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ABSTRACT

A new phase canonical form is given for a class of

multi-input dynamical systems described by time invariant

ordinary differential equations. This is based on a

modified definition of an equivalent relation for the class

of systems. It is shown that a characteristic quantity

called a stage distribution defined with respect to the

linear part of the system uniquely determines the structure

of its canonical form.

The inverse problem of the optimal regulator is con-

sidered for this class of systems with integral type

performance indices. A convenient analysis of this

problem is possible, using the developed phase canonical

form. A theorem is stated which asserts necessary and

sufficient conditions for optimized performance indices

for a specified feedback control law. Further results

concern the nonnegativity of loss functions as optimized

performance indices under the additional assumptions

that the nonlinearities of the system are given as polynomial

functions of the state variables and that the feedback

control law results in a linear autonomous system. A

theorem of necessary conditions for this is given. Suf-

ficient conditions are stated for linear systems. Based

on these main theorems, supplimentary theorems and

V?
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corollaries; are given which reveal other fundamental

aspects of optimal feedback control systems.

In comparison with similar studies by other inves-

tigators,, this work is directed toward more general

assumptions on the inverse problem, i.e., generalizations

of the system description, the specified feedback con-

trol law, and the performance indices. As a consequence,

results of other investigators can be described as special

cases of those resulting from this work.
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Chapter 1

INTRODUCTION

1.1 Introduction to the Thesis

when a task in the physical world is approached,

there naturally occurs the question of the best method

to accomplish it. Problems of optimal control are those

which attempt to find the best methods through mathematical

descriptions of the task. These mathematical descriptions

are composed essentially of

(i) a model of the cause-effect dynamics of the task,

i.e., the system equation,

(ii) beginning and end parts of the task, i.e.,

initial and _final conditions for the system equations,

(iii) permitted methods to accomplish the task, i.e.,

admissible control functions, and

(iv) a standard to measure the optimality for each

admissible method, i.e., -a performance index.

This search for best methods is identified with calcula-

tions of a optimal control function to transfer the con-

ditions of the system as desired with the minimum possible

value of the performance index.

An elementary problem of optimal control can be formu-

lated from a single initial condition, ' a single final
i

,.	 -t .
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condition and some control function of time to be calcu-

lated. This is generally called an open loop optimal

control problem. Practically these problems are more

often recognized under- somewhat different circumstances,

those of an optimal regulator. Thus the system function

is to maintain a specified condition even though it is

exposed occasionally to unforeseen disturbances. The

recovery to the specified condition after each disturbance

is to be in some optimal manner.

Consider, for example, a room in a building with an

air temperature of 10°C. It may be desired to change the

temperature to a steady 20°C as fast as possible, using

a particular heating system. The open loop optimum

control problem would be to design the given heating

system behavior to minimize the time required for this

change, recognizing the characteristics of the room and

the heating system. Alternately, the regulation of the

room temperature at 20 0C could be considered under dis-

turbances due to opening and shutting of doors and to

outside weather conditions. To return the temperature to

•20°C in some optimal sense, say minimum time, after a

change due to these unpredictable causes, is a problem of an

optimal regulator.

An optimal regulator problem can be expressed as a

family of inany individual open loop.optimal control problems

4
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with common system equations and assumptions, but with

different initial conditions. If optimal control func-

tions are required for many initial conditions, the

necessity to calculate them one by one is unreasonable.

An optimal control function can be developed alternately

in closed form as a function of the system condition.

Generally called an optimal feedback control law, this

function establishes the optimal control from the present

system conditioh regardless of its preceding career.

Consequently, control action for•any initial condition

can be covered. by a -single -control law.

Practical problems of optimal control may have many

controlling and controlled quantities represented by

complex algebraic descriptions, e.g., rocket control

during space flight, utility power plant and distribution

network regulation, and industrial chemical process control.

Consider the regulation of a rocket flight path to a

fixed trajectory in space. The control variables, repre-

senting thrust from individual rockets or combinations of

rockets, could be represented in terms of three orthogonal

directions of space. The output quantities are the position

and velocity of the rocket, each composed of three orthogonal

component variables. Consequently, the system has six

controlled variables associated with the three controlling

variables. The performance index might be a minimum integral

r

r
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of deviations of the rocket from the fixed trajectory,

or alternately, minimum fuel consumption during a specific

control action.

The problem of optimal control has been intensively

studied as one of the main branches of modern control

theory, not only because of the interesting mathematics of

the problem, but because of the practical character of

the solutions. Many techniques of optimization have been

developed in this field, based mostly on the calculus of

variations. (1-61 Unsolved problems, however, still exist.

Analytically these result from difficulties in finding

sufficient conditions for optimality in a general sense

and from the rapid increase of re quired calculations as

the size of the system equations becomes realistically

large. Complete answers to optimum control problems are

restricted at the Present time to a_few specific classes

of problems with relatively simple system equations.

Furthermore, the optimal control function solutions to

some of these problems may be impossible or inconvenient

to reduce to hardware.

. This thesis investigates relevant characteristics of

optimal feedback control laws for a class of optimal

regulators with system equations given by multi-input,

time invariant ordinary differential equations. But the

direction of the attack is just opposite or inverse to

ve
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the usual methods of investigation. The question is asked,

what performance indices can be optimized by an assumed

feedback control law? The objective is to seek all

performance indices shared by a control law. This

problem formulation is generally called the inverse

problem of the optimal regulator, (61 or briefly the

inverse problem.

A study of the inverse problem would (1) disclose

practical advantages of using specific classes of control

laws in combination with specific performance indices,

and (2) distinguish between control laws which are optimal

in some sense and thosewhich are not. Consequently, the

results would allow future optimal design problems to

start with realistic performance indices, and be helpful

for understanding observed solutions to control problems

that are assumed optimal in some sense.

Before an analysis of the inverse problem is given in

the following chapters, however, a canonical form is

developed for the class of systems of interest. A canonical

form is a compact standard form for describing all systems

that are mathematically similar. it is useful both to

clearly expose the mathematical composition of the system

structure and to allow the analysis and design of the system

to conveniently proceed using a compact description.

Necessarily the choice of a canonical form for a given

.	 ,
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class of problems plays an important role in the succeed-

ing analysis. While various canonical forms have been

suggested for linear systems, the new one introduced in

this study is apparent? y necessary for the analysis of the

.inverse problem considered. It is also more generally

useful for demonstrating the mathematical structure of

systems. Thus this thesis considers trio topics, (1) the

inverse problem of the optimal regulator and (2) a canonical

form for a broad class of multi-input deterministic

systems described by time .invariant ordinary differential

equations.

1.2 Outline of the Thesis

The material presented in this thesis is divided

into eight chapters. Chapter 1 contains an introduction
to the topics considered, an outline, and a summary of
the results. Chapter 2 is an introduction to the mathematical

formalism used in subsequent theoretical developments.

Notations, definitions and theorems that are assumed in

dater chapters are givers here.
Chapter 3 summarizes andreviews work that has been

published in the area of canonical forms for linear time

invariant systems. These canonical forms are grouped in

two categories according to descriptive structures, the

Jordan standard matrix canonical form and the phase variable

_.
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canonical form. The new phase canonical form developed

for a class of multi-input :systems is given in Chapter 4.

First, the development is concerned with linear systems,
defining two characteristic quantities, a stage number and

a stage distribution, which determine the structure of the

systems uniquely, as illustrated by three examples.

Second, the results are expanded for more general non-

linear systems.

Chapter 5 summarizes and reviews publications on the

inverse problem of optimal regulators. Interest is focused

on work for problem assumpt ,on.s similar to those made

during this investigation. In Chapter 6, after a precise

statement of the inverse problem of the thesis, a general

analysis is given. A riumber of interesting characteristics

of optimal feedback control, systems revealed by this

analysis are then given.

The results of Chapter 6 are applied to linearly

synthesized op timal feedback control systems in Chapter 7.

Conditions for a nonnegative loss function in optimized

performance indices are given, and a principle of

necessity of control action is disclosed. Conclusion and

suggestions for future studies are in Chapter 8.
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1.3 Summary of the Thesis

There are three principal results in this thesis,

applicable to a class of-aaterministic, dynamic systems

described by time invariant ordinary differential equations

either, linear or nonlinear.

(i) A new phase canonical form is developed for this

class of systems. In comparison with other canonical forms,

this canonical form has the advantages that (1) it is

app-licable to a larger class of nonlinear, uncontrollable

systems, (2) its structure is uniquely determined for each

system by a defined quantity, a stage distribution, and

(3) it would appear to be more conveniently used for

analyses of optimal control problems than other known forms.

(ii.) Necessary and sufficient conditions are given

for feedback control laws which are optimal for performance

indices given as integral forms and loss functions as

sums of Penalty functions of the state variab'Les plus

positive definite quadratic forms of the control variables.

From this result, additional characteristics of optimal

feedback control systems are revealed.

(iii) Necessary conditions fc- nonnegative loss functions

in optimized performance indices are given for the inverse

problem resulting in linearly synthesized optimal feedback

we
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control systems, assuming the nonlinearities of the systems

and the penalty functions are given as polynomials of the

state variables. These conditions are also sufficient if

the system has no nonlinearity. Specifically it is shown	 Vr

that, for controllable Linear systems with linear feedback

control laws, nonnegative loss functions in optimized per-

formance indices must be quadratic forms of the state

variables and control variables. Additional relevant

aspects of linearly synthesized optimal control systems

are also given.
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Chapter 2

FOUNDATIONS

Material basic to the theoretical developments through-

out this thesis is given in this chapter. Following the

introduction of mathematical notations for the abstract

space descriptions of multi-variable functions, sections

arm given defining and explaining system modeling, solu-

tions, stability, and controllability. A definition of

approachability is introduced.

2.1 Fundamental Mathematical Concepts

2.1.1 Notation for Vectors and Matrices

Vectors and matrices are denoted by underlined capital

Roman letters or Greek letters. Their dimensions are

nvarent either from definitions or are stated explicitly.

A null matrix and a null vector are denoted by [0] and 0

respectively. The r x r unit matrix is given by I  and

the inverse matrix b a -1 superscript, e.g.,Y	 tP	 P ► 	 A l . The

transpose of a matrix or a vector has a T superscript, e.g.,

AT or XT. The scalar product of two vectors Y and Y is

XTY	 Exiyl	 (2-1)
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XT A X	 E a
i]

xix
i
	 (2-2)

1,i

The Euclidian norm of a vector X. denoted by 11201t, is

/X—Tx	 (2-3)

All subsequent discussions are assumed to be inti

finite dimensionalEuclidian spaces or the product spaces.

0 designates an n-dimensional Euclidian space.

2.1.2 Multi -Variable Scalar Functions

With vector notation, functions of many variables

are conveniently described as

f (X) = f (xl,x2,...,xn) ,

f (X, U) = f ( xl ,x2 ,.. ^xn,ul,u2,... ,um) ,



r ,-

12

The proof follows directly from a fundamental theorem of

the composition of continuous mappings. 171

Definition 2-1: Functions of Class Cn. (7)

A scalar function f(X) defined on R  is said to be

of class C r in a region r C Rn if it has continuous

partial derivatives with respect to all xi , (i = 1,2,...n).

up to order r everywhere in r. When r is the entire Rn,

the phase "in r" is omitted.

Provided that f (X) . is of class C 2 1 the following notations

are often used

af(X)

ax 

af(X)



a 2 f a 2 f 	 a2 
axax ax2 ax1 ' ' ' axnaxl

a.2.f	 a2f
a 2 f e a	

n axax ax2ax2 . . . . . .

Max ax
—{grad fM}

of	 . . 0	 a2 
ax1 axn	axnaxn

(2-6)

Theorem 2-2:

Let
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The proof of this theorem follows directly from the theory

of functions of several variables. [7, Chapter 3] Further-

more, V(X) can be uniquely determined by the line integral

X

V(X) =	 WT (X) dX + C	 (2-9)

0

and is independent of the path of integration. A conven-

ient line integral is

xi	 rX2
V(X) =	 w1(Y1,0...)dYl +	 w2(xl,Y2.0...0)dY2 +

0	 go

xn
+	 Wn(xl,x2,...xn4,Yn)dYn + C

0
(2-10)

where C is a constant. (8]

Definition 2-2: Sign Definite Functions. [9]

Consider a scalar function V(X) defined on Rn and an

open region r C, Rn such that 0 E r. Then V(X) is said to

be positive (negative) semidefinite in r if
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(ii)	 V 	 > 0 , (V (X) < 0) , for all X e t of X # 0

(2-13)

instead of (ii), it is said to be positive (negative)

definite in r. When r is the entire Rn, the phase "in r"

is omitted.	 M

Theorem 2-3:

Assume a finite degree polynomial scalar function

V (X) given by

	

V 	 = V (2) {X) + V (3) (X) + • • • + VM (X)

(2-14)

where each VM (X) , (i .= 2,31P...,E) , is an ith degree

homogeneous function of X and V M (X) , & -> 2, is not

identically zero. Then, for V(X) to be positive semi-
definite, it is necessary that VM (X) be positive semi-

definite.

F
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variable. Then

f (y) A V(n) = y 2 V (2) (X) + y3V(3) (X) +	 + yCV(0 (X)

(2-16)

which is a polynomial function of y. Since V M (X) is

negative, f (y) becomes negative as y4+w and V(X) -becomes

negative for X = yX. This contradicts the hypothesis.

It also follows that C must be even for positive definite-

ness of V (X)

2.1.3 Sign Definite Matrices

Assume Q to be an n. _x n real matrix.

Definition 2-3: Sign Definite Matrix. [10

The matrix Q is said to be positive (positive semi)

definite if the scalar function XTQX is positive (positive
semi) definite. If -XTQX is positive (positive semi)
definite, Q is said to be negative (negative semi) definite.

Without loss of generality, Q is also assumed to be a
ri n^
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-In2	 , all other entries zero,

(2-17)

[o)

where n1 and n2 are uniquely determined by Q.

(ii) Q is positive definite if and only if n 1 n,

i.e., (2-17) degenerates to the unit matrix, and Q is

positive semidefinite if and only if n2 = 0.

(iii) Ann x n real symmetric matrix Q l is congruent

to Q if and only if Q l is congruent to (2-17), i.e.,

sign definiteness of Q is invariant for a congruent

transformation.

k -

Corollary 2-1:

(i) Q is positive definite if and only if all i

principal minor determinants of Q are positive. [10)

(ii) Q is positive semidefinite if and only if there

exists an n
l x n matrix D of rank n1

 _' n such that [111
--	 '- e

	

Q	 DT D	 (2-18)

r
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(iii) Q is positive definite if and only if n = nl

above.

(iv) Q is positive definite if and only if Q -1 is

positive definite.

Proof: The proof of (iii) follows from (ii) of this

Corollary and (ii) of the Theorem. For (iv) , for Q to

be positive definite, it must be nonsingular by O
f

and Q-1 exists. Consider a congruent transformation of

Q by 	 Thus

(Q-1 ) T Q Q-1 = (Q-1) T = (QT) -1 = Q-1 	 (2-19)

which follows from the 'transpose of an inverse matrix (10)

and from the symmetry of Q. From (iii) of Theorem 2-4, Q

is positive definite if and only if Q is positive

definite.

Theorem 2-5 z
[13]

Let Q be an arbitrary n x n positive definite symmetric
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2.2 Description of Physical Svsterls (51121

Systems which behave according to the Principle of

Causality in the physical world can be schematically

described as in Figure 1-1. Causes are classified into

I

control V I	f 	
output Z

I

f
state Y	 i

Figure 2-1. A physical system.

controls and disturbances the former quantities can be

specified and manipulated at will but the later 'cannot.

Effects are created by the causes on the physical system.
'these are outputs or directly observed quantities of

effects. To some extent, outputs depend upon the pre-
ferences of the observer. To avoid any ambiguity of out-
puts, a third quantity, states within the system, are con-
veniently introduced. Always regarded as abstract Quantities,

the states are defined as the minimal amount of information

about the past history of the system which is sufficient

to predict the affects upon the future.

I
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Systems considered in this thesis are assumed to

belong to a class called deterministic, real, finite

dimensional, continuous time, ordinary differential,

dynamical systems described by the equations

Y = F (Y, V, t) (2-21)

Z = G(Y, t)	 . (2-22)

Y, V. and Z are called the state, control and output

vectors,

Y = 1y lF y 2 0 66. yn] T	(2-23)

V = (vl ,v2 , ..'. ,vm ] T	(2-24)

Z = (zl,z2,...,zn ] T	(2-25)
o

By each adjective, the following is meant:

(i) Deterministic; The process described by the

nvg tem is deterministic_
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(iv) ordinary different: al: The behavior of thtj
state of the system is given by ordinary differential
equations as (2-21) , whera Ut-

(v) While a-more detailed definition of a dynamical

system can be given, (51,121 the following is adequate for
this work. Dynamical system: From any Xo and t. and for

any piecewise continuous m dimensional vector valued

function V(t), each existing in defined regions, there is

a unique solution 0^ (t; Yo , to) to ( 2-21).   i.e. , an n
dimensional, vector valued function, differentiable in t,

satisfying

( a ) V (to;^ to ) = Yo 	 (2-26)

(b)	 ^(t; Yo• to) _ F( ^(t; -0, to) ,_V(t) ,t)

for all t E Rl .	 (2-27)

(c) V(t; Y, to)	 ±V (t; ±V (tl ; Y,o , to) ,tl)

for all t ' t1 '_ to 0 (2-28)

Generally ( 2-21), (2-22) and a solution ±^V (t; Yom , to ) are
collectively called the system equation, the output

equation, and the solution for (Xo ' to) and V (t) . The
hehavinr cif the statA variahles can he identified directly

r
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from the solution, while the output variables are calculated

algebraically from (2-22) . Consequently substantial

analyses of the systems can proceed through system equations

only, with the output equations reduced to a secondary	 r

role. Thus a dynamical system is usually represented by

just the system equations, (2'-21), with the output

equations, (2-22) , implied.

The existence of a unique solution to system equations

depends both on the given system equations and a specified

control function. A sufficient condition can be stated as

follows.

Theorem 2-6 (5)

For the system (2-21) , if

(i) F(	 ) is a_ continuous function, from

Rn x Rm x RI into Rn ,

afi	 )
(ii) the partial derivatives 	 ay	 for i,j = 1,2,...n,

7
are continuous functions from Rn x Rm x R1 into R1,
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Imbeddinc the specified V(t) as F (Y, t) = F (Y, V (t) , t) ,

another theorem can be given.

Theorem 2-»7 [2113

Let D be a polyhedron in Rn x R  where (Yo, to)
	 W,

exists as an interior point. For a system

Y - F (Y, t)
	

(2-29)

n
if F(Y, t3) is continuous in D and there exists a number

k > 0 which satisfies

F (Yl' t) _ ( Y2' t) .^ .^, k Y1 - 12

for all (Y 1 , t) , (Y2 , t) E D ,	 (2-30)
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(i) time invariant (or stationary), if (2-21) is

given as

Y F (Y, V) ,	 (2-31)
r

(ii) free, if (2-21) is given as

Y = F (Y, t) ,	 (2-32)

and

(iii) autonomous, if (2-21) is given as,



r

0 = F( ye , t)	 for all t E Rl (2-35)

t
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Definition 2-6: Equilibrium Point of a System.191

A point Ye in Rn is said to be an equilibrium

point of a free system (2-32) if

Practical examples of physical systems described

by this symbolism and terminology appear in the literature. [3,,50,81

2.3 Stability and Controllability

For any given system, two descriptive characteristics

can be considered, system stability and system controllability.

These are useful in the-analyses of the system behavior and

the syntheses of control functions.

2.3.1 System Stability [9,14J,	 Stability in the Liapunov Sense

The theory of the behavior of solutions in relation

to an equilibrium point of a free system is known as

stability theory. It is based largely on concepts

originally proposed by Liapunov. Some of the extensive

developments of this theory are particularly convenient

for application to the class of systems considered during

this investigation.

Assume a free system given by

,,
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Y	 F (Y, t)
	

(2-36)

defined on R  x R1 and, for convenience, also assume

Y .= 0 is an equilibrium point, i.e.,

F(0, t)	 0	 for all t E R1
	

(2-37)

Definition 2-7; Stability. [9l

The origin of the system given by (2-36) is said to

be stable with respect to to if for every c > 0, there

exists S(c, t0) > 0 such that

I I Y O i I < 6	 (2-38)

implies

1 I ^j f ( t ' Y0. to) I I < c	 for all t ? to ,	 ( 2 -39)

where 4f (t; Yo, to ) is a solution of (2-36) from (Yo, to)
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be asymptotically stable if

(i) it is stable, and

(ii) for every u > 0, there exists a T(u, t o , d) > 0

such that
VII

1 2 f (t; Yo , to) + I < u	 for all t > to + T

(2-40)

Heuristically every solution starting in a neighborhood

of the equilibrium point at any to is required to converge

to 0 as tow.

Definition 2-9 Asymptotic Stability in the Large. [14)

The origin of the. system of (2-36) is said to be
asymptotically stable in the large if

(i) it is stable, and

(ii) every solution converges to 0 as tow.
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•	 n
Y = F (Y)	 (2-41)

of which ' F (Y) is defined on r such that 0 E t. If there

exists scalar function V̂(Y) of class C1 in Rn such that

(i) V(Y) is positive definite in t,

(_ii) V(Y)	 [ a—V] T F (Y) is negative definite in r,

then the origin is asymptotically stable. If V is negative

semidefinite in (ii) , the origin is stable. If V(Y) also

satisfies

n
(iii)	 j lYi j,. V(Y)-+w in Rn

and t can be selected as the entire Rn , the origin is

asymptotically stable in the large.

