General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF ACOUSTIC POINT SOURCE RADIATION IN THE PRESENCE OF

A REFLECTING AND REFRACTING PLANE

By

9
John C. Corbin

Final Technical Report Contract N:S8-21414.

August 1969

Prepared for
George C. Marshall Space Flight Center Marshall Space Fiight Center, Alabama 35812

Prepared by
National Scientific Laboratories, Inc.
Westgate Research Park McLean, Virginia 22101

A THEORETICAL AND EXPERIMENTAL INVESTIGATION OF ACOUSTIC POINT SOURCE RADIATION IN THE PRESENCE OF A REFLECTING AND REFRACTING PLANE

By
John C. Corbin

Final Technical Report Contract NAS8-21414

August 1969

Prepared for
George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama 35812

Prepared by
National Scientific Laboratories, Inc.
Westgate Research Park
McLean, Virginia 22101

PRECEDING PAGE BLANK NOT FHMED.

ABSTRACT

This Final Technical Report by National Sciertific Laboratories, Inc., was prepared for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Marshall Space Flight Center, Alabama under Contract No. NAS8-21414. This document delineates the theoretical and experimental techniques applied to the problem of acoustic point source radiation in the presence of a reflecting and refracting half-space.

The study is concerned with the ultimate application of far-field data to the study of the dynamic environment of rocket engines, in particular, those of the Saturn V launch vehicle.

The work reported herein was performed at the laboratory facilities of National Scientific Laboratories, Inc., in the Westgate Research Park, McLean, Virginia during the period is of August 1968 through July 1969.

PRECEDING PAGE BLANK NOT FILMED.

TABLE OF CONTENTS

Section No. Page
1 Introduction 1
2 Theoretical Analysis 32.12.2
2.2.12.2.22.2 .32.2.4
2.2 .52.2 .6
2.32.3.2
2.42.4.12.4.22.4 .3
2.4.42.4 .52.5
2.5.1
2.5.2
2.5 .33
3.1
3.1 .1
3.1 .23.1 .33.2
3.2 .13.2 .2
3.2 .33.2 .43.33.3.13.3.2
3.3 .33.43.4 .1
3.4 .2
Table of Symbols 3
Fundamental Integral Forms 7
Additional Symbols. 11
Analysis of the Integrand. 13
The Saddle Point Method of Integration 18
Series Expansion of Numerator Elements 19
Series Expansion of the Lu.uinator. 24
Combination of Expansions. 26
Subtraction of First Order Poles. 32
Series Expansion. 32
The Scattering Matrix, 36
Types of Materials 37
Additional Symbols 39
Boundary Conditions 40
Discussion of Porous Media 44
Zeros for Two Fluids Model 48
Theoretical Solution 49
Final Manipulations 51
Interpretation of Theory 54
Theoretical Data 55
Experimental Effort 56
Spherical Generator System (SGS) 56
SGS Construction. 57
Calibration of the SGS 63
Capabilities and Limitations 69
Source Theory 69
Table of Symbols 70
Analysis. 71
Incorporation into Theory 73
Modification of SGS 74
Impedance and Propagation Constant Measure- ments 76
List of Symbols 76
Theory - Impedance Tube 77
Point Source Technique. 84
Site Testing 84
Propagation Measurements of Medium 2 85
Large Scale Test 87

TABLE OF CONTENTS (Cont'd)

Section No. \quad Page
3.4.3 Pressure Field Data 95
4 Conclusions 96
4.1 Summary of Findings 96
4.2 Recommendations. 97
4.2 .1 Extension of the Theory for Random Effects 97
4.2.2 Extension of the Theory for the Entire Upper Half-Space 98
4.2.3 Expanded Test Plan. 100
4.2.4 Impedance and Propagation Constant Measurements 100
4.2 .5 Treatment of SGS Radiation Pattern. 103
APPENDIX A: COMPUTATION OF M_{11} FOR THE CASE OF TWO ELASTIC OR VISCOUS MEDIA. A-1
A. 1 List of Symbols. A-1
A. 2 Boundary Conditions A-3
A. 3 Mechanics of Inversion. A-5
APPENDIX B: STARTING ROOTS AND APPLICABLE RIEMANN SUR- FACE FOR TWO BONDED ELASTIC MEDIA. B-1
B.l List of Symbols. E-1
B. 2 Decoupled Denominator B-2
B.2.1 Part Containing γ_{1} and γ_{3} B-5
B.2.2 Part Containing γ_{2} and γ B-8
B. 3 Summary of Roots B-16
APPENDIX C: THEORETICALLY DERIVED DATA C-1
C. 1 Discussion C-1
C. 2 Computer Program C-3
c. 3 Program Output Data C-6
APPENDIX D: EXPERIMENTAL PRESSURE FIZLD DATA D-1

LIST OF ILLUSTRATIONS

Figure No. Page
2.1 Diagram of Wave Transmission Modes from Source to Microphone. 82.2 Map of \times Plane Branch Cuts Associated withI_{2} and $\mathrm{H}_{0}^{1}(\kappa r)$ and the Paths of Integra-tion.152.3 Branch Cut and Riemann Surface Diagram forUp to Four Double Valued Functions, γ_{k}.... 17Plane Wave Scattering by a Plane BoundaryBetween Two Bonded Elastic, IsotropicMedia.41
3.1 One-Half of Dodecahedron Speaker Enclosure. 59
3.2 Assembled Dodecahedron Enclosure. 59
3.3
Interior View Showing Fiberglass and BurlapCover.60
3.4 Assembled SGS 61
3.5 SGS and Support Tripod. 62
3.6 Test Setup - Electrical Details 54
3.7
EIA Sensitivity as a Function of Frequency. 66
3.8
Anechoic Chamber Tests for Azimuthal Symme- try of SGS Radiation Pattern at Ten Feet.. 68
3.9 Impedance Tube Methods for Obtaining In Situ Information on the Ground Impedance. 79
3.10
Complex Impedance Ratio as a Function of Frequency for the Three Ground Coviers In- vestigated. 81
3.11 Geometry of Boundary Conditions 82
3.12 Velocity and Velocity Potential profiles atBoundary Inside of a Normally Incident Im-pedance Tube.83
3.13 Pole Position Relative to k_{1} 88
3.14 Angle of Incidence Extensions for the Acous- tic Impedance Tube. 89
3.15 Impedance Tube Set-Up for 60° Angle-of-Inci- dence Measurements. 90
3.16
Earth Tests Using Acoustic Impedance Tube and Its Modifications. 91
3.17
Microphone Stand for Thirty Foot Measure- ments 94
Close-Up View of Microphone Support. 94

LIST OF ILLUSTRATIONS (Cont'd)

Figure No. Page
4.1 Diagram of Test Setup. 101
B. 1 Values of the Roots as a Function of d B-4
B. 2 Directional Relationships Between Phases,B. 3ΨB-11
Location of u_{3} and u_{4} in the Complex u -Plane Showing Relationship to Other Im-portant FeaturesB-12B. 4 Geometric Relationships of Root Loci in theComplex (k / k_{4}) PlaneB-13
B. 5 Disposition of Branch Points, Branch Cuts,Actual and Virtual Poles, Etc., on thelst Riemann Surface, κ PlaneB-17
D. 1 Attenuation Versus Distance - Concrete. D-2
D. 2 Attenuation Versus Distance - Concrete. D-3
D. 3 Attenuation Versus Distance - Concrete. D-4
D. 4 Attenuation Versus Distance - Asphalt. D-5
D. 5 Attenuation Versus Distance - Asphalt D-6
D. 6 Attenuation Versus Distance - Asphalt. D-7
D. 7 Attenuation Versus Distance - Asphalt. D-8
D. 8 Attenuation Versus Distance - Grass D-9
D. 9 Attenuation Versus Distance - Grass - -10
D. 10 Attenuation Versus Distance - Grass D-1i
D. 11 Attenuation Versus Distance - Grass D-12
D. 12 Attenuation Versus Frequency at Fixed Radius,
r - Concrete D-13
D. 13 Attenuation Versus Frequency at Fixed Radius, r - Concrete D-14
D. 14 Attenuation Versus Frequency at Fixed Radius,r - AsphaltD-15
D. 15 Attenuation Versus Frequency at Fixed Radius,r - AsphaltD-16
D. 16 Attenuation Versus Frequency at Fixed Radius,r - Asphalt.D-17
D. 17 Attenuation Versus Frequency at Fixed Radius,r - GrassD-18
D. 18 Attenuation Versus Frequency at Fixed Radius, r - Grass. D-19
D. 19 Attenuation Versus Frequency at Fixed Radius,r - GrassD-20

LIST OF TABLES

Table		Page
2.1	Tabulation of Important Series Relationships...	29
2.2	rabulation of Important Series Coefficients and Their Relationships.	30
2.3	Additional Coefficient Tabulations.	31
2.4	$M_{l d}$ Components, $A\left(x^{2}\right)$ and $B\left(\kappa^{2}\right)$, as Defined by Equation (2.4), for a wide Variety of Boundary Conditions Encountered in Acoustics......	45
2.5	Relationship of Constants in Equation (2.85) to Beranek Constants.	46
2.6	Tabulation of Coefficients for Velocity Potential Series. \qquad	53
3.1	Manufacturer's Loudspeaker Da	58
3.2	Test Equipment Complemen	65
3.3	Test Site Dat	86
4.1	Test Plan Dimension	102
B. 1	Riemann Surfaces on which the Roots, $K_{i j}$, are Actual Roots.	B-19
C. 1	Attenuation Data for $Z=5$ Feet for Concrete	C-7
C. 2	Attenuation Data for $\mathrm{Z}=10$ Feet for Concrete.	C-8
C. 3	Attenuation Data for $\mathrm{Z}=20$ Feet for Concrete	C-9
C. 4	Attenuation Data for $\mathrm{Z}=30$ Feet for Concrete.	C-10
C. 5	Attenuation Data for $\mathrm{Z}=5$ Feet for Asphalt.	C-11
C. 6	Attenuation Data for $\mathrm{Z}=10$ Feet for Asphalt.	C-12
C. 7	Attenuation Data for $\mathrm{Z}=20$ Feet for Asphalt.	C-13
C. 8	Attenuation Data for $\mathrm{z}=30$ Feet for Asphalt.	C-14
C. 9	Attenuation Data for $Z=5$ Feet for Grass.	C-15
C. 10	Attenuation Data for $\mathrm{Z}=10$ Feet for Grass.	C-16
c. 11	Attenuation Data for $Z=20$ Feet for Grass	C-17
C. 12	Attenuation Data for $\mathrm{Z}=30$ Feet for Gras	C-18

1. Introduction

This report, representing the end-item of Contract NAS8-21414, delineates the theoretical and experimental techniques applied to the problem of acoustic point source radiation in the presence of a reflecting and refracting half-space.

The primary reason for this study is concerned with the ultimate application of far-field data to the study of the dynamic environment of rocket engines, in particular, those of the Saturn V launch vehicle.*

A considerable acoustic output is associated with this environment to the extent that it dictates structural and electronic design considerations. In addition, the acoustic field dictates the minimum safe distance between unprotected personnel and the Saturn V under launch conditions.

This suggests a further application of the results of this study. Namely, the selection of ground covers to optimize noise abatement to reduce the required perimeter for rocket launch areas and for airports.

In view of the similarity between rocket and jet engines, application of the acoustic analysis can be extended to studies in the latter area.

This report is grouped into three $\ddagger a s i c ~ a r e a s, ~ n a m e l y, ~$ theoretical, experimental، and conclusions.

[^0]':he theoretical investigation describes the derivation of a three-term asymptotic series to describe the velocity potential field in the neighborhood of the interface. A simpler expression, based on ray theory, is introduced to account for the remaining upper half-space.

Unfortunately, all data was derived on the basis of the latter formula since funds were not available to write a complete computer prog qum 2 for the interface formulation. Some intuitive arguments concerning the terms of the series indicate a basis for agreement between experiment and theory.

The experimental program served to confirm the existence of attenuation rates in excess of 6 dB per doubling of distar ce. Operation at inadequate power levels prevented accul te measurements at 1000 feet. It was determined that, of the three materials investigated, concrete, asphalt, and grass, that grass exhibited the most pronounced attenuation rates.

It was also determined that present methods of in situ impedance measurements were wholly inadequate. Further, methods of determining the propagation constant on an in situ basis are only sparsely documented.

Finally, conclusions are drawn relevant to the experimental and theoretical data, and recommended corrections to the deficiencies of this program are described.

2. Theoretical Analysis

The theoretical analysis that follows uses the Green's function technique where advantage is taken of obvious cylindrical symmetry peculiar to this problem.

Specifically, the radiated or incident spherical wave is represented as an integral superposition of infinitely many cylindrical waves each of which interacts with the plane surface through a factor that is identical to that encountered in plane waves.

Thus, there are ostensibly two waves scattered from the surfaces: a reflected wave returning to the source or first medium, and a transmitted wave penetrating into the second medium. We will later see that the former wave is further analyzed into a reflected ray, and refracted ray(s), and that the latter are considerably affected by the location of (a) first order pole(s) in the complex plane of integration.

2.1 Table of Symbols

$A\left(x^{2}\right) \quad=$ coefficient of γ_{1} dependent part of M_{11}.
$A m(z) \rightarrow$ Amplitude of $z=|z|$ is understood.
$\operatorname{Arg}(z) \quad \rightarrow \quad$ angular argument of z is understood.
$B\left(\kappa^{2}\right) \quad=\quad \gamma_{1}$ independent part of M_{11}.
$c_{i}=\left(i k_{i} r\right)^{-\frac{1}{2}}=$ distance factor. Subscript is sometimes dropped. References $1,7,8,15,23,28,29$.
$D\left(\kappa^{2}\right) \quad=$ characteristic denominator in raw form.
$D_{r}\left(\kappa^{2}\right) \quad=$ characteristic denominator in rationalized form.
$D_{r}^{0}\left(\kappa^{2}\right)=$ rationalized denominator with zero, κ_{0}, removed.
$d_{k} \quad=i k_{k} g_{k}$
$F^{(2)}\left(g_{1} ; r\right), F_{0}^{(2)}\left(g_{2}\right), F_{k}^{(2)}\left(g_{1}, g_{2}\right)=$ expansion coefficients for $\mathrm{v}^{(2)}$ in two fluids model.

$$
\text { f } \quad=\text { frequency, in Hertz. }
$$

$G^{(1)}\left(g_{1}, g_{2} ; r\right), G_{k}^{(1)}\left(g_{1}, g_{2}\right)=$ expansion coefficients for $\mathrm{v}^{(1)}$ with first order pole subtracted. $g_{k} \quad=\quad$ vertical height argument for $k^{\text {th }}$ - mode wave. $H_{0}^{\mathbf{1}}(z) \quad=$ Hankel function of first kind, order 0 , and argument, z.
$h \quad=$ vertical (z direction) height of generator.
$I=I(r, z ; 0, h)=I(g k ; r)$ velocity potential kernel due to interaction with surface.
$\operatorname{Im}(z) \rightarrow$ Imaginary part of the complex variable, z, is understood.
$i=\sqrt{-1}$
i $\quad=$ integer subscript corresponding to branch cut and conformal transformation under investigation.
$J_{0}(z) \quad=$ Bessel function of order 0 and argument, z.

2.2 Fundamental Integral Forms

Based on the qualitative description of the previous paragraph and the geometry of Figure 2.1, the pressure field in
medium 1 , the region of greatest interest, is given by

$$
\begin{equation*}
\psi(x, z ; 0, h)=\frac{Q}{4 \pi}\left[\frac{e^{i k_{1} R}}{R}+I(x, z ; 0, h)\right] \tag{2.1}
\end{equation*}
$$

Evaluation of I is accomplished by noting that

$$
\begin{equation*}
\frac{e^{i k_{1} R}}{R}=\int_{0}^{\infty} \frac{1}{\gamma_{1}} e^{-\gamma_{1}|z-h|} \quad J_{0}(\kappa r) \kappa d \kappa \tag{2.2}
\end{equation*}
$$

If M_{11} is the scattering coefficient for the interaction of a type 1 radiation to a type 1 radiation in the same medium, then

$$
\begin{equation*}
I=\int_{0}^{\infty} \frac{1}{\gamma_{1}} M_{11} e^{-\gamma_{1}(z+h)} J_{0}(\kappa r) \kappa d \kappa \tag{2.3}
\end{equation*}
$$

It further happens in the acoustic case that

$$
\begin{align*}
M_{11} & =\frac{N\left(\kappa^{2}\right)}{D\left(\kappa^{2}\right)}=-\frac{\gamma_{1} A\left(\kappa^{2}\right)-B\left(\kappa^{2}\right)}{\gamma_{1} A\left(\kappa^{2}\right)+B\left(\kappa^{2}\right)} \tag{2.4}\\
& =-1+2 \gamma_{1} \frac{A\left(\kappa^{2}\right)}{D\left(\kappa^{2}\right)}
\end{align*}
$$

Hence, it is possible to obtain the fo. lowing form for I,

$$
\begin{equation*}
I=-\frac{e^{i k_{1} R^{\prime}}}{R^{\prime}}+V(z+h, 0,--, 0 ; r) \tag{2.5}
\end{equation*}
$$

where the generalized form

$$
v\left(g_{i} ; r\right)=v\left(g_{1}, g_{2},---g_{N} ; r\right)
$$

$$
\begin{align*}
& =2 \int_{0}^{\infty} \frac{A\left(\kappa^{2}\right) \prod_{k=1}^{N} e^{-\gamma_{k} g_{k} J_{0}(\kappa r)}}{D\left(\kappa^{2}\right)} \kappa d \kappa \tag{2.6}\\
& =\int_{-\infty}^{\infty} \frac{A\left(\kappa^{2}\right) \prod_{k=1}^{N} e^{-\gamma_{k} g_{k}} H_{0}^{1}(\kappa r)}{D\left(\kappa^{2}\right)} \kappa \bar{\alpha} k
\end{align*}
$$

Further reduction of the integral is expedited if we consider the following form:

$$
\begin{equation*}
K\left(g_{i} ; r\right)=\int_{-\infty}^{\infty} \frac{\prod_{k=1}^{N} e^{-\gamma_{k} g_{k} H_{0}^{l}(\kappa r)}}{\prod_{k=1}^{M}\left[\kappa^{2}-\kappa_{k}^{2}\right]} \kappa d \kappa \tag{2.7}
\end{equation*}
$$

which serves as a generating function for all fields associated with the two propagating media. The quantities, $\boldsymbol{K}_{\mathrm{K}^{\prime}}$ are the zeros of the characteristic denominator after rationalization.

Note that the numerator of $V\left(g_{k} ; r\right)$, is obtained by performing appropriate partial differential operations of the generting functions. For this, the following shorthand notation is adopted:

$$
\begin{align*}
& K_{i k}=\frac{\partial}{\partial g_{k}} k\left(g_{\ell} ; r\right) \\
& =-\int_{-\infty}^{\infty} \gamma_{i} \frac{\prod_{k=1}^{N} e^{-\gamma_{k} g_{k}} H_{0}^{1}(\kappa r)}{\prod_{k=1}^{M}\left[\kappa^{2}-\kappa_{k}^{2}\right]} \kappa d \kappa \tag{2.8}
\end{align*}
$$

$$
\begin{aligned}
& \kappa_{0}=\frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial}{\partial r} K\left(g_{i} ; r\right)\right] \\
& \left.=-\int_{-\infty}^{\infty} \kappa^{2} \frac{\prod_{k=1}^{N} e^{-\gamma_{k} g_{k}} H_{0}^{1}(\kappa r)}{\prod_{k=1}^{M}\left[\kappa^{2}-\kappa_{k}^{2}\right]} \kappa d \kappa\right\}(2.9)
\end{aligned}
$$

2.2.1 Additional Symbols

$A_{k} \quad=$ expansion coefficient for $h(X)$.
$A_{k}^{\ell} \quad=$ expansion coefficient for $\Phi(X, Y)$
$a_{k} \quad=$ expansion coefficient for $D_{r}\left(\kappa^{2}\right)$
${ }_{B_{k}^{\ell}}^{\ell} \quad=$ expansion coefficient for $g(X, Y)$
$C_{k} \quad=$ expansion coefficient for $\frac{1}{2}[G(\xi)-G(-\xi)]$
$D_{k} \quad=$ expansion coefficient for $f(X)$
$D_{r} \quad=D_{r}\left(\kappa^{2}\right)$ evaluated for $\kappa=k_{i}$
$D_{r}{ }^{\prime}, D_{r}^{\prime \prime}=$ derivatives of $D_{r}\left(\kappa^{2}\right)$ evaluated for $\kappa=k_{i}$.
$E\left(g_{k} ; r\right), E_{\boldsymbol{l}}\left(g_{k}\right)=$ expansion coefficients in asymptotic series for $K\left(g_{k} ; r\right)$
$F\left(\kappa^{2}\right) \quad=$ purely algebraic function of κ^{2} appearing in I, egg.

$$
\frac{1}{r_{1}} \frac{N\left(x^{2}\right)}{D\left(x^{2}\right)}
$$

$f(x)=c^{-1} f(\xi)$
$f(\xi)=c[G(\xi)-G(-\xi)]\left(1-\frac{1}{2} \xi^{2}\right) \xi$
$G(\xi)=\exp \left[\sum_{k=1}^{4} \gamma_{k} g_{k}\right]$
$g(X, Y) \quad=$ part of $\Phi(X, Y)$ obtained from integral representLion of Hanker function.
$h(X) \quad=X$-dependent part of $\Phi(X, Y)$ cotained from transformation of exponential function and rationalized denominator.
$h^{0}=$ expansion factor
$m_{k \ell}=\left(1-n_{k_{\ell}}\right)^{\frac{1}{2}}$
$N^{\prime} \quad=$ upper counting limit for terms of asymptotic series.
$P_{k} \quad=$ expansion coefficients for $\sinh \left(-d_{i} p_{i}\right)$
$p_{i}(\xi)=p_{i}=\xi$-representation of $\boldsymbol{\gamma}_{i}$
$Q_{k}=$ expansion coefficients for the product of exponential functions, $\operatorname{Exp}\left(-\mathrm{d}_{j} \mathrm{q}_{j}\right)$
$Q_{k}{ }^{(j)}=$ expansion coefficients for $\exp \left(-d_{j} p_{j}\right)$
$q_{j}(\xi)=q_{j}=\xi$-representation of γ_{j}
$R_{k} \quad=$ series coefficients in expansion of rationalized denominator, $D_{r}^{-1}\left(\alpha^{2}\right)$
R_{N}, = remainder after N ' terms of asymptotic series have been taken.

E \rightarrow original path of integration.
$E_{i} \rightarrow$ branch cut indentations for completed contour.
$\boldsymbol{\xi}=$ conformal transformation variable, $c \boldsymbol{\xi}=\mathrm{X}$ except when specific reference is made to κ-plane and $\operatorname{Re}(\kappa)$.
$\phi^{(n)}=$ grouping of terms for asymptotic expansion.

2.2.2 Analysis of the Integrand

A cursory examination of the integral expressions of equation (2.6) or (2.7) is sufficient to verify that the existance of a closed form evaluation solution does not exist. In fact, the oscillatory behavior of the integrand precludes accurate evaluation using direct application of series or numerical techmiques, especially when the g_{i} are small compared to r.*

One solution to this problem consists of extending the path of integration so that a closed loop obtains in the upper half x-plane and the method of residues can be used. Application of this technique requires the introduction of the Hankel function as was done in equation (2.6).

Before proceeding further, it is necessary to investigate some of the topological features of the integrand components consisting of:

[^1]a) $\quad e^{i \gamma_{k}} g_{k}$ products. $\quad \gamma_{k}$ is a double-valued function given by
\[

$$
\begin{equation*}
\gamma_{k}= \pm\left[k^{2}-k_{k}^{2}\right]^{\frac{1}{2}} \tag{2.10}
\end{equation*}
$$

\]

with branch points at $\pm k_{k}$. Twc (2) Riemann surfaces are required for a complete mapping of γ_{k}. Further, each pair of branch points must be joined by a branch cut.*
b) A purely algebraic expression involving powers of κ^{2} and possibly γ_{k}. In addition to the γ_{k} branch cuts, this component may exhibit zeros and poles on various surfaces of the k-plane. These are all of finite order, and may exist at infinity.
c) $H_{0}^{1}(\kappa r)$ introduced to extend the range of integration of $J_{0}(\kappa r)$ along the entire real axis. It possesses a logarithmic branch point at the origin and at infinity. This is not problematic since we are free to choose this along the - η - axis. Aside from this, $H_{0}^{1}(x r)$ should introduce no difficulties sirce it replaces the otherwise well behaved $J_{0}(x r)$.

Taking these observations into account, it is expected that the desired closed path becomesthat shown in Figure 2.2 when two $\boldsymbol{\gamma}_{k}$ are assumen, i.e.. $N=2$. Note that the $\boldsymbol{\gamma}_{k}$ branch cuts pass through the point at infinity since analyticity must be preserved along the original path of integration. This requires that the integrals along the paths E_{i} be evaluated. *Reference 18, pp. 398-404.

FIGURE 2.2. MAP OF κ PLANE BRANCH CUTS ASSOCIATED WITH \pm_{2} AND $H_{0}^{1}(\kappa x)$ AND THE PATHS OF INTEGRATION.

Hence schematically

$$
\int_{\Xi}=\int_{E_{1}}+\int_{E_{2}}+\frac{1}{2 \pi i} \quad \sum \begin{align*}
& \text { Applicable } \tag{2.11}\\
& \text { Residues }
\end{align*}
$$

Note that the arc at infinity does not contribute. In order to avoid difficulties with the essential singularity at infinity associated with the exponential functions it is necessary to choose that Riemann surface which satisfies

$$
\begin{equation*}
\operatorname{Re}\left(\gamma_{k}\right)>0 ; k=1,2, \ldots N . \tag{2.12a}
\end{equation*}
$$

Since the g_{k} are rigorously real and

$$
\begin{equation*}
g_{k} \geqslant 0 \tag{2.12b}
\end{equation*}
$$

the exponential functions are well-behaved everywhere in the upper half κ-plane.

The Riemann surface for which these conditions are satisfied for all γ_{k} is defined as the first. The numbering scheme for other Riemann surfaces, in terms of the branch cut transitions, is shown in Figure 2.3 for N up to 4. It is evident that N functions of the form, γ_{k}, must require 2^{N} surfaces for a complete mapping.

Finally, it is not difficult to see that the essential singularity associated with the functions $e^{i \gamma_{k} g_{k}}$ will cancel any finite order pole arising from the purely algebraic part of

FI:URE 2.3 BRANCH CUT AND RIEMANN SURFACE DIAGRAM FOR UP TO FOUR DOUBLE VALUED FUNCTIONS, ${ }^{\gamma}{ }_{\mathrm{k}}$.
the integrand. Further, the Hankel function behaves like

$$
\begin{equation*}
\lim _{\kappa \rightarrow \infty} H_{0}^{1}(\kappa r) \sim \frac{1}{\kappa} e^{-\eta r} \tag{2.13}
\end{equation*}
$$

so that equation (2.9) represents a valid alternate method of evaluating $\kappa\left(g_{k} ; r\right)$ without introducing convergence problems.

2.2.3 The Saddle Point Method of Integration

In analogy with equation (2.11) it is possible to write

$$
\begin{equation*}
K\left(g_{k} ; r\right)=\sum_{\ell=1}^{N} K^{(\ell)}\left(g_{k} ; r\right)+\sum_{\ell=1}^{M} K_{r}(\ell)\left(g_{k} ; r\right) \tag{2.14}
\end{equation*}
$$

where \sum^{\prime} indicates that a residue is to be included only if it is an actual pole on the first Riemann surface.

$$
\begin{align*}
& \text { In evaluating the integral } \\
& I^{(k)}=\int_{\Xi_{k}} F\left(\kappa^{2}\right) \prod_{k=1}^{N} e^{-\gamma_{k} g_{k}} H_{0}^{1}(\kappa r) \kappa d \kappa \tag{2.15}
\end{align*}
$$

it is desired to perform a conformal transformation in which the new path of integration extends along the real axis, and where the origin of the new coordinate system represents a mini-max, or saddle point.

In fact, the actual method used turns out to be a double saddle point integral in X and Y, which is accomplished by using an integral representation for the Hankel function.*

[^2]As a consequence of applying this treatment, described in the following sections, a new integral representation of the form
obtains.
This is optimally treated by expanding $\Phi(X, Y)$ in a power series and integrating term by term. Exact details of the saddle point method as applied to the general integral (2.15) are given in Banos.*

2.2.4 Series Expansion of Numerator Elements

It is now convenient to consider

$$
\begin{equation*}
K^{(i)}\left(g_{k} ; r\right)=\int_{E_{i}} \frac{\prod_{k=1}^{N} e^{-\gamma_{k} g_{k}} H_{0}^{l}[\kappa x)}{\left.\prod_{0}^{2}-\kappa_{k}^{2}\right]} \quad \kappa d \kappa \tag{2.17}
\end{equation*}
$$

to which the conformal transformation

$$
\begin{equation*}
\frac{1}{2} X^{2}=i\left(k_{i}-\alpha\right) r \tag{2.18}
\end{equation*}
$$

is to be applied. Also the auxiliary variable

$$
\begin{equation*}
Y=c_{i} X ; \quad c_{i}=\left(i k_{i} r\right)^{-\frac{1}{2}} \tag{2.19}
\end{equation*}
$$

is introduced along with an index convention that :
i assumes a value corresponding to the branch cut being considered. Hence, it prescribes the transformation relationships of Equations (2.18) and (2.19).
j assumes only values other than i.
Now, in analogy with Baños,* define the functions
$p_{i}(\xi)$ and $g_{j}(\xi)$ such that

$$
\begin{align*}
& p_{i}(\xi)=\xi\left\{1-\frac{\xi^{2}}{8}-\frac{\xi^{4}}{128}-\frac{\xi^{6}}{1024}-\cdots\right\} \\
& |\xi|<1 \tag{2.20}\\
& q_{i}(\underline{\xi})=\left[1-n_{j i}{ }^{2}\right]^{\frac{1}{2}}\left\{1+\frac{n_{j i}^{2} \xi^{2}}{2\left(1-n_{j i}^{2}\right)}\right. \\
& \left.-\frac{n_{j i}^{2} \xi^{4}}{8\left(1-n_{j i}{ }^{2}\right)^{2}}+\frac{n_{j i}^{4} \xi^{6}}{16\left(1-n_{j i}{ }^{2}\right)^{3}} \cdots\right\} \\
& |\boldsymbol{\xi}|<\left|2\left(1-n_{j i}\right) / n_{j i}\right| \tag{2.21}
\end{align*}
$$

with

$$
\begin{equation*}
\sum_{k=1}^{N} \quad \gamma_{k} g_{k}=d_{i} p_{i}(\xi)+\sum_{j=1}^{N} d_{j} q_{j} \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{k}=i k_{k} g_{k} \tag{2.23}
\end{equation*}
$$

Further note that

$$
\begin{equation*}
x d \kappa=-k_{i}^{2}\left(1-\frac{1}{2} \xi^{2}\right) \xi d \xi \tag{2.24}
\end{equation*}
$$

so that, it is possible to define

[^3]\[

$$
\begin{align*}
& f(\xi)= {[G(\xi)-G(-\xi)]\left(1-\operatorname{l}^{\frac{1}{2}} \xi^{2}\right) \boldsymbol{\xi} } \tag{2.25}\\
& G(\xi)= \exp \left[\sum_{k=1}^{4} \gamma_{k} g_{k}\right] \tag{2.26}\\
& \frac{1}{2}[G(\xi)-G(-\xi)]=-\sinh \left[d_{i} p_{i}\right] \tag{2.27}\\
& \times \prod_{j=1}^{4} \exp \left[d_{j} q_{j}\right]
\end{align*}
$$
\]

Next, the (exponential) and (hyperbolic sine)
functions are expanded in a power series

$$
\begin{gather*}
e^{d_{j} q_{j}=} Q_{0}^{(j)}\left(1+Q_{2}^{(j)} \xi^{2}+Q_{4}^{(j)} \xi^{4}+Q_{6}^{(j)} \xi^{6}+\ldots\right), \\
|\xi|^{2}<\left|\frac{2\left(1-n_{j i}\right)}{n_{j i}}\right| \tag{2.28}\\
-\sinh d_{i} p_{i}=p_{1} \xi\left(1+p_{2} \xi^{2}+p_{4} \xi^{4}+p_{6} \xi^{6}+\ldots\right), \\
|\xi|^{2}<4 \tag{2.29}
\end{gather*}
$$

$$
\begin{align*}
Q_{0}^{(j)}= & e^{d_{j} m_{i j}} \\
Q_{2}^{(j)}= & \frac{1}{2} d_{j} n_{i j}{ }^{2} m_{i j}{ }^{-1} \\
Q_{4}{ }^{(j)}= & -\frac{1}{8} d_{j} n_{j i}{ }^{2} m_{j i}{ }^{-3}+\frac{1}{8} d_{j}^{2} n_{j i}{ }^{4} m_{j i}-2 \tag{2.30}\\
Q_{6}{ }^{(j)}= & \frac{1}{16} d_{j} n_{j i}^{4} m_{j i}{ }^{-5}-\frac{1}{16} d_{j}^{2} n_{j i}{ }^{4} m_{j i}^{-4} \\
& +\frac{1}{48} d_{j}^{3} n_{j i}^{6} m_{j i}^{-3}
\end{align*}
$$

with

$$
\begin{equation*}
m_{i j}=\left(1-n_{i j}\right)^{\frac{1}{2}} \tag{2.31}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
P_{1}=-d_{i} \\
P_{2}=-\frac{1}{3}:\left[\frac{3}{4}-d_{i}^{2}\right] \tag{2.32}\\
P_{4}=-\frac{1}{5}:\left[\frac{15}{16}+\frac{15}{2} d_{i}^{2}-d_{i}^{4}\right] \\
P_{6}=-\frac{1}{7!}\left[\frac{315}{64}-\frac{315}{16} d_{i}^{2}+\frac{105}{4} d_{i}^{2}-d_{i}^{6}\right]
\end{array}\right\}
$$

Next, note that

$$
\begin{align*}
& \prod_{j=1}^{4} \exp \left(a_{j} q_{j}\right)=Q_{0}\left(1+Q_{2} \xi^{2}\right. \\
& \left.\quad+Q_{4} \xi^{4}+Q_{6} \xi^{6}+\ldots\right) \\
& |\xi|^{2}<\text { the smallest of }\left|\frac{2\left(1-n_{j i}\right)}{n_{j i}}\right| \tag{2.33}
\end{align*}
$$

where

$$
\begin{align*}
& Q_{0}=\prod_{j=1}^{4} Q_{0}^{(j)} \\
& Q_{2}=\sum_{j=1}^{4} Q_{2}^{(j)} \\
& Q_{4}=\sum_{j=1}^{4}\left\{Q_{4}^{(j)}+\sum_{k>j}^{4} Q_{2}^{(j)} Q_{2}^{(k)}\right\} \tag{2.34}\\
& Q_{6}=\sum_{j=1}^{4}\left\{Q_{6}^{(j)}+\sum_{k>j}^{4}\left[Q_{4}^{(j)} Q_{2}^{(k)}\right.\right. \\
&\left.+Q_{2}^{(j)} Q_{4}^{(k)}+\sum_{l>j}^{4} Q_{2}^{(j)} Q_{2}^{(k)} Q_{2}^{(l)}\right]
\end{align*}
$$

and where it is understood that summations and products avoid index values of j, k, or $\boldsymbol{l}=i$ in Equation (2.34).

