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ABSTRACT

An instrument has been developed which is capable of meas-

uring small forces along the two axes of a plane. The instrument

was designed specifically for use in a molecular beam, but can be

used for a variety of measurements ranging from magnetic fields to

accelerations. A gravitational calibration experiment was performed

and it was shown that millidyne forces wereeasily measured. It

appears feasible to attempt detection of forces at the order of

10- 5 dyne with this type of apparatus.



I. INTRODUCTION

With the advent of upper atmosphere and space travel, the

study of rarefied gas dynamics has been given great impetus. the

interaction of molecular flow with. surfaces of varying shapes has

received much consideration (Talbot, 1961), as has the interaction

of specific molecular species with specific metallic surfaces

(Hinchen, 1965; Laurmann, 1963; de Leeuw, 1966). The molecular

beam detector is specifically designed for this type of work. The

results of these experiments have immediate application in the

design of rocket motors and reentry vehicles (Scala, 1963). The

new rocket engines, such as an ion rocket, produce a low density

output, which may be studied with the equipment Zo be described.

The force detector may also be used as an accelerometer and, if

appropriate magnetic materials are used, as a magnetometer in two

dimensions.

1.1 	 Statement of.Prob em

An instrument must be developed which can measure the di-

rection and magnitude of small forces, such as those exerted by a

molecular beam, in a plane. It must fit the following ppecifica

tions;

1)	 the sensor must be small enough to produce only

minor perturbations in the molecular flow and to

be capable of measuring small variations in flow
v^

;.
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2) the sensor must be maneuverable enough to sample

many points of the flow and to transmit signals to

a remote recorder,

3) the sensor must be capable of measuring small,

rapidly fluctuating forces (on the order of 10-5

dyne) while maintaining large signal capability,

4) the sensor must be capable of operating in vacuo

or under pressure, and over a wide range of tem-

perature and humidity conditions.

1.2	 Survey of Detector Methods

There are a large number of pressure-sensitive detectors in

use in high vacuum and molecular beam.technology (Dushman, 1962;

Ramsey, 1953). It would be far beyond the scope of this thesis to

discuss them all, since most are merely omnidirectional detectors

of density and do not perform functions similar to the molecular x
Z

beam detector (MBD) to be described. One type of detector which is

more relevant to the reviousl stated robl Az is the balance de_P --_	 y	 P

tector. A balance will be defined as a device which makes a force

measurement by exerting an opposite and equal known force and brings

the entire system into equilibrium:

Balances may be divided into two subclasses: those which

provide the restoring force by a changing configuration ,, e.g=., a

spring balance (Type I), and those which use electronic feedback to

maintain a null position (Type II). In general, the balances which-:

will be described were not designed for use as;MBD's; they usually
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were designed to monitor small weight changes or to measure magnetic

susceptibilities.	 They are one dimensional and, in principle., can

be adapted for use in a molecular beam apparatus. 	 However, they are

also too bulky and fragile to be moved around inside the chamber	 ?'

without 'a clever transportation system. 	 General discussions of

 microbalances can be found in Gulbransen (1953), Rhodin (1953),

Behrndt (1956).
t

4 Several detectors designed specifically as MBD's are of
r

special interest.	 The first is a device designed by D.G.H. Marsden

(1968).	 It was designed with a sensitivity reaching down to 10
-5

' dyne.	 As a type II detector, it uses a vane attached to a

100UA/100° meter for the target and a photoelectric feedback system

to keep the meter movement in the null position.. 	 The current re-

quired La do this -is a measure of the unknown force. 	 A commercial

microbalance using this principle is manufactured by Cahn Div.,

Ventron-Instruments Corp., and exhibita a rugged and highly portable

movement.

A type I detector is described by G.I. Skinner (1966), for

r	 ,

use in measuring momentum accommodation coefficients with a pulsed

molecular beam. The device is essentially a ballistic pendulum

whose motion is detected by a differential transformer . The system

is magnetically damped.

The differential transformer method was also _used _by Aroesty

(1961) in his type I device to measure the force exerted on a sphere

by a molecular beam. A quartz spring provided the restoring force.

One of the simplest detectors is a rectangular target hung



on a tungsten torsion fiber with a mirror. The angle of rotation

is measured by a light beam reflected from the mirror (Stickney,

1963).

Perhaps the most sensitive detectors are those which utilize

a capacitor as the transducer. J.A. Smith (1968) used such a de-

tector in his shock wave experiments. Capacitors have also been

used in conjunction with beam type balances to detect changes in

position and to achieve sensitivities on the order of 10 -5 dyne

(Gritsenko, 1966; Braginskii, 1964). A good discussion of mechani-

cal measurements by electronic methods is given in the book by C.

Roberts (1951).

The usual method of measuring a force vector in two or

three dimensions is to use two or three one-dimensional detectors

orthogonal to one another. For example, a -two-dimensional detector	 }

might be made from two of Marsden's detectors at right _angles.

Gjessing (1969) reports a three dimensional hot wire anemometer	 _	 a_

S

for use in a wind tunnel. While it does not measure forces and is

not designed for use with molecular beams, the principles used in'

its design might be used to make a MBD with the usual hot wire

detector methods, e.g., a Pirani detector. A two-dimensional

force detector using thermionic emission techniques has been des-

cribed by Krylov (1968) for use in wind tunnels.

1.3	 Comparison of-Previous Detector Methods with the Author's

Only one of the detectors mentioned above meets more than

two of the requirements set forth in the Statement of the Problem.

:rJ



That detector is described by Marsden (1968). It is confined to

one-dimensional measurements, however. All the others have either

the sgnsitivity, the size, or the multidimensionality, but not all

three. The author's detector uses a probe which can be made very

small and, with the proper microcircuits, be completely isolated

'	 from the amplifiers and recorder. It is also insensitive to am-

bient pressure, temperature, humidity and atmospheric composition,

assuming that the materials used in construction will not corrode

or melt. A wide variety of these materials may be used.

This design for a MBD originated with the work (unpublished)

of B.R.F. Kendall and R. Hazelton of the Ionosphere Research

Laboratory. Their idea was to have the molecular beam deflect an

optical fiber suspended above a concave mirror. A Eight ray,

conducted down the fiber was to be reflected up to a. bank of

photocells to indicate the direction and amplitude of the dis-

placement. An experimental model was built and tested. Its

operation was found to be unsatisfactory due to low light levels

(despite the use of a laseYr) and diffraction at the end of the

fiber. "The idea of a four capacitor detector system was conceived;

by Kendall and suggested to the-author for development.
i

y.y



II. THEORY OF OPERATION

2.10 Basic Principles

The molecular beam detector to be described is a null device

used to measure small beam forces by the change in capacitance they
I	 f

produce, when the beam displaces one plate of a capacitor. The

voltage required to bring the capacitor back to zero displacement

is the actual measure of force; resetting is done automatically b^	 g	 Y Y

means of a feedback loop. Two identical circuits are used to make

the two-dimensional detector,.one.for each axis. The element

common to each is a sensing.probe. It consists of the four capacitors

needed by-the two detector circuits to sense a force. Since the

"x" and "y" detectors are-essentially independent and identical,

only one will be discussed. Fig. 1 should be consulted during the

following section.

