General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

51

14

Technical Memorandum 33-446

Energy Levels and Transition Matrix Elements of Paramagnetic Crystals for Maser Applications

Robert W. Berwin

.

TECHNICAL REPORT STANDARD TITLE PAGE

	-	
1. Report No. 33-446	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date March 1, 1970
EMERGY LEVELS AND TRANS PARAMAGNETIC CRYSTALS F	OTTION MATRIX ELEMENTS OF OR MASER APPLICATIONS	6. Performing Organization Code
7. Author(s) Robert W. Berwin		8. Performing Organization Report No.
9. Performing Organization Name a	nd Address	10. Work Unit No.
JET PROFULSION LAB California Institu 4800 Oak Grove Dri	ORATORY te of Technology .ve	11. Contract or Grant No. NAS 7-100
Pasadena, Californ	ia 91103	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Ac	ldress	Technical Memorandum
NATIONAL AERONAUTICS AND Washington, D.C. 20546	SPACE ADMINISTRATION	14. Sponsoring Agency Code
15. Supplementary Notes		
-		
16. Abstract		<u> </u>
Computer programs on the	e Univac 1108 have been d	eveloped at the Jet Propulsion
emerald, iron-doped rut	chergy levels and transit.	state, and chromium-doped
rutile. These programs external dc magnetic fi	e also generate SC-4020 pl .eld which is at any orien	ots of energy levels vs an tation with respect to the
crystal magnetic axes.		
17. Key Words (Selected by Author(s)) 18. Distribut	ion Statement
Crystallography Masers and Lasers	Unc.	lassified Unlimited
Quantum Theory and Rela	tivity	
19. Security Classif. (of this report)	20. Security Classif, (of this	page) 21. No. of Pages 22. Price
Unclassified	Unclassified	15

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14 blank. Complete the remaining items as follows:

- 3. Recipient's Catalog No. Reserved for use by report recipients.
- 7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization.
- 8. Performing Organization Report No. Insert if performing organization wishes to assign this number.
- 10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing organizations will leave this blank.
- 11. Insert the number of the contract or grant under which the report was prepared.
- 15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of (or by)... Presented at conference of... To be published in...
- 16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified. If the report contains a significant bibliography or literature survey, mention it here.
- 17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging.
- 18. Distribution Statement. Enter one of the authorized statements used to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements 'are "Unclassified—Unlimited, " "U.S. Government and Contractors only, " "U.S. Government Agencies only, " and "NASA and NASA Contractors only."
- 19. Security Classification (of report), NOTE: Reports carrying a security classification will require additional markings giving security and downgrading information as specified by the Security Requirements Checklist and the DoD Industrial Security Manual (DoD 5220, 22-M).
- 20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate separately the classification of the title and the abstract by following these items with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items.
- 21. No, of Pages. Insert the number of pages.
- 22. Price. Insert the price set by the Clearinghouse for Federal Scientific and Technical Information or the Government Printing Office, if known.

Technical Memorandum 33-446

Energy Levels and Transition Matrix Elements of Paramagnetic Crystals for Maser Applications

Robert W. Berwin

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA

March 1, 1970

PRECEDING PAGE BLANK NOT FILMED.

Preface

The work described in this report was performed by the Telecommunications Division of the Jet Propulsion Laboratory. The subroutine which diagonalizes the Hermitian matrix was kindly furnished by R. J. Hanson of the Computation and Analysis Section.

PRECEDING PAGE BLANK NOT FILMED.

Contents

I.	Introductio	ń,	٠	٠	•	٠	٠	÷	,	٠	٠	•	٠	٠	٠	٠	٠	•	ł	٠	4	•	•	.1	•	1
H.	Discussion	, ,		,	,				ł.		•	•	•	٠	•	•	•	•	•	•	•		•	٠		١
	A. Spin Ha	niltoni	an	•	,	,		•	•		•	,			•		÷	٠	•	٠	•	٠		۴	•	1
	B. Transitio	n Prob	abil	ity	Mc	atri:	хĔ	len	nen	ts.				•							•	•		*		2
	C. Main Pro	grams	•	•	٠					•			•								•_			•	٠	2
	1, RUBY	CR.		•		٠				•	•	٠			•			•					•	•	•	2
	2. TIO2F	Έ.,	٠	•	,			•		٠	•		•		•	•	÷	•						•		3
	3. EMER	CR.	•		,	,	•		•		•		,	4	,		٠	,	•	٠	٠	•	٠	•	•	5
	4. ZNW	OFE .	,		•	•	,	•	,	•		¥		•	,	÷	÷	,	•	•		٠	٠	•	•	5
	5. TIO20	CR.		•	٠				•	,				•	•		•	•	•	•	•	•	٠	•	٠	7
Aŗ	Appendix. Energy Levels and Computer Output for the Case of Cr(+3) in Beryl (Emerald) for $\theta = 90$ deg With External dc																									
	/*/	agneric	: Г Н	310	us	a	ra	ran	IGI	er	•	•	•	•	•	*	•		•	•	•	٠	٠	•	•	0
Re	ferences	, , .	•	٠	•	•	•	•	٠	•	•	•	,	٠	•	•	٠	٠	•	•	•	•	•	٠	•	15
Fig	gures																									

1. Orientation of H_{da} and c axis	• •	•	•	3
2. Orientation of H _{de} and crystal magnetic axes x, y, z; crystalline axes a, b, c shown with c axis along y direction; a and b axes in x-z plane.	IG • • •	٠	٠	3
3. Orientation of H _{dc} and crystal magnetic axes x, y, z; a, b, c crystalline axes with a and c axes in x-z plane		•	•	5

8

A-1. Plot of energy levels of Cr(+3) in beryl (emerald) vs external dc magnetic field for $\theta = 90 \text{ deg}$.

Abstract

Computer programs on the Univac 1108 have been developed at the Jet Propulsion Laboratory to give the energy levels and transition probabilities for ruby, emerald, iron-doped rutile, iron-doped zinc tungstate, and chromium-doped rutile. These programs also generate SC-4020 plots of energy levels vs an external dc magnetic field which is at any orientation with respect to the crystal magnetic axes.

vi

Energy Levels and Transition Matrix Elements of Paramagnetic Crystals for Maser Applications

I. Introduction

Investigation of maser performance of paramagnetic crystals is a continuing program in the Microwave Electronics Group at the Jet Propulsion Laboratory (JPL). As the need arises for higher signal frequencies, it is necessary to evaluate the maser qualities of many crystals. Efficient study of maser crystal performance can be achieved by the use of a set of fine structure energy levels and transition probabilities. Such information allows the investigator to determine the optimum orientation of the crystal magnetic axes with respect to the external dc magnetic field and the polarization of the signal and pump frequencies.

To meet this goal, Fortran V language programs for the Univac 1108 computer at JPL have been implemented to diagonalize the spin Hamiltonians of ruby, emerald, irondoped rutile, iron-doped zinc tungstate, and chromiumdoped rutile. For each of these crystals, eigenvalues in GHz, normalized eigenvectors, and transition probabilities are computed, and a plot by the Stromberg-Carlson SC-4020 Plotter is made of eigenvalues vs the external dc magnetic field.

II. Discussion

A. Spin Hamiltonian

The spin Hamiltonian for the case of ruby was derived in detail in Ref. 1. If H_s is the spin Hamiltonian which, because of the physical nature of the problem, is Hermitian then the equation to be solved is

$$H_s|\psi_i\rangle = E_i|\psi_i\rangle \qquad i = 1, \cdots, n = 2S+1 \qquad (1)$$

where eigenvalues E_i are real, and S is the effective total spin of the ion in the crystal, H_s can be diagonalized by a unitary matrix with the result that the eigenvalues occur along the diagonal of the transformed matrix. $|\psi_i\rangle$ is an

n-fold vector representing a linear combination of the *n*-pure spin states:

$$|\psi_i\rangle = a_i |S\rangle + b_i |S-1\rangle + c_i |S-2\rangle + \cdots + x_i |-S\rangle$$

The $|S\rangle$, etc., are the base states corresponding to the 2S + 1 positions of the spin dipole in a magnetic field.

The diagonalization of H_s by computer methods can be conveniently handled by expanding the $n \times n$ Hermitian matrix into a $2n \times 2n$ real matrix.