At this point, the problem becomes identical to that discussed in Baños,* i.e.

$$
\begin{equation*}
\frac{1}{2}[G(\xi)-G(\xi)]=c_{1} \xi\left(1+c_{2} \xi^{2}+c_{4} \xi^{4}+c_{6} \xi^{6}+\ldots\right) \tag{2.35}
\end{equation*}
$$

with

$$
\begin{align*}
& C_{1}=Q_{0} P_{1} \\
& C_{2}=Q_{2}+P_{2} \tag{2.36}\\
& C_{4}=Q_{4}+Q_{2} P_{2}+Q_{4} \\
& C_{6}=Q_{6}+Q_{4} P_{2}+Q_{2} P_{4}+P_{6}
\end{align*}
$$

Finally,

$$
\begin{align*}
& f(x)= 2 c c_{1} \xi^{2}\left(1-\frac{1}{2} \xi^{2}\right)\left(1+c_{2} \xi^{2}\right. \\
&\left.+c_{4} \xi^{4}+c_{6} \xi^{6}+\ldots\right) \tag{2.37}\\
&= D_{2} x^{2}+D_{4} x^{4}+D_{6} x^{6}+D_{8} x^{8}+\ldots \\
&|x|^{2}<\operatorname{least}_{\text {of }}\left\{\begin{array}{l}
4 k_{2} r \\
k_{2} r\left|2\left(1-n_{j i}\right) / n_{j i}\right|
\end{array}\right\}
\end{align*}
$$

where the i subscript is assumed, and

$$
\begin{aligned}
& D_{2}=2 c^{3} C_{1} \\
& D_{4}=2 c^{5} C_{1}\left(c_{2}-\frac{1}{2}\right) \\
& D_{6}=2 c^{7} C_{1}\left(C_{4}-\frac{1}{2} C_{2}\right) \\
& D_{8}=2 c^{9} C_{1}\left(c_{6}-\frac{1}{2} C_{4}\right)
\end{aligned}
$$

[^4]Finally, an asymptotic expansion is substituted for the Hankel function. Hence

$$
\begin{equation*}
H_{0}^{1}(\kappa r)=\frac{4}{\pi} e^{-i \kappa r} \int_{0}^{\infty}\left(4 i \kappa r-Y^{2}\right)^{-\frac{1}{2}} e^{-\frac{1}{2} Y^{2}} d Y \tag{2.39}
\end{equation*}
$$

Substitution from equation (2.18) allows the identification and expansion of $g(X, Y)$:

$$
\begin{align*}
g(x, y) & =\frac{1}{2}^{c_{i}}\left[1-\frac{1}{2} c_{i}^{2} x^{2}-c_{i}^{2} y^{2}\right]^{-\frac{1}{2}} \tag{2.40}\\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} B_{2(n-m)}^{2 m} x^{2(n-m)} Y^{2 m}
\end{align*}
$$

with

$$
\begin{equation*}
|X|<\left|2 i k_{i} 4-\frac{1}{2} Y^{2}\right|^{\frac{1}{2}} \tag{2.41}
\end{equation*}
$$

Expanding the power series for $g(X, Y)$ gives the following coefficients

$$
\begin{align*}
& \mathrm{B}_{0}^{0}=\frac{1}{2} \mathrm{c} \\
& \mathrm{~B}_{2}^{0}=\frac{1}{8} \mathrm{c}^{3} \quad \mathrm{~B}_{0}^{2}=\frac{1}{16} م^{3} \\
& \mathrm{~B}_{4}^{0}=\frac{3}{64} \mathrm{c}^{5} \quad \mathrm{~B}_{2}^{2}=\frac{3}{64} \mathrm{c}^{5} \quad \mathrm{~B}_{0}^{4}=\frac{3}{256} c^{5} \\
& \mathrm{~B}_{6}^{0}=\frac{5}{256} \mathrm{c}^{7} \quad \mathrm{~B}_{2}^{2}=\frac{15}{512} c^{7} \quad \mathrm{~B}_{2}^{4}=\frac{15}{1024} c^{7} \quad \mathrm{~B}_{0}^{6}=\frac{5}{2048} c^{7} \tag{2.42}
\end{align*}
$$

2.2.5 Series Expansion of the Denominator

The denominator of equation (2.17) is best handled by considering individual expansions of $\left(\kappa^{2}-\kappa_{k}\right)^{-1}$ or by direct expansion of the rationalized polynomial of order N in κ^{2}.

The former gives

$$
\left.\begin{array}{rl}
\left(\kappa^{2}-\kappa_{k}^{2}\right)^{-1} & =\frac{1}{k_{i}^{2}-\kappa_{k}^{2}}\left[1+\frac{k_{i}^{2}}{k_{i}^{2}-\kappa_{k}^{2}} \xi^{2}\right. \\
& +\frac{\left(3 k_{i}^{2}+\kappa_{k^{2}}^{2}\right) k_{i}^{2}}{4\left(k_{i}^{2}-\kappa_{k}^{2}\right)^{2}} \xi_{i}^{4}+\ldots
\end{array}\right] \quad \begin{aligned}
& \left.\left|\xi^{2}\right|<\frac{k_{i}-\kappa_{k} \mid}{k_{i}} \right\rvert\,
\end{aligned}
$$

Alternatively, since the expansion coefficients of the rationalized denominator are known, one can expand directly from this rather than obtain the product of N series expansions such as equation (2.43).

Thus,

$$
\begin{aligned}
\prod_{k=1}^{M} & {\left[\kappa^{2}-\kappa_{k}^{2}\right]=D_{r}\left(\kappa^{2}\right) } \\
= & \sum_{n=0}^{M} a_{n} \kappa^{2 n}
\end{aligned}
$$

Defining

$$
\begin{align*}
D_{r} & =\left.D_{r}\left(k^{2}\right)\right|_{k=k_{i}} \\
D_{r}^{\prime} & =\left.\frac{\partial}{\partial k} D_{r}\left(k^{2}\right)\right|_{k} \tag{2.45}\\
D_{r}^{\prime \prime} & =\left.\frac{\partial}{\partial \kappa^{2}} D_{r}\left(k^{2}\right)\right|_{k}
\end{align*}
$$

it follows that

$$
\begin{equation*}
\frac{1}{D_{r}\left(\kappa^{2}\right)}=R_{0}\left[1+R_{2} \xi^{2}+R_{4} \xi^{4}+\ldots\right] \tag{2.46}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{0}=\frac{1}{D_{r}} \\
& R_{2}=\frac{1}{2} \frac{k_{i} c^{2}}{D_{r}} D_{r}^{\prime} \tag{2.47}\\
& R_{4}=\frac{1}{8} \frac{k_{j}{ }^{2} c^{4}}{D_{r}^{2}}\left(2 D_{r}^{\prime 2}-D_{r} D_{r}^{\prime \prime}\right)
\end{align*}
$$

The radius of convergence for this series is given by the condition

$$
\begin{equation*}
\left|x^{2}\right|<\text { the least of } 2 r\left|k_{i}-\kappa_{k}\right| \tag{2.48}
\end{equation*}
$$

It should be quite evident from equation (2.48) that. unless the roots, κ_{k}, are far removed from all of the k_{i}, serious limitations will be imposed on the range of X. This problem will be discussed in paragraph 2.3.

2.2.6 Combination of Expansions

Recall that the integrand can be represented by

$$
\begin{equation*}
\Phi(X, Y)=h(X) g(X, Y) \tag{2.49}
\end{equation*}
$$

where $g(X, Y)$ corresponds to the asymptotic expansion of the Hanker function. Introducing the series expansions

$$
\begin{align*}
& h(x)=\sum_{n=0}^{\infty} A_{2 n} x^{2 n} \tag{2.50}\\
& g(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} B_{2(n-m)}^{2 m} x^{2(n-m)} y^{2 m} \tag{2.51}
\end{align*}
$$

and

$$
\Phi(x, y)=\sum_{n=0}^{\infty} \sum_{m=0}^{n} \quad A_{2(n-m)}^{2 m} \quad x^{2(n-m)} y^{2 m}
$$

provided that

$$
\begin{align*}
& A_{2(n-m)}^{2 m}=\sum_{\ell=0}^{n-m}{ }^{A}{ }_{2 \ell} B_{2}^{2 m}(n-m+\boldsymbol{l}) \tag{2.53}\\
& \left.A_{2 \ell}=D_{2 \ell}+\left[\sum_{k=1}^{\ell-1} D_{2 k} R_{2(\boldsymbol{\ell}}-k\right)\right] \tag{2.54}
\end{align*}
$$

It is desired to evaluate

$$
\begin{align*}
\int_{0}^{\infty} \int_{0}^{\infty} \Phi(X, Y) & e^{-\frac{1}{2}\left(X^{2}+Y^{2}\right)} d X d Y \tag{2.55}\\
& =\frac{\pi}{2}\left[\sum_{n=0}^{N} \Phi(n)+R_{N}\right]
\end{align*}
$$

where

$$
\begin{equation*}
\Phi^{(n)}=\sum_{m=0}^{n} \frac{(2 m!)[2(n-m)]!}{2^{n} m!(n-m)!} A_{2(m-n)}^{2 m} \tag{2.56}
\end{equation*}
$$

and R_{N} is a remainder,

$$
\begin{equation*}
R_{N} \leq \Phi^{(N+1)} \tag{2.57}
\end{equation*}
$$

Expanding the fundamental kernel

$$
K^{(i)}\left(g_{k} ; r\right)=\frac{E^{(i)}\left(g_{k} ; r\right)}{\left(i k_{i} r\right)^{2}}\left[1+\sum_{n=1}^{N} \frac{E_{n}^{(i)}\left(g_{k}\right)}{2^{n} n!\left(i k_{i} r\right)^{n}}\right](2.58)
$$

\therefore is possible to solve the $E_{n}^{(i)}$ in terms of the $\phi^{(n)}$. It is typically unnecessary to go beyond $\mathbf{N}=2$.

Finally, the E functions are evaluated using the velationships developed throughout this section and listed for convenience in Tables 2.1-2.3.

$$
\begin{align*}
& E^{(i)}\left(g_{k} ; r\right)=\frac{2 k_{i}{ }^{2} d_{i} e^{i k_{i} r} \prod_{j=1}^{4} \exp \left(d_{j} m_{j}\right)}{L_{r}} \tag{2.59}\\
& E_{l}^{(i)}\left(g_{k}\right)=-2+3 \sum_{j=1}^{4} d_{j} n_{j i}{ }^{2} m_{j i}^{-1}+\frac{3}{4} d_{i}{ }^{2}+3 \frac{k_{i} D_{r}^{\prime}}{D_{r}} \text { (2.60) } \tag{2.60}\\
& E_{2}^{(i)}\left(g_{k}\right)=-21 \sum_{j=1}^{4} d_{j} n_{j i}{ }^{2} m_{j i}{ }^{-1}-15 \sum_{j=1}^{4} d_{j} n_{j i}{ }^{2} m_{j i}{ }^{-3} \\
& -12 d_{i}^{2}+15\left(\sum_{j=1}^{4} d_{j} n_{j i}^{2} m_{j i}^{-1}\right)^{2} \\
& +10 d_{i}{ }^{2} \sum_{j=1}^{4} d_{j} n_{j i}{ }^{2} m_{j i}^{-1}+d_{i}^{4} \\
& -21 \frac{k_{i} D_{r}^{\prime}}{D_{r}}+30 \frac{k_{j} D_{r}^{\prime}}{D_{r}} \sum_{j=1}^{4} d_{i} n_{j i}^{2} m_{j i}^{-1} \tag{1}\\
& \left.+10 d_{i}^{2} \frac{k_{i} D_{r}^{\prime}}{D_{r}}+30 \frac{k_{i}^{2} D_{r}^{\prime 2}}{D_{r}{ }^{2}}-15 \frac{k_{i}^{2} D_{r}^{\prime} D_{r}^{N}}{D_{r}{ }^{2}}\right) \\
& E_{2}^{(i)}\left(g_{k}\right)=-21 \sum_{j=1}^{4} d_{j} n_{j i}{ }^{2} m_{j i}{ }^{-1}-15 \sum_{j=1}^{4} d_{j} n_{j i}{ }^{2} m_{j i}{ }^{-3}
\end{align*}
$$

*There is a disagreement in sign for the term, $10 d_{i}{ }^{2} \sum_{j=1} d_{i} n_{j i}{ }^{2} m_{j i}{ }^{-1}$, when a comparison is made between this equation and the corresponding results in Bãnos, i.e., Reference 1.p92 (Eqn. 4.48); p 115 (Eqn. 4.144); p 104 (Eqn. 4.96); and p 118 (Eqn. 4.157).

$K^{(i)}\left(g_{k} ; r\right)=\frac{E^{(i)}\left(g_{k} ; r\right)}{\left(i k_{i} r\right)^{2}}\left[1+\frac{E_{1}(i)\left(g_{k}\right)}{2\left(i k_{i} r\right)}+\frac{E_{2}^{(i)}\left(g_{k}\right)}{8\left(i k_{i} r\right)^{2}}+\frac{E_{3}{ }^{(i)}\left(g_{k}\right)}{48\left(i k_{i} r\right)^{3}}+\ldots\right]$
$\int_{0}^{\infty} \int_{0}^{\infty} \Phi(X, Y) e^{-\frac{1}{2}\left(\mathrm{X}^{2}+\mathrm{Y}^{2}\right)} \mathrm{dX} \mathrm{X} Y \mathrm{Y}=\frac{\pi}{2}\left\{\sum_{n=0}^{N} \Phi^{(n)}+\mathrm{R}_{\mathrm{N}}\right\}$
$=\sum_{n=0}^{\infty} \sum_{m=0}^{n} A_{2(n-m)}^{2 m} X^{2(n-m)} y^{2 m}$
$h(x)=\frac{f(x)}{D_{r}(x)}\left\{\begin{array}{l}f(x)=\sum_{n=2}^{\infty} D_{2 n} x^{2 n} \\ D_{r}{ }^{-1}(x)=R_{0}\left[1+\sum_{n=2}^{\infty} R_{2 n} x^{2 n}\right]\end{array}\right.$

TABLE 2.3. ADDITIONAL COEFFICIENT TABULATIONS.

2.3 Subtraction of First Order Poles

As previously mentioned, the radius of convergence of the asymptotic expansion is iimited by the most proximate singularity, i.e., a pole or other branch point. In typical problems, at least one pole pair can be expected to interfere with the expansion process.
2.3.1 Additional Symbols

```
\(D_{r}^{O}=\) rationalized denominator with zero, \(K_{o}\), removed, and
    evaluated with \(\kappa={ }^{\circ}{ }^{\circ}\).
\(\operatorname{erf}(z)=\) error function of argument \(z\).
\(\operatorname{erfc}(z)=\) error function complement \(=1\) - erf(z)
\(H_{k}=\) expansion coefficient for \(K_{p}\)
\(h^{\circ}(X)=h(X)\) with pole, \(x_{0}\), or \(X_{0}\), removed.
\(n_{0}=n_{o i}=\frac{k_{i}}{k_{0}}\)
```

$\theta(X, Y)=\Phi(X, Y)$ with pole associated with $\pm X_{0}$ removed.
$\boldsymbol{\xi}_{0}=\boldsymbol{\xi}$ evaluated at $\kappa=\kappa_{0}$
$\boldsymbol{\Psi}(\mathrm{X}, \mathrm{Y})=$ new representation of $\boldsymbol{\Phi}(\mathrm{X}, \mathrm{Y})$ analytic beyond the pole at X_{o}.

2.3.2 Series Expansion

It is desired to obtain an asymptotic expansion from which the pole has been subtracted, and its contribution added in more suitable form. Thus

$$
\begin{equation*}
k^{(i)}={\left.\left(K^{(i)}-K_{p}^{(i)}\right)+K_{p}^{(i)},{ }^{(i)}\right)}^{(i)} \tag{2.5,2}
\end{equation*}
$$

or

$$
\begin{equation*}
K_{S}^{(i)}=K^{(i)}-K_{p}^{(i)} \tag{2.53}
\end{equation*}
$$

We now introduce the function

$$
\begin{equation*}
\Psi(X, Y)=\Phi(X, Y)+\frac{1}{2{r_{i}}_{i}^{2}} \frac{\Theta\left(\%_{O}, Y\right)}{\%^{2}-\%_{o}{ }^{2}} \tag{2.5,4}
\end{equation*}
$$

ohere $\Psi(X, Y)$ yields a new series expansion not limited by the singularity at K_{0} and

$$
\begin{equation*}
\Theta(X, Y)=\left(X^{2}-X_{0}{ }^{2}, \Phi(X, Y)\right. \tag{2.5,5}
\end{equation*}
$$

To determine the contribution to the pole, the opreration

$$
-2 k_{i}^{2} e^{i k_{i} r} \frac{2}{\pi} \int_{0}^{x} \int_{0}^{x}\left[e^{-\frac{1}{x}\left(x^{2}+y^{2}\right)} d x d y\right.
$$

is preformed on equation (2.64) by instertinc each term inte the brackets gioing expressions corresponding to terms in equation (2.6, 3).

Sirce the last term requires repansion, we introduce

$$
\begin{equation*}
\Theta\left(X_{0}, Y\right)=g\left(X_{0}, Y\right) h_{1}^{O}(X) \tag{2,6,7}
\end{equation*}
$$

from which

$$
\begin{equation*}
Y_{p}^{(i)}=-e^{i r_{i} r} \frac{4}{\pi} h^{\prime}\left(x_{r}\right) \quad \int_{0}^{\infty} \frac{e}{x^{2}-\frac{1}{2} x^{2}}{x_{0}^{2}}^{2} d x \tag{2.68}
\end{equation*}
$$

$$
\int_{0}^{\infty} g\left(X_{o}, Y\right) e^{-\frac{1}{2} Y^{2}} d Y
$$

Where

$$
\begin{gather*}
\int_{0}^{\infty} g\left(X_{0}, Y\right) e^{-\frac{1}{2} y^{2}} d Y=\frac{\pi}{4} e^{-i \kappa_{0} r} H_{0}^{1}\left(\kappa_{0} r\right)(2.69) \tag{2.69}\\
h^{0}\left(x_{0}\right)=\frac{1}{D_{r}^{0}} \sinh \left[-g_{i} \gamma_{i}\left(\kappa_{0}\right)\right] \prod_{j=1}^{N} \exp \left[-g_{j} \gamma_{j}\left(\kappa_{0}\right)\right] \tag{2.70}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \frac{e^{-\frac{1}{2} x^{2}}}{x^{2}-x_{0}^{2}} d x=\frac{\pi i}{2} e^{-\frac{1}{2} x_{0}^{2}}\left[1-\operatorname{erf}-\frac{i x_{0}}{\sqrt{2}}\right] \tag{2.71}
\end{equation*}
$$

Next, the functions $H_{0}^{l}\left(\kappa_{0} r\right)$ and $\exp \left(-\frac{1}{2} X_{0}^{2}\right)$.erfc $\left(-\frac{i X_{0}}{\sqrt{2}}\right)$ are expanded in asymptotic series:

$$
\begin{align*}
& H_{0}^{1}\left(\kappa_{0} r\right) e^{-i \kappa_{0} r}=\left(\frac{2 n_{0}}{\pi}\right)^{\frac{1}{2}} \quad c\left[1+\frac{n_{0}}{8} c^{2}+\frac{9 n_{O}{ }^{2}}{128} c^{4}\right. \\
& \left.+\frac{75 n_{0}^{3}}{1024} c^{6}+\ldots-\right] \\
& \exp \left[-\frac{i}{2} X_{0}^{2}\right] \operatorname{erfc}\left(-\frac{i X_{0}}{\sqrt{2}}\right)=i\left(\frac{n_{0}}{\pi\left(n_{0}-1\right)}\right)^{\frac{1}{2}} c\left[1+\frac{n_{0}}{2\left(n_{0}-1\right)} c^{2}\right. \\
& \left.+\frac{3 n_{o}^{2}}{4\left(n_{o}-1\right)^{2}} c^{4}+\frac{15 n_{o}^{3}}{8\left(n_{o}-1\right)^{3}} c^{6}+\cdots--\right] \tag{2.73}
\end{align*}
$$

Combining the above expressions gives a closed form expression

$$
\begin{gathered}
k_{p}^{(i)}=-\frac{\pi i}{D_{r}^{0}} \sinh \left[-g_{i} \gamma_{i}\left(\kappa_{o}\right)\right] \prod_{j=1}^{N} \exp \left[-g_{j} \gamma_{j}\left(x_{o}\right)\right] \\
\cdot H_{o}^{1}\left(\kappa_{o} r\right) \operatorname{erfc}\left(-\frac{i x_{0}}{\sqrt{2}}\right)
\end{gathered}
$$

Using the asymptotic expansions from equations (2.72) and (2.73) we obtain the following series

$$
\begin{equation*}
K_{p}^{(i)}=\frac{H^{(i)}\left(g_{k i r)}\right.}{\left(i k_{i} r\right)}\left[1+\sum_{k=0}^{\infty} \frac{H_{k}}{\left(i k_{i} r\right)^{k+1}}\right] \tag{2.75}
\end{equation*}
$$

with

$$
\begin{align*}
H^{(i)}\left(g_{k} ; r\right)= & \frac{n_{0}}{2 D_{r}^{0}}\left(\frac{2}{n_{o}-1}\right)^{\frac{1}{2}} e^{i k_{i} r} \\
& \times \sinh \left[-g_{i} \gamma_{i}\left(\kappa_{o}\right)\right] \prod_{j=1}^{N} \exp \left[-g_{j} \gamma_{j}\left(\kappa_{o}\right)\right] \\
H_{0}= & \frac{n_{o}\left(n_{o}+3\right)}{8\left(n_{o}-1\right)} \tag{2.76}\\
H_{1}= & \frac{n_{0}^{2}\left(9 n_{o}^{2}-10 n_{o}+95\right)}{64\left(n_{o}-1\right)^{2}} \\
H_{2}= & \frac{3 n_{o}^{3}\left(25 n_{o}^{3}-63 n_{o}^{2}+83 n_{o}-595\right)}{128\left(n_{0}-1\right)^{3}}
\end{align*}
$$

The series expansion for $K_{s}(i)$ is obtained by termwise addition of equation (2.75) to equation (2.58). The new series is no longer limited in its radius of convergence by the first order pole at κ_{0}.

Further, it should be noted that the above expansion contains the residue effect attributable to the enclosed pol.e, $\pm \kappa_{0}$.*

[^5]Also, the above process is repeated as often as is necessary to remove a pole.

Note that evaluation of $K_{s}{ }^{(i)}$ is best performed after the specific form of the differential operations, ' k and ' O ' are performed, because the troublesome $\sinh \left[-g_{i} \gamma_{i}\left(\kappa_{o}\right)\right]$ term will usually revert to an exponential.

2.3.3 Pole Residues

In those cases where a pole does not interfere with the series expansion, and it is an actual first order pole in the upper half of the first Riemann surface, its effect can be computed by using the method of residues.

Hence, if $+\kappa_{0}$ satisfies these conditions, then

$$
\begin{align*}
& K_{r}\left(g_{k} ; r\right)=2 \pi i \int_{\kappa_{0}}^{\prod_{k=1}^{N} e^{-\gamma_{k} g_{k}} H_{0}^{1}(\kappa r)}\left(\kappa^{2}-\kappa_{0}^{2}\right) D_{r}^{O}\left(\kappa^{2}\right) \tag{2.77}\\
& D_{r}^{o} \\
& =\frac{\pi i}{k} \prod_{k=1}^{N} \exp \left[-g_{k} \gamma_{k}\left(r_{0}\right)\right] H_{0}^{1}\left(\kappa_{0} r\right)
\end{align*}
$$

It is interesting to drop the erfc function in equation (2.74) and compare results.

2.4 The Scattering Matrix, M

Up to this point, the theoretical analysis has concerned itself with an integral formalism that is capable of treating all classes of wave propagation problems involving two homogensous
media separated by an infinite plane, N-different phase velocities, and a point source of the waves.

The incorporation of the fiysics into the hitherto purely mathematical treatment of the various integral representations requires: a) specification of N and of complex values for the N propagation constants, k_{k}; and b) specification of the elements of M an $N \times N$ array which are derived from the boundary conditions.

In the electromagnetic case, knowledge of the k_{k} is sufficient to allow computation of the matrix elements of m, but the acoustic case requires additional knowledge of the complex impedances of the N propagation modes, oz at least their ratios.

Alternatively, since the form given by Equation (2.7) is ultimately desired, an equivalent amount of information must be contained in the zero pairs, $\pm \kappa_{k}$, and t appropriate linear cumbinations of operations shown in equar .s (2.8) and (2.9).

2.4.1 Types of Materials

The most general acoustic medium to be documented at this time is a linear micropolar medium, i.e., one characterized by a randomly inh-mogeneous granular structure where the granule dimensions are statistically defined.

Parfitt and Eringen* have shown that surh a medium is characterized by four distinct phase velocities, two of which correspond to classical elastic propagation modes, and two new waves involving microrotation of the granular domain.

[^6]It is further demonstrated that a certain critical frequency, corresponding to the condition that wavelength and granular dimension are comparable, must be exceeded before the latter modes begin to propagate.

Also quite difficult is a rigorous treatment of a porous solid. Biot* has conducted extensive investigations into this problem with results indicating that this is not unlike the micropolar medium above.

However, for frequencies far below the critical frequency, a porous solid can be treated as simple but lossy fluid with only one phase velocity. This limit applies to typical ground covers and will be employed for developing the theoretical model.

Another medium of general interest is the elastic solid or viscous fluid with shearing. Each such medium supports waves traveling at two distinct phase velocities corresponding to compressional and shear (ing) modes.*

In the discussion that follows, we consider the problem of two such media as the most general case, solve for M_{11}, and then develop $M_{\perp l}$ for other types of media and boundary conditions by appropriate limits on the general scattering element.

[^7]
2.4.2 Additional Symbols

$A=$ vector representation of the wave amplitudes, A_{k}. $A_{k}=$ wave amplitude of the incident wave, $k^{\text {th }}$ mode. $B=$ vector representation of the wave amplitudes, B_{k}. $B_{k}=$ wave amplitude, transmitted or reflected wave, $\mathrm{k}^{\text {th }}$ mode. $k^{\prime}=$ real constant describing porous media.
$n_{s}=n_{34}$.
$u, v=$ constants defined in equation (2.82).
U, V, W, $Z=$ real constants describing porous media.
$\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\delta}, \boldsymbol{\epsilon}, \boldsymbol{\phi}=$ constants defined in equation (2.82).
$\alpha^{\prime}, \delta^{\prime}, \phi^{\prime}, \phi^{\prime \prime}=$ constants defined in equation (2.84) and in Table 2.4 .
$\Delta=$ slope change at break-point.
$\psi^{(k)}=$ general velocity potential associated with the $k^{\text {th }}$ wave mode.
$\psi_{\text {inc }}^{(k)}=$ incident velocity potential, $k^{\text {th }}$ wave mode.
$\psi_{\text {ref }}^{(k)}=$ reflected velocity potential, $k^{\text {th }}$ wave mode.
$\omega_{a}, \omega_{b}, \omega_{c}=$ brtak-point frequencies in rac.ans per second.

2.4.3 Boundary Conditions

In developing boundary conditions we will be dealing with $N\left\{\begin{array}{c}\text { plane } \\ \text { cylindrical }\end{array}\right\}$ modes where the $k^{\text {th }}$ wave will have a velocity potential given by

$$
\psi^{(k)} \sim e^{ \pm \gamma_{k}^{z}}\left\{\begin{array}{l}
\cos \kappa r \tag{2.78}\\
J_{0}(\kappa r
\end{array}\right)
$$

where time variation has been suppressed.
We have previously stated that the largest value of N to be considered here will be $N=4$, corresponding to two elastic media. Using these constraints, it is convenient to designate the wave modes associated with k as follows:
$\mathrm{k}=1$; Compressional wave, medium 1
$\mathrm{k}=2$; Compressional wave, medium 2
$\mathrm{k}=3$; Shear wave, medium 1
$\mathrm{k}=4$; Shear wave, medium 2
The ray geometry for four incident and four reflected waves sharing a common κ^{*} is shown in Figure 2.4.

[^8]

FIGURE 2.4 PLANE WAVE SCATTERING BY A PLANE BOUNDARY BETTVEEN TWO BONDED ELASTIC, ISOTROPIC MEDIA.

Since primary interest is concerned with mode l--- mode l conversion in medium 1, we stipulate the form of these waves as
with

$$
\begin{aligned}
& \psi_{\text {inc }}^{(1)}=A_{1} \quad e^{\gamma_{1} z}\left\{\begin{array}{c}
\cos \kappa r \\
J_{0}(\kappa r)
\end{array}\right\} \\
& \underset{\text { ref }}{(1)}=B_{1} \quad e^{-\gamma_{1} z}\left\{\begin{array}{l}
\cos \kappa r \\
J_{0}(\kappa r)
\end{array}\right\}
\end{aligned}
$$

$$
\begin{equation*}
{ }^{B_{1}}=M_{11} A_{1} \tag{2.80a}
\end{equation*}
$$

More generaily, it is possible to solve

$$
\begin{equation*}
B=M A \tag{2.80b}
\end{equation*}
$$

by considering the following four boundary conditions
I) Continuity of the nurmal velocity component.
II) Continuity of the tangential velocity component.
III) Continuity of the compressional stress.
IV) Continuity of tangential stress.
as described in Appendix A. Application of boundary conditions gives $A\left(\kappa^{2}\right)$ and $B\left(\kappa^{2}\right)$, defined in equation (2.4):

$$
\begin{align*}
& A\left(\kappa^{2}\right)=\alpha \gamma_{3}+\epsilon \gamma_{2} \gamma_{3} \gamma_{4}+\phi \gamma_{4} \tag{2.81}\\
& B\left(\kappa^{2}\right)=\beta+\delta \gamma_{2} \gamma_{4}+\phi \gamma_{2} \gamma_{3}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha=-\left(\kappa^{2}-u\right)^{2} \\
& \beta=\left(\kappa^{2}+v-u\right)^{2} \kappa^{2} \\
& \delta=-\left(\kappa^{2}+v\right)^{2} \\
& \epsilon=\kappa^{2} \tag{2.82}\\
& \phi=-u v \\
& u=\frac{1}{2}\left[1-\nu n_{s}^{2}\right]^{-1} k_{4}^{2} \\
& v=\frac{1}{2}\left[1-\nu n_{s}^{2}\right]^{-1} \nu k_{4}^{2}
\end{align*}
$$

Of considerable importance to this problem is the location of the first order poles associated with $D\left(\kappa^{2}\right)$. For this purpose it is necessary to obtain $D_{r}\left(\kappa^{2}\right)$, the rationalized form of $D\left(\kappa^{2}\right)$, which in this case is a most laborious process.

This analysis is simplified considerably by considering the limit of $\nu=0$. Then, $D\left(\kappa^{2}\right)$ decouples into two expressions, each of which is dependent on properties of just one medium

$$
\begin{equation*}
D\left(\kappa^{2}\right)=\left[\alpha \cdot+\kappa^{2} \gamma_{2} \gamma_{4}\right]\left[\kappa^{2}-\gamma_{1} \gamma_{3}\right] \tag{2.83}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha^{\prime}=-\left[\kappa^{2}-\frac{1}{2} k_{4}^{2}\right]^{2} \tag{2.84}
\end{equation*}
$$

In solving for the zeros, the first bracket gives rise to a cubic in κ^{2} and the second yields a first order equation in κ^{2}. A brief discussion of these four pole pairs is contained in Appendix A-2.

Letting $|\nu|$ assume a small value, the denominator $D\left(\kappa^{2}\right)$ recouples, and clusters of four new roots apnear around the original eight. These zeros are actual only on two of the Riemann surfaces so that some care must be exercised when computing residues and pole contributions.

A further computational complication arises from the fact that the poles tend to cluster. If $\mathrm{D}_{\mathrm{r}}\left(\mathrm{x}^{2}\right)$ is used in most polynomial root-finding programs, good convergence will not usually occur because of the proximity of so many roots.

Thus, the best root finding procedure appears to be:

1) Determine zeros of equation (2.83) and use these for initial values.
2) Let v assume its physically correct value in small increments if necessary.
3) Iterate on the above zeros using new values of $\boldsymbol{\nu}$.
4) Caution -- program must contain Riemann surface identifiers and must be capable of "following" a root onto a neighboring Riemann surface.
5) Repeat for all Riemann surfaces.

This algorithm should locate the 16 zero pairs of $D_{r}\left(\kappa^{2}\right)$ or of $D_{r}\left(\kappa^{2}\right)$ on all 16 Riemann surfaces.

Finally, for completeness, we outline this and seven other related acoustical problems in Table 2.4. The case of greatest interest is 6 , where medium 1 is a simple fluid (air) and medium 2 is a porous solid (ground cover).
2.4.4 Discussion of Porous Media

It was previously mentioned that, for the frequencies of interest in this study, coupling to medium 2 wave modes other than compressional is negligible. Effects of viscous shearing appear in the form of an imaginary part of k_{2} only.

$$
\text { Following Berane } k^{\star}, k_{2} \text { can now be written in the form }
$$

$$
\begin{equation*}
k_{2}=k^{\prime} Z^{-\frac{1}{2}} \sqrt{\frac{V+U^{2} \omega^{2}-j W U \omega}{1+U^{2} \omega^{2}}} \tag{2.85}
\end{equation*}
$$

[^9]
TABLE $2.4 M_{11}$ COMPONENTS, $A\left(\kappa^{2}\right)$ AND $B\left(\kappa^{2}\right)$, AS DEFINED BY EQUATION (2.4), FOR A WI JE VARTETY OF BOUNDARY CONDITIONS ENCOUNTERED

The specific acoustic impedance of medium 2 relative to air is given by

$$
\begin{equation*}
\zeta_{2}=\mathrm{z} \frac{1}{\mathrm{k}^{\prime}} \mathrm{k}_{2}=\frac{1}{\nu \mathrm{n}} \tag{2.86}
\end{equation*}
$$

Relationships of derived constants to constants used by Beranek are given in Table 2.5.