The probe will be described in chapter three; for purposes

of this discussion, a simple description will suffice. It consists;.	 p	 p
r.

of two concentric cylinders .the-outer one is made ,from thin metal

g	 foil-and is deflected by the beam.. The inner cylinder is divided-,

into conducting quadrants, thereby forming four capacitors. Con-

sider a pair-on-opposite sides of . the . cylinder=. The line between

them defines the x direction. In figure 1, the capacitors are

labeled 
C^. 

and C2.

Deflection of-the outer cylinder will cause Cl to increase	 w
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and C2 to decrease, unbalancing the capacitor bridge. An a.c.

voltage proportional to the deflection is produced; a high impedance

load at the bridge output is assured by field effect transistors

(FET's) in common source configuration. Thus, bridge operation

approaches that theoretically expected. The difference between

the two voltages from each arm of the. bridge is multiplied by a

factor of three hundred and thirty.

In order to reset the bridge, after a deflection, some

method must be used to sense the direction of that deflection. A

180° phase shift in voltage occurs as the probe capacitor is de-

fleeted from right to left, through its null position. If the output

voltage is gated every half-cycle, and the phase of the gating signal

is correct, only positive nr negative pulses will pass, depending

on the direction of deflection. In this case, the gating is done

by biasing a transistor into the conducting state, and causing it to

short the signal to ground. 	 The gating voltage is supplied by the :..

same generator which supplias the main signal voltage; in this way,

the phase difference between the two is always constant.	 The phase

relation is adjusted by a phase shifting network allowing 180*

control. 	 The phase of the, gating signal is adjusted-such that the

above mentioned clipping takes place.

The positive or negative pulses are smoothed by an RC filter
_i

and amplified.	 The final amplifier has t7o outputs; one has thet

same polarity as the input signal and the__other "has the opposite "r
J

polarity.	 Each is connected to ;round through a lOK resistor and
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a diode (see Fig. 1). Each diode is oriented in such a way that a

positive potential at that amplifier output will forward bias it.

The feedback voltage is taken from across the diode; each output

being connected to a capacitor on opposite sides of the probe. When

the diode is forward biased, its resistance is very low and most of

the voltage is dropped across the resistor, providing no feedback.

i
	

A negative voltage reverse biases the diode and is dropped across it	 .
i

because of its extremely high resistance. This appears as a feed-

back potential across one of the probe capacitors. Since only one

diode can be forward biased by the amplifier at any given time, a

feedback voltage can appear across only one probe capacitor. The

force produced pulls the outer cylinder against the perturbing force,

the continuous._ feedback loop eventually bringing it into equilibrium.

An interesting feature of the feedback system is its non-

I

linearity. The force between the plates of a parallel plate capaci-

tor is given by 

(E )	 2
F' _ 0A	 (21.1)
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The force is proportional to the square of the applied voltage 	 x
i

and inversely proportional to the plate separation. However, V is 	 #-

proportional to the displacement of the capacitor from its null posi-

tion (V - Kx). Let x denote this distance and xO the null position

separation. Then S - x + x0 and

e	 2

F' _ o A ^ 2	 (21.2)

2	 {x + x0)

Since x « x0 (the restoring force keeps it near zero), we have the

approximation

COO K 
2 
A 2	 2

F	 2 x
	 q0x	 (21.3)2 x0

I

^e The sign of F changes as x passes through zero. This does not appear
i^

in the aboveequation because it is even; it will suffice, for the

present, to state that qO bears the opposite sign to x. If q0 
is

large, the effect of gravity can be ignored .._ Then the equation of

motion of the outer cylinder can be written as

t

mx + 'gOX2 - F^ a 0	 (21.4`)

where

F' external force on probe_

qp electrical force constant

m = outer cylinder 'a mass

r	 ,

e
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In section 22, this equation will be dealt with in detail. Its

solution is given by the Weierstrass elliptical function. If some

damping mechanism is not provided, the outer cylinder will continue

to oscillate indefinitely. Damping will be considered in section

2.22.

The parallel plate approximation used here is valid because

the ratio of the radius of curvature to the plate separation is

negligible in the second order. The curvature in this particular

apparatus actually gives an x component force about 90 percent of

that of aflat capacitor of equal area.

2.20 Motion of a Particle under

It was shown in section 2.,

stored by a force proportional to

In order to predict the action of

helpful to solve its equations of

2.21 Undamped -Motion

For the undamped case, the

an X2' Force

L that the outer cylinder is re-

the square of its displacement.

the detector in a vacuum, it is

motion.

motion is governed by the dif
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F' - perturbing force , normally considered a constant.

m = mass of outer cylinder

Dividing through by m. We have

x+qx2 F= 0
	

(22. la)

Consider the motion-from a physical viewpoint. 2 Rearranging-

equation 22.1

mx - gOx2 + FO 	(22.2)

Let F (x) - - gOx2 + FO '. With F0 ' a constant force, the potential
s ,.

energy is given by

x

V' (x) = - 
fo 

F (x) dx
J

^^Ykz
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and

1/2 mx2 + q0
/3x3 - 

F0 'x = E'

Dividing by 1/2 m and rearranging terms,

f

(x)2_-2/3gx3+2F0x+2E	 (22.4)

I
ii

Note the change in notation to indicate that the constants have

been divided by m.

The term qx2 in the equation of motion ( x + qx2 + F0 _ 0)

is very special because it must change sign with x in order to

I

	 describe the physical problem and yield bound solutions. To be 	
I

rigorous, q might be redefined in terms of step functions, e.g.,

q = q[2 H (x)	 1], where

H(x)	 1' x 0 , or q may be redefined as q _ q' 
x

0 9 x < 0	
} -^---^

IxI

Fortunately, the special cases of motion which will be solved

are such that all motion takes place in the positive halt-plane,

or symmetry properties allow the problem to be solved for motion

in the positive half-plane and then generalized over a whole

cycle. In either case, the change of sign does notneed to be

;mm



i

-15-

considered in the solution of the problem.

The equation of motion will now be attacked from a

mathematical. viewpoint. Rewriting equation 22.1a,

x+qx2-F-0

The equation is easily reduced to .first order. Let y = x,

then

x W y
	

(22.5)
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Comparison with equation 22.4 shows the constant C to be the total

energy of the system, divided by the particle mass (E). The equa-

tion may then be rewritten as

I

	 d2/32gx3+2Fox+2E
	

(22.8)

Multiplying by - b/q,

-6/ dxV =4x3_1_ 12Eq 	
q	

q

Define a complex time variable by
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It is known (Abramowitz, 1965; p. 640> that the following equation

is satisfied by the Weierstrass elliptic function, P(z):

P2 = 4 P3 (z)	 92 P(z)	 93	 (22.11)

'	 Thus, x(z)	 P(z) if

12 F0

92	 q	

(22.12)

t

and

r g3 _ 1_ (22.13)
q

The Weierstrass function is doubly periodic, with periods

2w and W. A complete listing of the function's properties is

given in.Abramowitz (1965) and the remaining discussion will be

based on the material given there.

While the general problem can now be solved, it is more

instructive to consider the two special cases:

1) lemniscatic rase:	 a step function force hits the

particle resting at equilibrium (x = 0, F	 FO,

4 E _ 0)

x 2 equianharmonic case: 	 The particle is pulled to

!
one side (x = x0) and"released :(F	 0, E = V).

T^

Y

n	 °!

t 	
t

A

!
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The names given these special cases are the names by which the

corresponding Weierstrass functions are known. The function

will be denoted by P(z; 92
, 9

3), where 92 and 93 are known as

the invariants. Thus the two special cases correspond to

P(z_; g2 , 0) and P(z; 0, g3) respectively.

