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ABSTRACT

A new phase canonical form is given for a class of
multi-input dynamical systems described by time invariant
ordinary differential equations. This is based on a
modified definition of an equivalent relation for the class
of systems. It is shown that a characteristic quantity
called a stage distribution defined with respect to the
linear part of the system uniquely determines the structure
of its canoniéal form.

The inverse problem of the optimal regulator is con-
sidered for this class of systems with integral type
performance indices. A convenient analysis of this
problem is possible,‘using the developed phase canonical
form. A theorem is stated which asserts necessary and
sufficient conditions for optimized performance indices
for a specified feedback control law. Further results
concern the nomnegativity of loss functions as optimized
performance indices under the additional assuﬁptions
that the nonlinearities of the system are given as polynomial
functions of the state variables and that the feedback
control law results in a linear autonomous system. A
theorem of necessary conditions for this is given. Suf-
ficient conditions are stated for linear systems. Based

on these main theorems, supplimentary theorems and




corollarie!; are given which reveal other fundamental
aspects of optimal feedback control systems.

In comparison with similar studies by other inves-
tigators, this work is directed toward more general
assumptions on the inverse problem, i.e., generalizations
of the system description, the specified feedback con-
trol law, and the performance indices. As a consequence,
resultg of other investigators can be described as special

cases of those resulting from this work.
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Chapter 1

INTRODUCTION

1.1 Introdqu}on,to the Thesis

When a task in the physical world is approached,
there naturaliy occurs the question of the best method
to accomplish it. Problems of optimal control are those
thch attempt to find the best methods through mathematical
descriptions of the task. These mathematical descriptions

are composed essentially of

A)

(i) a model of the cause-effect dynamics of the task,

i.e., the system equation,

(ii) beginning and end parts of the task, i.e.,

- initial and final conditions for the system equations,

(iii) permitted methods to accomplish the task, i.e.,

admissible control functions, and

(iv) a standard to measure the optimality for each

admissible method, i.e., a performance index.

This search for best methods is identified with calcula-
tions of a optimal control function to transfer the con-
ditions of the system as desired with the miniﬁum possible
value of the performance index._

An elementary problem df optimal control can be formu~

lated from a single initial condition, a single final

ne



condition and some control function of time to be calcu-
lated. This is generally called an open loop optimal
control problem. Practically these problems are more
often recognized under somewhat different circumstances,
those of an optimal reéulator. Thus the system function
is to maintain a specified condition even though it is
exposed occasionally to unforeseen disturbances. The
recovery to the specified dondition after each disturbance
is to be in some optimal manner.

Consider, for example, a room in a building with an
air ﬁemperature of 10°C., It may be desired to change the
temperature to a steady 20°C as fast as possible, using
a‘particular heating system. The open loop optimum
control problem would be to design the given heating
system behavior to minimize the time required for this
change, recognizing the’characteristics of the rcom and
the heating system. Alternately, the regulation of the
room temperature at 20°C could be considered under dis-
turbances due to opening qu shptting of doors and to
outside weather conditions. To return the temperature to
20°C in some optimal sense, say minimum time, after a
change due to these ﬁnpredictable causes, 1s a problem of an
optimal regulator.

An optimal regqulator problem can be expressed as a

family of many individual open loop- optimal control problems

x




with comm&n system equations and assumptions, but with
different initial conditions. If optimal control func-
tions are required for many initial conditioné, the
necessity to calculate them one by one is unreasonable.
An optimal control function can be developed altérnately
in closed form as a function of the system condition,
Generally called an optimal fzedback control law, this
function establishes the opﬁimal control from the present
system condition regardless of its preceding career.
Consequently, control action for .any initial condition
can be covered by a single control law.

Practical problems of optimal control may have many
controlling and controlled quantities represented by
complex algebraic descriptions, e.g., rocket control
during space flight, utility powef plant and distribution
network regulation, and industrial chemical process control.
Consider the regulation of a rocket flight path to a
fixed trajectory in space. Thé control variables, repre-
senting thrust from individual rockets or combinations of
rockets, could be represeﬂted in terms of three orthogonal
directions of space. The output quantities are the position
and velocity of the récket, each composed of three orthogonal
component variables. Consequently, the system has six

controlled variables associated with the three controlling

variables. The pefformance index might be a minimum integral




of deviations of the rocket from the fixed trajectory,
or alternately, minimum fuel consumption during a specific
control action.

The problem of optimal control has been intensively
studied as one of the main branches of modern control
theory, not onlv because of the interesting mathematics of
the problem, but because of the practical character of
the solutions. Many techniques of optimization have been
developed in this field, based mostly on the calculus of

variations.[l-el

Unsolved problems, however, still exist.
Analytically these result from difficulties in finding
sufficient conditions for optimality in a general sense
and from *the rapid inc;gase of required calculations as
the size of the system equations becomes realistically
large. Complete answers to optimum control problems are
restricted at the present time to a few specific classes
of problems with relatively simple system equations.
Furthermore, the optimal control function solutions to
some of thesec problems may be impossible or inconvenient
to reduce to hardware.

This thesisrinvestigates relevant characteristics of
optimal feedback control laws for a class of optimal
reqgulators with system equations given by multi-input,

time invariant ordinary differential equations. But the

direction of the attack is just opposite or inverse to




the usual methods of investigation. The question is asked,
what performance indices can be optimized by an assumed
feedback control law? The objective is to seek all
performance indices shared by a control law. This

problem formulation is generally called the inverse

problem of the optimal regulator,tG]

or briefly the
inverse problem,

A study of the inverse problem would (1) disclose
practical advantages of using specific classes of control
léws in combination with specific performance indices,
and (2) distinguish between control laws which are optimal
in some sense and those which are not. Consequently, the
results would allow futuré optimal design problems to
start with realistic performance indices, and be helpful
for understanding observed solutions to control problems
that are assumed optimal in some sense.

Before an analvsis of the inverse problem is given in
the following chapters, however, a canonical form is
developed for the class of systems of interest. A canonical

form is a compact standard form for describing all systems.

that are mathematically similar. It is useful both to

8

clearly expose the mathematical composition of the system
structure and to allow the analysis and design of the system
to conveniently proceed using a compact description.

Necessarily the choice of a canonical form for a given

&
_. -
&




class of problems plays an important role in the succeed-
ing analysis. While various canonical forms have been
suggested for linear systems, the new one introduced in

this study is apparently necessary for the analysis of the
inverse problem considered. It is also more generally
useful for demonstrating the mathematical structure of
systems, Thus this thesis considers two topics, (1) the
inverse problem of the ontimal regulator and (2) a canonical
form for a broad class of multi-input deterministic

systems described by time invariant ordinary differential

equations.,

1.2 Outline of the Thesis

The material presented in this thesis is divided
into eight chapters. Chapter 1 contains an introduction
to the topics considered, an outline, and a summary of
the results. Chapter 2 is an introduction to the mathematical
formalism used in subsequent theoretical developments,
Notations, definitions and theorems that are assumed in
later chapters are given here.

Chapter 3 summarizes and reviews work that has been
published in the area of canonical forms for linear time
invariant systems. These canonical forms are grouped in

two categories according to descriptive structures, the

Jordan standard matrix canonical form and the phase variable




canoiiical form. The new phase canonical form developed
for a class of multi-input systems is given in Chapter 4,
First, the development is concerned with linear systems,
defining two characteristic quantities, a stage number and
a stage distribution, which determine the structure of the
systems uniquely, as illustrated by three examples.
Second, the results are expanded for more general non-
linear systems.

Chapter 5 summarizes and reviews publications on the
inverse problem of optimal regulators. Interest is focused
on work for problem assumptions similar to those made
during this investigation. In Chapter 6, after a precise
statement of the inverse problem of the thesis, a general
analysis is given. A number of intereéting characteristics
of optimal feedback control systems revealed by this
analysis are then given.

The results of Chapter 6 are applied to linearly
synthesized optimal feedback control systems in Chapter 7.
Conditions for a nonnegative loss function in optimized
performance indiées are given, and a principie of
necessity of control action is disclosed. Conclusion and

suggestions for future studies are in Chapter 8.




1.3 Summary of the Thesis

There are three principal results in this thesis,
applicable to a class of deterministic, dynamic systems
described by time invariant ordinary differential eguations

either, linear or nonlinear.

(1) A new phase canonical form is develqped for this
class of systems. In comparison with other canonical forms,
this canonical form has the advantages that (1) it is
applicable to a larger class of nonlinear, uncontrollable
systems, (2) its structure is uniquelyv determined for each
system by a defined quantity, a stage distribution, and
(3) it would appear to be more conveniently used for

analyses of optimal control problems than other known forms.

(ii) Necessary and sufficient conditions are given
for feedback control laws which are optimal for performance
indices given as integral forms and loss functions as
sums of penalty functions of the state variables plus
positive definite quadratic forms of‘the control variables.
From this result, additional characteristics of optimal

feedback control systems are revealed.

(i1i) Necessary conditions fcr nonnegative loss functions
in optimized performance indices are given for the inverse

problem resulting in linearly synthesized optimal feedback




control systems, assuming the nonlinearities of the systems

and the penalty functions are given as polynomials of the

state variables., These conditions are also sufficient if

the system has no nonlinearity. Specifically it is shown v
that, for controllable linear systems with linear feedback

control laws, nonnegative loss functions in optimized per-

formance indices must be quadratic forms of the state

variables and control variables. Additional relevant

aspects of linearly synthesized optimal control systems

are also given,




Chapter 2

FOUNDATIONS

Material basic to the theoretical developments through-
out this thesis is given in this chapter., Following the
introduction of mathematical notations for the abstract
space descriptions of multi-variable functions, sections
arz2 given defining and explaining system modeling, solu-
tions, stability, and controllabkility. A definition of

approachability is introduced.

2.1 Fundamental Mathematical Concepts

2.1.1 Notation for Vectors and Matrices

Vectors and matriées are denoted by underlined capital
Roman letters or Greek letters. Their dimensions are
spparent either from definitions or are stated explicitly.
A null matrix and a null vector are denoted by [0] and 0
respectively. The r x r unit matrix is given by Ir and
the inverse matrix by a -1 superscript, e.g., éfl. The
transpose of a matrix or a vector has a T superscript, e.qg.,

A? or XT. The scalar product of two vectors X and Y is

Ty A ' -

o

The quadratic form of X associated with a matrix A is

written as . ' ' o

10
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e

2‘.T AX . (2-2)

a, . X.X.
L] L] l l
i,5 J J

The Euclidian norm of a vector X, denoted by ||X||, is
Nxll = /x"x . (2-3)

All subsequent discussions are assumed to be in
finite dimensional Euclidian spaces or the product spaces.

R" designates an n-dimensional Euclidian space.

2.1.2 Multi-Variable Scalar Functions

With vector notation, functions of many variables

are conveniently described as
f(ﬁ) = f(xl'XZ"”’xn) ’

£(X,U0) = f(xl,xz,...,xn,ul,uz,...,nm) ’

or f(ﬁoﬂot) = f(xlrxzrooorxnrulruleOO'umrt)
(2-4)

1

defined on Rp, R® x R® and R” x R® x R spaces respectively.

Theorem.z-l:

If £(X) is continuous on Rn, then £(N X) is also con-

tinuous on Rn, where N is an n x n constant nonsingular

matrix.
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The proof follows directly from a fundamental theorem of

the composition of continuous mappings.[7]

Definition 2-=1l: Functions of Class Cn'[7]

A scalar function f£(X) defined on R” is said to be
of class C_ in a region T C R" if it has continuous
partial derivatives with respect to all X{ 0 (i =1,2,...n),
up to order r evervywhere in ' When I' is the entire Rn,

the phase "in I'" is omitted.

Provided that f£(X) is of class Y the following notations

are often used

£ (1)

9

£ = grad f(z) 4 axz

' (2-5)

(-
154
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32 ¢ 22f 32
axlaxl axzaxl anaxl ,
- 9%f X
2 9X,0X, 00X, 0%, ° °* °* * °*°
0 f A 3 A 1"72 "727 72
XK a:.E{grad £(X)} = i .
af [ ] ® L ] [ ] [ ] ® azf
axlaxn axnaxn
i ]
(2-6)
Theorem 2-2:
Let
[~ i
Wy (X)
W, (X) .)
W(X)=" . (2=7)
wo (X)
be a vector valued function of class Cl' Then {%{ﬂjz)} ~ ”\

is symmetric if and only if W({X) is a gradient of a scalar

function V(X), i.e.,

grad V(X) = W(X) . B (2-8)
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The proof of this theorem follows directly from the theory

[7, Chapter 3]

of functions of several variables. Further-

more, V(X) can be uniquely determined by the line integral

X Y
v(x) = [ WY (X)X + C (2-9)
0

and is independent of the path of integration. A conven-

ient line integral is

X1 xé
V(_}_{.) = l wl(Yl,O...)le + I wz(xl'Y2'0°"0)dY2 4+ *°°°
0 | 0 :

X
n
eee + I Wn(xl'ngoooxn4'Yn)dYn + C ’
0
. (2-10)

(8]

where C is a constant.

(9]

Definition 2-2: Sign Definite Functions.

Consider a scalar function V(X) defined on R” and an
open region ' C R® such that 0 €r. Then V(X) is said to
be positive (negative) semidefinite in I if

(1) Vv(0) =0 : (2-11)

(ii) V(X) 20 , (V(X) £0) , for all X ET . (2-12)

If V(X) satisfies
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(ii)' v(X) > 0, (V(X) <0) , for all X € T of X $ 0
(2-13)
instead of (ii), it is said to be positive (negative)

definite in T'. When I is the entire R", the phase "in "

is omitted.

Theorem 2-3:

Assume a finite degree polynomial scalar function

V(X) given by

vix) = v(? (x) + v () o+ .o+ 98 (),
(2-14)
(i)

where each V (X), (1 =2,3,00.,8), is an ith degree

homogeneous function of X and V(E)(é), £ 2 2, is not
identically zero. Then, for V(X) to be positive semi-
definite, it is necessary that V(E) (X) be positive semi-

definite,

Proof: Consider the contrary, that V(X) is positive semi-

definite but there exists a certain vector x €& R" such |
that L T

vi8) (n < 0. (2-15)

Consider a set of vectors given yx, where y is a scalar
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variable. Then

£(y) & vy = v P (0 + 3 + .+ y ) (g
(2-16)

which is a polynomial function ofy, Since V(g) (x) is

negative, f£(y) becomes negative as y+i~ and V(X) becomes

negative for X = yx. This contradicts the hypothesis.,

It also follows that £ must be even for positive definite~

ness of V(X).

2.1.3 Sig& Definite Matrices

Assume Q to be an n X n real matrix.

Definition 2-3: Sign Definite Matrix. |10

The matrix Q is said to be positive {positive semi)
definite if the scalar function Z?QE is positive (positive
semi) definite. If -z?gg is positive (positive semi)

definite, Q is said to be negative (negative semi) definite,

Without loss of generality, Q is also assumed to be a

symmetric matrix in this section.tlo]

Theqremﬂ2—4:[10]

(i) Every Q is congruent to




P

17

-I  all other entries zero,

(2-17)
(0]}

where n, and n, are uniquely determined by Q.