TABLE 2.5
RELATIONSHIP OF CONSTANTS IN EQUATION
(2.85) TO BERANEK CONSTANTS

Applying break-point analysis to the impedance as found from equations (2.85) and (2.86), it is seen that

$$
\begin{aligned}
& \lim _{\omega \rightarrow 0} \zeta_{2}=z^{\frac{1}{2}} v^{\frac{1}{2}} \\
& \lim _{\omega \rightarrow \infty} \zeta_{2}=z^{\frac{1}{2}}
\end{aligned}
$$

or since $V>1$

$$
\begin{equation*}
\lim _{\omega \rightarrow 0} \zeta_{2}>\lim _{\omega \rightarrow \infty} \zeta_{2} \tag{2.88}
\end{equation*}
$$

Next, we observe the break point frequencies along with their slope charge values, Δ.

$$
\left.\left.\begin{array}{l}
\omega_{a}=\frac{1}{U} ; \Delta=-1 \\
\omega_{b}=\frac{1}{U} \sqrt{\frac{1}{2}\left(2 V+W^{2}\right)-\frac{1}{2} W\left(4 V+W^{2}\right)^{\frac{1}{2}}} ; \Delta=+\frac{1}{2} \\
\omega_{c}=\frac{1}{U} \cdot \sqrt{\frac{1}{2}\left(2 V+W^{2}\right)+\frac{1}{2} W\left(4 V+W^{2}\right)^{\frac{1}{2}}}: \Delta=+\frac{1}{2}
\end{array}\right\} ; 2.89\right)
$$

Note that, for typical porous media

$$
\begin{equation*}
\omega_{a} \sim \omega_{b}<\omega_{c} \tag{2.90}
\end{equation*}
$$

and for the case of a dense skeleton,

$$
\begin{align*}
& \omega_{a} \rightarrow 0 \\
& \omega_{b} \rightarrow 0 \tag{2.91}\\
& \omega_{c} \sim \frac{W}{U}
\end{align*}
$$

in agreement with Beranek *

[^10]
2.4.5 Zeros for Two Fluids Model

Referring to Table 2.4, the characteristic denominator of the two fluids model (\#6) is given by

$$
\begin{align*}
n\left(x^{2}\right) & =\gamma_{1} A\left(\kappa^{2}\right)+B\left(\kappa^{2}\right) \\
& =\gamma_{1}+\nu \gamma_{2} \tag{2.92}
\end{align*}
$$

Rationalizing consists of multiplicative combinations over all different Riemann surface representations, i.e.

$$
\begin{equation*}
D_{r}\left(\kappa^{2}\right)=\left(\gamma_{1}+\nu \gamma_{2}\right)\left(\gamma_{1}-\nu \gamma_{2}\right) \tag{2.93}
\end{equation*}
$$

Setting $D_{r}\left(\kappa^{2}\right)$ equal to zero gives a single pair of first order poles

$$
\begin{equation*}
\kappa_{0}= \pm k_{1}\left(\frac{1-\nu^{2} n^{2}}{1-v^{2}}\right)^{\frac{1}{2}} \tag{2.94}
\end{equation*}
$$

For the case where $|\nu| \ll 1$ and $|n|<1$ and both are approximately real, 'he poles lie very near to tk_{1} and we have
and

$$
\begin{gather*}
2 \theta_{z}-\pi<2 \operatorname{Arg}\left\{\gamma_{k}\right\}<2 \theta_{1} \tag{2.95}\\
\text { for } k=1,2
\end{gather*}
$$

$$
\gamma_{1}\left(\kappa_{0}\right)=\left\{\begin{array}{c}
\nu k_{1} \kappa_{0} \text { on surfaces } 1 \text { and } 3 \tag{2.96}\\
-\nu k_{1} \kappa_{0} \text { on surfaces } 2 \text { and } 4
\end{array}\right\}
$$

$$
r_{2}\left(\kappa_{0}\right)=\left\{\begin{array}{l}
k_{1} \kappa_{0} \text { on surfaces } 1 \text { and } 2 \tag{2.97}\\
k_{1} \kappa_{0} \text { on surfaces } 3 \text { and } 4
\end{array}\right\}
$$

Finally
$D\left(\kappa_{0}^{2}\right)=\left\{\begin{array}{l}0 \text { on surfaces } 2 \text { and } 3 \\ +2 \nu v k_{1} \kappa_{0} \text { on surface } 1 \\ -2 \nu k_{1} \kappa_{0} \text { on surface } 4\end{array}\right\}$
In the case of a porous medium, $|\nu|<1,|\mathrm{n}|>1$, and $\operatorname{Arg}(\nu)=-2 \operatorname{Arg}(n)$

The pole remains in the neighborhood of k_{1}, but its position is shifted $\pi / 2$ radians relative to the branch cut. It now becomes a real pole on surfaces 1 and 4, i.e.

$$
D\left(\kappa_{0}^{2}\right)=\left\{\begin{array}{c}
0 \text { on surfaces } 1 \text { and } 4 \tag{2.100}\\
-2 \nu k_{1} \kappa_{0} \text { on surface } 2 \\
+2 \nu k_{1} \kappa_{0} \text { on surface } 3
\end{array}\right\}
$$

2.5 Theo::etical Solution

Before outlining the theoretical expansions, it is interesting to consider some of the historical aspects to the problem of acoustic radiation of a point source when a ground plane is present.

On the basis of ray theory, we would expect that the velocity potential might be given by

$$
\begin{equation*}
\psi(r, z ; 0, h)=\frac{Q}{4 \pi}\left[\frac{e^{i k, R}}{R}+\frac{\gamma_{1}-\nu \gamma_{2}}{\gamma_{1}+\nu \gamma_{2}} \frac{e^{i k_{1} R^{\prime}}}{R^{\prime}}\right] \tag{2.101}
\end{equation*}
$$

where now

$$
\begin{align*}
& \gamma_{1}=i k_{1} \cos \theta 1 \\
& \gamma_{2}=i k_{1}\left[n^{2}-\sin ^{2} \theta_{1}\right]^{\frac{1}{2}}=\frac{i k_{1}}{v} \zeta^{-1} \tag{2.102}
\end{align*}
$$

with ζ being the surface impedance. In the simple ray theory, this is a function of $\boldsymbol{\theta}_{1}$, i.e..

$$
\begin{equation*}
\frac{\gamma_{1}-\nu \gamma_{2}}{\gamma_{1}+\nu \gamma_{2}}=\left[\frac{\cos \theta_{1}-\zeta^{-1}}{\cos \theta_{1}+\zeta^{-1}}\right] \tag{2.103}
\end{equation*}
$$

Unfortunately, the ray theory representation does not take into account important surface effects, and its validity is restricted to the region that g_{1} is greater than a wavelength*. For sufficiently large r and small g_{1}, we have the approximation

$$
\begin{equation*}
\psi(r, z ; 0, h) \sim \frac{Q}{4 \pi}\left[\frac{e^{i k_{1} R}}{R}-\frac{e^{i k_{1} R^{\prime}}}{R^{\prime}}\right] \tag{2.104}
\end{equation*}
$$

which are the leading terms of equations (2.1) and (2.5) combined. Further analysis along the same lines gives

$$
\begin{align*}
\psi(r, z ; 0, h) & \frac{Q}{4 \pi} \frac{e^{i k_{1} r}}{r} \quad\left[\frac{\left(i k_{1} z\right)\left(i k_{1} h\right)}{\left(i k_{1} r\right)}\right. \tag{2.105}\\
& \left.+O\left(i k_{1} r\right)^{-2}\right]
\end{align*}
$$

so that at least the leading terms of the representation allow attenuation rates twice that of $6 \mathrm{db} /$ double distance associated with a simple source.

However, these terms vanish on the surface which is quite at variance with the generalized boundary conditions. Hence, the inclusion of important surface effects for small g_{1} requires detailed analysis of the term, $V \mathrm{ig}_{1} ; r$). *Reference 19, p. 371

2.5.1 Final Manipulations

The desired solution is found when the functions $A\left(x^{2}\right)$ and $B\left(\kappa^{2}\right)$, are inserted in equation (2.6). For the two fluids model, these are found in Table 2.4, whereupon

$$
\begin{equation*}
V\left(g_{i} ; r\right)=-\frac{K_{1}\left(g_{1} ; g_{2} ; r\right)-\nu K_{\prime_{2}}\left(g_{1} ; g_{2} ; r\right)}{\left(1-\nu^{2}\right)} \tag{2.106}
\end{equation*}
$$

with similar relationships obtaining for $V^{(i)}\left(g_{i} ; r\right), V_{p}^{(i)}\left(g_{i} ; r\right)$. $v_{s}{ }^{(i)}\left(g_{i}, r\right)$ etc.

This particular problem has only one pole ($M=1$) so that

$$
\begin{align*}
& D_{r}\left(\kappa^{2}\right)=\kappa^{2}-\kappa_{0}^{2} \\
& D_{r}^{O}\left(\kappa^{2}\right)=1 \tag{2.107}
\end{align*}
$$

Also, the pole, x_{0}, will typically lie very near the branch point, k_{1}, so that the treatment of paragraph 2.3 .2 is required.

$$
\text { While } V\left(g_{i} ; r\right) \text { can, in principle, be evaluated for all }
$$

g_{i} and r, to obtain ψ, i.e.

$$
\begin{equation*}
\psi(r, z ; 0, h)=\frac{Q}{4 \pi}\left[\frac{e^{i k_{1} R}}{R}-\frac{e^{i k_{1} R}}{R}+V\left(g_{i} ; r\right)\right] \tag{2.108}
\end{equation*}
$$

we have seen that the more accurate representation in the neighborhood of the interface is,

$$
\begin{equation*}
v\left(g_{i} ; r\right)=v_{s}^{(1)}+v_{p}^{(1)}+v^{(2)} \tag{2.109}
\end{equation*}
$$

where the form has been adjusted to the problem under discussion. Noting that the asymptotic series can be differentiated term by term, we can also obtain series representations for the three
expressions on the left hand side of equation (2.108). These will have the form

$$
\begin{align*}
& V^{(2)}\left(g_{1}, g_{2} ; r\right)=\frac{F^{(2)}\left(g_{1} ; r\right)}{\left(i k_{2} r\right)^{2}}\left[F_{0}^{(2)}\left(g_{2}\right)\right. \tag{2.110}\\
& \left.+\sum_{k=1}^{N^{\prime}} \frac{F_{k}^{(2)}\left(g_{1}, g_{2}\right)}{\left(i k_{2} r\right)^{k}}\right] \\
& v_{p}{ }^{(1)}\left(9_{1}, g_{2} ; r\right)=-\frac{i \pi k_{2} \nu\left(1-n^{2}\right)^{\frac{3}{2}}}{\left[1-\nu^{2}\right]^{\frac{3}{2}}} \\
& \times \quad e^{-g_{1} \gamma_{1}\left(x_{0}\right)} e^{-g_{2} \gamma_{2}\left(x_{0}\right)} \tag{2.111}\\
& \times \quad H_{0}^{1}\left(\kappa_{0} r\right) \operatorname{erfc}\left(-\frac{i X_{0}}{\sqrt{2}}\right) \\
& V_{s}^{(l)}\left(g_{1}, g_{2} ; r\right)=\frac{G^{(l)}\left(g_{1}, g_{2}, r\right)}{\left(i k_{1} r\right)}\left[1+\sum_{k=1}^{N^{\prime}} \frac{G_{k}\left(g_{1}, g_{2}\right)}{\left(i k_{1} r\right)^{k}}\right] \tag{2.112}
\end{align*}
$$

Expansion of the various functions, ${ }^{\square}$ and G, are carried out in Table 2.6 for $N^{\prime}=2$ and $S_{2}=0$. These results are in complete agreement with those obtained by Paul*, and will give an asymptotic representation of the velocity potential provided

$$
\begin{equation*}
r>\frac{1}{\left|k_{1}\right|} \text { and } r>(z+h) \tag{2.113}
\end{equation*}
$$

It should be obvious that economical evaluation of these expressions for numerous combinations of k_{1} (or frequency), $n, \nu, g_{1}(=z+h)$, and r requires the aid of a computer.

边			
	$\begin{aligned} & g_{1}=z+n_{2} g_{2}=0 \\ & q_{k}=i k_{k}{ }^{9} k \\ & m=\left(1-n_{k}^{2}\right)^{3} \end{aligned}$	$\begin{aligned} \sigma & =\left(\frac{1-v^{2} \sigma^{2}}{1-t^{2}}\right)^{\frac{1}{2}} \\ & =\left(\frac{1-n^{2}}{1-v^{2}}\right. \\ \lambda & =(\sigma-1)^{2} \end{aligned}$	Note that $x_{0}=k_{1} \sigma$ $x_{0}=1\left(2,2 x_{2}\right)^{1}{ }^{\frac{1}{2}}$

TABLE 2.6 TABULATION OF COEFFICIENTS FOR VELOCITY POTENTIAL SERIES.

2.5.2 Interpretation of Theory

Because of the complexity of the formulae, a generalized interpretation is not easily carried out. For $g_{1}=0$, some interesting comments can be made about the radial behavior of the velocity potential.

Four basic regions can be described:

1) Quasi-static

$$
r<\frac{1}{k_{1}} \text { and }<\frac{1}{k_{2}}
$$

2) Intermediate I

$$
\frac{1}{k_{1}}<r<r_{b}
$$

3) Intermediate II

4) Far field

$$
\frac{1}{\left|k_{1}-k_{o}\right|}<r
$$

Were r_{b} is a frequency dependent radius, and where regions 1 and $2 \rightarrow \psi \simeq r^{-1}$ ($6 \mathrm{~dB} /$ double distance) region $3 \quad \longrightarrow \psi \sim r^{-3}$ (up to $18 \mathrm{~dB} /$ double distance) region $4 \quad \longrightarrow \psi \sim r^{-2}$ (12 dB/double distance)

For fixed r, ψ in regions 1 and 2 is generally insensitive to frequency variations if phase effects between the various terms are ignored by averaging. For region 3 radii, both bounds of the region and the amplitude decreases monotonically with frequercy in a manner which is not easily predicted from the formulae. Finally, in region 4, at fixed r, there is a monotonically decreasing ψ which varies as k_{1}^{-1} for constant n and v.

If phase cancellation effects are included, however, we obtain an interaction between the leading terms of $v_{s}^{(1)}$ and
$V_{p}^{(1)}$. It is felt that this term will produce the pronounced dip in frequency response in the $100-1000 \mathrm{~Hz}$ range, and that this effect will be primarily exhibited in regions 3.

2.5.3 Theoretical Data

Available funds did not allow complete programming, debugging and running of a computer program to compute field pressure data from equations (2.110), (2.111), and (2.112).

In lieu of these computations, equation (2.101) was evaluated to obtain a first order indication of the field data. This data is presented in tabular form in Appendix C.

Some order of magnitude calculations show that, for the frequencies of interest, attenuation in air plays a negligible part in accounting for the observed attenuation rates.*

[^11]
3. Experimental Effort

The purpose of the experimental effort is twofold; namely.
a) further verification and reinforcement of the data obtained in stationary tests using the Saturn V booster, and b) a critical test of the theoretical derivations contained in section 2 of this report.

Since theoretical evaluation of boundary value problems is ultimately dependent on determining the appropriate Green's function, the starting phase of the experimental effort consisted of designing and fabricating a good practical simulation of an acoustic point source radiator.

3.1 Spherical Generator System (SGS)

Since simple point sources are not practical the best approximation is one which generates a spherically symmetric wave. In fact, it will be seen in section 3.2 that there are definite limits on the minimum source dimensions if radiator efficiency is desired.

In this case, ain SGS capable of exceeding (e.g.. 10-15 dB) ambients of $60 \mathrm{~dB}-\mathrm{SPL}^{*}$ at 1000 feet while radiating broadband random noise ($100-1000 \mathrm{~Hz}$) was to have been designed. Considering a typical loudspeaker in this frequency range, we can expect an EIA sensitivity of 50 dB ** and distance attenuation (including ground

* dB-SPL is referred to $.0002 \mu$ bar.
** Sound pressure in $d B-S P L$ at 30 feet for 1 mwatt electrical input.
cover effects) of 50 dB from 30 feet to 1000 feet. Thus, the speakers used must be able to handle in excess of 1000 electrical watts.

Consistent with these requirements and limitations it was decided that positioning one speaker in each face of a regular polyhedron would accomplish these objectives. Further, it was determined thet a dodecahedral geometry with 15" loudspeakers would optimize the conflicting criteria of efficiency, small dimensions, and low cost.

3.1.1 SGS Construction

Having determined the required dimensional parameters, materials were procured for the SGS and construction commenced.

The SGS enclosure consists of twelve individually cut pentagonal plywood panels $1-1 / 2$ inches thick. This thickness was obtained by gluing together two $3 / 4$ inch sheets of plywood. A circular baffle hole of the appropriate dimension was cut in each panel to accommcdate an Altec Lansing 421-A loudspeaker, whose specifications are given in Table 3.1 .

After the loudspeakers were mounted, the cabinet interior was lined with six-inch thick Fiberglas, the back of the speakers covered with burlap to further attenuate the backwave, and protective metal covers placed over the front of speakers.

Figures 3.1-3.4 show the SGS in various stages of constiuction. Figure 3.5 shows the SGS suspended from the support

MANUFACTURER'S LOUDSPEAKER DATA

```
Manufacturer
Model Number
```

, l.ec Lansing 421-A
Physical

```DiameterBolt Hole DiameterBaffle Hole DiameterWeight
```

Voice Coil Data

Impedance (nominal)
Maximum Power, RMS
Diameter
Voice Coil

Maqnet
Magnet Assembly Weight
Magnet Material
Flux Density
Total Flux

8 ohms
100 watts
3 inches
Edgewound
Copper ribbon
17.5 lbs.

Ceramic-Ferrimag type V
13,000 Gauss (Note 2)

```
Acoustical/Mechanical
Free Air Resonance
44 Hz
Enclosure Volume/Unit
\(\geqslant 3.5\) Feet \(^{3}\)
Maximum Peak-To-Peak
Excursion
. 8 inch
EIA Sensitivity (Note 1)
5.) dB
Frequency Range, Upper Limit
Price Per Unit
\$52.50
(Note 3)
Notes:
1 Sound pressure level in dB ref. . 0002 microbar at 30 feet for 1 milliwatt electrical input.
2 Specification not given.
3 Factory discount price for 12 units or more.
```


FIGURE 3.1 ONE-HALF OF DODECAHEDRON SPEAKER ENCLOSURE.

FIGURE 3.2 ASSEMBLED DODECAHEDRON ENCLOSURE.

FIGURE 3.3 INTERIOR VIEW SHOWING FIBERGLASS
AND BURLAP COVER.

FIGURE 3.4 ASSEMBLED SGS.

FIGURE 3.5 SGS AND SUPPORT TRIPOD.
tripod as it was used in performing the experimental tests in this program.

Completed weight of the SGS is 625 lbs. All speaker terminal pairs are available on the outside so that the SGS can be matched to a variety of impedances.

3.1.2 Calibration of the SGS

After construction was completed, the SGS was transported in two halves to the NSL anechoic test facility for evaluation and calibration. These tests were primarily concerned with measurement of the EIA sensitivity and verification of spherical symmetry. Also of interest was the maxir،um power handling capacity of the SGS.

Inside the anechoic chamber, the SGS halves were joined and the assembled unit was positioned on a turntable. Electrical connections shown in Figure 3.6 then were completed. Equipment used for testing, in addition to the anechoic facility and its turntable, is listed in Table 3.2.

The frequency response was measured for several SGS and microphone positions and the results were averaged and extrapolated to 30^{\prime} radius to obtain the EIA sensitivity curve plotted in Figure 3.7. The resultant curve generally lies in the neighborhood of 51 dB , the rated EIA sensitivity of the transducers used. Note the periodically spaced dips which are attributed to internai spherical resonances of the enclosed air. A pronounced peak at 55 Hz corresponds to the speaker resonance.
ANECHOIC

O CURRENT
G^{G} INPUT

- VOLTAGE
${ }_{\mathrm{G}}^{\mathrm{O}}$ INPUT
FIGURE 3.6 TEST SETUP -- ELECTRICAL DETAILS.
TABLE 3.2
TEST EQUIPMENT COMPLEMENT.

TEST	SIGNAL GENERATOR	POWER AMPLIF IER	MICROPHONE \& AMPLIFIER	OUTPUT MONITOR
EIA Sensitivity Response	Tracking Oscillator of G.R. Spectrum Analyzer,1900-A	Acrosound Ultra-Linear II@ lmw	B\&K - 1" Condenser Microphone	General Radio Spectrum Analyzer \& Chart Recorder (1521B)
Spherical Symmetry Test	Sine Wave Oscillator	Acrosound Ultra-Linear II@ 2w	B\&K - 1" Condenser Microphone	General Radio Spectrum Analyzer \& Chart Recorder
Power Handling Capability	Sine Wave Oscillator (a) 22 Hz	3 Acrosound Ultra-Linear II's @ 150w	B\&K - 1" Condenser Microphone	General Radio Spectrum Analyzer (used as filter voltmeter

$\begin{aligned} & \text { AVERAGE SENSITIVITY INCLUDING NORMAL MODES } \\ & \text { - APPROXIMATE SENSITIVITY, NORMAL MODES REMOVED } \\ & \mathrm{R}=\text { LOUD SPEAKER RESONANCE } \\ & \mathrm{S}=\text { EFFECT OF INTERNAL MODES OF VIBRATION }\end{aligned}$
FIGURE 3.7 EIA SENSITIVITY AS A FUNCTION OF FREQUENCY.

To measure the azimuthal radiation patterns, the turntable rotated the $S \subseteq S$ about an axis passing through the center of two opposite faces. In free space conditions, we would expect that any asymmetry at the azimuth would be a tenfold one.

This is, however, not the case, as the graphs of Figure 3.8a show a definite fivefold repetition per 360° rotation of the SGS for single frequencies greater than 250 Hz . The explanation for this lies in the fact that the bottom speaker faced the turntable so that free space conditions of symmetry do not actually prevail.

One-third octave random noise tests illustrated in
Figure 3.8 b indicate that the asymmetry still exists above 250 Hz , but the nulls are not as pronounced for this test mode.

Finally, referring back to Figure 3.8a, it is seen that the pattern is essentially spherical ($\pm .5 \mathrm{~dB}$) at 250 Hz . Tests at frequencies below 250 Hz gave rise to even flatter characteristics.

Next, the SGS was fed a 22 Hz signal at 1.50 watts before substantial harmonic distortion became evident. At this power level, peak to peak excursions of $1 / 2^{\prime \prime}$ could be observed. While this is close to the limit of excursion for the particular speaker used, it is safe to assume a fivefold increase in power can be tolerated at a frequency five times as great, i.e., $\sim 100 \mathrm{~Hz}$.

Full power tests (1200 watts) could not be performed under this program since amplifier power was not available.

LEGEND - ALL GRAPHS
1 Vertical Division $=1 \mathrm{db}$
1 Horizontal Division $=24^{\circ}$ Full 360° Rotation Shown
b) 1/3 Octave Random Noise Tests, 3 center frequencies.

```
FIGURE 之..8 ANECHOIC CHAMBER TESTS FOR AZZIMUTHAL SYMMETRY OF SGS
    RADIATION PATTERN (C TEN FEET.
```

However, the arrival of a Crown DC 300 amplifier did allow outdoor and on-site testing at 300 watts, 6 dB below full power. Addition of an identical DC- 300 would easily triple the input because of an improved impedance match between amplifiers and the SGS load.

3.1.3 Capabilities and Limitations

Based on the data and information in the preceding paragraphs, the SGS designed under this program appears to be capable of handling 1000 watts of electrical power in the form of broadband random noise ($100 \mathrm{~Hz}-1000 \mathrm{~Hz}$).

Sine wave tests indicate that the radiation pattern below 250 Hz is extremely uniform, being spherical to within $\pm \frac{1}{2} d B$ at the worst case frequency. At higher frequencies, this uniform pattern breaks up. The outdoor tests with broadband random noise revealed that this pattern was audible when the SGS was rotated, even at great distances.

In all other regirds, the SGS performed at its design values.

3.2 Source Theory

To aid in SGS evaluation and recommendations regarding future areas of investigation, some aspects of source theory are presented in this section.

3.2.1 Taille of Symbols

In addition to symbols listed in paragraph 2.1 the following also apply to section 3.2.
$A_{m n}=$ expansion coefficients for spherical harmonics.
$c=$ velocity of sound.
$h_{m}(z)=$ half integer Hanker function of argument z.
$P_{n}{ }^{m}(\cos \theta)=$ Legender's associated function of the first kind. $p(r)=$ pressure as a function of r only. $p(r, \theta, \phi)=$ pressure as a function of r, θ, ϕ.

Qx....z $=$ multipole moment.
$r=$ radius from source, i.e., radius in spherical coordinates with source at origin.
$V(r)=$ radial velocity as a function of r.
$Y_{m n}(\theta, \phi)=Y_{m n}=$ spherical harmonic.
$\zeta=$ source impedance ratio referred to specific impedance of medium.
θ = z-axis angle in spherical coordinates.
$\phi=$ azimuthal angle in spherical coordinates.
$\psi(r)=$ velocity potential as a function of r.
$\psi(x)=$ velocity potential as a function of position vector, x.

3.2.2 Analysis

In analyzing sources, we consider first the case where the source has finite dimensions and is indeed spherically symmetric, i.e., the pulsating sphere. In a free space environment, such a source, if located at the origin, will have the: velocity potential;

$$
\begin{equation*}
\psi(r)=\frac{Q}{4 \pi} \frac{e^{i k r}}{r} \tag{3.1}
\end{equation*}
$$

radial velocity;

$$
\begin{equation*}
v(r)=\frac{Q}{4 \pi} \frac{e^{i k r}}{r^{2}}(1-i k r) \tag{3.2}
\end{equation*}
$$

and pressure field;

$$
\begin{equation*}
p(r)=-i \rho \omega \psi(r) \tag{3.3}
\end{equation*}
$$

Next we consider the impedance ratio ζ, of a sphere of radius \mathbf{a}.

This will be given by

$$
\begin{equation*}
\zeta=\frac{-i k a}{(1-i k a)} \tag{3.4}
\end{equation*}
$$

Note that if the sphere is sufficiently large (ka >) l), its impedance approaches that of the medium. Referred to this ideal condition, the power radiation efficiency of the source will be reduced by 3 dB when

$$
\begin{equation*}
a \cong \frac{\lambda}{2 \pi}=\frac{c}{2 \pi f} \tag{3.5}
\end{equation*}
$$

He:ce, if better than 50% of the attainable efficiency is to be realized at frequencies over 80 Hz , then the source radius must be at least two feet.

A second factor dictating source dimensions, is concerned with the physical characteristics of the transducer. High efficiency $15^{\prime \prime}$ loudspeakers generaliy require 3.5 to 4 feet 3 of baffile volume if the lower frequency resonance is not to be increased. :urther, the possibility of damage to the speaker cone and its suspension is greatly increased when baffle volumes are inadequate and the speaker is worked near its excursion limits. Coincidentally, this criterion alsc dictates a radius near $2 \frac{1}{2}$ feet.

It has already been seen that the current $5 \mathbf{S}$ design is limited by asymmetries in the radiation pattern above 250 Hz . With the view that the effect of these anomalies should be analyzed, some of the appliceble techniques are outlined below. The velocity potential from an arbitrary spherical source located at the origin can be written

$$
\begin{equation*}
p(r, \theta, \phi)=\sum_{m=0}^{\infty} \sum_{n=-m}^{m} A_{m n} h_{m}(k r) Y_{m n}(\theta, \phi) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{m n}(\theta, \phi)=\sqrt{\frac{2 m+1}{4 \pi}} \quad \frac{(m-n)!}{(m+n)!} P_{m}^{n}(\cos \theta) e^{i n \psi} \tag{3.7}
\end{equation*}
$$

On the azimuth, $\cos \theta=0$ and

$$
\begin{equation*}
P_{m}^{n}(0)=\frac{(m+n-1): \cos \left[(m-n) \frac{\pi}{2}\right]}{2^{m-1}\left[\frac{1}{2}(m-n)\right]:\left[\frac{1}{2}_{2}^{2}(m+n)-1\right]!} \tag{3.8}
\end{equation*}
$$

Hence, if the azimuthal amplitude and phase pattern is known, a simple Fourier analysis would yield a partial set of the complex $A_{m n}$ corresponding to even values of $m+n$.

This is not a serious limitation since we can rotate around more than one axis and use the addition theorem of spherical harmoniss. In particular, the following three rotation axes possess obvious symmetry which tends to ease computations:
a) Axis through the center of two opposing faces
\rightarrow tenfold symmetry.
b) Axis through two opposing vertices \rightarrow sixfold symmetry•
c) Axis through the midpoints of two opposing edges
$\rightarrow \quad$ twofold symmetry.

3.2.3 Incorporation into Theory

The incorporation of the evaluations discussed in the previous paragraph can be carried over into the theory by either of two techniques:
a) Each of the $A_{m n}$ corresponds to a linear combination of Cartesian point multipoles. These latter, according to their
order correspond to successive gradient operations on the point source Green's function, $\frac{e^{i k r}}{r}$. Hence, the complex Cartesian octupole moment, $Q^{Q} x y$, would prescribe the velocity potential given by

$$
\begin{equation*}
\psi(x)=Q_{x y z} \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}\left(\frac{e^{i k r}}{r}\right) \tag{3.9}
\end{equation*}
$$

Relating to the moments in other coordinate systems is accomplished through knowledge of the transformation metrics and of the Christoffel symbol representation for the various differential operations.*
b) A second technique calls for re-evaluation of the ground plane problem in bi-spherical coordinates. This would be a very risky operation since the relevant separated functions are virtually unexplored.

In any event, the coordinates of the spherical surface would be only slightly perturbed from those in spherical coordinates. Hence, the $A_{m n}$ obtained by techniques of paragraph 3.2.2 could be applied directly.

3.2.4 Modification of SGS

Since incorporation of SGS imperfections into the theory appears to heap laborious manipulations on what is already a difficult process, it is felt that some form of SGS modification to make it more spherical, or the introduction of a second smaller

[^12]SGS for frequencies in the range of 250 - 1000 Hz merits attention.

The frequency range in question comprises, roughly, a four-to-one ratio between upper and lower limits. Since the existing SGS experiences no difficulties in covering a similar range ($80-250 \mathrm{~Hz}$), a scaled down version with dimensions 1/4 to $1 / 5$ those of the large unit would accomplish this objective.

Another benefit of this approach is the reduced power requirement of the midrange SGS since typical EIA sensitivities for speakers in this frequency range increases to 56 dB , and ambients are lower over this range.

Alternatively, 5 inch or 6 inch midrange speakers could be incorporated at the vertices of the existing SGS. Because of the high back pressures associated with low frequency operation of the SGS, these units would require separate baffling. Also their level and possibly their amplitude and phase response would require adjustment to minimize the asymetries.

As another possibility, the exterior of the SGS could be built up so that each speaker looks out into free space through a horn. As a result of this gradual matching to free space, diffraction effects are greatly reduced and the range of the source is extended. The obvious difficulty is that this technique greatly increases the bulk and handling problems associated with the SGS.

While both of the modification methods would yield improvement, they would probably extend the range of spherical symmetry no higher than 500 Hz .

3.3 Impedance and Propagation Constant Measurements

As mentioned previously, complete knowledge of acoustic wave propagation requires specification of the complex quantities, ζ, n, and ν. By virtue of various constitutive relationships, this reduces to the specification of at least three of the six real numbers at each frequency.*

The discussion that follows outlines two in situ test techniques for evaluating these constants locally. Unfortunately, this type of testing is not well documented. Attempts to apply mathematically tractable boundary conditions to the first met with only partial success. The second constitutes a new technique requiring additional hardware, but makes use of a special case of existing theory developed in section 2.

3.3.1 List of Symbols

In addition to symbols listed in paragraph 2.1, the
following apply to section 3.3.
B = total velocity flux
$f(x, y)=$ Velocity potential or velocity profile.
$L_{a}, L_{b}=$ Distance from surface under test to first null, normal and angle incidence measurement respectively.

[^13]```
Ma,M}\mp@subsup{M}{b}{}=\mathrm{ Standing wave ratios, normal incidence and angle inci-
 dence, respectively.
v = Normal velocity
v
\alpha, \beta}=\mathrm{ Impedance Farameter, see eqn's 3.10 and 3.11
\zeta_a, \zeta
 dence and angle incidence measurements respectively.
\zetar
 the impedance ratio.
\mp@subsup{\Lambda}{a}{\prime}}\mp@subsup{\Lambda}{b}{\prime}=\mathrm{ Displacement of null from position of rigid null for
 normal and angle incidence measurements respectively.
```



