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ABSTRACT

An instrument has been developed which is capable of meas-
uring small forces along the two axes of a plane. The instrument
was designed specifically for use in a molecular beam, but can be
used for a variety of measurements ranging from magnetic fields to
accelerations. A gravitational calibration expetiment was performed
and it was shown that millidyne forces were easily measured. It
appears feasible to attempt detection of forces at the order of

107° dyne with this type of apparatus.




I. INTRODUCTION

With the advent of upper atmosphere and space travel, the
study of rarefied gas dynamics has bcen given great impetus. The
interaction of molecular flow with surfaces of varying shapes has
received much consideration (Talbot, 1961), as has the interaction

of specific molecular species with specific metallic surfaces

(Hinchen, 1965; Laurmann, 1963; de Leeuw, 1966). The molecular
beam detector is specifically designed for this type of work. The
results of these experiments have immediate application in the
design of rocketvmotors and reentry vehicles (Scala, 1963). The _'
new rocket engines, such as an ion rocket, produce a2 low density
output, which may be studied with the equipmentiéo be described.
The force detector may also be used as an accelerometer and, if
appropriate magnetin materials are used, as a magnetometer in two

dimensions.

1.1 Statement of Problem
An instrument must be developed &hich can mensure the di-
rection and magnitude of small forces, such as those exerted by a
molecular beam, in a plane. It must fit the following:gpecifica—
tions: {
l) the nenSOr must be small enough to produce only
minor perturbations in the molecular flow and to
be capable of méasuring small variations in flow ‘ ‘bf | ,;{3

4 pattern,




2) the sensor must be maneuverable enough to sample
many points of the flow and to transmit sigrals to
a remote recorder,

3) the sensor must be capable of measuring small,
rapidly fluctuating forces (on the order of 10—5
dyne) while maintaining large signal capability,

4) the sensor must be éapable of operating in'vacuo

or under pressure, and over a wide range of tem-

perature and humidity conditions.

1.2 Survey of Detector Methods

There are a large number of pressure-sensitive détectors in
use in high vacuum and molecular beam technology (Dushman, 1962;
Ramsey, 1963). It would be far beyond the scope of this thésis to
discuss them all, since most are merely omnidirectional detecto:g
of density and do not ﬁerform functions similar to the moleCUiar
beam detector (MBD) to be described. One type of deteétor which is
more relevant to therpreviously stated problem;is the balance de-

~ tector. A balance will be defined as a device which makes a force

measurement by exerting an opposite and equal known force and brings
the entire system into equilibriuma~ o ¢

Balénces may be divided into two gubclasses: those which
provide the restoring force by a changing configuration, e.g., a
spring balénce (Type I), and those which use electronic feedback to
maintain a null position (Type II). In general,;the balances which

will be described were not designed for use as MBD's; they usually

/;5/
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were designed to monitor small weight changes or to measure magnetic
susceptibilities. They are one dimensional and, in principle, can
be adapted for use in a molecular beam apparatus. However, they are
also too bulky and fragile to be moved around inside the chamber
without a clever transportation system. General discussions of
microbalances can be found in Gulbransen (1953), Rhodin (1953),
Behrndt (1956).

Several detectors designed specifically as MBD's are of
special interest. The first is a device designed by D.G.H. Marsden
(1968). It was designed with a sensitivity reaching down to 10-5
dyne. As a type II detector, it uses a vane attached to a
100pA/100° meter for the target and a photoelectric feedback system
to keep the meter movement in the null position. The current re-
quired to do chis is a measure of the unknown force. A commercial
microbalance usiﬁg this principle is manufactured by Cahn Div.,
Ventron Instruments Corp., and exhibits a rugged and highly portable
movement . .

A type I detector is described by G.I. Skinner (1966), for
use in measuring momentum accommodation coefficients with a pulsed

molecular beam. The device is essentially a ballistic pendulum

whose motion is detected by a differential transforméz. The system
is magnéfically damped. .~/ B

The d%ffe;gntialvtraggfq;mgrmmethodﬂwa? also used pyrAroesty
(1961) in his typé I device to‘meaéﬁre the fb;éeve#erted on a spherg

by a molecular beam. A quartz spring provided the restoring force.

One of the simplest detectors is a rectangular target hung




-

on a tungsten torsion fiber with a mirror. The angle of rotation
is measured by a light beam reflected from the mirror (Stickney,
1963).

Perhaps the most sensitive detectors are those which utilize
a capacitor as the transducer. J.A. Smith (1968) used such a de-
tector in his shock wave experiments. Capacitors have also been
used in conjunction with beam type balances to deteck»changes in
position and to achieve sensitivities on the order oflO_5 dyne
(Gritsenko, 1966; Braginskii, 1964). A good discussion of mechani-
cal measurements by electronic methods is given in the book by C.
Roberts (1951).

The usual method of measuring a force vector in tﬁo or
three dimensions is go use two or three one-dimensional detectors
orthdgonal to one another. For examﬁle; a two-dimensional detector
might be made from two of Marsden's detectors at right angles.
Gjessing (1969) reports a three dimensiénal hot wire anemometer
for use in a wind tunnel. While it does not measure forces and is
not designed for use with molecular beams, the principles used iﬁ
its design might be used to make a MBD with the usual hot wire
detector methods, e.g., a Pirani detector. A two-dimensional
force detector using Ehermionic emission techniques has been des-

cribed by Krylov (1568) for use in wind tunnels.

1.3 Comparison of ‘Previous Detector Methods with the Author's
Only one of the detectors mentioned above meets more than

two of the requirements set forth in the Statement of the Problem.

P
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That detector is described by Marsden (1968). It is confined to

one-dimensional measurements, however. All the others have either
the sensitivity, the size, or the multidimensionality, but not all
three. The author's detector uses a probe which can be made very

small and, with the proper microcircuits, be completely isolated

from the amplifiers and recorder. It is also insensitive to am-
bient pressure, temperature, humidity and atmospheric composition,
assuming that the materials used in construction will not corrode
or melt. A wide variety of these materials may be used.

This design for a MBD originated with the work (unpublished)
of B.R.F. Kendall and R. Hazelton of the Ionosphere,Reseﬁrch
Laboratory. Their idea was to have the molecular beam deflect an
optical fiber suspended above a cohcave mirror. A light ray,
conducted ddwn the fiber was to be reflected up fo a bank,of
photocells to indicate the direction and amplitude of the dis-
placement; An experimental model was built and testgd; Its

~operation was found to be unsatisfactory due to low lighu levels

(despite the use of a lééen)'énd diffraction at the end of the
~ fiber. 'The idea of a four cépacitor detector system was conceived

8 '
by Kendall and suggested to the-author for development. -
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ITI, THEORY OF OPERATION

2.10 Basic Principles

The molecular beam detector to be described is a null device
used to measure small beam forces by the change in capacitance they
produce, when the beam displaces one plate of a capacitor. The
voltage required to bring the capacitor“back to zero displacement
is the actual measure of force; resetting is done automatically by
means of a feedback loop. .Two identical circuits are used to make

the two-dimensional detector, .one.for each axis. The element

common to each is a sensing.probe. It consists of the four capacitors

needed by  the two detector circuits to sense a force. Since the
"x" and "y" detectors are essentially independent and identical,
only one will be discussed. Fig. 1 should be consulted during the
following section.

The probe will be described in chaﬁter three; for purposes
of this discussion, a simple description will suffice. It consists
of two concentric cylinders; .the outer one’is made from thin metal
foil-and is deflected by the beam. . Thé iﬁnetkcylinder is divideq;
into condﬁcting quadranfs, thereby . forming four capacitors. Con-
sider a pair-on-opposite sides~of.the,cyliﬁder. The line betweén
them defines the x direction. In figure 1; the capacitors are

labeled C, and C,

] 27 : ,
Deflection of- the outer cylinder will cause Clrto increase

T T
SRR IRt " | MO B
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and C, to decrease, unbalancing the capacitor bridge. An a.c.