Thus, if H_s and $|\psi_i\rangle$ are expressed as $H_s = H_{s1} + iH_{s2}$ and $|\psi_i\rangle = |\psi_i\rangle_1 + i|\psi_i\rangle_2$ then Eq. (1) takes the form

$$\begin{bmatrix} H_{s_1} - H_{s_2} \\ H_{s_2} & H_{s_1} \end{bmatrix} \begin{bmatrix} |\psi_i\rangle_1 \\ |\psi_i\rangle_2 \end{bmatrix} = E_i \begin{bmatrix} |\psi_i\rangle_1 \\ |\psi_i\rangle_2 \end{bmatrix}$$
(2)

Eq. (3), for S = 3/2 becomes

B. Transition Probability Matrix Elements

From first order perturbation, the transition probability per unit time of a transition from state ψ_i to state ψ_j is

$$W_{ij} = \frac{1}{4} \gamma^2 G(f) |\langle \psi_i | H' | \psi_j \rangle|^2$$
 (3)

where $\gamma = g\beta\mu_0/h$, H' is the applied perturbation, and G(f) is the density of states as a function of energy. When an RF magnetic field $\mathbf{H}_1 = H_1^0(\phi_1 \mathbf{i} + \phi_2 \mathbf{j} + \phi_3 \mathbf{k})$ is applied to the crystal, the dipole interaction energy is $H' = \boldsymbol{\mu} \cdot \mathbf{H}_1 = g\beta \mathbf{S} \cdot \mathbf{H}_1$, where ϕ_1 , ϕ_2 , and ϕ_3 are the direction cosines of \mathbf{H}_1 with respect to the magnetic axes x, y, z of the crystal.

 $\frac{\langle \psi_i | g\mathbf{H}_1 \cdot \mathbf{S} | \psi_i \rangle}{H_1^0} = \left[a_i^* b_i^* c_i^* d_i^* \right] \begin{bmatrix} 3\phi_3 & (3)^{\frac{1}{2}} (\phi_1 - i\phi_2) & 0 & 0\\ (3)^{\frac{1}{2}} (\phi_1 + i\phi_2) & \phi_3 & 2(\phi_1 - i\phi_2) \\ 0 & 2(\phi_1 + i\phi_2) & -\phi_3 & (3)^{\frac{1}{2}} (\phi_1 - i\phi_2) \\ 0 & 0 & (3)^{\frac{1}{2}} (\phi_1 + i\phi_2) & -3\phi_3 \end{bmatrix} \begin{bmatrix} a_i \\ b_i \\ c_i \\ d_i \end{bmatrix}$

 $\equiv \alpha_{ij} \phi_1 + i\beta_{ij} \phi_2 + \gamma_{ij} \phi_3$

where

$$\alpha_{ij} = (3)^{\frac{1}{2}} (a_i^* b_j + b_i^* a_j + c_i^* d_j + d_i^* c_j) + 2 (b_i^* c_j + c_i^* b_j)$$

$$\beta_{ij} = (3)^{\frac{1}{2}} (-a_i^* b_j + b_i^* a_j - c_i^* d_j + d_i^* c_j) + 2 (-b_i^* c_j + c_i^* b_j)$$

$$\gamma_{ij} = 3 (a_i^* a_j - d_i^* d_j) + b_i^* b_j - c_i^* c_j$$

Similar equations can be derived for the case of S = 5/2.

C. Main Programs

1. RUBYCR

- a. Purpose
- (1) Calculate the eigenvalues of the spin Hamiltonian of chromium (+3) in Al₂O₃ (ruby).
- (2) Calculate the transition probability matrix elements.

(3) Plot eigenvalues vs external de magnetic field, $H_{de^{\mu}}$

b. Input data

- THETA ($0 \deg \le \theta \le 90 \deg$) is the angle between c axis and external dc magnetic field (see Fig. 1).
- HMIN, HMAX, DH defines respectively minimum, maximum, and incremental external dc magnetic field for calculations and plots.

JPL TECHNICAL MEMORANDUM 33-446

c. Spin Hamiltonian (Ref. 2)

$$H_s = g\beta H_{dc} \cdot S + D \left[S_z^2 - \frac{1}{3} S (S+1) \right]$$
$$g = 1.99$$
$$D = -5.73 \text{ GHz}$$
$$H_{dc} = H_0 (\sin \theta \mathbf{i} + \cos \theta \mathbf{j})$$
$$S = \frac{3}{2}$$

Fig. 1. Orientation of H_{dc} and c axis

d. Spin Hamiltonian matrix

$\frac{3}{2}geta H_0\cos heta+D$	$\frac{3}{2}geta H_0\sin heta$	0	0
$rac{3}{2} geta H_0 \sin heta$	$\frac{1}{2}g\beta H_0\cos\theta-D$	$geta H_0$ sin $ heta$	0
0	$geta H_{\mathfrak{o}}\sin heta$	$-rac{1}{2}geta H_u\cos heta-D$	$rac{3}{2}geta H_0\sin heta$
0	0	$rac{3}{2} geta H_0 \sin heta$	$-\frac{3}{2}g\beta H_0\cos\theta+D$

2. TIO2FE

a. Purpose

- (1) Calculate the eigenvalues of the spin Hamiltonian of Fe(+3) in rutile (TiO_2) .
- (2) Calculate the transition probability matrix elements.
- (3) Plot eigenvalues vs external dc magnetic field, H_{dc} .

b. Input data

- THETA, PHI $[0 \deg \le (\theta, \phi) \le 90 \deg]$ are the spherical coordinates of external dc magnetic field with respect to crystal magnetic axes x, y, z (see Fig. 2).
- c. Spin Hamiltonian (Ref. 3)

$$H_{s} = g\beta H_{dc} \cdot S + D \left[S_{z}^{2} - \frac{1}{3} s (s+1) \right] + E \left(S_{x}^{2} - S_{y}^{2} \right)$$
$$+ \frac{a}{6} \left(S_{x}^{4} + S_{y}^{4} + S_{z}^{4} - \frac{707}{16} \right)$$
$$+ \frac{7}{36} F \left(S_{z}^{4} - \frac{75}{14} S_{z}^{2} + \frac{81}{16} \right)$$

JPL TECHNICAL MEMORANDUM 33-446

D = 20.35 GHz	a =	1.1 GHz
$E = 2.21 \mathrm{GHz}$	//	2.0
$F = -0.5 \mathrm{GHz}$	 S =	5/2

Fig. 2. Orientation of H_{dc} and crystal magnetic axes x, y, z; crystalline axes a, b, c shown with c axis along y direction; a and b axes in x-z plane

d. Spin Hamiltonian matrix

	0	(5) ¹⁻ a	0	(10);F	$\frac{(5)^{i_2}}{2} \frac{g_B H}{l_5} \sin \theta e^{i \Phi}$	$-\frac{5}{2}\frac{g\beta i i}{h}\cos\theta + \left(\frac{i0}{3}D \pm \frac{a}{2} \pm \frac{F}{3}\right)$
	رة)، 1-2-4	0	3 (2) ¹⁵ E	$(2)^{i_2} \frac{g\beta H}{h} \sin \theta e^{i\phi}$	$-\frac{3}{2}\frac{g\rho H}{h}\cos\theta$ $-\left(\frac{2}{3}D+\frac{3}{2}a+F\right)$	$\frac{(5)^{i\pm}}{2}\frac{g\beta H}{h}\sin\theta e^{-i\phi}$
	0	3 (2) ¹⁴ E	$\frac{3}{2}\frac{\mathrm{g}\mathrm{\beta}H}{\hbar}\sin heta\mathrm{e}^{\mathrm{i}\phi}$	$-\frac{1}{2}\frac{g\beta H}{h}\cos\theta + \left(-\frac{8}{3}D \pm a + \frac{2}{3}F\right)$	$(2)^{\frac{2}{2}}\frac{g\beta H}{h}\sin\theta e^{-i\phi}$	(10) ¹⁵ E
	$(10)^{14}E$	$(2)^{i\pm}rac{geta H}{h}\sin hetae^{i\phi}$	$\frac{1}{2} \frac{\frac{g\beta H}{h}}{2} \cos \theta + \left(-\frac{8}{3}D + a + \frac{2}{3}F\right)$	$rac{3}{2}rac{geta H}{h}\sin hetae^{-i\phi}$	3 (2) ¹⁵ E	0
-	$\frac{(5)^{i_2}}{2}\frac{g_\beta H}{h}\sin\thetae^{i_{\frac{1}{T}}}$	$\frac{3}{2} \frac{g\beta H}{h} \cos \theta \\ -\left(\frac{2}{3}D + \frac{3}{2}a + F\right)$	$(2)^{rac{14}{h}}rac{geta H}{h}\sin hetae^{-i\phi}$	3 (2) ¹⁴ E	0	$\frac{(5)^{i_2}}{2}a$
	$\frac{5}{2} \frac{g\beta H}{h} \cos \theta + \left(\frac{10}{3}D + \frac{a}{2} + \frac{F}{3}\right)$	$\left(\frac{5}{2}\right)^{14}\frac{g\beta H}{h}\sin\thetae^{-i\phi}$	(10) ¹⁴ <i>E</i>	0	$\frac{(5)!^4}{2}a$	0

JPL TECHNICAL MEMORANDUM 33-446

3. EMERCR

- a. Purpose
- (1) Calculate the eigenvalues of the spin Hamiltonian of chromium (+3) in beryl (emerald: $Be_3Al_2Si_6O_{18}$).
- (2) Calculate the transition probability matrix elements.
- (3) Plot eigenvalues vs external de magnetic field, H_{dc} .

b. Input data

- THETA (0 deg $\leq \theta \leq 90$ deg) is the angle between c axis and external dc magnetic field (see Fig. 1).
- HMIN, HMAX, DH defines respectively minimum, maximum, and incremental external dc magnetic field for calculations and plots.
- c. Spin Hamiltonian (Ref. 4)

$$H_{s} = g\beta \mathbf{H}_{dc} \cdot \mathbf{S} + D \left[S_{z}^{2} - \frac{1}{3} \mathbf{S} (\mathbf{S} + 1) \right]$$
$$D = -26 \text{ GHz}$$
$$g = 1.97$$
$$\mathbf{S} = 3/2$$

The Hamiltonian matrix is the same as that for ruby (see Case 1 in Section C1d).