```
\mp@subsup{\tau}{a}{\prime}}\mp@subsup{|}{b}{}=\mathrm{ Imaginary part of }\mp@subsup{\zeta}{a}{}\mathrm{ and }\mp@subsup{\zeta}{\textrm{b}}{
\psi = velocity potential
\mp@subsup{|}{0}{\prime}}=\mathrm{ velocity potential amplitude
```


### 3.3.2 Theory - Impedance Tube

The standard impedance tube utilizes an acoustic transmission line as the basis for evaluating the impedince of a boundary. A small probe tube is used to monitor the interior acoustic field without appreciably altering it.

A diagram illustrating the use of a impedance tube is shown in Figure 3.9. As a result of a linear interaction of the incident and reflected wave, a standing wave pattern develops. In the normal incidence case, (a), it is possible to evaluate the specific acoustic impedance ratio by measuring the two quantities, $M_{a}$ (in $d B$ ) and $L_{a}$ (in wavelengths) from which

$$
\left.\begin{array}{l}
\alpha=\operatorname{coth}^{-1}\left[10^{M_{a} / 20}\right] \\
\beta=2 \pi \Lambda_{a}  \tag{3.11}\\
\Lambda_{a}=\frac{L_{a}}{\lambda}-.25
\end{array}\right\}
$$

and

$$
\begin{equation*}
\zeta_{a}=\sigma_{a}+i \tau_{a}=\operatorname{coth}(\alpha+i \beta) \tag{3.12}
\end{equation*}
$$

For angular incidence, (b), the wave interacts cwice with the impedance under test, and once with a "rigid" termination. For this case the formulism prescribes

$$
\begin{equation*}
\zeta=\left[\frac{1}{\zeta_{r}} \operatorname{coth}(\alpha+i \beta)\right]^{\frac{1}{2}} \tag{3.13}
\end{equation*}
$$

with $\alpha$ and $\beta$ being given in terms of $M_{b}$ and $\Lambda_{b}$ by relationships similar to those of equations (3.10) and (3.11).

If we are willing to ignore diffraction effects, then $\zeta$ can be computed from equation (2.102), i.e.,

$$
\begin{equation*}
\zeta=\frac{1}{\nu}\left[n^{2}-\sin ^{2} \theta\right]^{-\frac{1}{2}} \tag{3.14}
\end{equation*}
$$

Using this relationship, normal incidence data from the three test sites was processed and is shown in Figure 3.10.

a) NORMAL INCIDENCE
FIGURE 3.9 IMPEDANCE TUBE METHODS FOR OBTAINING IN SITU INFORMATION ON THE GROUND IMPEDANCE.

Comparison of the amplitude data with the theory developed in section 2.4 .4 shows general agreement in the location of break points. However, slopes are twice that predicted by theory indicating that diffraction effects are indeed involved, and that a relationship like

$$
\begin{equation*}
\zeta \propto[\operatorname{coth}(\alpha+i \beta)]^{\frac{1}{2}} \tag{3.15}
\end{equation*}
$$

may actually result from the diffraction effects. Also, a phase maximum of $45^{\circ}$ is exceeded by almost a factor of 2 . Actually, this result is quite plausible when we consider that, for $|\zeta| \gg 1$, diffraction effects should approach the usual impedance tube limits, and as $\zeta$ becomes much less, the reduction of impedance, because of diffraction, should be proportional to the non-corrected impedance.

On the other hand, the phase data of Figure 3.10 is much more difficult to explain, and, in order to better interpret this and the amplitude data, an attempt to solve boundary value problem of in situ impedances was begun.

For the general case of angular incidence at an angle, $\theta$, we have

$$
\left.\begin{array}{l}
\psi=\psi_{0} f(x, y) e^{i k x \sin \theta}  \tag{3.16}\\
v=v_{0} f(x, y) e^{i k x \sin \theta} \\
v \quad\left\{\begin{array}{c}
|x|< \\
\frac{1}{\cos \theta}\left(a^{2}-y^{2}\right)^{\frac{1}{2}}
\end{array}\right\} \\
\psi \cong 0 \quad \text { for } \quad|x|>\frac{1}{\cos \theta}\left(a^{2}-y^{2}\right)^{\frac{1}{2}}
\end{array}\right\}
$$

for which the geometry of Figure 3.11 applies.



FIGURE 3.11 GEOMETRY OF BOUNDARY CONDITIONS.

Note that we are free to choose either Dirichlet or
Neumann boundary conditions inside, as in equation (3.15), or the ratio of $\psi$ to $v$. The condition of $\psi=0$ outside is based on the absence of an audible signal in all tests conducted to date and corresponds to imposing a force-free boundary.

In the only case worked so far, the normal incidence boundary conditions $(\theta=0)$ were used in order to develop a feeling for the calculations involved. The velocity potential profile, $f(x, y)$ of Figure $3.12 a$ was assumed. The resultant integral for velocity flux was
$B \propto \int_{0}^{\infty} \frac{J_{1}^{2}(\xi)}{\xi} \quad\left(\xi^{2}-\xi_{0}^{2}\right)^{\frac{t}{2}} \mathrm{~d} \xi$
which is a form of Sonine's integral* . Evaluated for the real part from 0 to $\xi_{0}$, the integral will give a value, but the imaginary part, from $\xi_{0}$ to $\infty$, diverges.


b.

c.
$v(r)---$
$\theta(r)$
FIGURE 3.12 VELOCITY AND VELOCITY POTENTIAL PROFILES AT BOUNDARY INS IDE OF A NORMALLY INCIDENT IMPEDANCE TUBE.

A second boundary condition, shown in Figure $3.12(b)$, is mixed, i.e., $v$ is specified inside and $\psi$ outside. It represents the opposite extreme of the conditions already discussed and is solved by assuming a uniform velocity dipole layer over the termination. The average pressure over this area is ultimately desired.

[^14]It is expected that the actual boundary condition lies somewhere between the two cases, i.e., that shown in Figure 3.12 (c).

### 3.3.3 Point Source Technique

A second in situ technique would utilize a point velocity source applied to the surface under test, and velocity sensitive pickups at fixed distances from the source.

This new source would be a dipole along the 2 -axis, so that an operation, $\frac{\partial}{\partial z}$ would be performed on the $V\left(g_{1}, g_{2} ; r\right)$ already derived in section 2. Further, we are interested in the z-component of the velocity, which is obtained through the operation, $-\frac{\partial}{\partial z}$. After performing these differentiations, $g_{1}$ can be set equal to zero; so that the resultant three-term asymptotic expressions would be much simpler than those derived in section 2.

### 3.4 Site Testing

Site testing was concerned with performing experimental measurements of the local acoustic propagation parameters for the lower or ground medium, and of the large-scale sound pressure field radiated from $\cong$ sphericall: symmetrical source as a function of source height, receiver height, source to receiver distance, and frequency.

The former data is to be converted into a form suitable
for evaluation of the various functions, $K\left(g_{1}, 0 ; r\right)$, as listed in paragraph 2.5.i. In the large scale test, broadband random noise, as previously described, was radiated and recorded on Data from the experiment was obtained by $1 / 3$ octave band analysis of loop tapes covering frequencies from $80-1000 \mathrm{~Hz}$.

A brief description of the test sites is outlined in Table 3.3. Note that all of these sites exhibit lower ambients than the 6 C db expected level (paragraph 3.2). This is fortunate in view of the reduced operating level of the SGS.

Additional features of these sites are their flatness and dimensions which proved to be ideal in all cases. They also gave rise to an excellent spread in impedance data, as already seen in Figure 3.10.

### 3.4.1 Propagation Measurements of Medium 2

Impedance tube measurements were conducted at each test site for both normal incidence, which gave values of impedance, and at two angles, i.e., $\theta=30^{\circ}$ and $60^{\circ}$, to obtain information concerning a real constant, A,such that

$$
\begin{equation*}
A=Z \frac{k_{2}}{k^{i}} \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta_{2}=A_{n} \tag{3.19}
\end{equation*}
$$

where quantities other than $A$ are defined and discussed in paragraphs 2.4.1 and 2.4.4, respectively.
table 3.3
TEST SITE DATA

| LOCATION \& GROUND COVER | $\begin{gathered} \text { AMBIENT } \\ \text { NOISE LEVEL, } \\ \text { dB, SPL } \end{gathered}$ | WIND | TEMPERATURE \& REL. HUMIDITY | DIMENSIONS OF GROUND COVER UNDER TEST | A (CONSTANT DEFINED IN EQ. 3.18) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Rosecroft Gravel over Asphalt | $\begin{aligned} & <55 \mathrm{~dB} \\ & \text { during tests } \end{aligned}$ | 2-4 knots Perpendicular | $\begin{aligned} & 89^{\circ} \mathrm{F} \\ & 79 \% \end{aligned}$ | $\begin{aligned} & 300 \mathrm{ft} \mathrm{~W} \\ & 1400 \mathrm{ft} \mathrm{~L} \end{aligned}$ | 10 |
| Dulles Int. Arpt. Concrete | $\begin{aligned} & <50 \mathrm{~dB} \\ & \text { during tests } \end{aligned}$ | Undetectable $\text { ( < } 2 \text { knots) }$ | $\begin{aligned} & 69^{\circ} \mathrm{F} \\ & 49 \% \end{aligned}$ | $\begin{array}{r} 75 \mathrm{ft} \mathrm{w} \\ \gg 1000 \mathrm{ft} \mathrm{~L} \end{array}$ | 65 |
| Dulles Int. Arpt. Grass | $\begin{aligned} & <52 \mathrm{~dB} \\ & \text { during tests } \end{aligned}$ | 2.5 knots Max. Parallel toward SGS | $\begin{aligned} & 78^{\circ} \mathrm{F} \\ & 48 \% \end{aligned}$ | $\begin{gathered} 200 \mathrm{ft} \mathrm{w} \\ \gg 1000 \mathrm{ft} \mathrm{~L} \end{gathered}$ | 16 |

* Site consisted of a concrete run-up strip, 75 ft wide with asphalt shoulders 25 ft wide on either side, and flat grass extending indefinitely beyond.

Additional tests, aimed at evaluating $A$, included: a hammer tap test in which the time of arrival for the fastest wave was recorded; and break point analysis as discussed in the aforementioned paragraph. All three techniques gave A's within $10 \%$ of one another. Once in possession of this constant and the impedance $\zeta$, all other physical features relevant to propagation can be determined. Values of this constant for the three surfaces investigated are given in Table 3.3. Graphs showing the iocation of the first order pole as computed by equation 2.94 are shown in Figure 3.13.

Photographs showing the impedance tube extensions and their application to angular incidence measurements, are shown in Figures 3.14 - 3.16. The series of photographs in Figure 3.16 also illustrates the use of caulking compound in effecting a good air seal which is imperative if meaningful measurements are to be obtained.

### 3.4.2 Large Scale Test

As previously mentioned, the large scale test is concerned with measuring four parameters associated with the radiated sound pressure field. Specifically, variation of pressure with respect to the following ranges of variables in all combinations is ciesired:

a) pole location is $\frac{k}{K_{1}}$ plane as a function of $|V|$ AND $\operatorname{Arg} x,|n|=.5$

b) POLE LOCATION IS $\frac{K}{K}$, PLANE AS A FUNCTIC' OF $|n|$ AND $\operatorname{Arg} n,|\nu|=. \hat{i}$

FIGUPE 3.13. POLE POSITION RELATIVE TO $\mathrm{k}_{1}$.

FIGURE 3.14 ANGLE OF INCIDEINCE EXTENSIONS FOR THE ACOUSTIC


FIGURE 3.15 IMPEDANCE TUBE SET-UP FOR $60^{\circ}$ ANGLE-OF-INCIDENCE MEASUREMENTS

a) Normal Incidence
c) $30^{\circ}$ Incidence


b) Normal Incidence - Close up

d) $30^{\circ}$ Incidence - Close up

FIGURE 3.16. EARTH TESTS USING ACOUSTIC IMPEDANCE TUBE AND ITS MODIFICAT
a) Source height, $h:[5 \leq h \leq 30]$ ft.
b) Microphone height, $z:[5 \leq z \leq 30] f t$.
c) Source-Microphone distance, $r:[30 \leqslant r \leqslant 1000] f t$.
d) Frequency, $\mathrm{f}: \quad[80 \leqslant \mathrm{f} \leqslant 1000] \mathrm{Hz}$.
e) Ground cover acoustic propagation characteristics 3 different covers were tested.*

Because of the great size of the SGS and the attendant costs of hoisting it safely to heights of 30 feet, variation of the parameter, $h$, was not carried out in these tests. This does not represent a great loss to the experimental program since the well established principle of reciprocity can be used.

Further, the functions that are under critical analysis here, i.e., $K^{(2)}, K_{p}^{(1)}$ and $K_{s}^{(1)}$, are all functions of $g_{1}=h+z$. Hence, as far as these kernels are concerned, $h=30$ and $z=30$ is equivalent to $h=5$ and $z=55$.

Since the interfering effects of wind are to be avoided, it is desirable to gather as much data as is possible on a simultaneous basis. Hence, the reason for using random noise covering the frequency range above is established. Further, the correlation of random noise transmitted through an arbitrary transfer function gives the impulse response corresponding to that transfer function.

* Because of the onset of continuously unsettled weather at the end of June, a fourth test site was dropped from the program.

In addition, it would be desirable to position an array of microphones at many discrete combinations of $z$ and $r$ and to record their output for later analysis. Since NSL does not presently own a large number of microphones, microphone preamplifiers and the multi-channel (e.g. 14) tape recorder necessary for this elaborate test, its cost would exceed current availability of funds.

Accordingly, a compromise test program was adopted using two microphones and a two-channel tape recorder. The microphones were positioned according to the following plan:

Microphone No. 1 (control) at $r=250 \mathrm{ft}$. and $z=5 \mathrm{ft}$. at all times.*

Microphone No. 2 (moved)

$$
\begin{aligned}
& r=31.25 \mathrm{ft} ., \mathrm{z}=5 \mathrm{ft} . \quad \mathrm{r}=31.25 \mathrm{ft} ., \mathrm{z}=10 \mathrm{ft} . \\
& r=62.5 \mathrm{ft} ., \mathrm{z}=5 \mathrm{ft} . \quad \mathrm{r}=31.25 \mathrm{ft} ., \mathrm{z}=20 \mathrm{ft} . \\
& r=125 \mathrm{ft} ., \mathrm{z}=5 \mathrm{ft} . \quad r=31.25 \mathrm{ft} ., \mathrm{z}=30 \mathrm{ft} . \\
& r=250 \mathrm{ft} ., \mathrm{z}=5 \mathrm{ft} . \quad r=125 \mathrm{ft} ., z=10 \mathrm{ft} . \\
& r=500 \mathrm{ft} ., \mathrm{z}=5 \mathrm{ft} . \quad r=125 \mathrm{ft} ., \mathrm{z}=20 \mathrm{ft} . \\
& r=1000 \mathrm{ft} ., z=5 \mathrm{ft} . \quad r=125 \mathrm{ft} ., z=30 \mathrm{ft} .
\end{aligned}
$$

In order to obtain readings at greater than $z=5 \mathrm{ft}$. , the microphone stand shown in Figures 3.17 and 3.18 was devised.

Instrumentation for these tests included:

[^15]

General Radio

Crown DC-300
Bruel \& Kjaer
Bruel \& Kjaer
General Radio

Random Noise Generator

Power Amplifier
1/2" Condenser Microphone
Amplifier Complement
2-Channel Tape Recorder

Other instrumentation included voltage amplifiers, VTVMS, and high/low-pass filters.

Recorded tapes were returned to the laboratory facilities where they were spliced into small continuous loops corresponding to the test configurations above, and analyzed into 1/3-octave bands.

### 3.4.3 Pressure Field Data

The data, consisting of rms voltage measurements of the above loops was analyzed and is presented in graphical form in Appendix $D$.

### 4.1 Summary of Findings

In investigating the linear theory of point source propagation in the presence of a porous medium, some heuristic reasoning was applied to a three term asymptctic series in order to determine some of the far field effects. This theoretical model does predict a frequency dependent field that ultimately attenuates at the rate of $12 \mathrm{~dB} /$ double distance in the neighborhood of the interface -- more than twice the rate of a simple point source in free space.

While compuiation using this formulation would have been highiy desirable, available funds did not allow for completion, debugging, and execution of a computer prograin that was this elaborate. Hand computation for one frequency, rađiius, and summed height required in excess of two man-days, and gave dubious results.

Since some theoretical formulation predicting excess attenuation of velocity potential* is better than none at all, equation (2.101) was programed for computer evaluation at heights, radial separations, frequencies and ground cover impedances encountered in the experimental effort. As mentioned

[^16]in paragraph 2.5, validity of equation (2.101) as an approximation is restricted to frequencies sufficiently great that $(h+z)>$ wavelength, i.e., 100 Hz for $h=z=5 \mathrm{ft}$.

Explanatory notes, the computer program described above, and the data print-out are presented in Appendix C. This excess attenuation data was compared with the corresponding experimental data graphically presented in Appendix D. While agreement is not exact, a result of comparing discrete frequency and random noise situations, a distinct correlation exists with regard to such major features as frequency and distance effects.

Both sets of data predict excess attenuation rates that become substantial at intermediate frequencies exhibiting a pronounced dip in the $100-1000 \mathrm{~Hz}$ range.

It should be noted that the theoretical approach cited above applies to discrete frequencies and ignores the possible influence of one of the groind waves.

### 4.2 Recommendations for Future Study -- A Five-Point Program

Consistent with the findings and experiences of this effort, the following five-point effort is recommended to refine both the theoretical and experimental aspects of point source radiation in the presence of a reflecting and refracting plane.

### 4.2.1 Extension of the Theory for Random Effects

Two features of the experimental program merit consideration for the possibiiity of introducing random fluctuations
in the theoretical model. These consist of random inhomogeneities in the ground cover and wind induced fluctuations.

For a given experimental setup, ground cover inhomogeneities are fixed and are not expected to pose great problems in introducing temporal fluctuations. These appear to be adequately handled by averaging many impedance and propagation measurements, and a form of rms addition carried out between the $e^{i k_{1} r}$ components and the $e^{i k_{2} r}$ components found in section 2.5.*

Wind effects are more problematic. Ingard ** has already described how corrections can be incorporated into real airpropagated modes, i.e.. modes that can be represented by a ray. Application of these techniques to the case where propagation cannot be so represented may require further study.

Finally, the questions raised about treatment of experimental random noise data require answers. 4.2.2 Extension of the Theory for the Entire Upper Half-Space

The theory derived throughout section 2 of this report is limited in that the expansions are valid only near the interface. A ray theory formulation, valid for heights greater than $\frac{3}{2}$ wavelength, is also presented but it is not so accurate as the asymptotic series that it is to complement.

[^17]Baños does extend the technique of saddle point integration to the case of expansions valid near the vertical axis, and a more cumbersome expansion valid over an entire k.smisphere.* The former case is worked out by Paul for acoustic waves in the two fluids model.**

It is felt that the unification of the theory is most accurately accomplished by means of direct numerical evaluation of the $K^{(i)}$ while they are in the form

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \Phi(X, Y) e^{-\frac{3}{2}\left(X^{2}+Y^{2}\right)} d X d Y \tag{4.1}
\end{equation*}
$$

for values of

$$
\begin{equation*}
\tan ^{-1}\left|\frac{g_{1}}{r}\right|<\frac{\pi}{2} \tag{4.2}
\end{equation*}
$$

and that a similar representation of $K$ be evaluated when

$$
\begin{equation*}
\tan ^{-1}\left|\frac{g_{1}}{r}\right|>\frac{\pi}{2} \tag{4.3}
\end{equation*}
$$

where the above symbols are listed in paragraph 2.1.
As before, in those cases where the path of integration passes near a pole, especially near a terminus of the path, the techniques of paragraph 2.3.2 apply.

* Reference $1, ~ p p$ 159-172 and pp 173-194, respectively. ** Reference 23.


### 4.2.3 Expanded Test Plan

It was mentioned in paragraph 3.4 .2 that simultaneity of measurements constituted a highly desirable aspect of the experimental program. For this reason, broadband random noise was used in the original test program.

The concept of simultaneity is greatly enhanced by incorporation of many microphones and a fourteen channel instrumentation tape recorder in the test setup as shown in Figure 4.1. Other improvements shown include:
a) Use of a warble signal in place of random noise. Such a signal might consist of a square wave sweeping rapidly from a low frequency of, say, 80 Hz , to a frequency twice as great in about one second. The obvious advantage is that we are now working with a predictable signal and ambient effects can be removed.
b) A microphone to monitor the geometric center of the SGS. This position represents the optimal acoustic monitoring point since it is isolated from externally reflected waves.
c) Use of correlation to obtain impulse responses when random noise is used.

Values of the distances cited in Figure 4.1 are given in Table 4.1.

### 4.2.4 Impedance and Propagation Constant Measurements

The weak point of the experimental effort appears to


## TEST PLAN DIMENSIONS

| Symbol | Dimension | Symbol | Dimension |
| :---: | :---: | :---: | :---: |
| $z_{1}$ | $2 \frac{1}{2} \mathrm{ft}$. | $r_{1}$ | 16 ft . |
| $z_{2}$ | 5 ft . | $r_{2}$ | 31 ft . |
| ${ }^{2} 3$ | 10 ft . | $r_{3}$ | $62 \mathrm{ft}$. |
| $\mathrm{z}_{4}$ | 20 ft. | $r_{4}$ | 125 ft . |
| $\mathrm{z}_{5}$ | 40 ft . | $r_{5}$ | 250 ft . |
| $\mathrm{h}_{2}$ | 5 ft . | $r_{6}$ | 500 ft . |
| $\mathrm{h}_{3}$ | $10 \mathrm{ft}$. | ${ }^{7}$ | 1000 ft . |

concern in situ techniques of measuring the impedance and propagation constant of the ground (lower) medium. Specifically, we must know real and imaginary parts of the impedance at all frequencies and a real constant from which the complex propagation constant can be evaluated through the constitutive relationships.

Alternatively, if it is known that the medium is porous, the five constants, $U, V, W, Z$, and $k^{\prime}$ of paragraph 2.4.4 can be determined independently, or from break-point analysis.

In section 3.3 two methods are discussed for more accurate interpretation of acoustic wave guide techniques. One attempt to solve a set of assumed bourdary conditions was unsuccessful. However, as is later pointed out, this results from
the assumption of an unrealistic pressure distribution. Accordingly, it is recommended that this phase of investigation be concerned with the following activity:
a) Determine the pressure field distribution at the termination of the impedance tube by using small probe techniques.
b) Use a small vibration pick-up to determine the normal velocity field of the lower medium. This may not be an important piece of data in the case of very porous media where the velocity measured would tend to be that of the skeleton.
c) Determine if the pressure field is affected seriously by slight variations in the methed of seal.
d) Ascertain the validity of other techniques, e.g., air volume flow, for measuring porosity, structure constant, specific flow resistance, etc.

In addition to the impedance tube technique above, investigation of the point source technique discussed in paragraph 3.3.2 also is encouraged.

### 4.2.5 Treatment of SGS Radiation Pattern

As mentioned in section 3.2 .3 and 3.2 .4 , several methods avail themselves for the purposes of correcting the spherical asymmetry encountered in the SGS at frequencies above 250 Hz .

A first step would evaluate the relative costs, advantages and disadvantages of each method or combination of methods as it affects the type of signal and subsequent analysis. In particular, radiated wideband random noise analyzed in l/3-octave intervals is not seriously impaired, whereas analysis of narrower bandwidths, discrete frequencies, or transient waveforms would be adversely affected.

Recapitulating, these methods include: a) Incorporation of the SGS asymmetry into the theory by evaluating the point source problem in bispherical coordinates and using spherical harmonics; b) theoretical treatment using Cartesian multipoles converted to cylindrical coordinates; c) a separate, smaller SGS to cover the frequency range from 250 Hz to 1000 Hz or more; d) addition of high frequency radiators at the vertices of the existing SGS; e) building up SGS exterior so that each speaker matches to free space conditions through a horn.

Some aspects of the relative merits of each of these methods are all discussed in 2.3. Prior to embarking on a solution, it is recommended that these considerations be further studied. Intuitively, it appears that method (c), because of its certitude, represents the optimal course.

## BIBLIOGRAPHY

1. A. Baños, Jr., "Dipole Radiation in the Presence of a Conducting Half-Space" Pergamon Press, New York, 1966.
2. L. L. Beranek, "Acoustic Measurements", John Wiley \& Sons, New York, 1949.
3. M. A. Biot, "Theory of Propagation of Elastic Waves in A Fluid Saturated Porous Solid. I. Low Frequency Range", J. Acoust. Soc. Am. 28, p. 168 (1956).
4. M. A. Biot, "Theory of Propagation of Elastic Waves in A Fluid Saturated Porous Solid. II. Higher Frequency Range", J. Acoust. Soc. Am. 28, p. 179 (1956).
5. M. A. Biot, "Generalized Theory of Acoustic Propagation in Porous Dissipative Media" J. Acoust. Soc. Am. 34, p. 1254 (1962).
6. M. A. Biot, "Generalized Boundary Condition for Multiple Scatter in Acoustic Reflection", J. Acoust. Soc. Am. 44, p. 1616, (1968).
7. L. M. Brekhovskikh, "Waves in Layered Media", Academic Press, New York, 1960.
8. W. M. Ewing, W. S. Jardetsky and F. Press, "Elastic Waves in Layered Media" McGraw Hill Book Co., New York, 1957.
9. C. M. Harris, "Absorption of Sound in Air in the Audio Frequency Range", J. Acoust. Soc. Am. 35, p. 11, (196').
10. C. M. Harris, "Absorption of Sound in Air Versus Humidity and Temperature", J. Acoust. Soc. Am. 40, p. 148, (1966).
3.1. C. M. Harris, and L. Kirvida, "Observation Concerning the Attenuation of Elastic Waves in the Ground", J. Acoust. Soc. Am. 31, p. 1037, (1959).
11. U. Ingard, "Influence of Fluid Motion Past a Plane Boundary on Sound Reflection, Absorption and Transmission", J. Acoust. Soc. Am. 31, p. 1035, (1959).
12. U. Ingard, and G. C. Maling, Jr., "On the Effect of Atmospheric Turbulence on Sound Propagated Over the Ground", J. Acoust. Soc. Am. 35, p. 1056, (1963).
13. U. Ingard, "A Review of the Influence of Meterological Conditions on Sound Propagation", J. Acoust. Soc. Am. 25 p. 405, (1953).
14. U. Ingard, "On the Reflection of a Spherical Sound Wave from an Infinite Plane", J. Acoust. Soc. Am. 23, p. 329, (1951).
15. G. J. Kuhn, and A. Lutsch, "Elastic Wave Mode Conversion with Transverse Slip", J. Acoust. Soc. Am. 33, p. 949, (1961).
16. P. M. Morse, "Vibration and Sound", McGraw Hill Book Co.. New York, 1948.
17. P. M. Morse, and H. Feshback, "Methods of Theoretical Physics", MCGraw Hill Book Co., New York, 1953.
18. P. M. Morse, and U. Ingard, "Theoretical Acoustics", McGraw-Hill Book Co., New York, 1968.
19. H. L. Oestreicher, "Field of a Spatially Extended Moving Sound Source", J. Acoust. Soc. Am. 29, P.1223,(1957).
20. H. L. Oestreicher, "Representation of the Field of an Acoustic Source as A Series of Multipole Fields", J. Accust. Soc. Am. 29, p. 1219, (1957).
21. V. R. Parfitt, and A. C. Eringen, "Reflection of Plane Waves from the Flat Boundary of a Micropolar Half-Space", J. Acoust. Soc. Am 45, p. 1258, (1969).
22. D. I. Paul, "Acoustic Radiation from A Point Source in the Presence of Two Media", J. Acoust. Soc. Am. 29, p. 1102, (1957).
23. D. C. Pridmore-Brown, "Sound Propajation in a Temperature and Wind Stratified Medium", J. Acoust. Soc. Am. 34, p. 785, (1962).
24. E. A. G. Shaw, "Acoustic Wave Guide. I. An Apparatus for the Measurement of Acoustic Impedance Using Plane Waves and Higher Crder Mode Waves in Tubes", J. Acoust. Soc. Am. 25, p. 224, (1953).
25. E. A. G. Shaw, "Acoustic Wave Guide. II. Some Specific Normal Impedance Measurements of Typical Porous Surfaces with Respect to Normally and Obliquely Incident Waves", J. Acoust. Soc. Am. 25, p. 231, (1953).
26. R. N. Tedrick, "Acoustical Measurements of Static Tests of Clustered and Single-Nozzled Rocket Engines", J. Acoust. Soc. Am. 11, p. 2027, (1964).
27. D. H. Towne, "Pulse Shape of Totally Reflected Plane Waves as a Limiting Case of the Cagniard Solution for Spherical Waves", J. Acoust. Soc. Am. 44, p. 77, (1968).
28. D. H. Towne, "Pulse Shapes of Spherical Waves Reflected and Refracted at a Plane Interface Separating Two Homogeneous Fiuids" J. Acoust. Soc. Am. 44, p. 65, (1968).
29. G. N. Watson, "A Treatise on the Theory of Bessel Functions", Cambridge University Press, London, 1966.
30. F. M. Wiener, and D. N. Keast, "Experimental Study of the Propagation of Sound Over Ground", J. Acoust. Soc. Am. 31, p. 724, (1959).
31. F. M. Wiener, K. W. Goff, and D. N. Keast, "Instrumentation for the Study of Propagation of Sound Over Ground", J. Acoust. Soc. Am. 30, p. 860, (1958).
32. G. A. Wilhold, "Acoustic Environments of Rocket Exhausts", AeroAstrodynamics Laboratory, Marshall pace Flight Center, Fיnntsville, Alabama.

APPENDIX A: COMPUTATION OF M ${ }_{11}$ FOR THE CASE OF TWO ELASTIC OR VISCOUS MEDIA.

In its original conception, it was felt that the problem of acoustic propagation would require the two bonded elastic media model for a complete description of point source-ground plane propagation. In this model there are four propagation constants corresponding to the four modes, ie.
$\mathrm{k}_{1}$ - compressional wave in air
$k_{2}$ - compressional wave in ground medium
$k_{3}$ - shearing wave in air
$k_{4}$ - shear wave is ground medium
Since the details of this model were worked out during the course of the theoretical program, and since the results are applicable to the general problem of two elastic media, they are presented in this and the following appendix.

## A. 1 List of Symbols

$$
\begin{aligned}
& A_{i}=\text { Complex incident wave amplitude for the } i^{\text {th }} \text { wave, } \\
& i=1,2,3,4 \text {. } \\
& \begin{aligned}
A_{0}= & \text { Vector representation of the even components, } A_{i} \text {, } \\
& i . e ., A_{2} \text { and } A_{4} \text {. }
\end{aligned} \\
& A_{0}=\text { Vector representation of the odd components, } A_{i} \text {, } \\
& \text { ide.., } A_{1} \text { and } A_{3} \text {. } \\
& a_{i}=\frac{\gamma_{i}}{\kappa}, \gamma_{i} \text { and } \kappa \text { defined in paragraph 2.1. } \\
& B_{i}=\text { Complex transmitted wave amplitude for the } i \text { th wave, } \\
& \text { i }=1,2,3,4 \\
& B_{0}=\text { Vector representation of the even components, } B_{i} \text {, } \\
& \text { ide.. } \mathrm{B}_{2} \text { and } \mathrm{B}_{4} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& B_{0}=\text { Vector representation of the odd components, } B_{i} \text {, } \\
& \text { i.e.. } B_{1} \text { and } B_{3} \text {. } \\
& b_{i}=\frac{2 a_{i}}{\left(1+a_{m}{ }^{2}\right)} \\
& \mathrm{g}=\text { Matrix inversion metric. } \\
& \text { | = Identity matrix. } \\
& \text { i }=\text { Positive integer subscript. } \\
& i=\sqrt{-1} \\
& j=\text { Positive integer subscript. } \\
& \mathbf{k}=\text { Propagation constant general case. } \\
& k_{i}=\text { Propagation constant for the } i^{\text {th }} \text { wave, } i=1,2,3,4 \text {. } \\
& \text { M = Complete scattering matrix. } \\
& M_{i j}=\text { Matrix elements of } M, i, j=1,2,3,4 . \\
& \mathbf{m}_{\mathrm{ij}}=\text { Partitioned matrix components of } \mathrm{M}, \mathrm{i}, \mathrm{j}=1,2 \text {. } \\
& m=\text { Positive integer }=\left\{\begin{array}{l}
3 \text { when } i \text { or } n \text { is odd. } \\
4 \text { when } i \text { or } n \text { is even. }
\end{array}\right. \\
& n=\text { Positive integer }=\left\{\begin{array}{l}
1 \text { when } i \text { or } m \text { is odd. } \\
2 \text { when } i \text { or } m \text { is even. }
\end{array}\right. \\
& q_{1}=v \frac{\left(1+a_{3}{ }^{2}\right)}{\left(1+a_{4}{ }^{2}\right)}, \quad v \text { defined in paragraph } 2.1 . \\