2
voltage proportional to the deflection 1s produced; a high impedance
lcad at the bridge output is assured by field effect transistors
(FET's) in common source configuration. Thus, bridge cperation
approaches that theoretically expected. The difference between

the two voltages from each arm of the bridge is multiplied by a
factor of three hundred and thirty.

In order to reset the bridge, after a deflection, some
method must be uised to sense the direction of that deflection. A
180° phase shift in voltage occurs as the probe capacitor is de-
flected from right to left, thiough its null position. If the output
voltage is gated every half-cycle, and the phase of the gating signal
is correct, only positive or negative pulses will pass, depending
on the direction of deflection. In this case, fﬁe gating is done
by biasing a transistor into the conducting state, and causing it to
short the signal to ground. The géting voitage is supplied by the
same generator which gupplies thé main signal voltage; in this way,
the phase difference Between the two is always constant. The phase
relation is adjusted by a phas; shifting network allowing 180°
control. The phase of the gating signal is adjusted such that the
above mentioned clipping takes place.

The positive 6f negat;vg“pulses are smoothed by an RC fil;gf
and amplified. The final amplifier haé tﬁo outputs; one'hés the.
same polarity as the input signalrand the othér;has the oppositej
polarity. Each is connected to,gﬁgund‘through a 10K resistdr’and

o
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a diode (see Fig. 1). Each diode is oriented in such a way that a
positive potential at that amplifier output will forward bias it.
The feedback voltage is taken from across the diode; each output
being connected to a capacitor on opposite sides of the probe. When
the diode is forward biased, its resistance is very low and most of
the voltage is dropped across the resistor, providing no feedback.
A negative voltage reverse biases the diode and is dropped across it
because of its extremely high resistance. This appears as a feed-
back potential across one of the probe capacitérs. Since only one
diode can be forward biased by the amplifier at any given time, a
feedback voltage can appear across only one probe capacitor. The
force produced pulls the outer cylinder against the perturbing force,
the continuous feedback loop eventually bringing it into equilibrium.
An interesfing featuré of the feedback system is its non-
linearity. The force between the plates of a parallel plate capaci-

tor is given by1

() 2
Fro=—9° 0’% (21.1)
2 S |
where
A = plate area

7>]
n

plate separation

<
[}

voltage across the plates

™
It

0 permittivity of free space.

1 see Corson (1962), equation 2-224. , e i,
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The force is proportional to the square of the applied voltage
and inversely proportional to the plate separation. However, V is
proportional to the displacement of the éapacitor from its null posi-
tion (V = Kx). Let x denote this distance and X the null position

separation. Then S = x + x., and

0
EO [Kx]z
F' ax  emmam A 2 (2102)
2 (x + xo)

Since x << X, (the restoring force keeps it near zero), we have the

approximation
€ 2
pra2 BA 2 L g (21.3)
2 x
0

The sign of F changes as x passes through zero. This does not appear
in fherabove equation because it is even; it will suffice, for the
present, to state that q, bears the opposite sign to x. 1If q, is
large, the effect of gravity can be ignored. Then the equation of

motion of the outer cylinder can be written as
.o 2 ' ) /
mx + ¢px° - F' = 0 ) (21.4)

where

Fl

external force on probe.
qy = electrical force constant

‘'m = outer cyllnder's mass
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In section 2.2, this equation will be dealt with in detail. Its
solution is given by the Weierstrass elliptical function. If some
damping mechanism is not provided, the outer cylinder will continue
to oscillate indefinitely. Damping will be considered in section
2.22.

The parallel plate approximation used here is valid because
the ratio of the radius of curvature to the plate separation is
negligible in the second order. The curvature in this particular
apparatus actually gives an X component force about 90 percent of

that of a flat capacitor of equal area.

2.20 Motion of a Particle under an X2 Force

It was shown in section 2.1 that the outer cylinder is re-
stored by a force proportional to the square of its displacement.
In order to predict the action of the détector in a vacuum, it is

helpful to solve its equations of motion.

,2.21 Undamped Motion

For the undamped case, the motion is governed by the dif-

ferential equation

X - F' =0 (22.1)

where
q, = a constant depending on probe characteristics and
electronics amplification. (It'was discussed in 2.1)

7 BN
4 A
2 R

ST
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F' = perturbing force , normally considered a constant.
m = mass of outer cylinder

Dividing through by m, we have
o 2
XxX+qx ~-F=0 (22.1a)

- Consider the motion from a physical viewpoint.2 Rearranging

equation 22.1

2

mx = - qpx" + FO' (22.2)
Let F(x) = - qox2 + FO'. With F.' a constant force, the potential

0

energy is given by

V' (x)

X
- f F(x) dx
0 o

3 _ F

= 9y/3% 0 ¥ (22.3)

Let E' = total mechanical energy, T' = kinetic energy.

Then,

T' + V' = E'

Ty

2 gee Ross (1964), p. 46.
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and

.2 3 o,
1/2 mx” + dg/3% FO X = E

Dividing by 1/Z m and rearranging terms,

()% = - 2/3 qx° + 2 Fox + 2 E (22.4)

Note the change in notation to indicate that the constants have

been divided by m.

The term qx2 in the equation of motion ( X + qx2 + F0 = Q)

. describe the physical problem and yield bound solutions. To be

rigorous, q might be redefined in terms of step functions, e.g.,

q = q[2 H(x) - 1], where

i

'\1"
i
f

1 0 |
H(x) = O: z'f o * °r d may be redefined as q = % I:I ’
i

Fortunately, the special cases of motion.whichvwill be solved
are guch that all motion takes place in‘thé positive half-plane,
or symmétry properties allow the problem to be solved for motion
in the positive half-plane and then generalized over a whole

cycle. In either case, the change of sign does not need to be

o




=15~

considered in the solution of the problem.
The equation of motion will now be attacked from a

mathematical viewpoint. Rewriting equation 22.1a,

x + qx2 -F=0

The equation is easily reduced to first order. Let y = i,

then

X =y (22.5)

. 2

y=-qx" +F (22.6)
Eliminating time,

‘dy 1 . .2

x"y (- qx” + F)
Considering F a constant (FO) and integrating,

2 3 » :
1/2 y* = = 1/3 qx™ + F.x + C (22.7)

0
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Comparison with equation 22.4 shows the constant C to be the total
energy of the system, divided by the particle mass (E). The equa-

tion may then be rewrittsn as

dx 2 3
(E?) =~ 2/3 qx” + 2 Fox + 2 E (22.8)
Multiplying by - 6/q,
2 12 F . x
- 6/q Qzl = 4 x3 - O _ 12E
dtl q q
Define a complex time variable by
2z =1 (a/6)Y/% ¢ (22.9)
so that
N
2 , 12 F
dx s 2 _ 3 .5 _ 0 _12 E
(dz) Tl A E g *®) -7

(22.10)

Ly
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It is known (Abramowitz, 1965; p. 640) that the following equation

is satisfied by the Weierstrass elliptic function, P(z):

P2 =4 P%) - g, P(2) - g, (22.11)
Thus, x(z) = P(z) if

12 F

(22.12)

and

g, (22.13)
The Weierstrass function is doubly periodic, with periods
2w and 2w'. A complete listing of the function's properties is
givén in<Abramowitz (1965) and the remaining discussion will be
based on the material given there.
While thergeneral problem can now be solved, it is more

instructive to consider the two special cases:

1) lemniscatic g%sé: a step function force hits the
particle resﬁiﬁg at equilibrium (x = 0, F = F,
E=0)
2) J%- equianharmonic cése: Thé’bérticle is pulled to

~ one side (x -;xo) and veleased (F = 0, E = V).