(ii) Q is positive definite if and only if n, = n,
i.e., (2-17) degenerates to the unit matrix, and Q is

positive semidefinite if and only if n, = 0.

(iii) An n x n real symmetric matrix Q, is congruent
to Q if and only if Q, is congruent to (2-17), i.e.,

sign definiteness of Q is invariant for a congruent

transformation.

Corollary 2-1:

(i) Q is positive definite if and only if all

principal minor determinantsof Q are positive.llol

(ii) Q is positive semidefinite if and only if there

exists an n1 X n matrix D of rank n, 2 n such thatlll]

0=0"Dp. o (2-18)

o
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(iii) Q is positive definite if and only if n = n,

. above.

(iv) Q is positive definite if and only if gfl is

positive definite.

Proof: The proof of (iii) follows from (ii) of this
Corollary and (ii) of the Theorem. For (iv), for Q to

‘be positive definite, it must be nonsingular by (i)

1

and Q" exists. Consider a congruent transformation of

Q by gfl. Thus

@ HT oot = (gH?

= @H ™t =91, (2-19)

which follows from the ‘transpose of an inverse matrixllo]

dnd from the symmetry of Q. From (iii) of Theorem 2-4, Q

1

is positive definite if and only‘if gf is positive

definite.

Theorem 2-5:[13]

Let Q be an arbitrary n x n positive definite symmetric

matrix. Then there exist two positive numbers, Amin(g)
and 2 (Q), such that
(o 2 . T < 2 : n
Anin (@ XIS 2 X" @ x 2 2 (@) x| for all X € R" .

(2-20)




2.2 Description of Physical Svstems[5’12]

Systems which behave according to thne Principle of
Causality in the physical world can be schematically

described as in Figure l-1., Causes are classified into

ettt A

! |

' |
control V| | | o outout 7
P e—— S— ' > P Z

|

l T !

I state Y |

bt e e e e e = = =

Figure 2-1. A physical system,

controls ahd disturbancés; the former quantities can be
specified and manipulated at will but the later cannot.
Effects are created by the causes on the physical system.
These are outputs or directly observed quantities of

effects. To some extent, outputs depend upon the pre-
ferences of the observer. To avoid any ambiguity of out-
puts, a third quantity, states within the svstem, are con-
véniently introduced. AlWays regarded as abstract guantities,
the states are defined as the minimal amount of information |

about the past historv of the system which is sufficient

to predict the affects upon the future.

1
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Systems considered in this thesis are assumed to
belong to a class called deterministic, real, finite
dimensional, continuous time, ordinary differential,

dynamical systems described by the equations

[ ”~ N
! = F_(X, y_, t) (2-21)
2 = G(Y, t) . (2-22)
Y, V, and Z are called the state, control and output
vectors,
- T
Y = [eryzr-iiryn] (2-23)
_ . T
_v. - [Vl,VZ,...,Vm] ‘ (2-24)
v .
Z = [zl,zz,...,zn 17 . (2-25)
' o

By each adjective, the following is meant:
(i) Deterministic: The process described by the

system is deterministic.

(ii) Real and finite dimensional: The state and
control vectors are defined in real finite dimensional

spaces.

(iii) Continuous time: The set of time for these

.equations is an open interval (To,Tl) C Rl.
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(iv) Ordinary differential: The behavior of the
state of the system is given by ordinary differential

equations as (2-21), whera « = é% .

(v) While a more detailed definition of a dynamical
system can be»given,ls'lzl the following is adequate for
this work. Dynamical system: From any Y, and t, and for
any piecewise continuous m dimensional vector valued
function V(t), each existing in defined regions, there is
'é unique solution E&(t; Yo to) to (2-21), i.,e., an n-

dimensional, vector valued function, differentiable in t,

satisfying

(a) Tlt,: ¥, t) =Y, (2-26)
(b) S8 (t; Y, t) =FB (t; Y, £),V(t),t)
dt =v '~ 2o’ Yo' T 'y’ Zor Fol r=tRlet
for all t € RY, (2-27)
() Bylt; ¥, £)) = B, (t; B (ks ¥, £),t)

for all t 2 tl 2 to . (2=28)

Generally (2-21), (2-22) and a solution §V(t’ Xo' to) are

collectively called the system equation, the output

equation, and the solution for (Xo' to) and V(t). The

behavior of the state variables can be identified directly
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from the solution, while the output variables are calculated
algebraically from (2-22). Consequently substantial
analyses of the systems can proceed through system equations
only, with the output equations reduced to a secondary

role. Thus a dynamical system is usually represented by
just the system equations, (2-21), with the output
equations, (2-22), implied.

The existence of a unique solution to system equations
depends both on the given system equations and a specified
controcl function. A sufficient condition can be stated as
follows,

(5]

Theorem 2~6:

For the system (2-21), if

(i) jf( ) is a continuous function, from

R® x ™ x Rl into Rn,

A s

af. (. ) .

~av. for 1,j = 10210'011(
J

are continuous functions from R® x R© X R

(ii) the partial derivatives

1 1

into R,

(iii) V(t) is a piecewise continuous function from

rR' to R®, and

1

. . . n o Y ,
(iv) g—o € R andfto € R~ are specified,

then there exists a uiiigue solution ?, (t; ¥, £) on

2y 2o’ Yo a

time interval containing tye




23

A A
Imbeddinc the specified V(t) as F(Y, t) = F(Y, V(t), t),

another theorem can be given.

Theorem 2-7:[2'13]

1

Let D be a polyhedron in R x R™ where (Xo' to)

exists as an interior point, For a system
=T 0, (2-29)

if F(Y, t) is continuous in D and there exists a number

k > 0 which satisfies

Q N
[E(X,, £) =, 0] 2 k1Y, - X 0]

then there exists a unique solution @b(t; zo'vto) in a
1 L ad

domain D™ C D.

Generally (2-30) is called a Lipschitz condition.
Depending upon characteristics, systems are described

by special names.

Definition 2-4: Time Invariant, Free, Autonomous.System.[l4]

A system is said to be
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(i) time invariant (or stationary), if (2-21) is

given as
¥ =T, v, (2-31)
(ii) free, if (2-21) is given as

¥=Fwi, v, (2-32)

and

(iii) autonomous, if (2-21) is given as

4D

Y =F(Y), (2-33)

i.e., time invariant and free.

Definition 2-5: Linear System.[lzl

A system is said to be linear if (2-21) is given as

Y =

>

(t) Y + B(t) V (2-34)

where g(t) and ﬁjt) are n xn and n x m matrix valued

functions.

For a free system, the concept of an equilibrium

point is particularly convenient.
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(91

Definition 2-6: Equilibrium Point of a System,

A point Xe in R® is said to be an equilibrium

point of a free system (2-32) if

1

0= F(y_, t) for all t € R . (2-35)

Yor

Practical examples of physical systems described

by this symbolism and terminology appear in the literature.[3'5’8]

2,3 Stability and Controllability

For any given system, two descriptive characteristics
can be considered, system stability and system controllability.
These are useful in the. analyses of the system behavior and

the syntheses of control functions.

2.3.1 'System Stability}9'14] Stability in the Liapunov Sense

The theory of the behavior of solutions in relation
to an equilibrium point of a free system is known as
stability theory. It is based largely on concepts
originally proposed by Liapunov. Some of the extensive
dévelopments of this theory are particularly convenient
fbr application to the class of systems considered during

this investigation.

Assume a free system given by
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¥ = F(y, t) | (2-36)

1

L n [
defined on R° x R™ and, for convenience, also assume

Y = 0 is an equilibrium point, i.e.,

o, £) =0 for all t € R . (2-37)

Definition 2-7: Stability.tg]

The origin of the system given by (2-36) is said to
be stable with respect to to if for every e > 0, there

exists § (¢, to) > 0 such that

HY Il <8 (2-38)
implies

N\
[l2gtt: ¥, t )] <e forall t 2t , (2-39)
A‘ 3 .
where gf(t; Y , to) ls‘a solution of (2-36) from (Y ,to).

When the system is a dynamical system, and stability

[14]

exists for some to' then it is stable for any other tlez R.
Accordingly, the expression'with respect to to" can be

eliminated from the definition.

Definition 2-8: Asymptotic Stability.[gl

The origin of the system given by (2-36) is said to
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be asymptotically stable if

(i) it is stable, and

(ii) for every u > 0, there exists a T(u, tor §) >0

such that
/N
|1@e(ts ¥, £ )]] <  forallt2t +7T.
(2-40)

Heuristically every solution starting in a neighborhood
of the equilibrium point at any ts is required to converge

to 0 as t+e,

Definition 2-9: Asymptotic Stability in the Large.[l4]

The origin of the system of (2-36) is said to be

asymptotically stable in the large if

(i) it is stable, and

(ii) every solution converges to 0 as t-=,

These three definitions are generally considered to
refer to stability in the Liapunov sense. Criteria for
satisfying these definitions of stability are established

in the so-called theory of the Liapunov direct method.

Theorem 2—8:[6]

Consider an autonomous system
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(3>

I

(¥) (2-41)

of which - ’_EE(}{_) is defined on I such that 0 € r. If there

exists scalar function 6(3) of class Cl in R® such that
(1) V(Y) is positive definite in T,

A
V. T A

A
(ii) V() = [3?] "F(Y) is negative definite inr,

then the origin is asymptotically stable. If 7 is neqgative
£

semidefinite in (ii), the origin is stable. I 'G(X) also

satisfies

$ A
(1i8) [ |gToe T@>= in B
and I' can be selected as the entire Rp, the origin is

asymptotically stable in the large.

A function G(g) to identify stability in this sense is
generally called a Liapunov function for the system.[14]
Aé the existence of a Liapunov function for a given system
is sufficient to guarantee stability without knowledge

of specific solutions, the method is particularly valuable

for nonlinear systems.

2.3.2 System Controllability

When a system is to be controlled so as to transfer

its initial condition to another condition, there is a
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question as to the realizability of the requirement, i.e.,
whether a control function exists for the transition.

To summarize this idea, the concept of an admissible
control function is introduced first.,

Definition 2-10: Admissible Control Function.[5]

A control function V(t) defined on [to, tl] Cle
is said to be admissible if it is piecewise continuous on

the interval.
In effect, an admissible control function provides a
unique solution from an arbitrary initial condition to

(2-21), as provided by Theorem 2=5,

Definition 2-1l: Controllability. !®!

For a system given by
3 /\
¥=F v v, (2-42)

a state Y, is said to be controllable at tg with respect

to a state Xf if there exists an admissible control

function V(t) defined on [to, tf] such that ' oo
N . - > -
oylter ¥, t)) =¥, for some tg 2 t . (2-43)
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If every Xo is controllable with respect to every Y_ at

£
every to' then the system is said to be completely con=-

trollabhle. When the svstem is linear such that

(2-44)

[l
]
15
B33
+
[fee)
i<

N o .
where A and g are n xn and n x m constant matrices
respectively, a criterion of complete controllability is
known.

(5]

Theorem 2-9:

The linear system given by (2=-44) is completely

controllable if and only if the n x mn matrix

28, ..., A0 (2-45)

1>
| >
1>

N
(B,
has rank n.

The following two definitions, extending this idea,

arz used in later chapters.

Definition 2-12: Reachability.'”) e

For a system (2-42), a state Y is said to be

reachable with respect to a state Xo at'to if there is an

admissible control function V(t) defined on [to, tf] such
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N
that it provides a solution ¢,(t; ¥, t ) which satisfies

" = o . , >
(b4 ¥, ty) =¥, for some finite t; 2 t .

ll-e>

(2-46)

For the case of an unlinmited te) a new definition is

introduced.

Definition 2-13: Approachability,

For a system given by (2-42), a state Y, is said to

be approachable with respect to a state Y

Y, at to if there

exist an admissible control function y(t) defined on

[to, ©) to provide a solution @V(t;

Xo' to) such that for

each ¢ > 0, there exists a T > 0 which satisfies

/A ,
||2v(t: Y o t) -_glll <e forallt2Zt +T.

(2-47)

If the Xl is approachable with respect to every state at

every to' XJ is said to be totally approachable for the

system,




Chapter 3

CANONICAL FORMS OF LINEAR SYSTEMS

This chapter reviews the work that has been done to
develop canonical forms for linear time=-invariant systems.
Some fundamental properties of canonical forms are also
stated for use in subsequent chapters. A canonical form
proposed by Kalman and another based on the Jordan form
are described. Oﬁaers that are described, called phase
variable canonical forms, represent original work by

L uenbergex, Teul, and Asseo.

3.1 Canonical Forms of Systems

It often occurs that two different but mathematically
similar systems. are sufficiently related that the analyses
and solutions for one can bhe applied to the other with
relativelf minor modifications. If this can be done among
many systems forming a group, it is reasonable to analyze
and solve the one system of the group offering the least
complexity, and then translate the results to the other
systems of the group.

A canonical form is a compact standard form for
describing all systems that are mathematically similar.
Similarity is associated with an‘équivalent relation on
the set'of systems of interest, say S. The eguivalent
relation used historically to develop canonical forms is

as follows.

32
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Definition 3-1: Equivalent System.[sl

Two systems are said to be equivalent if there
exists an n x n nonsingular constant matrix N such that

N

L=x, (3-1)

where Y and X are state vectors of each system,

It can be shown that equivalent systems in S are related by

topological relations called reflexive, symmetric and

transitive laws, i.e., the nonsingular transformation

(3-1) is a topological eqguivalent relation defined on S.

It is known, further, that topological equivalence pre-

serves the stabilit? pfoperties of dynamical systems.[lzl
The value of a canonical form depends on the conven-

ience of the specified structure in practical analyses and

the extent to which it displays noteworthy characteristics.

Historically, the development of canonical forms has been

limited to linear systems. These forms can be described

by considering the linear system

Y+B Y. (3-2)

"
>

4

A A . ‘ ] .
where A and B are assumed n x n and n Xx m matrices with

r the rank of @. By (3-1), an equivalent system is
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4

X=ax +BY, (3-3)
whgre

A=NAN ?
and

T=n1. (3-4)

A canonical form is concerned with specifying a particular
structure for A and ’1_3\:.
In a general sense, Kalman suggested a canonical

form for linear systems so as to conveniently display the

controllability property of the system.[12] He stated
that A and’E'can be specified as
- A, (0] T
=11
A= (3-5)
B 22
L o
and
{0}
B = ' (3-6)
B
=2

where the dimensions of the submatrices are
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Ajyi My XNy Ayyi np X my
~ (3-7)
Bpai My X Ny Bpi mp XM,

such that n = n, + n, and n, z 0, n, 2 0. Thus, an

equivalent system to the original system is

I >4
-

[}
w

X

=11 =1
o - ~ (3-8)
2y T B X+ 2 X+ B Vo
where X. = [x.,x X ]T and X, = [x X ]T
=1 17211 °°2 ny - n1+l"“’ n® °

Assuming the rank of'g = r > 0, Kalman defined the control-
lability of systems based on thig description, instead of
Definition 2-11.