& q_{2}=\text { Constant defined in text. } \\
& \mathbf{S , T}=\text { Unreduced mixed mode scattering matrices } \\
& S_{i j}, \boldsymbol{T}_{i j}=\quad \begin{array}{l}
\text { Partitioned matrix components of } S \text { and } r, \\
i, j=1,2 .
\end{array}
\end{aligned}
$$

## A. 2 Boundary Conditions

In terms of the waves of Figure 2.4 and the elastic boundary conditions cited in paragraph 2.4.3, the following relationships obtain

$$
\begin{gather*}
\left(A_{1}+B_{1}\right)-a_{3}\left(A_{3}-B_{3}\right)=\left(A_{2}+B_{2}\right)+a_{4}\left(A_{4}-B_{4}\right) \\
-a_{1}\left(A_{1}-B_{1}\right)+\left(A_{3}+B_{3}\right)=a_{2}\left(A_{2}-B_{2}\right)+\left(A_{4}+B_{4}\right), \\
q_{1}\left[\left(A_{1}+B_{1}\right)-\frac{2 a_{3}}{1+a_{3}^{2}}\left(A_{3}-B_{3}\right)\right]=\left[\left(A_{2}+B_{2}\right)+\right. \\
\left.\frac{2 a_{4}}{1+a_{4}^{2}}\left(A_{4}-B_{4}\right)\right]  \tag{A.1}\\
q_{1}\left[\frac{2 a_{1}}{1+a_{3}^{2}}\left(A_{1}-B_{1}\right)+\left(A_{3}+B_{3}\right)\right]=\left[\frac{2 a_{2}}{1+a_{4}^{2}}\right. \\
\left.\left(A_{2}-B_{2}\right)+\left(A_{4}+B_{4}\right)\right]
\end{gather*}
$$

These can be condensed into the matrix equation
$\left|\begin{array}{cccc}1 & -a_{3} & 1 & a_{3} \\ -a_{1} & 1 & a_{1} & 1 \\ q_{1} & q_{1} b_{3} & q_{1} & q_{1} b_{3} \\ -q_{1} b_{1} & q_{1} & q_{1} b_{1} & q_{1}\end{array}\right|\left|\begin{array}{l}A_{1} \\ A_{3} \\ B_{1} \\ B_{3}\end{array}\right|=\left|\begin{array}{cccc}1 & a_{4} & 1 & -a_{4} \\ a_{2} & 1 & -a_{2} & 1 \\ 1 & b_{4} & 1 & -a a_{4} \\ b_{2} & 1 & -a_{2} & 1\end{array}\right|\left|\begin{array}{l}A_{2} \\ A_{4} \\ B_{2} \\ B_{4}\end{array}\right|$
which in condensed form becomes

$$
s\left|\frac{A_{0}}{B_{0}}\right|=T\left|\frac{A_{0}}{B_{e}}\right|
$$

or using quantities defined in the list of symbols,

$$
\left|\begin{array}{ll}
\mathbf{s}_{11} & \mathbf{S}_{12} \\
\mathbf{q}_{1} \mathbf{S}_{21} & \mathbf{q}_{1} \mathbf{S}_{22}
\end{array}\right|\left|\begin{array}{l}
\mathbf{A}_{0} \\
\mathbf{B}_{0}
\end{array}\right|=\left|\begin{array}{ll}
\mathbf{T}_{11} & \mathbf{T}_{12} \\
\mathbf{T}_{21} & \mathbf{T}_{22}
\end{array}\right|\left|\begin{array}{l}
\mathbf{A}_{\mathbf{e}} \\
\mathbf{B}_{\mathrm{e}}
\end{array}\right|(\mathrm{A} .3)
$$

for which, it is desired to find


Equation A. 4 will give the transmitted wave amplitude in terms of any combination of the four incident wave amplitudes.

Note that

$$
\begin{align*}
& \mathbf{s}_{11}=\left|\begin{array}{cc}
1 & -a_{3} \\
-a_{1} & 1
\end{array}\right|, \\
& \mathbf{s}_{12}=\left|\begin{array}{cc}
1 & a_{3} \\
a_{1} & 1
\end{array}\right|, \\
& \mathbf{s}_{21}=\left|\begin{array}{cc}
1 & -b_{3} \\
-b_{1} & 1
\end{array}\right|,  \tag{A.5}\\
& \mathbf{s}_{22}=\left|\begin{array}{cc}
1 & b_{3} \\
b_{1} & 1
\end{array}\right|,
\end{align*},
$$

and that similar relationships exist for $\boldsymbol{T}_{i j}$. In terms of $M_{i j}$ the $M_{i j}$ are given by

$$
\begin{align*}
& M_{11}=\left|\begin{array}{ll}
M_{11} & M_{13} \\
M_{31} & M_{33}
\end{array}\right| \\
& M_{12}=\left|\begin{array}{ll}
M_{12} & M_{14} \\
M_{32} & M_{34}
\end{array}\right| \\
& M_{21}=\left|\begin{array}{ll}
M_{21} & M_{23} \\
M_{41} & M_{43}
\end{array}\right|  \tag{A.6}\\
& M_{22}=\left|\begin{array}{ll}
M_{22} & M_{24} \\
M_{42} & M_{44}
\end{array}\right|
\end{align*}
$$

The only element of $M$ of interest is $M_{11}$ and since

$$
\begin{equation*}
B_{i}=\sum_{j=1}^{4} M_{i j} A_{j} \tag{A.7}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
B_{1}=M_{11} A_{1} \tag{A.8}
\end{equation*}
$$

## A. 3 Mechanios of Inversion

The inversio.i is accomplished by treating equation (A.4) as two linear simultaneous equations in two unknowns, $B_{o}$ and $\mathbf{B e}_{\mathbf{e}}$. The only precaution is that $\mathbf{S}_{i j}$ and $\mathbf{T}_{i j}$ are matrix quantities that are not commutative under multiplication. As a result it is found that
$\mathbf{m}_{11}=-\left[\mathbf{T}_{12}^{-1} \mathbf{S}_{12}-\mathrm{q}_{1} \mathbf{T}_{22}^{-1} \mathbf{S}_{22}\right]^{-1}\left[\mathbf{T}_{12}^{-1} \mathbf{s}_{11}-\mathrm{q}_{1} \mathbf{T}_{22}^{-1} \mathbf{S}_{21}\right]$

Similar formulae can be found for $\mathbf{M}_{12}, \mathbf{M}_{21}$ and $\mathbf{M}_{22}$, but since $M_{11}$ is the only quantity of interest, only $M_{11}$ is required.

The principal problem at this point is the inversion of

$$
\left[\begin{array}{lllll}
\mathbf{T}_{12}^{-1} & \mathbf{s}_{12}-\mathbf{q}_{1} & \mathbf{T}_{22}^{-1} & \mathbf{s}_{22} \tag{A.10}
\end{array}\right]
$$

It can be shown that there exists a $q_{2}$ such that

$$
\begin{equation*}
\left[\mathbf{T}_{12}^{-1} \mathbf{S}_{12}-\mathrm{q}_{1} \mathbf{T}_{22}^{-1} \mathbf{S}_{22}\right]\left[\mathbf{S}_{12}^{-1} \mathbf{T}_{12}-\mathrm{q}_{2} \mathbf{S}_{22}^{-1} \mathbf{T}_{22}\right]=\mathrm{g} \tag{A.11}
\end{equation*}
$$

with

$$
\begin{equation*}
q_{2}=q_{1} \frac{\left(1-a_{2} a_{4}\right)\left(1-b_{1} b_{3}\right)}{\left(1-b_{2} b_{4}\right)\left(1-a_{1} a_{3}\right)} \tag{A.12}
\end{equation*}
$$

and

$$
\begin{align*}
g= & {\left[\left(\frac{1+a_{1} a_{4}}{1-a_{2} a_{4}}-q_{1} \frac{1+b_{1} b_{4}}{1-b_{2} b_{4}}\right)\left(\frac{1+a_{2} a_{3}}{1-a_{1} a_{3}}-q_{2} \frac{1+b_{2} b_{3}}{1-b_{1} b_{3}}\right)\right.} \\
& \left.-\left(\frac{a_{3}+a_{4}}{1-a_{2} a_{4}}-q_{1} \frac{b_{3}+b_{4}}{1-b_{2} b_{4}}\right)\left(\frac{a_{1}+a_{2}}{1-a_{1} a_{3}}-q_{2} \frac{b_{1}+b_{2}}{1-b_{1} b_{3}}\right)\right] \tag{A.13}
\end{align*}
$$

Hence,

$$
\begin{equation*}
m_{11}=-\frac{1}{g}\left[\mathbf{s}_{12}^{-1} \boldsymbol{T}_{12}-q_{2} \mathbf{s}_{22}^{-1} T_{22}\right]\left[T_{12}^{-1} \mathbf{s}_{11}-q_{1} T_{22}^{-1} \mathbf{s}_{21}\right] \tag{A.14}
\end{equation*}
$$

For future reference, it is helpful to note that

$$
\begin{align*}
& \left(\frac{a_{3}+a_{4}}{1-a_{2} a_{4}}-q_{1} \frac{b_{3}+b_{4}}{1-b_{2} b_{4}}\right)\left(\frac{a_{1}+a_{2}}{1-a_{1} a_{3}}-q_{2} \frac{b_{1}+b_{2}}{1-b_{1} b_{3}}\right) \\
= & \left(\frac{a_{3}+a_{4}}{1-a_{1} a_{3}}-q_{2} \frac{b_{3}+b_{4}}{1-b_{1} b_{3}}\right)\left(\frac{a_{1}+a_{2}}{1-a_{2} a_{4}}-q_{1} \frac{b_{1}+b_{2}}{1-b_{2} b_{4}}\right) \tag{A.15}
\end{align*}
$$

Using all of the relationships developed thus far, $M_{11}$ reduces to the following result:

$$
M_{11}=-\frac{\left[\begin{array} { l } 
{ ( \frac { 1 + a _ { 2 } a _ { 3 } } { 1 - a _ { 1 } a _ { 3 } } - q _ { 2 } \frac { 1 + b _ { 2 } b _ { 3 } } { 1 - b _ { 1 } b _ { 3 } } ) \times ( \frac { 1 - a _ { 1 } a _ { 4 } } { 1 - a _ { 2 } a _ { 4 } } - q _ { 1 } \frac { 1 - b _ { 1 } b _ { 4 } } { 1 - b _ { 2 } b _ { 4 } } ) } \\
{ + ( \frac { a _ { 3 } + a _ { 4 } } { 1 - a _ { 1 } a _ { 3 } } - q _ { 2 } \frac { b _ { 3 } + b _ { 4 } } { 1 - b _ { 1 } b _ { 3 } } ) \times ( \frac { a _ { 1 } - a _ { 2 } } { 1 - a _ { 2 } a _ { 4 } } - q _ { 1 } \frac { b _ { 1 } - b _ { 2 } } { 1 - b _ { 2 } b _ { 4 } } ) }
\end{array} \left[\left(\begin{array}{l}
\left(\frac{1+a_{2} a_{3}}{1-a_{1} a_{3}}-q_{2} \frac{1+b_{2} b_{3}}{1-b_{1} b_{3}}\right) \times\left(\frac{1+a_{1} a_{4}}{1-a_{2} a_{4}}-q_{1} \frac{1+b_{1} b_{4}}{1-b_{2} b_{4}}\right) \\
{\left[\left(\frac{a_{3}+a_{4}}{1-a_{1} a_{3}}-q_{2} \frac{b_{3}+b_{4}}{1-b_{1} b_{3}}\right) \times\left(\frac{a_{1}+a_{2}}{1-a_{2} a_{4}}-q_{1} \frac{b_{1}+b_{2}}{1-b_{2} b_{4}}\right)\right]}
\end{array}(16)\right.\right.\right.}{[ }
$$

It is a simple process of algebraic manipulation from this point to solve for $A\left(\kappa^{2}\right)$ and $B\left(\kappa^{2}\right)$ in example 1 of Table 2.4 .

## APPENDIX B: STARTING ROOTS AND APPLICABLE RIEMANN SURFACE FOR TWO BONDED ELASTIC MEDIA

## B.l List of Symbols

In addition to symbols listed in paragraph 2.1 , the following characters were used in this appendix. $C_{0}, C_{+}, C_{-}=$constants related to $v_{i}-$ see text.
$d=\left(\frac{k_{2}}{k_{4}}\right)^{2}$

| i, j | $=$ integer subscripts |
| :---: | :---: |
| S (d) | $=$ cubic polynomial in d -- see text. |
| T(d) | $=$ cubic polynomial in d -- see text. |
| $u_{i}$ | $=$ coefficients in series expansion of $v_{3}$ and $v_{4}$. |
| $\mathbf{v}_{i}$ | $=$ coefficients in series expansion of $\boldsymbol{v}_{2}$. |
| $\alpha^{\prime}$ | $=-\left(x^{2}-\frac{3}{2} k_{4}^{2}\right)^{2}$ |
| $\boldsymbol{\theta}_{\boldsymbol{i}}$ | $=\operatorname{Arg}\left(\mathrm{k}_{\mathrm{i}}\right)$ |
| $\kappa_{i}$ $\kappa_{i j}$ | ```= Root of decoupled denominator and starting point for the i th root cluster. = j jh root in the i }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ cluster, i, j = 1, 2, 3, 4.``` |
| $\sigma_{i}$ | $=\operatorname{Re}\left(\mathrm{k}_{\mathrm{i}}\right)$ |
| ${ }^{T}{ }_{i}$ | $=\operatorname{Im}\left(\mathrm{k}_{\mathrm{i}}\right)$ |
| $v$ | $={\frac{\kappa}{k_{4}}}^{2}$ |

$v_{i}=\left(\frac{k_{i}}{k_{4}}\right)^{2}$
$v_{a}, v_{b}=$ constants related to $v_{i}=-$ see text.
$\phi_{i} \quad=\operatorname{Arg}\left(K_{i}\right)$
$\psi_{i} \quad=$ angular arguments in series expansion for $v_{3}$ and $v_{4}$ *
B. 2 Decoupled Denominator

In paragraph 2.4 .3 , we decoupled the characteristic denominator for this problem into two terms from which starting values for the zeros could be determined. These were given by

$$
\begin{equation*}
\left(x^{2}-y_{1} \gamma_{3}\right)=0 \tag{B.la}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\alpha^{\prime}+\kappa^{2} \gamma_{2} \gamma_{4}\right)=0 \tag{B.1b}
\end{equation*}
$$

Thus, it is quite evident that the characteristic denominator decouples into two terms that are individually dependent on the properties of each medium. An additional feature of interest concerns equation (B. la) only. This term iesembles, in many respects, the Sommerfeld denominator encountered in electromagnetic theory. In fact, the roots are identical, namely

$$
\begin{equation*}
k_{1}= \pm\left(2-n_{13}^{2}\right)^{-\frac{1}{2}} \tag{B.2}
\end{equation*}
$$

[^18]Three additional pole pairs are given by an expansion of equation (B.1b), yielding the cubic

$$
\begin{equation*}
(1-d) v^{3}-\left(\frac{3}{2}-d\right) v^{2}+\frac{1}{2} v-\frac{1}{16}=0 \tag{B.3}
\end{equation*}
$$

where

$$
\begin{align*}
& v=\left(\frac{k}{k_{4}}\right)^{2} \\
& d=\left(\frac{k_{2}}{k_{4}}\right)^{2} \tag{B.4}
\end{align*}
$$

Unfortunately, these roots are not representable in a simple closed form such as equation (B.2). The following generalization is possible for real values of $d$ as indicated

$$
\begin{align*}
& 1.10<v_{1}<1.23 \text { for } .04<d<.4 \\
& .209<\operatorname{Re}\left(v_{2}\right)=\operatorname{Re}\left(v_{3}\right)<.27969 \text { for } .04<d<.32150 \\
& .123>\operatorname{Im}\left(v_{2}\right)=-\operatorname{Im}\left(v_{3}\right)>0 \text { for } .04<d<.32150 \\
& .27969<\operatorname{Re}\left(v_{2}\right) \text { for } .32150<d<.4  \tag{B.5}\\
& \operatorname{Im}\left(v_{2}\right)=\operatorname{Im}\left(v_{3}\right)=0 \text { for } .32150<d<.4
\end{align*}
$$

which is sufficiently adequate to cover most isotropic elastic media. Graphical representations of the roots as a function of d are shown in Figure B.l.

Having found roots in each of the three examples presented so far, it is now desirable to develop decision criteria for specifying the applicable Riemanrı surface.


FIGURE B. 1. VALUES OF THE ROOTS AS A FUNCTION OF $d$.

Note that each limiting case considered involves only
two quantities, $\gamma_{i}$, so that the four Riemann surfaces in each case represents a suitably chosen subset of the overall sixteen surfaces illustrated in Figure 2.3.

At this point, it is of interest to consider the zeros of each of the three denominator limits, and their applicable Riemann surfaces.
B.2.1 Part containing $\boldsymbol{\gamma}_{1}$ and $\boldsymbol{\gamma}_{3}$

In order to determine the applicable Riemann Surface, it is necessary to consider the proper sign and phase of

$$
\gamma_{1}\left(\kappa_{1}\right)= \pm i n_{13} \kappa_{1}
$$

and

$$
\begin{equation*}
\gamma_{3}\left(\kappa_{1}\right)= \pm i n_{13}^{-1} \kappa_{1} \tag{Be}
\end{equation*}
$$

In particular, we wish to compute the phases of $\boldsymbol{\gamma}_{1}$ and $\boldsymbol{\gamma}_{3}$ in order to determine on which surfaces $D\left(\kappa_{1}^{2}\right)$ vanishes. Consider first the cuts originally used by Summerfeld, ie.

$$
\begin{array}{llll}
\xi \eta=\sigma_{1} \tau_{1} & |\eta| & >\left|\tau_{1}\right| \\
\xi \eta=\sigma_{3} \tau_{3} & |\eta|>\left|r_{3}\right| \tag{B.7}
\end{array}
$$

and recall that

$$
\begin{equation*}
\theta_{1} \text { and } \theta_{3} \text { are small positive angles. } \tag{BiB}
\end{equation*}
$$

Next note that $\left|n_{31}\right|<1$ so that, to first order

$$
\begin{aligned}
\left|\kappa_{1}\right| & \cong\left|k_{1}\right| \quad\left(1+\frac{1}{2}\left|n_{31}\right|^{2}\right) \\
\phi_{1} & \cong \theta_{1}
\end{aligned}
$$

where

Arg $\left(n_{31}\right)=\theta_{1}-\theta_{3}$
$\operatorname{Arg}\left[\gamma_{1}\left(\kappa_{1}\right)\right]= \pm \frac{\pi}{2}+\operatorname{Arg}\left(n_{31}\right)+\phi_{1}$ $=\left\{\begin{array}{l}\frac{\pi}{2}+2 \theta_{1}-\theta_{3}+\frac{1}{2} n_{31} \\ \ldots \text { on surfaces } \operatorname{cxx} 0\end{array}\right\}$ $=\left\{\begin{array}{l}\frac{\pi}{2}+2 \theta_{1}-\theta_{3}+\frac{1}{2} n_{31} \\ \ldots \text { on surfaces xxxi }\end{array}\right\}$
where the condition, $\left[\operatorname{Re} \quad \gamma_{i}(x)\right]>0$ on $X=0$ surfaces has been invoked.

Taking note of the sign correspondence between $\pm i$ and $\pm \pi / 2$, it follows that

$$
\gamma_{1}\left(\kappa_{1}\right)=\left\{\begin{array}{ll}
+i n_{31} \kappa_{1} & \text { on surfaces xXi }  \tag{B.12}\\
-i n_{31} \kappa_{1} & \text { on surfaces } \operatorname{xCXI}
\end{array}\right\}
$$

Using identical reasoning, it is found that
$\operatorname{Arg}\left[\gamma_{3}\left(\kappa_{1}\right)\right]= \pm \frac{\pi}{2}-\operatorname{Arg}\left(n_{31}\right)+\phi_{1}$

[^19]\[

=\left\{$$
\begin{array}{r}
\frac{\pi}{2}+\theta_{3}+\frac{1}{2}_{2}\left|n_{31}\right|^{2}  \tag{B.13}\\
\ldots \text { on surfaces xIx } \\
-\frac{\pi}{2}+\theta_{3}+\frac{3}{2}_{2}\left|n_{31}\right|^{2} \\
\ldots \text { on surfaces x0xx }
\end{array}
$$\right.
\]

or

$$
\gamma_{3}\left(\kappa_{1}\right)=\left\{\begin{array}{lll}
-i \frac{1}{n_{31}} & \kappa_{1} \text { on surfaces Pox }  \tag{B.14}\\
+i \frac{1}{n_{31}} & \kappa_{1} \text { on surfaces } x 1 x x
\end{array}\right\}
$$

combining the results of equations (B.12) and(B.14)it is found that

$$
\kappa^{2}-\left.\gamma_{1} \gamma_{3}\right|_{\kappa=\kappa_{1}}=\left\{\begin{array}{c}
0 \text { on surfaces } x 0 x 0 \text { and } \mathrm{XlXl}  \tag{B.15}\\
2 \kappa_{1}^{2} \text { on surfaces } \mathrm{X} 0 \mathrm{Xi} \text { and }
\end{array}\right\}
$$

It is easily seen from equation (B.9) that the root, ${ }^{\prime}{ }_{1}$, in the first quadrant lies above and right of $k_{1}$. If the branch cut associated with $k_{1}$ is allowed to sweep smoothly from the Sommerfeld to the Baños branch cut, it will not cut across the pole as long as $\boldsymbol{\theta}_{1}$ and $\boldsymbol{\theta}_{3}$ are small.

If, however, this medium is a viscous fluid so that $\boldsymbol{\theta}_{3}$ $=\frac{\pi}{4}$, then the pole position is shifted $\frac{\pi}{2}$ radians with respect to $k_{1}$, and will lie above and to the left of this branch point. Under these conditions, if the Baños branch cuts are
used, we will have

$$
\kappa^{2}-\left.\gamma_{1} \gamma_{3}\right|_{\kappa=\kappa_{1}}=\left\{\left.\begin{array}{ccc}
0 & \text { on surfaces X0X1 and XIX0 }  \tag{B.16}\\
2 \kappa \kappa_{1}^{2} \text { on surfaces X0x0 and }
\end{array} \right\rvert\,\right.
$$

B.2.2 Part containing $\boldsymbol{\gamma}_{2}$ and $\boldsymbol{\gamma}_{4}$

Closed form expressions for the three roots of the cubic equation, (B.3), are given by

$$
\begin{equation*}
\nu_{2}=\left(\frac{\kappa_{2}}{k_{4}}\right)^{2}=c_{0}+c_{+}+c_{-} \tag{B.17}
\end{equation*}
$$

$v_{3}=\left(\frac{\kappa_{3}}{k_{4}}\right)^{2}=c_{0}-\frac{1}{2}\left(C_{+}+c_{-}\right)+i \frac{\sqrt{3}}{2}\left(c_{+}-c_{-}\right)$
$\nu_{4}=\left(\frac{\kappa_{4}}{k_{4}}\right)^{2}=c_{0}-\frac{1}{2}\left(c_{+}+c_{-}\right)-i \frac{\sqrt{3}}{2}\left(c_{+}-c_{-}\right)$
where

$$
\begin{align*}
& \text { e } c_{0}=\frac{1}{2} \frac{1-\frac{2}{3} d}{2-d}  \tag{B.18}\\
& C_{ \pm}=\frac{1}{4(1-d)}\left\{2 T(d) \pm \frac{2 \sqrt{33}}{9}(1-d)[S(d)]^{\frac{1}{2}}\right\}^{\frac{1}{3}} \\
& S(d)=1-\frac{10}{3} d+\frac{11}{3} d^{2}-\frac{32}{11} d^{3}  \tag{B.19}\\
& T(d)=1-\frac{62}{11} d+\frac{107}{11} d^{2}-\frac{64}{11} d^{3}
\end{align*}
$$

After performing a Taylor Series expansion around $\mathrm{d}=0$, we have

$$
\begin{align*}
C_{0} & \left.=\frac{1}{2}+\frac{1}{6} d+\frac{1}{6} d^{2}+\frac{1}{6} d^{3}+\ldots-1 \right\rvert\,<1  \tag{B.20}\\
C_{+} & =.37131840-.06463824 d \\
& -.12052608 d^{2}-.20301071 d^{3}-\ldots-| |<.3215 \\
C_{-} & =.22442554+.03906747 d  \tag{B.20}\\
& +.15445547 d^{2}+.3188522 d^{3}+\ldots-1|d|<.3215
\end{align*}
$$

Finally, combining these gives
$u_{2}=1.09574394+.14109590 d$
$+.20059606 d^{2}+.27554118 d^{3}+----$

$$
\begin{align*}
v_{a} & =.20212803+.17945205 d  \tag{B.21}\\
& +.14970197 d^{2}+.11222941 d^{3}+----
\end{align*}
$$

$$
\begin{equation*}
v_{\mathrm{b}}=.12721294-.08901178 \mathrm{~d} \tag{B.21}
\end{equation*}
$$

$$
-.23814101 d^{2}-.44591296 d^{3}-
$$

with $\mid$ 지 $<.3215$ in all cases, and

$$
\begin{align*}
& v_{3}=v_{a}+i v_{b} \\
& v_{4}=v_{a}-i v_{b} \tag{B.22}
\end{align*}
$$

Of considerable importance in this analysis is an ex-
pansion of the roots in powers of

$$
\begin{equation*}
|d| \quad \exp \quad[i \operatorname{Arg}(d)] \tag{B.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Arg}(d)=2\left(\theta_{2}-\theta_{4}\right) \tag{B.24}
\end{equation*}
$$

with

$$
\begin{equation*}
0<\theta_{2} \leq \theta_{4} \ll \frac{\pi}{4} \tag{B.25}
\end{equation*}
$$

i.e., shear waves are assumed to be more lossy than dilational waves. Hence

$$
\begin{equation*}
-\frac{\pi}{2} \ll \operatorname{Arg}\{d\}<0 \tag{B.26}
\end{equation*}
$$

and

$$
\begin{align*}
& u_{2}= v_{0}+v_{1}|d| e^{i A r g(d)}+v_{2}|d|^{2} e^{i 2 A r g(d)} \\
&+v_{3}|d|^{3} e^{i 3 \operatorname{Arg}(d)}+\ldots \\
&\left\{\begin{array}{l}
u_{3} \mid= \\
u_{4}
\end{array} u_{0} e^{\left. \pm i \psi_{0}+u_{1}|d| \quad e^{i[\operatorname{Arg}(d)} \pm \psi_{1}\right]}\right.  \tag{B.27}\\
&\left.+u_{2}|d|^{2} e^{i[2 \operatorname{Arg}(d)} \pm \psi_{2}\right] \\
&\left.+u_{3}|d|^{3} e^{i[3 \operatorname{Arg}(d)} \pm \psi_{3}\right]+\ldots
\end{align*}
$$

where the $\left\{\begin{array}{l}\text { upper } \\ \text { lower }\end{array}\right\}$ sign is associated with $\left\{\begin{array}{l}v_{3} \\ v_{4}\end{array}\right\}$ and
a) $v_{0}, v_{1}, v_{2}$, and $v_{3}$ are the numerical values transposed from the first of equation (B.2l),
b) $u_{C}: u_{1}, u_{2}$, and $u_{3}$ are magnitudes of the corresponding coefficient combinations of the last two of equation (B.21), ice.,

$$
\begin{aligned}
& u_{0}=.23882812 \\
& u_{1}=.20067185 \\
& u_{2}=.28128601 \\
& u_{3}=.45981932
\end{aligned}
$$

c) and $\psi_{0}, \psi_{1}, \psi_{2}$ and $\psi_{3}$ are corresponding angular arguments, i.e.,

$$
\psi_{0}=32^{\circ} 11^{\prime}
$$

$$
\begin{aligned}
& \psi_{1}=-26^{\circ} 35^{\prime} \\
& \psi_{3}=-57^{\circ} 50^{\prime} \\
& \psi_{4}=-79^{\circ} 52^{\circ}
\end{aligned}
$$

By using heuristic reasoning and the vector diagrams in Figures B. 2 and B. 3, it can be shown that,
if $|\mathrm{d}| \leq .2$ and $-\frac{\pi}{2} \leq \operatorname{Arg}\{d\} \leq 0$, then

$$
\mathrm{v}_{0}-\mathrm{v}_{2}|\mathrm{~d}|<\left|v_{2}\right|<\mathrm{v}_{0}+\mathrm{v}_{1}+\ldots--
$$

$$
d_{\min } \equiv .2<\left|\nu_{3}\right|<.3215 \equiv d_{\max }
$$

$$
u_{0}<\left|\nu_{4}\right|<.3215 \equiv d_{\max }
$$

$$
\begin{equation*}
v<2\left(\theta_{4}-\phi_{2}\right)<0 \tag{B.28}
\end{equation*}
$$

$$
\psi_{0}-\frac{u}{d_{\min }}<2\left(\theta_{4}-\phi_{3}\right)<\psi_{0}
$$

$$
-\psi_{0}-\frac{u}{d_{\min }}<2\left(\theta_{4}-\phi_{4}\right)<\psi_{0}+\frac{u}{d_{\min }}
$$



FIGURE B. 2 DIRECTIONAL RELATIONSHIPS BETWEEN PHASES, $\psi_{i}$ •


FIGURE B. 3 LOCATION OF $v_{3}$ AND $v v_{4}$ IN THE COMPLEX $v$ - PLANE SHOWING RELATIONSHIP T8 OTHER IMPORTANT FEATURES.

Translating these results to the complex $\left(\frac{\kappa}{k_{4}}\right)$ plane gives the propagation constant and root loci shown in Figure B. 4.

Next, it is of interest to evaluate $\boldsymbol{\gamma}_{2}$ and $\boldsymbol{\gamma}_{4}$ in terms of the roots $\kappa_{2}, \kappa_{3}$ and $\kappa_{4}$. To do this, it is helpful to redefine $\boldsymbol{\gamma}_{2}$ and $\boldsymbol{\gamma}_{4}$ so that

$$
\begin{align*}
& \gamma_{2}=k_{4}[v-a]^{\frac{1}{2}} \\
& \gamma_{4}=k_{4}[v-1]^{\frac{1}{2}} \tag{B.29}
\end{align*}
$$

This gives the limits on the phases of $\boldsymbol{\gamma}_{2}$ and $\boldsymbol{\gamma}_{4}$
in the $\kappa$-plane corresponding to the previously specified

$<$
Locus or
$K_{3} / K_{4}$

- RANGE OF

RANGE OF
BANDS BRANCH CUTS cuts
limits on $|d|, \operatorname{Arg}\{d\}$ and $b_{4}$. The following ranges apply to the first and other appropriate Riemann surfaces:

$$
\begin{aligned}
& \theta_{4}-\theta_{2} \leq \operatorname{Arg}\left[\gamma_{2}\left(v_{2}\right)\right] \leq p-\theta_{2}+\frac{1}{2}|d| \\
& \theta_{4}-\frac{1}{2}|d| \frac{v_{1}}{v_{0}-v_{2}|d|^{2}-1} \leq \operatorname{Arg} \gamma_{4}\left(v_{2}\right) \leq \theta_{4} \\
& \frac{1}{2} \psi_{0}+\theta_{4} \leq \operatorname{Arg}\left[\gamma_{2}\left(v_{3}\right)\right] \leq \frac{\pi}{4}+\theta_{4} \leq \frac{\pi}{2}+\theta_{4} \\
& -\frac{u_{0} \psi_{0}}{2\left(1-u_{C}\right)}-\frac{\pi}{2}+\theta_{4} \leq \operatorname{Arg}\left[\gamma_{4}\left(v_{3}\right)\right] \leq \frac{\pi}{v_{0}} \\
& -\frac{\pi}{4}+\theta_{4} \leq \operatorname{Arg}\left[\gamma_{2}\left(v_{4}\right)\right] \leq \theta_{4}-\psi_{0}+\frac{|a|}{2} \leq \frac{\pi}{2}+\theta_{4}+\frac{\frac{1}{2} u_{0}}{}
\end{aligned}
$$

In addition to these ranges of arguments there is an identical set removed by $\pi$ corresponding to the alternate choice of sign of $\quad \boldsymbol{\gamma}_{2}$ and $\boldsymbol{\gamma}_{4}$.

Further, in this analysis, it is necessary to consider

$$
\begin{equation*}
2 \operatorname{Arg}\left(\kappa_{i}{ }^{2}-\frac{1}{2} k_{4}{ }^{2}\right)=4 \theta_{4}+2 \operatorname{Arg}\left(u_{i}-1\right) \tag{B.31}
\end{equation*}
$$

which is to be compared with

$$
\begin{align*}
\operatorname{Arg}\left[\alpha_{i} \gamma_{1}\left(\alpha_{i}\right) \gamma_{2}\left(\alpha_{i}\right)\right]= & 2 \theta_{4}+2 \operatorname{Arg}\left(v_{i}\right)  \tag{B.32}\\
& +2 \operatorname{Arg}\left[\gamma_{2}\left(v_{i}\right)\right]+2 \operatorname{Arg}\left[\gamma_{4}\left(v_{i}\right)\right]
\end{align*}
$$

*The fourth limit gives uncertain results when the Somerfeld branch cuts are used. The condition stated applies to 0XXX surfaces when the Baños branch cuts are used.

Hence, the condition to be satisfied in order to obtain an actual pole on a particular surface requires that

$$
\begin{align*}
& 2\left[\operatorname{Arg}\left(v_{i}-\frac{1}{2}\right)-\operatorname{Arg}\left(v_{i}\right)\right] \\
& =\left\{\operatorname{Arg}\left[\gamma_{2}\left(v_{i}\right)\right]-\theta_{4}+\operatorname{Arg}\left[\gamma_{4}\left(v_{i}\right)\right]-\theta_{4}\right\} \tag{B.33}
\end{align*}
$$

By reasoning similar to that used to obtain equations (B.30), it is found that

$$
\begin{aligned}
& -|a| \frac{v_{1}}{v_{0}-v_{2}|a|^{2}-\frac{1}{2}} \leq 2 \operatorname{Arg}\left(v_{2}-\frac{1}{2}\right) \leq 0 \\
& 0 \leq 2 \operatorname{Arg}\left(v_{3}-\frac{1}{2}\right) \leq \psi_{0} \\
& -\psi_{0} \leq 2 \operatorname{Arg}\left(v_{4}-\frac{1}{2}\right) \leq 0
\end{aligned}
$$

Combining equations (B.28), (B.30), (B.33), and (B.34),
it is possible to show that

$$
\alpha^{\prime}+\left.\kappa^{2} \gamma_{2} \gamma_{4}\right|_{\kappa=\kappa_{2}}=\left\{\begin{array}{l}
0 \text { on surfaces } 0 X 0 X \text { and } 1 X 1 X \quad \text { (B. 35) } \\
2 \alpha^{\prime}\left(\kappa_{3}\right) \text { on surfaces 0X1X and } 1 \text { XOX }
\end{array}\right.
$$

for Baños branch cuts only. For Sommerfeld branch cuts and $I_{m}\left\{k_{4}\right\} \ll R\left\{k_{4}\right\}$, the $k_{4}$ - branch cut passes to the other side of the pole giving

$$
\alpha^{\prime}+\left.\epsilon \gamma_{2} \gamma_{4}\right|_{k=K_{3}}=\left\{\begin{array}{l}
0 \text { on surfaces } 0 \times 1 X \text { and } 1 X 0 X \text { (B. 36) } \\
2 \alpha^{\prime}\left(\kappa_{3}\right) \text { on surfaces 0X0X and 1X1X }
\end{array}\right.
$$

Finally,

$$
\alpha^{\prime}+\left.c \gamma_{2} \gamma_{4}\right|_{\kappa=\kappa_{4}}=\left\{\begin{array}{l}
0 \text { on surfaces 0X1X and } 1 \times 0 x \text { (B.37) } \\
2 \alpha\left(\kappa_{4}\right) \text { on surfaces 0X0X and } 1 \times 1 X
\end{array}\right.
$$

for either Sommerfeld or Baños branch cuts.

Thus, as the first Riemann surface, with $u \ll 0$
and for the Baños choice of branch cuts, ${ }_{1}$ and $\kappa_{4}$ represent virtual poles and $\kappa_{2}$ and $\kappa_{3}$ represent real poles. In terms of a closed contour integral, virtual poles will not contribute a residue. However, if one is concerned about the evaluation of bounded line integral, i.e., one whose path is not closed, and if such a path passes within the neighborhood of such a virtual pole, its effect must be included.

## B. 3 Summary of Roots

Based on the foregoing discussion, it has been established that the decoupled denominator, obtained by taking
$u \equiv 0$, gives rise to four root pairs in the complex
$k$ plane. Approximate location and type of root are shown in Figure B. 5.

By re-introducing a non-zero value for $u$, the
denominator is recoupled. Each of the four root pairs will readjust to new values which are dependent on the applicable Riemann surface.

For small $\nu$, this approach will provide clusters of four new roots near each decoupled root or a.ll 16 Riemann Surfaces.


FIGURE B. 5 DISPOSITION OF BRANCH POINTS, BRANCH CUTS, ACTUAL AND VIRTUAL POLES, ETC. ON THE IST RIEMANN SURFACE, $\kappa$ PLANE.

The final value of these roots is then determined by using Newton-Raphson techniques with the decoupled root-value serving as initial guesses.

In retrospect, it is of interest to note that for the Baños choice of branch cuts, for $k_{2}<k_{4}<k_{1} \ll k_{3}$. and for the case where the decoupled model holds approximately

1) The $*_{1}$ group lies near the branch point.
2) The $\kappa_{2}$ group lies near the terminus of $C_{4}$.
3) The $\kappa_{3}$ group can se expected to lie near $C_{2}$.
4) The ${ }^{K_{4}}$ group will lie nearest to $C_{2}$ and may also require inclusion in the $C_{2}$ treatment. Location and applicability of the 16 resultant roots are listed in Table B.l.

Root (First Order Estimate)


TABLE B.1. Riemann Surfaces on which the Roots, $\boldsymbol{K}_{i j}$, are Actual Roots

## APPENDIX C: THEORETICALLY DERIVEJ DATA

## C. 1 Discussion

In Section 2 of this report, two formulations were presented describing the interaction of a spherical outgoing wave with a reflecting and refracting plane boundary.

The first formulation used a ray theory approach wi.th an image located on the source axis and at a distance below the surface equal to the source height. Such a treatment gives rise to equation (2.101) and the associated relationships of equation (2.102).

A more rigorous treatment reduces the problem to the evaluation of an integral or kernel expression. Evaluation of this kernel is accomplished using Debye's method to obtain an asymptotic series expression for the integral. Results of this formulation are delineated in equations (2.109) through (2.112).

The primary difference in the wo techniques is that the latter predicts the existence of a Love wave associated with the first order pole, $\kappa_{0}$. However, when the lower medium exhibits characteristics that are drastically different than those of the upper medium, a situation that typically prevails even for porous media, the effects of the Love wave attenuate to $e^{-1}$ in approximately a wavelength from the boundary.

Both techniques account for a direct wave, a reflected wave from an equal and opposite image, and an interaction term
that accounts for Rayleigh waves where applicable. Thus, equation (2.101) can be rewritten*

$$
\begin{align*}
\Psi(r, z ; O, h) & =\frac{e^{i k_{1} R}}{R}-\frac{e^{i k_{1} R^{\prime}}}{R^{\prime}} \\
& +\frac{2 \cos \theta}{\cos \theta+\zeta^{-1}} \frac{e^{i k_{1} R^{0}}}{R^{\prime}}
\end{align*}
$$

Since we are interested in the magnitude of excess attenuation, we will want to compute*

$$
\begin{align*}
r|\psi(r, z ; 0, h)| & =\left\lvert\, \frac{r}{R}-\frac{r}{R^{\prime}} e^{i k} l^{i}\right.  \tag{c2}\\
& \left.+\frac{r}{R^{\prime}} \frac{2 \cos \theta}{\cos \theta+5^{-1}} e^{i k} 1^{i k^{\prime}} \right\rvert\,
\end{align*}
$$

where

$$
\begin{aligned}
\Delta & =R^{\prime}-R \\
r^{-1} & =\eta(\theta)=\eta(0)\left[1-\eta^{2}(0) A^{2} \sin ^{2} \theta\right]^{\frac{3}{2}} \\
\zeta^{-1} & =\text { complex specific admittance for angle, } \theta,
\end{aligned}
$$

This operation is performed by the computer program, writter in USASI Fortran, in Section C. 2 below.

[^20]```
C. }2\mathrm{ Computer Program
C
    THIS PROGRAM COMiPUTES THE COMPLEX FIELD VARIABLES REQUIRED
    FOR THE EVALUATION OF EQUATION (C.O) UF THE TEXT. THE DATA
    OUTPUT INCLUDES THESE FIELD VARIABLES AS THEY APPLY TU THE
    DIRECT, REFLECTED, AND INTERACTIUN MUDES, THE MAGNITUDE UF
    THE ALGEBRAIC CUMBINATIUN, AND THE EXCESS ATTENUATIUN IN
    DB REFERRED TU A -6DB/DUUBLE R(LUWER CASE).
    THE FIRST PART UF THIS PRUGRAM CUNTAINS FUNCTION DEF-
    INITIUNS, FORMAT SPECIFICATIUNS, AND THE ARRAY DIMEN-
    SIUN STATEMENTS.
    CCHK(M,N) = AESF(FLUATF(M)-.5*(FLUATF(N+1))-.5*FLOATF(N)
    FORMAT(2F15.7.212)
    FURMAT(5(2AG,F15.7.2(/12F6.3)))
    FURMAT('IADMITTANCE DATA FUR ',2AG,' A = ',F9.4/
        X - FREQUENCY RE ADM. IM ADM.'/12(2X,F7.1,2X,2(4X,
        X F7.3)))
    FORMATC'1FIELD DATA FOR ',2A6,' CP = ',\mp@code{F9.3/. H= ',}
        XF6.1,' Z = ',F6.1//' RAD. F(HF)',3X,' A',6X,' B',6X,
        X ' C',6X,' D',6X,' E',6X,' F',3X,' -F(DB)',72(/2(1X,
        x F5.9),6(1X,F7.5),1X,55.1))
    DIMENSIUN A(5),R(6),F(12),X(12,5),Y(12,5),Q(2,5),FA(6,4),
        X FB(6,4),RA(6,4),SA(6,4,12),SB(6,4,12),TA(6,4,12),
        X TB}(6,4,12),GA(6,4,12),GB(6,4,12
    DATA INPUT: ON EACH OF THE FIRST THREE CARDS, PLEASE SUPPLY
    me WITH THE INITIAL valuS, the inCfEmenting ratIO for the
    value, and the tutal number of values tu be tested fur:
    RADIAL SEPARATIUNS (R-ARRAY), MICRUPHUNE HEIGHTS (Z-AKKAY)
    AND FREQUENCIES (F-ARRAY) RESPECTIVELY. IF YUU INPUT A D
    OR A NEGATIVE NUMBER IN ANY DATA FIELD, I k:ILL SUPPLY AN
    APPROPRIATE VALUE. IN THE CASE UF FREQUENCY, YOU CAN GIVE ME
    A FOURTH DATUM CONSISTING OF AN INTEGER WHICH WILL. START ME
    at that number of 1/3 OCtaves Fruvi log hertz.
    READ(0,100)R(1),R(6),N6
        READ(0,100)Z(1),Z(4),N4
        READ(0,100)F(1),F(12),N12,N0
    EB = 0.4342944819
    PP = 6.2831853072
    IF{R(6))400,400,401
    R(6) = 2.
    IF(R(1))402,402,403
    R(1) = 31.25
    IF(z(4))404,404,405
    Z(4) = 2.
    IF(Z(1))406,406,407
    z(1) = 5.
    IF(F(12))408,408,409
    F(12) = 10.**.1
    IF(F(1))410,410,411
    F(1) = 100. * F(12)**N0
    IF(CCHK(N6,6))412,412,413
    N6 = 6
```