Lemniscatic Case

Since F - F0 and E = 0, the invariants are

12 F0

g2	
g	

and g3 0	 (22.14)

r

The amplitude and maximum velocity of the particle's motion

can be calculated directly from equation 22.8. They are ampli-

tu-de: {
t

i

(22.15

maximum velocity:
,t

t
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position of maximum velocity:	 i

i

1/2

X v	 q= q
	

= 3
_1 2 A
	 (22.17)

Homogeneity relations (Abramowitz, 1965; p. 658) allow

the reduction of P(z; 92 9 0) to P(u; 1, 0 9 ), i.e.,

P(z; g2 , 0)
g21/2 P(u; i t 0) (22.18)

f where

f
u	 921/4 z (22.19)

P(u; 1, 0) is a well known function; its half-periods are w and

w'' 	 iw, where w = 1.8540 74677.	 The values at the half-

periods are
r...,.

r
c i

PM	 el 1/2 (22.20)

{
t
C

P(w + w') = e2	 0 (22.21)

P (w') _ e3 = -1/2 (22.22)
a

i

_

c
f^
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Calculation of the values between e l and e2 by a series expansion
(Abramowitz, 1965; p. 681) yields a half-cycle of the solution,

which can be folded over graphically to give a full cycle. The

i results are given in Fig. 3, and compared with a sine wave of

n
equal amplitude and frequency. The axes of the graph are labeled

in terms of x and t.

12 F 1/2
x(u)	 P(z; g 2 , 0)	 q °	 P(u; 1, 0) (22.23)

q 
F 1/4

I u I=	
3 

0	
t	 (22.2+)

The amplitude  is given by



'

/

^ in 0

cli

cri

'

-_

C%0

_



f	 '

-22-

Note from the figure that the peaks of oscillation are sharper

and the valleys broader than the corresponding sine wave.

Equianharmonic Case

With F - 0 and E L V, the invariants are

g2 0 and 83 _ 
12 V

4
(22.27)

From the previous discussion,

V=-1/3 gx03,

where

x0 = initial position.



,
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vmax 
= 12/3)(q x03) 1/2 . (22.29)

Since the phase space trajectory is symmetrical about both axes,
i

only a quarter-cycle of motion must be solved...

P(z; 0, g3 ) may be reduced to P(u; 0; 1) by (Abramowitz,

1965; P. 653)

f

f P(z; 0 9 83)	 g31 3 P(s; 0,	 1) (22.30)

where

u = 9
31/6 z.

s

The values of P(u; 0, 1) at the half -periods are

-1/3	 2PM	 el	 4	 E (22.31)	
t

P(w) = P(w + w') = e	 =
2	 2

4 
13

(22.32)
r

'
-1/3	 -2

P (w')	 e3 	 4	 E (22.33)	 I ,

(f^

I

I

P(w2 ') _ `P (w - w')	 a2 = 4
- 1/3

(22.34)

i

,
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where

E = exp (i n/3)	 (22.35)

I
I

w2 	 1.5299 54037.

pfp
Also,	 F

P (u0 ) = 0	 (22.36)

where 1

F_

U	 w (1 + 1 3-1/2)
	 (22.37)0	 2

Notice that the half-periods w, w' are complex, but w2

is purely real and w2 ' = w - W' is purely imaginary. The solution

points are all the real values between P(u0) = 0 and P(w2) e2.

-The solution is graphed in Fig. 4. Again, the solution is

compared with a sine wave of equal amplitude and frequency; the

axes are relabeledin terms of x and t. The conversions are

given by

and
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1XI	 IP(z; 0, g3)1 = 41/3 x0 P(u; 0, 1)	 (22.38)

1/6 1/2	
(q x0)1/2

u)	 ) i 4	 x0	 z)	
3 1/2 21/6 t	 (22.39)

The period of oscillation is such that

(a x-)1/2



2.22 Damped Motion

The oscillating motion, just studied, must be eliminated

in a working system. The simplest method of providing damping

is to differentiate a part of the position.. signal and add the

two voltages. The restoring force is then proportional to the

square of this sum. Thus

so
x+ q(x+kx) 2 0

Attempts to solve this equation analytically, as well as the

approximation _ for small kc,

x + 2 gkxk + qx ` _ 0
	

(22.42)

(22.41)

C

_Y

were made with no success. The equation was solved numerically

on an analog computer by S. Butler, under the direction of B.R.F.
j

(	 Kendall. Fig. 5 shows the problem,solving circuit An interes-

ting feature is the method used to square the -(x + kk) signal

and provide for the change of sign of-q. The -signal is used to

control the X - axis of an x-y recorder, upon which is placed
t,

a graph of y _ + 1/16 X2 for X > 0 and ,y _ -1/16 X2 for X < 0.
t

!i The graph scale will be discussed in a later paragraph.	 A photo-

electric line follower is incorporated into the y-axis of the

recorder, the output being proportional to the square pf (x + kk).

3
The main problem encountered in using this method is the

g
2o	

-,

speed of ' the line follower. The speed, in turn, ` depends upon

z

z	 ^,

t



_2g_
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the slope ofthe curve. For example, if a plot of y = x2/32 were

used, it could be followed more quickly than x2/16, because its slope.

is smaller at every point. However, near x = 0, the former plot

is more inaccurate and introduces considerable error into the system.

Conversely, a plot of y = x2/8 introduces less error than y = x2/16,

but is ;harder to follow. For most of the computation, y =- x2 /16 was

used but	 2,	 y = x j8 was tried on some problems. A frequency of 3

or 4 cycles per minute is the best that could be tolerated by the

line follower, when using an 8 inch x 12 inch graph. This frequency

is so low that the usual low frequency rejection methods cannot be

used and extraneous d.c. voltages in the operational amplifiers are

also integrated, providing a component proportional to time. This

problem is aggravated by the low signal levels used. For example,

the x signal is never higher than one volt and is usually only a

few tenths. In damped problems the x signal also spends much time

around one volt or less. A well designed computer circuit would

take advantage of the + 50 volt range of the Type '0' amplifiers.

At the time the equation was solved, practical values of q

had not . yet been determined by experiment. Therefore, electronic

component values were chosen to satisfy the line follower require-

ments.	
G

Analysis of Computer Circuit

The circuit is arranged so that three classes of problems

may be simulated; 1) the undamped equation, 2) the damped equa-

tion, as indicated above, and 3) the viscous damped equation, i.e.f
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x + kX + qx2 	 0	 (22.43)

All of these equations are of the type represented physically by

a particle pulled to one side and released under the influence of

the x2 restoring force. The case of o -particle initially at rest,

being hit by a step function force is provided for by a voltage

dropped across RI , in series with_the input to the first integrator.

The first integrator integrates x to k. The input resis-

tance (Ri) equals 1 Meg and the feedback capacitor (Cf) is luf,

giving a time constant of one second. The initial condition on

x is k = 0; this is provided for by initially shorting out Cf.

The second integrator is identical with the exception of the ini-

tial conditions.	 For the particle drawn to one side and released,

the initial condition is xxO , simulated by a voltage E0 6 	 The j

problem of the step function force has the initial condition x = 0

and the integrator is set up like the first one.