A function V(Y) to identify stability in this sense is

generally called a Liapunov function for the system. [14]

As the existence of a Liapunov function for a given system

is sufficient to guarantee stability without knowledge

of specific solutions, the method is particularly valuable

for nonlinear systems,

2.3.2 System Controllability

When a system is to be controlled so as to transfer

its initial condition to another condition, there is a'

r

FV
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question as to the realizability of the requirement, i.e.,

whether a control function exists for the transition.

To summarize this .idea, the concept of an admissible

control function is introduced first.
r

Definition 2-10: Admissible Control runction.151

A control function V(t) defined on [to , t1 ] C Rl

is said to be admissible if it is piecewise continuous on

the interval.

In effect, an admissible control function provides a

unique solution from an arbitrary initial condition to

(2-21), as provided by Theorem 2-5.

Definition 2-11: Controllability. [5)

For a system given by

Y = F (Y, V, t) ,:
	 (2-42)

a state Yo is said to be controllable at to with respect

to a state Y f if there exists an admissible control

function VM defined on [to, t  ] such that

iV (tf ; Yo , to)	 Yf	 for some tf = to	(2-43)

I

__,.



r

Y=AY+BV (2-44)
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If every Yo is controllable with respect to every Y f at

every to , then the system is said to be completely con-

trollable. When the system is linear such that

where A and B are n x n and n x m constant matrices

respectively, a criterion of complete controllability is

known.

Theorem 2-9: [51

The linear system given by (2-44) is completely

controllable if and only if the n x mn matrix

(B A B, A2 ,	 . , An-lBI 	 (2-4 )

has rank n.
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that it provides a solution 4V ^(t; Yo , to ) which satisfies

±v (tl' Yo' to )	 Yl for some finite tl ' to

(2-4G)

For the case of an unlimited t f , a new definition is

introduced.

Definition 2-13: Approachability.
i

For a system given by (2-42), a state Y  is said to

be approachable with respect to a state Yo at to if there

exist an admissible control function V(t) defined on

[to, ^) to provide a solution AVto 	 Yo , to ) such that for

each c > 0, there exists a T > 0 which satisfies

V(t; Yo, to) -	0
Y 1 1 1 < E	 for all t ? to + T

(2-47)
If the Y1 is approachable with respect to every state at

every to , 'x3. is said to be totally approachable for the

system.

r



Chapter 3

CANONICAL FOMIS OF LINEAL, SYSTEMS

This chapter reviews the work that has been done to

develop canonical forms for linear time- invariant systems.
Some fundamental properties of canonical forms are also
stated for use in subsequent chapters. A canonical form

proposed by Kalman and another based on the Jordan form
are described. Others that are described, called phase
variable canonical forms, represent original work. by
L u enberger, Teul, and Asseo.

3.1 Canonical Forms of Systems

It often occurs that two different but mathematically

similar systems are sufficiently related that the analyses
and solutions for one can be applied to the other with
relatively minor modifications. If this can be done among

many systems forming a group, it is reasonable to analyze
and solve the one system of the group offering the least
complexity, and then translate the results to the other
systems of the group.

A canonical form is a compact standard form for
describing all systems that are mathematically similar.
Similarity is associated with an equivalent relation on

the set of systems of interest, say S. The equivalent

relation used historically to develop canonical forms is
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Definition 3-1: Equivalent System.[51

Two systems are said to be equivalent if there

exists an n x n nonsingular constant matrix N such that

N 
1 

Y	 X 1	 (3-1)

where Y and X are state vectors of each system.

It can be shown that equivalent systems in S are related by

topological relations called reflexive, symmetric and
transitive laws, i.e., the nonsingular transformation
(3-1) is a topological equivalent relation defined on S.
It is known, further, that topological equivalence pre

serves the stability properties of dynamical. systems. (12]

The value of a canonical form depends on the conven-

ience of the specified structure in practical analyses and
the extent to which it displays noteworthy characteristics.
Historically, the development of canonical forms has been

limited to linear systems. These forms can be described
by considering the linear system

YAY +BV	 (3-2)

where A and B are assumed n x n and n x m matrices with

r the rank of B. By (3-1) , an equivalent system is

MI }.	 n

	

:.-	 .

F

r`
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X A X + S V,	 (3-3)

A = N A N
ve

and

9 = N- '^B	 (3-4)

A canonical form is concerned with specifying a particular

structure for A and B.
In a general sense, Kalman suggested a canonical

form for linear systems so as to conveniently display the

controllability property of the system. (121 He stated

that A and! can be specified as

All	[0]

A=

	

	 (3-5)

A21 A22
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All; 11 x nl
	

'21; n
2 x nl

(3-7)
A22 ; n2 x n2	 B2 ;	 n2 x m

such that n = n1 + n2 and n  ? 0, n 2 >- 0. Thus, an

equivalent system to the original system is

X1 All X1
(3-8)

X2 = -21 2S1 + A22 X2 + B2 V

where X1 = [xl,x2,...,xn 1 ] T and X2 = [xn 
1 
+11900,xn]T.

Assuming the rank of B = r > 0, Kalman defined the control-

lability of systems based on this description, instead of

Definition 2-11.

Definition 3-2: (12-1,j Controllability (Kalman).

The system (3-2) is completely controllable if it is

not equivalent to the system (3-8) with an nl > 0.

The following theorem gives the equivalency between

Definition 2-11 and 3-2.

Theorem 3-1:

1-
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sense of Definition 3-2 if and only if the conditions in

Theorem 2-9 are satisfied.

Proof: Assume that (3-2) is equivalent to (3-8) with an

n  > 0. Then from (3-4) , (3-5) , and (3-6), it follows

that

[B, A B, ... of An Bj = [N If N A B,	 , N An-19]

	

[0]	 [0]	 [0]
N	 ^,	 f ...	 _

	

B2	 A2 222	 —22 B2

(3-9)

where each [01 is n  x m. As the rankof (3-9) is less

than n, the system is not controllable by Theorem 2-9.

Conversely, assume (3-2) is completely controllable.
From Theorem 2-9, the matrix

CBfnn
	

n A B, ... , A _
n 1B ]	 (3-10)

must have rank n o Assume that a nonsingular N exists such
that A and B are transformed by (3-4) to (3-5) and (3-6).
Then

N-1 [B, A B, ... , p^,n-lB]	 [N-1B, N- 1A 13, .. , N 1^n 1B_ B —	 —	 — —

( 3-11)	 i
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must have the rank n. But for each 0 1 i I n-1,

N-'nR4 = (N-1A N) (N-1.A N)	 ( N
-1 

N) ( N-1B) = Al$- - - - - - - - -	 - - - - - - -
r

i stages	 (3-12)

and (3-11) is reduced to

	

[01	 [0)	 [0]

	

ti	 '	 , • • ,	 n-1—	 ,	 (3-13)

	

12	 L2282	 A22 22

where each [0] is n1 x m. For (3-10) to have the rank n

then, n1 must be zero, that is, the system must not be

equivalent to (3-8) with an n 1 > 0.

3.2 Jordan Matrix Canonical Form

A canonical form exists if A in (3-3) is given by a

Jordan canonical form of matrix.[ a'15] That is, an N

can be chosen for a similar transformation of A such that
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J (1) (al)

A = N' 1A N =	 !1(2) (a2)

•
J (V) (AV)

all other entries zero,	 (3-14)

where each 
J 	 1), ( = 1,2,...,v), is an Z  x Z 1 matrix

given by

 1

J m a(i) =	 , all other entries zero,
1

•

	

	 (3-15)^i

X l PX 2' 0 ' fXv are eigenvalues of A and v, z l , ..., Rv are

positive integers of the characteristic equation oft,
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N
X and B as

X = [XT l , XT2) , 40 40., Xv] T	 (3-17)
( )

and L = N-1B = [n (1) , S (2) 0'4040., A(v) 1 T 	
( 3-18)

where each B (i) , (i = 1,2,	 ,v) , is an i x m matrix and

X (l) _ [xl , x20' .	 , xI ]T1

X( 2)	 l
[ xz +10,xL +1op0400,xR 1 2

+R ]T
	 (3-19)

1 

X (v) _ [xv_ 1	 ,xV_l	 ,.. ,
xn]T 

•

( E R i+l )• (^ R i+2 )
i

Then this canonical form can be written as

X	 = T	 (a ) X	 + B	 v	 (S )
-(1) —(1)	 _ l	 —(1) _--(1)	 -- 1

X (2) = J (2) ( X 2 )	 X (1). + B (2) V ($2)	 (3-20)
Oj

X v
(	 )

^_ J v)	 v)	 X (v) +	
(v)	

V ` (sy)

which can be represented by v subsystems each appearing

as shown in Figure 3 n ^^

9,	
4040

. _ ,^. .,^.r,
......	 4040.	 4040...	 4040	 ,+.	 4040.

s^	 4040	 4040 	 -'.Y:

y.

:4040'.

	

•_40 4040_.	 4040_

4040	
_,4040.

I
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40

V

x 

r

Figure 3-1. Subsystem (si ) for (3-?0).

The principal advantage of this canonical form is
the convenience of calculating system solutions. This is

evident as the free motion of the system is identified
from the eigenvalues of A, and the system is effectively
decomposed into independent subsystems with respect to

the state variables . [ 8 )

3.3 Phase Variable Canonical Form

In. this section, the system (3-2) is assumed

(i) completely controllable, and

(ii) B is of full rank, r = m.

3.3.1 Phase Variable Canonical Form For Single Input
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0	 1

A = N 
lA N =	 ,	 or

0	 1
-a1 -a2	. .	 -an

	

all other entries zero,	 (3-21)

0

and	 B = N- 1B =	 (3-22)

1

This form can be illustrated as shown in Figure 3-2.

r
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The second canonical form has A and given as

p	 -an

1	 '
A	 •' , all other entries zero,

•	 (3-23)
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Consequently, the system is viewed as a cascade connection

of n-integraters with ordered feedback paths. Since

« zero and unit elements in A and I" are concentrated

regularly, these canonical forms are conveniently used

for abstract analyses of system theory.. The second

canonical form with (3-21) and (3-22) , is particularly

convenient for optimal control problems. Many papers

have been published about reduction techniquesfor given

systems into these canonical forms. [12,17-20)

3.3.2 Phase Variable Canonical Forms for Multi-Input Systems

3.3.2.1 Canonical Form by T_uell [21)

Tue.l developed _a canonical form, called a control

canonical form, in which A and B are decomposed as

All	 Al2

A	 (3-25)

A21	 A22

and
N

B 	
B (l)	

(3-26)
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r
for a given system such that Z R = n,

i=l
(ii) All and Al2 are (n-r) x (n-r) and (n-r) x r

matrices such that	 j

r

A(l^l)

All	 -4 2)	 , all other entries zero,—
(3-27)

A(r,r)

and

E (1)

(2)
Al2

	

	 , all other entries zero,

E (r) (3-28)

where A(,.i) is an (Li-l) x (Z 1) matrix

0	 1

A ,.u 	_	 , all other entries zero,j)
1	 (3-29)
0



0

0
1

as

(3-30)

V,

(iii) A21 and A22 are arbitrary r x (n. .e) and r x r

matrices_,

(iv)B 
(1)	 (0] and "B/ (2) is an upper triangular

matrix with unit elements on the diagonal.

When m = r = 1, this canonical form is reduced to the

canonical form of the single input system, (3-21) and (3-22),

i.e.,	 .

Y



(3-34)
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B(1) is the (n-1) x 1, null matrix, and A21 and A22 are

1 x (n-1) and 1 x 1 matrices respectively.

This phase canonical form was developed early for

solving multi-input optimum control system problems. It	
W,

compactly describes the original system and illustrates
its mathematical structure by an ordered array of zero

and unity entries. Another comparable canonical form
called an observation canonical form, can also be developed

in this manner but is omitted here. [21]

3.3.2.2 Canonical Form by Luenberger [221

Luenberger suggested a canonical form for linear

multi-input systems (3-2), in which A and Lure decomposed

into r 2 and r submatrices



47

such that

(i) there exists a set of r positive integers

Lit (i	 1,2,...r) , (r the rank of B) , such that
r
E Ri = n

i=1

(ii) each A(.	 , ( i,j	 l,l,...,r), is an Zi x

matrix such that

e
0	 1

A	 all other entries zero

	

0	 1	 (3-36)

-al	-an

i$j, all other entries zero,

(3-37)
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0

all other entries zero.	 (3-38)

0

1

ith column

The form is illustrated in Figure 3-4. With this canonical

.form, a multi-input system can be viewed as interactions

of r individual single-input systems, each with the

canonical form given as (3-21) and (3-22) . Consequently,

the conveniences of the phase variable canonical form for

single-input systems can be appreciated for the multi-

input systems. Again a modification of this canonical

form can be developed corresponding to the use of (3-23)

and (3-24) instead of (3-21) and (3-22); this is omitted. (221

3.3.2.3 Canonical Form by Asseo [231

Asseo described a canonical form in which A and B

are decomposed into (3-25) and (3-26) such that the

following are satisfied.

(i) A11 is the (n-r) x r null matrix and Al2 is the

(n-r) x (n-r) unit matrix,

(ii) A21 and A22 are r x r and r x (n-r) arbitrary

matrices, and

r
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ur

k 1-dimensional single
input phase variable
canonical form

^ 2-dimensional single
input phase variable
canonical form

•

•

•

fi r-dimensional singlE
input phase variable
canonical form

49
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(iii)	 B	 is a (n-r) x r null matrix and II 	 is the

r r x r unit matrix.

The structure of this form appears simple and convenient

for analysis in comparison with other suggested forms.

Contrary to his assertion, however, the canonical farm

cannot be used for all systems which satisfy the two
assumptions of Section 3.3.

As a counter example to illustrate this, consider a

system (3-2)	 v?ith n	 4, r = 2, i.e., 

0	 1	 0	 0
0	 0	 0	 1

A- 0	 0	 0	 0 (.3-39)

0	 0	 0	 0

and

0	 0k...
U	 0

^.: B = 1	 0 (3-40)

0	 1

It can be shown that this system is completely controllable

by Theorem 2-9.	 From (3-4) let N 1 for the equivalent

reduction to A and B be
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n11 n12 n13 n14

	

N.1 = n21
	

(3--41)	 r,

	

n41	 n44

To obtain I according to statement (iii) above, it follows

that n 13 = n 14 = n 23 = n 24 = n 34 = n 43 = 0 and n 33 =n 44 = 1.

But in addition, from A = N - 1  ^ N, (3-41) and (i) above,

AN-1=

n31 n 32 1 0

n41 n42 0 1.

0 0 1 0 rill n12 0 0

0 0 0 1 n21 n22 0 0

* n31 n32 A. 0

n41 n42 0 1

(3-42)

and from (3-39)

n	 n
11	 12

0	 0	 0 1 0 0 0 n
11

0 n
12

n2;1	 n22 0	 0 0 0 0 1 0 n22 0 n22_
N 1 A -
-	 -- n 31	 n 32 1	 0 0 0 0 0 0 n31 0 n32

t

n41	 n42 0	 1 0 0 0 0 0 n 41 0 n42
.J

(3-43)

where * indicates arbitrary elements.

__	 _.. MIN
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The identity of (3-42) and (3-43) fails for the (1,3)

element.

3.4 Comments

The canonical forms described in this chapter display

the internal or elemental mathematical structure of systems

from different viewpoints. The usefulness of .the phase

canonical forms for optimal control problems, however, could

be improved if ( ) a greater number of elements in A and

were reduced to zero or unity, and (ii) these zero and

unit elements were arranged in both a simple and unique

order.

It is shown in the next chapter that the phase

canonical form for single input systems is uniquely deter-

'mined. It would appear, therefore, that this canonical

form cannot be improved for this application. There are

possib.ities for improvement, however, when multi-input

systems are considered. Both the L• uenberger and Tue l

canonical forms are valid for multi-input systems. While

they have the same number of zero and unit elements in A

and B, they both have some ambiguity orarbitrariness about

the dimensions of the decomposed submatrices; these dimen-

sions are not unique but depend upon the chosen matrix N.

While the Asseo canonical form has a particularly simpli-

fied_structure and is free from submatrix dimensional
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ambiguity, the application is for a more limited subclass

of systems.

Applications of known phase canonical forms are also

restricted to systems which are completely controllable and

with full rank of 5. The possibility exists, til--refore,
to remove this limitation. The extension of canonical
forms for use with nonlinear systems has also been avoided
in past work.

The new canonical form given in the next chapter is
developed to have a unique and regular distribution of
zero and unit elements in A and 3 for linear systems,

without the restrictive assumptions of controllability

or on the rank of II. The canonical form is also proposed
for use with a class of nonlinear systems by application

to the linear part of these systems.

I

w

FF
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Chapter 4

DEVELOP PENT OF A CANONICAL FO1U.1

In this chapter, a new phase variable canonical

fora is developed for a class of multi-input systems.

This particular canonical form is shown to be superior

to those reviewed in the previous chapter. It also

provides the form for the analysis of the inverse problem
of the optimal regulwtor in subsequent chanters. First

a iiew definition of an equivalent system is given.
Section 4.2 introduces two	 matrix transfor-

mations. Based on these idea:, 	 new canonical form is

then presented in Section 4 . s	 ''''^f uniqueness of thew ^S F r^

structure of the canonical form for linear systems is
discussed, and finally the canonical form is extended

for applications to a class of nonlinear systems.

Throughout this chapter only, mat .,-i ces are indicated

by capital Roman or Greek letters wit);out the underline

and are constant unless oth rwise noted. Vectors are
underlined.

4.1 Equivalent System

Systems which are considered in this chapter are

given by

Y F (Y) + B V	 (4- 1)

le
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where ^r(Y)  = (f1 (Y) 0, f2 (Y) ,' .. , fn (Y)) , B is an n x m

matrix with 0 < m 1 r and the rank B is y , 0 < r < m.

One definition of an equivalent system is given by

Definition 3-1. A more rigorous statement is possible, 	 OF

however, for the particular class of systems given by
(4-1)0

Definition 4-1: Equivalent System.

For two arbitrary systems

Y F (Y) + B V ,	 S1
(4-21

X = F(X) + B U ,	 S2

S1 is said to be equivalent to S2 if there exist non-

singular matrices N and M which are n x n and m x m

respectively, satisfying

X N v

(4-3)
u = m7 1 v
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fined for this

satisfied directly

The symmetric
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The nonsingular transformation (4-3) can

a topological equivalent relatim 	 de

class of systems. The reflective lad

by choosing M and N to be unit matrices.

law is satisfied by substituting

Y = N X

(4-5)
V = M U

into (4-4) . To show that the transitive law is also

satisfied, consider a system

z=F(Z) +BW,	 S3
	 (4-6)

to which S2 is equivalent. Thus there exist nonsingular

matrices N and - such that

Z = N 1 X
(4--7)

W = M l U .

S 1 is made an equivalent system of S3 by defining

NZ = (N )
- 1 

Y
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where berth (N M and (M MS are nonsingular.

If M '.n (4-3) is fixed as the unit matrix, Definition

4-1 is essentially reduced to Definition 3-1. Thus,

Definition 4-1 is a generalization of Definition 3-1,	 r

but with application restricted to the class of systems

given by (4-1). The flexibility of the additional matrix

M. however, allows a more compact canonical form to be

given for the class of systems (4-1)

4.2 Fundamental Theorems

Theorem 4-1:

Let .A. be an n x n matrix. Fcr each positive integer

s - n, there exists an n x n nonsingular matrix N which

transforms A into

PF-.
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A ( ^ 1)	 A(1,?2)	 A(lfv)

A _° N'AN _°

A (v,1)	 AV IV)

101	 [0] A(2	 3) •

_ .	 (4-9)

101 ' '	 [0] A(V_1 V)

A (v ^ 1) . A(v'V)

where each submatrix N i, ,) ,	 (i,j = 1,,2,,...,v) ,	 i s

such that

i
(i)	 z  = s (4-10)

(ii)	 v,	 I lFL21P ...p	 tv_ l	 are positive integers

dependent on	 .A,	 and s such that

v_
n ; (4-11)

- C	 .'E*..

r
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(iii)	 if v '_ 2, then either

(a)	 A(1 	 is a Jordan, canonical form and

A(1,2)	 =	 (0)	 , or ( 4--12)

(b)	 A	 =	 (0)(1, l) (4-13)

A (1,2)	 =	 I (0) 1 z , (4-14)
L 1

where, if (b) , then z 1 'Z2'

(iv)	 in addition, if v ? 3, then

('a) i ` ^;	 for 2 1 i	 j S v (4- 15)

(b)	 A(_i,i+1)	 _	 [ 0) I 	 2 _` i _` v-1
i

(4-16)

(c)	 A 	 i)	 ,	 for i = 	1, 2 , ... ,v, are unspecified.

The proof of the theorem follows three lemmas.

Lemma 4-1:

(a)-	 If H is a e 1 x 9 2 matrix with rank e 3 , there exist

nonsingular matrices H1 and H2 which are 01 x e1 and e 2 x 02

' respectively, satisfying
I

r
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[01	 [01

H 1 H H2 =
	 (4-17)

	

[0]	 183
	 r

(b) If H is full rank, i.e., 83 = Min (e 1 ,e 2 ), and

81 < 92 (e l > e 2 ) is satisfied, H1 (H2 ) can be the unit

matrix.

(c) If e l = 8 2 , then either H 1 or H2 can be the unit

matrix.