[123

Definition 3-2: Controllability (Kalman).

The system (3-2) is completely controllable if it is

not equivalent to the system (3-8) with an n, > Q.

The following theorem gives the equivalency between

Definition 2-11 and 3-2,

Theorem 3=1:

The system (3-2) is completely controllable in the
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sense of Definition 3-2 if and only if the conditions in

Theorem 2-9 are satisfied.,

Proof: Assume that (3-2) is equivalent to (3-8) with an

n, > 0. Then from (3-4), (3-5), and (3-6), it follows
that

8, 28, ..., 88 = mE, naT, ..., 82"
‘ A
. (0] (0] (0]
= N ~ ’ A~ P eee Ne ]~ ’
B A,..B A B
L =2 ~22=2 —-22 =)
o
(3-9)

where each (0] is n, X m. As the rank of (3-9) is less
than n, the system is not controllable by Theorem 2-9,

Conversely, assume (3-2) is completely controllable.

From Theorem 2-9, the matrix

D

[E' t\B_' LI W] /_A\.n-l/li] (3-10)

1>

must have rank n. Assume that a nonsingular N exists such

oy

that é and'ﬁ are transformed by (3-4) to (3~5) and (3-6).
Then

NHiE, 28, ..., 278 = w8, NS, L, nTRYTRS

(3-11) -
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must have the rank n. But for each 0 £ i £ n-1,

A - R naiy L TR n ) = A
\ - J v
i stages (3-12)

and (3-1l) is reduced to

(01] [ 1oy (0]
(3-13)

~ | ! ~ n=l~ |’
B, Ay08, 2.5

where each (0] is n; X m. For (3-10) to have the rank n
then, n, must be zero, that is, the system must not be

equivalent to (3-8) with an n, > 0.

3.2 Jordan Mat:ix Canonical Form

A canonical form exists if A in (3-3) is given by a

[8,15] That‘is, an N

Jordan canonical form of matrix.

can be chosen for a similar’transformation of @ such that
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T (1) (Ay)

T
i}
=
]
15
|z
]
I
N
>
NV

all other entries zero, (3-14)

where each g(i)(xi),(l = 1,2,.0.,V), is an 2y X 24 matrix

given by

g(i)k(i) = ' . o ’ all other entries zero,

" (3-15)

. A
Al,xz,...,xv are eigenvalues of A and v, Lir eeey 2V are

positive integers of the characteristic equation of‘g,

L L L
0= [Ra1] = (amap) Lo =iy 2 (ma) V. (3-16)

2) .
Among the numbers Al,xz,...,lv, some may be equal, how-
ever, one combination of g,v,gl,lz,...,zv consistent
with (3-15) and (3-16) is guaranteed to exist for the

given 3. [13)

It is convenient to decompose the resulting
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X and B as

i\ T o, T
_)S - [?_{(1)1 _}5(2)0 s0e0 ?'('V] (3-17)
v
ana ¥ =8B = @y, By ooer Tl (3-18)

where eachfﬁ(i), (i=1,2,,..,v), is an zi x m matrix and

By = Begugeeeein, 10
X2) = [Xp 420%g 42recer¥y 4y ) (3-19)
; 1 1 1742
[ _ | T
-)-{-(V) = [xV-l 'xV-l ,...,Xn] .
( § 2i+1y (L zi+2)
1 i
Then this canonical form can be written as
Xy =Ty X *By ¥ (s,)
X2y = L2912 Xy * B2 2 (85) (3-20)
Zv) T E(V)(xv) 2{-(\{) tBy) ¥ (Sy)

wﬁich can be represented by v subsystems each appearing

as shown in Figure 3-1l.

£y
g
B
£
§
i’!‘;
L
7
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<

+
=) b f

+/

\ 14
1%
!
[
b d

‘Jﬁﬁxi) —l

Figure 3-1, Subsystem (Si) for (3-20).

The principal advantage of this canonical form is
the convenience of calculating system solutions. This is
evident as the free motion of the system is identified
from the eigenvalues of @, and the system is effectively
decomposed into independent subsystems with respect to

(8]

the state variables.

3.3 Phase Variable Canonical Form

In this section, the system (3-2) is assumed

(i) completely controllable, and

(ii) B is of full rank, r = m.

3.3.1 Phase Variable Canonical Form For Single Input
[12,16])

Systems

Two canonical forms are known for single input linear

systems, i.e., m = 1, meeting the above assumptions. One

has the structures of A and ’g given as
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0 1 1
° L]
A=NAN- L. ' .
0 1
"8 T e 2
- .
all other entries zero, (3-21)
9
n -1A :
and B=N"B = . (3-22)
0
1

This form can be illustrated as shown in Figure 3-2,

-a

Figure 3-2, Single input phase variable canonical form
given by (3-21) and (3-22).
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The second canonical form has A and'E given as

0 -a,
1 .
A = ‘° ¢ , all other entries zero,
* [} (3-23)
. 0 -a,
1 -a,
| .
1
0
and B=1.1, (3-24)
0

which is illustrated as in Figure 3-3.

X1 )

e alin-allnRiKRE-s Vsl

-a

Figure 3-3. Single input phase variable canonical form
given by (3-23) and (3-24).

g
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Consequently, th; system is viewed as a cascade connection
of n-integraters with ordered feedback paths. Since

' zero and unit elements in é'and'E.are concentrated
regularly, these canonical forms are conveniently used
for abstract analyses of system theory. The second
canonical form with (3-21) and (3-22), is particularly
convenient for optimal control problems. Many papers

have been published about reduction techniquesfor given

systems into these canonical forms, (12,17-20]

3.3.2 Phase Variable Canonical Forms for Multi-Input Systems

3.3.2.1 Canonical Form by Tuel[211

Tuel developed a canonical form, called a control

~
canonical form, in which A and B are decomposed as

[ ]
By By
é = ' (3-25)
Ar1 522J
and
B .
¥ =~ (3-26)
- B
—(2)
such that'
(i) there exists & set of r positive integers
L., (1 = l,2,...,f), (where r is the rank of @D, defined

l’
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for a given system such that I &, = n,
i=1

(ii) A,, and A,, are (n-r) x (n-r) and (n-r) x r

matrices such that

Aa1,1)
A ;
éll = =(2,2) » all other entries zero,
" (3-27)
i5-(1:',1:)
and
Z(1)
E(2)
Ay, = . » all other entries zero,
* (3-28)
E(r)

where é(i i) is an (zi-l) X (Li-l) matrix

g

é(i i) = . , all other entries zero,
]

(3=-29)

and E(i) is an (zi_l) column vector ’

5
5
7
2
E
z
#
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E () ’ (3-30)

= O e e e O
Y

(iii) A,, and A,, are arbitrary r x (n &) and r x r

matrices,

(iv) ’iz‘(l) = [0] and ’_1\{(2) is an upper triangqular

matrix with unit elements on the diagonal.

When m = r = 1, this canonical form is reduced to the

canonical form of the single input system, (3-21) and (3-22),

i.e.,
0 1
511 = 5(1'1) = . . , all other entries zero,
. 1 (3-31)
0
o
0
- - .s - L
B2 =Eqqy = [+] ¢ | (3-32)
0
1
By = 3
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'_\1}:(1) is the (n-l) x 1 null metrix, and _@21 and 522 are
l x (n-1) and 1 x 1 matrices respectively.

This phase canonical form was developed early for
solving multi-input optimum control system problems. It
compactly describes the original system and illustrates
its mathematical structure by an ordered array of zero
and unity entries. Another comparable canonical form
called an observation canonical form, can also be developed

in this manner but is omitted here.[21]

[22]

3.3.2.2 Canonical Form by Luenberger

Luenberger suggested a canonical form for linear
multi-input systems (3-2), in which A and'Efare decomposed
into r2 and r submatrices
3

21,1 2@, ¢ Bei,r)

>
I

(3-34)

-&(r,l) . s ° e é(r'r)J
L

and

1w
]

(3-35)
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such that

(i) there exists a set of r positive integers

£., (i =1,2,0..xr), (r the rank of @), such that

o
||
e}

(ii) each A (i,3 = 1,2,.0.,x), is an PRI

=(ij) * ]
matrix such that
0 1
é(i,i) = . . ¢ all other entries zero,
0 1 (3-36)
-al . ° ) -an

= , i$j, all other entries zero,

(3-37)

BAi,q)

where *'s indicate arbitrary elements,

(iii) each'Eki)(i = l,...2), is an £; %X r matrix given

by

i

s
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Bii) , all other entries zero. (3-38)

- O e e o O
q\

L

t—-—--—»ith column

The form is illustrated in Figure 3-4. With this canonical
form, a multi-input system can be viewed as interactions

of r individual single-input systems, each with the
canonical form given as (3-21) and (3-22). Consequently,
the conveniences of the phase variable canonical form for
single-input systems can be appreciated for the multi-
input systems. Again a modification of this canonical
form can be developed corresponding to the use of (3-23)

and (3-24) instead of (3-21) and (3-22); this is omitted.lzz]

3.3.2.3 Canonical Form by Asseo[23]

Asseo described a canconical form in which A and'ﬁ
are decomposed into (3-25) and (3-26) such that the

following are satisfied.

(i) éll is the (n-r) x r null matrix and 512 is the

(n=-r) x (n-r) unit matrix,

and A

(ii) A A,, are r x r and r X (n-r) arbitrary

21
matrices, and
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v, 2,=-dimensional single

5 ifiput phase variable
’qp— canonical form 4

u, 2,~-dimensional single

input phase variable
*%}' canonical form

r % .~dimensional single
: ifiput phase variable
canonical form

Matrix

AN AN

Figure 3-4. Luenberger canonical form.
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(ii1i) Eikl) is a (n-r) x r null matrix and'@lz) is the

rY x r unit matrix.

The structure of this form appears simple and convenient
for analysis in comparison with other suggested forms. Y
Contrary to his assertion, however, the canonical form
cannot be used for all systems which satisfy the two
assumptions of Section 3.3.
As a counter example to illustrate this, consider a

system (3-2) with n=4, r= 2, i.e.,

0 1 0 O

A 0 0 0 1

A=19 0 0 ol ¢ (3-39)
0O 0 0 O

and ) ]

0o 0
0 O

al

B=11 of ° (3-40)
0 1
R

It can be shown that this system is completely controllable

1

by Theorem 2-9, From (3-4) let N - for the equivalent

reduction to A and ’_13' be
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=
I

(3-41)

To obtain’Efacccrding to statement (iii) above, it follows

that n13 = nl4 = n23 = n24 = n34 = n43 = (0 and n33 = n44 = 1.

But in addition, from A = E-l A N, (3-41) and (i) above,

11 1T ]
0O 0 1 O nll nl2 o 0 n31 n32 l O
- 0O ¢ 0 1 n2l n22 0 O n41 n42 0 1
AN"™ = : =
* % % % ] * * * %
Ngy N3y + 0
* % % % * %* * %
L“41 Ny, 01
(3-42)
and frem (3-39)
[ ] 11 | ]
nll n12 0 O 0 1 0 O 0 nll 0 nl2
21w n21 n22 0 O O 0 0 1 0 n22 0 n22
N A= ' = ’
- n31 n32 1 O 972 0 0 O 0 n31 0 n32
n41 N,s 0 1 o 0 0 O 0 Naq 9 n4ZJ
(3-43)

where * indicates arbitrary elements.

g
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The identity of (3-42) and (3-43) fails for the (1,3)

element.

3.4 Comments

The canonical forms described in this chapter display
the internal or elemental mathematical structure of systems
from different viewpoints, The usefulness of the phase
canonical forms for optimal control problems, however, could
be improved if (i) a greater number of elements in A and
'_}T?._' were reduced to zero or unity, and (ii) these zéro and
unit elements were arranged in both a simple and unique
oxder.

It is shown in the next chapter‘that the phase
canonical form for single input systems is uniquely deter-
’mined. It would appear, therefore, that this canonical
form cannot be improved for this application. There are
possibilities for improvement, however, when multi-input
systems are considered. Both the ILuenberger and Tuel
canonical forms are valid for multi-input systems. While
they have the same number of zero and unit elements in A
and’E, they both have some ambiguity or arbitrariness about
the dimensions of the deéomposed submatrices; these dimen-
sions are not unigque but depend upon the chosen matrix N.

While the Asseo canonical form has a particularly simpli-

fied structure and is free from submatrix dimensional
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ambiguity, the application is for a more limited subclass
of systems.

Applications of known phase canonical forms are also
restricted to systems which are completely controllable and 4
with full rank of ﬁ. The possibility exists, thereforxe,
to remove this limitation. The extension of canonical
forms for use with nonlinear systems has also been avoided
in past work.

The new canonical form given in the next chapter is
developed to have a unique and regular distribution of
zero and unit elements in A and’E for linear systems,
without the restrictive assumptions of controllability

- E A L] *
or on the rank of B. The canonical form is also proposed

for use with a class of nonlinear systems by application

to the linear part of these systems.




Chapter 4

DEVELOPMENT OF A CANONICAL FORM

In this chapter, a new phase variable canonical
form is developed for a class of multi-input systems,
This particular canonical form is shown to be superior
to those reviewed in the previous chapter. It also
provides the form for the analysis of the inverse problem
of the optimal regulator in subsequent chapters, First
a aew definitibn of an equivalent system is given.
Section 4.2 introduces two thjspwns @, matrix transfor-
mations. Based on these ideas, tup new canonical form is
then presented in Section 4.3. Thz uniqueness of the
structure of the canonical form for linear systems is
discussed, and finally the canonical form is extended
for applications to a class of nonlinear systems.

Throughout this chapter only, matrices are indicated
by capital Roman or Greek letters without the underline
and are constant unless othirwise noted., Vectors are

underlined.

4.1 Eguivalent System

Systems which are considered in this chapter are

given by

i{ = '_F\‘_(g) + B v (4-1)




vhere ?_'_(X) = [?1(!)' ?2 (X)) eeey ?n(_{)]'r, Bis ann xm
matrix with 0 < m £ n and the rank B is r, 0 <r Sm,
One definition of an equivalent system is given by
Definition 3~1l. 2 more rigorous statement is possible,

however, for the particular class of svstems given by

(4-1) °

Definition 4=-1: Equivalent System.

For two arbitrary systems

[r<e
i

Few +Byv, s
(4=-2)

i<
]

F(X) +BU, s

S, is said to be equivalent to 5, if there exist non-
singular matrices N and M which are n x n and m x m

respectively, satisfying

x=nty
(4-3)
u=uty ,
or equivalently
F(X) = N1 F(y x)
(4-4)
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The nonsingular transformation (4-3) can be identified as

a topological equivalent relation€34] defined for this
class of systems, The reflective law iz satisfied directly
by choosing M and N to be unit matrices. The symmetric

law is satisfied by substituting

Y =N x
(4-5)
v=ny

into (4-4). To show that the transitive law is also

satisfied, consider a system
é = E(E) + 3 W 53 ¢ (4-6)

to which S, is equivalent. Thus there exist nonsingular

. ~s ~
matrices N and M such that

~=1

z =N

I

(4-7)

~=l

1=
]
lc

Sl is made an equivalent system of S3 by defining

R

Iea
]
1<

(4-8)

(M M ~L

=
]
i<




where both @ N)and (4 ™ are nonsingular.

