' 10 and 01 1

Kirtman Approximation

In vector notation> the zeroth order function for the 10 and

01 states is

(0)	 ek^o^
10 ) T 01)

Using the full normalization condition, so that 	 0

t

fl

	

(0)	 4- d,	 0

0

The solution of the first order equa-%-,, ion (1-11)' is

i	 1	
(1) 

= --	 -, ( col ^^.^[a j GO- ) .1	 at

0	 1

0

Li am	
0

0	 1	
)4(1— cL:La ) )

(3)	 0	
1(01 

1 

1 —

Z	
0

(26)      



To this order, the energy of the Kirtman formalism is given by th(-

roots of the secular equation (1-29) which yields

10, W — A.	 4	
+	

co) 17A +
	

CM V'A01

(27)

Modif led Kiftinan &P-ro.x-imation

Alternativoly, the modified Kirtman secular equation (T-14)

N 44 1 reduces for this case to

Aa ow vo

which has the roots

g	 (28)

F06 4 1
+^

Since the 10 and 01 states are the lowest energy states with their

symmetry, the roots (28) are upper bounds to the exact energies.,.,

Clearly, the modified Kirtman roots (28) differ from the Kirtman

roots (27) by terms of order X4.

- DE-FOP-VIM Approximation

For the application of DE-FOP-VIM to this example, the secular

equation to be solved is Eq. (1-28). S^ibstitution of the proper



9L +c(, —E

--A--" ,

a.0 I -00)

,-

i,

I!

O.I)11

10

quantities and transforming to the orthonormal set of functions

C^)	 (0), ^ (0), ^ (0)  yields the 4 x 4 secular equation for theltd	 fl 1	 21	 12

energy

C.Cr^C&)3.mr

	 0	 4`

Note that of the four energy roots, the only tvYo which arc-, significant

approach E(0) and E:QO) in the limit as X ^ 0.

IV. Reduction to Degenerate Perturbation.

As explained in Paper I, the almost degeneracy of the doublet 10

and Ol can be transformed into a true degeneracy by using ttj.e zej:oth

order hamiltonian

	

(0) M (o) + E E w) 	 (d)

	

1Lo	 i s	 1 o 1

+ (	 E (01 / ^ (0) < (off
` 0!	 01	 oL

(30)
1
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(0)	 (0)where H(0) is the H(0) of Eq. (23). Clearly, ff(o) ^io
and f(0))(0	 (0). The energy e is arbitrary. Thus, it may

C.- Ol

be taken to be the mean unperturbed energy of the doublet pair,

( S (0)  + e ( 0) ) as 2 0 or 7 may be considered to be a variational
10	 01

parameter. Corresponding to H ( 0) is the first order perturbation

potential if(l) = H - -ff(0).
Liaving- reduced the problem to a degenerate perturbation, we

a	 0! (110L:-es u.^ tv the method of solutiun. Wt u- --; us4,,

the modified Kirtman approach. Then, from Eq. (1-22) and the re-

cursion relations for Hermite polynomials, it follows that

^	 E(D) )
to	 al	 10

C(0)	
(31)

Warning: In general, one should not expect a simple relationship

such as (31) between the^^ 1^and the k
	which results from

the simple harmonic nature of both H (0) and H	 The energy is then

given by

I^^(pIH-EI ^^i)^I =0



Y-1	 + St)

E(` + e)
(32)

I

12

Evaluating the matrix elements leads to the 2 x 2 secular equation,

1

E is + BE rs +Sa.G CO

E(^+ sa l

r(I4-st)

i

where

s	 E (0) Y

t= r,'( - E^^^^

Eq. (32) gives the two energy roots E 10 (c) and E0 1 (E) . These

energies are upper bounds to the exact energy for the states 10 and

01 since: (1) The approximate wave functions for the 10 and 01

states are orthogonal to the 00 ground state wave function; and

(2) the H matrix component linking the approximate 10 (or 01 )

wave function with the 00 is zero. Thus, E can be assigned a reason- µ

able value such as Z 14 ) + E 01)) = 2 or E can be taken as a varies-

tional parameter. The best (or lowest) value of E10 is obtained for

a different value of	 than that which gives the best (or lowest)

value of E01.
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The degenerate problem can also be treated by the usual Rayleigh-

Schrodinger treatment. Since the degeneracy of the 01 and 10 states

is resolved in the first order, it is not difficult to determine the

wage functions accurate through the first order. These wave functions

are then used to determine the energy correct through the third order.