An example of the computer printout and plot for $\theta = 90 \text{ deg}$ is given in the appendix.

4. ZNWOFE

a. Purpose

(1) Calculate the eigenvalues of the spin Hamiltonian of Fe(+3) in ZnWO₄ (zinc tungstate).

Fig. 3. Orientation of H_{dc} and crystal magnetic axes x, y, z; a, b, c crystalline axes with a and c axes in x-z plane

- (2) Calculate the transition probability matrix elements.
- (3) Plot eigenvalues vs external de magnetic field, H_{de} .

b. Input data

- THETA, PHI $[0 \deg \leq (\theta, \phi) \leq 90 \deg]$ are the spherical coordinates of external de magnetic field with respect to crystal magnetic axes x, y, z (see Fig. 3).
- HMIN, HMAX, DH defines respectively minimum, maximum, and incremental dc external magnetic field for calculations and plots.

c. Spin Hamiltonian (Ref. 5)

$$H_{s} = \frac{g\beta H}{2} \left(2S_{z} \cos \theta + S_{+} e^{-i\phi} \sin \theta + S_{-} e^{i\phi} \sin \theta \right)$$

$$+ B_{02} \left[3S_{z}^{2} - S \left(S + 1 \right) \right] + \frac{1}{2} B_{22} \left(S_{+}^{2} + S_{-}^{2} \right)$$

$$+ B_{04} \left[35S_{z}^{4} - 30S \left(S + 1 \right) S_{z}^{2} + 25S_{z}^{2} - 6S \left(S + 1 \right) \right]$$

$$+ 3S^{2} \left(S + 1 \right)^{2} \right]$$

$$+ \frac{1}{2} B_{24} \left\{ S_{+}^{2} \left[7S_{z}^{2} + 4S_{z} - S \left(S + 1 \right) + 9 \right] \right\}$$

$$+ S_{-}^{2} \left[7S_{z}^{2} - 14S_{z} - S \left(S + 1 \right) + 9 \right] \right\}$$

$$+ \frac{1}{2} B_{44} \left(S_{+}^{4} + S_{-}^{4} \right)$$

$$B_{02} = -6.987 \text{ GHz}$$

$$S_{z} = S_{x} \pm iS_{y}$$

$$B_{04} = 0.00326 \text{ GHz}$$
 $g = 2.0019$
 $B_{24} = -0.00178 \text{ GHz}$
 $B_{44} = -0.0173 \text{ GHz}$ $S = 5/2$

-					
$\frac{10B_{02}+60B_{04}}{+\frac{5}{2}}g\beta H_0\cos\theta$	$\frac{(5)^{j_{h}}}{2}g_{\beta}H_{\mathfrak{n}}\sin\thetae^{\mathrm{i}\phi}$	$(10)^{!!_2}(B_{22} \div 9B_{24})$	0	12 (5) ¹⁵ B++	0
$\frac{(5)^{ik}}{2}g_{\beta}H_{0}\sin\theta^{-i\phi}$	$-2B_{02} - 180B_{04} + rac{3}{2} geta H_0 \cos heta$	$(2)^{rac{3}{2}} geta H_{n} \sin heta e^{rac{1}{2}\phi}$	$3(2)^{16}(B_{22}-5B_{24})$	0	12 (5) ^{1<u>5</u>} B ₄₄
$(10)^{rac{1}{2}}(B_{zz}+9B_{z4})$	$(2)^{j_2} \mathrm{g} eta H_{\mathrm{o}} \sin heta e^{-\mathrm{i} \phi}$	$- 8B_{ m oz} + 120B_{ m out} + rac{1}{2} geta H_{ m o}\cos heta$	$rac{3}{2}$ g $eta H_0 \sin heta e^{i\phi}$	$3(2)^{i\underline{i}}(B_{zz}-5B_{zi})$	0
0	$3(2)^{rac{1}{2}}(B_{zz}-5B_{z4})$	$rac{3}{2}$ g $eta H_0$ sin $ heta e^{-i\phi}$	$egin{array}{l} -8B_{\mathrm{oz}}+120B_{\mathrm{o}4}\ -rac{1}{2}\mathrm{g}eta H_{\mathrm{o}}\cos heta \end{array}$	$(2)^{i4} g eta H_n \sin heta e^{i\phi}$	(10) ¹ ¹ (B ₂₂ + 9B ₂₄)
12 (5) ^{1/2} B ₄₄	0	$3(2)^{!!}(B_{zz}-5B_{zz})$	$(2)^{j_{k}}$ g $eta H_{a}\sin heta$ $e^{-i\phi}$	$-\frac{2B_{02}-180B_{01}}{-\frac{3}{2}}g\beta H_0\cos\theta$	$\frac{(5)^{i\underline{s}}}{2}g\beta H_{\mathfrak{a}}\sin\theta e^{i\phi}$
0	$12(5)^{l_{4}}B_{44}$	0	$(10)^{\frac{1}{2}}(B_{22}+9B_{24})$	$\frac{(5)^{1\frac{\alpha}{2}}}{2}g\beta H_0\sin\theta e^{-i\phi}$	$10B_{02} + 60B_{04}$ $- \frac{5}{2} g_{\beta} H_0 \cos \vartheta$

d. Spin Hamiltonian matrix

5. TIO2CR

- a. Purpose
- (1) Calculate the eigenvalues of the spin Hamiltonian of Cr(+3) in rutile (TiO_2) .
- (2) Calculate the transition probability matrix elements.
- (3) Plot eigenvalues vs external de magnetic field, H_{dc} .

b. Input data

THETA, PHI $[0 \deg \leq (\theta, \phi) \leq 90 \deg]$ are the spherical coordinates of external dc magnetic field with respect to crystal magnetic axes x, y, z (see Fig. 2).

- HMIN, HMAX, DH defines minimum, maximum, and incremental dc external magnetic field for calculations and plots.
- c. Spin Hamiltonian

$$H_{s} = g\beta H_{dv} \cdot S + D \left[S_{z}^{2} - \frac{1}{3} S \left(S + 1 \right) \right] + E \left(S_{x}^{2} - S_{y}^{2} \right)$$
$$D = -20.4 \text{ GHz}$$
$$E = -4.2 \text{ GHz}$$
$$\mathcal{G} = 1.97$$
$$S = 3/2$$

7

d. Spin Hamiltonian matrix

$\frac{3}{2}g\beta H_0\cos\theta+D$	$-\frac{(3)^{1/2}}{2}geta H_{\scriptscriptstyle 0}\sin hetae^{-i\phi}$	(3)½ E	0
${(3)^{\frac{1}{2}}\over 2}geta H_{v}\sin hetae^{i\phi}$	$rac{1}{2} geta H_0 \cos heta - D$	$geta H_0\sin heta \ e^{-i\phi}$	(3) ^½ E
(3)½ <i>E</i>	$geta H_{\scriptscriptstyle 0}\sin heta \ e^{i\phi}$	$-rac{1}{2}geta H_{0}\cos heta-D$	$\frac{(3)^{\frac{1}{2}}}{2}g\beta H_0\sin\theta e^{-i\phi}$
0	(3)½ <i>E</i>	${(3)^{\frac{1}{2}}\over 2}geta H_0\sin hetae^{i\phi}$	$-rac{3}{2}geta H_{0}\cos heta+D$

Appendix

Energy Levels and Computer Output for the Case of Cr(+3) in Beryl (Emerald) for θ = 90 deg With External dc Magnetic Field as a Parameter