If M in (4-3) is fixed as the unit matrix, Definition
4-1kis essentially redudéd to Definition 3-1. Thus, |
Definition 4-1 is a generalization of Definition 3-1,
but with application restricted to the class of systems
given by (4-1). The flexibility of the additional matrix
M, however, allows a more compact canonical form to be

given for the class of systems (4-1).

4.2 Fundamental Theorems

Theorem 4-1:

et A be an n x n matrix. Fcr each positive integer

s £ n, there exists an n x n nonsingular matrix NN which

transforms A into




1
A, Pa,2) e Ra,w
A-...A- N-'A_N .—A. i . ’
A(V,l) . ¢ o o A(V,V)
A,y P,y 101 e e e (0]
[0) [0] A(2’3) o °
= : . . . . o} r (4=9)
[0] Coe 0] Ay,
Bv,1) ) ot * A,v -

where each submatrix A(i,j)’ (i, =1,2,0..,V), is L, X zj
such that
(1) 2, =s ; (4-10)

v

(ii) v, 2qye Lor seer 2y-1 are positive integers

dependent on ,A, and s such that

< |
X L. =n ; (4-11)
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(iii) 4if v 2 2, then either

(a) A is a Jordan canonical form and
(1,1)

A(1,2) = [0) , or | (4-12)
(b) A,y = 0 (4-13)

Ag12) * [[01 1‘1} , | (4-14)
where, if (b), then g2, < %,i

(iv) in addition, if v 2 3, then

(a) 2y 2 2y for 2 £ifjsv, (4-15)
(b) A(i,i+1) = [[0] Izi] for 2 2 i 2 v-1, *

' (4-16)
(c) A(v,i) , fori=1,2,...,v, are unspecified.

The proof of the theorem follows three lemmas.

Lemma 4~-1:

(a) If H is a 0, X 62 matrix with rank,eB, there exist

1

nonsingular matrices H ande2 which are 9, X 8y and 6, x 6,

1
respectively, satisfying
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H, HH, = . (4-17)

1

(b) If H is full rank, i.e., 63 = Min(el,ez), and

e1 < 8, (el > 02) is satisfied, Hl(Hz) can be the unit
matrix.

(¢) 1If el = 62, then either Hl or H, can be the unit
matrix.

Proof: The reduction of H to (4-17) follows directly from
(10]

" the equivalence of matrices. To éhow'part (b) of the

lemma, assume 61 < 62. Since 63 = el' H has el independent coiumns.

Let Hél) be a 6, x 6, nonsingular matrix resulting from

an interchange of columns of H such that

(1) _ -
H H, = [ Hy H, ] ’ (4-18)
where H4 is a 6, x 84 nonsingular matrix composed of 9

independent columns of H. Define a 6, x 0, nonsingular

matrix such that
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[ ]
Is ¢ (0]
(2) A 2 1
H™ = (4-19)
-1 -1
-H4 H3 H4 j
'
and
A (1) ., (2)
H2 = HZ H2 .
Then it follows that
H H2 = [[0] Iel] (4-20)

and Hl is the unit matrix. If 6, < 85, @ similar method

can be applied. 1If el = 0

can be H™ I,

5 = 63, then either Hl or Hz

Lemma 4-2:

Let Hl and H2 be 62 X 61 and 62 X 93 matrices respectively

with
0, , . (4=-21)

and let the rank of H2 be 6, Then for any 6, > 0, there

exists a 93 X 61 matrix K satisfying




O S SOOI
E Y

B o

, cew
[

o e o e

62

Proof: The proof is complete if a construction of K can

be demonstrated. Since Hz is of full rank, from (4-21)
and Lemma 4-1 there exists a 63 X 64 nonsingular matrix

Kl such that

r
H, K, = [[01 192] . (4-23)

Define K2 to be a 63 X el matrix such that

(0]
K, A (4-24)
Hy
and define
XK & g, K (4-25)
1 2 °
Then K is 62 X e1 and satisfies
HZ K = Hl . (4-26)
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Lemma 4532

Let<J& be an n x n matrix. For each positive integer

N\
s < n, there exists an n x n nonsingular matrix N to

transform A into

d "

~ ~r ~S
A, 2,2y T Paw
a
A, O 2.1 ‘
vo RAN o | 7 .
~ ~v
A(v,l) * c A(v.v)
¢ . (0]
=1 . Av-1,0|
~ - (4-27)
A(v,1) ) B(v,v)
where each submatrix ‘K}i 3)° (i, = 1,2,.e..,Vv), is
’ -,

zi X “j such that

(1) by = S i (4-28)
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(ii1) v, zl' for eee 2v-1 are positive integers

dependent on A and s such that .}:1 Ly =0
i=
(iii) if v 2 2, then either !
~s
(a) A(l,Z) = [0} , or (4-29)
.54
where, for (b) it follows that zl = Y (4-31)
(iv) in addition, if v 2 3,
(a) zi ] zj y, for 2 i 3 2v, (4-32)
(b) x = | [0] N"') - for 2 £ i S v-1
(i,i+l) - - [ 4
(4-33)
Syt . .
where N is a #; x ¢; nonsingular matrix,
ii :
(c) all other submatrices are unspecified.
Proof: (1) PFirst, if s = n, define
v=1
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\
The statement is satisfied by N = I,

(2) If s < n, A can be decomposed as

n-=s S
A —
}\22 A21 } n=s
A4 ' (4-35)

Ay, A } e

where each Jﬁfij' (i,3 = 1,2), has the dimensions indicated.

' N
According to Lemma 4-1 ‘Eiii) and bI:;) are s x s

[

and (n-s) x (n-s) nonsingular matrices satisfying

-

(0] [o0]

N,, A;; Ny = o (4=36)

(0] T
i)

where n. is the rank of A If n. = 8 < n-s E}(l)
1 21° 1 - 11

-
can be the uni{ matrix, according to Lemma 4-1., Define

an n X n nonsingular matrix such that

1

NN [0]

22

A
+(1)
L [0} Nll

. (4=37)
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Then
. -1 ]
A (1) A (1) A~ (1) A (1)
N22A22N22 N22 21Nll
A -1 A\
1A(l).é tq(l) A bJ(l) _
-1 -1 -1
~ (1) ~ (1) 7~ (1) A (1)
Nll IZPJZZ tqll Jxllpqll
(4-38)
(3) As a subclass of (2), if n, = 0 or ng=n-s X s in
(4"36)'
A . A |10 if g = (4-39)
N,y A Ny =1, .
[[0] Inl] ; 1f n; =n S 2 S .
- (4-40)
Then define
v=2
zl =n-=s
22 = s (4-41)
N-Qw

It follows that

i, o350

s il

asyenns e i e

4
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X Koo o]
(1,1) (1,2)
K= . ~ ' ' (4-42)
A2,1) A(z,z)J ,

where /K(l,Z) is either (4-39) or (4-40). For (4-40),
it follows that

- . ¢ = i < -

Therefore the assertion is proved for the case of s < n

and v = 2,

(4) The remaining subclass of (2) is 0 < n, < n=-s,

1
; }X(l) . -
Again can be decomposed, using (4~36), as

| r 1
(1) (1) (1” (1) (1) »
[0] n=s=n
A33 A, Ay Ajy Aj, } L
1&(1) - (1) , (1)  (1)]_ (1) (1) (1)} ,
A23 Azz A21 A23 Azz AZl }nl
(1) , (1), (1) (1) . (1) }
A13-A12 Au LA13 Alz An S
- —— e 2
(n-s-nl) n, s ,; -,
(4-44)

where each j\(l) has the dimension indicated. It also
1)
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follows from (4-36) that
(1) ’
A, = [IOJ Inl] . (4-45)

Using the previous process, let fh’ and g&
22 g

be n, x ny and (n-s-nl) X (n-s-nl) nonsingular matrices

satisfying
[ ]
A (2) , (L (2) |01 (0]
Nj; Ay Ny, = 0] 1 ' (4-46)
n
2

. ' (1) - < _ -
where n, is the rank of 1\32 . Ifn, = n, =n s Mg,

(2)
PJZZ can be the unit matrix according to Lemma 4-1.

Define an n x n nonsingular matrix

[ _1 h
/\(2) ,
(01 (0]
h£3
N® &l  [® (o (4-47)
22 ,
. (0] [0] Is-| I

and calculate
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G ﬁ(z)'IAm §@
RPADRET RRAVRY e .,
[ RETA SRS AETAERE o 827
CARRST ARD AR
(4-48)

where (4-45) is used.

g el i e

S E———— i e

(5) A subclass of (4) is n, = 0 or n, =n - s - n, = nl

in (4-48). From Lemma 4-1,

[ [0] ; if n, = 0 (4-49)
2) ., ()yA (2)

X
N33 A32 N22 =9

, [[0] InZ] ;s if n,
§

]
o |
1
0
1
=
1A
o]
[
.

Then define S
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v =3
21 =n, =n-mn =s
L, = n ' v
L3 = 8
A A1) Q(2)
N=N N
and
[~ ~ 1
A,y Ba,2) (o]
>4 aA(2) 4 | % Y -
A8 AT R RG Ae,a Re,m| (4-52)
~s . ~S ~S
Az, 23,2) A(3.3,)J
where X is either (4-49) or (4-50) and
(1,2) ;
X, -l Q@7 (4-53)
2,3 - |97 N
| 22
.i (27t a o
with N nonsingular. With respect to the rank of
22 : ‘
2(2,3) | i Ts
= k of A = Min(2.,2.) £ 2 (4-54)

If, in addition, (4-50) is satisfied, it is necessary from
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~J
the rank of A(l,Z) that
< -
zl > 12 . (g 55)

Therefore the assertion is proved for the case of s < n

and v = 3.

(6) This process can be continued for the remaining
subclass of (4). Consider, instead, a general description
of fX(k)

: iy KK
nonsingular matrix [N such that

as a transformed matrix from A(k"l) by a

1

AR - /I\\I(k)- A D (e (4-56)
with
- i . ]
A = o AT
APH | o (4-57)
.Af;; c . Al

and
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QU 1
k+1l k+1
(k)
2 (k) Dqgk
Pq =
I
all other entries zero,
where
(a) each f&‘k ), 4,5 = 1,2,...,k+1),
(k=1) _ (k-1) _ (k=1) _
hl - s' h2 - nl' o000 [ 4 hh -
' k=1
gfll) =ne-s - I n; such that
i=1
(k-1)
rank Jq.l jm1 = My.q ¢ for2ics

A
(k) (k)
& N kk and 'ka+l k+1
k-1
(n -s - 1

and
k=l i=l

such that

(k) _, (k)
n-h1 h2

are nonsingular matrices which

ni) Xx (n -s - I

(4=58)
. (k=-1) (k=1)
is an hi b4 hj ’
ny_q ¢ and
k . (4-59)

k=1 el
ni)
i=1l
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A (k) k-1) o x) | 0!
Nt eer Arer x Ny = ' (4=60)

Z

k=1
(k-1) . - <
is np. If n. =n

k+l k

where the rank of

A
fq‘k) can be the unit matrix, from Lemma 4-1. According
kk '

to the preceding transformations and the decomposition

of j\(k), it must follow that

- < <

Aij (0] for 1 £ §j <i+22k+2
(k=1) -

Ak k-1 = | 101 I_hk_l (4-61)
(k=) [ A qy-1

Ai+1 i~ - [0] bJ;;) for i = 2,3,..4,k=2 ,

that is, (4-57) becomes
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Joe E

(29-¥)

‘019z soTIjue IBY30 TT®

3T+
(T-30)

T+ T
eV

T+ T+
- (T=)

v

(1w
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(E9-¥)

A4
lo]
ool

|

Ay
()

+0X9Zz SOTIJUS IAYJO T

T+ T+ T+) ﬂA\y

33 AT |
e -0V .78@ (T=3)
B T-Y T A T4 T
o -0V BRE N
3 3y e T+ T+, T+ A 3
c:@:&: <.Tc:@ 732\ (T-3) <ch @
A THLTH T4l T TH T4 T+ T T4
Z:..éﬂ 37\ ch@ (-0 ¥ :c_,/.\_
axmm.

pue
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Repeating the transformation n times, either the rank of

.A (n=1)
n+l n becomes

(a) zero, when it follows that

A (n) (n=1) A (n)
n+l n+l n+l N.rm = (o), (4-64)
: o A (n-l) — n=1
or (b) £full, i.e., the rank A =ne-s=- I n,,
n+l n i=1

when it follows that

A (n) (n=1) ~ (n)
Nn+1 n+l j&n+l n an noo [[0] Inn] . 14-65)

Define
v=ng+1
n-1

L. = N -85 =~ I n,

1l j=1 1

22=nv_2

: | (4-66)
by-1 = M

L. =8

v

s -

i
7
?% =z
2
kS
3




77

(d (] ( A .
where 21, zz, cos zv are positive integers and N is non-

singular. With k = n in (4-63), and

. A(n) - A(V“l) - ’R’ , (4"67)

£y given by (4-27), it follows that

(0] , from (4-64), or

(a) A(l,Z) = (4-68)

. [[0] Izl] , from (4-65) ,

where, for the second case, from the rank of ,X(l 2)*
14

< o [ ]
zl _.&2 H
(b) A = | [0} ﬁ“’”’i)-l for i = 2,3 v-1
. . = \ ’ = AN X R NN ’
(1,1+1) v+l-i v+l-i ‘
(4-69)
=1
A -
where each (v+l=1) is nonsingular;
v+l=-i v+l-i
(c) according to the rank of (4-69),
2, S0, fori=2,3,...,v-1; | (4-70)

~S

(d) A(i 5) = {ol , for 2 S i 2 jJ+2=2v+2., (4-71)
r.
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Thus the lemma is proved.

. () . o
From the structure of each N in (4-58), N in

(4-66) 1is ’
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,.;‘ g, W Al TR e N Yy v

(¢L-9)
._ul?«.*.baH
1 X
(€) @

v
_(E)v

(A4

<Z

(0]

[AA
(2)

-

- ~
i ()]
(Z, Z
<

Z

v

.
N

_2x

A P
-7 IH

1T
(D~

cc

(1)

T-A T-4

(T-a)'U

Z

v

(T=-A) v

= sé@ E@ N

=3

fJRP S S Y
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A~ A
where DJll and quz ar~ (n-s) x (n=-s) and s x s respectively.

Proof of Theorem 4-1:

It is sufficient to show the existencc of an n x n

~J
nonsingular matrix N to similarly transform X as given
in Leyma 4=~3 such that &

A= NN, (4-73)

where A is given by the statement of the theorem. Then

[N of the theorem is given by

N = /Nrf\f D (4=74)

Y

(1) Ifv=1, let N= I .