Proof: The reduction of H to (4-17) follows directly from

the equivalence of matrices, [101 Toshow part (b) of the

lemma, assume 0 1 s 0 2 , Since e 3_= e1, H has e 1 independent columns.

Let H (
2
l) be a 0 2 x e-2 nonsingular matrix resulting from

an interchange of columns of H such that

H H (l)	 ( H 3	H4	 ,	 (4-18)



F,

G1

102-el
xt2) °-
2 —

-H4 1 i;3

(01

-1H4
(4-19)

r

and

H	 H(1) H(2)2	 2	 2

Then it follows that

H H2 	 101	 I8 1
	

(4-20)

and H 1 is the unit matrix. if e 2 < e l , a similar method

can be app lied. If e l 	e 2 = e 3 , then either H1 or H2

can be H- 1

Lemma 4-2:

Let H 1 and Fit be 6 2 x e l and 0 2 x e 3 matrices respectively

with

0 <_ e2 < e
3 ,
	 (4-21)

and let the rank of H 2 be e 2 Then for any 61 > 0, there

exists a e 3	 1x e matrix K satisfying

111i MOU	 ON

,q
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H 1	I-12 IC .	 (4-22)

Proof:	 The proof is complete if a construction of K can

be demonstrated. Since H2 is of full rank, from (4-21)

and Lemma 4-1 there exists a 9 3 x 63 nonsingular matrix

K1 such that

H2 Y1 -=
r

1 (4-23)

i

[101
2

Define K2 to be a e 3 x 6 1 matrix such that

10]
F

K	 42 (4-24)

H1

{{	 and define

r

K ^ K1 K2 (4-25)

Then K is 9 2 x 
e1

and satisfie s

H2 K H1 (4-26)

AV
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Lemma 4- 3 :

Let ,A be an n x n matrix. For each positive integer

s I n, there exists an n x n nonsingular matrix N to

transform A into
r

A A N'AN

A„(1,2)	 A(l,v)

N •
A(2,1)

A(v 	
A(v.v)



r

6' 4

(ii) v, z 	 Y' 2 , * 6'* Zv-1 are positive integers

v
dependent on .A. and s such that E z  = n

i=1
(iii) if v ? 2, than either

a	 A	 0	 or	 4-29

(b)	 A(1,2)	 [01 z e	 ,	 (4-30)
1

where, for (b) it follows- that z1 ^ P, 2 ;	 (4-31)

(iv) in addition, if v ? 3,

(a) it ij , for 2 _< i _< j	 v ,	 ( 4-32)

(b) A _ 101n (i) 1	 for 2 _` i` v-1

(4-33)
-

where	 N (1) 1 is a	 x k. nonsingular matrix,

(c) all other submatrices are unspecified.

Proofs ^ (1) First, if s = n, define

V 1

(4-34)
R1 = s
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The statement is satisfied by N = I.

(2) If s < n, .A, can be decomposed as

n-s	 s

A22 	 .A. 21.	 n- s

1
12	

s
r ^ 11 f

(4-35)

where each A .;.j, (i,j = 1,2), has the dimensions indicated.

According to Lemma 4-1	 (1) andN (1) are s x s
11	 2

and (n-s) x (n-s) nonsingular matrices satisfying

[to]	 [oil
N _

' (4-36)22	 21 11
{01 rn 1

.where. nl is the rank of A 21' If n	 s ^ n-s,1-  (l)N 11
r_

can be the unit; matrix, according to Lemma 4-1. Define

an n x n nonsingular matrix such than

(1)-1

N2222..	
^

^^(1) ^ ('1) (4_37)
' to] 11

_.... MRt



Then define

j
,,	 - ,
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Then

I'll (1)	 ^ 
(1) _1
	

^ (1)	 „ (1) ..Y

N22A22 N 22	 N22A2iNll

( 1) e ^ (1)^ 1 ^ ( 1)
A = N	 N —	 •

^ (1)-1	 ^ (1)-1 ^ (iC l 	(1)

Nil Al2N22	 Nil AllNli

(4-38)

	(3) As a subclass of (2) , if n l = 0 or n l	 n - s -` s in

(4-+36) ,

/^ (1)	 ^+ (1)	 [0) ; if nl ZM 0	 (4-39)

N 22 A 21 Nil	 .
(0) In	 Ifni =n 	 s <s

1
(4-401

V,



F,

6'7

N
A(18'1)

a
A(2F1)

ti
A(1t2)

(4-42)

A (2 j,2)

where A(1,2) is either ( 4-39) or (4-40) . For (4-40),,

it follows that

1t 1 	rank of A(1 ^ 2) = Min ( R 1 , R2 ) _< R2	 (4-43)

Therefore the assertion is proved for the case of s < n

and v 2.

(4)	 The remaining subclass of (2) is 0 < n 	 < n-s.

Again A (l) can be decomposed, using (4-36) ,,	 as

A A A. 31 A	 A 3233 32 33

A A A A22 A	 A 22 A	 ^n 123 21 23 21

A 
c1) A (^.) A (^^

A ll A l2 
c^^ A (^)

^ 13 
A (^^
All	 s13 12

(n-s-n 1 ) n1 s



(1)	 (
1 21 = 1 [0]	 =n

L	 1
(4--45)

if

68

follows from (4-36) that

Using the previous process, let A (2) and(2)
22	 33

be n1 x nl and (n-s-nl) x (n-s-nl) nonsingular matrices

satisfying

(2) q (1)^ (2)	 [0]	 [0]

N33 A 32 N 22 -	 (4-46)
[0]	 In

2



to)

I[Ol N (2)
22

A 
(1)
11

or

i	 F

(4-48)

F,

•	 69

Ace) nc2)'1 A cl) Nc2)

(2)	 tll)^ (2)-1	 (2)	 (i)^ (2)
N 33 A 33 N 33	 N 33 'A'32 N 22

n (2) -1 ( 1) n (2) -1	,x (2) -1^ (1)n (2)

N 22 A 23 N 33	 N22 A 22N22

M^ (2) -1	(1)^ (2)
A13 N. 33	 Al2N 22

where (4-45) is used.



r

v 3

I1=n2=n-n1-s

12 n1

^3 = fl,

N = N (l) N(2'

V

(4-51)

and
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N
the rank. of A (1,2) that

R1	 12	
(4-55)

r

Therefore the assertion is proved for the case of s < n

and v 3.



n (k) -1
Nk+l k+l

N('')
kkNcx>

Y'"

I

F,
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In-h (k) _h (k)
1	 2

all other entries zero,	 (4-58)

where

(a)	 each (k 1)	 (i,j = 1,2,... ,k+l) ,	 is an h!k-1) 
x 

h (k-1)Aij

(k-1)	 =hl	 s, (k-1)h2	 = nl ,	 ....
(Y.-1)

, hh	 = nk_
1

, and

(k-1) k-1
hh+l	 = n - s -	 E	 ni	 such that

i=1

(k-1)
rank A i i 1	 ni _ 1 ,_ for 2 _` i	 k (4-59)

n
(b)	 (k) ^

and	 ^^ (k)
_

are nonsingular matrices which
Y,k k+1 k+1

k-1 k-1
are nk-1 x nk-1	 and	 (n - s -	 E	 n ) x (n - s -	 E	 nl)

isl =1

such that

i :'Ate. AA



F
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^	 N

	

N N	 1	 d'

	

v N	 x Q..I	 v

	

<Z	
v

n
O	 3u

••
^	 4

•
•

1^ x
1	 r-i

!
v x

O	 •

H	 ^	 N•

^	 •rl

.-I



•

1
•

M
v

^- x
1x I

u

e-11

0u

M
1 ^
x

1 ,^
x ^

1^	
.-1 .-1

Zn
u

75

v ^ ^

x
1	 r+x +

''^
x a; x

x x < v x

z <
•N

x
.G

G

x 1 .-.	 r-i j
41

6.+
Ad

u x	 .}....	 x
r-1 < L.ar.,

x
1{	 . G -F-

<x x	 1

'd	 a{	
.^

x x
v

b	 <Z <^

Ii
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Repeating the transformation n times, either the rank of

A(
n -1)

n+l 
n 
becomes

(a) zero, when it follows that

n (n)	 0-1) n (n)

N n+l n+l A n+l N n n	
[ 0] ,	 (4-64)

n -1

	

or (b) full, i.e., the rank (n-1)	 n - s -	 n. ,
n+l n	 i=1 1

when it follows that

N	 A	 0,4-65)
n+1 n+1 . n+l n	 n n	 nn

Define

v = n + 1

n-1
^,1=n -s- Eni

i=1

nv_2

., (4-66)

^v-1 = n1

v

(1)
^ (2)	

(v_1)
ri

i



r
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where Zl, R20'	 tv are positive integers and N is non-

singular. With k = n in (4-63), and

A(n)= A ("-1) =A ,	 (4-67)	 ►1

A given by (4-27), it follows that

•..	 [01	 from (4-64) , or
(a) A (1,2)	 (4-68)

[0) I R	, from (4-65)
1

where, for the second case, from the rank of A(1,2),

R 1	R2

(b) A= 101 ^ (v+1-3.) -1	 for i	 2 3 ..9'V-101

(4-69)

where each N	 is nonsingular;
v+1-i v+l-i
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Thus- the lemma is proved.

From the structure of each N '^ in (4-58),, N in

(4-66) is
	

i



;/

•
•
s

ICA

1

of

H

Pn Mv M

1

ofH
N N.^ N

O	 N/Z

J J

N
t`

d^
v

P

79



so

where N 11 and N22 arf- (n-s) x (n-s) and s x s respectively.

Proof of Theorem 4-1:

It is sufficient to show the existence of an n x n

nonsingular matrix N to similarly transform A as given

in Lemma 4-3 such that

A -1 A,	 (4-73)

where A is given by the statement of the theorem. Then

N of the theorem is given by

^ N
N = NN	 (4-74)

N
(1) If v = 1. let	 = I
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given by	 (4-30), define

[D]A. Rl

I
.., (l)	 ... 	(l)

N 21	 N22

[0]
(1)	 _

0) In	 Z, 1
l _ 2

where	 N (1) = I	 and N (1)	 is an R	 x2 matrix
1^222 21

satisfying

A	 ll	 + A
( 1,2) 

N (1)
r	 ) 	 21

_	 [0] (4-77)

4

This 	 (l) exists from Lemma 4-2 , where A (1,2)2	 is of full
21

rank andR l 	t	 Define

A(l)
U 

1) A(l(1,2)

NA N
A(l)•	 (V-1,V)

A (v,l) A(v,v)_

all other entries zero, (4-78)

a

090; 10000 -00	 - ^

r
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where (i) each A( 	 is an Ri x X. matrix;

(ii) either

(a) for (4-29) ,

A	 = N -1	 N~(1,1)	 (1)	 A (1,1)	
(1) ► a Jordan canonical form

11	 11

ti(1) (4-79)
A (1 1 2) _ (0)

or

(b) for (4-30)

A (1, 1)	 (1,2) N Y 1	 [0]

A( 2	 [0]	 It(1,  )	 1

(4-80)



I^
2

	

N (2)	
N(2) N(2)

	

31	 32	 33

N(2) Ive

1

83

IL
1

In-Z1-R2-Z3

all other entries zero,
	

(4-82)

where	 (2) are chosen to satisfy
3i

N(2,1) (23) 31

A(1)
(2 ? 2)

+ A(2)(	 , 3) N (2) 	 [4l
32

- ! I Q _-Q _	 [01

(4-83)



N(z)-1

I1
1

I ^,
2

	

(2) -1," (2)	 2)-1 (2)

N33	 31	 N33 N 32 ^33

V,
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(ii)
^-1(1)A(1!1)

.^,(1 )	 (4-86)
A(lv2)

All)	 101 	 ( v+1-i)-1
(i,i+1) v+l-i v+l-i

for i = 4,5,...,v-1, if v '- 5

by (4-79N81),,

A(2)(1, 1)

A(2)
(lr2)

Uti+l.)

r

A(2) A(1) + A(1) 
	 ^TT (2) 	 [OJLv(211) (2'1) (2,3)	 31

A(2)
(2	 2)

_ A(2.2) A (1)NT	 (2)	 =	 [OJ(2.3)	 l ^r 32

A (2	 3)(	 ► 	 )
= A()

( 23 )
2)	 [oJ	 IRN	 233

from (4-83) ,

(4-87)
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(4) For v '- 4, this process can be repeated (v - 1)

times. Generally, defining

A(1,1)	 . A(1,i+1)
	 f

N(i+1) 1 A(i) N(i+1) o A(i+l) o

A(i+l A(i+1)

(4-89)

where

(i)	 A (1) has a structure after (i-1) reductions, such

that

A(1)	 A(1)(1, 1)	 (lf2)
[0] to]

[01	 101 (01	 IZ. 2 •

1A

A (i)(i+1, 1)	 . • A (i):,	 (;i+l, i+2) • •

• [0]

_
A(i)

(v-1"v)
A(1)

(v• 1).
A(,i)

(v,v)

(4-90)

r



I-

B7

where

e%j( i )	 —	 M i ) — 1 	V—
(i+1 ,i+2)	 i.+l i+l Nv-i v-i

^ 
is Li+lXz+l nonsingular),cN	 N	 g

i+l i+1 V. V.:j
(4-91)

-1
A(1) 	 401 N (v ^)	 for j = i+l,i+2,., . ,v-1

(ii) N (i+l) is such that
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where each N (i+1) satisfies
i+2 j

(a) ' (i)	 + A (i)	 (i. 1) = [0]	 for j = 1,2,..-.',i+1 s(i+1, j)	 (i.+l,i+2) N i+2 j
(4-93)

where existence is by Lemmas 4-2, and by using (4-91),

(b) -	 r
1	 101

(i+l)

	

i+2 i+2	 (v-i) ti (i )[0]
NV-i v-i N i+l i+1

(4-94)

Since ( 4-94) is nonsingular, N	 .is nonsingular. For

the last transformation of the sequence, i = v - 1 and

defining

... ^ .e. 
(1) 

ti 
(2)	 ti (v 1)	 4-95



ti

,,,,	 Nll
N = ,,,

N21

[01

N22
	 (4-96)	

e

89

N	 N
where N il and N22 are (n-s) x (n-s) and s x s respec-

tively. From (4-42) and (4-89) ,

N1l	 [0]
ti

N - N N =	 ,	 (4-97)

N21	 N 22

where N ll and N2 2 are (n-s) x (n-s) and s x s respectively
n	 „^

and N 22 is nonsingular because both N22 and N 22 are

nonsingular.

a	 Theorem 4-2:

Let A and B be n x n and n x m matrices with
n

rank B = r and 0 < r < m _< n. There exist nonsingular
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[0)	 (0)

N 1 B M = [0l	 1 
where A is given by Theorem 4-1, 	 (4-9), with s = r.

Proof: First consider nonsingular matrices N (1) and

M (1) , n x n and m x m, such that

(1)	
1 [01	 [o]

N	 B M^ 1) (4-100
(0)	 Ir

by Lemma 4-1.	 Define

AA N(1)-1 A N(l)	
•

(4-101)

Then from Theorem 4-1, there exists a nonsingular matrix



r

(4-103)

91

IT m_r	 [oi l

101	 N22

where N 22 is defined in (4-88) . If

N = N 
(1)N

M =.M(1) M(2)

(4-104)

then (4-98) and (4-99) follow.

4.3 Development of a

4.3.1 Canonical Form

For the class of

A
Y = A

such that

New Canonical Form for Linear Systems

for Linear Systems

linear systems given by

n
f + B V	 (4-105)^
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Precisely, the new canonical form of (4-105) is

given by

X= A X+ B U	 Z

A UDI) A(1,2)

A(2,3)

X +

A(v-1,v)
A(lfv)	 A(v.v)'

all other entries zero,

U ,

I 

(4-x.06)

where

Y= N X	 A= N 1 A N

V= M U, or equivalently	 B= N- 1  B M

(4-x.07)

The existence of N and M are guaranteed by Theorem 4-2.

4.3.2 Controllability of the System Determined from the
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using the nonsingular M in (4-107), define an mn x mn

matrix such that

M

M =	 M 	 all other entries zero,

M	 (4-109)

n stages

which is also nonsingular. Define

A
G N 

l 
G M= IN 

1 
B M N 1 A B M, ... , N 1 A n 1 B M]

['B, A B, ..., An 	B]	 (4-110)

from (4-107) , by applying the technique used in (3-12).

The rank of G is equal to that of G because N_1 and M

are nonsingular. Thus the following theorem is proved.
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theorem. If v '- 2, the controllabi.lity of the system

depends upon the structures of the A(l,l) and A(1,2)

submatrices in the canonical form given in Theorem 4-3.

Corollary 4-1:

Provided that the canonical form has v '- 2, the

canonical form is controllable if and onl y if

A(1^'1)	 [0]
(4-111)

A( 1,2) 	 [0] I^1

Equivalently the canonical form is uncontrollable if and

only 44

A(1,2)	 [O]	 (4- 112)

The proof follows directly from Theorems 3-1 and 4-3 and

the structure of the canonical form.

4.3.3 Heuristic Explanation of the Canonical Form

Conveniently decompose U of (4-106) to,

TEd	 lul l U2 1?
... um-r]

T	
( 4-113)

He - [um-r+1 1? um-r+2'	 '' um]

............
ONigloos

r
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and define an n x r matrix

101
B d

e
Ir

(4-114)
V,

then the canonical form (4-106) is reduced to



r
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X (1) = A(1.2)' 2i(2)
t	 X(2) 	 A(2 3) 2i(3)

(4-117)	 r
(V_ 1) A (v_ 1,v) X(v)

x (v) = A 
(v, l ) x ) + ... + A (v v) ' x (v) + Ue	 or

k

(ii) if it is uncontrollable,

X(1) - A(l,l) X(1)

X(2) A(2,3) 
2S(3)

(4-118)

2j (v-1)	 A (v-1,v) X(v)

X (v)	
A (v, l) 

X (l)	
+ A (v, V) 

X (v) + le
	 •

r.

Provided v ? 2, these equations appear schenztically as

shown in Figures 4-1 and 4-2-.

In (4-116) . the stable variables in X (1) are uncon-
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rv

v ^

N 4
N

v ?tN

b

r-4N N

r-I

r
.^. 0M ^

ob 4JN Ov
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b
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p
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v

r Al
V V

w

.-	 R



98

N
v

>C •
co

I

7  r4
• p.^N t

or

n
fr1

NN
v I >1

Mv ^

n ^

7v
0

^1

O
+^ w

0

u
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w
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Then, from (4-116) , it follows that

X(2) _ A (2,3) 2-i-(3)

X(3) = A(3,4) 2i(4)

(4-120)
x(v-l) = A (v-1,v) X(v)

X	 = AX	 + A	 + ... + A	 X	 + u(t).
— (v)	 (v.2) -(2)	 (v.3) -(3)	 (v,v) -(v)	 —

The state variables in X (2) , X(3) , ,.., X(v) are completely

controllable, by (4-117) . Conveniently call the state

variables in X (1) of (4-118) the uncontrollable state

variables.

For subsystems of (4-117) or (4-118) given by

A (,i+1) x(i+1) 	 (4-121)

with A ( , i+1)	 1101 1	 , a more detailed representationil
can be made than is shown in Figure 4-4 and Figure 4-2,

i.e. , Figure 4-3.

r



r
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xpl+Ri+1
^	 I

I
i

xpl+R,l+2

•	 ^	 i

xpi+Ri+1-^-- i
x	 I	 I	 I	 r	 i	 xpi+z i+1-Z i+1	 I	 i	 J	 ! _

	

ip+1

xI	 I	 I	 I	 x
pi+Zi+l-Z 

+2	 I	
,	 '	 I	 p. +2

^	 I	 I	 I	 I•	 I	 I	 (	 ^
xp.+z +R• + 	 I 	 I Ff	 I	 X,pi+z .

].	 i l	 I	 I

L___ J

X	 A(iIi♦1) 

Figure 4-3. Subsystem of the canonical form in
(4-117) and (4-118) .

r
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That is, the last I  state variables of X(i+l) are inte-

grated to become X (i) . Let the ordered set (L1,R,2,•••,Rv}

be the state distribution of the canonical form.

Physically, this refers to the numbers of integrators at

each. stage of the partitioned X (i) , in sequence.

4.4 Uniqueness of the Structure of the Canonical Form

A given system does not have a unique canonical form,

(4-106), but one that is dependent on the choice of

different combinations of the M and N matrices in (4-107).

The stage distributions for these different forms, how-

ever,, are unique.

Theorem 4-4:

The stage distribution (Zlf Z2 , ... ,'.v) for all canonical

forms of a given system is uniquely determined.

Proof: If L 1 = n = r, v = 1 is determined from the con-

struction and the stage distribution is unique. Consider

v ? 2, i.e., 0 < r < n and two transformations

X = N 1 Y
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and

n- Y

such that they provide the canonical form

X= A h+ B U

with a stage distribution

(4-123)	 of

(4-124)

(Zlf k 2 r 	 •.i kV)

and

(4-125)
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6) = 72-1N

X = S1 
1 14
	 (4-128)

Oe

When from the transitive law of the equivalent relation

for the canonical form, (4-126) must be transformed into

(4-124) by

X-= QX	 (4-129)

2C X v

which is equivalent to

A = Q ^/^

B = Q^ B7

	 (4-130)
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A ( p r o )	 A(o,a)

A (a,a+1 )

A _

A(u^o

all other entries zero,

and

,

A G-1, u )

AG0,0

(4-132)
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a = u - p + 1
	

(4-134)

s = v - p + 1 ,	 (4-135)

v

each A UID , (i, a 	is 
Yi 

x Y j such that

u	 u
= n - E £. = n	 E.