IF (CCHK (N4,4)414,414,415
$N 4=4$
IF (CCHK (N12,12)416,416,417
$\mathrm{N} 12=12$
DO $418 \mathrm{~N}=2, \mathrm{~N} 6$
$R(N)=R(6) * R(N-1)$
DO $419 \mathrm{~N}=2, \mathrm{~N} 4$
$Z(N)=Z(4) * Z(N-1)$
DO $420 \mathrm{~N}=2, \mathrm{~N} 10$
$F(N)=F(10) * F(N-1)$
ADDITIONAL DATA INPUT: NOW I NEED TU KNOW SOME ADDITIONAL information. un a single card, please tell me the source
HEIGHT, SPEED OF SOUND IN THE UPPER MEDIUM, THE NUMBER UF GROUND COVERS TO BE TESTED. AND WHETHER I SHOULD COME BACK to THIS POINT FOR FUTURE DATA INFUT. IF SO, GIVE ME A NUN-(A INTEGER, OTHERWISE GIVE ME A O. BE SURE TO GIVE ME A CARD SUITABLY MADE OUT, FOR EVERY TIME I RETURN TO THIS SPUT. THIS WILL BE THE TRICKY PART!
$\operatorname{READ}(0,100) \mathrm{H}, \mathrm{CP}, \mathrm{N} 5, \mathrm{~N} g$
DO $440 \mathrm{~L}=1, \mathrm{~N} 6$
DO $440 \mathrm{M}=1, \mathrm{~N} 4$
$U P=Z(M)-H$
CALL GENE (3,R(L),UP,U,V,TA(L,M,1))
$U P=Z(M)+H$
CALL GENE (3,R(L).UP, U, V,TB(L,M,1))
$F A(L, M)=U P / T B(L, M, 1)$
$R A(L, M)=R(L) / T A(L, M, 1)$
$F B(L, M)=R(L) / T B(L, M, 1)$
$T A(L, M, 2)=4 \cdot * Z(M) * H /((T A(L, M, 1)+T B(L, M, 1)) * C P)$
DO $440 \mathrm{~N}=1, \mathrm{Ni} \mathrm{\theta}$
$\mathrm{UP}=\mathrm{PP} * \mathrm{AMODF}(\mathrm{TA}(L, \mathrm{M}, 2) * \mathrm{~F}(\mathrm{~N}), 1 \cdot \mathrm{~s})$
$S A(L, M, N)=F B(L, M) * C O S F(U P)$
$. S B(L, M, N)=F B(L, M) * S I N F(U P)$
IF (CCHK) (NN,5)432,432,433
$\mathrm{NN}=\mathrm{NN}-5$
$N 5=5$
GO TO 435
N5 $=$ NN
$\mathrm{NN}=\varnothing$
FINALLY I NEED :O KNOW THE SPECIFIC ADMITTANCE DATA. FOR EACH OF THE GROUND COVERS, PLEASE GIVE ME FIVE CARDS. THE FIRST SHUULD CONTAIN THE GRUUND CUVER NAME AND THE CONSTANT, A. THE SECOND AND THIRD SHOULD LIST THE REAL AND IMAGINARY PARTS OF THE ADMITTANCE, RESPECTIVELY. SINCE THIS PART IS ALSO DIFFICULT, I WILL RETURN THE ADMITTANCE DATA AHEAD of the field data so that you can check un me.
$\operatorname{READ}(\theta, 11 \theta)(\theta(1, J), \theta(2, J), A(J),(X(N, J), N=1, N 12),(Y(N, J)$, $x \mathrm{~N}=1, \mathrm{~N}(2), \mathrm{J}=1, \mathrm{~N} 5)$

```
DO 460 J = 1.N5
```