A

\»\4\
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The names given these special cases are the names by which the
corresponding Weierstrass functions are known. The function
will be denoted by P(z; 8y» 33), where 89 and g3 are known as
the invariants. Thus the two special cases correspond to

P(z; 8y 0) and P(z; O, g3) respectively.

Lemniscatic Case

Since F = FO and E = 0, the invariants are

12 F

82 - and 83 =0 (22.14)

The amplitude and maximum velocity of the particle's motion
can be calculated directly from equation 22.8. They are ampli-

tude:

’ (22.15

maximum velocity:

v_.
max

Ve o 12 :
F F
-+2 (—g) (—0) (22.16)
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position of maximum velocity:
F 1/2
x, = ‘-11) - Y2, (22.17)
v q

Homogeneity relations (Abramowitz, 1965; p. 658) allow

the reduction of P(z; 8ys 0) to P(u; 1, 0,), i.e.,

1/

P(z; 8y» 0) = g, 2 P(u; 1, 0) (22.18)

where

u =g, z ’ (22.19)
P(u; 1, 0) is a well known function; its half-periods are w and
w' = iw, where w = 1.8540 74677. The values at the half-
peribds are

P(w) = e, = 1/2 » (22.20)

Pw+w')=e, =0 o (22.21)

P(w') = ey = -1/2 ' (22.22)
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Calculation of the values between ey and e, by a series expansion
(Abramowitz, 1965; p. 681) yields a half-cycle of the solution,
which can be folded over graphically to give a full cycle. The
results are given in Fig. 3, and compared with a sine wave of

equal amplitude and frequency. The axes of the graph are labeled

SR s B, i

in terms of x and t.

| 12 |2
x(u) = P(z; gys 0) = P P(u; 1, 0) (22.23)
1/4
q FO /
+ lu] = 5 t (22.24)
- The amplitude is given by

12‘F0 1/2 3 FO 1/2 |

A - = 22025
” e - ( )

- \1/4
q 7,
2 w= -?;—— T
or
a ¥, ~1/4 |
T= 2W — ' (22.26)

; ,k X
)
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Note from the figure that the peaks of oscillation are sharper

and the valleys broader than the corresponding sine wave.

Equianharmonic Case

With F = 0 and E = V, the invariants are

g, =0 and g, =’l%-! (22.27)

From the previous discussion,

3

where

el
]

initial position.
Then,
gy = - 4 x.°, (22.28)

By equation %2;6;uthe maximum velocity (occuring at x = 0) is

it Fas]
W ¥

found to be

Pl

Lo
Sy
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o= |2l x?) V2

(22.29)

Since the phase space trajectory is symmetrical about both axes,

only a quarter-cycle of motion must be solved.

P(z; O, 33) may be reduced to P(u; 0; 1) by (Abramowitz,

1965; p. 653)

where

The values of

P(z; 0, 8;) = 85" > P(u; 0, 1)

1/6 2

P(u; 0, 1) at the half-periods are

P(w) = e, = 4-1/3 E2

P(wz) =P+ w') = e, = 4-1/3

P@') = e3 = 4713 g2

P(mzl) = P(w'-'m') - 32 = 4-1/3

(22.30)

(22.31)
(22.32)
(22.33)

(22.34)
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where

E =exp (i m/3) (22.35)
and

w, = 1.5299 54037.
Also,

P(uo) =0 (22.36)
where

ug = w, (1 +1 3712y (22.37)

0

Notice that the half-periods w, w' are complex, buf wz

1

2
points are all the real values between P(uo) = 0 and P(wz)‘= e,.

is purely real and w,' = w - W' is purely imaginary. The solution
The solution is graphed in Fig. 4. Again, the solution is
compared with a sine wave of equal amplitude and'frequency; the
axes are relabeledin terms of x and t. The conversions are

given by

)
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1/3

|x| = |P(z;5 0, )| = 47" x; P(w; 0, 1)  (22.38)

and

1/2
(qa x,)
lu| = |1 41/6 . 1/2 2| = 0

75 e ¢t (22.39)

The period of oécillation is such that

1/2
(q x.)
4 I u 0

= mmm———— T
m O 31/2 21/6

It can be shown from the fundamental recti:ngle of P(u; 0, 1)

(Abramowitz, p. 652), that

I u, = 3-1/2 w

mO0 2

so that the period is

W,
T = 213/6 (22.40)

1/2
(q xo)

where

w, = 1.5299 54037...
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2.22 Damped Motion

The oscillating motion, just studied, must be eliminated
in a working system. The simplest method of providing damping
is to differentiate a part of thie positio~. signal and add the
two voltages. The restoring force is then ﬁroportional to the

square of this sum. Thus
%+ a(x + kk)2 = 0 (22.41)

Attempts to solve this equation analytically, as well as the

approximation for small kx,
% + 2 qkxk + qx“ = 0 | (22.42)

were made with no success. The equatién-was solved numerically
on an analog computer by S. Butler, under the direction of B.R.F.
Kendall. Fig. 5 shows the problem solving circuit. An interes-
ting feature is the method used to square the (x + kk) signal
&vand provide for the chahgevof sign of-q. The signal i; used“to
control the X -‘axis of an x-y recor&er, ﬁp&n which is placed

2 2

~a graph of y = + 1/16 X* for X > 0 and y = -1/16 X“ for X < O.

The graph scaié?will be discussed in a later paragraph. A photo-
electric line fdllower-is'inCOrporated into the y-axis of the
recorder, the output beihg proportional to the'square of (x + kx).

- The main problem encountered in using this method is the |

. speed of ‘the line fol}ower.~ The speed, in turn, éépends’upon )
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the slope of the curve. For example, if a plot of y = x2/32 were

used, it could be followed more quickly than x2/16, because its slope

is smaller at every point. However, near x = 0, the former plot
is more inaccurate and introduces considerable error into the system.
Conversely, a plot of y = x2/8 introduces less error than y = x2/16,
but is harder to follow. For most of the computation, y = x2/16 was
used, but y = x2/8 was tried on some problems. A frequency of 3

or 4 cycles per minute is the best that could be tolerated by the

line follower, when using an 8 inch x 12 inch graph. This frequency

is so low that the usual low frequency rejection methods cannot be
used and extraneous d.c. voltages invthe operational amplifiers are
also integrated, providing a component proportional to time. This
problem is aggravated by the low signal levels used. For example,
the x signal is never higher than one volt and is usually only a
few tenths. In damped problems the x signal also spends much time
around one volt or less. A well designed computer circuit WQuid,
take advantage of the * 50 volt range of the Type 'O amplifiers.

At the time the equatioﬁ was solveﬁ,’practical values of q
had not yet been determined by experiment. Therefore, electronic‘
component values were chosen to satisfy the lihe follower require-
ments. -

Analysis of Computer Circuit

The circuit is arranged so that three classes of problems |
may be Simulated: 1) the undamped equation, 2) the damped equa-i

tion, as iﬁd;cated above, and 3) the viscous démped equation, i.e.;
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X + kx + qx2 =0 (22.43)

All of these equations are of the type represented physically by
a particle pulled to one side and released under the influence of
the xz‘restoring force. The case of & particle initially at rest,
being hit bty a step function force is provided for by a voltage

dropped across R., in series with the input to the first integrator.

I
The first integrator integrates X to x. The input resis-
tance (Ri) equals 1 Meg and the feedback capacitor (Cf) is 1luf,
giving a time constant of one second. The initial condition on
X is x = 0; this is provided for by initially shorting out Cge
The second integrator is identical with the exception of the ini-
tial conditions. For the particle drawn to one side and released,

the initial condition is x = x ; simulated by a voltage E | The

0 0’

problem of the step function force has the initial condition x = 0
and the integratof is set up like the’first one.