^°	 i=a
(4-136)

Yi =, 
Zi = zv-p+i	 u_p+l _<i_< u

and A is decomposed in the same partitioning as A •

From (4-121), it must follow that

A (U-i,u-i+1) - A (v-i,v- +l) - [0] IR
v— i

for i = 1,2,... ,p-1,	 (4-137)
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and

/^.J

© (0,0)
N

(O,a)

^J

©(o,u)
r

O -1 A •

(U, 0 ) (U,a) ( u ,u)

(4-139)

where the decomposition corresponds to that of	 /q (4-132).

From (4-130),,

N
101	

8 ( 0 ,
^;

X
V)

B = =
1

Q	 B7C =
(0)	 E)	

a( ,u) (4-140)

I r (0)
(u,u)

Comparing the submatrices in	 (4-140), it follows that

(01' -_	 101
N
C) (i,u)	 TL

for i

(4-141)

[ol I	 -r
[off	

6 (u,u)l7L.^	 •

:
As 7L is nonsingular,

II

f:
I

WIN



1.0 7
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O 0 0	 « 8 (0 u—l)	 [o1

A = Q 1
Ae = I

•	 [0J
	 r

801,0)

[o]	 101

(01

[o] !^'
to- 1,u)

A(u.0)	 00	 •	 A (1111)

A (o,o) A(o,u)

[0l	 [o]'

rp

101	 •
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N	 /^

(0] - 6 (i,µ -1) A (u-1, u) e(u,u) -= 
Co] ©(i.0-1) e { ,P)'

for i = O,a,... ,v-2	 (4-145)
r

ti
A(v-1,V) _ [O) I V_1	 © (u- 1,v-1) A (u-1,P) ©(u,u)

= 1 
101	 0-1,U-1)	 e ( p " ,P) *

As 
E)(uiu) 

i8 nonsingular, it must be concluded that

N
(off 

_ 	 ,	 for i = O, a, a+1, ... ,v-2

(4-146)
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Or

110

where 1 (i j i) is nonsingular. From (4-134) and (4-147)

and. the rank of A (Oa) must be equal to that of A (D , a )

i.e.,

zP-p-1 - R v-p-1
	 (4-150)

I""'	 ^j
as both. O (0,0) and O (a , a) are nonsingular. But this

contradicts the hypothesis (4-131)

Consequently, the canonical forms (4-124) and (4-126)

differ only for elements in submatrices of A and A with

indices (v,l) , (v,2) , ... , (v,v) , and also (1,1) if

the system is uncontrollable, i.e.,
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l

", The uniqueness of the structure of canonical forms
quaranteed for each given system is due to the uniqueness

of the/stage distribution. The ambiguity in sizes of the

submatric;es of A-and B is thereby avoided in contrast to

other suggested canonical forms.

From Theorem 4-4 and (4-146), a corollary follows

directly from (4-148) .

Corollary 4-2:

The matrix	 in (4-138) must be such that

H	 '

•
O(20,2)

r
•

•	 t

O(^^1) (VF V)

I'
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4.5 Uniqueness of the Canonical Form

rurthermore, consider a set of canonical forms for

a given system with a fixed 14 (4-107) , and observe the

variety of matrices A corresponding to various N. This

can be done effectively by observing the differences in

A and A of (4-124) and (4-126) under the restriction

M = M in (4-122) and (4-123) , or equivalently M = Im.

Theorem 4-5:

Consider a completely controllable system (4-105)

with the stage distribution

,	 (4-153)

where r is the rank of B and assume that a transformation

(4-107) is made. Then N is unique.

Proof: Assume two transformations, (4-124) and (4-126),,

with	 M. Then the proof is based on (4-130) , showing

that	 in (4-138) is the unit matrix.

Fnr 1-ha nn cc, of, -t y	 1 - a  nmm n = d - N-1 m»-f- he

r
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of the system and Corollary 4-1, (4-153) and (4-151),

it follows that

	

(0)	 1 

A=1	 other entries zero,
[01	 1 	 (4-154)

	

A(v 	 A(V,v)

and

	

[4I	 1r
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where O is given as ( 4-152) . Then from ( 4-157)

0 (v,v) - Ir 0	 (4-158)

z

Alternately, from ( 4-154ti156) ,

®(2,1)	 0(20,2)

A(3^^1)

A 6 -I

O•(v, 1)

A	 A

[0 ]	 101

x(3,3)	
•

[0l

(v ' V)

A

, (4-159)

1 03 0 (1 1 1) [0]	 + •	 [41

6(211) 4 (2,2) ,

6A = [0)

(01 S (V *
(4-1.6.0

-1,1) (v-1,v_1)

A A .	 A

where A refers to entries of no importance to the following.

Comparing submatrices in the first v - 1 rows,

Woo WIN "I ON ON



r

115

	

O (i j)	 [0) ,	 if i > j ,	 (4-161)

and	 (i,)	 (i+l,i+1)
	 for i = 1,2 0P... , ( v-1)	

or

(4-162)

But from (4-150),(4-162) reduces to

I  , for i = 1,2,..9 r y ,	 (4-163)

and @ must be the unit matrix.

Theorem 4-5 establishes the uniqueness of the

canonical form for a given completel y controllable

system, with a stage distribution given by (4-153). If

it is possible to select M as a unit matrix, then this

canonical form is .reduced to the canonical forms discussed

in Chapter 3. Sufficient conditions which allow this

choice of M are given in the next theorem.

Theorem 4-6

Consider the system (4-105) with a stage distribution	 4W
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where it is assumed that Z 1 = r if v = 1. Then the

canonical transformation (4-1,07) is possible with

M = I 	 Im.

Proof: The resulting structure of A is

Iol	 f ICI	 I R 1
l	 1J

fe

A=I

Ir

zr

all other entries zero.

(4-166)

A ( v ,1) A (v,2) •	 .	 0A(v,v)

If v = 1, then n = r, B is an n x n nonsingular matrix

by assumption, and the proof follows by specifying

N = -1 Consider the case of v -' 2. Since Z v = r, M (1)

in (4-100)	 can be chosen as I 	 according to Lemma 4-1.

For the transformation. of A. (4-101)	 into A	 (4-2 7)

of (4-72)	 can be chosen as

N 101 -^

N -
11

A

w

(4-167)
21 Ir

This follows as each N of	 (4-58), i	 1,2,...,v,	 can.. .	 ,
11

:.

r.k.ass.^ass^
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be chosen as Ir according to Lemma 4-1 due to the cull

rank of each A (i-1) , i	 2,3,...v, by assumption
U+1,i}

(4-164) . Then from (4-63) and (4-67),,

ti'A(111)	 A(1,2)

A(2,1)
Lr,v ASV-1)-- •

A	 •
(v• 1)

A
(v,v)

all other entries zero. (4-168)

Then from (4-92)	 and (4-05),

N
can be chosen as

11	 [0] -

,[
N21	 Ir

(4-169)

because each~ (1)
^i+	 + F i =1	 '1^._ 

1,2,...,v-1,	 can be chosen as

I	 , according to (4 -94) with all N ( ) = I Subsequently,
r ii	 r

it follows that
G;

N11	
'10

N N = _ (4-170).	
,r N21	 Ir

OOW
NOW
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and M (2) of (4-103) is also the unit matrix. Therefore

M = M (1) M (2) = 
1  .	 (4-171)

Combining Theorems 4-5 and 4-6, the following is

evident.

Corollary 4-3:

Consider-a completely controllable system (4-105)
with the stage distribution given by (4-153) and
rank B = r = m. Then there exists a unique canonical

form for the system with M Ire

If the stage distribution of the system is given by

(4-164), the canonical form corresponds to Asseo's canonical

form, A given (4-166) . However, in the reduction to the
Asseo's canonical form in the sense of Definition 4-1,
it is necessary that.

(i) the stage distribution be given as (4-164),, and

(ii) - the canonical transformation (4-107) is possible

with the unit matrix M.

Consequently, the application of Asseo l s unique compact

j
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applicable and equally unique and compact.

The transformation in Theorem 4-6 corresponds to the

canonical transformations used in Definition 3-1. Thus

the stage distribution of a single input completely con-
trollable system must be {1,1,...,1) , and it follows

form Theorem 4-6 that the canonical form of the system

uniquely exists in the sense of Definition 3-1, i.e.,

0 1 0 0	 0	 0 l

0 0 1 0	 0	 •

X =	 0	 X +	 u,	 (4-172)

0	 0	 1	 0

a	 a	 •a	 1
1	 n-1	 n

Consequently, the statement of the uniqueness of this

canonical form in Section 3.4 is verified.

V'



Y1=Y1+3Y3-Y4 +V2

Y2	 2Y 1 + Y2 - Y3 + 4Y 4 + V1.

• 	 -	 +	 -Y 3	 Y1	 Y 2 Y3 + 2 Y4 +	 (4-173),'
V 1 ,

y 4 =y 1 +2Y 3 -Y 4 + 1T2

and from (4-100)

1	 0	 3	 -1 0	 1

A =
_2	 1	 -1	 4

axed 13
1	 0

(4-174)
-1	 1	 -1	 2 1	 0

1	 0	 2	 -1 0	 1

For

0 0

- 1 0 0N O B - (4-175)
1 0

0 1

it is sufficient to assume'

1	 0	 0 1

N (1)	 _
0	 1 - 1 0

(4-176)	 `.
0	 0 	 1 0

0	 0	 0 1

F.



Then

0 0 1	 0

-	 (1)A- A	 N 1 A N (1)	 _
_1 0 0	 1
 r

-1 1 0	 1

1 0 2	 0

ti
A

(4-177)
A (2,1) A(2,2)

Comparing this to (4-78) -and (4-80) , A(1^1) can be made

[0]	 if

1 0	 0 0

N (1) = jv =
0 1	 0 0

(4-178)
0 0"	 1 0

1 0	 0 1

Then

0 0 1 0

-1N-1N(1)	 A N (1)N=
0 0 0 1

, and	 (4-179)
0 1 0 1

1 0 1 0

y "MINM-

1? 1
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N _1 N^l^ 1 B = B ,	 (4-180)

which is the desired canonical form. Defining

2 0 0 1

0 1 1 0
N e N M.N _	 (4-181)

0 0 1 0

1 0 0 1

r	 1

and
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The system is controllable by Theorem 4-3. As tai = I2,

(4-184) is the unique canonical form of (4-173), from

Corollary 4-3.

Example 4-2. Consider

Y0 

1 Y1 + 3y 2 - 3Y 3 Y4 + V 2

Y2 = -2y 1 + 4Y 4 + V 1

(4-185)
Y 3 = -yl + 2 Y 4 + IY 1

Y4 = Yl + 2Y2 - 2 Y 3 Y4 + %r 2 •

With the same transformation of Example 4-1,

x1 = x2

x2 = x4

(4-186)
sc3 =x4 +u1

x4- x1 +x2 +u2

which is controllable. This is not a unique canonical

form, however. Selecting an alternate N for (4-178)

such that

1	 0	 0 Q

0	 ?,	 0 0
N - (4-187)

0	 1 0
1	 0	 0 1

SM



( A -185) becomes

X l 	X2

X2 = X4

X 3 	X2+ X4+ul

X 4 = X +X2+u2

there the first two equations of (4-188) are identical to

those of (4-136) as determined by the structure of the

canonical form.

Example 4-3. Consider

Yl = -Y 1 + Y2 + y4 + V2

Y2 -Yl - Y2 + Y3 + 2y 4 + V1

(4-189)
Y 3 = -Y2 + Y3 + Vi

124
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Al = -xl

x2 = x4

X3 = -x2 + u 

X4	
X 
I 'i. x 2 + x 3 + u 2

(4-190)	
r

V

which is uncontrollable as x  is isolated.

The diagrams of these example canonical systems are

shown in Figures 4 -4N6.

4.7 Application of the Canonical Form to General Systems

Consider a class of systems given by (4-1) which can

be expressed by

F(Y) - A Y + ' (Y) ,	 (4-191)

whero A is an n x n matrix such that : A Y describes
n

the first degree homogeneous function of Y in F(Y),
n

with F' (Y) the remainder. A canonical form for this

class of systems, using the development in this chapter, is

X A X+ ^' (X) + B U

c4—^
F(X) + B U

sr 4
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u2	=—.►

Figure 4-4. Canonical form of Examrale 4-1. (4-184) .

Figure 4-5. Canonical form of Example 4-2, (4-186).

x 
1



B = N-1 n M (4-193)

Pr -
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where A and B are given by (4-106)	 For the canonical

transformation (4-107),?

A N-1 A N
	 V,

FM = N 1 F(NX)

The characteristics of the canonical form discussed in
Sections 4.4 and 4._5 then exist for the linear part of

n
(4-192) . Furthermore, if F (Y) is of class C2 , then

FM in (4-193) is also of class C 2 ( according to
Theorem 2-1), and the uniqueness of solutions for the

canonical form (4-192) is preserved according to

Theorem 2-6.

Finally, a solution for the canonical form can be

characterized as follows.

Lemma 4-4:

For the system (4-1), arbitrarily assume an initial

condition (Y0 , to) , an admissible control function VW, 4
and a solution	 ±V(t Yo , to), Then the solution of the

canonical form (4-185) with the initial condition (N lY^, to)

and the control function U (t) 	 m- 1 y(t) is

i

I
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U (t; N-lYo , to) N`
JA

 (t; YO, to )	 (4- 194)

Proof: By the hypothesis, V (t Yo , to ) satisfies the

characteristics of the solution given in Chapter 2.

From (2-26) ,

^ U (to ; tQ-1YQ, to = N
-1 

4V (t; Yom , to)	 N-lYo 1-- Xo

(4-195)
From (2-27),

d{NN-1 ^ V(t; Yo , to ) }	 F(NN-1 ^V (t' Yor to)

+ B IMM 1 V(t) ,	 (4-196)

or
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{mU (t; N^ lYo , to ) }	 F (It U ( t; N
lYo 

to) + B U(t)

(4-199)

From	 (2-28),,

U(t; TV-lYo , to ) = N- 1 v (t; Y 	 to)

N l V(tp N
-1NV ( ti^ yop to) tl)

N-
1^ (t^ N-1± ( t l ; xr to ) r tl)

±U (t; ±U (ti; -^O, to) , t 1 ) , for all t '_ t1 '_ to

'
(4-200)

From	 ( 4-195),,	 ( 4-199) ,	 and	 (4-200), the function

u(t;N 1Y^, to ) satisfies the characteristics of the

solution of (4-192); therefore the assertion is justified.

e p



Chapter 5

THE OPTIMAL FEEDBACK CONTROL LAW AND

THE INVERSE PROBLEM OF THE OPTIMAL REGULATOR

V1,

The purpose of this chapter is to review work that

has been done on the inverse problem of the optimal

regulator. Initially, however, the problem of optimal

control as, explained in Chapter 1 is mathematically

restated. A theoretical background for the problem of

the optimal regulator is given in Section 5.2.2 based on
the principle of optimality and Caratheodory's lemma.

In Section 5.3 studies of the inverse problem by Kalman,
Suga and Thau are reviewed. Finally comments about
these studies are given.

5.1 Formulation of the Optimal Control Problem and the

Inverse Problem

Initial and final conditionsfor a system of objects

are generally defined as - manifolds in Rn x R1 . It is

convenient to call them starting manifolds Ms and termin-

ating manifolds Mt , and the space Rn x R1 a motion space.

The magnitudes of the control variables and the state

variables may be restricted during control action to ;sub

domains of Rm x R1 and Rn x R1 for practical reasons, e.g.,

structual design limitations. Call these admissible domains

130

.4

I
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the available control region, A.C.I., and the available

state region, A.S.R.

Def inition 5-1: Suitable Control.

An admissible control function V (t) defined on

[to , ti  E R 1 is said to be suitable for the problem
specifications, or simply a suitable control, if it

remains in the A.C.R. and provides a solution to (2 -21)

such that

(±V(ti; Yo' t
o) , t l) C- Mt	 (5-1)

which remains in A.S.R. When the time interval is given

by (to , oo ) , (5-1) can be restated: for each E > Or

there exists a T > 0 satisfying

Inf	 ^
y E M 

(I I A
 (T--0 to ) - Y1 } < e , for all T a to + T

—1	 t	 —

(5-2)

A performance index for . control action is usually

given as

i
J [Yr to ► V ( t ) ]	 K [Y rto ,'Y l ,t l] + L(±V (T;Y

0
,to) ,V(T) ,T)dT

to	 (5-3)
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where t  is defined as

t -° It	
o

f [(t	 R1^t , t ^ Y ^fr^	 o)-^1^ (-a}I	 ] .
—1	 t V

(5-4)'

The function K[ ], called a terminal cost, is a penalty

for the choice of the starting and terminating points on

Ms and Mt and is usually assumed to be nonnegative

valued on Rn x Rl x Rn x Rl . If K is constant on 14s for

each fixed (Y 1 , tl ) 
E "Mt 

or on Mt for each fixed ( Yo , to E Ms,

or is constant on both Ms and Mt , the penalty function is

constant and generally omitted from (5-3). The loss

function, L (Y, V, t) , can be considered as a penalty for

each paint in motion space and is generally assumed to

he nonnegative valued on Rn x Rm x R1 . The problem of

optimal control for an open loop control function is

stated as follows. For a given set of problem specifica-

tions, i.e., a system equation, Ms , Mt , A.C,R., A.S.R.

and a performance index, find a (Y0, to ) o E Ms and a

suitable control function V  (t) to minimize the value of

- the performance index. The function Vo (t) is called the

open loop optimal control function.

	For the problem of the optimal regulator, there 	 i

exists a collection of Ms, say Ms ,_ but a unique Mt

and optimal control functions are required for each

element of Ms	 For this problem, an optimal feedback
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control. law, yo (Y,, t) generally provides the optimal

control function. Thus for each (L O, 	 Ems	 ,

Vo ( t ; Yr to )	 Vo(^f (t; Yo• to ) . t) 11	 (5-5)

where 2 f (t, Yo , to) is a free solution of

Y = F(Y, V°(Y, t) J, t)	 (5-6)

Assuming suitable feedback control law instead of

a performance index (5-3), it is possible to attempt

to find all performance indices for which the assumed

control law is optimal. This is calledthe inverse problem

of the optimal regulator. Specifically, consider ^ and

to be spaces of all performance indices and all suit-

able feedback control laws for the given optimal regulator

problem. The usual or forward problem of the optimal

regulator can be given as a mapping in an optimum sense

from L to I , while the inverse problem is from U

to L	 As the space L is too large for analytical

treatment, some additional assumptions usually restrict

the objects to a subset of w and	 , e.g., the

restriction of I , to a sum of quadratic forms in Y, and

V,
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5.2 Optimal Feedback Control Law

5.2.1 Statement of the Problem

The fundamental characteristics of an optimal feed-'

back control law are considered under the assumptions that

('i) a system is given by

n
Y = F (Y, V, t) ,	 (5-7)

where F (Y, V, t) is defined on Rn x Rm x R1 and is of
class C2 with respect to all arguments

(ii) Mt , the f inal condition of the system, is a

smooth manifold in Rn x R1 and ^s , the set of initial

conditions composed of all reasonable points in R n x R1;

(iii) A.S.R. and A.C.R. are the entire Rn x R1 and

Rm x R  spaces respectively;

(iv) a performance index is given by

tl
N	 /'^	 N
J [Y-0 • to o, V(t) J	 K [Ylo, x; 11 +	 L(Y, V, t) dt

to 	 (5-8)

where

N
(va) the terminal cost K [Y, t],, considered only for

final conditions, is ofclass C 2 with respect to all arguments,

and	 -
J 	I
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(ivb) the loss function L (Y, V, t) is of class Cl

with respect to all arguments.

Since MS is a set of starting points, there is no

terminal cost with respect to initial condition. It is

possible to imbed the terminal cost of (5-8) into the

i integral. It has been shown (27) that an optimal control

function from each ( YY0 , to) E MS for the performance

index (5-8) must be equal to that for

t1
J hi t0 J,V(t))	 L(Y, V, t) xt	 (5-9)

to

where

I'	 K[Yrt]
L (Y, V, t) = L (Y V, t) + { grad Y [Y,, t)) F (Y, V, t) + t	 .

(5-10)

.`	 L(Y, V, t) is of class C1 with respect*to all arguments by

the assumptions (iva) and (ivb). For convenience,

therefore, the following analysis proceeds with (5-9)

instead of (5-8)

5.2.2 Fundamental Lemma

r

I/
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control function from (Yo , to) to (Y f' tf )	 Then, if

to < t 	 t2 tf , the control V0 ( t) considered on the

interval t 	 t t2 is an optimal control function from

(it o ( t1 ; Yo , to) , tl ) to ( o (t2 ; Yom, 
to)' 

t2 ) with
V	 V

t o (t; Yo to), tl t _` t2 , the corresponding trajectory.
V

Caratheodory ' s lemma is a sufficiency statement of

optimality.

Lemma 5-1; (.5 1 26]. Caratheodory ' s Lemma.

If there exists a suitable feedback control law

V* (Y, t) for this problem of the optimal regulator such

that for all (Y, t) E Rn x R1

L(Y, V* (Y,t) , t)	 0

^_	 (5-11)

L (Y, V, t) _' 0	 if V # V* (Y, t) ,

then the function. V* (Y, t) is an optimal feedback control

law.