$\operatorname{WRITE}(1,200) \theta(1, J), Q(2, J), A(J),(F(N), X(N, J), Y(N, J), N=1, N 12)$
DO $450 \mathrm{~N}=1, \mathrm{~N} 10$
$U P=X(N, J)$
$V P=Y(N, J)$
CALL GENE (1,X(N,J),Y(N,J),UP,UP,RR)

```
    DO 450 M = 1,N4
    DO 450 L = 1,N6
    RR = (A(J) * FB(L,M))**2
    UP = 1. - UP*RR
    VP = -VP*RR
    CALL GENE (4,UP,VP,U,V,RR)
    CALL GENE(1,X(N,J),Y(N,J),U,V,RR)
    U = FA(L,M) + U
    RR = 2.*FA(L,M)
    TA(L,M,N)=SA(L,M,N)*RR
    TB(L,M,N)=SB(L,M,N)*RR
    CALL GENE(2,U,V,TA(L,M,N),TB(L,M,N),RR)
    U = R A ( L , M ) ~ - ~ S A ( L , M , N ) ~ + ~ T A ( L , M , N )
    V = -SA(L,M,N) + TA(L,M,N)
    CALL GENE (3,U,V,UP,VP,GA(L,M,N))
    GB(L,M,N) = -20.*EB*ALUGF(CA(L,M,N))
    DO 460 M = 1,N4
NUG: I RETURN THE LUNG AWAITED DATA CUMPLETE WITH PAGE
    HEADINGS, PAGE DATA, AND COLUMN HEADINGS. THE LATTER AKE.
C
    MORE FULLY EXPLAINED IN PARAGRAPH (C.3) OF THIS REPURT.
STUP
END
THE FOLLOVING SUBRJUTINE, WHICH IS CALLED MANY TIMES DURINE THE CUURSE OF A TYPICAL EXECUTIUN OF THE ABOVE PRUGRAM, CONSISTS OF A COMPLEX ARITHMETIC PACKAGE UPERATIUNAL CONTROL IS EXERCISED BY THF. INTEGER ARGUMENT WHERE 1,2,3, AND 4 CALLS FOR MULTIPLICATIUN, DIVISION, MAGNITUDE, AND SQUARE RUUT RESPECTIVELY. REAL AND IMAGINARY PARTS JF COMPLEX NUMBERS AND MAGNITUDES AFE INPUT/UUTPUT UN THE FIVI FLOATING POINT ARGUMENTS.
SUBROUTINE GENE ( \(N, X, Y: U, V, R)\)
IF ( \(N-1\) ) 810, 820,830
\(R=S Q R T F(X * * 2+Y * * 2)\)
\(A=-1\).
IF ( \(N-3\) ) 849.810 .850
\(A=1\).
\(T=U * X-A * V * Y\)
\(V=V * X+A * U * Y\)
\(U=T\)
IF (N-1)810,810,860
\(V=V / R\)
\(U=U / R\)
GO TO 810
\(U=\operatorname{SQRTF}(.5 * \operatorname{ABSF}(R+X))\)
\(V=\operatorname{SQRTF}(.5 * \operatorname{ABSF}(R-X))\)
810 RETURN
END

\section*{C. 3 Program Output Data}

The program output consists of 12 pages of data, each page containing the results for a given ground cover and microphone/receiver height. The data on each page is delineated in nine columns, the first two of which list the frequency and frequency and radial separation \(r\).
\[
\begin{aligned}
A & \rightarrow \frac{r}{R} \\
\left\{\begin{array}{l}
B \\
C
\end{array}\right\} & \rightarrow\left\{\begin{array}{l}
\operatorname{Re} \\
I m
\end{array}\right\}\left[\frac{r}{R}, e^{i k \Delta}\right] \\
\left\{\begin{array}{l}
D \\
E
\end{array}\right\} & \rightarrow\left\{\begin{array}{l}
\operatorname{Re} \\
I m
\end{array}\right\}\left[\frac{r}{R}, \frac{2 \cos \theta}{\cos \theta-\eta(\theta)} e^{i k C}\right] \\
F & \rightarrow r|\psi(r, z ; 0, h)| \\
-F(d B) & \rightarrow-20 \log \{r|\psi(r, z ; 0, h)|
\end{aligned}
\]
table C． 1

\section*{ATTENUATION DATA FOR \(2=5\) FEET FOR CONCRETE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & A & B & & & & & \\
\hline 158. & 31. & 1.00000 & ． 13474 & ． 94285 & ．21496 & ． 53929 & 1.15314 & －1．2 \\
\hline 200 & 31 & 1.00000 & －．21529 & ． 92777 & －．00237 & ． 58055 & 1.26165 & 0 \\
\hline 251 & 31. & 1.00000 & －． 60902 & ． 73226 & －． 28736 & ． 50444 & 1.34115 & －2．5 \\
\hline 316 & 31. & 1.00000 & －． 91247 & ． 27295 & －． 53676 & ． 22120 & 1.37669 & －2．8 \\
\hline 398 & 31 & 1.00000 & ． 85863 & ． 41214 & ． 55749 & ． 16199 & 1.32497 & －2．4 \\
\hline 501 & 31 & 1.00000080 & －．18359 & ． 93456 & －．19180 & ． 54795 & 1.96448 & \\
\hline 631 & 31 & 1．0ロロロロ & ． 78884 & 53371 & ． 45304 & ． 36303 & ． 68578 & \\
\hline 794 & 31 & 1.0900 － & ． 60829 & ． 73287 & ． 38583 & 3379 & －83398 & \\
\hline 1000. & 31. & 1.00000 & －． 87374 & .37908 & －． 50614 & ． 28436 & ． 37087 & － \\
\hline 158. & 62. & 1.00000 & ． 73737 & ． 65676 & ． 24152 & ． 19753 & ． 68195 & 3 \\
\hline 200 & 62 & 1.00000 & －60131 & － 78324 & ．20091 & ． 23872 & ． 80995 & － 8 \\
\hline 25 & 62 & 1.00000 & －40044 & －90260 & ． 13991 & －27888 & ． 96739 & ． 3 \\
\hline 3 & 62 & ロのロの日 & ． 11719 & ． 98046 & －052．22 & ． 30761 & 1.15196 & －？ \\
\hline 3 & 6 & 00000 & 5094 & .95502 & ．06884 & －30432 & 1.34936 & －2．6 \\
\hline 50 & 6 & 1.00030 & ． 65865 & ． 73568 & 00991 & ．23872 & 1.54911 & －3．8 \\
\hline 63 & 62. & 1.0 － 1 － & ． 95800 & ． 23932 & 00991 & ．08251 & 1.66450 & ． 4 \\
\hline 794. & 6 & 1.00000 & ． 86496 & －． 47795 & 7643 & －． 14470 & 1.62223 & \\
\hline 1700. & 62. & 1.00000 & ． 11947 & －．98019 & － 0142.26 & －． 30914 & 1．26913 & －2．1 \\
\hline 158. & 125. & 1.00000 & ． 93095 & ． 35632 & ． 13543 & －． 98326 & ． 48482 & 6.3 \\
\hline 290 & 125. & 1．00000 & ． 89311 & ． 44271 & ． 14842 & －． 05698 & 56114 & 5.9 \\
\hline 25 & 125. & 1.00000 & ． 83415 & － 54574 & ． 15896 & －00268 & ． 63279 & 4.0 \\
\hline 31 & 125 & 1.00000 & －74322 & ． 66428 & ． 14449 & ． 06632 & ． 72011 & 2．9 \\
\hline 39 & 125. & 1.00000 & －60530 & ． 79199 & ． 13822 & －97855 & ． 89050 & 1．9 \\
\hline 50 & 125. & 1.00000 & －49175 & －91227 & －10637 & ． 11815 & 1.06166 & \\
\hline 63 & 125. & 1.00000 & ． 11489 & －99017 & ．04195 & ． 15335 & 1.24889 & 9 \\
\hline 794. & 125. & 1.00000 & －． 25751 & －96298 & －．03115 & ． 15590 & 1.46811 & －3．3 \\
\hline 1000． & 125. & 1．000日0 & －． 66895 & ． 73902 & －．08657 & ． 13335 & 1.69433 & －4．6 \\
\hline 158． & 250. & 1.00000 & －98252 & －18183 & －07909 & ．01114 & ． 19611 & 14.1 \\
\hline 200. & 250 & 1.00900 & ． 97280 & ． 22816 & ．07852 & －91466 & －23824 & 12．5 \\
\hline 251. & 250. & 1.00000 & ． 95747 & ． 28575 & －07755 & － 01912 & － 29242 & 10.7 \\
\hline 316 & 250. & 1．0000日 & ． 93333 & ． 35678 & －07594 & － 02476 & ． 36135 & 8.8 \\
\hline 39 & 250. & 1．00090 & ． 89549 & －44329 & －07277 & ．03292 & －44703 & 7.7 \\
\hline 59 & 250. & 1－ロの日のロ & ． 83652 & ． 54648 & －や6818 & －04160 & ． 55550 & 5.1 \\
\hline 631. & 25月． & 1．900の0 & ． 74557 & ． 66523 & －06080 & －05179 & －68969 & 3．？ \\
\hline 794. & 250. & 1．00の日0 & ． 60761 & ． 79323 & ． 05092 & ． 96227 & ． 85443 & 1.4 \\
\hline 1900． & 250. & 1．00000 & ． 40395 & ． 91391 & ． 03336 & ． 07257 & 1．05071 & －． 4 \\
\hline 158． & 500. & 1．00000 & ． 99562 & ． 09138 & －02712 & －．02938 & ． 12480 & ． 1 \\
\hline 200. & 590. & 1．0ワ000 & ． 99317 & －11494 & －03028 & －．02611 & ． 14586 & 16.7 \\
\hline 251. & 590. & 1.00000 & ． 98930 & －14452 & ． 03655 & －．01621 & ． 16753 & 15.5 \\
\hline 316. & 506. & 1.00000 & ． 98318 & ． 18157 & －03971 & －． 00465 & ． 19461 & 14.2 \\
\hline 398. & 500. & 1．00000 & ． 97349 & ． 22783 & ． 03940 & －．00683 & ． 24374 & 12.3 \\
\hline 501. & 500. & 1.00000 & ． 95822 & ． 28534 & ．03997 & －．00115 & －29793 & 19.5 \\
\hline 631. & 500 & 1.00000 & ． 93416 & －35628 & －03908 & ．00845 & ． 36332 & 8．8 \\
\hline 794. & 500. & 1．00000 & ． 89645 & － 44270 & ．03691 & －Di 537 & ． 44982 & 6.9 \\
\hline 1000. & 500. & 1.00000 & .83767 & ． 54581 & ．03655 & ． 01622 & ． 56570 & 4.9 \\
\hline 158. & 1000. & 1.00000 & ． 99890 & －04575 & － 020000 & －00005 & －05033 & 26.6 \\
\hline 200. & 1000 & 1.00000 & ． 99829 & －05758 & －02000 & － 00024 & ．06131 & 24.2 \\
\hline 251. & 1000 & 1.00000 & ． 99732 & ．07247 & ．01999 & －00049 & ．07547 & 22.4 \\
\hline 316. & 1000 & 1．00000 & ． 99578 & .09118 & ．01998 & － 00083 & －89354 & 20.6 \\
\hline 398. & 10 AO & 1.00000 & ． 99335 & ． 11470 & ． 01993 & － 00160 & －11618 & 18.7 \\
\hline 501. & 1000. & 1.00000 & ． 98950 & －14421 & －01987 & ．00227 & －14515 & 16.8 \\
\hline 631. & 1000. & 1－00000 & ． 98340 & －18118 & －01975 & －00317 & －18168 & 14.8 \\
\hline 794. & 1900． & 1.00000 & ． 97376 & ． 22735 & ．01957 & －00409 & －22791 & 12.8 \\
\hline 1000． & 1010. & 1.80000 & ． 95855 & ． 28475 & .01925 & ．00541 & －28586 & 10．9 \\
\hline
\end{tabular}

TABLR C． 2
ATTENUATION DATA FOR \(2=10\) EBET FOR CONCRETE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\mathrm{f}(\mathrm{Hz})\) & \(\boldsymbol{r}\)（ft） & A & B & C & D & E & P & F（dB） \\
\hline 158. & 31. & ． 98744 & －． 83692 & ． 33511 & －． 21039 & ． 75133 & 1.66678 & 4.4 \\
\hline 209 & 31 & ． 98744 & －．85171 & －． 29551 & －． 68735 & ． 36921 & 1．32986 & －2． 5 \\
\hline 25 & 31 & ． 98744 & －． 29803 & \(\cdots \cdot 85084\) & －． 61095 & －． 48529 & ． 76720 & \(2 \cdot 3\) \\
\hline 316 & 31 & ． 98744 & ． 64419 & －． 63068 & ． 37195 & －．68587 & ． 71732 & ． 9 \\
\hline 398 & 31 & ． 98744 & ． 71689 & ． 54664 & ． 75598 & ． 19304 & 1.08572 & \\
\hline 501 & 31 & －98744 & －． 69266 & －57763 & －． 41315 & ． 66187 & \(1.2697{ }^{\circ}\) & 2. \\
\hline 631 & 31 & ． 98744 & －．00442 & －．90151 & －．12156 & －． 77071 & ． 88907 & ． 1 \\
\hline 794 & 31 & ． 98744 & ． 26704 & .86106 & ． 27838 & ． 72888 & 1.00749 & \\
\hline 1990. & 31. & .98744 & .12606 & －． 898267 & －．01529 & －． 78008 & .85355 & ． 4 \\
\hline 158． & 62. & ． 99682 & －12512 & ． 96430 & ．07770 & ． 44716 & 1.08111 & \\
\hline 2006． & 62. & ． 99682 & －． 23518 & ． 94352 & －．08950 & ． 44495 & 1.24654 & 1.9 \\
\hline 251． & 62. & ． 99682 & －． 63696 & ． 73473 & －．28041 & ． 35687 & 1.40512 & －3．0 \\
\hline 316. & 62. & ． 99682 & －． 93847 & ． 25458 & －． 43154 & ． 14056 & 1．50806 & －3．6 \\
\hline 398． & 62. & ． 99682 & －． 86252 & －． 44899 & －． 40964 & －． 19540 & 1.47171 & －3．4 \\
\hline 591 & 62. & ． 99682 & －． 14833 & ．．96101 & －． 08305 & －．4462ด & 1．18029 & －1．4 \\
\hline 631. & 62 & ． 99682 & ． 83231 & －． 50279 & － 38298 & －． 24354 & ． 60577 & 4.4 \\
\hline 794 & 62 & ． 99582 & ． 57134 & ． 78683 & －27511 & ． 36098 & ． 81985 & 1.7 \\
\hline 1000. & 62. & ． 99682 & －．92059 & ． 31314 & －． 42749 & ． 15243 & 1.49855 & －3．5 \\
\hline 158. & 125. & ． 99920 & ． 74029 & ． 66165 & ． 23244 & －．04411 & ． 85996 & \(1 \cdot 3\) \\
\hline 200. & 125. & ． 99920 & ． 60292 & ． 78886 & ． 23561 & ．02157 & ． 99399 & 1 \\
\hline 25 & 125. & ． 99920 & ． 49017 & ． \(99860^{\circ}\) & ． 19615 & ． 13229 & 1.11134 & － \\
\hline 316. & 125. & ． 99920 & ． 11445 & ． 98626 & ． 09531 & ． 21655 & 1.24618 & －1．9 \\
\hline 398． & 125. & ． 99920 & －． 25647 & ． 95918 & －03306 & ．23427 & 1.47862 & －3．4 \\
\hline 501 & 125. & ．99980 & －． 66628 & ． 73612 & －．09592 & ．21627 & 1.65341 & －4．4 \\
\hline 631 & 125. & ． 99920 & －． 96493 & ．23404 & －． 21887 & ．08984 & 1．75118 & －4．9 \\
\hline 794. & 125. & ． 99920 & －． 86465 & ． 48895 & －． 21306 & －． 10286 & 1.69513 & －4．6 \\
\hline 1000. & 125. & .99920 & －． 10943 & －． 98683 & －．06318 & －． 22800 & 1.29181 & －2．2 \\
\hline 158． & 25月． & ． 99980 & ． 93217 & ． 35783 & ．11349 & ．03792 & ． 36687 & 8.7 \\
\hline 290． & 250． & ． 99980 & ． 89423 & ． 44358 & －10943 & ． 14818 & －45007 & 6.9 \\
\hline 251. & 250. & ． 99980 & ． 83512 & ． 54679 & －10308 & ． 96059 & －555a5 & 5．1 \\
\hline 316. & 259. & ． 99980 & ． 74397 & ． 66553 & ．09299 & －07517 & ． 68571 & 3.3 \\
\hline 398 & 259. & ．99980 & ． 69571 & ． 79343 & －97582 & －09245 & ． 84391 & 1.5 \\
\hline 501 & 250 & ． 99980 & ． 40168 & ． 91382 & － 05147 & ． 10792 & 1.03511 & 3 \\
\hline 631 & \(25 \%\)－ & ． 99980 & ．11419 & ． 99165 & ． 01640 & .11844 & 1.25544 & \(2 \cdot 9\) \\
\hline 794. & 250. & ． 99980 & －． 25892 & ． 96404 & －．92833 & ． 11616 & 1．49424 & －3．5 \\
\hline 1090. & 250. & ． 99980 & －． 67990 & .73913 & －．07906 & ．08970 & 1.71903 & －4．7 \\
\hline 158. & 50 － & ． 99995 & ． 98286 & ． 18192 & －04451 & －．04015 & .23046 & 12.7 \\
\hline 200. & 5の日． & ． 99995 & .97313 & ． 22827 & ． 04959 & －．03367 & ． 27286 & 11.3 \\
\hline 251. & 50 m & ． 99995 & ． 95779 & ． 28589 & ．05773 & －． 01614 & ． 31812 & 9．9 \\
\hline 316. & 590 & ． 99995 & ． 93364 & ． 35695 & ．05982 & ．00396 & ． 37485 & \(8 \cdot 5\) \\
\hline 398. & 500. & ． 99995 & ． 89577 & ． 44351 & ．005984 & － 00349 & ． 46959 & \(6 \cdot 6\) \\
\hline 501. & 50日． & ． 99995 & ． 83676 & ． 54674 & －05792 & ． 01544 & ． 57547 & 4.8 \\
\hline 631. & 5月の． & ． 99995 & ． 74576 & ． 66554 & －05024 & ．03271 & － 70225 & \(3 \cdot 1\) \\
\hline 794. & 500． & ． 99995 & ． 60771 & ． 79359 & ． 03942 & ．04516 & ． 86399 & 1.3 \\
\hline 1900. & 590. & ． 99995 & ． 40393 & ． 91430 & ．03265 & ． 05028 & 1.06853 & ． 6 \\
\hline 158. & 1000． & ． 99999 & ． 99570 & －09139 & －02781 & －．01124 & －10753 & 19.4 \\
\hline 290. & 1700 & ． 99999 & ． 99326 & .11496 & ．02850 & －．00934 & ． 12920 & 17.8 \\
\hline 251. & 1000 & ． 99999 & ． 98939 & ． 14454 & ．02963 & －．00464 & －15450 & 16.2 \\
\hline 316. & 10の日． & ． 99999 & ． 98326 & －18159 & －02999 & －ロ0日52 & －1870の & 14.6 \\
\hline 398. & 1009 ． & .99999 & ． 97358 & ． 22786 & ．02999 & ．00049 & ． 23426 & 12.6 \\
\hline 501. & 1000. & ． 99999 & ． 95830 & ． 28538 & －02978 & －00359 & ． 29071 & 10.7 \\
\hline 631. & 1000. & ． 99999 & ． 93424 & ． 35633 & －02878 & ．00843 & .36051 & \(8 \cdot 9\) \\
\hline 794. & 1000. & ． 99999 & ． 89652 & ． 44276 & ． 02714 & ． 01276 & ． 44939 & 6.9 \\
\hline 1000. & 1900. & .99999 & ． 83774 & ． 54587 & ． 02640 & .01424 & ． 56411 & 5．0） \\
\hline
\end{tabular}

TARES C． 3
ATTENUATION DATA FOR 2 － 20 FRET POR CONGRETE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline （ Hz ） & r（ft） & A & \({ }^{\text {B }}\) & C & D & E & & \\
\hline 158. & 31. & ． 90152 & ． 14756 & －． 76680 & －． 27894 & 491 & 50399 & 硡 \\
\hline 200． & 31. & ． 90152 & ． 77604 & －．08673 & ． 83294 & －． 50797 & 1.64691 & \\
\hline 251 & 31. & ． 90152 & ．06554 & ． 7781 & ． 37944 & ． 96255 & 1.21282 & \\
\hline ． & 31. & 90152 & ． 73163 & －． 27289 & ． .95941 & .17703 & ． 68053 & \\
\hline 8. & 31 & 91152 & ． 75024 & －． 19458 & ． 86982 & －． 44184 & 1.34479 & \\
\hline 1. & 31. & ． 90152 & －． 76454 & ． 15887 & －．90622 & ． 36135 & ． 78635 & ． 1 \\
\hline 631. & 31. & －90152 & ．61319 & ．48348 & ． 81585 & ． 53498 & ． 10538 & \\
\hline 794. & 31. & ．90152 & 66076 & .4161 & 80208 & 5554 & 05210 & \\
\hline 190． & 31. & 90152 & ． 69146 & －．362＜2 & .82111 & －． 52687 & ． 04414 & \\
\hline 158． & 62. & 97239 & ． 86922 & .32638 & 46975 & ． 51316 & ． 39343 & 2．9 \\
\hline 290. & 62. & ． 97239 & －． 86855 & －． 32816 & －．68771 & ．95174 & 1.2141 & 1.7 \\
\hline 251. & 62. & ． 97239 & －． 27667 & －．88630 & －． 39396 & －．56606 & ． 91310 & ． 8 \\
\hline 316. & 62. & ． 97239 & ． 69090 & －．62626 & ． 42539 & －． 54283 & 71110 & ． 7 \\
\hline 398. & 62 & ． 97239 & ．78651 & ．69231 & －69924 & － 32318 & －9184 & ． 7 \\
\hline 5 & 62. & ． 97239 & 75238 & 54405 & ． 48 & ． 4951 & \(\cdot 24\) & ． 9 \\
\hline & 62. & 97239 & 07545 & －． 9254 & －． 2040 & －． 68964 & － 92346 & ． 7 \\
\hline 794. & － & 72 & 7730 & ．9113 & .16110 & ．67358 & ．98604 & 1 \\
\hline 1900. & 62. & ． 97239 & .25391 & －． 89309 & 13006 & －． 67728 & .87556 & ． 2 \\
\hline 158. & 12.5 & －99288 & ． 12299 & ．97284 & 21898 & ． 31619 & ． 27155 & －2．1 \\
\hline 200. & 125. & 99288 & ．24109 & 95048 & ．07185 & .37784 & 42 & 3．1 \\
\hline 251. & 125. & ． 992 & 46 & 7375 & .15 & 3521 & ． 533 & 3 \\
\hline 316. & 125 & ．99288 & －．94804 & ． 250 & －． 3491 & ． 16134 & 1.5942 & 4.1 \\
\hline － & 12.5 & 9288 & － 866 & －． 4599 & －． 37968 & －． 10260 & 1.53052 & －3．7 \\
\hline 501. & 125. & ． 99288 & －． 13951 & －． 97961 & －． 12000 & －． 36542 & 1.17949 & －1．4 \\
\hline 631. & 125. & －99288 & ． 84587 & －． 49608 & ． 31356 & －． 22273 & 5 & 5.4 \\
\hline 794. & 125. & 99288 & ．56303 & －802． 8 & ． 23436 & －38496 & － 8 & ． 6 \\
\hline 1099． & 125. & 99288 & ． 93468 & 296 & ． 35 & 14780 & ． 57949 & －4．7 \\
\hline 158. & 250. & 99820 & ． 74.161 & 663 & 171 & 174896 & 76079 & \\
\hline & 25 & 99820 & 60 & 790 & －1 is 42 & 09187 & ． 91186 & \\
\hline 25 & 250． & 99820 & －48042 & 91791 & ． 13351 & 14893 & 1.95406 & \\
\hline 316. & 250. & 9982の & ． 11385 & －9885 & ． 35647 & \(188^{80}\) & 1.234 ！ & \(-1 \cdot \varepsilon\) \\
\hline 3 & 250. & 99820 & －． 25887 & 96099 & －．99875 & 19783 & ． 4 & 3.3 \\
\hline 591. & 250 & －99827 & ． 66 & 73681 & －． 19560 & ． 16751 & ． 66196 & 4.4 \\
\hline 631. & 250. & 99 & ． 96 & ． 2328 & 8 & ． 0629 & 78 & 5．a \\
\hline 794. & 250． & 99820 & 86 & 49 & 17633 & 09910 & ． 7343 & －R \\
\hline 1009. & 250. & ． 99820 & －． 10697 & －． 98927 & －． 03837 & －－19427 & 1.33046 & －2．5 \\
\hline 158. & 500. & 99955 & －93266 & 35727 & 9991月 & －．01136 & 40428 & ．9 \\
\hline 290. & 509. & ． 99955 & ． 89469 & 44388 & 9972 & .00241 & 56 & ． 3 \\
\hline 251. & 590. & ． 99955 & ． 83553 & 54 & 60 & 22703 & 58152 & \\
\hline 31 & 500. & ． 99955 & ． 74430 & ． 6659 & 98476 & 0526 & 70 & \\
\hline 398. & 590． & ． 99955 & 60593 & 79395 & 077625 & ． 86432 & ． 86783 & ． 2 \\
\hline 501. & 590． & ． 99955 & 40 & ． 91439 & ． 05537 & 08297 & 1.05731 & \\
\hline 631. & 509. & ． 99955 & ． 11 & ． 99222 & ．01998 & 09773 & 1.27281 & \(2 \cdot 1\) \\
\hline 794. & 500. & ． 99955 & －． 25933 & ． 96450 & －． 02167 & ．99737 & 1.51082 & －3．6 \\
\hline 1000. & 500. & ． 99955 & －．67152 & 73936 & －． 06038 & .87940 & 1.74063 & 4.8 \\
\hline 158． & 1008． & ． 99989 & －98299 & ． 18195 & ． 047778 & .91462 & ． 20694 & 3.7 \\
\hline 200. & 1000. & ． 99989 & －97327 & ．22831 & の4891 & 0102 & 2502 & 12．0 \\
\hline 251. & 1000. & ．99989 & ． 95792 & ． 28594 & 094996 & ． 80077 & 30108 & 10.4 \\
\hline 316. & 1000. & ． 99989 & ． 93376 & ． 35781 & ．04906 & ．00947 & 36614 & 8.7 \\
\hline 398. & 1000. & ． 99989 & ． 89589 & ． 44358 & ． 24852 & 01195 & ． 45778 & 6.8 \\
\hline 501. & 1900. & ． 99989 & ． 83687 & ． 54684 & .04594 & ． 01965 & ． 56709 & ． 9 \\
\hline 631. & 1009. & ． 99989 & ． 74584 & ． 66565 & －04904 & ．82990 & 70048 & 3.1 \\
\hline 794. & 1000. & ． 99989 & ． 69777 & ． 79372 & ．03208 & ．83831 & ． 86637 & ．2 \\
\hline 1900. & 108 & ． 99989 & ． 403 & ． 91 & ， 02 & ． 043 & ．068 & －． 6 \\
\hline
\end{tabular}

\section*{TABLE C． 4 \\ ATTENUATION DATA FOR \(Z=30\) FEET FOR CONCRETS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline f （ Hz ） & \(r(f t)\) & A & B & c & D & E & F & F（dB） \\
\hline 158. & 31. & ． 78087 & ． 66564 & －02251 & ． 89635 & 42875 & 1.13767 & \\
\hline 2а®． & 31. & ． 78987 & －． 86559 & .66278 & ． 32920 & ． 93749 & 1.20732 & \\
\hline －51． & 31. & ．78087 & －． 55454 & －． 36887 & －． 95449 & －． 27606 & ． 39296 & 8.1 \\
\hline 316. & 31. & ． 78087 & ． 66554 & ．92509 & ． 98432 & －． 13555 & 1.11132 & －． 9 \\
\hline 393. & 31. & － 78087 & －． 65755 & －． 10584 & －． 99191 & － 2 S816 & ． 47568 & 6.5 \\
\hline 5：1． & 31. & ．78987 & ． 28626 & ．60136 & ． 57636 & .80937 & 1.09099 & \\
\hline 31. & 31. & ． 78987 & ． 66593 & .01042 & ． 99107 & －07110 & 1.10900 & \\
\hline 794. & 31. & ． 78887 & ． 64628 & ． 16091 & ． 97373 & 19778 & 1.10893 & \\
\hline 1000. & 31. & .78087 & －． 36922 & ． 55431 & －． 47666 & ． 87182 & .74453 & \(2 \cdot 6\) \\
\hline 158. & 62. & ． 92848 & －． 60096 & －．63254 & －．80633 & －．27711 & － 80574 & 1.9 \\
\hline 23\％． & 62. & ． 92848 & ．22736 & －．84236 & －． 14652 & －．83993 & ． 55460 & 5.1 \\
\hline 251. & 6？． & ． 92848 & ． 87235 & －． 01637 & ． 89889 & －．27159 & ． 90123 & ． 9 \\
\hline 316. & 69. & ． 92848 & －． 02832 & ． 87295 & ． 1207 ？ & ．84433 & 1.97788 & \\
\hline 392． & 62. & －92848 & －． 76416 & －． 42111 & ． 8181 17 & .24313 & 89396 & 9 \\
\hline 571. & 62. & ． 92848 & ．87954 & －．05858 & ．82783 & ．24419 & ． 89764 & 9 \\
\hline 631. & 62. & ． 92848 & －．87217 & －． 02405 & －．85119 & ．17087 & ．95250 & \\
\hline 794. & 62. & ． 92848 & －50018 & ． 71490 & ． 51879 & ． 67662 & ． 94786 & \\
\hline 1009. & 62. & ． 92848 & ．85629 & －． 16787 & ． 8.1921 & －． 23634 & ． 89411 & ． 9 \\
\hline 158． & 125. & ．98058 & －． 51463 & ． 81391 & －． 94349 & － 51746 & 1.48167 & ． 4 \\
\hline วดก． & 125. & ．98958 & －． 86530 & ．42255 & －． 32660 & ． 49372 & 1.51940 & －3．6 \\
\hline 251. & 125. & ． 98958 &  & －． 23035 & －． 51823 & ． 83315 & 1.42199 & 3. \\
\hline 316. & 125 & ．98058 & －． 42168 & －． 86573 & －．30591 & －． 42927 & 1.18423 & －1．5 \\
\hline 398. & 125. & ． 98958 & ． 58.241 & －． 76687 & ．21712 & －． 47172 & ． 68242 & 3.3 \\
\hline 591. & 125. & ． 98058 & ． 85982 & .43360 & ． 49723 & .14975 & ．68605 & －3 \\
\hline 6.31. & 125. & －98055 & －． 57823 & －770173 & －． 27444 & ． 44088 & 1． 32589 & ． 5 \\
\hline 704． & 125. & ． 98058 & ． 28194 & －． 92977 & －． 17355 & ． 48943 & 1.17128 & －1．4 \\
\hline 199\％． & 125. & ． 98058 & ． 59695 & .75561 & .35629 & ． 37786 & ． 83869 & 6 \\
\hline 158． & \(25 \%\) & ． 99504 & ． 45779 & －87823 & －22563 & 15741 & 1.04918 & \\
\hline 239. & 25 & －9958 & ． 19491 & ． 97997 & － 16277 & ．22．118 & 1.2 .2935 & －1．7 \\
\hline 251. & 253. & ． 99594 & －． 15516 & ． 97811 & － 04053 & .27161 & 1.38454 & －2．8 \\
\hline 316. & 250. & ． 99594 & －． 56398 & .81469 & －． 11454 & ． 24959 & 1.55924 & －3．8 \\
\hline 398． & 259． & ．99504 & －．91111 & ． 38813 & －． 22336 & .15976 & 1.69821 & 4.6 \\
\hline 591. & 250. & ． 99594 & －．94429 & －． 29876 & －． 27223 & －．93612 & 1.68757 & －4．5 \\
\hline 631. & 250. & ． 99504 & －． 35956 & －． 92276 & －． 12163 & ． 24621 & 1.40639 & －3 \\
\hline 794. & 259． & ． 99594 & ． 67678 & －． 72301 & ． 17875 & ． 29848 & ． 71536 & \(2 \cdot 9\) \\
\hline 1099. & 259． & ． 99504 & .81928 & ． 55638 & ． 2.3977 & ． 13389 & ． 59258 & 4.5 \\
\hline 158． & 50 m & ． 99875 & ． 85139 & ． 51987 & ． 13899 & －00959 & ． 58522 & \\
\hline 20． & 579. & ． 99875 & ． 76928 & ． 63508 & ． 13485 & 0.03498 & ． 79294 & 3.1 \\
\hline 251. & 500． & ．99875 & ． 64415 & ． 76179 & ．11779 & ． 97449 & ． 83398 & 1.6 \\
\hline 316. & 5 Ta ． & ． 99875 & ． 45891 & －8862の & ． 98448 & ． 11078 & ． 99609 & ． 6 \\
\hline 398. & 57 － & ． 09875 & ． 19213 & ． 97888 & ． 05579 & ． 12766 & i． 21175 & －1．7 \\
\hline 591. & \(50 n\). & ． 99875 & －．16161 & ． 98438 & － 00164 & ． 13931 & 1．43681 & －3．1 \\
\hline 631. & 594. & ． 99875 & －． 57276 & .81674 & －．06974 & ． 12960 & 1.6552 .7 & 4.4 \\
\hline 794. & 535. & ． 99875 & －．92107 & ． 38308 & －． 12.618 & ． 05906 & 1．82268 & －5．2 \\
\hline 1 ang ． & 507. & ． 99875 & －．94778 & －． 31118 & －． 13565 & －． 03176 & 1.83232 & －5．3 \\
\hline 158． & 1090. & ． 99969 & ． 96198 & －27037 & ． 96844 & －．91427 & ． 30426 & 10.3 \\
\hline ？90． & 1 10\％． & ． 99969 & ． 94932 & .33850 & ．06963 & －． 00634 & ． 36818 & 8.7 \\
\hline 351. & 1900. & ． 99969 & ． 90631 & ． 42116 & ． 86933 & ．00903 & ． 44308 & 7.1 \\
\hline 316. & \(10 \times 2\). & ． 99969 & ． 85323 & ． 52036 & －06510 & ． 02548 & ． 53820 & 5.4 \\
\hline 398. & 1000. & ． 99969 & ． 77113 & .63572 & －06229 & ． 03174 & .67936 & 3.5 \\
\hline 571. & 19n刀． & ． 99969 & ． 64599 & ． 76255 & ．05377 & ． 04469 & ． 82544 & 1.7 \\
\hline 631. & 10ロロ． & ． 99969 & ． 45981 & ． 88733 & ． 93745 & ．05904 & 1.90965 & － 1 \\
\hline 794. & 1500. & ． 99969 & ． 19381 & ． 98041 & ．01654 & ． 86793 & 1.22841 & －1．8 \\
\hline 1 बan． & 1090． & ． 99969 & －． 16022 & ． 98646 & －．00515 & .06972 & 1.47441 & －3．4 \\
\hline
\end{tabular}

TABLE C. 5
ATTENUATION DATA FOR \(Z=5\) FBET FOR ASPRALT


Table C. 6

\section*{ATTESUATION DATA POR 2 - 10 FEET FOR ASPHALT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & r(ft) & A & B & C & D & E & \(\mathbf{F}\) & -F(dB) \\
\hline 158. & 31. & . 98744 & -.83692 & . 33511 & -. 52582 & . 57644 & 1.32078 & 4 \\
\hline 290. & 31 & . 98744 & -.85171 & -. 29551 & -. 77983 & -.02519 & 1.09327 & \\
\hline 251. & 31 & . 98744 & -. 29803 & -. 85084 & -.40028 & 66973 & . 90353 & 9 \\
\hline 316. & 31 & . 98744 & . 64419 & -. 63068 & -50071 & -. 59837 & . 84458 & 5 \\
\hline 398. & 31 & . 98744 & . 71689 & . 54664 & . 62864 & . 46215 & 99315 & . 9 \\
\hline 591 & 31 & . 98744 & -. 69266 & . 57703 & -. 61515 & . 47996 & 1.96937 & \\
\hline 631 & 31 & . 98744 & -. 00442 & . 90151 & . 15642 & - 76439 & 1.15643 & 3 \\
\hline 794. & 31 & . 98744 & . 26704 & .86106 & .06654 & . 77739 & 79137 & 0 \\
\hline 1090. & 31. & . 98744 & . 12696 & -. 89267 & .22147 & -. 74814 & 46 & \\
\hline 158. & 62. & . 99682 & . 12512 & . 96430 & . 14840 & . 42891 & 1.15206 & 2 \\
\hline 200 & 62 & .99682 & -. 23518 & . 94352 & -.01014 & . 45374 & 1.31636 & 4 \\
\hline 25 & 6 & . 99682 & -. 63696 & . 73473 & -. 20946 & . 40263 & 1.46252 & -3.3 \\
\hline 316 & 62. & . 99682 & -. 93847 & .25458 & -. 39595 & . 22344 & 1.54955 & -3.8 \\
\hline 398 & 62. & . 99682 & -. 86252 & . 44899 & -. 44625 & -.08274 & 1.45978 & -3.3 \\
\hline 571 & 62. & . 99682 & -. 14833 & .96101 & -. 23109 & 9062 & 1.07742 & , \\
\hline 6.31 & 62 & . 99682 & . 83231 & . 50279 & -17015 & 42075 & . 34457 & 3 \\
\hline 794. & 62 & . 99682 & . 57134 & . 78683 & .45366 & .011328 & .17101 & 4 \\
\hline 1709. & 62. & . 99682 & -. 92059 & . 31314 & . 02187 & . 45333 & 1.90071 & -5.6 \\
\hline 158. & 125 & -99920 & - 74029 & . 66165 & . 22745 & . 06514 & .76965 & ?.3 \\
\hline 208. & 125. & . 99920 & -60292 & . 78886 & . 19303 & . 13680 & . 87890 & -1 \\
\hline 251. & 125. & -99920 & . 49917 & . 90866 & . 13682 & . 19302 & 1.02646 & \\
\hline 316. & 125. & . 99920 & . 11445 & . 98626 & - 0504 ? & . 23116 & 1.20196 & -6 \\
\hline 398. & 125. & . 99920 & -. 25647 & . 95918 & -.05710 & . 22960 & 1.40316 & -2.9 \\
\hline \(5 \times 1\). & 125. & . 99920 & -. 66628 & . 73612 & .16430 & -17024 & 1.60430 & -4.1 \\
\hline 531. & 125. & . 99920 & -. 96490 & .23404 & -. 23648 & . 00738 & 1.74243 & -4.8 \\
\hline 794. & 12.5 & . 99920 & -. 86465 & -. 48885 & . 17643 & -. 15764 & 1.71946 & -4.7 \\
\hline 1900 & 125. & . 99920 & -. 10943 & -. 98683 & . 90877 & -.23643 & 1.34599 & -2.6 \\
\hline 158. & 250. & . 99980 & . 93217 & . 35703 & . 11801 & - 11925 & . 38543 & 8.3 \\
\hline 207. & 250. & . 99982 & . 89423 & . 44358 & . 11618 & - 02825 & . 47481 & 6.5 \\
\hline 251. & 259. & . 99980 & . 83512 & . 54679 & . 11252 & -04046 & - 57725 & \(4 \cdot 8\) \\
\hline 316. & 250. & . 99980 & . 74397 & . 66553 & . 10606 & .05521 & . 70954 & 3.0 \\
\hline 398. & 250. & . 99980 & . 60571 & . 79343 & .09717 & .06968 & . 87472 & 1.2 \\
\hline 531. & 250 & . 99980 & . 40168 & . 91382 & . 98537 & -08372 & 1.07529 & . 6 \\
\hline 631. & 250. & . 99980 & . 11419 & .99165 & -08218 & .08085 & 1.32487 & 2. 4 \\
\hline 794. & 250 & . 99980 & -. 25892 & . 96404 & -07247 & .09511 & 1.58969 & 4.0 \\
\hline 1900. & 250. & . 99980 & -. 67090 & .73913 & .05283 & . 10726 & 1.83571 & \(-5.3\) \\
\hline 158. & 590. & . 99995 & . 98286 & . 18192 & .05782 & -.01584 & -21147 & 13.5 \\
\hline 200. & 500. & .99995 & .97313 & -22827 & .05979 & -.00427 & . 24815 & 12.1 \\
\hline 251. & 500. & . 99995 & -95779 & - 28589 & .05971 & -00529 & . 29852 & 10.5 \\
\hline 316. & 500. & . 99995 & . 93364 & . 35695 & - 05784 & . 01576 & . 36308 & 8.8 \\
\hline 398. & 5 可 & . 99995 & . 89577 & . 44351 & .05418 & -02565 & . 44685 & 7.9 \\
\hline 59 & 590. & . 99995 & . 83676 & . 54674 & -04911 & -.03438 & . 55461 & \(5 \cdot 1\) \\
\hline 63 & 5nด. & . 99995 & . 74576 & . 66554 & -Ø3558 & - 04825 & . 68193 & 3.3 \\
\hline 794. & 509. & .90995 & -60771 & . 79359 & -02543 & -05428 & . 84914 & 1.4 \\
\hline 179月. & 509. & .99995 & . 40393 & .91430 & .01590 & .05780 & 1.05263 & -. 4 \\
\hline 158. & 10 an. & . 99999 & .99570 & .09139 & -02980 & -.00337 & -10070 & 19.9 \\
\hline 200. & 1090 & . 99999 & .99326 & .11496 & -02982 & -.00319 & . 12368 & 18.2 \\
\hline 251. & 1000. & . 99999 & . 98939 & . 14454 & -02987 & -. 00268 & . 15268 & 16.3 \\
\hline 316. & 19 O & . 99999 & . 98326 & . 18159 & .02993 & -.00201 & -18944 & 14.5 \\
\hline 398. & 1090. & . 99999 & .97358 & - 22786 & .02993 & -.00200 & . 23666 & 12.5 \\
\hline 50 & 1070 & . 99999 & .95830 & . 28538 & . 02987 & -.80274 & . 29688 & 10.5 \\
\hline 631 & 1000 & . 99999 & . 93424 & . 35633 & - 02884 & -. 00825 & . 37665 & 8.5 \\
\hline 794. & 1000 & . 99999 & . 89652 & . 44276 & .02695 & -.01317 & . 47422 & 6.5 \\
\hline 1300. & 1090. & .99999 & . 83774 & . 54587 & . 92446 & -.81736 & . 59337 & \(4 \cdot 5\) \\
\hline
\end{tabular}

TABLE C． 7

\section*{ATTENUATION DATA FOR \(Z=20\) FEET FOR ASPGALT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline f（Hz） & r（ft） & A & B & C & D & E & F & －F（dB） \\
\hline 158. & 31. & －99152 & ． 14756 & －． 76680 & －． 25111 & －． 94274 & ． 53274 & 5.5 \\
\hline 200. & 31. & －96152 & ． 77604 & －． 98673 & .89359 & －． 39154 & 1．066369 & ． 5 \\
\hline 251. & 31 & ． 90152 & ．96554 & ． 77811 & .27596 & ． 93603 & 1．12221 & －1．9 \\
\hline 316. & 31 & ． 90152 & －． 73163 & －． 27289 & －． 94337 & －．24872 & ． 69021 & 3.2 \\
\hline 398. & 31 & ． 90152 & ． 75624 & －． 19458 & ． 94943 & －． 25963 & 1.98766 & －． 7 \\
\hline 501 & 31 & ． 99152 & －． 76454 & ． 15887 & －． 96107 & ． 16782 & －79505 & 3． 7 \\
\hline 63 & 31 & ． 90152 & ． 61319 & ． 48348 & ． 62581 & ． 74845 & ． 95177 & \\
\hline 794. & 3 & －91152 & ． 66076 & 2 & ． 91757 & 48 & 1.16142 & \\
\hline 1300. & 31. & ． 91152 & .69146 & －．36282 & ． 92115 & ． 32139 & 1.13197 & 1.1 \\
\hline 158. & 62. & ．97239 & －． 86922 & ． 32638 & ． 58312 & ． 36824 & 1.25919 & \(-2.01\) \\
\hline 209 & 62 & ． 97239 & －． 86855 & ． 32816 & －． 68297 & －． 09577 & 1.18105 & 1.4 \\
\hline 251 & 62 & .97239 & －． 27667 & －．88630 & －． 35288 & －． 59254 & ． 94310 & ． 5 \\
\hline 316. & 62 － & ． 97239 & ． 69090 & －．62926 & ． 38334 & －． 57330 & ． 66648 & 3.5 \\
\hline 398. & 62 & ． 97239 & ． 70661 & ． 60231 & ． 63279 & ．27443 & ． 95644 & 4 \\
\hline 501 & 62 & ． 97239 & －． 75238 & ． 54405 & －． 36847 & ． 58297 & 1.35686 & －2． 7 \\
\hline 631. & 62. & ． 97239 & ． 177545 & －． 92541 & －． 36734 & －． 58368 & ． 63027 & 4.0 \\
\hline 794. & 62 & －97239 & －17730 & ． 91139 & ． 61637 & ． 30937 & 1.53449 & －3．7 \\
\hline 1300. & 62. & ． 97239 & ． 25391 & －．89309 & －． 54774 & －． 41995 & ． 50385 & 6.7 \\
\hline 158. & 125. & －99288 & ． 12299 & ． 97284 & －20055 & －32252 & 1.26029 & 2．7 \\
\hline 200. & 125. & ． 99288 & .24109 & ． 95948 & －62048 & －38407 & 1.37639 & ． 8 \\
\hline 251. & 125. & ． 99288 & －． 64617 & ． 73757 & －． 19333 & .33422 & 1.50382 & －3．5 \\
\hline 316. & 125. & ． 99288 & ． .94804 & －25052 & －．36229 & ． 13462 & 1.58487 & －4．\％ \\
\hline 398. & 125. & ． 99288 & －．86103 & －． 45992 & － 3 ＋ 280 & ． 17441 & 1.54276 & 3．\(\%\) \\
\hline 501 & 125. & ． 99288 & －． 13951 & －． 97361 & －． 04251 & ． 38226 & 1.23854 & －1．9 \\
\hline 631. & 125. & ． 99288 & ． 34587 & －． 49692 & ． 36465 & ． 12231 & ． 63360 & 4.3 \\
\hline 794. & 125. & ． 99288 & ． 56303 & －80283 & －14845 & ． 35481 & ． 73154 & 2.7 \\
\hline 1090. & 125. & .99288 & －． 93468 & ．29549 & .37972 & ． 96114 & 1.56563 & －3．9 \\
\hline 158. & 259. & ． 99820 & ． 74161 & ． 66341 & －17128 & ．99937 & － 70796 & 3.7 \\
\hline 200. & 250. & ． 99820 & －60380 & ． 79990 & ． 15186 & －12789 & ． 85968 & 1.3 \\
\hline 251. & 259 ． & ． 99820 & ． 40042 & ． 91091 & ． 11963 & ． 15780 & 1.04014 & 3 \\
\hline 316. & 259 & ． 99820 & ． 11385 & －98を50 & －77059 & ． 18501 & 1.24801 & －1．9 \\
\hline 398． & 250. & ． 99820 & －． 25807 & ． 96099 & － 00678 & ． 19790 & 1.47568 & －3．4 \\
\hline 5®1． & 250． & ． 99820 & －． 66874 & ． 73681 & －．06990 & ． 18561 & 1.69034 & \(4 \cdot 6\) \\
\hline 631. & 250． & ． 99820 & －． 96740 & ． 23289 & －． 12627 & ． 15253 & 1.84109 & ． 3 \\
\hline 794. & 250. & ． 99820 & －． 86547 & －． 49098 & －． 18258 & ． 07665 & 1.77433 & －5．0 \\
\hline 1000. & 250. & ．99820 & －． 10697 & －． 98927 & －． 19093 & －．05251 & 1.30896 & \(-2.3\) \\
\hline 158. & 500. & ． 99955 & ． 93266 & .35727 & ． 29939 & －．00843 & ． 40173 & \(7 \cdot 9\) \\
\hline 200. & 500. & ． 99955 & ． 89469 & ． 44388 & －99849 & －01578 & ． 47394 & 6.5 \\
\hline 251. & 50 & ． 99955 & ． 83553 & ． 54717 & －09271 & ．03682 & ． 57128 & \(4 \cdot 9\) \\
\hline 316. & 5月6． & ． 99955 & ． 74430 & ． 66597 & －98056 & －05882 & ． 69383 & 3.2 \\
\hline 398. & 500. & ． 99955 & ． 60593 & ． 79395 & ． 06190 & －07822 & － 8.4838 & \(1 \cdot 4\) \\
\hline 501. & 500. & ． 99955 & ． 40174 & ． 91439 & －03718 & －09256 & 1.03857 & －． 3 \\
\hline 631. & 500. & ． 99955 & ． 11404 & ． 99222 & －．00920 & －09933 & 1.25108 & －1．9 \\
\hline 794. & 590. & ． 99955 & －． 25933 & ． 96450 & －． 04589 & －08857 & 1.49620 & －3．5 \\
\hline 1900. & 509. & ． 99955 & －． 67152 & ． 73930 & －．07719 & .06318 & 1.73136 & －4．8 \\
\hline 158. & 1900. & ．99989 & ．98299 & ． 18195 & ． 04996 & －．00105 & ． 19483 & 14.2 \\
\hline 200. & 1090. & ． 99989 & ． 97327 & －22831 & －04997 & －00042 & ． 24041 & 12.4 \\
\hline 251. & 1000 & ． 99989 & －95792 & ． 28594 & － 54989 & －00277 & ． 29769 & 10.5 \\
\hline 316. & 1900. & ． 99989 & ． \(93370^{\circ}\) & ． 35791 & －044964 & ．00575 & ． 36985 & \(8 \cdot 6\) \\
\hline 398. & 1090. & ． 99989 & ． 89589 & ． 44358 & ．04931 & － 00811 & ． 46167 & \(6 \cdot 7\) \\
\hline 501. & 1000. & ． 99989 & ． 83687 & ． 54684 & －04900 & －00982 & ． 57736 & 4．8 \\
\hline 631. & 1900. & ． 99989 & ． 74584 & ． 66565 & －04979 & －00427 & － 72783 & 2.8 \\
\hline 794. & 100. & ． 99989 & ． 60777 & ． 79372 & ．04997 & －00019 & ． 90837 & － 8 \\
\hline 10のワ． & 1000. & ． 99989 & ． 40395 & ． 91444 & ． 04993 & －．00199 & 1.12116 & \(-1 \cdot 9\) \\
\hline
\end{tabular}

TABL：C． 8

\section*{ATTENUATION DATA FOR \(2=30\) FEET FOR ASPHALT}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline f （ Hz ） & r（ft） & A & B & C & D & E & \(\mathbf{F}\) & dB） \\
\hline 153. & 31. & ． 78087 & ． 66564 & ．02251 & －90862 & －．40210 & 1.10840 & \\
\hline 200. & 31. & －78087 & －．06559 & ． 66278 & －29036 & ． 97320 & 1.09187 & \\
\hline 251. & 31 & ． 78087 & －． 55454 & －． 36887 & －．92081 & －． 37334 & ． 41463 & ． 6 \\
\hline 316. & 31 & ． 78087 & ． 66554 & ．02509 & .99173 & －．06111 & 1.11041 & \\
\hline 398. & 31 & .78087 & －． 65755 & －． 10584 & －． 98360 & －． 14068 & ． 45615 & 6.8 \\
\hline 571 & 31 & ． 78087 & ． 28626 & ． 60136 & ． 39813 & .91036 & ． 94471 & ． 5 \\
\hline 63 & 31 & ． 78087 & ． 66593 & ．91042 & ． 96914 & ． 21915 & 1.10399 & \\