(2) Assume v 2 2, For a null ’Xkl 2)* (4=-29), define
’

p- -

Rf(l) (0]
0
~ 11
N - 1 (4-75)
0 I
(0] n-t, g
where Bj(l) is 2y X 2 nonsingular to provide a Jordan
11 '
-1 ~ :
canonical form for Bj(l) ’R}l,l) PJ(I). For 1311'2)
11

11
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given by (4-30), define

1 (0] 1
2
NN (o] ,
N - 21 22 , (4-76)
(0] I
n-ll -22

5 (1) (1)
where ] = I, and N is an &, X 2, matrix
22 2 21

satisfying

~ ~v N(l) _ _
A(l,l) + A(llz) Dle = [0] . (4-77)

- (1) . , ~ .
This N exists from Lemma 4-2, where A ; ,, is of full
21 ’

rank and zl s 22. Define

n(l) (1)
Aii,1) 2,2

-1 ¢
(1) _ (1) ~ o (1) 4 A : .
A - N A N - X(l) 14
, , . (v-1,v)
oo 0 0 By

all other entries zero, (4-78)
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(1)

i) each A}7'., is an 2. x %. matrix;

(ii) either
(a) for (4-29),

~ ~7 -1,\, ~
X . W (1)

A , a Jordan canonical form
(1,1) 11 @ Ny

A(,2) = 10

or

(b) for (4-30)

x() % ~ N _
AL,y = 2a,n *RAa, N =101,

(1) (4-80)
~(1l _ . .
Ai,2) © [[O] Izl] !

~(1) ~ LR (v+1-i) "1

(iii) &,7°. = A, . = | [0 ’
(1,i+41)  7(i,i+1) v+l-i v+l-i

for i =2,3,...,v-1, (4-81)

as given by (4-27) and (4-69). Therefore the theorem is
’ ~ ~/

proved for v = 2 by defining N = fd (l).

(3) If v 2 3, consider
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(2) a .
~(2) ~(2) =~=(2) '
33

7

I
n-21-22-2.

?)
all other entries zero, (4-82)

where 53(2) are chosen to satisfy
3i

~ (1)

~(1) ~2 {2)
Az, 1)

* B2, Ny

(o1,

(1) (1) =~ (2)

A + A = {0] ,
(2,2) * 22,3 N, (4-83)

B [0]
~(2) 3 72

33 . -1
t v-1 v-1

N (v=1)

and PJ

‘ ~ ~ -
is given by (4-81). tq(z)and DJ(Z) exist ' A

v-1 v-1 - 21 32
¢ ~/

from Lemma 4-2. Since fj(z) is nonsingular, fq(z) is
33

nonsingular and its inverse is
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121 T
I, ;
N ?
~(2)" ke @) e '
RN RN N
- In-zl-zz-EBJ
all other entries zero. (4-84)
Define )
52 5y |
ot o o o[ T |
: L . . ,X§311,v>
f"g),n o 'Xff,)v) ;_
all other entries zero, (4-85)
where ’%

. ~(2)
(i) each A(i,j)

is an zi X zj matrix,
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(ii)
’“(2) = X (1)
A,y T 2,1
~(2) () (4-86)
A1,2) (1,2) ,
-1
~(2) _ (1) _ N (v+l~-1i)
Ailien) T Bi,i+ny = |99 N

vil=i v+l-i
for i = 4,5,000,v=1, if Vv 25

by (4-79"‘81) ’

(iii)
~(2) _ ”“(l) (l) e (2) -
Az, =A@,y *Ae,s N, T
'V(Z) _.’V(l) ’V(l) N (2) —
A2,2) = A2, * A, N =01
~(2) (1) (2)
A =2 = |[0] 1
2.3 (2,3) PJ33 { 22]
from (4-83),
(iv) if v 2 4
-1 -1 -1
"V(Z) T (2) ”“(l) ~ (2) "N (v=2)
= = [0] ,
23,0 33 B Nyy Ny ema| - |
(4-88)
where g v-2) is given by (4-69). The theorem is proved

v=2 v=2
for the case of v = 3 by defining DJ fﬂ

(1) PJ(Z)
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(4) For v 2 4, this process can be repeated (v - 1)

times. Generally, defining

~(i+1) A~ (i+1)
A1) ‘ A(1,i+1)
’N’(i+1)"1 O R+ & Fidl) 2 . .
~(i+1 ~M(i+l)
Aier,1) o ¢+ o B(isl,i+d)
(4-89)

where
(1) ’X(l) has a structure after (i-l) reductions, such

that
~(1) (1) ] . . . .
A, 2,2 [o] |
(o] [0} [m I, }
. . } 2 )
~i) [0] . .. (0] [[0] Izi]_ ‘<
(1) ~(1i) ‘
Biis1,1) - . . . Bli+1,i+2) *
N(i) Y . ° ) °
A(v,l)’

(4-90)

o

s

A

%4

A

[0}

(o]

(i)

(v—l,v)i'
(i)

(v,v)
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where
| =1 =1
(i) (1) ~ (v=1i)
A, . = | [0]
(i+1,1+2) N.i-!-l i+lPJv-i v-i| *
v
. -1' p Py -l
(i) A (v-1) . .
(N is 2., %%, nonsingular)
i+l i+l veq vey | ARLTAHL '
(4-91)
. en =1
A (e
Fi) = [to1 NP 7| for j = i+1,442,...,v-1 ,
(i,i+1) V=) V-3
/V ¢
(ii) DJ(1+1) is such that
) . ]
I
1
I
22 .
N (it+]) ‘1
N = 2 ,
~(3 ~s(i+
N(:L-l-l) . . , N(J. 1)
i#2 1 C YVi42 i42
I
Li42
I
2v B

all other entries zero, (4-92)

i
1
%
%
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7 (i+l)

where each satisfies
i+2 j
~(i) ~(1i) ~ (i+1) _ . -
(@) A(ier,5) * AGs,iea Ny 7 7 100 for = L2 eeindy

(4-93)

where existence is by Lemmas 4-2, and by using (4-91),

(b)

I, [0}
. Liv27 41
’N’ (i+1) -
i+2 i+2 A (v=-1i i ’
i i (0] (v-1) Ti(l)
v=i v=1® i+l i+l
L o
(4-94)
. . . T (i+1) :
Since (4-94) is nonsingular, N .is nonsingular. For

the last transformation of the sequence, i = v - 1 and

defining
~/ A ~ S
N& NO N NV, (4-95)

which is nonsingular, Theorem 4-1 is proved.

, Ny (1) =
From the structure of each [\ , (L =1,2,...,v-1),

(4-92), it follows that
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(0]

N ’
PJZZ

2L

(4-96)

zzﬁ

N
-

Tt ~/
where DJll and fqzz are (n-s) %X (n-s) and s x s respec-

tively. From (4-42) and (4-89),

- -

N,; (o]

N=-RNN-= , (4-97)
rQZl DJZ2

where Doll and‘PJzz are (n-s) x (n-s) and s x s respectively
. A\ )
and N ,, is nonsingular because both sz and [\ ,, are

nonsingular.

Theorem 4-2:

A oy . .

Let A and B be n xn and n x m matrices with

A\ ' . :
rank B=rand 0 <r £m 2 n. There exist nonsingular
matrices N and M which are n x n and m x m respectively

such that

Nt AN=2A (4-98)

and
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[ 1
[0] (0]

=2
=
g
"
>

B, (4-99)
[0] T

where A is given by Theorem 4-1, (4-9), with s = r.

Proof: First consider nonsingular matrices N(l) and
M(1)

e D Xn and m x m, such that

- 1 ro1]
gl )

’ (4-100)
[0] I

. . .

by Lemma 4-1. Define

-1
Ad @ TRy (4-101)

Then from Theorem 4-1, there exists a nonsingular matrix
N such that

A =;DI—1J\PJ ’

(4-102)

where the structure of N is given in (4-97).

Also define
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(2)

ji>

M ’ (4-103)

where PJZZ is defined in (4-88)., If

N = N(1>DJ

M=yt y2)

(4-104)

’

then (4-98) and (4-99) follow.

4.3 Development of a New Canonical Form for Linear Systems

4.3.1 Canonical 'orm for Linear Systems

For the class of linear systems given by
J A N\ -
Y=AY+BYV, (4-105)

such that

A A , .
(a) A and B are n xn and n x m respectively with 0 <m £ n,

. . /\ B ", [3 kJ
(b) rank B =1x with 0 < r £ m, a new canonical form is

suggested by Theorems 4-1 and 4-2.
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Precisely, the new canonical form of (4-105) is

given by

[ A r
A,y a2
A(2,3)
®
= ¢ i + 9_ ’
A(v-l,v)
A(l,v) R A(v,v)‘ Ir
all other entries zero, (4-106)
where
Y=NZX A=81%Rn
. -1/
V=MU, or equivalently B = N B M.
(4-107)

The existence of N and M are guaranteed by Theorem 4-2,

4.3.2 Controllability of the System Determined from the

Canonical Form

From Theorem 2-9, the controllability of (4-105)

can be determined by the rank of

N\
¢ = (B, A

jﬁ' coeoe p Rn-l ﬁ] . (4-108)
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Using the nonsingular M in (4-107), definean mn x mn

matrix such that

M

=D
=

, all other entries zero,

M (4-109)

n stages

-which is also nonsingular. Define

-1 AN -1 A - A -1 An-1 A2
4yt NTBM, NTAB M, ..., 8T ARTLE M

=
o
=z
!
=
ve)
=
2

1

[B' A B, ee o An- B] (4-110)

from (4-107), by applying the technique used in (3-12).
A -
The rank of G is equal to that of G Dbecause N 1 and M

are nonsingular. Thus the following theorem is provéd.

Theorem 4-3:

The given system (4-105) is completely controllable
if and only if its canonical form (4-106) is completely

controllable.

The alternate definition of controllability can also
be consideréd, using‘Theorem,B-l. If v=1, for (4-106),

B = Ir and the system is completely controllable by this
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theorem. If v 2 2, the controllability of the system
depends upon the structures of the A(l,l) and A(1,2)

submatrices in the canonical form given in Theorem 4-3,

Corollary 4-1:

Provided that the canonical form has v 2 2, the

canonical form is controllable if and only if

A,y = [0]
(4-111)
Ba,2) = [[0] Izl] .

Equivalently the canonical form is uncontrollable if and

only &
A(1,2) = [0] . (4-112)

The proof follows directly from Theorems 3-1 and 4-3 and

the structure of the canonical form.

4,3.3 Heuristic Explanation of the Canonical Form

Conveniently decompose U of (4-106) to.

T

it

e

[ul, Usy eeey um-r]
| (4~113)

= [um-r+l’ Yoer 427

T
eo 0y um]

1
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and define an n ¥ r matrix

[ T
(0]
A . -
Be = i (4-114) )
I
r
then the canonical form (4-106) is reduced to
X=ax+3B, U, . (4-115)

Thus only r control variables out of m are effective in
multi-input systems; where r is the rank of 'B. |
Conveniently call each %4 of Theofem 4-1 the ith

stage number of the canonical form and decompose the

state vector

3
X(1)
_ X
X = £(2) , (4-116)
X(v)
. i-1

Then the canonical form (4-106) becomes

(i) if the original system is controllable,
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21) 2,2 )

Ai2,3) £(3)
(4-117)

ces |Ne
o~
N
A
(1}

Xiv-1) = B(v-1,v) ¥(v)
+ U , or

(ii) if it is uncontrollable,

21 = 2a,n 2o

4

22) = B2,3 Z(3)
] | (4-118)

2v-1) = 2v-1,v) 2w

4 #\je + A(V'V) ?"{'(V) + ge .

X2v) = B, 21

Provided v 2 2, these equations appear schenatically as

shown in Figures 4-1 and 4-2.

In (4-116), the stable variables in §(l)
S,y (78

are uncon-

trollable because they behave as
210

from an intial condition (z(l)O' to). However, the other

state variables, 5(2), §(3), cesy §(v)' can be controlled

everywhere by He‘ To show this, consider an initial states

‘ §°, and define a control function

. ,A. N
= ‘ (1,1
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* (LTT-p) Wo3ISAS IeouT STRTTOAIUOD ATo3oT7dwod © JO WIOZF Hmu..nco.cmo *T-y 2InbTd

(a*1),

ot

S
AN

Q.dm

(a'e)y

[ =

(€42)y

—>|(AT-4) .

ﬂo * o << — .\. ﬂ?.&.gﬁ

A.Sw.

ANTMN

Suiwm

(a)




*(8TTI-p) wWoISAS IesuT[ STqeTOIFuOdUN ue JO WIOF TJeafuoue)y °g-v ;musm..n..u

> (a2

(T'T)y,

7

28

(n'1-4) .

Am.mvm

ﬂooo?ﬁl,

(T-a’a)

Amuw.

Amvm 3”...3w.

?Zw.
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Then, from (4-116), it follows that

2i2) = 22,3 X(3)

X3 = 2,0 X

' (4-120)

E2v-1) T Bv-1,v) (v

2w = 2,2 X2) A, Byt et Av,m K T oule).

The state wvariables in §(2), §(3), coey E(v) are completely

controllable, by (4=-117). Convenientlv call the state

variables in 5(1) of (4-118) the uncontrollable state

variables.

For subsvstems of (4-117) or (4-118) given by

i) T Pa,i41) Eie (4-121)

. - ‘9 .
with A(i,i+l) [[0] Izi] , a more detailed representation

can be made than is shown in Figure 4-4 and Figure 4-2,

ioeo ’ Figure 4-30
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r""’ A
|
X ! |
p.te.+1 O
1 1 : :
!
X I -0
L. +2 |
pl h & PY I |
° : | v
| |
° | :
X - -0
pi+2i+l zi E ; - —
| |
I | I |
X >O— e X
pyte;+l ,+1 : : E j‘ : p;+1
1 |
| i | |
X - 0 u A )
pi+£i+1 zi+2 . : | : ./ : pl
| | |
| ¢ | I |
» e 4 i
ﬁ | X
}‘ x * ﬁ l+2"
? P+l i+, .y = T .[ ! PijThy
. | S I |
Il A . . | 1 ay
z(i"‘l) > A(l,l+l)$ f L:> ﬁ(l)

Figure 4-3., Subsystem of the canonical form in
(4-117) and (4-118).

.
i
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That is, the last %, state variables of §(i+l) are inte-

grated to become i(i)' Let the ordered set (21,22,...,Lv}

be the state distribution of the canonical form.

Physically, this refers to the numbers of integrators at d

each stage of the partitioned ﬁ(i)' in sequence.

4.4 Uniqueness of the Structure of the Canonical Form

A given system does not have a unique canonical form,
(4-106) , but one that is dependent on the choice of
different combinations of the M and N matrices in (4-107).
The stage distributions for these different forms, how-

ever, are unique,

Theorem 4-4:

The stage distribution &1,22,...,2v} for all canonical

forms of a given system is uniquely determined.

Proof: If zl =n=1Y, v=11is determined from the con-

struction and the stage distribution is unique. Consider

v22, i.e¢, 0 < r < n and two transformations

x=N"ly

1 ' - (4-122)
u=M"y |




and

such that they provide the canonical form

X =
ZL::

e
"

ly

"
m-

with a stage distribution

and

{11' 22, o0 0 2v)

Z'—"-

AX+BU

with a stage distribution

where
,rR.v

{zi, 3

z’
u

P

2'

Xre

o e Rl‘
u} ¢

Define

(4-123)

(4-124)

(4-125)

(4-126)

(4-127)

R

Sy
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-1 (4-128)
=0 "u.