The term kk is taken from the output of the first integrator, r

via a potentiometer and inverted by an operational amplifier. 	 If

k is to be greater than unity, the inverter also multiplies by a

constant.	 When damping of the form q(x + kx) 2 is desired, the two z

signals are _added at the input of the fourth operational amplifier,
c

which multiplies by a_constant, and, the output is squared.	 If

viscous damping is required, the ki term is added at the input to

the first integrator.

Squaring is performed.by a line follower.	 Since this x

u

I

r	 az.»-.	 ba .....
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component determines the value of q in a complicated manner, it is

necessary to analyze this part of the circuit is greater detail.

The first step is multiplication by 41 ` ,performed by an opera-

tional amplifier. The multiplied signal is fed to the input of

an xy-recorder and is thereby converted to a length, as determined

by the volts/inch switch. The conversion is given by
.E

d = VA`a
	

(22.44)

where

^.	 d = length along x axis
wx

4
	 a - volts/inch conversion factor (10 or 20)

VA= multiplied voltage.

^ f4

The x distance is converted to a  distance by the line follower
j

according to the graph, i.e.,	
I,.

t
e = d2 /b	 (22.45)

ti

r 	,

c=here

-	 e the y distance

b constant, 16 or 8 in these calculations.

The line follower is attached to the slide of a vcltage.divider,
t

p
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which is in a circuit designed to give an output of +3 volts at

full displacement and -3 volts at full negative displacement

(both x and y scales are centered about zero). Taking d and a as

being measured from center zero (+ or -) and Lmax as the maximum

plus or minus excursion, the output of the line follower can be

expressed as

VO 
_ 3 e/Lmax

Substituting equations 22.44 and 22.45 into 22.46,

V = ± 3 d2
0	 L	 b

max

(22.46)

2

V = ±3
	 °A

0 bL 	 fa
(22.47)
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Also,

VA	 4 -Vl0 VI

where VI is the input to the amplifier. I

v  3/50 
VI2	

(22.49)

In the unscaled equation, q now becomes , 3/50, so that

	

_ -(3/50)V2	(22.50)

for the undamped case.

The damped equations are

V = - 3/50 (V + kV) 2	(22.51) r:

and, for viscous damping

V	 -(3/50)V 2 	 kV,	 (22.52)

If_;a constant force is desired in the equations, it is represented

by E0 , added to the right side of the equation, e.g.,

 23/50 (V+kV)+E
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t^

1
i

Computer Solution,

Before proceeding

will simplify matters to

This is a good procedure

here, since the problems

undamped equation

s
t

to investigate the computer solutions, it

put the equations in a dimensionless form.

anytime, but it is particularly useful

were run in unscaled form. Begin with the

x

x _	 qx2 	(22.53)

Both sides must have units of acceleration, so q has the units

L 1 -2 . Dividing both sides by q gives the unit L 2T 	and dividing

both sides, again, by x02 makes the equation dimensionless

EquatLon 22.53 in its dimensionless form is

I l	 xx 2
(22.54)

^ qx0 x0	 x0



and the dimensionless form is

50 !ii _ - V 
2	

(22.55)
3S2V0 V	

V
O	

0

I

Equation 22.53 is transformed into 22.54 by
e

4	 xV_ __ _	
(22.56)

l

x 	
O

and
i

150
(22.57)

qxO	
3^2V

F	 0
j

^i

z=,E
The damped equation

1

s x = - q (x + kx) 2

has the dimensionless form

2

t qX xx - xx. + k xx	
(22.58)

0	 0	 0	 _ U

Transformation to the computer voltages are provided by 2.2.56,

22.57, and the relation between the damping coefficients

t

t K	 Sk	 (22.59)
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When a constant perturbing force is considered, e.g.,

x = qx2 + F. the dimensionless "force" becomes F/gx02 . The force

is represented on the computer by an e.m.f. labeled E0 . Thus we

`	 E
have the relation 

qX xF	 20 VO
	 which reduces to

0 0	 30 V0 0

i

F EO (22.60)	 E

x0 	 V0

j

	

	 Using equations 22.56, 22.57, 22.59, and 22.60, the computer

results, in volts can be interpreted in terms of x, q, k, and F.
3

Consider the problem of a particle pulled to one side and

released, with (x + kx) 2 damping. The rest position of the

k	 particle will be x = 0. Expanding the equation of motion, it is

seen that two terms contribute to the damping.°

x = - q (x2 + 2 kxx + k2x2 ).	 (22..61).

The first order term.(kxk) vanishes at the rest position, leaving

the second order (kx) 2
 term. The rate of damping while high at

first', will be low in general. Viscous damping would be much

faster, but isn't present in practice, because.experiments are

done in vacuum. Figures 6 and 7 illustrate_ computer outputs for

various values of K. Figure 8 shows viscous damping for comparison

s	 .'	 I
{
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purposes. As a check on theory, consider the period of the undamped

(k - 0) function as plotted in Fig. 6. Since the voltage varies

from +3V to -3V, take x0 as 3 x 10-2 cm, and	 1, for simplicity.

From 22.56 and 22.57

V = x/.Ol	 (22.62)

and

1	 16.7	 5.56 sect,	 (22.63)
qx0 s 3(l)

a6zuming c. g. s_. units.

The period, as given by equation 22.40 is

T 
= 213/6 w2/(qx0)1 /2
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can be attributed to the non-,precision resistors employed in the

multiplier and, it will be shown, to error introduced by the line

follower system.

The value of q in this problem is 5.57 xo - 16.7. A more

realistic value in a practical device would be about 16 x 103.

I Since the period varies as q 1/2 , the period for this value of q

can be calculated; it is 0.52 seconds. The 16.2 seconds period

was used in this calculation.

Solutions were found for the problem of a stationary particle

hit by a step function force. In this case, the rest position,

after damping, would not be x - 0, so that the kxx' term dominates,

and damping is more rapid.

Fig. 9 illustrates the damping. To show that the mismatch

between the theoretically derived period and the period exhibited

by the analog computer in the last problem was due to errors in-

troduced by the line follower system, I will compare the two periods	
.^ •Yh ^

for this problem. The "proof" comes from the fact that in this

problem, a graph of y = x2/8 was used, instead of y - x2/16. To

slow the system down, the input to the x axis was changed from
	 I

10 volts/inch to 20 volts /inch. The analog ' s voltage equation is



V

-2

Q

I

^_4
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x0 = 10-2 cm/V,
V0

q	 3 dyne/cm2.

From equation 22.60, the force is

F = E0 
VU	

EO x 10
-2
 dyne.

0

In the example of Fig. 9, (K = 0), E 0 = 0.3 volt, so that

F = 3 x 10-3 . The values of amplitude and period aregiven by

equations 22.25 and 22.26 to be a = (3F /q)1 / and T 2w/(qF/3)1/4
I

respectively, where W = 1.85. The values calculated are a = 2.74 x
I

10 2 cm and T = 15.9 sec, to slide rule accuracy. The values given
-

-4	by the computer are 2.5 x 10 2 cm and 15 sec. The agreement is

much better than last time,

Having indicated the accuracy of the computer solutions, the

damping characteristics may be investigated. Define a time constant,

t
c
, such that the height of the wave envelope decays to 25 percent

I

of its initial value 	
c

in t seconds * The definition usually used,. 

`	 i.e., the time it taken for the wave envelope to drop to 1/e tlmec

its initial value, is not indicative',of the decay time. The decay

is not exponential and, if the final position is near x = Q, becomes

very slow after an initial rapid drop. Therefore, ,a longer time

constant was chosen.