W,
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5.2.3 Heuristic Approach to the optimal Feedback Control

Law (4,5, 26,271

n
Define a function Vo (Y, t),, called an optimal per-

formance index function, such that, for each (Yo , to) E Ms

°v (Yo , to) = v(t;Y 
1t ) (

J (Yo , to , v_(t; Yo, to l }
—o 0

J (Yo , to , Vo (t; Yo , to) J ,	 (5-12)

where V(t; Yo , to) is any suitable open loop control

function from (Yo , to). In the following, it is assumed
n

that V0 (Ye t) is of class C2 with respect to all arguments.

From the definition of t
1 

in (5-4),, if (Yo , t°) E Mt,

them

V° (Yo , to )	 0 .	 (5-13)

r

r
I

Consider

corresponding

Consider also

from (Yo to)

v ( Y t

an arbitrary (Yo , to)	 jy	 and assume a

optimal control function Vo (t; Y_o , to)

a perturbed control function Vim. (t; Yo, to)

such that for an incremental At
0

e V	 Rm f	 ft t + At--d T ' --o 	 o_ a E	 °r 
T E of o	 0

(5-14)

I
I
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transforms the system condition to (YD + AY° , t0 + At

and

VV (T; Yo , to)	 V° (T; Y
-o 

+ AYO , t0 + At	 forfor T > t° + At	 ve

(5-15)

The performance index becomes

t0+At0

J(Y ^t'o,Vd(t;Y ,t H	 L(^( T; YD,to),Va,t)dT 
Vo(YD

+AYD,to+Ato)
—o!Ed

t
0 (5-16)

nSince At  is small and L (Y, V, t) and r (Y, V, t) are of

class Cl , this integral, can be approximated as

L(Yo, Va , t0) Ato + 0 (Ato) ,	 (5-17)

and V° (Yo + AY-0 , to + Ato) as

V o° (Y , to)  + { (grad 0° (Y0, to)) T F (YD, Vato ) + vt (YD ,t0) )At 0——

+ d (Ato) .	
(5_18)
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0 (At0) and v (At0) arc higher orders of At of i.e * #P

lim	 0 (Ato)
At +0	 At

	 °
0	 0

(5-20)

lim	 Q (At0)

At +0 A- - °
0	 0

and

.	 o	 Q avo
(y, t)

v  (Y, t) =	 at	 (5-21)

From the assumption that V0 (t Yo , to) is an optimum

control function

V° (Y i t ) = [Y ► t I vo ( t ; Y r t ) ] ` J [Y It , V (t;Y i t ) ]-o o	 -o o - -o o	 -o o -d -o 0

for d E Rm .	 (5-22)

11
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L (YO , V(x , to) 
+ [grad V° (Yo, to ) ] T F (Yo , Va , to) + Vt° (Yo m to ) '_ 0

(5-24)

where the equality is satisfied if	 V,

V  = V°(to; Yoe to)	 (5-25)

As any point of any motion can be regarded as an initial

condition for an optimal control problem, (5-24) is valid

for all points in Rn x R1 , according to the principle of

optimality. The important point is that an optimal feed-

back control law V°(Y, t) is a suitable control law which

satisfies the equality of (5-24) at every point in Rn x R1.

n
The function V°(Y, t) describes the value of the

performance index for the optimal control function for

each (Y, t). Its time derivative, governed by the system

equation, is

r
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The equality is satisfied when an optimal control is used,

The optimal feedback control law V° (Y, t) can he described

as the suitable feedback control law which satisfies the

equality in (5-27) at every (Y, t) E Rn x R1.

n

For a calculation of the function V'O (Y, t), it is

convenient to introduce a function called the Hamiltonian

of the problem such that

H (Y, iP,V,t) e ^ F (Y,V,t) + L (Y,V,t) , 	 (5-28)

where ^ is an arbitrary n-dimensional vector of variables

^► i. 0Then from (5-13) and (5-24) , V°  (Y, t) is a solution

of a specific partial differential equation such that

n
MinaV (Y' t)n

V E 
Rm {H(Y '	 8Y

	

0' 	
+ Vt (Y,t) = 0

for all (Y,t) E R7 x Rl	 (5-29)

with the boundary condition

A
V(Y, t)	 0	 for all (Y,t) E Mi. *	 (5-30)

Identifying H (Y, ^,V, t) as a function of V at each

(Y,^,t) E Rn x Rn x Rl , denote V(Y,^,t) as a function to

provide the absolute minimum value to H(Y,^,V,t) everywhere



r

142

Then (5-29) can be written

My ,t) 	 Myrt)
H (Y,	 ay	 ,	 % Y1	 ay	 r t)) + V  (Y, t) = 0 ,	 (5-31)

1

which is generally called the Hamilton-Jacobi equation of

the problem. As the fundamental condition for optimality

in dynamic programing, Bellman called (5-29) Bellman's

equation and its solution a Bellman function.[1)
A

Alternately, it is possible to recognize grad [V(Y,t) ]

as an independent variable in the Hamilton-Jacobi equation.

Pontryagin [21 developed a different technique of calculating

open loop optimal control functions, in effect, by doing

so, This is called his maximum principle (or sometimes

the minimum principle). Systematically calculating open
loop optimal control functions from variousinitial

conditions and observing their common characteristics, a

synthesis of an optimal feedback control law is possible.[2

However, at this point two major difficulties exist for

these calculations. From a practical aspect, no general

method for solving the Hamilton-Jacobi equation is known

and solutions can only be calculated for a few classes

of problems with restrictive assumptions. Secondly, from

a theoretical aspect, an optimal performance index function

r

AO
	 t) must be a solution to the Hamilton-Jacobi equation

but this is not a sufficient condition. Thus a technique

r I
a
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to identify the V°(Y, t) among solutions must be developed

when more than one solution exists. If the number of

solutions to the Hamilton-Jacobi equation is finite any
n

small, V°
 
(Y, t) may be identified by comparing each of

the solutions. These difficulties are not avoided if

the maximum principle is used.

This second difficulty can be avoided, however, if a

Unique solution can be shown to exist for the Hamilton-

Jacobi equation, But this depends upon the specified

L (Y, V, t) and F (Y, V, t) in the problem.

Definition 5-2: A Normal Hamiltonian. [5]

If the Hamiltonian of a problem is minimized by a

unique value of V e- Rm at each (Y,	 t) E R  x Rn x R1,

then the Hamiltonian is said to be normal. In this case,

the function V°(Y, ^, t) which provides the absolute

minimum to the Hamiltonian is called the H-minimal control

r
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r

a 2H
,5V av

a 211
avlavm

a2Hav_

a2H
avmavm

a2H
av =

(5-32)
	 r

must be positive definite for every argument. (51 Then

the H-minimal control law is calculated from

n
ax(Y, jFV,t)

o =	
_aV _

	

V	 VocY,^,t)

	

aF(Y,V,t)	
aL(Y'V't)T 

V = V0 (Ys,̂O t)
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corresponding optimal feedback control law is given by

'	 o	
av° iY,t)

V (Y, a —, t) (5-34)

Examples of this theory are given in the literature. [5,6,26]

5.2.4 Miscellaneous Comments

The preceding considerations are given under

restrictive assumptions for simplicity of discussion.

Studies have been made for fewer restrictions. Based on

measure theory, Bridgland [28) generalized the theory with

relaxed assumptions on F (Y, V, t) and L (Y, V, t) and

generalized the integral interval of the performance

.index to [to ,	 Boltyanskii. [29] extended the theory for
na continuous V°(Y, t) , (not necessarily of class C2 ) ,

but under other conditions. Thus the existenceof con

tinuous V°^Y, t) (not necessarily of C 2 ) for the time

optimal control problem, [2] as mentioned by Pontryagin, is

justified.

5.3 Review of Studies on the Inverse Problem

Results reported for the inverse problem are reviewed

r

e 1
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5.3.1 Study of Kalman [251

Kalman considered an inverse problem with the

assumptions that

(i) system is completely controllable and given by

	

Y = A Y + .V,	 (5-35)

where A and B is constant and the control vector v- is

one dimensional,

(ii) the control law is time-invariant such that

	

1T (Y) _ - KT Y r	 (5-36)

where K is an n x 1 constant matrix and all real parts

of the ei genvalues of (A - B YT) are neaative, thus pre-

r



r

147

rank [Y1, A flop 0000,   An-1 fI] = n
	

(5-38)

HT H is positive semidefinite by (ii) of Corollary 2-1.

In another study, [26) Kalman proved that the optimal per- 	 e

formance index function for this problem is given by

Vo (Y) =YT PY	 (5-39)

t

where P is a symmetric positive semidefinite matrix.

Using 'theorem 5-1, he showed the corresponding I-iamilton-

Jacobi equation to be

YT (PA+AT P+HR H}Y+2'UBT P+'U 2 == 0	 (5-40)

and the optimal feedback control law

'v-0 (Y) _ - BT P Y	 (5-41)



r
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P ^3 K
	

(5-42)

and

	

KT)  TP H H + AT . (5-43)
	 e

Restated, if : an arbitrary symmetric positive definite

matrix P determined by

P B = K
	

(5-44)

also allows a solution for H from (5-43) which also

satisfies (5-38), then the resulting performance index

(5-37) is optimized by the given control law (5-36).

This study of Kalman was the first published on the

inverse problem. The results revealed the positive

definiteness of V°(Y) for the loss function, of (5-37)

with the condition of (5-38). Although the problem

assumptions are relatively simple, others were subsequently

encouraged to attempt to generalize them. In Kalman''s

original paper, [251 the solution to theinverse problem

was also disc,issed from the viewpoint of the frequency

domain techniques of synthesizing optimal feedback control

systems.
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5.3.2 Study_ of S, uga [30 )

Suga considered an inverse problem under the assume-

tions that:

(i) the system is given by

Y = A(t) Y + B(t) V ,	 (5-45)

where ^Mt) and S(t) have continuous first derivatives and

rank B(t)	 r = m 1 n ( full rank) ,	 ( 5-46)

(ii) the control law is given by

V(Y, t) = KT (t) Y ,	 (5-47)

nwhere KM has a continuous first derivative,

(iii) the form of the performance index is restricted to

T

(I(Y, t) + VT R(t) V )dt ,	 (5-48)
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assumptions. Thus, the author stated the following.

Theorem 5-3s

Suppose that K(t) is specified so that R(t) K(t) B(t)

is a symmetric matrix. Then the performance index is

optimized if and only if it is given by

L(Y,t)	 YT [K 	 R(t) KT (t) - AT (t) P(t) - P(t) A(t) - P(t) ]Y

T
ar (Y,t) n	 a (Y,t)

+ -Y — A(t) Y + at	 r	 (5-49)

where P(t) is an n x n symmetric matrix of class C2

satisfying

P (t) B (t)	 K (t) R(t)	 (5-50)

and

P (T) - [0] ,	 (5-51)

and h'(Y, t) is an arbitrary scalar function of class C2

in all arguments satisfying	 Vi,.µ

n2+	 ar (Y,t)
B (t)	 aY	 = 0	 (5-52)

and

E	 1
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a r (Y, t)

dY 	= 0	 (5-53)

t = T

Then the resulting optimal performance :.index function is

vo (Y,t) = YT P(t) Y - r (Y, t) + r(Y 1 ,T) ,	 (5-54)

where Y1 is a final state of the system and the last

term is constant, say y (T) , because of (5-53) and the

fixed T.

If a stable control law is a suitable control law

which provides asymptotic stability in the large for

the synthesized feedback control system relative to the

origin, then the following corollary exists.

Corollary 5-1;

Assume that a stable control law is given and T-*w.

Then the theorem is still valid with a change of (5-51) to

t.+W P ( t) IV (t; Yo , to) = 0 , for every (Yo, to) E Rn x Rl	 A

(5-55)

Based on this work, Suga observed the following points

for his problem.	 r

PF

Ve
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n n T n
(1) . The symmetry of R(t) K (t) B (t) is necessary for

the inverse problem to be meaningful. In the study of

Kalman, this condition is trivial because of the single

input.

(2) . The additive terms of 'L̂ (Y, t) which are associated

with. the function r (Y, t) don't affect the optimal feed-

back control law. To show this, the value of the optimal

performance index for each initial condition

(Y 0,t0) E Rn x . R1 becomes, from ( 5-54) ,

Qo (YYo, to 	 Y0T P (to) Ya - r (Yo , to )	 7 (T)	 (5-56)

Only the first term is sensitive to the control function

the last two are independent to V(t). If r = n, B(t) is

nonsingular and there can be no r(Y, t) because of the

restrictions of (5-52). The larger the value of n - r, the

more flexibility of L(Y, t) exists through this r. Suga

expressed this idea as a flexibility of loss functions.

As an example, consider a system given by

Yl 	 0 1	 yl
= I	 I	 +	 '1T	 ,	 (5-57)^

y2	 0 0	 Y2	 1

r
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yl
'U (Y) _ - [1 ► r]	 (5-58)_	

Y2

and a performance index with the form

OD

(L(Y, t) + 'U' 2 )dt	 (5-59)

0

( 5-5>8) is a stable control law and the integral interval

of the performance index is [0,-); thus Corollary 5-1

.can be applied. From (5-51), it follows that
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g ( 0 )	 1

Vo (Y,t) = YT	 Y - r (Y,0) - r (0	 (5-62)
1	 r3

r

From Corollary 5-1,

g (t)	 1 01(tsy	 rto)
limt+^

0
n = 0 , for every (Y0 ,to) E Rn x Rl

l	 3
02 (t;Yoft0)

. (5-63)

From ( 5-52)	 and ( 5-53) ,

AT a r,(Y ta r (Y t)-)	 , 1'B	 (t) ay	 =
1	 y

a	 = 0 ;	 for all t E
—2

R	 ,	 (5-64)

and
ar (Y,t)

= 0 (5-65)aY
t->

By various choices of g (t) 	 and r (Y, t) , the following

optimized	 t (Y, Q were found.

4 (t)	 r (t )	 L(Y.t)

(a) r-2	 0	 yl+ayly2+y2 a	 arbitrary real

(b) r-eft	0	 (1-e-t ) yi+2e-tyiy2+y2

(c) +t0	 y2-2ty1y2	 -

m+1
Yl ^.

(d)	 -1	 m+-L	 (yl+y2) 2+y1Y 2 m: positive integer

•	 a

r
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By generalizing the assumptions of Kalman, Suga

discovered the fundamental composition of L(Y, t) in

relation to the dummy function 
n
t (Y, t) and the symmetry

condition of R(t) /R(t)  B(t)., However, as in the

demonstrated examples, the calculation does not increase
n

a nonnegative L(Y, t) on Rn x R1 . From a practical

viewpoint for the forward optimal control problem, L(Y, t) is

isusually assumed to be nonnegative as a penalty, function

with respect to regulating errors. Thus Suga's examples

tend to be unrealistic.

5 3. 3 Study of Thau [ 311

Thau considered an inverse problem such that

(i) a system is time invariant and given by

Y = F(Y) + B V	 (5-66)

n
where F (Y) is of class C2,

(ii) a control law is given by V (Y) , a stable control

law of class C2,

(iii) the form of performance indices is restricted to

r
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where L(Y) and R(V) are of class C 2 and

(b)	 R(0)	 = 0 (5-69)

a	 (V)

(c)	 3 V
	has a one-to-one correspondence from R 	 to Rm.

a 2 R(V)
(d)	 MV	 is positive definite for a normal Hamiltonian.

It was then asserted, based on Theorem 5-1, that

V° (Y) of class C 2 is the optimal performance index

function and V ( Y) is the optimal feedback control law

for

L(Y)	 _ - R(V(Y))	 -
A0

^8Y ^T {F (Y)	 + B V(Y) } ( 5-70)

if and only if	 V° (Y)	 satisfies the Hamilton-Jacobi

equation of

1%o

H (Y '	 aY	 V (Y) , t) _ 0 ,	 for all ( Y, t) E Rn x Rl

(5-71)

and V (Y)	 is given as

V( Y )
— a y	 ''

WON

r
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n
where	 is the H-minimal of the Hamiltonian.

Further investigations were directed to restrict

the resulting V° (Y) to a quadratic form YT P Y. Then

(5-70) and (5-71) become	 r

L(Y) _ - R (V (Y)) - YT P (F (Y) +	 V (Y) }	 (5- 73)

and

n
V(Y)	 ^, (- BT P Y) .	 (5-74)

The following three cases were investigated.

(1) If (a) the system (5-67) is linear,

Y =AY+BV ,	 (5- 75)

(b) the form of the loss function is restricted to

T A T ^T_rV%	 V U u' V

FV
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then (5- 73) and (5-74) reduce to

KPB= 	 (5-78)

and

P (A - B KT) - (A - KT ) T P = HT H + K KT

(5-79)

which are generalizations of the equations of Kalman,

(5-42) and (5-43) . Theoretical justifications are not

given, however.

(2) Assume in addition to (1) that (5-75) has a single
input with

n
B	 [0, 0 1 ..., 0, 11 T 	(5-80)

A
Then for a positive definite P, . it is necessary for k 

K _ [k1 , k2, ..., kn^ T to be positive. In fact, from

(5-78)
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n
either 0 or 1, for a positive definite P it is necessary

to have positive elements K which correspond to the

unit elements of B.

r

(3) For a single input linear system, consider a control

1	 h th taw 0uc	 a

T Y) (5-82),

n
where the	 K, is a n x 1 matrix and the 'U' (ar)	 is given

by

i
:'	 'lj(a)	 =	 E	 aiCr	 ,	 a 

	 >	 0 for all i	 (5-83)
i=1

i odd

It was shown that if the inverse function of V(u)	 can be

expressed as a power seriesw

j,
00

1I(Q)	 =	 . E	 C1Q1• (5-84)

s=1

i odd

and if	 P	 is positive definite, then each coefficient Ci

can be determined explicitely in terms of the coefficients
k	 ai and the components of 	 P, and R (LT(Q)) can be calculated

as

mp ..,.. _	 a_w...
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G
, E	 di ce	(5-85)
i.= 2

even

Substituting,



3aP22 	 4/3

	

R( a ) _ '—^--	 (5-90)

and 2a 

	

aP 22	 P11+P22+ -2- S 22

L(Y)	 YT	 Y
2	n n	 a n	 ^

^P11+P22+- 
P22	

aP22

^	 Y46 2 2	 8	 3	 2P22 4
	+ .7 p22 (`T + a Y 1 Y 2 + a Y 1 Y2	 + -a T Y l y2 ) + -a--T-'a Y2

(5-91)

with

I/

r

161
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P, L(Y) and R(V) can be calculated according to the

method of the inverse problem. If there exists a P,

positive definite, such that

L(Y) + P.( --V aC,^ Y) )
	

(5-94)

is positive definite, then the origin of (5-93) is

asymptotically stable in the large from Theorem 2-8, and

a Liapunov function is

V (Y)	 Y ' P Y
	 (5-95)

n
In fact, from (5-70)-, V0 (Y) is the negative of (5-94) .

Summarizing Thau's work, the form of his loss

function was less restrictive than that considered by-

Kalman and Suga. However, the nonnegative character of

L(Y) was not discussed. The application of the results

to construct Liapunov-functions is a unique contribution,

although the necessary assumptions are quite restrictive.

r
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time-varying linear control law. Thau further generalized
the assumptions to include multi-input nonlinear systems

(5-66) , a broader class of loss functions and control

laws. Although relevant characteristics of the optimal	 VO

feedback control system are revealed by this work, the
nonnegative property of either the loss function or the

optimal performance index function was not adequately con-

sidered. Accordingly, the results sometimes seem unrealistic
from the viewpoint of optimal control theory, as illustrated
by examples

For the inverse problem considered in the next two
chapters, generalizations of Kalman's assumptions are made

with respect to the nonlinear, multi-input systems, the

form of loss function and the nonlinear control law.

Furthermore, nonnegativity of an optimized loss function

and an optimized performance index function are considered.

The canonical form developed in Chapter 4 contributes to

the efficient analyses and the compact descriptions of

the development.	
I



r

Chapter 6

INVERSE PROBLEM. OF THE OPTIMAL REGULATOR

In this chapter, the inverse problem of the optimal

regulator is considered in a general context, i.e., for

a class of multi-input systems with an unspecified non-

linearity and feedback control law. Following a precise

description of the problem in Section 6.1, an 'equivalent

problem is defined in Section 6.2, using the canonical

form developed in Chapter 4. Fundamental lemmas for the

analysis are given in Section 6.3. Based on the Hamilton-

Jacobi theory and Caratheodory's lemma, a principal theorem

for the inverse problem is stated in Section 6.4. Section

6.5 has a discussion of the relevant_ aspects of this

theorem 4.xha optimal feedback control systems and to work

by other authors as special cases. Two practical examples

of the application of the theorem are demonstrated in

Section 6.6.

6.1 Statement of the Inverse Problem

The inverse problem of the optimal regulator is con-

sidered in this chapter under the assumptions such that

(i) the system equation is given by

r

i
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where F(Y) is an n-dimensional vector valued function of
n

class C2 satisfying F(0) = 0 and B is an n x m matrix

such that

r

0< rank B= r-̀ m -̀ n, 	(6-2)

(ii) the desired final condition of the system is

Y 0 in Rn x Rl , with a stable feedback control lava

given by an m-dimensional vector valued function V (Y) of

class C2 with V(0) = 0 (thus the origin- of the synthesized

system

Y	 F (Y) + B V (Y) (6-3)

is asymptotically stable in the large),

(iii) the form of performance index is restricted to

OL{Y) + VT R V) dt (6-4),

t0

where R is an m x m symmetric positive definite matrix

and	 L(Y) is of class C2 satisfying.