Then from the transitive law of the equivalent relation
for the canonical form, (4-126) must be transformed into

(4-124) by

X=@x
- - (4-129)
2_4'= 7[.2:
which is equivalent to
- ’
A=0A0D
- (4-130)
B=@ BJL .
‘; Assumé the contrary of the theorem statement, that is,

in (4-125) and (4-127), there exists a positive integer

p < Min(v,u) such that

.~°¢ e =2« s ’ erir‘O'l'ooo’p ’

. ' (4-131)

Identify




Aco,0)
/\ =

LA("IO)
and

A(0,0)
A =

A(v,O)

where

104

all other entries zero,

A{O,a)

A(B,B+l)

all other entries zero,

A(“'ﬂl‘vuy)

(QVIPRT))

(4-132)

A(v-l.v)

Bv,v)

(4-133)
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a=yu=-p+1 (4-134)

™
i

vV-p+1l, (4-135)

each A (i j)' (i'j = 0,(!,0.4'1,...,11), is Yi X Y. such that
’

)
wo, M
© i=q 1=8 1
(4=136)
=g, = . —o+15i%
Yi = %5 % Ayayei 0 Wmetl3ide o,

and A is decomposed in the same partitioning as 4Q .

From (4-121), it must follow that

fq(p-i,u-i+l) = A(v-i,v-;i+l) = [[0] Izv-i]

fOI‘ i = 1,2,...,0"1, (4-137)

but the rank of %\(0 a) differs from the rank of A(O ) °
[ 4 !’

Let
®w,00 @uo,00 + + * ®u,ml
® 4 ) )
. « - (4-138)
€ wo ®ua 0t Cum




and

@
|

()
li>

[

©(0,0)

6

(C,a)

106

(©)

(5

(1,0) ®.

(n,0) 'H)J

(4=139)

where the decomposition corresponds to that of A (4-132),

From (4-130),

] 1

' (OIU)_

R

[0}

r L

)

@~ isT = _[0] (a,u))] .

o]
]
i

(4-140)

®zo_oo

(u,u)]n'

r 1o
Comparing the submatrices in (4-140), it follows that

[0] = [[0] ré(i'u)]m 5 for i = O,a,a'l'l,..-.,u-l,

[ 5] [

(4-141)

@(ﬂr\l)}m *

As 7L is nonsingular,
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(0] = Ej(i,u) , for i = 0,a,a+l,...,u=1 , (4-142)

N/
and G)(u 1) must be nonsingular. Subsequently, from the
’

inverse relation between (4-138) and (4-139),

e(i,u) = [0] ’ for i = O,Ct,a'i'l,...,u"l'
(4-143)

-1 ~

® ® '

(u,u) (u,m)

From the first equation of (4-130), it follows that

2 1
LR
v
i
RN
'
M
S
“ oy
PR
R"‘
?'F
HRA
g
i
'
8
|
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[~ A h
0,00 * * * Op,u-1y 10
_ -1 _ [ ] [ N
A= @ A@ = v
. . (0]
® ® ?
(w00 * °° (u,u=-1) (u'u)J
Ao, Aoy 10 - e
0] (0] A(u.u+1) ’ o
. ' B
(0] T A(u-l.u)
A(u,O) . . . . . A(u.u)
F@ . ¥ % @ 0
(0,0) (0,u-1) O]
. * ! . (4-144)
[0]
®w, 0 ¢ ®(m-1) ®(u.u)J .,

Comparing the submatrices in the second last columns of

(4-144) and (4-134),
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0 = 8 u-1) Au-1,m B, "‘[“” @u.u-l)]@(u,u)'

for i = 0,0,000,v=2 (4-145)

~

A(v-'l.V) =[[0] Iﬂ«v_l]= @(u-l.u-l) A(u-l.u) @(u.u)

lod

B(U"lpu"l)] @

=[[0] (u,u)

as ©

() is nonsingular, it must be concluded that
’

[O] = ®(i'u-l)' for i= 0,a,a+l,...,v-2 ’

(4-146)

and from the inverse relation between (4-138) and (4~132),

G)(im_l) = (o] , for i = 0,a,a+l,s00.,u=1 ,

(4-147)

~ -]

® h-1,u-1) = O(u-1,0-1) -

Repeating the decomposition of ® p times, it follows that

for (4-126) to be satisfied, e
) ~ (] .
(4-148)
®—l = B ’ for i = 0,a,a+l,...u' ’ 7

(1i,1) O(i,i)




110

where ®(i i) is nonsingular. From (4-134) and (4-147)

’

A(O,a) = ®(0,0) A(o,a) ®(a,a) (4-149)

and the rank of A( ) must be equal to that of A

0'(! (ola)'

i.e.,

4

2“‘9-1 = 2'V-p'--l ’ (4-150)

r~ "~
as both © (0,0) and ®( are nonsingular. But this
’

a,a)

contradicts the hypothesis (4-131).

Consequently, the canonical forms (4-124) and (4-126)
differ only for elements in submatrices of A and A with
indices (v,1), (v,2), +.., (v,v), and also (1,1) if

the system is uncontrollable, i.e.,

Aa,n 2a,2)
A(2,3)
A - . : .
.A(v-l,v)
A(v,l) ) ) oo A(v,v) |
all other entries zero. (4-151)

#
3
<
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.
\

“The uniqueness of the structure of canonical forms
quaranteed for each given system is due to the uniqueness
of the/stage'distribution. The ambiguity in sizes 6f the
submatrices of A-and B is theréby avoided in contrast tow
other suggesteq‘canonical forms, 3

Froﬁ Theorem 4-4 and (4-146), a corollary follows

di:ectly from (4-148).

Coro;lary 4-2:

The matrix €® in (4-138) must be such that

F . -
O,
. 9(2,2)
®= . ¢ . v
Ouw,y " By
all other entries zero. ' (4=152)

where each ®(i,j)' (i, = 1,2,.3.,v), is 8y X g'j and

Gl

(1,1) is nonsingular.
!
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4.5 Uniqueness of the Canonical Form

Furthermore, consider a set of canonical forms for
a given system with a fixed M (4-107), and observe the
variety of matrices A corresponding to various N. This
c#n be done effectivelv by observing the differences in
A and A of (4-124) and (4-126) under the restriction

M =7 in (4-122) and (4-123), or equivalently 7L = I

Theorem 4-=5:

Consider a completely controllable system (4=105)

with the stage distribution
{r' r' e0o 0 r-} [} ‘ (4-153)

. A .
where r is the rank of B and assume that a transformatcion

(4-107) is made. Then N is unique.

Proof: Assume two transformations, (4-124) and (4-126),

s

with M = M. Then the proof is based on (4-130), showing

that @ in (4-138) is the unit matrix.

4, N~1 must be

For the case of v = 1, since n

A - '
(B M)~! to satisfy (4-107) with B = I_=1I, and the
unicueness follows. For v 2 2, consider A and /Qas

given by (4-124) and (4-126). Then from the controllability
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of the system and Corollary 4-1, (4-153) and (4-151),

it follows that

( -
[0]) Ir
A= . . , other entries zero,
oy 1, (4-154)
LA(VIJ-) * ) ’ A(Vlv)
and
[0] 1.
A = ) . , other entries zero,
’ (4-155)
5 |
(0] I,
Awv,1) ’ * A,

where each submatrix is r x r. Then from (4-130) and

T(.= Iml

AB® = ©a (4-156)

and

B= 0@ B, (4-157)

P
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where ® is given as (4-152). Then from (4-157)

) =1I_., (4-158)

(v,v)  r

Alternately, from (4-154~156),

o

®2,1) ®(2,2) [y = = [?]
®(3,1) 95,3 - '
A = . L [;n , (4-159)
®(v,l) . ° ) ®(v,v)
A A . . ‘ A

© 92, %he.2 . .
QA= . . . [0] ’
L (4-160)
(01 ®y-1,1) ® (v-1,v-1) |
A A A » . 3 A ¥

where A refers to entries of no importance to the following.

Comparing submatrices in the first v - 1 rows,
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®(i'j, =[0)] , ifi >3, (4-161)
and @(i'i) = ®(i+l,i+l) , for i= 1,2,...'(\7-1) .
(4-162)
But from (4-158), (4-162) reduces to
@(i,i) =I., fori=1,2,...,v , (4-163)

and ® must be the unit matrix.

Theorem 4-5 esfablishes the unigueness of the
canonical form for a given completely controllable
system, with a stage distribution given by (4=153). If
it is possible to select M as a unit matrix, then this
canonical form is reduced to the canonical forms discussed
in Chapter 3. Sufficient conditions which allow this

choice of M are given in the next theorem.

Theorem 4-6:

Consider the system (4-105) with a stage distribution

{2'1' r, 1_‘.', LRI 3 ] r} ’ 0 < Rol 's X r (4-164)

A
r =rank B =m, (4-165)




ax
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where it is assumed that 2, =1x if v = 1. Then the
canonical transformation (4-107) is possible with

M

|
.

it
-
L J

Proof: The resulting structure of A is

[
[0] [0] I

A= . , all other entries zero.

I (4-166)

p N A & L d 8.
If v=1, then n = r, B is an n x n nonsingular matrix

by assumption, and the proof follows by speCifying
N #'ﬁ-l. Consider the case of v 2 2. Since by = X, M(l)
in (4-100) can be chosen as I, according to Lemma 4-1.
For the transformation’ of A(4-101) into A (4-27), ﬂ

of (4-72) can be chosen as

Z>
i

. (4-167)

(1)

b

This follows as each of (4-58), i =1,2,...,v, can
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be chosen as Ir according tn Lemma 4-1 due to the rull
(i-1)

(i+l1,i) ,
(4-164). Then from (4-63) and (4-67),

rank of each f& s 1 = 2,3,...v, by assumption

~

ra ¥4
2a,n 2a,2)

IK
(2,1) I
g v=-1 : : [
. A t— A( )= [ » . T
. Iy

fK [ ] ® L} [ IX

: (v,1) (V.V)J
i all other entries zero. (4-168)

Then from  (4-92) and (4-05), Eﬁ can be chosen as

N, , 03]
N - .
= ' (4-169)
_ NEI Ir~
L ° .
~ (1)

because each iel 141 i=1,2,...,v-1, can be chosen as

; . ] N (3
i I, according to (4-94) with all Pq(l) = I.. Subsequently,

11
‘§ it follows that
l 3 . “
L ~ N,, o
D ~/ ’ .
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and M(Z) of (4-103) is also the unit matrix. Therefore
Mm=nll n@ - | (4=-171)

Combining Theorems 4-5 and 4-6, the following is

evident.

Corollary 4-3:

Consider a completely controllable system (4-105)
with the stage distribution given by (4=-153) and
rank = r = m. Then there exists a unique canonical
form for the systém with M = Ir‘

If the stage distribution-of the system is given by
(4-164) , the canonical form corresponds to Asseo's canonical
form, A given (4-166). However, in the reduction to the
Asseo's canonical form in the sense of Definition 4-1,

it is necessary that:
(1) the stage distribution be given as (4-164), and

(ii) the canonical transformation (4-107) is possible

with the unit matrix M.
Consequently, the application of Asseo's unique‘COmpact

decomposition to his canonical form is limited to sub-

class of systems (4-105) for which this decomposition is
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applicable and equally unique and compact.

The transformation in Theorem 4-6 corresponds to the
canonical transformations used in Definition 3-1, Thus
the stage distribution of a single input completely con-
trollable system must be {(1,1,...,1} , and it follows
form Theorem 4-6 that the canonical form of the system

uniiquely exists in the sense of Definition 3-1, i.e.,

01 0 0 =+ « 0 0
0 0 1 0 +*« + 0 .
Q ) [ ' PY
X= |, e Tol X+ L | u. (4-172)
0 ¢« o ¢ 0 1l 0
2" "t g 3y .

Consequently, the statement of the uniqueness of this

canonical form in Section 3.4 is verified.

4.6 Examples

Example 4-1. Consider the system
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¥ =¥ + Y3 -yt VU,
s {4=173)
= - + - + 2 +
Y3 Yl Yo Y3 Yu Vv 1 ,
3;'4 = yl + ZY3 - Y4 + 'UZ ’
and from (4-100)
1 O 3 =1 0 1
A -2 1 -1 4 1 0
A= and B = . . (4-174)
-] 1 =1 2 l O
l1 O 2 =1 0 1
L o L o
For
0 0
-1 0 0 :.'
' SRR | v (4-175)
1 O :
0 1
it is sufficient to assume
l1 0 0 1
0 1 1 O >
N - | . (4-176) >
0O 0 1 O
o 0 0 1f
L d
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Then
:
0O 0 1 O
-1 -1 0 0 1
A=F=nD "4 g@® _ p
-1 1 0 1
l1 0 2 O
L
~ ~
(1,1) 2,2
= A ~ . (4=-177)
A(2,1) A(2.2)J

Comparing this to (4-78) and (4-80),/311 1) can be made
’

[0) if
[ 1
1 0 0 0
01 0 0
N - N = . (4-178)
0 0 1 0
1 0 0 1
Then
0 0 1 0
-1 0o 0 0 1{ -
N-I D 7 a n(HN = , and (4-179)
o 1 0 1f
1 06 1 0 :
L o
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-1
N-tnx® "B=3s, (4-180)

which is the desired canonical form. Defining

FZ 0 0 1.1
0 1 1 0
N & NN = (4-181)
0 0 1 o
l1 0 0 1
and
M=1I,, (4-182)
then, by the transformation,
Y =NX
(4-183)
V=MU,
the canonical form of the system becomes
X = X,
X, = X L,
2 . 4 (4-184)
x3 = X2 + x4 + ul

xo
-
i

xl + x3 + u2 .

&
%

S
23
2
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The system is controllable by Theorem 4-3, As M = I,ys
(4-184) is the unique canonical form of (4-173), from

Corollary 4-3.

Example 4-2. Consider

Yy =¥y + 3y, = 3y, =y, + VU,
¥y = =23 + 4y, + VU,
. . (4-185)
Yq = =y; + 2y4 + 1}1
94 =¥yt 2y, = 2y, -y, + \fz .
With the same transformation of Example 4-1,
X1 = %2
X3 T Xyt
Xg =X Xyt uy,

which is controllable. This is not a unique canonical

form, however. Selecting an alternate N for (4-178)

such that
l1 0 0 O
0 ) 0 0
[q = ; . (4-187)
l 0 1 O
Ll 0 0 1
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(2~185) becomes

X3 = Xa
Xz"X4

| (4-188)
X3 = “Xg t X4t 4y

Xq4 % X1 + X9 + Uy o
where the first two equaticns of (4-188) are identical to
those of (4-186) as determined by the structure of the

canonical form.

Example 4-3. Consider

Yyt Yty t Y,

g
=
Hi

Yy " Y, tys 2y4 + Tfl

e
N
i

. | (4-189)
Y3 = =¥y ¥z + VU,

e
NN
|

=y, + 1T2 .