Fig. A-1. Plot of energy levels of Cr(+3) in beryl (emerald) vs external dc magnetic field for $\theta = 90 \text{ deg}$

ENERGY LEVELS AND FCR (r(+j) în bert	TRANSITION PR	OBABILITY MATRIX	ELEMENTS			
THETAN PORDDO DEC	REES H.	.O GAUSS	் நடித்துதல் பிருந்துகளுக்கு அனை அனை அன்று கேட்டிய	فر شیه ۲	÷	a à
FIRST ROW OF EIG	ENVECTOR IS R	EAL PART. SECOND	NOW IS IMAG. PART			
EIGENVECTOR FOR E	4)= 24.00000	GHZ				
A (4)	B(4)	C(4)	D(4)			
•0000000	.0000000	.0000000	•000000			
•000000	.0000000	•000000	+100000+01			á.
EIGENVECTOR FOR E	3)= 26.00000	GHZ				
A(3)	B(3)	C(3)	D(3)			
.000000	.0000000	.1000000+n1	1000000			
.0000000	.0000000	.0000000		and an	t carrieran in the contract	i andar i anana ' kidada
FIGENVECTOR FAR FI	21= =24.00000	6HZ	r . *	· _ '@s' 's	· ···· · ·	" -
A(2)		C(2)	0(2)			
.0000000	.0000000	.0000000	. 7828822-00			
.0000000	.0000000	.0000000	. 4221700-00			
*	•00000000	•000000		بيوة مصدينية محادد	ಾಗಿ ಮಾಹಿತ್ರೆ ಹೇಳಿದ ಮೇಲೆ ಬ	ى دەھىقدىق. يىغە ھەدەھەدە،
EIGENVECTOR FOR E	1)= +26.00000	GHZ				
A(1)	B(1)	C(1)	D(1)			
•0000000	.0000000	.0000000	48150723=00			
.0000000	.0000000	.0000000	-15793593430	· · • • • • • • • • • • •	1 - Britting and a	
E(4)=E(3)	E(4)=E72)	E(4)#E(\$)	E131-E(2) E(3))-E(])	E(2)=E(
•0000	52.0000	5240000	52,0000 52	0000	· 6- 0 (
TRANSITION PROBABI	LITY MATRIX E	LEMENTS	a an	1996 - 19 <u>1</u> 4, 42 (* 1997 - 19		n de transformentes de la composición d
	an marin da a ba		u dan an 💼 an in ingerangse i nin ingerangse dan si ber	i na kulanunikuskalaisi kulon (* * ********* 0 - ** **		- azeri - eseenini - inee
TRIKILI	ALPHAIKIL		1 • 0 F TANK (L)		881110 (N 8 1	•)
REAL	IMAG A	BS REAL	I AA ADD			ADD
				n e estado a a a estado	e 	n marina ang tao ar sa
(1,2) +0000	.0000 .	0000 +0000	•0000 •0000	-,8329	-2	3.0000
(1+3) 1+4117	1.0035 1.	7321 1+0035	+1+4117 1+7321	•0000	•0000	•0000
(1)4) +0000	.0000	0000	10000 10000	117381	111152	3.0000
(2,3) 1,3540	-1.0776 1.	7321 -1.0776	•1•3500 1.7321	.0000	0000	.0000
(2,4) +0000	.0000 .	0000 +0000	+0000 +0000	#1.8605	2 . 3484	3.0000
(3,4) +0000	1.7321 1.	7321 +1+7321	•0000 1•7321	,0000	.0000	•0000
TR(K.L) +25+141		2) +25+(8ETA	••2)			
			յ ին գործել պետգորերի կերջ է ((հերհեմ է գործին) թատեր երություն՝ են ե	որացվածածներ է արդյուն է նաև է անձե	i das opp de raechendes des los 1	na ana n≌ i sia.
(1,2)	2.2500	• 80		-24, - by 6 6.	in and the second secon	
(1,3)	.7500	+75	ōō			
6164)	2.2500	.09			\\\- 1'	
(2,3)	.7500	• 7 5	0 <u>0</u>			
(2.4)	2.2500	• 0 0		and and the second contraction president of	nemenaneskan ¹ 14. e.e. statumistäisi se maa ai	1.62
(3,4)	.7500	• 7 5	00		- (. 	