The term kx is taken from the sujput of the first inﬁegrator,
via a potentiometer and inverted by an gperagional amplifier. If
k is to be greater than unity, the inverter also multiplies by a
constant. When dampingiof the form~q(x“+ ki)2 is desired, the two
signals aré added at ghé input of the fourth operatioﬁél amplifier,
which multiplies By,avconstant, and the outpuf'ié squared. If
viscous4damping is required, thé kx term;is added at the iﬁput»to
the first‘integrafér.

Squaring is performed by a line follower. Since this
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component determines the value of q in a complicated manner, it is
necessary to analyze this part of the circuit is greater detail.
The first step is multiplication by 4/10', performed by an opera-
tional amplifier. The multiplied signal is fed to the input of
an xy-recorder and is thereby converted to a length, as determined

by the volts/inch switch. The conversion is given by

d= Yy, (22.44)

where

(o
]

length along x axis
a = volts/inch conversion factocr (10 or 20)

V,= multiplied voltage.

The x distance is converted ts'afy distance by the line follower

according to the graéh, i.e.,
e =d°/b ' L (22.45)

vhere

e = the y distance

b = conétant, 16 or 8 in these cqlculations.

~The line follower is attached to the slide of a vcltage,diVider,

i

AN
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which is in a circuit designed to give an output of +3 volts at
full displacement and -3 volts at full negative displacement
{both x and y scales are centered about zero). Taking d and e as
being measured from center zero (+ or -) and Lmax as the maximum
plus or minus excursion, the output of the line follower can be

expressed as

= +
Vomt3elL (22.46)

Substituting equations 22.44 and 22.45 into 22.46,

2
- 3 d_
Vo= *T b
max
. ‘ 2 - N
v =33 a (22.47)
0 bL__ a ) ‘ '
max . B P
For most problems
a = 10 volts/inch
b = 16 , |
L = 5 inches, | / ‘
max :
then
3 VA2 5
'VO = % 8000 . ) iy (22.48)




Also,

where VI is the input to the amplifier.

v, = 3/50 v,° (22.49)
In the unscaled equation, q now becomes 3/50, so that
¥ = -(3/50)v° (22.50)
for the undampéd case.
The damped equatibns are
V= - 3/50 (V+ k0?2 | (22.51) ;
and, for viscous damping
A =‘-(3/50)V2 - kV. | (22.?2)

If a constant force is desired in the equations, it is represented

by EO’ added to the right side of the equation, e.g.,

U= -3/5 (VKD +E
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Computer Solutions

Before proceeding to investigate the computer solutions, it
will simplify matters to put the equations in a dimensionless form.
This is a good procedure anytime, but it is particularly useful
here, since the problems were run in uascaled form. Begin with the

undamped equation

- qx (22.53)

i

Both sides must have units of acceleration, so q has the units

L_1 T-Z. Dividing both sides by q gives the unit L2 and dividing

both sides, again, by xO

Equation 22.53 in its dimensionless form is

2 makes the equation dimensionless.

2
(_1 ) o__ (2‘_ (22.54)
qx Xy X

The analogous computer equation is

50 dv 2
3 . 2°- "V
dr

where T = Bt , is the computer time variable. Converting to problem
time (t), the equation becomes

50 2
ZV- v

3B’
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and the dimensionless form is
2
_g_o_(v_v - V‘i) (22.55)
38 V0 0 0

Equation 22.53 is transformed into 22.54 by

_;:5 _ _:,7. (22.56)
0 0
and
_:1‘ = _5%_ (22.57)
g 387V,
The damped equation
o L 2
x = - q(x+ kx)
has the dimensionless form
1 X X X 2 |
s %o o %o

Transformation to the computer voltages are provided by 22.56,

22.57, and the relation between the damping coefficients

K = Bk (22.59)k
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where K is the computer damping coefficient and k is the problem

value.
When a constant perturbing force is considered, e.g.,
X = - qx2 + F, the dimensionless 'force'' becomes F/qxoz. The force
is represented on the computer by an e.m.f. labeled EO. Thus we
E
have the relation -i?— ;fi = 20 ;fl , which reduces to
o %o 38V, 0
E
£ - L (22.60)
0 0

Using equations 22.56, 22.57,<22.59, and 22.60, the computer
results, in volts can be interpreted in terms of X, q, k, and F.

Consider the problem of a particle pulled to one side énd
released, with (x + k}'{)2 damping. The rest position of the
particle will be x = 0. Expanding the equation of motion, it is
seen that two terms contribute to the damping.

.

X = - q(x2 + 2 kxk + kzkz

). (22.61)
The first order term:(kxi) vanishes at the rest ﬁosition, leaVing
the second order (k:'{)2 term. The ;até ;f'damping<while high at
first, will be low in general. Viséous démping would be‘much
faster, but ign!t“present in practice, becau§é experiments aré
done in vacuum.:’Figﬁrés 6 aﬁd‘7 illustrate computer outputs for

various values of K. Figure 8 shows viscous damping for comparison







1.0

1.0

1/4- 4 VOLT

+4 VOLT

1.0

+4 VOLT
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purposes. As a check on theory, consider the period of the undamped

(k = 0) function as plotted in Fig. 6. Since the voltage varies

from +3V to -3V. take x, as 3 x 10-2 cm, and B = 1, for simplicity.

0
From 22.56 and 22.57

V=1x/.01

and
1 16.7 _ 2
ax, —-—3(1) 5.56 sec,

ascuming c.g.s. units.

The period, as given by equation 22.40 is

13/6 /2

_ 1
T = 2 w2/(qx0)
where

w,= 1.53

Now,

1l
l/qx0 = 5.56,p”1/(qx0)

-

(22.62)

(22.63)

so that T = 16.2 seconds, to slide rule accuracy. The period, as

<D

given by the computer is .33 minute, or 20 seconds. The discrepancy

TS
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can be attributed to the non-precision resistors employed in the
multiplier and, it will be shown, to error introduced by the line
follower system.

The value of q in this problem is 5.57 X, " 16.7. A more

realistic value in a practical device would be about 16 x 103.

1/2, the period for this value of g

Since the period varies asq-
can be calculated; it is 0.52 seconds. The 16.2 seccnds period
was used in this calculation.

Solutions were found for the problem of a stationary particle
hit by a step function force. In this case, the rest position,
after damping, would not be x = 0, so that the kxx' term dominates,
and damping is more rapid.

Fig. 9 illustrates the damping. To show that the mismatch
between the theoretically derived period and the period exhibited
by the analog computer in the last problem was due to érrors in-
troduced by the line follower system, I will compare the two periods
for this problem. The "proof'" comes from the fact that in this
problem, a graph of y = x2/8 was used, instead of y = x2/16. To
slow the system down, the input to the x axis was changed from

10 volts/inch to 20 volts/inch. The analog's voltage equation is

changed to V =-3/100 (V + KV)Z, and 22.57 becomes

Lo, | 268
0 38 V0 e

Letting computer time equal problem time (B = 1), and
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Figure 9. COMPUTER SOLUTION OF ¥ = - 3/50 (V + K% + E
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x
VQ = 10-2 cm/V, q = 3 dyne/cmz.
0

From equation 22.60, the force is

F = E

X
L) « E, x 10-2 dyne.
V0 0

In the example of Fig. 9, (K= 0), E, = 0.3 volt, so that

0

3 x 1070

i
"

. The values of amplitude and period are given by

1/2 1/4

equations 22.25 and 22.26 to be a4 = (3F/q) and T = 2w/ (qF/3)

respectively, where w = 1.85. The values}celculated are a = 2.74 x

1.0-2 cm and T = 15.9 sec, to slide rule accuracy. The values given
by the computer are 2.5 x 10-2 cm and 15 sec. The agreement is
much better than last time.