With the same transformation as Example 4-1, i.e., (4-181)

e

and (4-182),
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X4
(4-190)
-xz + ul

xl " x2 + x3 + u2 ’

which is uncontrollable as Xy is isolated,

The diagrams of these example canonical systems are

shown in Figures 4-4n6,

4.7 Application of the Canonical Form to Ceneral Systems

Consider a class of systems given by (4-1) which can

be expressed by

whera ﬁ

Ty 2Ry + E‘(g) , (4-191)

o

» o ¥ » = . ’ =
is an n x n matrix such that 'A Y describes

. A
the first degree homogeneous function of ¥ in F(Y),

a)
with E_ (_g) the remainder. A canonical form for this

class of systems, using the development in this chapter, is

)
!

(4-1272;

4
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___._.@{..
“2#f ™ f 2

Figure 4-4., Canonical form of Example 4-1, (4-184),

Figure 4-5. Canonical form of Example 4-2, (4-186).

Figure 4-6. Canonical form of Example 4-3, (4-190).

o
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where A and B are given by (4-106). TFor the canonical

transformation {(4-107),

'
A=N1Y AN
B=Nx1 B (4-193)
F(x) = N1 Fawx) .

The characteristics of the canonical form discussed in
Sections 4.4 and 4.5 then exist for the linear part of
(4-192). Furthérmore, if ﬁ(}g) is of class Cys then
F(X) in (4~193) is also of class cC, (according to
Theorem 2-1), and the upiqueness of solutions for the
canonical form (4-192) is preserved according to
Theorem 2-6.

Finally, a solution for the canonical form can be

characterized as follows,

Lémma 4-4:

For the system (4-1), arbitrarily assume an initial
condition (Xo' to), an admissible contrel function V(t), S

' to). Then the solution of the
1l

. A
and a solution iv(t? Zo

canonical form (4-185) with the initial condition (N~

Mt vie) is

Yor tg)

i

and the control function g(t)
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dylts W 7Y, t)=N Yo (£

t))

Proof: By the hypothesis, @V(t; Xo' to) satisfies the

characteristics of the solution given in Chapter 2.

From (2-26),

I | _a=l A . _ a1 _
(4-195)
From (2-27),
St Bt v, £ = o (e Yo, t)
+ 3wt vy , (4-196)
which reduces to
d —1 /\ Co_ -l .—l N\ .
ac (N gy(t, Yor t )} =N T E(NN g_;(t, Yoo t)
-1 -1 = a=1lg R . ,
+ N T B MM T V(t) = N CE(Ne,(t; Y, t) + B U(Y) .

(4-197)

Therefore,
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S (oylts N ly , £ )} = E(ay(ts NY_ t) + B U(t) .
(4-199)
From (2-28),
-1 _ g1
oylts 8l L k) = NI (e, )

1

=1 -1 A _

=N gy_(t, N Ng_z(tl, Yo, t), ty)

=N (e, N Yo (£ X, £), t.)
2yt 2y'tif Zor Yol B1

= [ - @ ‘ > > s
: gg(t, 3H(Ll, zo' to), tl), for all t = t1 2 to .

(4-200)
From (4-195), (4-199), and (4-200), the function

gu(t;Nﬂzo, t,) satisfies the characteristics of the

solution of (4-192); therefore the assertion is justified.




Chaptexr 5
THE OPTIMAL FEEDBACK CONTROL LAW AND

THE INVERSE PROUBLEM OF THE OPTIMAL REGULATOR

The purpose of this chapter is to review work that
has been done on the inverse problem of the optimal
regulator., Initially, however, the problem of optimal
control as explained in Chapter 1 is mathematically
restated. A theoretical background for the problem of
the optimal regulator is given in Section 5.2.2 based on
the principle of optimality and Caratheodory's lemma.

In Section 5.3 studies of the inverse problem by Kalman,
Suga and Thau are reviewed. Finally comments about

these studies are given.

5.1 Formulation of the Optimal Control Problem and the

Inversé Problem

Initial and final conditions for a system of objects
1

are generally defined as manifolds in R® x R™. It is

convenient to call them starting manifolds M and termin-

ating manifolds Mt’ and the'space R" x R1 a motion space.

The magnitudes of the control variables and the state e
variables may be restricted during control action to sub- »

1 1

domains of R™ x R™ and R” x R~ for practical reasons, e.g.,

structual design limitations. Call these admissible domains

130
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the available control region, A.C.R., and the available

state region, A.S.R.

Definition 5-=1: Suitable Control.

An admissible control function V(t) defined on

- o1
[to, tl] € R

is said to be suitable for the problem
specifications, or simply a suitéble control, if it
remains in the A.C.R. and provides a solution to (2-21)
such that

(gy(tl; Yor ), t)) € M (5-1)

which remains in A.S.R. When the time interval is given
by [to' w), (5=1) can be restated: for each ¢ > 0,

there exists a T > 0 satisfying

{||§ (t; zo' to) - Xlll} < e, for all r 2 to + T .

(5-2)

A performance index for control action is usually

given as .
ty |

~ ~ ) ~v

J[}_{O,to,_\l(t)] = K[X-o’to'!-l'tl] + l L(gz(rzz_o,to) V(1) ,1)dr ,
t

° (5-3)
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where tl is defined as

Inf

/2ty oy e om ey (titerto) =Yy =01

- (5-4)
The function'ﬁ% ], called a terminal cost, is a penalty

for the choice of the starting and terminating points on
M., and Mt and is usually assumed to be nonnegative

s
1 X Rn X Rl.

valued on R" x R If X is constant on Mg for

each fixed (_3{_1, tl) [ Mt or on M, for each fixed (}(_o, to) € Ms'
or is constant on both Mg and Mo the penalty function is
constant and generally omitted from (5-3). The loss
function,’z(g, V, t), can be considered as a penalty for

each point in motion space and is generally assumed to

be nonnegative valued on R x R™ x Rl.‘ The problem of

optimal control for an open locp control function is

stated as follows. For a given set of problem specifica-

tions, i.e., a system equation, MS, M,, A.C.,R., A.S.R.

t
and a performance index, find a (Zo, to)o€5 M and a
suitable control function zé(t) to_minimize the value of
the performance index. The function y?(t) is called the
open loop optimal control function.
For the problem of the optimal regulator, there S

exists a collection of M., say I%s , but a unique Mt

and optimal control functions are required for each

element of f45 . For this problem, an optimal feadback
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control law, g?(!,‘t), generally provides the optimal

control function., Thus for each (Xo' to) GMS '
o o A '
_\_’_ (t; _Y_op tO) = Y_ (.?.f(t: XO' tO) e £) (5-5) ’

A . .
where ¢ .(t, Yo to) is a free solution of

-~ o
= E(!' y_ (X_' t)l t) . (5"6)

<

Assuming suitable feedback control law instead of
a performance index (5=-3), it is possible to attempt
to find all performance indices for which the assumed
control law is optimal. This is called the inverse problem
of the optimal regqulator. Specifically, consider Jf_ and
Qj to be spaces of all performance indices and all suit-
able feedback control laws for the given optimal regqulator
problem. The usual or forward problem of the optimal
regulator can bé given as a mapping in an optimum sense
from i; to ]5' , while the inverse problem is from ?f
to ‘LJ . As the space J; is too large for analytical
treatment, some additional assumptions usually restrict
the objects to a subset of JQ and ‘IY » €.9., the . a\

restriction of l;,to a sum of quadratic forms in Y and
[25] |

V.
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5.2 Optimal Feedback Control Law

5.2.1 Statement of the Problem

The fundamental characteristics of an optimal feed-'

back control law are considered under the assumptions that

(i) a system is given by

=1

Y = F(¥, Vv, t) , (5-7)

1

A ' |
where F(Y, V, t) is defined on R® x R™ x R~ and is of

class C, with respect to all arguments;

(ii) M, the final condition of the system, is a

1 and,qu » the set of initial

conditions composed of all reasonable points in rR" x Rl;

smooth manifold in Rp X R

(iii) A.S.R. and A.C.R. are the entire R" x Rl and
R™ x R1 spaces respectively;
(iv) a performance index is given by
Y
v ~v e d
J[_Y_ol tO’ y_(t)] = K[_l' tll + ’ L(XI _Yl t)dt [4
% (5-8) .
where

~J
(iva) the terminal cost K[Y, t], considered only for

final conditions, is cf class C2 with respect to all arguments,

and
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(ivb) the loss function’z(g, V., t) is of class C;

with respect to all arguments.

Since Iﬂs is a set of starting voints, there is no
terminal cost with respect to initial condition. It is
possible to imbed the terminal cost of (5-8) into the
integral. It has been shown[27] that an optimal control
function from each (Zo’ to) c rqi for the performance
index (5-8) must be equal to that for

t

1l
A A )
%%
where
' 3K [Y,t]
A | o Y,
L(Y,V,t) =’\fa(‘£_:_‘_/'_,t) + {grad K[}_{_,t]}T ?F:()_f_,y_,t) $—
(5-10)

/N

L(Y, v, t) is of clasS'C1 with respect to all arguments by
the assumptions (iva) and (ivb). For convenience,
therefore, the following analysis proceeds with (5-9)

instead of (5-8).

5.2.2 Fundamental Lemma

The principle of optimality states that any portion

[2]

of an optimal solution is also an optimal soltuion.,

Mathematically, let !P(t), to £t £ tf, be an optimal

W ot
g s
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control function from (Xo' to) to (gf, tf). Then, if

t, s t, St, 3 te, the control !?(t) considered on the

interval ty 2t s t, is an optimal control function from

N . | A . .
(P-Vo(tl' -Y-ol to)' tl) to (2v°(t21 !O' to), tz) with

7y . < < . .
gvo(t, !o' to), tl =t 2t the corresponding trajectory.

Caratheodory's lemma is a sufficiency statement of
optimality.

(5,26]

Lemma 5-1: Caratheodory's Lemma.

If there exists a suitable feedback control.law
V*(Y, t) for this problem of the optimal regulator such

that for all (¥, t) € R® x R'

A
L(_Y_r _Y*(_Y_rt) ’ t) =0
(5-11)
A o
L(Y, V, £) 2 0 if V¥ Vx(Y, t),

then the function V*(¥, t) is an optimal feedback control

law.

Necessarily the corresponding optimal performande index
: |

from every initial condition is identically zero.




137

5.2.3 Heuristic Approach to the Optimal Feedback Control
(4,5,26,27])

Law

. A ;
Define a function V°(¥, t), called an optimal per-

formance index function, such that, for each (Y_, t ) € M, ‘

0 £ N ]
v (!_ol to) _Y.‘t;_Y_olto) {J[XO' tol !(tl XO' to)]}

O

N\
J( vo(t;

!ol ol '¥‘O'
where V(t; Y to) is any suitable open loop control
function from (Xo' to). In the following, it is assumed
that VO(X, t) is of class C, with respect to all arguments.

From the definition of t1 in (5-4), if (Xo' to) c Mt'

then
Consider an arbitrary (Xo’ to) < f4s and assume a

corresponding cptimal control function y?(t; Y to).

Consider also a perturbed control function !d(t; Xo' to)

il

from (Xo"to) such that for an incremental Ato ’

>

,t)2v e r"

zd(T; zo o v, for 1 e,[to; to + Atol

(5-14)
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transforms the system condition to (XO taY .t Ato)

and

o= o e ;:,'
!d(T, Yoo to) Vi(r; Xo + AXO, t, *+ Ato) for t > t, + ot . y

(5-15)

The performance index becomes

o “‘o
A A A _ N
TIY ot Vylti¥ ,t))] = L(gyd(rggo,to),ya,r)dr+v°(go+ago,to+Ato) .
t
(o)

(5-16)

' A A
Since Ato is small and L(¥, V, t) and F(¥, V, t) are of

class Cy» this integral can be approximated as

N\
L( Vo t)at + 0(st ) (5-17)

Xo'
o

and V (Xo + Azo, t, + Ato) as

Q0 ate) T A

V‘(Xopto) + {[grad Vv (Xo,to)] F(

+ d(Ato) ' (5-18)

where

t)hty o | (5-19)
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O(Ato) and o(Ato) are: higher orders of Ato, i.e.,

lim 0(M‘o)
at 0 e -0
(o) o ,
(5-20)
lim O(Ato)
ER—A ¢ ’
Ato*O Ato
and
A
Ao y VUL, )
Vt (_Y_' t) = 5t ° (5-21)

From the assumption that z?(t; Xo' to) 1s an optimum

control function

But from (5-18~20),
o 0 T 4 S0
(L(Y_, ¥, ,t) + lgrad VO(Y_,t ) 1" E(Y ,V s t) + V(Y ,t ) Yot
s _
+ O(Ato) + o(Ato) 20, (5-23)

‘s oas : lim
Dividing by At and taking at_+0 ’
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A 1 Do T4 oo .
L(Y Vo ot,) + [grad VO(Y ,t 1" E(Y ,V ,t) + V. " (X .t ) 20,
(5-24)
where the equality is satisfied if v
=vot; Y, t) (5-25)
—a = "o =o' "o °

As any point of any motion can be regardedaé an initial
condition for an optimal control problem, (5-24) is valid

for all points in R" xﬂRl

, according to the principle of
optimality. The important point is that an optimal feed-
back control law y?(z, t) is a suitable control law which

satisfies the equality of (5-~24) at every point in rR® x Rl.

A ,
The function Vo(z, t) describes the value of the
performance index for the optimal control function for
each (¥, t). Its time derivative, governed by the system
equation, is
A A A, A |
VO(Y,t) = [grad VO(¥,t)1” E(L,V,t) + V.O(¥,t),

(5-26)

which depends upon V at each (Y, t). Thus (5-24) for any

(Xo' to), is generally written as

A~
(Y,V,£) + ¥°(¥,t) 20  for (Y,£) € R® x R . (5-27)

A
L
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The equality is satisfied when an optimal control is used.
The optimal feedback control law z?(z, t) can be described
as the suitable feedback control law which satisfies the
equality in (5-27) at every (¥, t) € RY x rL.