Numerical results corresponding to e = 2 are given in Tables I and 11

If we had used the DE-FOP-VIM method of approximating the energies
4

of the degenerate perturbation, we would have obtained the secular equa-

tion (29) and the same energies which result from using the DE-FOP-Mi

approximation without making the reduction to the degenerate problem.

However,- this equality is not general,-,but rather it is a result of the

proportionality of the _k l) and the ^ M as given by Eq. (51).
k

V. Numerical Calculationsh

The results of the various perturbation treatments a.re compared

numerically in Tables I, II, and III for a = 0.1 and 0 < X < 0.35.

The mean energy of the doublet, E = II(E
10
 + E01) is given in Table i;

the energy splitting, Q E = E10 - E 01 , is shown in Table II; and the

optimum values of a for the two states appear in Table III.

First, let us consider the Rayleigh-Schrodinger expansions. The

(RS;a) gives excellent values for E but poor values for AE 	 The

(RS;S) gives excellent values for AE but poor values for E . The

(RS;^.,) gives fair values for E but very poor values for DE	 The

(:;;aa) gives almost the same fair values for E as does (RS;X) , but

the (RS;Xa) perturbation series for AE does not exist.

All of the rest of the perturbation procedures (K, MK, DE-FOP-VIM,

and the reductions to a degenerate problem) give essentially-the same
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results: good to very good values of the splitting AB, and fair value,_

of the mean energy E	 Although the DE-POP-VIM gives slightly , better

enetgies than the MK (as it must) for bi,)th the 10 and 01 states,

the DE-VOP-VIM values for AE are not as good as the W values. Thus,

as far as this example is concerned, DE-FOP-VIM is not worth the extra

I /

	

	 effort. Vie Kirtman (K) values are slightly better than the Modified 	 .0

Kirwan (IBC) values for both "f and AE . However, the Kirtwaa

value t, io i- 't^iie antergies of the, 10 and of the 01 6tates,

are not up pat bounds. This is the big advantage of thy:

V

treatment. The reduction to a degenerate problem required (_oasidt_-rably

more work and the results ware about the same.

It is difficult to generalize these results to othem 1)rob laws -

However, we are disappointed that no one method shored it ,c'-), elt to be
I

outstandingly better than the others.

Acknowledgments

The authors wish-to thank S. T. Epstein for his helpful comments

and suggestions and we wish i to thank P. J. Fortune for his help in

checking some aspects of the calculations.



15

%0 44D

 ̂ 0c^ o g cQ ^ QA
fW	 } • s i F Y i i .r

A

[4

0 0 0 O 0 0 C)
0

® a,^	 { C)

Y

^.j l ( b '^ M ` 0 Myt'* w^neq'y
e ♦ 4% M	 U) 4j C9 o o C.') Y

C
o
0

0
0 C7

f+7
g

cej
q
ty} C)t"ti

^

C7 O
4^

C3
0

C^
00 0t"'tr C)

/'1 FN 8 ••S+i 0 0 ..1 1 	 ! W M ,
?-i 0

/ Î C
ary /C 0 ^̂ +

?
q O 0 0 *rye

t Rb bay '^!*/^
1^0

h._J
/J^

4^jy'

C•
l//•.•1 'p+^r

IF
m

•H
4J e Q • b • • i

V ^\ •F{ t3 A r

ri
• ^ ^-^ 4A A C C cy ko (7% rn c'•

a
0

w o
44 v 44

U r-. Fra O O O C) 0 00 Q
C m O" H	 i

^
O O O O O O O C5

^ dI W M %-.,
M^

a • a • • r s

I 

W
CD

W .^
iH m i-^ ^r^l C J O O -t c 0t1') 00 cn1

G07 C07r-i O , d t +"
N

O
^^'