Having indicated the accuracy of the computer solutions, the
damping charaeﬁeristics may be investigated. Define a time constant,
tc’ such that the height of the wave envelope decays to 25 percent
of its initial value in tc seconds. The definition usually used,
i.e., the ﬁime it takes fof ﬁhe wave‘envelope to drop to l/e qimge
its initial‘value,_is‘not indicativefoféfﬁe decay time. The dé$a§
is not exponential and, if'the finel,ﬁOEition is near x ;;O’ becpmeg
very slow after‘ah initial rapid drop. Therefore, a longer time
constant was choseﬁ._ﬁ *

Hqumake use of the analog computer data, it is helpfui to.

collect the four transformation formulae; in slightly alte;ed Eorm;" :
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they are
. p 4
% = .\.,.Q (22.56)
- 0
g% 2
= I (x,/V.), I = 50/3, fory = x/16
q 00
1 = 100/3, fory = x2/8 graph.
(22.57)
; K = Bk (22.59)
s E . VQ_]-, - (22.60)
] 0 ol |
A
L as well as the time transformation
o ;
ﬁ T = Bt '(22.65)
J

where

-
]

computer time

t
n

~ problem time

There are a number of ways in which these transformations may be

used, depending on what is assumed initially, and what information.

is desired. For example, given the values q = “;94, z, = 10-2Cm

‘ 0
and K = 1, find tc and k for thé;pxoblem'of a particlé displaced
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and released. It is known, from Fig. 6, that VO = 4 volts, so
that xO/V0 = 2.,5x 10-3cm/volt. For this set of problens,
I = 3/50. The procedure is to solve 22.57 for B and use 22.65
and the computer value of tc’ i.e., té, to find the problem value.
The value of tc is calculated to be 10.3 seconds. Equatieon 22.59
gives k as 0.155.

It is not necessary to have a graph of the computér output
for this type of calculation. All that is necessary is VO’ tc, I,

and K. For the step force problem, V., might be defined as the

0

limiting value; X, can be calculated from the equ’.ibrium relation

F, = qxoz, where F, is the magnitude of the applied force. Fig.

0 0

10 illustrates tc as a function cf K for the two types of problems.

Curve 1 is the free pendulum problem; tc has a minimum of about 6
seconds at K =6. Curve 2 is for the step function force problem.
There were not enough data points to find the exact minimum, but

it is in the vicinity of K= 1 or 2 with tc lesé than 0.2 seconds.

2.30 Application to the Molecular Beam Detector
Before applying the results of the last two sections to a
real problem, it would be wise to recall the real significance

- of the constant q. The undamped equation of motion is
. 2, E

Dividing through by the mass gives fhé éqﬂation that was worked

throughout this chapter. Thus,
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BOUNDARY CONDITIONS

) Eg=0, Vo=av, 1232
- = - 100
2) Eg 1, V370,12 122

Figure 10. LOG t_ vs. 10G K.
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q = qp/m (23.2)

where q is the constant used in the theoretical discussion and

9 the constant, as it appears in the actual equation of motion.
The mass of the outer cylinder denoted by m, is small in practice,
on the order of one to 100 mg. In the author's apparatus, the

mass was 70 mg. Much smaller masses can be attained by depositing

metal on the surface of a form and dissolving that form.
The method of finding h for a given system will now be

discussed. qox2 is the feedback force across the capacitor, so

that
F, = av? = a(bx)2 = ab’x? (23.3)
where
2 : ,
vV = ‘yégéﬁnial across capacitor

From equation 21.2,

ool
>

(x + xo)
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or

2

A
L2 XS5 %
0

where

xo = null position plate spacing
A = plate area
x = displacement from null position

The value of b comes from a gravitational calibration experiment,
to be described in a later chapter. It gives the open loop output
voltage as a function of the outer cylinder's displacement.

For these experiments, a = 1.8 x 10_4 dyne/voltz, aﬁdkb
depends on the system amplification, varying from one experiment
to another.

Typical values are 6.7 x 103 volt/cm, 3.4 x 104 V/cm, and

6.7 x 104 V/cm. The respective values of are 8.1 x 103 dyne/cmz,

qo
5 2 5 2 ok A :
2.0 x 10° dyne/cm”, and 8.1 x 10 dyne/cm”. Dividing by the mass

“of the outer cylinder, to find q, we have the values 1.2 x lO5

dyne/cmz-gm, 2.9 x 106 dyne/cm2~gm, and 1.2 x 107 dyne/cmz—gm.

-2

Assuming x., = 10 © cm, theSé values of q yield undamped ’

.
pendulum periods of (by equafidn 22.40) .24 sec through .024 sec.

Using the computer results of‘Eig. 10, curve 1, the minimum td
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is calculated to be 8.6 x 10'-2 second through 8.6 x 10—3 second, for

k equaling 8.6 x 10-2 through 8.6 x 10.3

,
t
{
{
:
F
i
e
o
3
b
§
i
L,
: .
L
i
1
;
|




III. DESCRIPTION OF APPARATUS
3.1 Probe
The term 'probe" actually refers to that part of the
detector which is placed in the molecular beam, as opposed to
the amplifiers and gating circuit which remain outside the test
area. The probe consists of inner and outer cylinders, making

up the probe capacitor, and also the housing, which supports

them. If the bridge circuit (section 3.2) were to be miniaturized

and mounted on the housing, it might be considered as part of
the probe. For the sake of analysis, however, the term ''probe"
will be used to refer to just the probe capacitor, since that is
the actual detécting element.

The probe (Fig. 11) consists of two concentric cylinders.
The outer one is 0.394 inches in diamétef, 0.59 inches in height
and has a mass of 70 mg. it is suspended from a .6001 inch
tungsten wire, 5.1 inches in length. The cylinder is constructed
from .001 inch stainless steel foil, spot-welded into sﬁape. The
outer cylinder was constructed by J.0. Weéks of the IRL. The
inner cylinder is machined frdm‘piexiglass. Its diameter is 0.330
inches. Conducting quadrants are painted on the surface by hand,
using silver’paint. This édds another .02 inéhes, making the gap
between the inner and outer cylinder .032 inches. Each of the

quadrants measures 0.63 inches x 0.22 inches. The outer cylinder
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Figure 11. PROBE STRUCTURE.
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only comes within 0.15 inches of the bottom, so, neglecting edge
effects, the effective area of a single quadrant is 0.48 inches
x 0.22 inches, or 0.106 inchesz.

The wire, on which the outer cylinder is hung, 1is sus-
pended inside a plexiglass tube. The wire is tied to the junction
of two vires welded across the top of the cylinder. The inner
cylinder fits into the base of the tube, and four slots allow the¢

crosswires to pass through.

3.2 Bridge Circuit

The bridge circuit (Fig. 12) is basically a four capacitor
type a.c. bhridge. Two of the capacitors are the probe capacitors.
They are opposed by two 5-15 pf trimmer capacitors. The two
trimmers are paralleled by a 2 Megohm‘potentiometer; the common
‘junction of the two trimmers is connected to the adjustable arm
of the potentiometer such that, when in the center position,‘
each trimmer is paralleled by a 1 Meg resistance. The purpose
of the potentiometer is to provide a fine adjustment.