To .make use of the analog computer., data,, it is helpful to -

collect the four transformation formulae;` in'slightly altered form,'
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they are

X _ x0

V	 V0
(22.56)

2
^	 =	 I (x^/VO),	 I -	 50/3, for y	 =i	 x2/16
q

I =	 100/3, for y = x2/8 graph.

(22.57)

K	 Sk (22.59)

F (22.60)
E0 	 V0 J

as well as the time transformation

T	 _	 ^t (22.65)

where

T	 = -computer time

t	 =	 problem time

There are a number of ways in which these transformations may be

used, depending on what is assumed initially, and what information

is d--aired.	 For example, given the values q
4-2

=	 l'O	 xO	 _	 10	 cm

and K 1, find t
C 
and k for the problem of -a particle displaced ^_..

4

:
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and released. It is known, from Fig. 6, that V0 = 4 volts, so
that x /VO = 2.5 x 10-3 cm/volt. For this set of problems,

I = 3/50. The procedure is to solve 22.57 for S and use 22.65

and the computer value of t c , i.e., t, to find the problem value.

The value of t  is calculated to be 10.3 seconds. Equatirin 22.59

gives k as 0.155.

It is not necessary to have a graph of the computor output

for this type of calculation. All that is necessary is Vo , tc , it

and K. For the step force problem, 
VO 

might be defined as the

limiting value; x0 can be calculated from the equ.''ibrium relation

FO	gxO2, where FO is the magnitude of the applied force. Fig.

10 illustrates- t  as a function of K for the two types of problems.

Curve l is the free pendulum problem; t  has a minimum of about 6

seconds at K =6. Curve 2 is for the step function force problem.

There were not enough data points to find the exact minimum, but

it is in the vicinity of K 1 or 2 with t  less than 0.2 seconds..,,.,

2.30 Application to the Molecular Beam Detector

12o-Fire 7TT$1!!'1Tf! the YGQ111f Q r%-F f-ho 1Oaf^ f-r.?n amt%f-inns f-n
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BOUNDARY CONDITIONS

1) Eo 0, Vo=4V, I= 3
2)Eo 19Vo3.70,1=)3

x^

2.0
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q -- q0/m
	 (23.2)

where q is the constant used in the theoretical discussion and

q0 the constant, as it appears in the actual equation of motion_.

The mass of the outer cylinder denoted by m, is small in practice,

on the order of one to 100 mg. In the author's apparatus, the

mass was 70 mg. Much smaller masses can be attained by depositing

metal on the surface of a form and dissolving that form.

The method of finding q 0 for a given system will now be

discussed. gOx2 is the feedback force across the capacitor, so

that

F  _ aV2	 a(bx)2 _ ab2x2 	(23.3)
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or

a	 =	

e^
A2

, x < < x0

x0

where

x0 = null position plate spacing

A	 plate area

x = displacement from null position

The value of b comes from a gravitational calibration experiment,

to be described in a later chapter. It gives the open loop output

voltage as a function of the outer cylinder's displacement.

For these ex er iments a = 1 8 x 10-4 d ne/volt2 and bp -•	 ,	 0	 .7 	 ,

depends on the system amplification, varying from one experiment

to another,

Typical values are 6.7 x 103 volt/cm, 3.4 x 104 V/cm, and

6.7 x 104 V/cm. The respective values of q0 are 8.1 x 10 3 dyne/cm2,

2.0 x 105 dyne/cm2, and 8.1 x 10 5 dyne/cm2 , Dividing by the mass

of the outer cylinder, to find q, we have the values 1.2,x 105

dyne/cm2-gm, 2.9 x 10 6 dyne/cm2-gm, and 1.2 x 10
7
 dyne/cm 2-gm.

Assuming x  = 10 
2 

cm, these values of q yield undamped

pendulum periodsof (by equation 22.40)!.24 sec through.024 sec. 	 _	 a
„t

Using the computer results of Fig. 10, curve 1, the minimum t-
c

s





III. DESCRIPTION OF APPARATUS

3.1	 Probe

The term "probe" actually refers to that part of the

detector which is placed in the molecular beam, as opposed to

the amplifiers and gating circuit which remain outside the test

area. The probe consists of inner and outer cylinders, making

up the probe capacitor, and also the housing, which supports

them. If the bridge circuit (section 3.2) were to be miniaturized

and mounted on the housing, it might be considered as part of

the probe. For the sake of analysis, however, the term "probe"

will be used to refer to just the probe capacitor, since that is

the actual detecting element.

The probe (Fig. 11) consists of two concentric cylinders.

The outer one is0.394 inches in diameter, 0.59 inches in height
r

and has a mass of 70 mg. It is suspended from a .0001 inch

tungsten wire, 5.1 inches in length. The cylinder is constructed

from .001 inch stainless steel foil, spot-welded into shape. The

outer cylinder was constructed by J.O. Weeks of the IRL. The
r,

inner cylinder is machined from plexiglass. Its diameter is 0.330

inches. Conducting.quadrants are painted on the surface by hand,

using silver paint. This adds another .02 inches, making the gap

between the inner and outer cylinder 032 inches. Each of the

quadrants measures 0.63 'inches x 0.22 inches. The outer cylinder	 ^,Yq

F,
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1

Fibure 11. PROBE STRUCTURE.
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only comes within 0.15 inches of the bottom, so, neglecting edge

effects, the effective area of a single quadrant is 0.48 inches

x 0.22 inches, or 0.106 inches 2.

The wire, on which the outer cylinder is hung, is sus-

pended inside a plexiglass tube. The wire is tied to the junction

of two vires welded across the top of the cylinder. The inner

cylinder fits into the base of the tube, and four slots allow tht,

crosswires to pass through.

3.2	 Bridge Circuit

The bridge circuit (Fig. 12) is basically a four capacitor

type a.c. bridge. Two of the capacitors are the probe capacitors.

They are opposed by two 5-15 pf trimmer capacitors. The two

trimmers are paralleled by a 2 Megohm potentiometer; the common

junction of the two trimmers is connected to the adjustable arm

of the potentiometer such that, when inthe center position,

each trimmer is paralleled by a 1 Meg resistance. The purpose

of the potentiometer is to provide a fine adjustment.

Two field effect transistors (FET) isolate: the bridge

-	 from the long. _leads to the difference amplifier. To reduce the

effects of stray capacitance, the bridge is kept as close to the

probe as possible. The high input impedance of the FET's also

allows the bridge to perform according to-simple theory, i.e.,

no resistive path, need be considered between the two arms of the

bridge. The two '10 Megohm res-istors also provide a high input 	 -°

impedancc for the bridge, looking into11 the feedback' circuit.'
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j

3.3	 Amplifier Circuit

The two bridge outputs are passed through high pass filters

and their difference taken. A Fairchild uA709c integrated circuit

(IC) amplifier is used as the difference amplifier, providing a

gain of ten. This stage and the next are protected from overload

by diodes. The high pass filters have a 100IMz cutoff and -reduce

some interfering signals, such as 60 cycle from the power lines.

The filter also reduces the effects induced by mechanical vibrations.

An a.c. amplifier is capacitively coupled to the difference ampli-

fier. This is another pA709 I.C. module in a configuration giving

a gain of 33 and no polarity reversal. Both I.C.s had to be

compensated for operation at 500 KHz, their upper, limit.