JPL TECHNICAL MEMORANDUM 33-446

FOR TORISTIN REPLICENT HATRIX ELEMENTS THETA= 70.000 DEGREES H= 2000.0 GAUSS FIRST ROW OF EIGENVECTOR IS REAL PART, SECONG ROW IS IMAG. PART EIGENVECTOR FOR EIGI- 31.91875 GH2 .404018-05 .2497050-04 .2497051-04 .044 .404018-05 .2497050-04 .2497051-04 .044 .404018-05 .2497050-04 .2497051-04 .044 .4033 .6034 .031 .0034 .4034018-05 .2497050-05 573489-06 .1034+47-07 .4131 .8131 .6134 6044+47-07 .4132 .8133 613 6034+47-07 .4132 .8132 1034447-00 .1034447-07 .4132 .8123 1034447-00 .10414-000 .703498700 2198758-06 1047144000 1047144000 .703498700 .121922-07 1652224-07 194795-06 047144000 .104915-06 1972457900 1972457900 1973457900 1972457900 EIGENVECTOR FOR E(1)= -22.48735 GH2 197475-06 9722 TRAMSITION PROBASILITY HATRIX ELEMENTS 19855 </th <th>ENERGY I</th> <th>NELÉ AND</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	ENERGY I	NELÉ AND								
THETA= *0.000 DEGREES H= 2000.0 GAUSS FIRST ROW OF EIGENVECTOR IS REAL PART, SECONG ROW IS IMAG. PART EIGENVECTOR FOR EIGI- 31.91875 GHZ BIGI C(4) -204018-05 -2449050-00 .0(4) -204018-05 -2499050-00 .0(4) -204018-05 -2499050-00 EIGENVECTOR FOR EIGI- 20.76355 GHZ AI31 .0(3) -00447-07 .5733400-02 -5734807-00 .0(3) -0133 .0044047-07 .5733400-02 .7034687-00 .7034687-00 .7145373001 .0044047-07 .5733400-02 .7034687-00 .7145373001 .0(3) -24218-038 .0044047-07 .5733400-02 .5733407-00 .7145373001 .0(3) -703457-00 .17034407-00 .0041 .0041 .0041 .0041 .0041 .0041 .0042 .0042 .0131 .013 .0041 .0121 .0042 .0042 .0121 .0121 .0121 .0121 .0043 .00447-07 .5733407-00 .7165375-00 .0121 .0121 .0121 .0043 .0050 .0071 .58222407 .178475-00 .7165375-00 .0211 .0121 .0121 .0121 .0121 .0121 .0121 .0111	FOR CR(+	D) IN BERN	L(EMERALD)	I FRUDADIN	ITT MATRIX	REFLENTS	ு படங்கள்களுக்கும் ஆ	h sénéré i na mana at a	in the second	21 A
FIRST ROW OF EIGENVECTOR IS REAL PART, SECONG ROW IS IMAG. PART EIGENVECTOR FOR E(4)= 31.91875 GHZ A(4) 2040018-05 *2040018-05 2470050-04 *2040018-05 2470050-04 *2040018-05 2470050-04 *2040018-05 2470050-04 *2040018-05 2470050-04 *2040018-05 200040477-07 *2040018-05 *573687-06 *2044018-05 *573687-06 *204018-05 *573687-06 *204018-05 *7047073-00 *204407-07 *703487-07 *703487-07 *703487-07 *704487-07 *703487-07 *244208-08 *218208-07 *244208-08 *218208-07 *244208-08 *218208-07 *244208-08 *218208-07 *244208-08 *218208-07 *244208-08 *218208-07 *244208-08 *218208-07 *244208-08 *218208-07 *246778-08 *218208-07 *216808-09 *218208-07 *216808-09 *218208-07 *210808-000 *210878-08	THETAN TO	.000 DE	REES H	I= 2000+0	GAUSS	. <u>م</u> الا در الله در ا	- CRASSELMAR 23 John	್ರೋಹಾಥ್ ಶ್ರೀತ ಶ್ರೀತ ಶ್ರೀತ ಕಿರುಕ್ರಮ		.ಂದುವ ಪ್ರಾಕ್ಷಕ್ಕಳು ಆಸ
EIGENVECTOR FOR E(%)= 31,91875 GHZ A(%) = 054008-05 .2497050-0% .2477051-0% .2044018-05 :5820324+01 .7047073-00 .7047073-00 .5820325401 EIGENVECTOR FOR E(1)= 20,94354 GHZ A(3) = 6(3) - C(3) - D(3) .0044477-07 .973449-00 .7034484-00 .7034484-00 .703498-01 .703498-00 .703498-00 .7034484-00 .7034484-00 .7034484-00 .7034484-00 .7034484-00 .703498-00 .703498-00 .703498-00 .703498-00 .703498-00 .7047144-00 . EIGENVECTOR FOR E(1)= -24,487.85 GHZ A(1) = 6(1) = 6(1) = 71653(9+0) .703487-00 .7047144-00 . EIGENVECTOR FOR E(1)= -24,487.85 GHZ .7044978-00 .716547-01 .71653(9+0) .773487-06 .7734975-06 . .7034978-00 .716547-01 .71653(9+0) .773487-00 . .7034978-00 .716547-01 .71653(9+0) .7734975-06 . .7034978-00 .716547-01 .71653(9+0) .7000 .0000	FIRST (NOW OF EIG	ENVECTOR 1	S REAL PA	RT+ SËCONĐ		G. PART	· · <u>.</u>		gi an san
A(4) 0(4) 20(4) 20(4) 2040(18-05 .7047073-00 .7047073-00 .2040(18-05 205224-01 .7047073-00 .7047073-00 .5020325+01 E1GENVECTOR FOR E(3)= 20.49355 GC3 D(3) .4084477-07 .5973467-04 .703746700 .7034670-04 .7145393-01 7034440-00 .7034670-04 .7145333-01 .7145393-01 7034440-00 .7034670-04 .7145333-01 .7145393-01 7034440-00 .7034670-04 .714533-04 .7044782-00 .5870232-01 .5820417-01 .7047144-00 .7044782-00 .5830232-01 .5820417-01 .7044579-04 .7044782-00 .7146377-04 .7044579-04 .7044579-04 .7034759-00 .7165447-01 .7165375-04 .7044579-00 .71453110N PROBALLITY MATRIX ELEMENTS 1*875110N PROBALLITY MATRIX ELEMENTS T*1.(K,L) REAL 1*8751 .2482 .20000 .2.9828 1:31 .8495 .0000 .0000 .0000 .0000 .0000 .2.9828 1:41 .2.0000	EIGENVECT	TOR FOR E	(4)= 31.91	875 GHZ					· · · ·	
*20*001*05 *24*7050*07 *24*7050*07 *20*00*07 *20*001*05 *24*7050*00 *74*7073*00 *5520325*01 EIGENVECTOR FOR E(3)= 20.94559 GHZ A(3) 5(3) C(3) D(3) *004447*07 *703*4647*00 *71453*73*01 EIGENVECTOR FOR E(2)= *23.35509 GHZ A(2) 5(3) C(2) 0(2) *2442049*08 *2:07 *58*05232*01 *58*050*0 i244211*08 *704*82*00 *:58*0232*01 *:58*20417*01 *7047164*00 EIGENVECTOR FOR E(1)= *24*48725 GHZ *704*82*00 *:58*0232*01 *:58*20417*01 *7047164*00 EIGENVECTOR FOR E(1)= *24*48725 GHZ *704*75*00 *:7165*15*01 *716*857*504 *704*75*00 *:7165*15*01 *716*857*504 *704*75*00 *:7165*15*01 *716*857*504 *704*75*00 *:7165*15*01 *716*857*504 *704*75*00 *:7165*15*01 *716*857*504 *704*75*00 *:7165*15*01 *716*857*504 *704*75*00 *:0000 *000	A	(4)	8(4)		C(4)	0(4)				
EIGENVECTOR FOH E(3)= 20,94359 GHZ A(3) +084477-07 .573487-06 -10734877-07 +7145373-01 -773487-00 .7034847-06 +108487-07 +7145373-01 -773487-00 .7034847-06 +108573-07 +7145373-01 -773487-00 .7034847-00 .7034847-07 +7145373-01 -773487-01 .714877-01 .7047144-00 EIGENVECTOR FOH E(1)= -24.48735 GHZ A(1) - B(1) - C(1) .728975-06 +7047877-00 .716497-01 -7165317-01 .728975-06 -7034787-00 .716497-01 -7165317-01 .728975-06 E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(1) . E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) . TRANSITION PROBAS:LITY MATRIX ELEMENTS Tr.(K,L) ALPMAK,L) . TRANSITION PROBAS:LITY MATRIX ELEMENTS Tr.(K,L) ALPMAK,L) . TRANSITION PROBAS:LITY MATRIX ELEMENTS Tr.(K,L) ALPMAK,L . TRANSITION PROBAS:LITY MATRIX ELEMENTS Tr.(K,L) . ALPMAK,L . TRANSITION PROBAS:LITY MATRIX ELEMENTS Tr.(K,L) . TRANSITION PROBAS:LITY MATRIX ELEMENTS TRANSITION PROBAS:LI	+ 20+	1010005	*7047073*	0 .70	47073=0U	+20440184	01		~	
EIGENVECTOR FOR E(3)= 20,42559 GHZ A(3) B(3) C(3) D(3) *6084677-07 :5773659-06 *2008467-07 *7165373-01 *;70346497-07 :7034647-00 *7165373-01 *242044-05 *:219435-09 *:219705-07 i242118-08 *7044982-00 *:219435-09 *:219705-07 i242118-08 *7044982-00 *:21920232-01 *:5820417-01 *:7047164=00 EIGENVECTOR FOR E(1)= =24.48735 GHZ A(1) B(1) C(1) D(1) *1789721-06 :1822242-07 *:1282224=07 :7034579=06 *70349579=00 ;7165497-01 *:7165319*01 *7034579=06 E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(1) E(3)=E(1) I0.9552 58:3138 58:4060 47:3587 47.4508 :0922 TRANSITION PROBAS:LITY MATRIX ELEMENTS T ^{1.(K,L)} ALPHA(K,L) REAL TMAG ABS REAL IMAG ABS REAL IMAG ABS (1,2) *.0000 *.0000 :0000 *:0000 *:0000 :0				÷	-					
*40847-07 *7145393-01 *703464900 *703464900 *703464900 *703464900 *703464900 *7145393001 EIGENVECTOR FOR E(2) = -24.39509 *7044982-00 *5820232-01 *5820417-01 *704982-00 *5820232-01 *5820417-01 *704982-00 *5820232-01 *5820417-01 *7049759-00 EIGENVECTOR FOR E(1) = -24.48775 GH2 A(1) *1788759-04 *7034759-00 *7165467-01 *71654759-00 E(4)-E(3) E(4)-E(2) E(4)-E(2) E(4)-E(2) E(4)-E(2) TRANSITION PROBABILITY MATRIX ELEMENTS T ¹ (K,L) REAL TMAG ALPMA(K,L) TRANSITION PROBABILITY MATRIX ELEMENTS T ¹ (K,L) ALPMA(K,L) II.37875 *10000 *	EIGENVECT	TOR FOR E	(3)= 20.94	359 GHZ	e / 3 X	an a	··	e souther co		·
		37 497-07	D13/ .893400-	n	5(3) 73489-06	-14044497-	07			