Two field effect transistors (FET) isolate the bridge
from the long leads to the difference amplifier. To reduce the
effects of stray capacitance, the bridge is kept as close to the
probe as pos31ble. The high input impedance of the FET's also
allows the brzdge to perform according to simple theory, i.e.,
no resistive path need be considered between the two arms of the

bridge. The two 10 Megohm res1stors also provide a high input

l

impedancc for the bridge, looking intJ the feedback circuit.
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3.3 Amplifier Circuit

The two bridge outputs are passed through high pass filters
and their difference taken. A Fairchild pA709c integrated circuit
(IC) amplifier is used as the difference amplifier, providing a
gain of ten. This stage and the next are protected from overload
by diodes. The high pass filters have a 100KHz cutoff and reduce
some interfering signals, such as 60 cycle from the power lines.
The filter also reduces the effects induced by mechanical vibrationms.
An a.c. amplifier is capacitively coupled to the difference ampli-
fier. This is another HA709 I.C. module in a configuration giving
a gain of 33 and no polarity reversal. Both I.C.s had to be
compensated for operation at 500 KHz, their upper limit.

Following tlie a.c. amplifier is a 500 KHz tuned filter
and the gating circuit. The filter is a parallel LC resonant
circuit between signal path and ground. It is used mainly to
reduce the 1 MHz second harmonic, which remains after the bridge
is balanced. The effect of the second harmonic on the detector's
performance is small. It would be negligible if the gate opened
for exactly one half cycle of the first harmonic, for then a
whole cycle of the second harmonic would ﬁéﬁé and its positive and
negative half-cycles would 6;ncel each oth;f. In reality, the gate
opens for slightly less than a half-cycle so that the second
- harmonic contributes a small qdnstant comporient. This component
acts to shift the zero of the system, but can be compenséted for  £

by adding an opposite voltage at the later stage.
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The gating circuit will be described in the following
paragraph. A Tektronix Type 'O' operationul amplifier is used

for the next stage, a low frequency amplifier. The feedback loop

consists of a 10 Megohm resistor and a large capacitor in parallel.

The value of the capacitor is chosen by a switch on the front
panel; the most commonly used values are 1luf, 0.luf, and 0.0luf.
When the .0luf capacitor is used, the cutoff frequency is
approximately Z Hz. For the other two capacitors, it is less
than one Hz. The input resistance, Ri’ is also selected by a
panel switch, and d.c. gains from 10 to 1000 are available. This
arrangement has proved superior to the usual RC smoothing filter,
followed by a d.c. amplifier; much less noise is introduced into
the restoring voltage for the same amount of filtering. The
reduction of noise is such that it made the difference between
satisfactory operation and non-operation of the author's detector.
A Tektronix Type 'l132' amplifier-power supply provides the
voltages for the Type 'O' units and the last stage of d.c. ampli-
fication. The Type '132' has two outputs. The positive terminal
gives a signal with the same polarity as the input. The negative
terminal gives an output signal with the opposite polarity. Each
terminal goes to ground through a 10K resistor and a 1N914 diode,
in series. The diode is connected‘to grod;d with polarity such
that a positive voltage will forward bias it. A detailed ex-
planation of the operation of this resistance-diode network, with
reference to the feedback voltage, is given in section 2.1, and ’

will not be repeated. The feedback voltage is taken from across

v
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the diodes. A 10 ngohm resistor is connected in series with the

probe capacitor.

3.4 Gating Circuit

The gaéing signal (Fig. l4a) is taken from the same generator
as the main signal, so that the phase difference will remain.
constant. An emitter follower circuit isolates the generator from
the phase shifting network. The phase shifter is an RCL net&ork
which possesses a constant impedance at the selected frequency,
and hence does not affect the amplitude of the signal. The gating
signal passes to ground through a parallel RL combination, and a
series capacitor. 1Ideally, the resistor is ankeostat variable
from zero to infinity. A 10K unit.was founq to work well. The
reactances are such that the capacitive reactance équals one
half the inductive reactance at the operating frequency, 500 KHz.
In this case, C = ,001luf and L = .2rh. The output is taken across
the capacitor. As R is increased from zero to large values, the
phase shifts by 180°. A mathematical demonstration of this can
be found in Chance (1965).

The shifted signal is amplified by a Tektronix Type 'o!
amplifier. 1Its d.c. gain is set to 100 by an input resistance
of .01 Meg and a feedback resiétance of 1.0 Meg.

Basically, the gating circuit is a switch which shorts
the main signal to ground on the positive half-cycle of the gating

signal, Fig. 14b illustrates the gating circuit. The switch is a



-58-
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Figure 14b. GATING CIRCUIT.
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2N709 transistor, which is biased into the conducting state by a
positive voltage on the base. Three 1N4148 diodes clip the positive
excursion of the gating signal to 2.1 volt, while another one limits
the negative half-cycle to 0.7 volt. The values of the two resis-
tances (1.2K and 2.2K) are much higher than the forward resistance
of the diode. The gating circuit was designed by E. Barnes of the

Ionosphere Research Laboratory.
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IV. DESCRIPTION OF EXPERIMENT

Three types of experiments were performed. The first
used a dummy probe capacitor in place of the true detector
probe. This allowed the electronic circuit to be evaluated
independently of the probe's characteristics. The second type
uses the probe, but no feedback. The probe is mounted at the
end of a 16.6 inch rod, which is pivoted at the opposite end.
By rotating the rod, the inner cylinder is displaced a known
distance, with respect to the outer cylinder, giving open loop
voltage as a function of displacement. The data will be used in
Chapter V to calculate the experimental value of q, so experimental
results may be compared with theory. The third experiment is
similar to the second, except feedback is used. Since the re-
storing force is pulling against the gravitational force, the
experiment gives a direct recording of voltage versus force. 1In
all experiments, the voltages were recorded on a Moseley Auto-
graph Model 680 strip chart recorder with 2 Megohm input impedance
in the voltage ranges used. The most commonly used range was
* 50 volts and * 25 volts. During data runs, the monitoring
oscilloscope was disconnected from the detector. It was nor-
mally commected at the gating point and added a significant
loading effect, despite its 10 Megohm input impedance (paralléled

by 14 pf).
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4,1 Dummy Probe experiment

The dummy probe consists of a rod of Plexiglass fitted
inside a Plexiglass cylinder. The outer surface of the cylinder
is coated with conducting paint, and is grounded during opera-
tion. Except for the knob-handle, both ends of the rod are also
coated for a length of 0.45 inches. Two capacitors are formed
in this way. The capacitances of each are related such that, as
one increases by pulling or pushing the rod, the other decreases
in the same manner in which the probe capacitors react to a dis-
placement of the outer cylinder.

Let x' be the length of the capacitor on the handle-:nd

of the rod. If end effects are ignored, the capacitance Cl’ is

_ 2 mex'

¢, * % 0/d

Using the values D = ,384 inches, d = .252 inches, € = 2.5,

€ = 22.1 x 10-12 farad/meter, find C1

in centimeters. In the experiment, the measured distance is

= 4 x' pf, where x' is

not x', but x, i.e., the distance between the knob-handle and the

cylinder. Since x = b-x' and b = 0.45 inches = 1.14 cm,

Cl = 4 (1014_x) pfo

Now, AC, = - 4 Ax, and the total change in capacitance of Cl
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and C, is 2 AC

AC = 8 Ax

The bridge gives a linear voltage versus displacement curve over
a range of at least .30 inches (.76 cm.). centered about the null
position. 1In the null position, each capacitor is adjusted to
half its maximum value, i.e., x' = x = 0.57cm. Therefore, the
capacitance of one capacitor can change .38/.57 = 67 per cent of
its null position value and the bridge will remain in its linear
region. Measurements of x were made with a scale divided into
hundredths of an inch; the scale was read with the aid of a

magnifying glass.