L(0) = 0 (6-5)

k

—

r

....,rte. _ 	 •-	 -
Ll

g^{'
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Equivalently an initial condition (Yo , to) and,a

suitable control function V (t) defined on [t o , =) are
assumed such that

V/

{L( 
V 	 to)) + VT (t) R V 	 ) dt

to
T

im; {L (±V (t; Yo, to) + VT (t) R V (t) I d t
to
	 (6-6)

(iv) Ms and A.S. R. are the whole Rn x R1 and A. C. R.

is the whole Rm x R1.
The inverse problem is to find performance indices

( 6-4) or, equivalently, loss functions that are optimized

by the assumed control law, under assumptions (i)-(iv).

This inverse problem is a generalization of the inverse

--problems considered by other authors, as reviewed in

Chapter 5, i.e., the assumptions of the problem in

Section 6.1 are less restrictive than those previously

made. Specifically:

(a) (6.-1) is a nonlinear multi-input system with B of a

general rank, in comparison with (5-35) used by
Kalman and (5-45) by Suga;

(b) the control law (6-3) is unspecified,in comparison

with (5-36) and (5-47) assumed by Kalman and Suga;

(c) the performance index (.6-4) has a general penalty
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used by ICalman, (5-37) .

Consequently, Kalman's problem is completely generalized

in this chapter. However, all assumptions are limited

to time invari ancy in comparison to those of Suga. Also
	 r

the quadratic form in V in the performance index (6-4)

is more restrictive than the R(V) used by Thau (5-67).

6.2 An Equivalent Inverse Problem

The analysis of the inverse problem can be facilitated

by using the canonical form given in Chapter 4. Consider

the canonical form of (6-1) as

X = F(X) + B U	 (6-7)

for the transformation

X = N-1 Y

(6-8)

U=rs1v,



r

1.6 8

The problem assumptions given in Section 6.1 are

invarient with this transformation (6-8) and can be
expressed in terms of the transformed variables. This

is shown ,in the remainder of the section. 	 V

The rank of B is r from (4-193) and

F (0) = N
_1 F (N 0) = 0	 (6-10)

Also F (X) is of class C2, as each function fi (X) ,

a fi (X)	 a 
2 

f i (X)

axe	 °r axk ax
i
 r i,j,k = 1,2,...n, is a linear com-

afi (N X)	 a2 f  (N X)
bination of f (N X),	

ax	
and

}	 kax ax .
J

respectively, and Theorem 2-1 can be applied. As V(0) = 0,

from (6-8)

U(0)	 M7 1  v(N 0) = 0 ,	 (6-11)

and 'U(X) can be similarly shown to be of class C2.

To establish U(IX) as a stable control law, a lemma

is introduced.
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Proof: From Lemma 4-4, a solution for (6-7) with an

initial condition (X0 , to ) is

if (t; Xo , to ) = N-1 ±f (t; N X, to) j, (6-12)

where f (t; N X to ) is a solution of (6-3) with an
1 —0

initial condition (N X, to) . Since the origin of (6-3)

is asymptotically stable in the large by assumption, for

arbitrary e > 0 1 u > 0 and to , there exist a 8(e, to) > 0
n

and a T ( 6 1 Pt to > 0 such that if

(e, to ) ,	 (6-13)

then

(a)	 —f (t; Yom , to)	 -` e , for all t '- to ,

(6-14)

and

(b)-f	 LitY , t0 ) ( -` u , for all t '- t 0 + T
(6-15)
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T( 6 1 v e toy = T (a,	
u-1 

T 
-1 . ta) 0,(6-17)

Amax ((N ) N )

r

where X max ( ) is defined in Theorem 2-5 with Q = N T N.

Then for the e > 0, u > 0 and to chosen, consider

l i Xo1 1 -` 6 (e, to ) .	 (6-18)

From ( 6 -16) , (6-10) and Theorem 2-5,

d (
	 C — T —1 I to) > Amax (NT N)

Amax 
((N ) N )

- I I N -0^11	 I ICI I	 (6-19)

Therefore, from (6-13) and (6-19) , (6-14) becomes

1 "f (t ' -0' to) I 1 4	 PKI 1 1 T ,,- 1,	
for all t ' to

pr
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using Theorem 2-5 and Lemma 4 -4. Also, from (6-15) and

(6-17) , it follows that

f (t% Yo , to ) f' -`	 u_ T _	 , for all t '- to + T,

max ((N ) N )
(6-2,2)

or

u	 'max ((N-
1) T 

N-1) 1 1^ f (t%_0	 ) 1 1 t 1 1 f (t%^ 1to)

for all t -' to + T ,	 (6-23)

again using Theorem 2-5 and Lemma 4-4. By (6-18) , (6-21)

and (6-23) , the lemma is proved.

The value of the performance index given by (6-5)

for a suitable control V (t) and from an initial condition

(Yo e t0 ) is

J' [Y ,to , V(t))	 {L(jV(t YY0 Ito)) + VT (t) R V 	 )dt

to 	 (6-24)

This reduces by Lemma 4-4 for (6-8) , to

r
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Define

J [X0 FtOIU(t) I	 J [N X  o, to t 4 U(t) ]

Ve

L(X) = L(N 	 X)
	 (6-26)

R ^ 14 R M—

L(X) is of class C2 because L(Y) is of class C2 and
Theorem 2-1. Also L(0) = L(N 0) = 0, and R is symmetric

and positive definite, from part (iii) of Theorem 2-4.

Then the performance index (6-4) is equivalently written as

00

JCXo tto t U(t)) = (L(X) + UT R U)dt	 (6-27)

to

for the canonical form (6-7) , and assumption (iii) for

L(Y) and R is completely preserved for L(d) and R.

SinceMs , A.S.R. and A.C.R. in the X and U coordinates

are whole R  x R1 and Rm x R  because of the bijective

mappings of (6-8)., assumption (iv) is also preserved._

Thus, the original inverse problem stated in Section 61

can be considered in the canonical form (6-7) under the

same mathematical assumptions without loss of generality.

The recovery of the solution for the original system

follovis from the inverse transformations of (6-8) and
(6-26) 0
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For convenience of analysis, the following notation

is used for (6-7) , (6-9) and (6-27) .

(1) X is decomposed into

W,

e	 ^T
Xi	 (xV x2 , ... , xn-r

(6-28)

2i2 _ [ xn r+ l' 669F xn ] T ,

and, if n = r, X = X2.

(2) U is decomposed into

Ua	 (UV U2" beer um_r ]

T	 (6-29)
0	 ^

- [ um- r+ 1 ^ .... ^ um ^

and, if m= r, U= Re'

(3) F(Y) is decomposed into

F l (X) A [f 1 (X) ^ f2 (X) . ... , fn_r (X) ] T
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F, 
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where A X defines the first degree homogeneous function in

F (X) , and V (X) the remainder. A and r (X) are further

defined as

Al	 e	 All Al2	
n r

A =	 _	 (6-32)
A2	 A21 A22	 r

n-r	 r

and

	

1 (X)	 n-r

F' (X)
	

(6-33)

	

^2(X)	 J 
r

Subsequently (6-7) can be written as
i
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from (6-32) and (6-33) .

(4) Let

	

A	 —11	 212	 m r

	

R =	 (G-3G)
T	 1

R12	 E2 2 f r

m- r	 r

(5) If 0lx) * is a scalar function of class C2 , then

define
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aw1	awl	 aw1

ax a2 	 an

aw2	 •

ax 
.
	 (6-38)

awn	awn
ax	 ax1	 n

6.3 Fundamental Lemmas



A Im-rS =
101

_ -1
R11R12

I 

(6-39)

177

which is nonsingular. According to (iii) of Theorem 2-4,

R is positive definite if and only if

Eli
S T R S

[0]

T -1
R2 2

_ 
R12 R11 212

(6-40)

is positive definite. Since the characteristic equation of

(6-40) is

0 = ( xi-STR S1 = ( aI-R11 j • I JAI- (R22wR12R1112) 10, (6-41)

eigenvalues of (6-40) are those of R and of (R- RT R 1 R ) .
-11	 —22	 12-11-12

From Theorem 2-4, the assertion is immediate.
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where D22 is an r x r nonsingular congruent transformation

matrix such that

I r	 [0]
T	 __	 1	 (6-42)

D22 R22 222
[0]	 101

(the existence of 
n22 

follows from Theorem 2-4 and (i)

above) ,

and

(iii) the last r - rl columns of 
R
12 D22 are null,

i.e.

R12 E22 0
	 F	 m- r , with	 = [01

 (6-43)

rl-rl

	

Proof: Assume an m--dimensional vector Z	 [zl,z2,...,zm]T

and

Z,i ° 1z, • Z-I%, 0000 Z- -A T

r

we
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T	

Z2

Z R Z = IZ2 z3^ R22 Z
-3

and (i) is necessary. For (iii) , define

Im_r	to]
D ^

-e	 222

(6-45)

f

(6-46)

with
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R11 QTR 2 - R12 A # ATQ2a _ R11 - R12D22D22R22D22p22R12

=2
	

(6-49)

r

and, from (6-43),,

[o]
	

[0]

R12222 - JE22R22  R12D22
(0)
	

Ir-rl

(6-50)

where	 E- is the last (r - rl ) colunns of R.12 D22'	 Sub-

stituting (6-47) ,	 (6-49) and (6-50)	 into	 (6-48) , 

101 	 m-r

DT R D	 [0]	 1 	 [0]	 } r1
1

ALT [o]	 [o]	 } r-r1

m—r r	 r—r

(6-51)
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As Z 3 can be chosen to provide a negative value for

(6-52), the positive semidefiniteness of D T R D fails.

Therefore R= (0] and (iii) is necessary. Alternately,

fixing Z2 = 0 and Z 3 = 0,

ZTDTR D Z = Z
1	

Z
l 

,	 (6-53)

and (ii) is required.

Conversely if (i) (iii) are satisfied,

ZmDT R D Z	 Zls' zl + ZjZ 2 ,	 ( 6-54)

and DTR D are positive semidefinite as 	 is positive

semidefinito; by Theorem 2-4, R is then positive semi-

definite.

r
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k = F(X) + B U(X)	 (6-57)

from (!!0, to)	 r

Lemma 6-4:

Provided that V (X, t) , ( 6-56)r is well defined on

Rn x R1 , for an arbitrary (Xo , to) E Rn x R  and a > Or

V(xo, to) W V(0, to + a) ,	 ( 6-58)

that is, V(X, t) is independent of t.

Proof: From (6-56) t the statement is justified by proving

that for each (Xo, to) and a > 0,

T limes (V (T ; Yo' to )	 V (T ; Xo , to + a) }	 0

(6-59)
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As (6-57) is autonomous, it is known that [131

O f (t + a, Xo, to + a) a 0f (t, Xo , to)	 (6-61)

Then, for arbitrary T > to + a, it follows from (6-55)

that

T+a

4(T; Xo, to) _ (L(Of ft; p to + a)
t0+a

+ U (0 (t; , to a))R U(O f (t-X to+a)))dt

T+ a
V( T ;Xo , ,to a) + (LQf(t;X 0 1 to a)

T
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where X max (R) is given in Theorem 2-5. Since the origin

of (6-59) is assumed asymptotically stable in the large,

for the given (XQ, to) , there exists a T 1 > 0 such that

V,

I I ± f (t; X^, to 
+a) I I 4 Min (u l , u 2 ) , for all t '- to + Tl.

(6-65)

From (6-62N65),, it follows that

I V(T 0 pto) - V ( T;xo,to+a)

T♦ a

1	 L(,^ f(t; ^o ,to+a) )dtI
T

T+a

+ ( UT 0. f(t;X,to+a)) R "U(4 ( t ;2o , to a))dt

T

< C
a+ 2a a=e, for all T > to+a+Tl

(6-66)
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Consider a class of nonlinear systems given by

X= AX+BU+B F'
2 W	(6-68)

V,

that is, E 1 (X) in (6-35) is identically zero and B.

given by (4-114). The controllability of this particular

class of systems can be established bl the application of

Lemma 6-5, based on Theorem 2-9.

Lemma 6-5:

A system (6-68) is completely controllable if and only

if the system

X	 A X+ B U•	(6-69)

is completely controllable.



U (t; Xo , to )	 A 0 2& (t; Xo , to)

BU(t) + Be	 2 ( u,(t; x ► to))	 (6-71)

and at some t  ' to

± U (tl ; x0  to)	 —Xi •	 ( 6-72)

Consider a control function

0
rLL(t ) +	

_	
(6-73)

F'2 ( rLL (t;2:'0.to))

for (6-69),, i.e.,

X = A X + B'U.(t) + PE 2 (4) U (t;Xo.to) ,	 (6-74)

where 0 is (m - r) dimensional. Then the solution from

(Xo, to ) is (6-70) and (6-69) is completely controllable

if (6-68) is completely controllable.

The same arguments shoi^7 that (6-68) is completely

controllable if (6-69) is completely controllable.

Thus, according to Theorems 2-9 and 4-3, the control-

lability of (6-68) can be simply identified by the structure

of 
A(1^1) 

and A(1^2) through the application of Corollary 4-1.

ff
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Lemma 6-6:

Consider Al as defined in (6-32) with A given by

(4-9) for v '- 2, and assume an arbitrary scalar function

T(El) of class C2 and T(0) = 0 with X  defined by (6-28) .

Then for

T
act {xl)

	

ax	 Al x	 (6-75)
--1

to be positive semidefinite in Rn, T ( X 1 ) must be

(i) identically zero if A l X is from a completely

controllable system,

(ii) a function of only 2i(1) defined by (4-116) if

Al X is from an uncontrollable system.

Proof: Define

	

o	 a (P (X1)

	

W (x1) =	 ax	 (6-76)
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w

- w (X1 ) A1X = - w (1) (.Xl ) , v ^2) ( X1 ) , ... , w 1v-1) (X1)

^A( 1 1) A (1,2) X(1)

A (2.3)	 X(2)

•	 X
A (v-1 v)	 - (v)

br

^T
-( v T(1) (X1)A(1^1)X(1) + 

w (1) (X1)A(1,2)X(2)

+ wT (; ) A	 X	 +... + wT 	 (X ) A	 X	 }
-(3) --1 —(2,3)—(3)	 (V-1) —1 (v-1,v)--(v)

(6-78)
where

w	 (X	 (X ) , w	 { X ) . • .. w	 (X ) ) T (6-79)pi+l 1	 Pi +2 —1	 pi+Z —1

with

i-1
Pi = • E	 z  .	 (6-80)

=1

(1) Assume v .2. Then it follows, from (6-28) and (4-1,16) , 	 ..

that

i



xl = x 
(1)
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(6-81)

x2	 X (2)

If the system is completely controllable, A(1,.1) = [0]
from Corollary 4-1, and (6-78) becomes

wT (X	 ) A	 X	 ^T (X ) [0 J I X—(1) - (1) _(1,2)_(2) -	 --Cl) --1	 R1 _(2)
(6-82)

Therefore, i.f' (1) ( X (1) ) is not identically Zero, 
X(1)

can be selected to provide a nonzero value to w (1) (' (1))

Then (6-u 82) becomes a linear function of X (2) with non-

zero coefficients and can have negative values for a

proper choice of X (2) . Therefore w (1) (X(1) 1 must be

identically zero. As T(0) 0, then T (X (l) ) 0.

(2) Ass ume a general case of v > 2. Then for (6-78) to

be positive semidefinite it similarly follows that

(X ) must he identically zero. According to the._ (v_1) _(1)

symmetry in (6-76), it must follow that

aw 
(i) 

(X1) _ ^w" (v_ 1) (X1) T

[0] , for i = 1,2,..,,v-1  ax 
(V-1)	

ax^i
(6-83)

r

Therefore, w (X1 ) cannot be a function of X (v-1) for the
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positive semidefiniteness of (6-78)

A similar process can be repeated for each ^ubvector

X (v-1) ' X (v-2) 1 ' . ► X(j ) succeedingl,y. Then it is con-

cluded that, for ( 6-78) to be positive semidefinite,

w (i) ( X1 ), i	 v-2,v-3,...,2, must be identically zero and

I 	 must he a function of only X (1) , sa►y	 (X

if the system is completely controllable, (6-78) reduces

to

- 
W (1) (`X (1) ) (1,2)X(2)	

(6-84)

Then applying the results of (1) , w (1 ) (X(1) ) must be

identically zero for the positive semidefiniteness of

(6-75).

If the system is uncontrollable, the same argument

follows, except, from Corollary 4-1, (6-78) reduces to

w (1) (^(1))A(1 1 X (1	 (6-85)

6.4 Analysis of the Inverse Problem

6.4.1 Hamilton-Sacobi Equation

Assume that (a) a specific loss function is given as

T /v1 i TIT n 'it	 ! G^Q^ 1

r
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for the inverse problem and (b) the resulting optimal

performance index function V° (X) is of clans C 2 . The

fIami_lton-Jacobi equation becomes from (5-29) and (6-7) ,

0 = Min {tai ]T B U + U 
T 
R U) + ( aYo ] T F(X) + L(X)

(6-87)

As R is Positive definite by the assumptions, the Hamiltonian

is normal from Definition 5-1. Thus, its minimum at each

X E Rn is uniquely provided by U satisfying

0 = 2U { [
DR 

0 ]T B U + UTR U)

I aX
0
 ] T B + 2UTR ,
	 (6-88)

from (5-33) . Identifying this U in a closed form as a

function of X. the Hamilton-Jacobi equation is realized

by a feedback control law such that

we

0
U(X) _ — 2 R7 1 BT (ay ]

w
(6-89)
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Eli	 12

i^ Vo l	 R A (6-90)_	 - r-T	 ._
R	 RE12	 -2 2

where the dimensions of each Ri 7. are the same to those

of Ri j in ( 6-36).	 Then it follows, [ 321 that

f
Rll

__	 _	 T	 -1 T	 -1
[R11	 It12 228121

12 - -811812 [R22	 E12"11'121 1 (6-931

22 x``22 - P.12 li-4Z)
-1

For B given by (4-99) ,	 (6-89) can be reduced to

Ed (X)
^^	 a v 0_ _	 E12	 ^  ̂2i2

(6-92)

-e (X)
_	 o

x 2 822	 t DX )

Since R2 2 must be nonsingular to insure the positive

definiteness of R from Lemma 6-2, it fellow's from (6-91)^

that

[ 'Vo l  _ -
_ 	 _

2E22Ue ('X ^	 - 2 ^R22	 El2 R11R12 1 Ve (X) (6	 93)
a

r WIN	 0
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and

Ed (X) = X12 X22 Ye (—X 	 42 Ue (X)
	

(6-94)

Substituting ( 4-91) , (6- 30) , (6-92) , ( 6-93) and (6-94)

into (6-89),

	

o	 El  R12

0	 0,0,...0, [ax l v_(x) + U 
T 
M T	 U(X%

	

—2 	 R12	 R22

F'1(X)

+ [ ave ) T	 [ ayO I T 	 + LM	 ( 6 -95)
a xl	 a72	 r2 (X) j

or

L(X) = Ue (X) IR22	 R12 1?11R12 Ue ( x) + 2^ ( X) [R22 R12X1YX12 ) r2 (X)

o T
[aX ) F 1 (Y)
—1

(6--96)
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acv. (X)	 a^,r. (.)

tvij O _ ax--	 a--= A '^i (X) , for all i , 7 = 1 1 2 f ... ,n,

(6-97)

and, with (6-92), it follows that

8 2po T	
a lp°

x a x ) = { d a ) ,	 (6-9e){a 

3 2po T	 a2p0	 z4 ^1	
a r {X)

{
TI 7197 _ (

2
2

 ax" x _ -2 
(^22"1z1,2-1.1 z 12 a [ ate")

(6-9 9)
and

2 o T	 , 2 0 1	 ^p (X)
{	 } = { a — 1 = 2 ( Ft2 2 ^,1 ''11 ff^12 1 [— x=l

—2	 —2 Z2	 —2

(6- 3,0 0)

From (2- 10) ,, ?ai (X) can be calculated from its gradient as

X

^W (X)
w (X)	 1-- aX =-1 d

0
xl	 x2

wli (Y 1 y0f...0)dY l +	 w2,i(xl, 21 0...0)dY 2 + ...

0	 0
xn-r

+	 Wn-ri (xl ,x2 ,	 ,xn-•r-l'Yn-rF0...0)dYn-r
0

v

1

I
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i Xn-r+1

	#	 wn-r+li (Xl r X2 • • SXn-r' Yn-r+1' 0 1 .'.. 0) 
dYn-r4•1 + ..

r 
o

  X11	

^.

Or

h

t'

	+	 ŵni (Xl•X2 t • • • fxn- l f yn ) dyn •	 (6-&101)
o

Let .,,conveniently describe the sum of the first (n-r)

integrals 6101} ag	 (	 s w ( X 1 ) , a function of X1 only.'

From (6-97), the last r integrals can be calculated

'with wij M, instead of wji.
 