Following the a.c. amplifier is a 500 KHz tuned filter

and the gating circuit. The filter is a parallel LC resonant

circuit between signal path and ground. It is used mainly to

reduce the 1 MHz second harmonic, which remains after the bridge

is balanced. The effect of the second harmonic on the detector's

performance is small. It would be negligible if the gate opened

for exactly one half cycle of the first harmonic, for then a

whole cycle of the second harmonic would	 s and its ;positive and

negative half-cycles would cancel each other. In reality, the gate

opens for slightly less than a ` half-cycle so that the second

harmonic contributes a small constant component. This component

acts to shift the zero of the system, but can be compensated for

by adding an opposite voltage at the later stage.,
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The gating circuit will be described in the following

paragraph. A Tektronix Type '0' operational amplifier is used

for the next stage, a low frequency amplifier. The feedback loop

consists of a 10 Megohm resistor and a large capacitor in parallel.

The value of the capacitor is chosen by a switch on the front 	 r

panel; the most commonly used values are 1pf, O.lpf, and 0.Olpf.

When the .Olpf capacitor is used, the cutoff frequency is

approximately 2 Hz. For the other two capacitors, it is less

than one Hz. The input resistance, Ri , is also selected by a

panel switch, and d.c. gains from 10 to 1000 are available. This

arrangement has proved superior to the usual RC smoothing filter,

followed by a d.c. amplifier; much less noise is introduced into

i

	

	 the restoring voltage for the same amount of filtering. The

reduction, of noise is such that it made the difference between

satisfactory operation and non-operation of the author's detector.

A Tektronix Type '132' amplifier-power supply provides the

voltages for the Type '0' units and the last stage of d.c. ampli-

fication. The Type '132' has two outputs. The positive terminal

gives a signal with the same polarity as the input. The negative

terminal gives an output signal with the opposiLte polarity. Each

terminal goes to ground through a 10K resistor and a 1N914 diode,

in series. The diode is connected to ground with polarity such

that a positive voltage will forward bias it. A detailed ex-<

nlnnnt-inn of the nt,crat;nn of thi Q 	 nptwnrk_ with
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the diodes. A 10 Mc3ohm resistor is connected in series with the

probe capacitor.

3.4	 Gating Circuit

The gating signal ( Fig. 14a) is taken from the same generator

as the main signal, so that the phase difference will remain

constant. An emitter follower circuit isolates the generator from

the phase shifting network. The phase shifter is an RCL network

which possesses a constant impedance at the selected frequency,

and hence does not affect the amplitude of the signal. The gating

signal passes to ground through a parallel RL combination, ani a

tt
series capacitor. Ideally, the resistor is a ►neostat variable

from zero to infinity. A 10K unit was found to work well. The

reactances are such that the capacitive reactance equals one

half the inductive reactance at the operating frequency, 500 KHz.

In this case, C = .001pf and L	 .2r'^. The output is taken across

the capacitor. As R is increased from zero to large values, the

phase shifts by 180°. A mathemartcal demonstration of this can

be found in Chance ( 1965) .

The shifted signal is amplified by a Tektronix Type '0'

amplifier. Its d.c. gain is set to 100 by an input resistance

of .01 Meg and a feedback: resistance of 1.0 Meg.

Basically, the gating circuit is a switch witich shorts

the main signal to ground on the positive half-cycle of the gating

signal. Fig. 14b illustrates the gating circuit. The switch is a

VI
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2N709 transistor, which is biased into the conducting state by a

positive voltage on the base. Three 1N4148 diodes clip the positive

excursion of the gating signal to 2.1 volt, while another one limits

the negative half-cycle to 0.7 volt. The values of the two resis-

tances (1.2K and 2.2K) are much higher than the forward resistance 	 r

of the diode. The gating circuit was designed by E. Barnes of the

Ionosphere Research Laboratory.
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IV. DESCRIPTION OF EXPERIMENT

Three types of experiments were performed. The first

used a dummy probes capacitor in place of the true detector

probe. This allowed the electronic circuit to be evaluated

independently of the probe's characteristics. The second type

uses the probe, but no feedback. The probe is mounted at thy.

end of a 16.6 inch rod, which is pivoted at the opposite end.

By rotating the rod, the inner cylinder is displaced a known

distance, with respect to the outer cylinder, giviag open loop

voltage as a function of displacement. The data will be used in

Chapter V to calculate the experimental value of q, so experimental

results may be compared with theory. The third experiment is

similar to the second, except feedback is used. Since the re-

storing force is pulling against the gravitational force, the

experiment gives a direct recording of voltage versus force. In

all experiments, the voltages were recorded on a Moseley Auto-

graph Model 680 strip chart recorder with 2 Megohm input impedance

in the voltage ranges used. The most commonly used range was

+ 50 volts and ± 25 volts. During data runs, the monitoring

oscilloscope was disconnected from the detector. It was nor-

mally connected at the gating point and added a significant

loading effect, despite its 10 Megohm input impedance (paralleled

by 14 pf)

we
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4.1	 Dummy Probe experiment

The dummy probe consists of a rod of Plexiglass fitted

inside a Plexiglass cylinder. The outer surface of the cylinder

is coated with conducting paint, and is grounded during opera-

tion. Except for the knob-handle, both ends of the rod are also

coated for a length of 0.45 inches. Two capacitors are formed

in this way. The capacitances of each are related such that, as

one increases by pulling or pushing the rod, the other decreases

in the same manner in which the probe capacitors react to a dis-

placement of the outer cylinder.

Let x' be the length of the capacitor on the handle•:.nd

of the rod. If end effects are ignored, the capacitance C l , is

2 TrEx'
C1	 kn (D/d)

Using the values D	 .384 inches, d = .252 inches, E = 25,

EO = 22.1 x 10-12 farad/meter, find C 1 = 4 x' pf, where x' is

in centimeters. In the experiment, the measured distance is

not x', but x, i.e., the distance between the knob-handle and the

cylinder. Since x - b-x' and b 0.45 inches - 1.14 cm,

C1	4 (1.14-x) pf•

Now, AC, _ - 4 Ax, and the total change in capacitance of C1

r
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and C2 is 2 ACl , so that
4

AC - 8 Ox

The bridge gives a linear voltage versus displacement curve over
	 V,

a range of at least .30 inches (.76 cm.). centered about the null

position. In the null position, each capacitor is adjusted to

half its maximum value, i.e., x' - x - 0.57cm. Therefore, the

capacitance,of one capacitor can change .38/,57 - 67 per cent of

its null position value and the bridge will remain in its linear

region. Measurements of x were made with a scale divided into

hundredths of an inch; the scale was read with the aid of a

magnifying glass.

4.2	 Gravity Calibration Experiment —Open Loop

A simplified diagram of the apparatus is shown in Fig. 15.
The length of the Plexiglass rod is 15.6 1- inches or 39,7 cm. The

distance from the pivot point to the adjusting screw (1 2) is

28.3 cm.; 11 is 13.3 cm. The length 1 2 was chosen so that for

one turn of the screw, x 1 would equal 0.03 cm. A screw with 40

threads per inch was chosen (standard 4-40 size), and the end

turned to a point. A steel plate was glued to the rod at the

point of contact to provide a flat, smooth surface. 'pension is

provided by a spring which forces the rod against the screw point.
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The force required to pull the outer cylinder through an

angle 8 is given by

F = Mge
	

(42.1)	 r

The relation between 6 and a rotation of the adjusting screw is

8 = N/nl2 ,	 (42.2)

where

1

N = number of turns of screw

n = threads per unit length

F = ^	 (42.3)

2

Using the value of 70 mg for the mass of the outer cylinder,

F 154 N millidyne (mdn).