EIGENVECTOR FOR E(2)= -24.39500 GH2 A(2) 3262049-082198635-092198705-09 i2662118-08 700497872-005870232-015820417-01 .7071644000 EIGENVECTOR FOR E(1)= -26.467.85 GH2 A(1) D(1) 1799021-04 .1822242071622224-07 .7034579-00 .7034579-00 .7165467-017168319-01 .7034579-00 E(4)-E(3) E(4)-E(2) ET4)-E(1) E(3)-E(2) E(3)-E(1)' E(2)-E(1)' 10.9552 58.3138 58.4050 47.3587 47.4508 .09722 TRANSITION PROBABILITY MATRIX ELEMENTS TY.(K,L) ALPHAIK,L) REAL TMAG ABS REAL IMAG ABS REAL IAAG ABS (1,2)0000 .0000 .0000 .000000700478 .0478 -2.9280000 2.9828 (1,3) 1.6981 .0000 1.898100000000 .0	714	393=01	.7034669=	.70	34669=00	+71453934	01	ம்பே படையாட்டிராட்டிய	ಂಧಾನ ನಾಘ್ಯಾಗಿರುವ ಸಂಭ	
ElsevvEctor For El2] = 022.3750V GRZ 2442049-082(196435-092198705-09 i226218-08 -7046982-0026870232-0158270417-01 i7047164+00 ElGENVECTOR FOR E[1]= -24.48775 GRZ A(1) B[1] C[1] D[1] 1789021-06 .1822262-071822224+07 .178875-06 7034759-00 .7165467-017165319+01 .7034575-06 7034759-00 .7165467-017165319+01 .7034575-06 E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(2) E(3)=E(1) 10.9552 58-3138 58+4060 47.3587 47.4808 .0922 TRANSITION PROBAB(LITY MATRIX ELEMENTS Th(K,L) ALPWA(K,L) REAL 1MAG ABS REAL IMAG ABS REAL IMAG ABS [1,2]00000000 .0000 .00000498 .0498 -2.48280000 2.9828 (1,3) 1.8841 .0000 1.8481 .00000 .0000 .0000 .0000 .0000 .000										
.24*2049-08 21*8*35=D9 21*8*705=09 24*20417-01 24*20417-01 .70*49*82=00 5*20232=01 5*20417-01 70*7144#00 EIGENVECTOR FOR E(1)= 2.4*8735 GH2 A(1) 11 11 11 17*8*021=06 1822242=07 182224=07 17*8*7*00	LIGENVEL	DN FOR EL	2)= +26+39 B(2)	5UY GHZ	C (2)	D(2)				
.70446982-005820232-015820417-01 .7047164=00 EIGENVECTOR FOR E(1)= =26.40735 GHZ A(1) B(1) C(1) D(1) 1789021-06 .1822224-07 .1788975-04 7034579+00 .7165467-017168319+01 .7034679#00 E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(1) E(2)=E(1) 10.9552 B8-3138 50-4060 47.3587 47.4608 .09922 TRANSITION PROBAB;LITY MATRIX ELEMENTS T:(K,L) ALPMA(K,L) REAL TMAG ABS REAL IMAG ABS REAL IMAG ABS (1,2)0000 .0	. 246	2049-08	2178435-	0921	98705+09	\$2462118=	80			
EIGENVECTOR FOR E(1)= =24.487.85 GH2 A(1) B(1) C(1) D(1) =.17897021=06 .182224207 =.162222407 .178875=06 =.7034759=00 .7165467=017168319=01 .77034579=00 E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(1) E(2)=E(1) I0.9552 58:3138 58:406D 47.3587 47.4508 .0922 TRANSITION PROBABILITY MATRIX ELEMENTS 72.(K,L) ALPHA(K,L) REAL IMAG ABS REAL IMAG ABS REAL IMAG ABS REAL IMAG ABS (1,2)00000000 .0000 .00000006 .00000 .0000	+7046	982-00	5820232-	01 =.58	20417-01	.7047164=	00			
A(1) B(1) C(1) D(1) 17897021-06 .1822224207 162222407 .1788775-06 7034759-00 .7165467-01 .7165319+01 .7034579-06 E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(1) I0.9552 58-3138 58-4040 47.3567 47.4508 .0922 TRANSITION PROBABILITY MATRIX ELEMENTS 1*BETA(K,L) GAHMA(K,L) .0922 TRANSITION PROBABILITY MATRIX ELEMENTS 1*BETA(K,L) GAHMA(K,L) .00000 .0000 .0000	EIGENVECT	TOR FOR FO		1726 GHZ			JA-J GHOTAN-A	2 · · · • - • 3 · ·	-1 4 4424428-0 2	
1789021-06 .182224207182222407 .1788975-06 7034759-00 .7165467-017165319-01 .7034579+00 E(4)=E(3) E(4)=E(2) ET4)=E(1) E(3)=E(2) E(3)=E(1) 10.9552 58.3136 58.4060 47.3587 47.4508 .0922 TRANSITION PROBABILITY MATRIX ELEMENTS T1.(K,L) ALPHA(K,L) I.4000 .0000 .00000498 .0498 -2.98280000 2.9828 (1,2)00000000 .00	A	1)	B11)		C(1)	D(1)	an ei se se	1	t i ing an an think	
-,7034759-00 ,7145447-01 -,7145319+01 ,7034579=00 E(4)-E(3) E(4)-E(2) E(4)+E(1) E(3)=E(2) E(3)=E(1) 10,9552 58+3138 58+4060 47+3587 47,4508 •D922 TRANSITION PROBAS:LITY MATRIX ELEMENTS T^.(K,L) ALPHA(K,L) REAL TMAG ABS REAL i+AG ABS REAL i+AG ABS (1,2) -+0000 -+0000 +0000 +0000 +0000 +0000 +0000 2.9828 (1,3) 1+8981 +0000 1+8981 +0000 +0000 +0000 +0000 +0000 +0000 +0000 (1+4) -+0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 (1+4) 1+5445 -+0001 +00000 +0000	= . 1789	021-06	.1822262.	07 -18	22224=07	+1788975=	•06			
E(4)=E(3) E(4)=E(2) E(4)=E(1) E(3)=E(2) E(3)=E(1) E(2)=E(1) 10.9552 58.3138 58.4060 47.3587 47.4508 .0922 TRANSITION PROBABSLITY MATRIX ELEMENTS IMAG ABS .0922 TRANSITION PROBABSLITY MATRIX ELEMENTS IMAG ABS .0000 .0000 .0000 T(K,L) ALPHA(K,L) IMAG ABS REAL .0498 .0498 .0000 .0000 .0000 (1,2) 0000 .0000	-,7036	759-00	.7165467-	0171	65319+01	.70345792	00	galisti kariti iyo ka Luwe ammanan	. با مهند بایا دری او مدمند	alay ing terraping ter
10.9552 58.3138 58.4050 47.3587 47.4508 .0922 TRANSITION PROBABILITY HATRIX ELEMENTS ALPHA(K,L) ALPHA(K,L) IMAG ABS IMAG ABS GAMHA(K,L) T1.(K,L) ALPHA(K,L) ABS REAL IMAG ABS REAL IMAG ABS (1,2) 0000 0000 .0000 .0000 .0000 .0000 .0000 .0000 (1,3) 1.8781 .0000 .0000 .0000 .0000 .0000 .0000 .0000 (1,4) .0000 .0000 .0000 .0000 .0000 .0000 .0000 (1,2) 0000 .0000 .0000 .0000 .0000 .0000 .0000 (1,4) .0000 .0000 .0000 .0000 .0000 .0000 .0000 (1,4) .0000 .0000 .0000 .0000 .0000 .0000 .0000 (1,2) .0000 .0000 .0000 .0000 .0000 .0000 .0000 (3,4) .25+(ALPHA++2*GAMHA++2) .25+(BETA++\$) .25+(BETA++\$) .25+(BETA++\$) (1,2) 2.2242 .00004 .0000 .0000 .0000 (1,	E (4)	-E(3)	E(4)=E(2	2) ET	4)-E(1)	E(37-E(2	:) E	73) • E (])	E(2)=E(
TRANSITION PROBABILITY MATRIX ELEMENTS Tr.(K,L) ALPHA(K,L) ALPHA(K,L) IMAG ABS IMAG ABS REAL IMAG ABS IMAG ABS IMAG ABS IMAG ABS IMAG ABS IMAG ABS IMAG IMAG ABS IMAG	10.	9552	58+3138	5	8+4050	47.3587	يمه ۲۰۰ و هاد	47.4508	• 0 9 2	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TRANSITIC	N PROBABI	LITY MATRI	X ELEMENT	S		1	- 13 -	_ Stree	
REAL IMAG ABS REAL IMAG ABS REAL IMAG ABS REAL IMAG ABS (1,2) 00000 0000 .0000 .0000 .00498 -2.9828 00000 2.9828 (1,3) 1.8981 .0000 1.8981 .0000 .2.9828 0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .2.9828 2211 .0000 .2211 .0000 .2211 .0000 .2211 .0000 .2211 .0000 .20000 .20000 .2211 .0000 .20000 .20000 .2211 .0000 .00000 .00000 .00000 .00000 .00000 .00000 .20160 .2.0160	53.(K.L)		AL PHACK			I ORETALK .L	• • · · ·		GAMMALK	
<pre>(1,2)00000000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000</pre>		REAL	IMAG	ABS	REAL	IMAG	ABS	REAL	IMAG	ABS
(1,2) 0.00000 0.0000 0.0000	11.91	- 600a	- 0000		200-		0485	-2 -0000	- 0000	- 6028
(1)4) **0000 0000 0000 *0001 *1*5278 **1447 0000 *1487 (2:3) *0000 *0000 *0000 *0000 *0000 *2211 **0000 *2211 (2:4) 1*5445 *0001 1*5445 *0000 <td< td=""><td>(1.3)</td><td>1.8981</td><td>.0000</td><td>1.8981</td><td>0000 00000</td><td>•0000</td><td>0000</td><td>₩407₩28 10004</td><td>•0000</td><td>.0000</td></td<>	(1.3)	1.8981	.0000	1.8981	0000 00000	•0000	0000	₩407₩28 10004	•0000	.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61.41	0000	.0000	.0000	+.0001		1.5278	***1447		1487
(2:4) 1.54450001 1.5445000	(2,3)	•0000	•0000	.0000	•0000	+1+8955	1+8955	-+2211	*•0000	.2211
(3,4) *.0000 *0000 *.0001 *.0001 *1.0165 *0000 1.0165 TR(K,L) *25*(ALPHA**2*GAMMA**2) *25*(BETA**2) *25*(BETA**2) *1.0006 (1,2) 2.2242 *0006 *0006 *1.0165 *0006 (1,3) *9007 *0000 *0000 *1.0161 *1.0161 (1,4) *0052 *5850 *2.23) *0000 *1.0161	{2,4}	1+5445	••0001	1+5445		-+0000	•0000	• 0000	0000	.0000
TR(K,L) •25+(ALPHA++2+GAMMA++2) •25+(BETA++2) (1,2) 2.2242 •0006 (1,3) •9007 •0000 (1,4) •0052 •5850 (2,3) •0122 •8982 (2,4) •5964 •0000 (3,4) •2583 1+0161	13471			•0000	=+0n01	• <u>3</u> •01•0	2+0100	*1:0105	•000	1+0102
	TR(K,L)	•25+(AL	PHA + + 2+ GAMH	14=02)	+ 25+ (BETA	++ ? }	₩.j. °P		· · · }	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.					_				
(1,4) +007 +000 (1,4) +0052 +5850 (2,3) +0122 +8982 (2,4) +5964 +0000 (3,4) +2583 1+0161	(1 + 2)		2.2242		• 00	04		- *		
(2,3) .0122 .8982 (2,4) .5964 .0000 (3,4) .2583 1.0161			. 7007 . 705 2		•00	50 50				
(2,4) ,5964 ,0000 (3,4) ,2583 1+0161	(2.3)		0122		· · · · · · · · · · · · · · · · · · ·	82				
(3,4) ,2583 1+0161	(2,4)		.5964		• 0 0	00	e e a	1 # 7	i in the	···· V
	(3,4)		.2583	.÷.	1+01	6]		-		