4,2 Gravity Calibration Experiment - Open Loop

A simplified diagram of the apparatus is shown in Fig. 15.
The length of the Plexiglass rod is 15.61 inches or 39.7 cm. The
distance from the pivot point to the adjusting screw (12) is

28.3 cm.; 1, is 13.3 cm. The length 1, was chosen so that for

1

one turn of the screw, x

2
1 would equal 0.03 cm. A screw with 40
threads per inch was chosen (standard 4-40 size), and the end
turned to a point. A steel plate was glued to the rod at the

point of contact to provide a flat, smooth surface. Tension is

provided by a spring which forces the rod against the screw point.
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Figure 15. SIMrFLIFIED DIAGRAM OF GRAVITATIONAL CALIBRATION
EXPERIMENT.
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The force required to pull the outer cylinder through an

angle 0 is given by

F = Mg0 (42.1)

The relation between 6 and a rotation of the adjusting screw is

6 = N/nl,, (42.2)
where
N = number of turns of screw
n = threads per unit length
Then,
p = Mal 42.3)
nl2

Using the value of 70 mg for the mass of the outer cylinder,

F = 154 N millidyne (mdn).
Since there was no rotation indicator, except the slut in the
head of the screw, data points were usuaily taken at 1/4 turn
intervals; this is because it is relatively easy to set a 1/4 turn
interval by eye. This amount of rotation corresponds to a 0.0075
cm. displacement of the outer cylinder and an equivalent force
of 38.6 mdn. Assume a maximum error of * 10° in position, then
the error would be 11 per cent, or ,0008 cm. and 4.3 mdn, respec-

tively. This amount of error is easily detectable. For this
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rpason ten to twenty data points were taken for =ach screw position
during a given run and an average computed. The data points were
accually closer than an error of 11 per cent would imply, indica-
ting the accuracy of the adjustments.

Before continuing, it will be necessary to consider the
open loop system gain. The molecular beam detector is a force
amplifier.‘ An input force, a wind, displaces the outer cylinder;
a voltage is produced, which in being applied across the probe
capacitor, produces an opposing force. To truly measure the
open loop gain of the system, one would have to break the circuit
at the point where the restoring force was being added to the
signal force, before being converted to a displacement. Then,
for a given input force, the restoring force would be nieasured.
This is impossible because the voltage to force conversion occurs
at the same time and place as the force addition and the two
processes cannot be separated. Knowing the conversion factor
between voltage and restoring force, it migh:t be suggested that
the gain be measured in the following way: disconnect the
restoring voltage so that an open ended circuit is obtained.

Now, the wind can be applied to the probe and a voltage vs. force
curve obtained; the voltage is then converted to a restoring
force mathematically. The failure of this method lies in the
fact that, without the restcring voltage, only gravity opposes
the action of the wind on the outer cylinder, and the force-
displacement relatiocn is linear for small displacements, i.e.,

MgO. The results of this experiment would depend on the value
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of g at the place the experiment was performed. If it was performed
in a gravity-free environment, any perturbing force would cause
infinite displacement. These facts are in conflict with the reali-
zation that the detector has been designed such that the restoriug
force is so great as to make the effects of graQity negligible.

Other schemes have been concocted by the author to measure
the open loop force gain of the system, but all have failed because
of the coupling which occurs at the probe capacitor. The only
parameter which is actually varied from experiment to experiment,
and which is related to system gain, is the voltage gain. This
quantity will be chosen to characterize the system gain. The
electronic signal must be considered as two components: a
500 KHz carrier and the input signal, which modulates the carrier.
In the :Luature, these two components will be referred to as the
carrier and signal, respectively. The net gain for a slowly
varying signal will be called the open loop system gain (GDC).

The difference amplifier has a gain of ten over the 500 KHz
range; the a.c. amplifier, which follows it, has a gain of 330,
giving a net gain of 3300. The gate treats the signal as would
a half-wave rectifier with a high resistance load. The pulsating
d.c. is smoothed by a low pass filter which tends to average the
signal, giving a gain of about 1/2. The low frequency amplifier
has a d.c. gain variable from 10 to 1000. 1In its most selective
state (CF = 1luf), the carrier is eliminated and the gain for a
slowly varying signal can be considered the d.c. gain. The last

amplifier has a gain of 1/40 to 10 and the entire voltage gain
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then lies in the range 400 to 16,500,000. In practice, the highest
gain used is 825,000.

When high open loop gains are used (above 100,000), the
data points for 1/4 turn intervals were too far apart; with a gain
of 330,000, for instance, a 1/2 turn interval causes the * 50 volt
recorder to go off-scale. In these cases, 1/8 turn increments
were used. A 10° error now represents 22 per cent of the increment,
but again, the data point showed a smaller error spread (about
5 per cent).

A major reason for doing the oper loop experiment is to
evaluate the parameter b, referred to in section 2.3; b is the
conversion between open loop output voltage and the outer cylin-
der's displacement, and is needed to calculate 4q° With a gain
of 165,000, b = 4800 V/em. This value can be considered constant
only for small displacements (3/8 turn from null position). Dis-
placements larger than this cause the bridge to exceed its linear
range and becomes an increasing function of x. This problem
does not occur with the closed loop system because the restoring
force keeps the cylinder near the null position. The parameter b

is proportional to gain.

4.3 Gravity Calibration Experiment —'Closed Loop

The same procedure was used in tﬁis experiment as in the
previous one, i.e., the restoring voltage is recorded at 1/4 or
1/8 turn intervals of the adjusting screw. The major difference
between the two is that the restoring voi£aéé‘is measufed as it

is being applied across the probe capacitors and while the
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restoring force is acting against a force (Mg0). Knowing the
magnitude of gravitational force corresponding to each setting of

the adjusting screw, the voltage required to produce an equal force
can be calculated and a theoretical voltage-force curve drawn for
comparison with experimental results. In this manner, it was foun:
that a voltage gain of 330,000 was required to bring the experimentai
data to within 5 per cent agreement with the theoretical curve at

1/8 turn. The comparison is shown in Fig. 16.
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V. ANALYSIS OF EXPERIMENT
5.1 Theoretical Performance
An important characteristic of this detector is that the
theoretical voltage-force response is, for high gain, independent
of all circuit parameters, except the probe capacitor's dimen-
sions. All that must be calculated is the voltage required
across the capacitor to nullify the perturbing force. Equation

21.1 is used for this purpose. Solving for V as a function of

F,
1/2

V=] 2/€0A ]1/2 SF' / (51.1)
where

€ = 8.87 x 10_12 coulz/nt -m

A = area of capacitor plate (the effective area

defined in section 3.1)
S = null position plate separation
F' = perturbing force

Using the probe dimensions, as given in section 3.1, the

formula reduces to

v = 147 572 (51.2)



where V is in volts, F is in dynes.
A curve is shown in Fig. 16 for the range of forces studied
in the experiments. Data points are illustrated for three
levels of gain. Error bars are not included for clarity, but
can be assumed to be * 2 volt at most. A gain of 330,000 is
seen to give about 10 per cent error with respect to the
theoretical curve, while an 825,000 gain puts the data points
within 2 per cent.

To make further comparisons with theory, it will be
useful to develop a formula for q as a function of d.c. open

loop gain. By equation 23.4,

9y = ab

where

a=1.8x 10“4 dyne/volt2

The parameter b was found from the open loop experiment to be
4800 volt/em for a d.c. gain (GDC) of 165,000.

Thus,

b=2.90 x 10_2 GDC volt/cm (51.3)

and

qg = 15.2 x 207 ¢, dyne/cn’ (51.4)
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Dividing by the mass of the outer cylinder gives q:

q=2.16 x 10-6 GDC2 dyne/cm2 - gm (51.5)

The values of q corresponding to the three GDC used in Fig. 16,
4 4

i.e., 165,000, 330,000, and 825,000, are 5.886 x 10, 23.5 x 10,
and 137 x lO4 respectively.