\hline 794 & 3 & ． 78087 & ． 64628 & ． 16091 & ． 89061 & ． 44055 & 1.06265 & \\
\hline 1 130． & 31 & ． 78087 & －． 36922 & ． 55431 & －． 66640 & .73701 & ： 51704 & 5.7 \\
\hline 158. & 62. & ． 92848 & －． 60096 & －．63254 & －．70034 & －．48629 & ． 84190 & 1.5 \\
\hline 206 & 62. & ． 92848 & ． 22736 & －．84236 & ． 03554 & －． 85188 & ． 73672 & 2.7 \\
\hline 251 & 62. & ． 92848 & ． 87235 & －．01637 & ． 82541 & －． 21367 & ． 90335 & 9 \\
\hline 316. & 62. & ． 92848 & －．02832 & ． 87205 & ． 18389 & ． 83255 & 1.14137 & \(1 \cdot 1\) \\
\hline 398． & 62. & －92848 & －． 76416 & ． 42111 & －．883441 & －． 17527 & ． 89274 & 1.0 \\
\hline 591. & 62. & －92848 & ． 87954 & －．05858 & －76838 & －． 36953 & －88289 & 1.1 \\
\hline 631. & 62. & －92848 & －．87217 & －．02405 & －． 69615 & ． 49228 & 1.21923 & －1．7 \\
\hline 794. & 62. & －92848 & －50018 & ． 71490 & .85168 & ． 83991 & i．44795 & －3．2 \\
\hline 1909. & 62. & ． 92848 & .85620 & －． 16787 & .15471 & －． 23846 & ． 79797 & 3.0 \\
\hline 158． & 125． & ． 98058 & －． 51463 & ． 81391 & －．00517 & ． 51926 & 1．51889 & \(-3.6\) \\
\hline 290． & 125. & ． 98058 & －． 86530 & ． 42255 & －． 21587 & ． 47229 & 1.63077 & ． 2 \\
\hline 251. & 125. & ． 98058 & －． 93501 & －． 23035 & －．51992 & －．09286 & 1.41138 & －3．3 \\
\hline 316. & 125. & －98058 & －． 42168 & －． 86573 & －． 11434 & －． 50654 & 1.33707 & －2． 5 \\
\hline 398. & 125. & － 98058 & ． 58241 & －． 76687 & ． 34588 & －． 38734 & ． 83526 & 1.6 \\
\hline 511. & 125 & ． 98958 & ． 85982 & ． 43360 & ． 45739 & ．2． 4588 & .60786 & 4.3 \\
\hline 631. & 125. & ． 98058 & －． 57823 & ． 77003 & －． 28404 & ． 43472 & 1.31813 & －2．4 \\
\hline 794. & 125. & ． 98058 & －． 28194 & ． 92077 & －． 24658 & －． 45701 & 1.11678 & 1.9 \\
\hline 1900 & 125. & ． 98058 & ． 59695 & ． 75561 & ． 44788 & ． 26280 & .96657 & ． 3 \\
\hline 158. & 25 ． & ． 99504 & ． 45770 & ． 87823 & ． 19804 & －19925 & 1.90702 & \\
\hline 203 ． & 250. & ． 99504 & ． 19491 & ． 97097 & ． 12022 & ． 24690 & 1.17103 & ． 4 \\
\hline 251 ． & 259 & ． 99504 & －． 15516 & .97811 & － 12124 & ． 27379 & 1.36686 & 2． 7 \\
\hline 316. & 250. & ． 99504 & －． 56308 & － 81469 & －． 11362 & ． 25001 & 1.55095 & －3．8 \\
\hline 398. & 250. & ． 99504 & －．91111 & ． 38813 & －． 23236 & ． 14637 & 1.69116 & －4．6 \\
\hline 591 & 250. & ． 99504 & －． 94420 & －． 29876 & －． 27230 & －． 03558 & 1.68759 & －4．5 \\
\hline 631 & 250 & ． 99504 & －． 35956 & －． 92276 & －． 15397 & －． 22880 & 1.38794 & －2．8 \\
\hline 794. & 250. & ． 995104 & ． 67678 & －． 72301 & ． 10740 & －． 25275 & ． 63429 & 4.0 \\
\hline 19冈の． & P5\％． & ． 99594 & ． 81928 & ． 55638 & ． 27392 & ． 01960 & ． 70024 & 3.1 \\
\hline 158． & 5のด． & ． 99875 & ． 85139 & ． 51987 & －13593 & －03053 & ． 56543 & \(5 \cdot 0\) \\
\hline 200 & 5のワ． & ． 99875 & ． 76928 & ． 63508 & ． 12674 & －05786 & ． 67829 & 3.4 \\
\hline 251. & 5an． & ． 99875 & ． 64415 & .76170 & ． 11984 & ． 18440 & ． 82181 & 1.7 \\
\hline 316. & 590. & ． 99875 & ． 45801 & ． 88620 & －08448 & ． 11078 & ． 99608 & 0 \\
\hline 398． & 50の・ & ． 99875 & ． 19213 & .97888 & － 04788 & ． 13083 & 1.20390 & 1.6 \\
\hline 501. & 50n． & ． 99875 & －． 16161 & ． 98438 & －00164 & ． 13931 & 1.43681 & －3．1 \\
\hline 631. & 500. & ． 99875 & －． 57276 & ． 81674 & －． 05341 & － 12867 & 1.66676 & －4．4 \\
\hline 794. & 500. & ． 99875 & －． 92107 & .38308 & －． 10258 & ． 89427 & 1.84005 & －5．3 \\
\hline 1990． & 500. & .99875 & －．94778 & －． 31118 & －． 13636 & ． 02854 & 1.84177 & －5．3 \\
\hline 158. & 10ヶの． & ． 99969 & ． 96198 & ：27087 & ．06982 & －．00369 & ． 29487 & 19.6 \\
\hline 200. & 1900. & ． 99969 & ． 94032 & ． 33850 & ．06967 & ．00585 & ． 35680 & 9．9 \\
\hline 251. & 1000. & ． 99969 & －90631 & ． 42116 & ．06828 & －01504 & ． 43711 & 7.2 \\
\hline 316. & 10のD． & ． 99969 & ． 85323 & ．52＠36 & ．06510 & ． 02548 & －53820 & 5.4 \\
\hline 398. & 1090 & ． 99969 & ． 77113 & ． 63572 & ．06024 & －03549 & ． 66610 & 3.5 \\
\hline \(5 \times 1\). & 1900. & ． 99969 & ． 64599 & ． 76255 & －05377 & －Ø． 4469 & － 82544 & 1.7 \\
\hline 631. & 10n9． & ． 99969 & ． 45981 & ． 88733 & －04484 & －05364 & 1.81830 & －． 2 \\
\hline 794. & 1070 & ． 99969 & ． 19381 & .98041 & －Ø3620 & ．05981 & 1.24764 & －1．9 \\
\hline 1900. & 1000. & ． 99969 & －．16922 & ． 98646 & ．02480 & ．06537 & 1－50065 & －3．5 \\
\hline
\end{tabular}

TABLE C． 9

\section*{ATTENUATION DATA FOR Z \(=5\) FEET FOR GRASS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & A & B & & D & E & F & －F（dB） \\
\hline 8. & ， & 0000 & 474 & 85 & ．21232 & 33 & 1.15030 & 2 \\
\hline のロ & 31. & －00000 & 21529 & ． 92777 & －．01767 & －58028 & 1.24702 & 1.9 \\
\hline 251. & 31. & 1．00000 & －． 60902 & ． 73226 & －． 30203 & ． 49580 & 1.32821 & －2．5 \\
\hline 316. & 31. & 1．00000 & －． 91247 & ． 27295 & －．53028 & .23631 & 1.38268 & －2．8 \\
\hline ． & 31. & 1．90000 & －．85863 & ． 41214 & ． 55299 & .17677 & 1.32669 & \\
\hline 501. & 31. & 1．00000 & ． 18359 & 93456 & 18316 & 5509 & 1.07147 & \\
\hline 631. & 1 & の0000 & 78884 & 53371 & 43179 & 38817 & & \\
\hline 794. & 31. & －00000 & ． 60829 & ． 73287 & ． 43589 & .38345 & ． 89835 & 9 \\
\hline 1099. & 31. & 1．090000 & ． 87374 & .37908 & ． 469885 & .34211 & 1.40518 & 3．0］ \\
\hline 158. & 62. & 1.000000 & ． 73737 & ． 65676 & －26058 & \(\cdot 17160\) & ． 71353 & \\
\hline 290. & 62. & 1．00900 & ． 69131 & ． 78324 & 3411 & －29627 & 5634 & \\
\hline 251. & 62. & 1．วดcan & ． 40044 & ． 90260 & 37 & ． 25932 & 1.02149 & \\
\hline 316 & 2. & －ตดのดの & ． 11719 & 98046 & ． 14963 & ． 29534 & 1．19856 & 6 \\
\hline 398． & 62. & －00000 & ． 25974 & ． 95502 & －．0の794 & .31193 & 1.49031 & 9 \\
\hline 501 & 62. & －09000 & －． 65865 & ． 73568 & －． 13523 & ． 28119 & 1.58977 & 4.0 \\
\hline 631. & 62. & 1.00000 & －．95800 & ． 23932 & － 27935 & .15577 & 1.68972 & 6 \\
\hline 794. & 62. & 1．00000 & －．86406 & ． 47795 & －． 29771 & ．99338 & 87 & 4.2 \\
\hline 1900. & 62. & 1．00000 & .11947 & ． 98019 & .06809 & .30449 & ． 24978 & －1．9 \\
\hline 158． & 25. & － 0 句可a & －93095 & ． 35632 & ． 12233 & －． 10154 & ． 4962.5 & 6.1 \\
\hline 290. & 5. & 1.90000 & 89 & 44271 & ． 14 & －． 05776 & ． 56169 & ．8 \\
\hline 。 & 125. & －900 & ． 83415 & ． 54574 & ． 15887 & － 00589 & －62909 & 4.0 \\
\hline 316. & 125. & 1．000an & ． 74322 & ． 66428 & .15183 & ．04714 & ． 74915 & 6 \\
\hline 398. & 125. & 1．00000 & ． 60530 & ． 79199 & ． 14796 & ． 06040 & 3 & ． 8 \\
\hline 501. & 125. & 1.09000 & ． 40175 & ． 91227 & ． 13499 & －08398 & \(1 \cdot 10622\) & \\
\hline 631. & 125. & 1.00006 & －11 & 99917 & 12 & － 0 & 1.35 & 6 \\
\hline 79 & 125. & 1 & ． 2 & 96 & ． 11498 & －10979 & 1.61696 & 4. \\
\hline 1790. & 125. & 1．0の日号 & －． 66895 & .73902 & ． 98.248 & ． 13595 & 1.85239 & －5．4 \\
\hline 158. & 250. & － 90006 & －98252 & ． 18183 & －07985 & －06180 & －29466 & ． 8 \\
\hline 200. & 250． & 1．0日000 & ． 97280 & ． 22816 & ． 07986 & －00140 & 6 & \\
\hline 251. & ？ 59. & 1－の日ana & －95747 & ． 28575 & 78 & －90386 & 8 & 10.2 \\
\hline 31 & 253. & 1．9日月里 & ． 93333 & －35678 & ． 07909 & ． 01114 & ． 37511 & 5 \\
\hline 398. & 250. & 1.00 & ． 895 & 44 & 782 & ． 81620 & ． 46454 & 6.7 \\
\hline 501. & 257. & ． 90 & ． 83652 & ． 54648 & ．07711 & ．92084 & ． 57808 & ． 8 \\
\hline 63 & \(25 \%\) ． & －99000 & ． 74557 & ． 66523 & － 0737.6 & －03181 & ． 71316 & 2.9 \\
\hline 794. & 250. & 1．00900 & ． 60761 & ． 79323 & ．96198 & －85038 & 87079 & 1.2 \\
\hline 10930． & 253． & 1．00000 & ． 40395 & ． 91391 & －94922 & ． 96990 & ． 35769 & \\
\hline 158. & 590． & \(1 \cdot 90000\) & ． 99562 & ． 89138 & － 92261 & －．03298 & ． 12725 & 9 \\
\hline 200. & 530. & 1.90000 & －99317 & 11494 & ． 33008 & －． 92634 & 14692 & 6.7 \\
\hline 251. & 5のロ． & 1.00000 & ． 98938 & ． 14452 & 03685 & －． 51552 & 16695 & 15.5 \\
\hline 316. & 500. & 1.50000 & ． 98318 & .18157 & －23877 & －．90977 & ． 19925 & 14.0 \\
\hline 398. & 500. & 1．90000 & ． 97349 & ． 22783 & ． 33820 & －． 01182 & ． 24823 & 12.1 \\
\hline 501. & 530. & 1．00000 & ．95822 & ． 28534 & ．93805 & －． 01228 & －30814 & 10.2 \\
\hline 631. & 500. & 1.00000 & ． 93416 & ． 35628 & ．93598 & －． 01743 & 38734 & 8.2 \\
\hline 794. & 500. & 1.80000 & ． 89645 & ． 44278 & ． 93264 & －．92309 & 4853a & ． 3 \\
\hline 1909． & 509. & 1．80日b0 & ． 83767 & ． 54581 & ． 03340 & －．02598 & 69339 & \\
\hline 158. & 1098． & － 90008 & －99898 & － 04575 & ． 11987 & －． 90229 & 05241 & 25.6 \\
\hline 20n． & 1 去気． & －ロ00ロの & ． 99829 & ． 05758 & .21976 & －．90309 & ． 96436 & 23.8 \\
\hline 251. & 1909． & 1.00000 & ． 99732 & －07247 & .01971 & －．90337 & ． 07907 & 22.0 \\
\hline 316. & 1009． & 1.00000 & ． 99578 & ．99118 & ．01982 & －． 00267 & ．09688 & 20.3 \\
\hline 398. & 1 nax ． & 1.90000 & ． 99335 & .11470 & .01980 & －．00280 & ． 12044 & 18.4 \\
\hline 501. & 1000. & 1．00000 & ． 98950 & .14421 & ．01971 & －． 00338 & ． 15966 & 16.4 \\
\hline 631. & 1900. & 1.00000 & ． 98340 & ． 18118 & .01981 & －． 90273 & 18748 & 14.5 \\
\hline 794. & 1000. & 1．00000 & ． 97376 & ． 22735 & －02005 & －．00010 & ． 23211 & 12.7 \\
\hline 1000． & 1000. & 1－09000 & ． 95855 & ． 28475 & ． 01968 & ． 80352 & －28789 & 10.8 \\
\hline
\end{tabular}

TABLE C． 10
ATTENUATION DATA FOR \(Z=10\) FEET FOR GRASS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline （ Hz ） & \(r(f t)\) & A & B & C & D & E & ＋ & \\
\hline 158. & 31. & ． 98744 & －． 83692 & ． 33511 & －． 10011 & ． 77378 & 1.77918 & 0 \\
\hline 200 & 31 & ． 98744 & －． 85171 & －． 29551 & ． 68459 & ． 37431 & 1.33480 & －2． 5 \\
\hline 251 & 31 & ． 98744 & －． 29803 & .85084 & －．69167 & －． 49675 & 77004 & \(2 \cdot 3\) \\
\hline 316 & 31 & ． 98744 & ． 64419 & －．63068 & .27971 & －． 72837 & ． 63057 & 4.9 \\
\hline 39 & 31 & ． 98744 & ． 71689 & ． 54664 & ． 77448 & ． 09457 & 1.13862 & －1．1 \\
\hline 50 & 31 & ． 98744 & －． 69266 & ． 57793 & －． 21162 & ． 75099 & 1.47875 & －3 \\
\hline 631. & 3 & ． 98744 & －．00442 & －．90151 & －． 57069 & －． 53205 & ． 56025 & 5．0 \\
\hline 79 & 3 & ． 98744 & ． 26704 & ． 86106 & ． 76534 & ． 15170 & 1．64640 & －4 \\
\hline 1900. & 31 & ． 98744 & .12606 & －． 89267 & －． 71037 & －． 32272 & ． 58962 & 4.6 \\
\hline 158. & 62. & ． 99682 & ． 12512 & ． 96430 & ． 12956 & ． 43497 & \(1 \cdot 13256\) & －1．1 \\
\hline คo & 62. & ． 99682 & －． 23518 & ． 94352 & －． 11425 & ． 45363 & 1.31259 & ． 4 \\
\hline 251 & 62. & ．99682 & －． 63696 & ． 73473 & －． 20658 & ． 40412 & 1.46499 & \(3 \cdot 3\) \\
\hline 316 & 62. & ． 99682 & －． 93847 & ． 25458 & 40044 & ． 21362 & 1.53539 & 3．7 \\
\hline 398 & 62. & ． 99682 & －．86252 & －． 44899 & 44247 & ． 10104 & ． 45897 & －3．3 \\
\hline 50. & 62. & 99682 & ． 14833 & 96101 & 20469 & 40508 & 1.09248 & － 8 \\
\hline 631 & 62. & ． 99682 & ． 83231 & － 50279 & ． 29539 & ． 34465 & ． 48624 & － 3 \\
\hline 794. & 62. & ． 99682 & ． 57134 & － 78683 & ． 34474 & 9520 & ． 91374 & ． 8 \\
\hline 1090. & 62. & ． 99682 & －． 92059 & ． 31314 & －． 41073 & .19310 & 1.51145 & －3．6 \\
\hline 158. & 125 & －99920 & ． 74029 & ． 66165 & －22368 & －． 07709 & － 88240 & \(1 \cdot 1\) \\
\hline 00 & 125. & ． 99920 & ． 60292 & ． 78886 & ． 23576 & ．01982 & ． 99544 & \(!\) \\
\hline 251 & 125. & ． 99920 & －49017 & － 90866 & ． 19362 & ． 13597 & 1.10695 & 9 \\
\hline 316 。 & 125. & －9992a & ． 11445 & ． 98626 & ． 12263 & ． 20233 & 1.27646 & \(2 \cdot 1\) \\
\hline 398 & 125. & －99920 & －． 25647 & ． 95918 & －06281 & －22810 & 1.50760 & －3．6 \\
\hline 531 & 125. & ． 99920 & －． 66628 & ． 73612 & －． 83163 & ． 23447 & 1.70913 & － 7 \\
\hline 63 & 125. & ． 99920 & －． 96490 & .23404 & －．11791 & ． 20563 & 1.84731 & ． 3 \\
\hline 794. & 125. & ． 99920 & －． 86465 & －． 48805 & 2n939 & ． 12578 & 1.77310 & －1） \\
\hline 1000. & 125. & ． 99920 & －． 110943 & －． 98683 & －．23295 & －． 14135 & 1.28869 & －2．2 \\
\hline 158. & 250. & ． 99980 & ． 93217 & ． 35703 & ． 11796 & － 02438 & ． 38048 & \(8 \cdot 4\) \\
\hline 200 & 259． & ． 99980 & ． 89423 & ． 44358 & ． 11592 & －92930 & ． 46977 & 6.6 \\
\hline 251. & \(25 \%\) & ． 99989 & ． 83512 & ． 54679 & ． 11280 & －03965 & ． 57809 & \(4 \cdot 8\) \\
\hline 316. & 250. & ． 99980 & ． 74397 & ． 66553 & ． 10466 & ． 13781 & ． 70659 & 3．0 \\
\hline 398. & 250． & ． 99980 & ． 68571 & ． 79343 & ．09421 & ． 97362 & ． 86981 & \(1 \cdot 2\) \\
\hline 59 & 250. & ． 99980 & ． 40168 & ． 91382 & ． 07964 & ．08919 & 1.06742 & 6 \\
\hline 631. & 250 & ． 99980 & ． 11419 & .99165 & ． 15003 & ． 10851 & 1.28676 & ． 2 \\
\hline 794. & 250. & ． 99980 & －． 25892 & ． 96404 & －．00332 & ． 11952 & 1.51302 & 3.6 \\
\hline 100以． & 250. & ． 99980 & －．67090 & .73913 & －．07000 & .09693 & 1．72471 & －4．7 \\
\hline 153. & 500． & －99995 & ．98286 & ． 18192 & －03828 & －．04614 & ． 23468 & \(12 \cdot 6\) \\
\hline 2010． & 500. & ． 99995 & ． 97313 & －22827 & － 04934 & －．03404 & .27315 & 11.3 \\
\hline 251. & 500. & ． 99995 & －95779 & －28589 & －ワ58の3 & －． 01504 & ． 31717 & 10.9 \\
\hline 316. & 500. & ． 99995 & ． 93364 & ． 35695 & ．059882 & －．00384 & ． 38221 & 8.4 \\
\hline 398. & 500. & ． 99995 & ． 89577 & ． 44351 & ． 65980 & －．00421 & 47680 & \(6 \cdot 4\) \\
\hline 501 & 5 ma & ． 99995 & ． 83676 & ． 54674 & ．05993 & －．90137 & ． 59178 & \(4 \cdot 6\) \\
\hline 631. & 500. & ． 99995 & ． 74576 & ． 66554 & ． 15972 & －．09520 & ． 74057 & 2.6 \\
\hline 794. & 500. & ． 99995 & －60771 & ． 79359 & ．05921 & －．00938 & ． 92118 & ． 7 \\
\hline 1000. & 500. & ． 99995 & ． 40393 & ． 91430 & ． 05944 & －．00776 & 1.13129 & \(-1 \cdot 1\) \\
\hline 158. & 1000． & ．99999 & －99570 & ．09139 & ．02992 & －．00207 & ．09952 & 29．0 \\
\hline 290. & 100 － & ． 99999 & ． 99326 & ． 11496 & －02985 & －．00292 & － 12343 & 18.2 \\
\hline 251． & 100n． & ． 99999 & ． 98939 & ． 14454 & －02985 & －．00289 & －15288 & 16.3 \\
\hline 316. & 10のロ。 & ． 99999 & ． 98326 & －18159 & ．02997 & －．00128 & ． 18873 & 14.5 \\
\hline 398． & 1900. & ． 99999 & ． 97358 & －22786 & －02998 & －．00077 & ． 23548 & 12.6 \\
\hline 501 & 1000. & ． 99999 & ． 95830 & ． 28538 & ． 02998 & －． 00076 & ． 29498 & 10.6 \\
\hline 631 & 1000. & ． 99999 & ． 93424 & ． 35633 & ．02996 & ．00136 & ． 36764 & 8.7 \\
\hline 794. & 1000. & ． 99999 & ． 89652 & ． 44276 & －02924 & ．00667 & ． 45584 & 6．8； \\
\hline 1000. & 1000. & ． 99999 & ． 83774 & ． 54587 & ．02680 & －01347 & ． 56497 & 5.0 \\
\hline
\end{tabular}
table C． 11
ATTENUATION DATA FOR \(Z=20\) FEET．FOR GRASS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & r（ft） & A & B & c & D & E & F & ） \\
\hline 158. & 31. & .90152 & ． 14756 & －． 76689 & －． 74641 & －．62824 & ． 13877 & 17.2 \\
\hline 200. & 31 & ． 90152 & ． 77604 & ．08673 & － 57997 & －． 79108 & －99053 & 1 \\
\hline 251. & 31 & ． 90152 & ．06554 & ． 77811 & ． 57298 & ． 78961 & 1.49902 & －3． \\
\hline 316. & 31. & ． 90152 & －． 73163 & .27289 & －． 97306 & －07051 & ． 74408 & \(2 \cdot 6\) \\
\hline 398. & 31. & ．90152 & ． 75624 & －． 19458 & ． 69235 & －． 68737 & ． 97184 & 2 \\
\hline 501 & 31. & ． 90152 & －． 76454 & ． 15887 & －． 67519 & －70422 & 1.13193 & 1.1 \\
\hline 31 & 31 & ． 90152 & ． 61319 & ． 48348 & ． 96496 & －． 14373 & 1.40148 & 2.9 \\
\hline 79 & 3 & ． 90152 & ． 66076 & 2 & 06397 & 1 & 58476 & 7 \\
\hline 1999. & 31. & .90152 & ． 69146 & ． 36282 & －．19104 & ． 95672 & .59421 & 4．5 \\
\hline 158. & 62. & －97239 & －． 86922 & ． 32638 & － 59861 & ． 34247 & ． 24310 & 1.9 \\
\hline 200 & 62 & ． 97239 & －． 86855 & －． 32816 & －．68298 & 95 & 1.18073 & 4 \\
\hline 25 & 62. & ． 97239 & －． 27667 & －． 88630 & －． 35719 & ． 59000 & ． 93988 & 5 \\
\hline 316. & 62. & ． 97239 & ． 69090 & －． 62926 & .39738 & －． 56366 & ． 68122 & \(3 \cdot 3\) \\
\hline 39 & 62. & ． 97239 & ． 70661 & ． 60231 & －62097 & 30025 & ． 93669 & 6 \\
\hline 561 & 62. & ． 97239 & －． 75238 & ． 54405 & －． 40630 & ． 55726 & 1.31854 & －2．4 \\
\hline 631 & 62. & ． 97239 & － 17545 & ． 92541 & －． 16231 & ． 67928 & ． 77766 & \(?\) \\
\hline 794 & 62. & ． 97239 & 17730 & ． 91139 & 28545 & 62781 & 1.11713 & ． 7 \\
\hline 1990． & 62. & ． 97239 & .25391 & －．89309 & ． 11355 & －．68024 & ． 85882 & 1.3 \\
\hline 158． & 125. & ． 99288 & －12299 & ． 97284 & －35664 & ． 14491 & 1.48031 & 3．4 \\
\hline 2 O & 125. & ． 99288 & －．2．4109 & .95048 & ． 21268 & －32046 & 57788 & （1） \\
\hline 25 & 125. & ． 99288 & －． 64617 & ． 73757 & －．06724 & ． 37869 & 1.61225 & 1 \\
\hline 31 & 125. & ． 99288 & －． 94804 & ．25052 & －． 29720 & ． 24414 & 1.64373 & 3 \\
\hline 39 & 125. & ． 99288 & －．86603 & －． 45992 & －． 38428 & －01606 & 1.54954 & －3．8 \\
\hline 50 & 125. & －99288 & －． 13951 & ． 9706 & －－2．6356 & －． 28291 & 1.11041 & 9 \\
\hline 63 & 125. & －99288 & ． 84587 & －． 49602 & － 08.578 & －． 37493 & ． 26239 & 6 \\
\hline 794. & 125. & －99288 & ． 56303 & －8С283 & －3ヶ22の 7 & －． 04421 & 1.17332 & ． 4 \\
\hline 1900． & 125. & ． 99288 & －． 93468 & ． 2.9649 & －ด0ヶス9 & .38453 & 1.93765 & －5．7 \\
\hline 158. & 250. & －99820 & ． 74161 & ． 66341 & ． 16678 & ． 10675 & ． 69937 & 3.1 \\
\hline 200. & 250 & ． 99820 & ． 60380 & ． 79090 & －15079 & ． 128.46 & ． 85789 & － 3 \\
\hline 25 & 250. & ． 99820 & －40942 & ． 91091 & － 12976 & ． 15694 & 1.34153 & \\
\hline 316 。 & 259． & ． 99820 & ． 11385 & ． 98850 & －06609 & ． 18670 & 1.24341 & 9 \\
\hline 398． & 250 & ． 99820 & －． 25807 & ． 96099 & －． 01137 & ． 19802 & 1.46865 & 3 \\
\hline 50 & 259. & ．99820 & －． 66874 & －73681 & －． 28115 & －18063 & 1.68050 & 5 \\
\hline & 250． & ． 99820 & －． 96740 & ． 23289 & －． 16828 & ． 10438 & 1．80192 & ． 1 \\
\hline 794. & 250. & ． 99820 & －． 86547 & －．49098 & －．19023 & －．05500 & 1．72938 & 4.8 \\
\hline 1090 & 250. & ． 99820 & －． 10697 & －． 98927 & －． 014308 & －． 19328 & 1.32727 & －2． 5 \\
\hline 158． & 5ดด． & ． 99955 & ． 93266 & ． 35727 & －07659 & －．06391 & ． 44495 & 7.9 \\
\hline 209. & 590. & ． 99955 & ． 89469 & ． 44388 & ． 09286 & －． 93642 & 51941 & ． 7 \\
\hline 251 & 500. & ． 99955 & ． 83553 & ． 54717 & ．09969 & －00360 & ． 60416 & 4.4 \\
\hline 316. & 59\％． & ． 99955 & － 74430 & ． 66597 & －09528 & ．02953 & ． 72658 & 2．8 \\
\hline 398． & 500 & ． 99955 & －60593 & ． 79395 & ． 099.30 & －03783 & ． 89879 & 9 \\
\hline 591. & 5の日． & ． 99955 & ． 40174 & ． 91439 & ． 08476 & － 05259 & 1.99937 & － 8 \\
\hline 631. & \(5 \%\)－ & ． 99955 & ． 11404 & ． 99222 & ．07996 & － 05964 & 1.34233 & ． 6 \\
\hline 794. & 500． & ． 99955 & －． 25933 & ． 96450 & －97237 & － 06865 & 1.60460 & 4．1 \\
\hline 1000． & 500. & ． 99955 & －． 67152 & .73930 & ．05191 & .08518 & 1.84297 & －5．3 \\
\hline 158. & 10 mb & ． 99989 & ． 98299 & ． 18195 & ． 04556 & －．02053 & －21189 & 13.5 \\
\hline 200 & 1000. & ． 99989 & ． 97327 & －22831 & ． 04791 & －．01418 & ． 25369 & 11.9 \\
\hline 251． & 1 100． & ． 99989 & ． 95792 & ． 28594 & ．04975 & －－00470 & ． 30477 & 19.3 \\
\hline 316. & 1000. & ． 99989 & ． 93376 & － 35791 & －04991 & －90241 & ． 37311 & ． 6 \\
\hline 398. & 19 mo & ． 99989 & ． 89589 & ． 44358 & －04982 & －00383 & ． 46588 & 6.6 \\
\hline 501. & 10 月ด． & ．99989 & ． 83687 & － 54684 & －04952． & ．00666 & － 58049 & 4.7 \\
\hline 631. & 1000. & ． 99989 & ． 74584 & ． 66565 & － 04923 & ． 00859 & － 72368 & 2.8 \\
\hline 794. & 1000. & ． 99989 & ． 66777 & ． 79372 & －04813 & － 01341 & ． 89594 & \(1 \cdot 0\) \\
\hline 1000. & 1 1月の． & ． 99989 & ． 40395 & ． 91444 & ．04473 & －02227 & 1．99837 & －． 8 \\
\hline
\end{tabular}

TABLE C． 12
ATTENUATION DATA FOR \(2=30\) FEET FOR GRASS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
f(\mathrm{~Hz}) \\
158 .
\end{gathered}
\] & \[
\begin{gathered}
r(f t) \\
31 .
\end{gathered}
\] & \[
.780_{8}^{A}
\] & \[
\begin{gathered}
B \\
.66564
\end{gathered}
\] & \[
\begin{gathered}
c \\
.02251
\end{gathered}
\] & \[
\begin{gathered}
\text { D } \\
.83270
\end{gathered}
\] & －\({ }_{\text {E }}^{\text {e }}\) & \[
\begin{gathered}
\mathrm{F} \\
1.10334
\end{gathered}
\] & \(-F(d B)\)
-.9 \\
\hline 2のИ． & 31. & ． 78987 & －．06559 & ． 66278 & ． 40970 & ．90522 & 1.27933 & －2．1 \\
\hline 251. & 31. & ． 78087 & －． 55454 & －． 36887 & －． 97493 & －． 19175 & ． 41164 & 7.9 \\
\hline 316. & 31. & ． 78987 & ． 66554 & ．02509 & ． 952.22 & －． 28380 & 1.11134 & 9 \\
\hline 39\％． & 31. & －78087 & －． 65755 & －． 10584 & －． 96672 & ． 22960 & ． 57881 & 4.7 \\
\hline 591. & 31. & ． 78987 & ． 28626 & ．60136 & ． 77989 & ． 61566 & 1.27458 & －2． 1 \\
\hline 631. & 31 & － 78087 & ． 66593 & ．01042 & ． 84620 & －． 52077 & 1.09816 & \％ \\
\hline 794. & 31 & －78087 & ． 64628 & .16091 & .91104 & －． 39657 & 1.18496 & －1．5 \\
\hline 1000． & 31. & ． 78087 & －． 36922 & .55431 & ．17965 & ． 98754 & 1.33215 & －2． 5 \\
\hline 158. & 62 & －92848 & －． 69096 & －． 63254 & －－¢ 569 & －． 16950 & ． 8.3416 & 1.6 \\
\hline 29x． & 62. & － 92848 & ． 22736 & －． 84236 & －．21917 & －．82397 & ． 48230 & 6.3 \\
\hline 251. & 62. & － 92848 & ． 87235 & －． 01637 & －78146 & －． 34100 & ． 89829 & － 9 \\
\hline 316. & 62. & ． 92848 & －．02832 & －87205 & ．24771 & － 81584 & 1.20582 & －1．6 \\
\hline 398. & 62. & ． 92848 & －． 76416 & －． 42111 & －． 8,4737 & －．09442 & ． 99619 & ． 9 \\
\hline 501 & 62. & .92848 & ． 87054 & －．05858 & ． 73764 & －． 42760 & .87790 & 1.1 \\
\hline 631. & 62． & ． 92848 & －． 87217 & －．02405 & －． 73145 & ． 43812 & 1．16482 & －1． 3 \\
\hline 794. & 62. & －92848 & －50018 & ． 71490 & － 813076 & ． 25669 & 1．3232．2 & －2．4 \\
\hline 1080 & 62. & ． 92848 & ． 8.5620 & －． 16787 & ． 53550 & －． 66348 & ． 78422 & \(2 \cdot 1\) \\
\hline 158. & 125. & ． 98058 & －． 51463 & ． 81391 & － 02442 & ． 51871 & 1.54804 & －3．9 \\
\hline 290. & 125. & .98058 & －．86530 & －42255 & －． 29017 & ． 43065 & 1.55573 & －3．7 \\
\hline 251. & 125. & ． 98058 & －． 93501 & －． 23035 & －． 513.37 & －97819 & 1.43576 & －3．1 \\
\hline 316. & 125. & ． 98058 & －． 42168 & －． 86573 & －． 36539 & －． 36898 & 1．14972 & －1．2 \\
\hline 398． & 125. & ． 98058 & ． 58241 & －． 76687 & ． 13191 & －． 50225 & ． 59246 & 4.5 \\
\hline 501. & 125. & －98058 & － 85982 & ． 43360 & ． 51927 & －00463 & ． 77048 & 2． 3 \\
\hline 631 & 125. & .98058 & －． 57823 & －77903 & －． 93987 & ． 51775 & 1.53975 & －3．7 \\
\hline 794. & 125. & ． 98058 & －． 28194 & －． 92077 & －． 42289 & －． 30137 & 1． 1.4338 & 4 \\
\hline 1907. & 125. & .98058 & ． 59695 & ． 75561 & －5985？ & ． 10522 & 1.19405 & －． 9 \\
\hline 158． & 250. & ．99504 & ． 45770 & ． 87823 & ．24365 & －12669 & 1.08386 & －． 7 \\
\hline 20ヵ． & 250. & ． 99504 & ． 19491 & .97097 & ． 18143 & ． 20615 & 1.24435 & －1．0） \\
\hline 251. & 250． & ． 99594 & －． 15516 & ． 97811 & － 064194 & ． 26705 & 1.40712 & －3．9 \\
\hline 316. & 250. & ． 99504 & －． 56398 & ． 81469 & －．075．34 & ．26411 & 1.58179 & －4．0 \\
\hline 398． & 2517. & ． 99504 & －．91111 & ． 38813 & －． 19223 & ． 19612 & 1．72464 & －4．7 \\
\hline 591. & \(25 \pi\). & ． 99504 & －． 94420 & －． 29876 & －． 27146 & ． 0415 \％ & 1.79213 & －4．6 \\
\hline 631. & 250． & ． 99504 & －． 35956 & －．92276 & －．22．157 & －． 16223 & 1.36461 & －2．7 \\
\hline 794. & 250. & ． 99504 & ．67678 & －．72311 & －62．694 & －． 27330 & － 56685 & \(4 \cdot 9\) \\
\hline 1000. & 250. & ． 99504 & .81928 & ． 55638 & ． 27320 & －．02784 & ． 73680 & 2.7 \\
\hline 158. & 5 m & ． 99875 & ．85139 & ． 51987 & ． 13974 & －－пn873 & －601？ & 4.4 \\
\hline 2 ¢0． & 500. & ． 99875 & ． 76928 & ． 63508 & ． 13739 & －12309 & ． 7135 \％ & 2．9 \\
\hline 251 & 500. & ． 99875 & ． 64415 & ． 76170 & －12：382 & －06385 & ． 84619 & 1.5 \\
\hline 316. & 500． & ． 99875 & －45801 & .88620 & －19735 & ．09664 & 1.01796 & －1 \\
\hline 398. & 570. & ． 97875 & ． 19213 & ． 97888 & －97711 & －11603 & 1.23511 & －1．8 \\
\hline 591． & 59の． & ． 99875 & －． 16161 & ． 98438 & －04：56 & ． 13328 & 1.47194 & －3．4 \\
\hline 631. & 50日． & ． 99875 & －． 57276 & － 81674 & －．0n618 & ． 13918 & 1．70569 & －4．6 \\
\hline 794. & 500. & ． 99875 & －． 92107 & ． 38308 & －． 06948 & －12075 & 1．86884 & －5．4 \\
\hline 1900. & 539. & .99875 & －． 94778 & －． 31118 & －． 12.933 & ． 05179 & 1.85310 & －5．4 \\
\hline 158. & 1000 & ． 99969 & ． 96198 & －27987 & － 06690 & －． 02308 & ． 31171 & 19.1 \\
\hline 29 x & 1900. & ． 99969 & －9．4032 & .33850 & －068F1 & －－ロ1238 & ． 37356 & 8.6 \\
\hline 2.51 ． & 100n． & ． 99969 & －90631 & ． 42116 & ．06985 & ． 90296 & ． 44893 & 7．\({ }^{1}\) \\
\hline 316. & 1900 & ． 99969 & ． 85323 & －52．936 & ． 196822 & －01528 & ． 54881 & 5.2 \\
\hline 398. & 1009. & ． 99969 & ． 77113 & ．63572 & .96686 & －02044 & ． 68252 & 3.3 \\
\hline 501. & 1 ตตの． & ． 99969 & ． 64599 & ． 76255 & ．06413 & ．02786 & －84519 & 1.5 \\
\hline 631. & 1090. & ． 99969 & － 45981 & ． 88733 & ． 06048 & －03507 & 1．04249 & －． 4 \\
\hline 794. & 1700 & ． 99969 & ． 19381 & ． 98041 & － 05251 & －04616 & 1．26872 & －2．1 \\
\hline 1300 & 1000. & ． 99969 & －． 16022 & ． 98646 & ．93577 & ．06307 & 1.51257 & －3．6 \\
\hline
\end{tabular}

\section*{APPENDIX D: EXPERIMENTAL PRESSURE FIELD DATA}

Experimental data is presented in graphical form in Figu:es D. 1 through D.19. In all cases, one vertical division corresponds to 1 dB .

Since the data presented here represents the pressure field less 6 dB per double r , exsess attenuation is counted downward from the 0 dB level, \(\mathrm{i} . \mathrm{e}\). , in the negative sense.

As noted in the conclusions of Section 4.1, theoretical and experimental data do agree favorably.




ODB REFERENCE \(Z=5^{\prime}, r=3 Z^{\prime}\) (ALL GRAPHS)

FIGURE D.I. ATTENUATION VERSUS DISTANCE - CONCRETF.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 50 & & 100 & & 200 & & & 500 & & 1000 \\
\hline FREQUENCY & & & & & & & & 解冉曲 & & &  \\
\hline & & & & & & & & & & & \\
\hline & \({ }^{\text {en}}\) & & & & & & & － & &  &  \\
\hline & ） & & \()^{\text {enex }}\) & & & & － & & & & \(\mathrm{m}^{\text {m}}\) \\
\hline & \()^{(1)}\) & & \({ }^{+3}\) & & & & \％ & － & ＋ & \％ & ＋n \\
\hline ODB &  & & 冉事年 & & & & \＃＋ & \＃\＃\＃\＃ & \＃ & \＃ &  \\
\hline & \(\theta^{+}\) & & & & & & & \(\operatorname{He}^{\text {m}}\) & & &  \\
\hline & & & & & & & & & & & 冊冊冊冊 \\
\hline
\end{tabular}



FIGURE D．2．ATTENUATION VERSUS DISTANCE－CONCRETE．（Continued）




\[
O \text { DB REFERENCE } z=5^{\prime}, r=32^{\prime} \text { (ALL GRAPHS) }
\]

FIGURE D.3. ATTENUATION VERSUS DISTANCE - CONCRETE. (Continued)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 50 & & 00 & & 200 & & & 500 & 1000 \\
\hline FREGUENCY & & & & & & & 冊冉冊曲 & T11 &  & Wm \\
\hline \multirow{4}{*}{ODB} & & & & & & & ＋ & & 冉冊 & \\
\hline & & \(⿻^{\text {m}}\) & mem & & & & \(\mathrm{m}^{\text {mem }}\) & & ＋ & \\
\hline & & & & & & & 冉冉 & & 冉冊 & \\
\hline &  & 贯冊冊 & 冊冊冉宜 & & & & 里 & & \＃m．．．．． & \\
\hline
\end{tabular}

\[
O \text { DB REFERENCE } Z=5^{\prime}, r=32^{\prime} \text { (ALL GRAPHS) }
\]


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline FREQUENCV & \multicolumn{3}{|r|}{50} & \multicolumn{2}{|l|}{100} & \multicolumn{3}{|l|}{200} & 500 & \multirow[t]{2}{*}{1000} \\
\hline 320 Hz & 冉冊冊冊曲 & & 冉冊冊冊冉年 & & & & & & & \\
\hline \multirow[t]{7}{*}{ODB} & \(\rightarrow^{( } ⿻^{(1)}\) & &  & 吅 & & & －\({ }^{\text {\％}}\) & 里 & ＋ & 连 \\
\hline & & & & & & & － & & － &  \\
\hline & \(\operatorname{Som}^{\text {m }}\) & &  & 冉 & & & \({ }^{-\ldots}\) & － & \％ & \({ }^{-m}=\) \\
\hline & \(\|^{\text {m}}\) 冉 & & \(\rightarrow^{(m)}\) ．\({ }^{\text {m }}\) & 冊 & & & \({ }^{+}+{ }^{\text {en }}\) & ＋ & ， & 弗芴 \\
\hline & & & & & & & & & & \\
\hline & & & \(\square^{\text {m}}\) & ， & & & & & &  \\
\hline & 囘囘冉皿 & &  & \＃ & & & & & ， & 冊孟冊冉 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 50 & S & & 100 & & & 200 & & 500 & 1000 \\
\hline FREQUENCY 400 Hz & & & & & 冊冊的冉 & & & & \＃\＃ & \＃ & T\＃冂卄曲 &  \\
\hline \multirow{8}{*}{ODB} & & & & & & & & & & \(\square^{\text {m }}\) ． & 冉＋ & \(\mathrm{m}^{\text {m}}\) 囘冉 \\
\hline & & & & & － & & & & & \(\rightarrow\) 迷 & NT＋ & \\
\hline & & & & 冉 & ． & & － & & &  & 世\＃\％ &  \\
\hline & & & \(\underbrace{\text { ¢ }}\) &  & \({ }^{\text {m}}{ }^{\text {m}}\) 冉 & ， & & & & \({ }^{\text {m}}\) 冉 & 皿 & \(\mathrm{m}^{-m+}\) \\
\hline & & & & \({ }^{\text {en}}\) & － & & & & & & & （4mem \\
\hline & & & & 皿 & 囘冉正 & & & & & \(\|^{\text {m}}\) & － & \(\mathrm{m}^{\text {m }}\) \\
\hline & & & & 岡冉 & & & & & & \({ }^{\text {m}}\) & & 且县 \\
\hline & & & & 冊冊 & 冊冊冊冊 & & & & &  & 冊 &  \\
\hline
\end{tabular}
\[
\text { O DB REFERENCE } z=5^{\circ}, r=32^{\prime} \text { (ALL GRAPHS) }
\]

FIGURE D．5．ATTENUATION VERSUS DISTANCE－ASPHALT．（Continued）



ODB REFERENCE \(z=5^{\prime}, \mu=32^{\prime}\) (ALL GRAPHS)

FIGURE D.6. ATTENUATION VERSUS DISTANCE - ASPHALT. (Continued)



O DB REFERENCE \(z=5^{\prime}, r=3 z^{\prime}\)

FIGURE D.7. ATTENUATION VERSUS DISTANCE - ASPHALT. (Continued)






O DB REFERENCE \(Z=5^{\prime}, r=32^{\prime}\) (ALL GRAPHS)
FIGURE D.8. ATTENUATION VERSUS DISTANCE - GRASS.

D-9

\section*{DISTANCE IN FEET ( \(\mu\) )}



\(O\) OB REFERENCE \(Z=5^{\prime}, r=32^{\prime}\) (ALL GRAPHS)

FIGURE D.9. ATTENUATION VERSUS DISTANCE - GRASS. (Continued)




\footnotetext{
FIGURE D.11. ATTENUATION VERSUS DISTANCE - GRASS. (Continued)
}



\author{
\(r=125\)
}


O DB REFERENCE \(z=50^{\circ}, r=31.25^{\prime}\) (ALL GRAPHS)
LEGEND
\(\cdots \cdots \cdot\).
\(Z=5^{\circ}\)
\(Z=10^{\circ}\)
\(Z=20^{\circ}\)
\(Z=30^{\prime}\)
figure d.12. attenuation versus frequency at fixed radius, r CONCRETE.

FREQUENCY IN HE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 80 & 100 & & & 200 & & & & & & 500 & & & 1000 \\
\hline － \(250^{\circ}\) & － & ma & & & & & & & & & & & ， & \\
\hline & & & & & & & & & & & & & & \\
\hline & mem & & & & & & & & & & & & Her & \\
\hline & ＋ & & & & \(\cdots\) & ， & \(\bigcirc\) & & & &  & \＃ & ＋ & \＃ \\
\hline & \＃\＃fif & & & & \＃ & & & & & & 冉冉冉 & － & & \\
\hline ODB & & & & & & & & & & & & & & \\
\hline & \({ }^{-}\) & & & & & & & & & & & & \＃\＃ & \\
\hline & \#\# \#in & & & & & & & & & & & 胁 & Hmem & \\
\hline
\end{tabular}



ODB REFERENCE \(z=30^{\prime}, \mu=31.25^{\circ}\)
LEGEND
…．．．\(z=5^{\prime}\)

\footnotetext{
FIGURE D．13．ATTENUATION VERSUS FREQUENCY AT FIXED RADIUS，r－ CONCRETE．（Continued）
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 80 & 100 & & & & 200 & & & & & 500 & & 1000 \\
\hline \(r=31.25\) & Mmmin & & & & & & & & & & 生 & &  \\
\hline & & & & & & & & & ， & m & －\({ }^{\text {m }}\) & & m \({ }^{\text {m }}\) \\
\hline \multirow[t]{9}{*}{ODB} & & & & & & & & & & － & － & & － \\
\hline & mm & & & & & & & & & & N & & （m） \\
\hline & & & & & － & & & & & \％\({ }_{\text {\％}}\) & 奥 & & Hexmy \\
\hline & & & & & & & & & & Seeme & \％eme & & \(\mathrm{man}^{-}\) \\
\hline & 同 \({ }^{\text {m }}\) & ＋ & & & & & & & &  & \(\mathrm{m}_{\mathrm{m}}^{\text {m}}\) & & mm H \\
\hline & mm & \＃ & & & & & & & & \()^{\text {em}}\) &  & & \(\mathrm{m} \rightarrow \mathrm{m} \mathrm{m}\)＋ \\
\hline & & & & & & & & & & & & & 冉 4 H \\
\hline & \(\mathrm{H}^{\text {m }}\) 每 & 里 & & & & & & & & & & & \\
\hline & Hmme & \[
\mathrm{H}
\] & & & & & & & & & & &  \\
\hline
\end{tabular}



O DB REFERENCE \(z=30^{\circ} ; \mu=51.25^{\circ}\)（ALL GRAPHS）
LEGEND

FIGURE D．14．ATTENUATION VERSUS FREQUENCY AT FIXED RADIUS，r－ ASPHALT．


\section*{LEGEND}
-•••••• Z \(5^{\circ}\)
\[
r=500^{\circ}
\]


O DB REFERENCE \(z=30^{\prime}, \mu=31.25^{\circ}\) (BOTH GRAPHS)

FIGURE D.15. ATTENUATION VERSUS FREQUENCY AT FIXED RADIUS, r ASPHALT. (Continued)





FIGURE D.17. ATTENUATION VERSUS FREQUENCY AT FIXED RADIUS, r GRASS .
FREQUENCY \(\mathbb{I N} \mathrm{Hz}\)



O DB REFERENCE \(Z=30^{\prime}, r=31.25\)
LEGEND:
\(\cdots \cdots \cdots 5^{\prime}\)

FIGURE D.19. ATTENUATION VERSUS FREQUENCY AT FIXED RADIUS, r GRASS. (Continued)```


[^0]:    *Reference 27 and 33. (All references given in Bibliography)

[^1]:    * It will be seen that this condition corresponds to examination of wave phenomena in the neigiborhood of the interface, the region of greatest interest.

[^2]:    *Reference 30, p 196.

[^3]:    * Op cit. p. 87.

[^4]:    * Op cit. pp 88, 89.

[^5]:    * Reference 1, pp 73-75 and pp 149-152.

[^6]:    Reference 22.

[^7]:    * References 3,4,5,6.
    **Reference 8 pp 107 to 111.

[^8]:    * This condition is nothing more than a statement of Snell's Law.

[^9]:    * Reference 2 p 840.

[^10]:    * Lo, cit equation (19.4).

[^11]:    References 9, 10.

[^12]:    Reference 18.

[^13]:    *Reference 2, p840. Also note that on the basis of this reference ano paragraph 2.4.4, that five real numbers will completely define propagation in porous media at all frequencies.

[^14]:    * Reference 30, p 417.

[^15]:    * If atmospheric stability warranted, this microphone also was moved to speed up the testing procedure.

[^16]:    * Excess attenuation is that above and beyond the $6 \mathrm{~dB} /$ double distance predicted for the same point source operating in free space conditions. Excess attenuation for pressure field velocity potential will be equal.

[^17]:    * References 3-6, 11.
    ** References 12-14. Also note Reference 24.

[^18]:    *Reference 1, pp. 59-61.

[^19]:    * As an artifice to keep track of Riemann surfaces, the fourdigit designator containing symbols 0,1 , and $X$ has been devised where $X$ is free to take on either value, ie., 0 or 1 . If the symbols are now denoted by $X_{4}, X_{3}, X_{2}$, and $X_{1}$ ( to correspond to $\gamma_{4}, \gamma_{3^{\prime} 3^{\prime}}$ etc.), then the applicable surface number is given by $X_{4} \cdot 2^{3}+x_{3} \cdot 2^{2}+x_{2} \cdot 2+x_{1}+1$.

[^20]:    * Symbols used here are defined in Section 2.1.