ENERGY LEVELS AND TRANSITION PROBABILITY MATRIX ELEMENTS FOR CRI+3) IN BERYL(EMERALD)

THETA = 90.000 DEGREES H# 4000+0 GAUSS

FIRST ROW OF EIGENVECTOR IS REAL PART, SECOND ROW IS IMAGE PART

EIGENVECTOR FAR A(4) • 6479976=06 • 1038015+00	E(4)= 38,46715 B(4) ,4366408=05 ,6994464=00	GHZ C(4) •4366408=05 •6994464=00	D(4) • 6479977=06 • 1038015+00		
EIGENVECTOR FOR A(3) • 3783482=07 • • 1533087=00	E(3)= 17.07751 B(3) .1703549=06 =.6992872=00	GHZ C(3) F,1703549706 2後年02872700	0(3) ••3783482=07 \$1533087#00	6 V	1 - 22 - Y - 1 - 1
EIGENVECTOR FOR A(2) +7070543=08 +6994441=00	E(2)= -27,41983 B(2) =.1049304=08 =.1038010+00	GHZ C(2) =,1049314=08 #,1038020+00	0(2) •7070590=08 •6994487=00		
EIGENVECTOR FOR A(1) • 1751704+07 =• 6902895+00	E(1)= -28.12483 B(1) =.3890428-08 .1533091-00	GHZ C(1) •3890411=08 •,1533084+00	D(1) #+1751693=07 +6902849=00		
E(4)-E(3)	E(4)-E(2)	E(4)+E(1)	E(3)-E(2)	E(3)-E(1)	E(2)-E(1)

E(4)+E(1)

46,5920

1

TRANSITION PROBABILITY MATRIX ELEMENTS

E(4)=E(2)

45+8870

E(4) = E(3)

21,3896

TR(K.L)		AI PHATK .LI			POBETALK.	L)	a i ta di b i a	GAHMACK	L.) ¹
	REAL	IMAG	ABS	REAL	IMAG	ABS	REAL	IMAG	ABS
(1.2)	* •0000	.0000	•0000	. .0000	-+1869	.1869	=2,9287	.0000	2.92#7
(1,3)	1.9925	.0000	1.9925		0000	•0000	.0000	.0000	.0000
(1,4)	0000	•0000	.0000		-1-27-7	1 2787	**X155	1000	.2155
(2.3)	+0000	.0000	.0000	•0000	+2+0143	2.0143			.5001
(2.4)	1.3470		1.3470			0000	0000	•0000	.0000
(3,4)		.0000	.0000	-,0000	-2.0545	2.0545	•1.0411	•0000	1.0411

E(3)-E(2)

44.4973

45.2023

+25+(BETA++2) TRIKALE +25+ (ALPHA++2+GAMMA++2)

(1.2)	2.1444	• 0 0 \$ 7
(1.3)	.9925	•0000
(1,4)	.0116	• 4 2 1 7
(2,3)	.0625	1•01**3
(2+4)	.4672	• 0 0 0 0
(3,4)	. 2815	1+0553

11

ENERGY LEVELS AND TRANSITION PROBABILITY MATRIX ELEMENTS' For cr(+3) in Beryl(Emerald)

THETA- TO.DOD DEGREES H. ADDD+D GAUSS

FIRST ROW OF EIGENVECTOR IS REAL PARTS SECOND ROW IS IMAG. PART

EIGENVECTOR FOR A(4) • 5418089*07 • 1372370=00	E(4)= 45.45326 B(4) •2697673=06 •6932626=00	GHZ C(4) •2697874=D6 •6932627=D0	D(4) •5418070=07 •1372370+00		
EIGENVECTOR FOR A(3) •7813764=D8 =,2361047=D0	E(3)= 14+51258 B(3) +2205826+07 ++6665242-00	6HZ C(3) *•2205826#07 •6665242+00	D(3) +7813765-08 -7813765-08		
EIGENVECTOR FOR A(2) • 1985 48=06 • 6932616=00	E(2)= +28,88228 8(2) +,3987028-07 -,1392366-00	GHZ C(2) % - 3987049=07 = .1392374=00	D(2) 11785154406 06932636400	• • •	 .
EIGENVECTOR FOR A(1) • 3057854-07 = • 6645252=00	E(1)= -31.08356 B(1) 1083192-07 .2361051=00	GHZ C(1) +1083190=07 -,2361047=00	D(1) = \$ 3057#44=07 }\$\$\$5232=00		-
E(4)-E(3)	E(4)=E(2)	E(4)=E(1)	E(3)+E(2)	° E(3)-E(1)	E(2)-E())
30 • 9407	74•3355	74+5368	43.3949	45.5961	2+2013

TRANSITION PROBABILITY MATRIX ELEMENTS

TR(K,L)	ALPHA(K.L)			1 BETAIK, L)			GAHMA(K.L)		
	REAL	IMAG	ABS	REAL	IMAG	ABS	REAL	INAG	ABS
(1,2) (1,3) (2,3) (2,4) (2,4) (3,4)	- 0000 1 • 9753 - 0000 0000 1 • 2116 - 0000	.0000 .0000 .0000 .0000 .0000 .0000	0000 0000 0000 0000 0000 0000	- 0000 0000 0000 - 0000 - 0000 - 0000	-+3770 +0000 +1+0578 -2+0858 -+0000 +2+0938	.3770 .0000 1.0598 2.0858 .0000 2.0938	+2.8382 .0000 +2245 7945 0000 71.1214	0000 0000 0000 0000 0000 0000 0000	2.8392 .0000 .2295 .7965 .0000 1.1214
TR(K,L)	+25+(ALP	HA++2+GAM	44+2)	+25+18ETA+	• 2)				-
(1.2)				E			п		

N & N & I	£ 4 W I J 7	
(1+3)	• 9755	• 0 0 0 0
(1,4)	.0132	+2808
(2,3)	.1586	1+0676
(2+4)	.3670	+0800
(3,4)	.3144	1+0960
		· · ·