M. Thus, from (6-98).

r

w1 (X)	 wl (X1)

'avo	
w2 (x)	 w2 (xl)

.-
a

wn_r (X)	 wn_r (Y1}

	

E2	
.

wn-r+ l 1 (x) wn-r+2 1 (X) '	 `wnl (X)

wn. r+1 2 (x) wn-r+2 2 (X) '	 ,w (X}n2 —
+	 dX2

v4
wn-r+l n-r (X)	 •0 •wn n-r (x)

0

X2

2 0

	

W X1	 axl a x2	 X2

o

i
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?*2
8U (X) T	 T	 1	 .v

"2 	[- x 1 [R22-E12 11 12 a2 2 + t^ (,',Cl)
_

0

(6-102)

r
Then the gradient of vo (Y) becomes, from ( 6-93) and

(6-102)l

av0
i
axe

ax	 •
av°
aXn

(X2

-2	 [ ax 3 E 22 212R112123dX2 + t 1)

0
•(6-103)

2 [^2 2	 R12R11R12 ) Ze ( X)
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6.4.3 Principal Theorem of the Inverse Problem

the preceding results the :inverse problem canWith th	 ,	 pP	 g
be investigated to determine combinations of L(X) and R

to satisfy the Hamilton-Jacobi equation (6-104). The

fundamental result can be stated as the following.

Theorem 6-1: The Inverse Problem.

For the inverse problem as described in Section 6.2

such that the optimal performance index function is of

class C2 , a perfo ,̂`mance index can be optimized by the

given U(X) if and only if

(i) Ud(X)	 R11Rl2Ue (X)	 (6-105)

— 1	aU (X)
(ii) [222- 12=11=12 ^)	 (6106)_	 _2

is symmetric, and

(iii) there exists an (n r) dimensional vector valued

function w (X 1 ) of class C1 and insuring symme -ry in

I'2
a	 a_Ue (X)- T	 T _ 1	 :aw (Xl)

2 ax	 ( aXl ) [1122 R12RU 12 )dx2 ) +	 ax1 ) ''
.	 o (6-107)

The corresponding V°(X) is given from (6-103) as

r
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X

0
V M	

tax IT dX .

0

(6-108)

V,

Proof: The necessity of the conditions has been shown

by the previous work of the chapter. That is, (i) comes

from the absolute minimum condition of the Hamiltonian

(6-94) . The symmetry in the functiciaal matrix of (6-100)

corresponds to (ii) , and (iii) follows from the Hamilton-

Jacobi equation and the symmetry in (6-98) , using (6-102) .

According to Theorem 5-1, the sufficiency of the

conditions can be proved by showing that the existence of

a unique function W(X1) satisfying the conditions of the

theorem can exist for each combination of L (X) and R as

the Hamiltonian is normal.. Assuming the contrary, that

there exist two different functions, say a(X1 ) and

wb (X'1) ,satisfying (iii) for a combination of L(X) and R.

Necessarily, from (6-103) and (6-96) ,

	

,;IT (X ) F (X) 	 wT (X ) F (X)	 (6-109)

	

,a —1 —1 —	 b —1 —1

Describe the resulting optimal performance index functions

as Va (1) and Vb (X)	 Then from (6-103) and ( 6-108) , it

follows that

 WO
9
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pb(X)	 V 0(X) + T (X	 ,	 (6-110)

where T(X1) is such that

X1

T
( Xl ) =	 {- Ka 	 + w^ (X1 )	 dXl 	(6-111)

Jo

e

This is not identica

However T (0) = 0 as

exists a specific (n
T

X = [Xl t . 2 r...,Xn-rJ

lly zero by the contrary hypothesis.

Va (0) = V0 (0)	 0	 Thus there

r) dimensional vector

satisfying

J (X l ) = k, a nonzero constant	 (6-112)

Consider the hypersurface T' (X 1 ) = k in Rn x R1 which

does not include X 0. However, consider the °time deri-

vative of ff) (X1) governed by the synthesized system

equation. This follows from (6-1141), (6-34) , and (6-109),,

a	 (xl ) T

ax	 J	 {F(X) + B u(X) }

N ^

	 ^--,
	

TF Z{ X)

{
p
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from (6-109). This implies that every motion of the syn-

thesized system from points on T (X1 ) =,k stays on this

hypersurface and can never approach to origin. This con-

tradicts the asymptotic stability in the large of the 	 rif

origin of the synthesized system, Lemma 6-1 and assumption

(ii) of Section 6.1.

6.5 Discussion

6.5.1 On the General Psethod of Solution of the 'Inverse

Pr'ob'lem

A solution to the inverse problem is obtained by

determining all combinations of L(X) and R satisfying the

conditions of Theorem 6-1.' R must be determined to meet

conditions (i) and (ii) with , respect to the given' U(X) .

The corresponding L(X) are then determined from (6-104)'

by choosing various w(X 1 ) satisfying condition (iii).

If no positive definite symmetric R exists for the given

U(X), then the U(X) cannot be an optimal control law.

Had

F
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6.5.2 Dependency within U(X)

As Ed (X) is dependent upon Ue (X) , (6-105) , there

can exist at most r independent e'.ements in an optimal

feedback control law, where r is the rank of 	 if

m = r, i,e, , I is full rank, condition (i) of the theorem
is nonexistent because Ed (N) is reduced to dimension zero.

In Thau"s problem statement, Section 5.3.3, the rank

of B is not mentioned. If it is assumed to be either

full rank or less than full rank, an additional condition

corresponding to (6-105) must be g..ven,

6.5.3 Consideration of the Varietv of L(X)

For an R satisfying Theorem 6-1, a variety of L (X)

may exist for which the given U(X) is an optimal feedback

control law. These are associatedwith various 'W'-'(X 1)

Corollary 6-1:

For an R satisfying Theorem 6-1, assume an La (X)

can be found from (6-1:04) as an optimized performance

index for the given U(X). Let the resulting optimal

performance index function be V W Then: an L(X) can

also be found from (6-104) for R if and only if
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8l.(Xl) T
L (Y.)	 La (X) - [	 8X	

] rl (X) ,	 (6-114)
-1

where	 (X1) is an arbitrary scalar function of class

C2 and T(0) = 0. Necessarily, the resulting optimal

performance index function is

V0 (X) = Va (X) +	 (X1)	 (6-115)

Proof La (X) corresponds to a(X1 ) in (6-104) . Then from

( 6-96) , it follows that

(X1)
w (X1) = wa (1%1 ) +	 ax	 ,	 (6-116)

.1

and the assertion follows directly from Theorem 6-1.

Possibilities for a nonnegative

sidere ;d by trying various T (X 1) in

chapter, the nonnegative property of

some detail under additional problem

6.5.4 Uniqueness of L (X)

C	 •d	 se fn=m=ronsi er: a ca o

(6-29). Then the dimension of X 1 is ze ro and the general

method of solution stated in Section 6.5.1 can be simplified.

r

L (X) can be con-

(6-114). in the next

L(X) is examined in

assumptions.

r^

in (6-2)	 (6-28) and
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Condition (iii) of Theorem 6-1 is nonexistent because

w(X 1 ) is reduced to zero dimension. Thus, a corollary

follows directly from Theorem 6-1.

Corollary 6-2:

For the inverse problem, if n m = r, then a unique

L(X) corresponds to each R and, from (6-104) ,

L (X)	 UT,(X) R U (X) + 2U  (X) R F (X) . 	 (6-117)

6.5.5 Linear Control Law

Let U(X) be specified as a linear feedback control

law,



T	 TUd M_ -K 1 1X1 - E212i2

-e	 -1.2-1 -2 2-2

and

(6-120)

aUe (X)	 T

a^ ^ —x12

(6-121)
au  (X)	 ,Ta X2	 = —x,22

The conditions, in Theorem 6-1 can be identified directly

with these submatrices.

Assuming a linear feedback control law (6-118) ,

(6-104) becomes

2• K12	 _ T -1	 ,T	 T
L(X)	 X	 [R22 R12R11R12 ) (^12 K221

K22

T K12	 T —1
2XER22-R12F`1112 ) r2 (X)

K22

— 2XT [R 
— RT R-1R ] Y.T F (X) — wT (X ) F (X)

—2 —2 2 -12-11--12 —12-1	 W -1 -1

(6-122)
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For the equivalent statement of condition (i) , by (6-105)f

it can be shown from (6-120) that

(i)
T __ - 1 	T

-K11 R11R1.2K12

(6-123)

01

T	 _ -1	 T
^K21 

_
R11R12K22

I`

III Conditions	 (ii) and (iii)	 follow directly, i.e. ,

_
(R22

T	 -1	 T- 
R12R11R12 =22

is symmetric, and

ti8w (Yl)
ax —1
—1

is symmetric.

From (6-118) and (6-93) , it follows that

o
aX - 2[
_2	 R22

_
R12R11R12 	( K1 2	 x22 ] x .

Therefore

(6-124)

(6-125)
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a200 = {v }T 2 (^2 - RT ^ 1R MKT	'aka 2	 5X28x1	 —22 —12 R,iElx —12

^	
o

]	 w
(^

-	 2' 2 [R22 - R1212U 12' K22

	

—2 —2	 (6-127)

a 
2 v 0	 (X1)

	

3 
X--i-	

a X
	 .^

Consequently, it follows that

T -1
101	 K12 {E22-R12RljRl21

	

po (X) _ XT	 X + T ( X1 ) r

[R _E1 R 1	 ]El	 1222 E12211E12 ) K22—2 2 —12--11--12 —12

(6-128)

where
X1

	

(Xl ^ 	 (Xl) d?C1	(6-129)

0

From (6-128) , the structure of VO W is a sum of an
i

arbit-nary scalar function T (X1) and a quadratic form. in

X determined by K and R. If n = m = r, then	 only one

Q0 (X), a quadratic form, can exist for each R, according

to Corollary 6-2

OW

r
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Considering the results of Suga for a linear control

law, Section 5.3.2, from the viewpoint of the above

results, the symmetry in (6-124) corresponds to that of

, (t) Y (t) ^(t) in Theorem 5-3. It is interesting to	 V,

note that the structure of D° (Y, t) in (5-56) , i.e., a
quadratic in Y determined by the given V(Yr plus an

arbitrary function, is invariant for the general non-

linear system, (6-128)	 Thus the flexibility of L (X) due
to the function. w(Xl) corresponds to that of L(Y, t)
due to "?(Y,  t) in (5-49) .

6.5.6 Nonnegative V°(X) for a Linear Control Law
F

For a linear control law, a definitive statement is

possible for the sign definiteness of V° (X)

w	 Theorem 6-2:

For a linear feedback control law (6-118) in the inverse
i

	

	

problem, the resulting d°(X'), (6-128), is positive semi

definite in Rn if and only if

(i) the last r - r  columns of R12 22 are null, rl

the rank of [R22-R124lR12] and

(ii) a function
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N
X1	 Y►1 +	 (xl)

is positive semidefinite in Rn r, where

rti

e _
K12^22n22I 22D22D22-R-0 12

A	 T -1
Ro = [R2 2 R12R1 i P' l 2 ]

(6-130)

(6-131)

(6-132)

VI

and D22 is an r x r nonsingular matrix for the congruent

transformation

Ir(0)
1

DT (
-2 2 2-2 2

2T 2 12
--12--11-12 =22D22 = ((6-133)

[Ol	 [o]

Proof:	 For (6-128)	 to be semidefinite, 20 must be positive

semidefinite, from

Vo ((OT , xT1)2 XTR KT X2-o-2 2-2 (6-134)

Then the matrixD22 satisfying ( 6-133) exists, from

Theorem ,2-4. Define a nonsingular matrix

In_r [0 ]

D _ (6-135)

MAI
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and a function

tV° (X) = V° (D X) (6-136)

we

where

D22D12K22D2222-T`-^oKl2

Then

(a) 7°( ' 0) = V°(0) _ 0

(b) if V° (X) is positive semidefinite, then

V° (X) = 7° (D 1X) '- 0 , for all X E Rn

and (c) if V0 (X) is positive semidefinite, then

V° (X) _ Vo (D X) -' 0 , for all X e Rn

Thus V0 (X) is positive semidefinite if and only if O (X)

is positive semidefinite. Therefore, from (6-128) it
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ti

Vo (D X) _ XT 	 [0]

RT

101

I 	 [0]	 X +	 ( X 1)
1

[0]	 [0]

2i
1	 X1 + 2X	 [0] ^ ]X2C

I	 [a]
^pXZ	

r 
Z	

X2 + 3 (Xl ) 	 (6--138)

[0]	 [0]

where R is defined.by`the last r - r  column of K12RoD22•

Applying a similar argument as in Lemmas 6-3 for (6-138),

the necessity of the conditions can be justified. The

sufficiency is apparent from (6-138) if	 _ 101.



D1 ^

` -1 T T
- (K22^ El 

In-r 101

0

Ir

(6-141)
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^' )	 -2 1222- 0 12X1 +	 (X1)
	 (6-139)

is positive definite in Rn r and Ro = [R22-R12R11R12J'

Proof: The necessity of (i) follows directly from the

positive definiteness of a (X) for Y.1 = 0 or

Vo (I OT • xT J) 	 XTR KT X2-o-22-2

For the necessity of (ii), define

(6-140;

T
The inverse of RoK22 exists and is symmetric by (6-124)

Then with the same argument as used in the proof of

Theorem 6-2, Vo (X) is positive definite if and only if

Vo (D1X) is positive definite. It follows that

-1 
T

+K12K22-R-^o-12	 ^0J

V (D X)= XT	 T X +	 (Xl^
[0J	 R x-o-2 2

i
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and (ii) is necessary. The sufficiency of the condi-

tions follows from (6-142) .

The nonnegative characteristic of D0 (X) is completely

established by the above analysis. This is in contrast

to Thau's partial consideration of the topic, as discussed

in Section 5. 3. 3.

6.5.7 Necessity of Control Action

The problem of whether optimal control can exist for

"No control action" for a nonnegative L(X) in the per-

formance index can be considered through the corresponding

inverse problem. For the class of systems given by (6-68),

let U(X) be identically zero, that is, the equation of

the synthesized feedback control system is

X= A X+ Be V 2 (X)	 (6-143)

Also assume that the origin of this system is asymptotically

stable in the large. For v -' 2, substituting U(X) 	 0

into (6-104) , L_(X) for the optimized performance .index is

r

z
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Then, from (6-136) and Lemma 6-6, for (6-144) to be positive

semidefinite ,

(a) w(X1) must be identically zero, if the given
system is completely controllable, or

(b) w(Xl) must be a function of X (1) only, if the

given system is uncontrollable, say w(X(1)).

Subsequently, ( 6-144) reduces to

-A
f O f if the given system is completely controllable,

L 	 -	
L(X(1)), if the given system is uncontrollable,

where the state variables in X (1) are the
uncontrollable state variables, as discussed

in Section 4.3.3.

oIf 'v = 1 then [ad = [a^ ] = 0 from (6-103), and
t	 ,	 a X ]	 a.i2	 ,

L(X) is identically zero.

Observing these results from the view point of the

forward problem, an important characteristic of an

optimal feedback control system is evident.

r

I
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Principle of Necessary Control Action:

Consider the optimal regulator problem such that

(i) the system is given as (6-68) ,

(ii) the desired final condition of the system is

X	 Of

(iii) the performance index is

(L(X) + UTR U)dt

0

where R is positive definite, and L(X) is a function of

the controllable state variables and is positive semi-

definite, then some control action is necessary for

optimality, i.e., the optimal feedback control law cannot

be .identically zero.

6.5.8 Asymptoti c Stability of the Synthesized Feedback
Control Svstem

The feedback control law U(X) by assumption (ii')

of Section 6.1 requires that the origin of the synthesized

system be asymptotically stable in the large. No definitive

criterion exists to verify this, except for linearly

synthesized systems. Practically, if R, L(X) and o°(,X) are

IN

I III
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determined according to the procedure of Section 6.5.1

for some given U(X), it is then necessary to check the

synthesized system for asymptotic stability. It may

be possible to do this by applying the Liapunov direct	 r

method.

Theorem 6-4:

Let R, La (X) and Va (X ) be calculated for some
U(X), following the procedure of Section 6.5.1. If
there is a scalar function T (X 1) such that it is of

class C2 satisfying

V  (X)	 Va (X) +	 (Y1) ,	 (6-145)

a	 _

and V  (X) and

N
T	 8 ^(X1 ) T

La (X) + U (X) R U (X)	 [	 eX	 ] F1 M	 (6-146)---	 —1	 —

are positive definite, then the origin of the synthesized

system is asymptotically stable in the large.

Proof: From Corollary 6-1, L (X) and V  (X) in (6-114)

and (6-115) can be determined as a function of R and

U(X) . Since the time derivative of (6-145) as governed

by the synthesized system is



r

ti
a	 ( di	 T

+ ^	 ax—1
(6-147)
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Vo (X)	 dt{Va (X) +'T (Xl) } _ -La W 
-UT 

(X) R U (X)

using (6-103), the proof follows directly from Theorem 2-8.

This theorem provides a sufficient condition only

accordingly a failure of the conditions does not neces-

sarily mean that the origin of the synthesized system

is not asymptotically stable in the large.

6.5.9 Miscellaneous Comments

As a generalization of the inverse problem first

considered by Kalman (Chapter 5), Theorem 6-1 and the

succeeding developments of this chapter are shown to

include results of other authors. In addition, this work

reveals new important characteristics of optimal feedback

control systems, i.e., Sections 6.5.2 and 6.5.7. Moreover

these results are presented very compactly as a result

of the developed canonical form of Chapter 4.
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6.6 Examples

Example 6-1: Consider a system given by

xl 0	 1	 0 x1 	0	 0	 0 ,
u1

x2 - 0	 0	 0 x2 + 0 + 1	 0 (6-148)

x3 0	 0 -2 x3 	 -x3	 0	 1
U

2

and assume a feedback control law

x 1
ul (X) -1	 -2	 0 0

u2 (X) 0	 0	 -1
x

2
+

-x3
(6-149)

X3

As n = 3 and m = r = 2 1 it follows for the canonical form,

from (6-28w30) , that

X1 = xl
T (6-150)

X2 = (x2 ,	 x3 1	 ,

Ua(X) nonexisting

(6-151)
Ue (X) U(X)

r

0
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F1 (X)	 x2

and

	

	 0
F2 (x) _

-2x3.-x3

Thus,

a e	 au1 M	 au  (X) T	 T
ax	 ax	 ax

(6-152)

e

(6-153)'

and

	

au1(x)	 au1 (x)
au	 a	

a.^	
—2	 0

[a-2]	
au (x)	 au ( )	 0	 —1-3x2

	

2 —	 2 —	 3
ax 	 ax 

(6-154)



2 a,9

and

x + 2x2

L (X) _ [xl + 2x2 , x3 + x3I R	 3-	 .5x3 + 3x

X2

2{	 (1, 0I R dX2 ) x2	 ( (xl) )x2

0

V,

(6-157)

where R = R -R R 1RT = R because B is of full rank in-- -2 2 12--11-12	 "22

(6-148). Referring to the statement of Theorem 6-1,

(i) is noigeaxistent and the symmetry for (6-108) is

satisfied since X1 is one dimensional. Consequently, for

the system ( 6-148) , a performance index

co

(L (X) + U R U) dt	 (6-158)
t0

can be optimized by the feedback control law (6-X149)
if and only if symmetry exists for

-2	 0

R	 (6-159)
0 -1-3x3

and w(xl) is of class Cl.
Arbitrarily choose w (x,) = 2xl and

^s
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1 0
R

0 1
(6-160)

which satisfy the above conditions. Then (6-156 and ].57)

become

2x1 + 2x?
0

[aX l _	 2x1 + 4X2	(6-161)

2x3 + 2x3

and
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ao	
N

a ^ (x )
{ (x +x ) 2 + x2 + x2 (5+8x3+3x3)	 { a x l Ix + u2 + u2 ) dt,1 2	 2	 3	 1

to

(6-164)

can be optimized by the feedback control law (6-149).

The optimal performance index function from (6-115) then

becomes

4

Vo (X) = (x 1+x2) 2 + x2 + x3 + X + T (xl ) ,	 (6-165)

where	 (xl) is anv function of class C2 , a ,4. , x + xi .

To check the asymptotic stability of the synthesized

system, combine (6-148) . and (6-149) for

x1	 x2

X2 =	 -x1 - 2x2	 (6-166)

x3	 -3x3 - 2x3

N
Then V0 M for T ( xl )	 0 is positive definite in. Rn

and it follows, from (6-164) , than

oTvc^ X^ a7 ) (F (X) 	 u(x) } = - 2 {(x 1+2x2 )2 + x2+x3(3 +5x 2+2x )}	 ,
ax — ---

(6-167)

V,
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which is negative definite in Rn .; From Theorem 6-4, the

origin of (6-166) is asymptotically stable in the large.

Example 6-2s Consider a system given by

x 	 xl+x2-xi-x1x2 	 1 0 u 

	

+	 (6-168)
x2	 -xl+x2-x1X2-x 2

3	 0 1 u2I^. fi,t

and assume a linear feedback control lave given by

ul M	 -1 0 xl
U(X) _	 _	 ,	 (6-169)

u2 ' ( X)	 0 -1	 x2
,l

As n m r, it follows for the canonical form that

X1 is nonexistent and X Y2,

au	
- 1 0

0 -1 •	 (6-170)(axe 

r „i



r

i
223

—x1-2x2+2x3+2x1x2
L(X) = (xl , x2 ] R	 ,	 (6-172)

2x -x +2x2 x +2x3

	

1 21 2	 2

from (6-106). Arbitrarily assume

1	 0
R=	 (6-173)0	 1

BUM
Then the symmetry of R(aX'- ] is satisfied. From

Corollary 6-2, a performance index given by

(L(X) + u2 + u2 } dt	 (6-174)1	 2
it

0

-	 e can be optimized by the linear feedback control lacy

(6-169) only if

	

L(X) _ (xi+x2) + 2(x i+x2) 2	 (6-175)

Then the optimal performance index function becomes
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O
p° (X) _ [ aX 1 T (F(X) + B U) = —(xl

from (6-168) , (6-169) and (6-171) .