A simple relationship between the percentage error (E)
of the system, with respect to the theoretical curve, and GDC

exists:

DC (51.6)

where

1.03 x 1012

Q
1

This relationship was found empirically and holds for
GDC > 150,000 or q > 47,000.

A rigorous justification of the above formula would
involve the theory of non-linear feedback and automatic control
systems. An intuitive justification can be presented, however.
If the system had infinite gain, the position error would be
zero, giving credit to the inverse relation. The force which

resets the outer cylinder is proportional to the square of the

voltage across the capacitor, implying that the error would
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vary as the inverse of the voltage (or gain) squared.
Converting to q,

E = B/q (51.7)

where

B=2.2x% 106.

Throughout the theoretical discussion, it has been
assumed that q, was so large as to make the gravitational force
negligible. Assume, for the moment, that this force is not in-
significant when compared to the signal force F. The gravita-
tional force on the outer cylinder is kx, where k = Mg/l and
1l = length of the wire suspending the cylinder. Let X be the

equilibrium displacement of the outer cylinder with all three

forces acting on it. Solving the equilibrium equation for Xy

I U 2 1/2]
X, = zqo [ k+ (k" +4 qOF)

Define R as the ratio

kx0
R = 5 (51.8)

The problem of interest is that of finding the q, necessary to

make R as small as desired for a given minimum force Fﬁ.
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Solving the two equations:

2
M R
or, fer small R,
2
Q. = (51.10)
0 2
FMR

As an example find the minimum force which can be measured
with the author's apparatus such that, with 95 = 9.8 x 104

(G.., = 825,000), the gravitational force will be 5 per cent of

DC
the signal (R = .05). For this probe, k = 5.4 dyne/cm, then
FM = 120 mdn. The figure is rather high considering that an
instrument capable of measuring 0.1l to 0.0l mdn is desired.
There is a correction, which can be applied to the measured
force F' to give the true force F:

1/2

F=F'|1+ k/(qu') (51.11)

An alternative is to place a square rooting circuit in
the detector to give a linear voltage-force relation. The square
rooter will be described in section 5.2; just its effect will
be discussed here. With the above changes, the feedback force
will be px instead of q0x2. If the square rooter is just before

the probe, the relation between p and 4 is p=q0/b. Using the

e
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relations between d, and b with GDC’ the restoring force becomes

F=px=(52x10°¢c ) x (51.12)

DC)

The 1argest GDC used in the experiments was 825,000. The value
of p is then 4.3 dyne/cm. As already seen, the value of k is
5.4 dyne/cm, or 125 times larger than p.

The solution to this problem is to move the square rooter
back as many d.c. amplifier stages as possible, since p, as
determined above, is multiplied by the square root of the gain of
each stage. If this is done, a more complicated square root
circuit must be used; otherwise the output will always be positive
and‘the Jirection switching capability of the restoring voltage
will be destroyed (see section 5.2).

Having shown that G_, determines only the accuracy of the

DC
detector, and not its range, it is important to consider in what
ways the probe capacitor dimensions affect the theoretical
voltage-force curve. In all cases, the upper limit is determined
by the maximum voltage output of the amplifier (+ 50 volt for the
Tektronix Type 132). The parallel plate approximation for the
probe capacitance will continue to be used. It may not be
numerically accurate in all cases, but it will illustrate what

changes will occur.

Recall equation 51.1 for convenience:

1/2
2 ) S 1/2 (51.1)

v= |5 = _ 5
(eo al/2
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Increasing the diameter of the inner cylinder, while keeping the

1/2

outer cylinder constant, would leave A almost constant; voltage
then varies linearly with s. Halving s increases the potential
force measuring range of the instrument by a factor of two.

The value of q will increase proportionally because the more rapid
change in capacitance, for a given displacement, causes the voltage
output of the bridge to have a larger slope. Thus, the error of
the system will vary in proportion to s.

Varying the mass of the outer cylinder causes q to change
inversely. A given change in q causes E to vary inversely with
the end result that E changes in proportion to the cylinder's
mass (m). Evaporation techniques might be used to produce a very
small m.

The consequences of reducing the size of the entire probe
are too complicated to predict accurately. The value of a probe
capacitor in the author's detector is abecut one picofarad. The
effects of stray capacitance on a smaller probe would be such as
to reduce the voltage output of the bridge for a given displace-
ment. This would counteract the increased sensitivity due to
closer plate spacing (S). Further analysis of the subject is
beyond the scope of this thesis. It is an important consideration,
however, and should not be disregarded by any potential user of
the detector.

The response time of the detector is also very impc -tant
in application and is mainly determined by the feedback components

of the low frequency amplifier. High values of RC were used in
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the author's model to produce a low cutoff frequency; the resulting
risetimes were on the order of 1/2 minute. This time is easily
improved by reducing RC to 1 sec. or less, without significantly

reducing the overall performance of the system.

5.2 Critique of Electronic Performance

The two main faults of the detector were 1) the gating
circuit did not gate exactly 1/2 cycle and 2) a 1 MHz second har-
monic was present with the carrier and the usual filter methods
worked poorly. These two faults were coupled because, if the gate
had operated properly, the second harmonic would have been of no
importance (a complete cycle would be passed) and, if the harmonic
had been absent, an exact half-cycle gate would not have been
necessary. The data shows that given sufficient gain, the detector
works as expected. The system error might have been less if these
irregularities were not present, but that is in the realm of specu-
lation.

Other methods of detection might be used, such as a lock-in
amplifier. In this case, the output of one arm of the bridge
would be used as the reference signal and the other cutput would
be measured with respect to it. A P.A.R. Model 121 lock-in amplifier
(Princeton Applied Research Corp.) was tested by the author in this
application; while a thorough evaluation was not possible at the
time, it performed at least as well as his own unit and was much
simpler to operate. Additional amplification is needed.

If a gating method is to be used in a developed model, it
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might benefit the user to utilize a full wave rectifying versionm,

rather than "throwing away" the half-~cycle of signal., This would

have the advantage of doubling the available r.m.s. signal and re-~
ducing the filter requirements. The latter feature would improve

the risetime of the detector.

If a linear voltage-force output is desired, it can be ob-
tained by using a circuit ‘'which applies the square root of the
restoring voltage to the probe. The method most commonly used in
analog computing is to use a squaring device in the feedback loop
of an operational amplifier. The problem in most cases is that
of taking the square root of a negative voltage. A switching
circuit of some type must be used to provide an output with the
same sign as the input to the square rooter, Alternatively, the
square rooter can be placed in each of the return leads to the
probe after the resistor-diode nefwork.

System noise was not a problem with the author's apparatus,
mainly because of the large time constants used., Figure 17 shows
the worst case of extraneous voltage variation encountered during
the experiments. In a fast response system, which would probably
be used in practice, care must be taken in suppressing interference

from outside vibrations.

- 5,3 Conclusions and Recommendations

The object of this project was to show whether or not a two-
dimensicnai small force detector was feasible using the probe
described above. It is. The device can be very useful, as indicated
in the introduction, and should be developed to a higher degree. 1If

the project was to be done over again, a commercially available
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FILTER TIME CONSTANT = 10 SEC.).
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detector, such as the lock«in amplifier mentioned in section 5.2,
would have been used in place cf the circuit described above. More
time could then have been spent in developing the probe and evalua-
ting more fully the performance of this type of system, It is
‘regrettable that time did not allow the detector to be tested in a
working environment with an actual molecular beam, The question of
coupling between the x and y direction signals must be investigated.
It may be advantageous to use two frequencies not harmonically re-
lated.

The biggest problem may be that of obtaining a large enough
q to make reliable measurements of millidyne forces and below, A
discussion of this subject was given in section 5.1. It appears
that values on the order of 108 and above may be needed., If this
is the case and larger electronic gains must be used, then hoise

will be of paramount importance in the determination of accuracy.
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