Pun Chiv	37 IN BERT	LICENERALD	1	andro an in try in administration in antitic stationaries and set of	ann an Annailte	an san ang ang ang ang ang ang ang ang ang a			the second by the second second
THETTH	0.000 DE0	REES		GAUSS		and a state of the second s		anna a tha an	
FIRST	ROW OF EIG	ENVECTOR	IS REAL P	ARTI SECOND	ROW 15 1H	AG. PART		···	
EIGENVEC	TOR FOR ES	4)= 52.7 8(4)	4425 GH	[Z C (4)	D(4)	. مند در . مدم	- <u></u> 180 <u>2012</u> 010 - 201520	n an a	na na atraac
• 1 6 6	7653=00	+6871110	-D	047540-00 871118-00	+1+69+53	+07 +00	*****	n land afgegesennen of Agened 2 geboor	if the , press science of the second second
EIGENVEC	TOR FOR EL	3) 8 13.2	 3448 gH			n - Constant and Same in any	ne na ta Kasakanina na Sakakananina di Jawa	n an	
A	(3)	8(3)		C (3)		unite de la serie de la se	in and the second s	R 	
.137	4947-07	.2823567	-072	823567=07	++1376967	-07			
	++27-00	***3555921	-00	355592=00		*JU	****		
EIGENVEC	TOR FOR ET	2)=-30.6	496 j - GH	2 - 11,22 - 11,22 - 12,122 - 12	a a <u>alaa a sababa ahaan ka ka ka</u>		Andreastic and Mary	an a san ar san	an ar what is an statement
	(2)	8(2)		C(2)	D(2)				
	0417=07	2987863	•00 •••2	787874=08	.1230421	•07	an an an an ann an an an an an an an an	an a definition and a second	
• 6 6 •	1112-00	1667650	•00 ••1	447456-00	+6871124	=00			
EIGENVEC	TOR FOR EL	1)= -35.3:	3132 GH	2					
· A			and and a second se	C(1))	0117		n na hain an la taga na hiring na hirin na hainn an hainn	ى <u>مەرىپە بەر</u> ئەھلەردىكە «مەر <u>اپەتەر بەرە</u> تە».	Second and the second secon
	3912-00		+04 +1	701051-06		-04			
	570-00	•3077427	• <u>0</u> 0 · · · · • • • 3	099425-00		*00		a la si kanyi tire si sekan yanga sing	n digina kajar kaja di kaja di kaja kaja kaja kaja kaja kaja kaja kaj
E (4	1+213)	EINTHET	2) E	(4)=E(1)	E131-E1	2) E(37-2117	E(2)+E(1)
3.9	.5076	83+3934	tean chian		43.886	3 4		4.681	7
TRANSITI	ON PROBABI	LITY MATRI	X ELEMEN	TS	ه نورهمی و امیشند اور میکند در ا	1	ali interación da construction da construction de construction de construction de construction de construction	 المنابعة <u>فيتركونو</u> والمتحدث ومحدث ال	an a
- TRIK		T WHET T							
	REAL	1 MÁG	ABS	REAL	INAG	1. 188	in É a i	GAMMATK	L)
		a se in the se		an a	• • • • • • • • • • • • • • • • • • •		an a a P	1044	402
(1,2)	0000-	.0000	.0000	0000	++5771	.5771	•2.7237	.0000	2.723
(1+3)	1.8544	0000	1+8544	.0000	+0000	.0000	.0000	+.0000	.000
	-0000-	.0000	.0000	++0000	**8402	18402	*+2108	+0000	-210
(2)3)	•0000	.0000	+0000	•0000	-2+1165	2+1145	#1+Q454	0000	1.045
······································	1.0800-		1.0,00	-0000		•0000	•0000-	.0000	
13947		•0000	0000 • • • • • • • • • • • • • • • • • •	0400	-2+1149	2.1169	-1.1839	.0000	1.105.
TR(K,L)	+25+(ALP	HA++2+6AM	14++2)	+25+(BETA	•2)				
(1+2)		1.8546	and high and a set of the set of	•043]]	۵.۵۰۵ و دوندوکرد در دور در مهاره در معارف در معارف در میکند. مربع رو دور میکنو در معارف در	a da la companya da serie da s	ang sa si pang pangan na sa si na si n	andi i buransan <u>ai katakan</u> ina
***37	_ · · · · ·	.8397		• 600	10	and the state of the			
(2.2)		28.30		•170	5	an ann an bhill da ann an Bhline ann an A		and a second	alanaan ta sadiin ah ta saalaa ah ta sada
	·····			1.1.1.1					
(3.4)		.3504		1.1.1.90)4				
				1.444					

ENERGY LEVELS AND TRANSITION PROBABILITY MATRIX ELEMENTS

10800 1+1243

(2+3) (2+4) (3+4)	•0000 •9697 •0000	0000 0000 0000	•0000 •9497 •0000	+ 0000 + 0000 + 0000	-2+1207 -+0000 -2+1207	2 • 1 2 0 7 • 0 0 0 0 2 • 1 2 0 7	+1,2825 +,0000 +1,2405	•0000 •0000 •0000	1.2025
TR(K.L)	+25+(ALP)	HA••2*GAMP	1A+ 62)	•25•1BETA•)ežý	1991 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1993 - 1994 - 1995 -		an a	an a
(1:2) (1:3)	n n i san an analasis tatal ayyo'	1+6760 •7035	u nomina na ser sera	•143	1	a anti-arrange data patri da ana ana kana a		ka maalaan ka	antina (international de s
(1+4) -	18 .	,0081	a an and an an an	+105		an a	ander and the state of the stat		
12 + 3) {-2		+4112		1+124	3				

101010	ALTHANKILI				I TOLTAIKIL	• !	GAMMA(K.L)		
	KEAL	IMAG	ADS	REAL	IMAG	ABS	REAL	IMAG	ABS
								and have a first of the second se	, na singerenden die stationen
(1,2)	0000	*,0000	.0000	,0000	* • 7566	.7566	02,6046	0000	2.0096
(1+3)	1+4775	••0000	1.6775	•0000	+0000	.0000	.0000	-,U000	.0000
(2.5)		- 0000	0000	10000			-1901	-+0000	

EIGENVECTOR FOR E	(1)= =40+65491	GHZ			
=,3223433=07 =,6029322=p0	•1975032-07 •3694230+00	1975031-07 3699228-00	0111 63223429+07 66029314=00	n mananan mananan mananan kananan kanan Mananan mananan mananan kananan kananan kananan kanana kanana kananan kanana kanana kanana kanana kanana kanana 	nennenn geberen unterstellen einer unterstellte socher des socher unterstellten.
E(+)=E(3)	EINIEIZI	E(4)+E(1)	E(3)=E(2)	£13)=E(1)	E(2)+E(1)
47.2144	72+8637	100.9059	45.6473	63.4916	

+6813728-00

A(4)	8(4)	C(4)	D(4)	
+ 100775-07 + 1007560-00	•6813924=00	.6813724-00	+1887560+00	nen men etter en men het per un sen per und het men het men men men men men men men men etter het het bemen ver
EIGENVECTOR FOR A [3] # • 9280882=04	E(3)= 13.0366; B(3) =.1514725=05	GHZ C13)		and and an and an an an analysis and an a The second sec
	***027318*00		+3+++229=00	
EIGENVECTOR FOR A(2)	E(Z)= +32,63271 B(2)	GH2 C(2)	D(2)	
~,30/9/10007~	.10.0414=07	.1020417407	**3*77714*07	

ENERGY LEVELS AND TRANSITION PROBABILITY MATRIX EVEMENTS FOR CR(+3) IN BERYL(EMERALD)

FIRST ROW OF EIGENVECTOR IS REAL PART, SECOND ROW IS IMAG, PART

GHZ

-,1887563+00

THETAS PORDO DEGREES HE TODOURD GAUSS

-+1087557+00

. 3847

TRANSITION PROBABILITY MATRIX ELEMENTS

EIGENVECTOR FAR EINI# 40.25101

+4813920-00

(3,4)

References

- 1. Berwin, R. W., Paramagnetic Energy Levels of the Ground State of Cr + 3 in Al_2O_3 (Ruby), Technical Memorandum 33-440, Jet Propulsion Laboratory, Pasadena, Calif., to be published.
- 2. Chang, W. S., and Siegman, A. E., Characteristics of Ruby for Maser Applications, Technical Report 156-2, Electron Devices Laboratory, Stanford Electronics Laboratories, Stanford, Calif., Sept. 30, 1958.
- 3. Lin, M. S., and Haddad, G. I., *Energy Levels and Transition Probability Matrix Elements of Fe*(3+) in TiO₂ (Rutile), Technical Report 89, Electron Physics Laboratory, University of Michigan, Feb. 1966.
- 4. Geusic, J. E., Peter, M., and Schulz-DuBois, E. O., "Paramagnetic Resonance Spectrum of Cr+++ in Emerald," Bell System Tech. J., Vol. 38, p. 291, 1959.
- 5. Lin, M. S., and Haddad, G. I., Energy Levels and Transition Matrix Elements of Fe(3+) in Zinc Tungstate (ZnWO₄), Technical Report 90, Electron Physics Laboratory, University of Michigan, July 1966.
- 6. Gerritsen, H. J., Harrison, S. E., and Lewis, H. R., "Chromium-Doped Titania as a Maser Material," J. Appl. Phys., Vol. 31, p. 1566, Sept. 1960.

JPL TECHNIGAL MEMORANDUM 33-446 NASA - JPL - Coml., L.A., Colif.