Since there was no rotation indicator, except the sl,.:tt in the

head of the screw, data points were usually taken at 1/4 turn 	 1

intervals; this 4s because it is relatively easy to set a 1/4 turn

interval by eye. This amount of rotation corresponds to a 0.0075

cm. displacement of the outer cylinder and an equivalent force

of 38.6 mdn. Assume a maximum error of + 10° in position, then

the error would be 11 per cent, or .0008 cm. and 4 . 3 mdn, respec-

tively. This amount of error is easily detectable. For this
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reason ten to twenty data points were taken for each screw position

during a given run and an average computed. The data points were

actually closer than an error of 11 per cent would imply, indica-

ting the accuracy of the adjustments.

Before continuing, it will be necessary to consider the
	 it

open loop system gain. The molecular beam detector is a force

amplifier. An input force, a wind, displaces the outer cylinder;

a voltage is produced, which in being applied across the probe

capacitor, produces an opposing force. To truly measure the

open loop gain of the system, one would have to break the circuit

at the point where the restoring force was being added to the

signal force, before being converted to a displacement. Then,

for a given input force, the restoring, force would be measured.

This is impossible because the voltage to force conversion occurs

at the same time and place as the force addition and the two

processes cannot be separated. Knowing the conversion factor

between voltage and restoring force, it might be suggested that

the gain be measured in the following way: disconnect the

restoring voltage so that an open ended circuit is obtained.

Now, the wind can be applied to the probe and a voltage vs. force

curve obtained; the voltage is then converted to a restoring

force mathematically. The failure of this method lies in the

fact that, without the restoring voltage, only gravity opposes

the action of the wind on the outer- cylinder, and the force-

displacement  relation is linear for small displacements, i.e.,

Mg6. The results of this experiment would depend on the value
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of g at the place the experiment was performed. If it was performed

in a gravity-free environment, any perturbing force would cause

infinite displacement. These facts are in conflict with the reali-

zation that the detector has been designed such that the restoring

force is so great as to make the effects of gravity negligible.
	 r

Other schemes have been concocted by the author to measure

the open loop force gain of the system, but all have failed because

of the coupling which occurs at the probe capacitor. The only

parameter which is actually varied from experiment to experiment,

and which is related to system gain, is the voltage gain. This

quantity will be chosen to characterize the system gain. The

electronic signal must be considered as two components: a

500 KHz carrier and the input signal, which modulates the carrier.

In the :.cture, these two components will be referred to as the

carrier and signal, respectively. The net gain for a slowly

varying signal will be called the open loop system gain (GDd.

The difference amplifier has a gain of ten over the 500 KHz

range; the a.c. amplifier, which follows it, has a gain of 330,

giving a net gain of 3300. The gate treats the signal as would

a half-wave rectifier with a high resistance load. The pulsating

d.c. is smoothed by a low pass filter which tends to average the

signal, giving a gain of about 1/2. The 1,ow frequency amplifier

has a d.c. gain variable from 10 to 1000. In its most selective"

state (CF = 1pf), the carrier is eliminated and the gain for a

slowly varying signal can be considered the d.c. gain. The last

amplifier has a gain of 1/40 to 10 and the entire voltage gain

J
i
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then lies in the range 400 to 16,500,000.	 In practice, the highest

gain used is 825,000.

When high open loop gains are used (above 100 , 000), the

data points for 1/4 turn intervals were too far apart; with a gain

of 330,000, for instance, a 1/2 turn interval causes the ± 50 volt

recorder to go off-scale. In these cases, 1/8 turn increments

were used. A 10° error now represents 22 per cent of the increment,

but again, the data point showed a smaller error spread (about

5 per cent).

A major reason for doing the open loop experiment is to

evaluate the parameter b, referred to in section 2.3; b is the

conversion between open loop output voltage and the outer cylin-

der's displacement, and is needed to calculate g0 . With a gain

of 165,000, b 4800 V/cm. This value can be considered constant 	
1I
i

only for small displacements (3/8 turn from null position). Dis-

placements larger than this cause the bridge to exceed its linear

range and becomes an increasing function of x. This problem

does not occur with the closed loop system because the restoring

force keeps the cylinder near the null position. The parameter b 	 ^IP	 Y	 P	 P

is proportional to gain.

4.3

	

	 Gravity Calibration Experiment - Closed Loop	 j

The same procedure was used in this experiment as in the

previous one, i.e., the restoring voltage is recorded at 1/4 or
I

1/8 turn intervals of the adjusting screw. The major difference
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restoring force is acting against a force (Mme). Knowing the

magnitude of gravitational force corresponding to each setting of

the adjusting screw, the voltage required to produce an equal force

can be calculated and a theoretical voltage-force curve drawn for

comparison with experimental results. In this manner, it was fount,

that a voltage gain of 330,000 was required to bring the experiment'a.1

data to within 5 per cent agreement with the theoretical curve at

1/8 turn. The comparison is shown in Fig. 16.

4.

1

i
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(51.2)

V. ANALYSIS OF EXPERIMENT

5.1	 Theoretical Performance

An important characteristic of this detector is that the

theoretical voltage-force response is, for high gain, independent

of all circuit parameters, except the probe capacitor's dimen-

sions. All that must be calculated is the voltage required

across the capacitor to nullify the perturbing force. Equation

21.1 is used for this purpose. Solving for V as a function of

F,

V - [ 2/e0A ] 1/2 
SF 11/2	

(51.1)
.r

f	 where

e0 = 8.87 x 10
-12 

cou1 2/nt - m

A = area of capacitor plate (the effective area

defined in section 3.1)

S = null position plate separation

F'	 perturbing force

Using the probe dimensions, as given in section 3.1, the

formula reduces to
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where V is in volts, F is in dynes.

A curve is shown in Fig. 16 for the range of forces studied

in the experiments. Data points are illustrated for three

levels of gain. Error bars are not included for clarity, but
r

can be assumed to be ± 2 volt at most. A gain of 330,000 is

seen to give about 10 per cent error with respect to the

theoretical curve, while an 825,000 gain puts the data points

within 2 per cent.

To make further comparisons with theory, it will be

useful to develop a formula for q as a function of d.c. open

loop gain. By equation 23.4,

q0 = ab2

where

a = 1.8 x 10-4 dyne/volt2

The parameter b was found from the open loop experiment to be

4800 volt /cm for a d.c. gain (GDC ) of 165,000.

Thus,

-	 b = 2.90 x 10-2 GDC volt/cm
	

(51.3)

and

-R	 7
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Dividing by the mass of the outer cylinder gives q:

q - 2.16 x 10-6 G
DC

2 dyne/cm2 - gm	 (51.5)

The values of q corresponding to the three GDC used in Fig. 16,

i.e., 165,000, 330,000, and 825,000, are 5.88 x 104 , 23.5 x 104,

and 137 x 104 respectively.

A simple relationship between the percentage error (E)

of the system, with respect to the theoretical curve, and 
GDC

exists-.

E	 a/ GDG2	 (51.6).

where

a = 1.03 x 1012

This relationship was found empirically and 'holds for

GDC > 150,000 or q > 47,000.