CCD O 0
0

C)
O

0 O
CJ,Q

N p+ O o O 0 0
W w H

i

gg
H, ^N N

^3
11

W
If +1

ca
W ) Z3 O O O 0 N m

^

•^
^r • ^

O 00 o 0 00N rn a 0 C)
^ .• o C) O o O o O o

rd w
W

N
0

../ bD 14	 O
W

O d

•N
U ® 0 O0) C) O O O Op cn	 9,^ . ^ a o 0 o 0 o a o

a. ► I	 co
^ o0 o0 00 oo oO 0o o0 00,^^ a vi

o •^

r-i

cd 23 ! co 0 O 0 ^ M M w O

} O O O Q O O o r-4
U cd rn O O O o O O O O

U I P4 O O O O O O O O
cd v v i

cu N

4
—4J

C7 !` n co n Cr C31 n

cd O a% rn of 00 0 ^ 1^0
O m ON ON

Mei rG 00 O r-) N N
Y

M

l

s -



16

IL

C) 0 0 0 0 0
u 0
:3	 CY)

44

0

C) C) 0 0 00
#

0 0 0

C) 0
may

C) m
4i 0 0 0 C)

C) 0 0 0
w #

^i
0 C) 0 H m C) -11 mC) 0 0 0 C) H  N in

C n 0 C) 0 0 0 0 0 00 C7. 0 0 C 0 0 0
C C) 0 CO 0 CD 0 0

4-4 0 CD C r--1 c"I 00 Olt
0 r C) 0 0 0 C) 0 r-I

0 CD C) 0 0 CD 0 0
P4 C CD a 0 0 CD C 0

06 Ot
r3l I
NO
93.rj 0 C) 0 r-4 C14 I'D ^10 CY)

0 0 C) 0 0 C) r-I cy')
0 CD 0 0 0 CD C) 0
0 C C C) 0 0 C) a
0 a C) 0 C) C) 0 C)

ca C C) C C14 -It C) C\j C14
CD C) CD C) C) ^-i C\j -4
C) C) (D CD 0 C) C)

En 0 (t) c 0 0 C) 0 C)
0 CD 0 C) C) C) 0 C)

:0 ci
p 0 C14 m C14 ^l r-I r- m

18 -H Z3 m 't ^

cq (:",

H

0
cn I'D Cf) r- m 410 -It

r- CY) H CD 0 0
I	

co

0 0 0 0 CD CD
bA

'P C) 01% r", -It M
cd C) 0 Cf) 0 -,1- ^n
P4 CD 0 rl r-i %.0 to C\l ollcn 0 0 C) C) r-I co %10 0

P4 0 0 0 C^ 0 0 C) .a

4J
ri C C14 t31 C%j C) 110 cn r-i
co CD tN 00 h m 1,- 00 r-
x C) .10 Cf) 0 -43- cq -It m
W C) CD in 00 %10

C14 N C14 cq cn

0 0
•

1

0 tn 0 Ln 0 tn 0
c) C'4 C'j C') cn

^r

0
H

rl

li •r1

ca

44

4

ew

0

II 41

0

cu
4E-4

cn
Z3

rj) * o,

4-4
44

P., a)

4-)

0

ci
U
CTJ

(1)

lc-

E-4

I	 ip

4

4J

pa

0
H
P4



Table III

The Optimum Values of ^ 1'or a - 0.1 us n8 k^^ 0) of Eck. (30)

followed by MK treatment.

17

a

.05

.10

.15

.20

.25

. 30

.35	 1

tata	 10	 01

2.096	 1.915

2.057	 1.929

2. 013	 1,949

1.970	 1.972

1.933	 1.996

1.901	 2.022

1.8.73	 2.046
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footnotes

l.) P. R, Certain and J. 0. Hirsclifelder, J Cham. Phys. (preceding

companion paper; Part 1).

2.) J. 0. Hirsclifelder, W. Byers Brown and S. T. Epstein, Adv

I
	 cant. Chem, 1, (P. 0. Lowdin, Ed., Academic Press, New York,

1964) . See p. 297.

3.) The notation (1-'11) should be read: "Poper T; equation (11)".

4.) See, for example, A. Messiah, Quantum Mechanics, (Wiley, New York,

1964) , Vol. 2, P. 711,
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