-V° (X)- ar3 positive definite, the o

system are asymptotically stable in

+ x2 ) 2	 (6-177)

since V°(X) and

rigin of the synthesized

the large.
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Chapter 7

THE INVERSE PROBLEM OF

LINEARLY SYNTHESIZED FEEDBACK CONTROL SYSTEMS

r
The inverse problem considered in this chapter is a

subclass of the inverse problem of the previous chapter.
This subclass is identified basically by the additional
assumption that the synthesized feedback control system is

linear. The precise statement of this problem, called

the modified inverse problem, is given in Section 7.1.

After a lemma is presented in Section 7.2, the results of

Chapter 6 are restated for the specific subclass considered

in this chapter. Finally the nonnegative property of the

loss functions in an optimized performance index is dis-

cussed. The purpose for considering this modified

inverse problem is to establish more general conclusions

about optimal feedback control systems synthesized as

linear systems, than have been presented in the literature.

7.1 Statement of the Modified Inverse Problem

The modified inverse problem considered in this

chapter has additional assumptions to those stated for

the inverse problem. In addition to assumptions (i)- (iv)
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(i)' For the system equation given in the canonical

form (6-7)f

(a) B is of full rank, i.e., m = r,—

(b) F^ l (X) is identically zero, and

(c) F' 2 (X) is an r-dimensional, vector valued, finite

degree polynomial function given as

2 (X) - 22) ( X) +	
2(3) (X) +	 + r (o) (X)

(7-1)

where each F` 21) (X) is ith degree homogeneous and
: ' M (X) is not identically zero. (If a linear system

is given, it is convenient to set	 1 in (7-1) by

identifying A2X F' 2 1) (X) in (6-35) .) Thus the system

(6-7) can be written as

X=AX+B{ F' 2 (X)+U

I



•X(1)

X(2)

X (v)
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A(1f1) A(112)

A(2,3)

•

A (v- V)

A (v.l)	 •	 •	 •	 •	 `A(v,v)

K(1)

X(2)

r

2i
J L	 i

j.w [01 [01

+ i , all other entries zero,
(7-2)

F,2 (X)
Ir

F
t:

•

which has the nonlinear functions in the last r equations

corresponding to those equations which also have independent

control variables,

(ii)	 For U(X)	 of	 (6-9)

U(X)— _ -KT X - F" 2.(?f)	 ,— —	 — (7-3)

where K is an n x r matrix such than

•I f

WIN N
2
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K12' } n - r
IC =
	

(7-4)K
K2 2	 r

to provide negative real parts for all eigenvalues of

[A - B KT) . The synthesized feedback control system,

therefore, is the linear autonomous system

X JA B KT j X °- -^ X	 (7-5)

and the origin is asymptotically stable in the large.._

If the system ( 7-2) is uncontrollable, then all diagonal

elements of A (18,1) must have negative real parts for

asymptotic stabs.y	 ' lity, i..e., state variables in X (1) behave

as X = A (1 ^ 1) X(1^.

(iii) l L(X) , given by (6-27),, is restricted to the form

L(X)	 L(2) ( X) + L (3) (X) +	 + L (a) (x) ,	 (7-6)

thwhere each L (1) (X) is i degree homogeneous and a -' 2 is

a given integer.

7.2 Fundamental Lemma

r
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po (X) for the modified inverse problem is

oo (X) = Do (2) (X) + 0o(3) (Y) + r.. + poM (X)

( 7-7)

where

C A max(Q, 2V) ,	 (7-8)

and Q and ^ are given by (7-1) and (7-6)

Proof: From (7-3) and (7-6) , the loss function with a

feedback control law is

L 	 + U 
T 

M R UM =. L (2) (X) + L (3) (X) +

+ L (a) (X) + (-K TX
	 2(X } T R{-KTX - F 

2
{X) }

I,( 2 )
f	 Q r (X) I	 (7-9)

where each	 ('' ) (X) is th degree homogeneous. Assume a

solution for the synthesized system (7-5) for an

arbitrary (Xo , to)

ve
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The value of the performance index from (Yo , t ) is then
0

w	 A, ( t-t )Do (Xo)
	 L (e—.	

o „ 0 ) at	 (7-11)
to

But the integral

rr	 A (t-to)

4L
(i) 

(e K 	 X0)dt , for i = 2,3, .,4 ,

to 	 (7-12)

is.ith degree homogeneous in X
0 
because the integrand is

ith degree in Xo . Defining (7-12) to be Do M ( Yo) , the

lemma is proved.

73 Solution of the Modified Inverse Problem

According to the assumptions of the modified inverse
0

problem, a^ , (6-103) , and the Hamilton-Jacobi equation,

(6-104) , are reduced to

a F (X) T

a go	 2Y.12R x2 + 2	 [ aY 	) RdX2 + w (X1)--	 1	 — --
a'y°	

aXl_	 o
( ax 	 a 

aX2	 2R K 
T 
X + 2R ^' 2 (X)
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and

L (X) = X K RKTX - 2XTI: R A X - 2XTR KT, A .X
— -- — — — — — — —2— —2— —12-1—

V"

- 22(X)	 R A2 	 -	 F'2(X) R F'2(X)

X2

F42 ( X) T	 T
2( [	

ax	
]

—1
RdX2 ) AlX - vT (x1 ) Ai X

—
(7-14)

o

Then Theorem 6-1 can be restated as follows.

Corollary 7-1:

For the modified inverse problem, a performance
is

index	 (L (X) + UT R U) dt is optimized by a given U (X)	 if
0

and only if

a F4(x)
22 32i2

is symmetric,,-

(ii) there exists an (n - r) dimensional vector valued	 y

function	 (X1) such that.

(a)w	 = w (l) (Xl) + _(2) (X1)	 + ... + w (-l) (X1)

(7-16)

e

r



232

where each *(')(X 1 ) is ith degree homogeneous and & is

given by (7-19) ,

E2
a ^^',^ (X)	 aw (X

(b) 2 a- -- {	 [ ax—) Rdx) + ( -1 1	 (7-17)
-1	 ws `- -4	 -1

0

is symmetric.

Proof: As m re (i) of Theorem 6- 1 is nonexistent.

The required symmetry of (7-15) and 17-17) follow from

the requirements on (6-106) and (6-107) . Since the

highest and lowest degrees in V  (X) are 2 and ^ respec-
o

tively from (7-7), jax ] must be the sum of homogeneous

polynomial functions with degree from 1 to W 1) . As

F 2 (X) is also a polynomial, from (7-13) condition (7-16)

must be satisfied.

Corollary 7-2:

Let R and La (X) be calculated for an optimized per-

formance ..index for a given U(X) and a ^(X1) as ( 7-16) ,

and let VO W be the resulting optimal performance index

function. Then, a performance index with R and

a 5) (X 1) T
L (X) La (X) E a I Al X	

(7-18)
_1

we
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can be optimized by the same U (X) , where IT (Xl) is an

arbitrary &th degree polynomial function from degree 2 to

(& - 1). Then the resulting optimal performance index

function Vo (X) is

V0 (x) = Va(X) + !P (El )
	

(7-19)

The proof follows directly from Corollary 6-1 with the

additional assumptions given.

Consider Q = 2 in (7-6) and the given system is linear,

i.e. ,F' 2 (x) in (7-2) is identically zero, and 	 1.
Then the control law (7-3) is a linear control law and

the optimal performance index function V0 M is a quadratic

form, from Lemma 7-1. Necessarily 	 (Xl) of (7-16) is

a linear function of X 1 , say

w (X1) s 2F 11 X 1	 ,	 (7-20)

where P11 i-s an (n-r) x (n-r) symmetric matrix according

to (iib) of Corollary 7-1. Therefore, (7-13) is

8o	 P11	 12R	
xl

EaV	 2	 a	 (7-21)

R
Y.12	

R Kl2
	 22

I 
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which results in

R11 K12 

V0 (X)= XT X - XT P X	 ('7-22)
T T

R K12 2122

Substituting (7-20) into (7-14) , L(X) can be written as

a quadratic form,

011 012 K1

L(X)	 X_T Q X	 (Xi
X2]T

T (7-23)

Q120 22X2

where

011
T

K	 R K
-12-	 12

- K	 R
-12_-

1^,
-21

T
- :12

R
1-^

T
K
--12

- P	 A	 -
--11-11

T
A	 P
-11-11

012 K 1R K22 A21R K22 112R A22 AllKl2 - 111142

I

022 K22R K22 E22E A22 822R E22 - R K12Al2 Al2K12R

(7-24)

and 
Ail

is given in	 (6-32). Then Corollary 7-1 can be

restated for this case.

Corollary 7-3:

For the modified inverse problem with the given system

t „	 " .G^'-
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linear and L (X) restricted to a quadratic form, a perfor-

mance index is optimized if and only if

(i) L(X) is given as (7-23 and 24) ,	 r

(ii) R K22 is symmetric, and

(iii) Ell is symmetric.

Then V°(X) is reduced to (7-22)

The sign definiteness of L (X) and Vo (X) can be identified

from Q and P, according to Lemmas 6-2 and 3. Thus

Corollary 7-4: The Vo (X) of Corollary 7-3, (7-22) , is

positive definite if and only if RKT and P 11-K12R K21K12

are positive definite.

Corollary 7-5:

The L(X) in (7-23) is positive semidefinite if and

only if in (7-24)

O Q22 is positive semdefinite, say of rank rl,

(ii) the last r - r  columns of 2-12S22 are null, and

(iii) QZ1 Q12C22C22Q22C22C22Q12 is positive semi-

definite,

g	
gwhere C22 is an (n-r) x (n-r) nonsingular for the congruent

transformation

r "

r
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T
S22 422 =22 =

236

I 	 to]
1 (7-25)

-,d

Corollary 7-6:

The L (X) in (7-23) is positive definite it
only if in (7-23)

( ) 022 is positive definite, and

(ii) 411 0124222-12 is positive definite.

Thus the inverse problem that Kalman originally

presented has been generalized. While Kalman considered

a controllable, single input, linear system with a linear

control law, the results of this section are also

applicable to uncontrollable, multi-input and not necessarily

linear systems with a more general control law.

7.4 Nonnegative Loss Function of the Optimized Performance

h	
i

Generally the loss function in (6-28) is assumed
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of L(X) is considered in this section.

7.4.1 Nonnegative L(X) for a. Controllable System

V,

Theorem 7-1:

For the modified inverse problem-, assume that the

system (7-2) is completely controllable. Then L(X) in

an optimized performance index can be positive semi-

definite only as a quadratic form of X.

Proof: Assume the contrary, that an L(X) in an optimized

performance index is positive semidefinite polynomial

L(X)	 L (2) (X) + L (3) (X) + ... + L(sI (X) -,	 (7-26)

w where L (s) (X) is not identically zero for an arbitrary
2 < S	 Q and Q is given by (7-6). For (7-26) to be

_f

positive semidefinite, R must be even, from Theorem 2-3.

I^	 (1) Assume for the canonical form that v = 1. Then Al,

w (Xl) and Xl are nonexistent. It follows from (7-2)
and (7-14) that

TL	 E"2 ) (X) R	 2^' ) (X)—

F
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a D	 (^) X T -I I (D F4 (^) (X))
	

(7-27)

where D j.s an r x r nonsingular matrix satisfying 	 Z

R'= DT D	 (7-28)

The existence of D is from (ii) of Corollary 2-1, as
is positive definite. - However (7-27) can have negative

values. Thus (7-26) can also have negative values

(Theorem 2-3), contradicting the hypothesis.

(2) Assume v ' 2 for the canonical form. Let w(k).(X1)

be the highest degree,•nonidentically zero, homogeneous

function in (7-16).

(2a) For the case of

2	 k + 1 < 2^ ,	 (7-29)

it follows from (7-14) that

LM X) = - MT (X) R	 (^) (X)	 (7_30)^-	 - 2	 - - - 2 --

Arguing as in (1) , (7-26) cannot be positive semidefini te
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(2U) For the case of

2 4 20 < k + 1 ,	 (7-31)

it follows from (7-13) and (7-19) that

L (0) (X) = - WT p1 X. (S k + 1) .	 (7-32)

and
X1

Do (k+1) (X) = a (k)
T

(Xl) dX 1	(7-33)

0

According to (7-33) and Lemma 6-6, (7-32) can have negative,

values since it is not identically zero by the assumption

and the system is controllable. Thus (7-26) can have

negative values (Theorem 2-3) and the hypothesis fails.
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and

X1

V  O;+1)(X)	 w (k) (X ) dX	 (7-36)
—1	 —1 --1

0

From the results of (2a) and (2b) , (7-35) can have

negative values if it is not identically zero and the

hypothesis fails.

To provide a quadratic form for L(X) consistent with

Theorem 7-1, F' 2(X) must be identically zero, from

(7-30). Thus for a linearly synthesized feedback control

system with a completely controllable systom, a nonnegative

L(X) is possible only if L(X) is a quadratic form.

Optimal controls may be designed to minimize measures

both of errors and energy during the control action. A

performance index often used for these designs has the

form

(XT 
QX +UT RU)dt,	 (7-37)

t0

where Q and R are at least positive semidefinite. This

choice of a performance index is due primarily to practical

aspects of the problem., e.g., for mathematical convenience.

From Theorem 7-1, however, this choice is seen to be

we
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particularly appropriate if a completely controllable

system is to be synthesized as a linear feedback control

system.
For Kalman's inverse problem, Section 5.3.1, L(X)

is restricted to a quadratic form. From Theorem 7-1,

it follows that no other nonnegative polynomial L(X) can exist

if the given system is completely controllable. In con-

trast, the example in Section 5.3.3, illustrating Suga's

work, showed optimized nonquadratic polynomial L(X).

Theorem 7-1 explains why these nonquadratic polynomials

are not positive semidefinite.

7.4.2 Nonnegative L(X) for an Uncontrollable System

Assume that the given system (7-2) is uncontrollable.

Then it follows that v ' 2 and X(j ) represents the

uncontrollable state variables governed by

XC1)=A( 1^l) X(1)
	 (7--38)

Corollary 7-7

Provided that the =given system .is uncontrollable in

the modified inverse problem, then it is necessary for

LM (X) in (7-26) to be a function of only X 1 if L(X) ' is

positive semidefinite for some s > 0.
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Proof: For L(X) to be positive semidefinite with some

0 > 2j LM ( X) must be nonnegative from Theorem 2-3.

For 2 ^ > k+l >- 2 j L (0) (X) can have negative values, as

shown in ( 2a) of the proof of Theorem 7-1. For k + 1 Z 2* Z 21	 e

it follows that

(k+1j	 xl k T	 ,
O°	 ((X)= w j (X1 ) d^{1 	(7-39

o

and either

T
(a) L 	 _ _ w (k`) (X

1)A1X , if k + 1 > 2* ,	 (7-40)

Y°

or

(b) L (^) (X)	 F'(^'^T(X)R	 (^') (X) - w (r^T(X )A :{2	 —	 - 2	 _	 _	 ,l ._.1._

if k + 1	 20 .	 ( 7-41)

The last terms of either (7-40) Dr (7-41) may be positive

semidefnite if it is a function of '(1) , from ( 7-39) and

Lema 6-6 Therefore for (7-41) to be positive semidefinite,

F' (*) (X) must be a function only of X (1)
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Chapter 8

CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDIES

8.1 Conclusions

Systems considered throughout in this study belong to

the class given by



U , all other entries zero,

Ir
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X= A X+ A U

x(1,1)	 1(1,2)

A (2, 3)

A(v,l)

X(1)	 *l

A(v-1, v)

A(v,v)
	 X (v)

as characterized by the following statements.
(i) Each A (1,j) , (i,j = 1,2,... ,v) , is an I i x

submatrix (Theorem 4-2)
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where each t i and the ordered set (Z1,L2,''.azv} are

called the ith stage number and the stage distribution

(Tile orem 4-2).

r
(iii) It is possible to let v = 1 if and only if

n = m r when the system is completely controllable

(Theorem 4-2).

(iv) If v -' 2 and the system is completely controllable,

then

La'l) = ( 0)

and



r

A( ,i+].) _ [0} I^	 , for i = 2f3,...,v-1, and

'tj v 2 ` i < j; ! v (Theorem 4-2) . 	 r

In this case, only state variables xl,x2,...,x,, are
_i

uncontrollable, as discussed in section 4.3.3..

(vi)	 The property of controllability is invariant

for the transformation to the canonical form (Theorem 4-3).

(vii)	 The stage distribution of the system, i.e., the

ordered set (I V Z21"IF v }, is a unique characteristic

o (Theorem 4-4) .

(viii)	 Provided m = r, the canonical transformation

is possible with M = I 	 if-the given system has the stage

:k distributions (r) or t^l,r,...,r} 	 (Theorem 4-6).
;L

.I

(ix)	 If the given system has the stage distribution

then only one N can exist with each possible -

M for the canonical transformation--(Theorem 4-5).

From these characteristics, a number of observations

can be made.	 The structure of B i Z •the canonical form

discloses the fundamental fact that only x independent

control variables out of the m control variables contained

in V can be effective in the control action. 	 The number
i
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v and the structures of A (l,l) and A (1,,2) simply identify

the controllability property of the given system from

(iii)-(vi) above. If a given system is completely con-

trollable and has B of full rank and a stage distribution

(r, r,...r}, then a unique canonical transformation is

possible with M = Ir , from (viii) and (ix). This particular

canonical transformation coincides with the more familiar

canonical transformation of Definition 4-1. Furthermore

a single .input completely controllable system has a unique
phase variable canonical form and this unique form, is the

familiar form proposed by earlier investigators.

For a nonlinear system, the canonical form can be

applied to the linear part and the above 8 characteristics

are preserved for the linear part of the transformed
system.

In comparison with the other phase canonical forms

described in Chapter 3, the new canonical form has the

following advantages.

(1) It can be applied to the entire class of systems

given by (6-1) while other suggested canonccal forms_-_

are applicable essentially to subclasses.

(2) The many elements of the matrices A and B describing

We
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due to the uniqueness of the stage distribution.

Thus the mathematical structure of a general class

of systems is compactly presented..

V,

This canonical form has value for simplifying studies
of optimal control problems for multi-input systems.

Other known canonical forms are essentially subclasses

of this new one.

8.1. 2 The Inverse Problem of the Optimal- Requlator

The inverse problem of the optimal regulator is

c(,,d ,sidered for the class of systems given by (6-1) . It
is shown that the problem can be equivalently considered

through the new canonical form under similar mathematical

asssumptions and without loss of generality. The recovery

of the results ^	 111-e originally given system is possible

by the inverse } the canonical transformation.. The
analysis of the problem is efficiently performed with the

compact structure of the canonical form.
Restricting the form of performance indices to

(L (X) +' UT R U} dt ^

to
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conditions for optimized performance indices corresponding

to a given U 	 are presented in a theorem (Theorem 6-1).

From this theorem, new aspects of optimal feedback control

systems are disclosed.	 VI

(i) At most, r functions out of m in the feedback

control lava are independent, in optimal feedback control,

i.e., there are r effective control functions for the

optimal control action.

(i;i) Various 1,(X) can be paired with an R for optimized
performance indices based on given U (X) (Corollary 6-1)
However, if n = m = r, the L(X) is unique for an R and

given U(X) (Corollary 6-2).

(iii) When a linear feedback c=ontrol law is given,

the structure of the resulting optimal performance index.

function V0 (X) is the sum of a quadratic form determined

by the given feedback control law U (X) and an arbitrary

function of X1 . State variables in X 1 are not exposed

I
to U directly. The nonnegative property of these V°(X)

is detailed (Theorems 6-2 and 6-3)

(iv) The controllability of nonlinear systems given

by (6-68) is determined by the linear part of the non-

linear systems as (6-128) . For this class of systems,

the Principle of Necessity of Control Action is introduced.

oftR...: ,
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Specially for the problem of the optimal regulator such

that: the desired final condition of the system as

X = 0 1 the performance index is given as
I	 r

CO

(L(X) + UT R U) dt

t0

with a positive definite R, L(X) is nonnegative definite

and a nonzero function of the controllable variables,

then some control, action is necessar y for the optimality,

i.e., a feedback control law not identically zero is

necessary.	 '

(v) When a feedback control law is given, the

Liapunov direct method can be applied to identify the

property of asymptotic stability in the large (Theorem 6-4).

With additional assumptions to the inverse problem,

the modified inverse problem allows observation 3f general

characteristics of linearly synthesized feedback control

systems with a polynomial L(X).

(vi) If the given system is controllable, a nonnegativc

L(X) can exist only as a quadratic form (Theorem 7-1) .

(vii) If the given system is uncontrollable, it is
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only of uncontrollable state variables (Corollary 7-7).

Thus this statement of the inverse problem and its

solution is a generalization of the problem proposed by r
Kalman. It is also a generalization of Suga's work

excepting his time varying assumption, and of Thau's

results excepting his more general assumption of R(V) in

(5-67)•

8.2 Suggestions for Further Studies

Throughout this work, problems are considered -only

under time invariant assumptions. The concepts and

techniques appear to be extendable for time varying

systems with some modification.

For the inverse problem, the matrix R is restricted

to be positive definite to insure a normal Hamiltonian.

Studies can be directed to attempt to relax this assump-

tion, e.g., consider only positive semidefiniteness for R.

More generally, the inverse problem can be considered

for basically different problem assumptions, e.g., more

general systems descriptions and a different form of a

performance indices. Exhaustive studies of the inverse
r

problem of the optimal regulator will reveal new character-

istics of.optimal feedback control systems.

-
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