A rigorous justification of the above formula would

involve the theory of non-linear feedback and automatic control

systems. An intuitive justification can be presented, however.

If the system had infinite gain, the position error would be

zero, giving credit to the inverse relation. The force which

resets the outer cylinder is proportional to the square of the

voltage across the capacitor, implying that the error would

r
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vary as the inverse of the voltage (or gain) squared.

Converting to q,

E - O/q	(51.7)

where

= 2.2 x 106.

Throughout the theoretical discussion, it has been

assumed that q0 was so large as to make the gravitational force

negligible. Assume, for the moment, that this force is not in-

significant when compared to the signal force F. The gravita-

tional force on the outer cylinder is kx, where k - Mg/i and

1 = length of the wire suspending the cylinder. Let x0 be the

equilibrium displacement of the outer cylinder with al.l.. three

forces acting on it. Solving the equilibrium equation for x0,

x0 = 2q	
-k 	

+ (k2 + 4 gOF)1/`

0

Define R as the ratio

k
R - kx0
	

(51.8)

The problem of interest is that laf finding the q0 necessary to

make R as small as desired for a given minimum force FM.

or
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Solving the two equations:

_

40
 = F 

2	
12R	 (51.9)

M R

or, fcr small R,

q = -	 (51.10)
0	

k2
FMR2

As an example find the minimum force which can be measured

with the author's apparatus such that, with q 0 - 9.8 x 104

(G 
DC

825,000), the gravitational force will be 5 per cent of

the signal (R = .05). For th s probe, k w 5.4 dyne/cm, then

FM = 120 mdn. The figure is rather high considering that an

instrument capable of measuring 0.1 to 0.01 mdn is desired.

There is a correction, which can be applied to the measured

force V to give the true force F:

F	 V ( 1 + k/(gOF')1/2^	 (51.11)

An alternative is to place a square rooting circuit in

the detector to give a linear voltage-force relation. The square

rooter will be describes in section 5.2 just its effect will
L

be discussed here. With the above changes, the feedback force

will be px instead Hof g0x2. If the square rooter is just before

the probe, the relation between p and q0 is p=q0/b Using the
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relations between q0 and b with GDS , the restoring force becomes

F = px = (5.24 x 10-6 GDS ) x
	

(51.12)

The largest 
GDC 

used in the experiments was 825,000. The value

of p is then 4.3 dyne/cm. As already seen, the value of k is

5.4 dyne/cm, or 125 times larger than p.

The solution to this problem is to move the square rooter

back as many d.c. amplifier stages as possible, since p, as

determined above, is multiplied by the square root of the gain of

each stage. If this is done, a more complicated square root

circuit must be used; otherwise the output will always be positive

and the direction switching capability of the restoring voltage

will be destroyed (see section 5.2).

Having shown that GDC determines only the accuracy of the

detector, and not its range, it is important to consider in what

ways the probe capacitor dimensions affect the theoretical

voltage-force curve. In all cases, the upper limit is determined

by the maximum voltage output of the amplifier (t 50 volt for the

Tektronix Type 132). The parallel plate approximation for the

probe capacitance will continue to be used. It may not be

numerically accurate in all cases, but it will illustrate what

changes will occur.

Recall equation 51.1 for convenience:

1
V	

2/2
	 1 2 F1/2	 (51.1)

e0	 A /

v:
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1

Increasing the diameter of the inner cylinder, while keeping the

outer cylinder constant, would leave 
A1/2 

almost constant; voltage

then varies linearly with s. Halving s increases the potential

force measuring range of the instrument by a factor of two.

The value of q will increase proportionally because the more rapid

change in capacitance, for a given displacement, causes the voltage

output of the bridge to have a larger slope. Thus, the error of

the system will vary in proportion to s.

Varying the mass of the outer cylinder causes q to change

inversely. A given change in q causes E to vary inversely with

the end result that E changes in proportion to the cylinder's

mass (m). Evaporation techniques might be used to produce a very

small m.

The consequences of reducing the size of the entire probe

are too complicated to predict accurately. The value of a probe

capacitor in the author's detector is about one picofarad. The

effects of stray capacitance on a smaller probe would be such as

to reduce the voltage output of the bridge for a given displace-

ment. This would counteract the increased sensitivity due to

closer plate spacing (S). Further analysis of the subject is

beyond the scope of this thesis. It is an important consideration,

however, and should not be disregarded by any potential user of

the detector.

The response time of the detector is also very impc-taut

in application and is mainly determined by the feedback components

of the low frequency _amplifier. High values of RC were used in

J
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the author's model to produce a low cutoff frequency; the resulting

risetimes were on the order of 1/2 minute. This time is easily

improved by reducing RC to 1 sec. or less, without significantly

reducing the overall performance of the system.

Wr

5.2	 Critique of Electronic Performance

The two main faults of the detector were 1) the gating

circuit did not gate exactly 1/2 cycle and 2) a 1 MHz second har-

monic was present with the carrier and the usual filter methods

worked poorly. These two faults were coup„Led because, if the gate

had operated properly, the second harmonic would have been of no

importance (a complete cycle would be passed) and, if the harmonic

had been absent, an exact half-cycle gate would not have been

necessary. The data shows that given sufficient gain, the detector

works as expected. The system error might have been less if these

irregularities were not present; but that is in the realm of specu-

lation.

Other methods of detection might be used, such as a lock-in

amplifier. In this case, the output of one arm of the bridge

would be used as the reference signal and the other output would

be measured with respect to it. A P.A.R. Model 121 lock-in amplifier

(Princeton Applied Research Corp.) was tested by the author in this
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might benefit the user to utilize a full wave rectifying version,

rather than "throwing away" the half-cycle of signal. This would

have the advantage of doubling the available r.m.s. signal and re-

ducing the filter requirements. The latter feature would improve

the risetime of the detector. 	 or

If a linear voltage-force output is desired, it can be ob-

tained by using a circuit'which applies the square root of the

restoring voltage to the probe. The method most commonly used in

analog computing is to use a squaring device in the feedback loop

of an operational amplifier. The problem in most cases is that

of taking the square root of a negative voltage. A switching

circuit of some type must be used to provide an output with the

same sign as the input to the square rooter. Alternatively, the

square rooter can be placed in each of the return leads to the

probe after the resistor-diode network.

System noise was not a problem with the author's apparatus,

i
	 mainly because of the large time constants used. Figure 17 shows

the worst case of extraneous voltage variation encountered during
i

the experiments. In a fast response system, which would probably

be used in practice, care must be taken in suppressing interference

from outside vibrations.

5.3	 Conclusions and Recommendations	 -

The object of this project was to show whether or not a two--

A4e ,n n4^—nlT -"m 11	 ♦.Tn^	 i^4-ntv 4-1k n nrnho
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detector, such as the lock-in amplifier mentioned in section 5.2,

would have been used in place of the circuit described above. More

time could then have been spent in developing the probe and evalua-

ting more fully the performance of this type of system. It is

regrettable that time did not allow the detector to be tested in a

working environment with an actual molecular beam. The question of

coupling between the x and y direction signals must be investigated.

It may be advantageous to use two frequencies not harmonically re-

lated.

The biggest problem may be that of obtaining a large enough

q to make reliable measurements of millidyne forces and below. A

discussion of this subject was given in section 5.1. It appears

that values on the order of 108 and above may be needed, If this

is the case and larger electronic gains must be used, then noise

will be of paramount importance in the determination of accuracy.

^,	 >.
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