For a calculation of the function 90(3, t), it is
convenient to introduce a function called the Hamiltonian

of the problem such that
(L,V,t) (5-28)
where y is an arbitrary n-dimensional vector of variables

/\
wi. Then from (5-13) and (5-24), VO(X, t) is a solution -

of a specific partial differential equation such that

Min !
{H(Y, : , V,8))} + vV _(Y,t) =0
v er" X - t
o n 1
for all (¥,t) € R’ X R (5-29)
with the boundary condition
A

| N\
Identifying H(Y,y,V,t) as a function of V at each

1

‘ . ~
(¥,v,t) € R? x R® x R , denote V(Y,y,t) as a function to

A .
provide the absolute minimum value to H(Y,y,V,t) everywhere,
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Then (5=-29) can be written

27 (¥, t)

N
AV(Y,t)
X

. V(Y , £) + T (gt

m>
e
-

0, (5-31)

which is generally called the Hamilton-Jacobi equation of
the problem., As the fundamental condition for optimality
in dynamic programing, Bellman called (5-29) Bellman's
equation and its solution a Bellman function.[l]
Alternately, it is possible to recognize grad[@(g,t)]
as an independent variable in the Hamilton-Jacobi equation,
Pontryaginlz] developed a different technique of calcuiating
open loop optimal control functions, in effect, by doing
so., This is called his maximum principle (or sometimes
the minimum principle). Systematically calculating open
loop optimal control functions from various initial
conditions and observing their common characteristics, a
synthesis of an optimal feedback control law is possible.[zl
However, at this point two major difficulties exist for
these calculations. From a practical aspect, no general
method for solving the Hamilton-Jacobi equation is known
and solutions can only be calculated for a few classes fg
Qf problems with restrictive assumptions. Secondly, from

a theoretical aspect, an optimal performance index function

A 3 *
VO(X, t) must be a solution to the Hamilton-Jacobi equation

but this is not a sufficient condition. Thus a technique
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to identify the ‘%°(g, t) among solutions must be developed
when more than one solution exists. If the number of
solutions to the Hamilton-Jacobi equation is finite and
small, 90(1, t) may be identified by comparing each of

the solutions. These difficulties are not avoided if

the maximum principle is used.

This second difficulty can be avoided, however, if a
unique solution can be shown to exist for the Hamilton-
Jacobi equation, But this depends upon the specified
T(¥, v, t) and (¥, V, t) in the problem.

[5]

Definition 5-2: A Normal Hamiltonian.

If the Hamiltonian of a problem is minimized by a
unique value of V € R" at each (¥, v, t) € R? x R x Rl,
then the Hamiltonian is said to be normal; In this case,
the function Z?(X, ¥, t) which provides the absolute |

minimum to the Hamiltonian is called the H-minimal control

law.

In order to be normal, the Hamiltonian must be a strict

convex function of V, i.e., the matrix
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221 R
avlav1 3vmavl
2/\ ® . °
TV . . (5-32) .
AL . .
224 L 226
VoV avmavm

must be positive definite for every argument.[sl Then

the H-minimal control law is calculated from

A
dH(Y,¥,V,t)
0= 3V
V= voY,y,t)
p QE(L,V,t)  3L(Y,V,t)
= {y [—=7—] + —55—} . (5-33)
V=Y (Yt

Theorem 5—1:[5]

If the Hamiltonian of a problem is normal, then a
solution of the Hamilton-Jacobi equation is the optimal

A
performance index function VO(X, t).

This theorem is proved by the uniqueness of the solution

to the Hamilton-Jacobi equation and Lemma 5-1l. The
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corresponding optimal feedback control law is given by

[ t) . (5'34)

Examples of this theory are given in the literature, [3+6¢26]

5.2.4 Miscellaneous Comments

The preceding considerations are given under
restrictive assumptions for simplicity of discussion,
Studies have been made for fewer restrictions, Based on

measure theory, Bridglandlzs]

generalized the theory with
relaxed assumptions on 'E(X, Vv, t) and 'i(g, Vv, t) and
generalized the integral interval of the performance

index to [to, ©), ;Boltyanskiilzgl

extended the theory for
a continuous '90(3, t), (not necessarily of class C2),

but under other conditions. Thus the existence of con-
tinuous Qo(z' t) (not neéessarily of Cz) for the time

[2]

optimal control problem, as mentioned by Pontryagin, is

justified.

5.3 Review of Studies on the Inverse Problem

Results reported for the inverse problem are reviewed
but with interest directed to those with similar problem

assumptions as those made Chapters 6 and 7.

"i
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5.3.1 Study of Kalmanlzs]

Kalman considered an inverse problem with the

assumptions that

(i) system is completely controllable and given by

Y + B, (5-35)

=<
>

A [ LJ
where‘g and B is constant and the control vector ¢y is

one dimensional,

(ii) the control law is time-~invariant such that

AT ,
V() =-K Y, (5-36)
)
where K is an n x 1 constant matrix and all real parts
of the eigenvalues of (@i-‘gfg?) are negative, thus pre-

dicting the final desired condition of system to be ¥ = 0,

(1iii) the form of the performance index is restricted

to
‘(z?‘ﬁ? ﬁ_z.+-xr2)dt ’ (5-37) - -
. ,
where jﬁ is a n, xn constant matrix with the rank n, Sn

and
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rank [ﬁ" :\}}_ ?_I_' o0 0 ?}n-l @] = n ? (5-38)
aT 4> . 4 ‘ . ‘3
H” H is positive semidefinite by (ii) of Corollary 2-1.

In another study,[26] Kalman proved that the optimal per-
formance index function for this problem is given by
A .
v =y Py, (5-39)
A
where P 1is a symmetric positive semidefinite matrix.

Using Theorem 5-~1, he showed the corresponding Hamilton-

Jacobi equation to be

T

A
Rt

1>
+
| x>
o>
+
>
1=

) + 2BT B+ V=0 (5-40)

and the optimal feedback control law

oW =-8%y. (5-41)

Theorem 5-2:[25]

For the completely controllable system (5-35) and
the performance index (5-37), the necessary and sufficient
copdition for the control law (5-36)- to be a sﬁable optimal T
control law is that there exists a positive definite, |

. . Q . . . gt .
symmetric matrix P which uniquely satisfies the algebraic

relations
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PE=% (5-42)
and
T
2 R-88D - A-BRH L -"H+RR" . (5-43)

Restated, if an arbitrary symmetric positive definite

matrix P determined by

B2-% (5-44)
also allows a solution for'ﬁ from (5-43) which also
satisfies (5-38), then the resulting performance index
(5-37) is optimized by the given control law (5=36).

 This study of Kalman was the first published on the
inverse problem. The results revealed the positive
definiteness of 90(1) for the loss function of (5-37)
with the condition of (5-38). Although the problem
assumptions are relatively simple, others were subsequently
encouraged to attempt to generalize them. In Kalman's

original paper,lzs]

the solution to the inverse problem
was also discussed from the viewpoint of the frequency
domain techniques of synthesizing optimal feedback control

systems.
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5.3.2 Study of Suga!3?]

Suga considered an inverse problem under the assump-

tions that:

(i) the system is given by

=Rt) Y +B) v , (5-45)

L

where ‘@(t) a?d'g}t) have continuous first derivatives and
rank ﬁjt) = r=mZSn (full rank) , | (5-46)
(ii) the control law is given by

K*'(t) ¥ (5-47)

N
where K(t) has a continuous first derivative,

(iii) the form of the performance index is restricted to

T
J Ly, ) + V' R(t) viat , (5-48)
t

o

where T is fixed and R(t) is a given r x r positive

definite symmetric matrix with a continuous time derivative

at every t € r!

e« The Hamiltonian is normal from these
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assumptions. Thus, the author stated the following.

Theorem 5-3:

A _ . AL A N
Suppose that K(t) is specified so that R(t) K(t) B(t)
is a symmetric matrix. Then the performance index is
optimized if and only if it is given by

[

Tt = YT R R KTe) - 2% Be) - Be) A - Brony

A T |
T(L, 0] A T (¥, t) |
Yol 2R L e (5-49)

A
where P(t) is an n X n symmetric matrix of class C,

satisfying

Be) Bee) = Ree) Ree (5-50)
and

B(T) = (0] , (5-51)

A .
and T(Y, t) is an arbitrary scalar function of class C,

in all arguments satisfying

N\
A 31‘(_Y_,t) ’ .
B (t) —TY———-'= 9_ (5-52)

aﬁd
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oT (¥, t)
—-5?:— =0. . (5-53)
t =717

Then the resulting optimal performance index function is
A n A A A
vg,t) =¥ B(e) ¥ - T, + T, , (5-54)

wvhere Y, is a final state of the system and the last
term is constant, say y(T), because of (5-53) and the

fixed T.

If a stable control law is a suitable control law
which provides asymptotic stability in the large for
the synthesized feedback control system relative to the

origin, then the following corollary exists.

Corollary 5-1:

Assume that a stable control law is given and T+,
Then the theorem is still valid with a change of (5-51) to
t) =0 for every (Y ,t) € R x rY T
’ A =o' o ‘ . -

(5=55)

Based on this work, Suga observed the following points

for his problem. _? -
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(1) . The symmetry of @(t) /_IS\_T(t) /l_%\_(t) is necessary for
the inverse problem to be meaningful. In the study of
Kalman, this condition is trivial bhecause of the single
input.

(2) . The additive terms of 'i(g, t) which are associated
with the £function '?(X, t) don't affect the optimal feed-
back control law. To show this, the value of the optimal
performance index for each initial condition

1

(zo,to) e r" X R” becomes, from (5-54),

S0 e TA
V(Y ety) = X0 B(t)

T Y rt) = v(T) . (5-56)

¥, - T
Only the first term is sensitive to the control function;
the last two are independent to v(t). If r = n,’%(t) is
nonsingular and there can be no '?(X, t) because of the
restrictions of (5-52). The larger the value of n - r, the
more flexibility of '%(X, t) exists through this T. Suga
expressed this idea as a flexibility of loss functions.

As an example, consider a system given by

[ . 1 [ T [ W
Yy 0 1 Yq ' 0 .
(5-57) .

n
+
o

{

a feedback control law given by
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V(Y = - [1, V3] ' (5-58)

and a performance index with the form

I A, 8 + viat . (5-59)
o]

(5-58) is a stable control law and the integral interval
of the performance index is [0,~); thus Corollary 5-1

can be applied. From (5-51), it follows that

g(t) 1
B(t) = ' , (5-60)

where g(t) is undetermined. Subsequently (5-49) becomes

- : |
o |8 TEge) oT (¥, t) oT (3, t)
LEeer =1 Lt Ty Y2t 7w
V3-g(t) 1
“ (5-61)

and (5-54) is




g0) . 1
V(r,t) = ¥* ‘
1 ﬁﬂ

From Corollary 5-1,

(& 1 r
g(t) 1 ?’l(t;Y £)
lim —o°©°
t+ N
I
From (5-52) and (5-53),
I oT(x,e)  oT(x,0) .
azl - = 3y2 - ’
and
3T (X, t) -
—y | =2
tae
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¥ -T,0 - T, .

"

£6r all t € R*

(5-62)

0 , for every (Xo,to) € ’* x !

(5-63)

v

, (5-64)

(5-65)

By various choices of g(t) and ?(X, t), the following

optimized ‘ﬁ(g, t) were found.

gt) T T(Y,t)
a 2, 2
(a)> /3;5 0 Yl+ale2+yZ
(b) V3-e"F 0 (l-e-t)y2
- , |
(c) 3+t 0 Y5-2ty,y,
+1
YT ‘ 2, m
@ v3-1 =gy ntyp) gy

as arbitrary real

~o=t . 2
l+Ze yly2+y2

m: positive integer

.
L
%
LR
5

T
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By géneralizing the assumptions of Kalman, Suga
discovered the fundamental composition of 'i(!, t) in
relation to the dummy function '?(X, t) and the symmetry
condition of /_li(t) g(t) ':ﬁ_(t).. However, as in the .
demcnstrated examples, the calculation does not increase
a nonnegative 'E(z, t) on R" x Rl. From a practical
viewpoint for the forward optimal control problem,'@(g, t) is
isusually assumed to be nonnegative as a penalty function
with respect to regulating errors. Thus Suga's examples
tend to be unrealistic.

5.3.3 Study of Thau[3l]

Thau considered an inverse problem such that

(i) a system is time invariant and given by

i=>

W +B vy, (5-66)

I

where‘E(g) is of class Cyo

(ii) a control law is given by V(Y), a stable control

law Qf class Cz,

(iii) the form of performaznce indices is restricted to

I A + ’Rwlat , (5-67)
' o
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where 'i(!) and'ﬁ(g) are of class C, and

(a) L) =0 (5-68)

(b) R(0) =0 (5-69)
aﬁ(g)

(c) —v has a one-to-one correspondence from R™ to RM.
22 R(V)

() [5357—] is positive definite for a normal Hamiltonian,

It was then asserted, based on Theorem 5-1, that
PAS
VQ(X) of class C, is the optimal performance index
function and V(YY) is the optimal feedback control law

for

VT F@ + By (5-70)

if and only if $°(g) satisfies the Hamilton-Jacobi

equation of

37°

Ve 1
3y f

Hey, 2, v(y), t) =0, for all (Y,t) € R x R

(5-71)

and V(Y) is given as

A 20
vy = Re-s" 3, (5-72)
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s>

where () 4is the H-minimal of the Hamiltonian.

Further investigations were directed to restrict

the resulting %o(z) to a quadratic form X?‘E.X. Then
(5-70) and (5-71) becomne

T = - Rw@) -T2 F@ + v (5-73)
and
S T
viy) = R(-B"RY) . ' (5-74)

The following three cases were investigated.

(1) If (a) the system (5-67) is linear,

I
I
I>>

1<
+

o>

1<

r (5-75)

(b) the form of the loss function is restricted to

N
Ty =y B Hy
(5-76)
T
R(V) =V ¥

e

where H is any n; x n matrix with the rank n; Z n,

(c) a linear control law is assumed

vy =-%"x, , (5-77)




P

then (5-73) and (5-74) reduce to

A AN
K=PB (5-78)
and
A A A Am T Am A A
-2 @-28H) - @-8%D BT H+RK,
(5=79)

which are generalizations of the equations of Kalman,
(5-42) and (5-43). Theoretical justifications are not

given, however.

(2) Assume in addition to (1) that (5-75) has a single

input with

N
B= (0,0, ..., 0, 11T . (5-80)

N
Then for a positive definite P, it is necessary for ﬁn

A N A T .. .
K = [kl' Kot eeey kn] to be positive. In fact, from

X =P (5-81)

- A ‘.,;‘ .
of the matrix P, If Qn = 0, then the sign-definiteness

Al
of 'E. fails. More generally, if the elements of B are
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N
either 0 or 1, for a positive definite P it is necessary
N
to have positive elements X which correspond to the

. N
unit elements of B,

(3) For a single input linear system, consider a control

law such that

T
V(K'Y , (5-82)

>

where the K is a n x 1 matrix and the YU (¢) is given

Vo) = = aioi , a; >0 for all i . (5-83)

It was shown that if the inverse function of U(s) can be

expressed as a power series

~/

V(o) =

N8

C.o%, (5-84)
i=1 |
i odd

A » .
and if P is positive definite, then each coefficient C,
can be determined explicitely in terms of the coefficients
a; and the components of ‘g, and R(U(c)) can be calculated

as
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RW(o)) = ‘2;2 d;e” .

even

Substituting,

Practically, two examples were demonstrated.

sidered the system

]
+
o

with a > 0 and

VU (o)

!
Q

with

_T¥_="(Y1+%y2) .

(]
>

Then it can be shown that

(5-85)

(5-86)

One cori-

(5-87)

(5-88)

(5-89)
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A
3ap 4/3
A
Rio) = —22 VU (5-90)
and N : © 2 '1 v
$ N A + 2 @
ara2 117227 T F22
iy =z X
B 203 5
11 22* 5 By aPsya |
vi 2P
a A 1, . 2 .3 6 2 2 22 4
tg Py (Fr+gzyyYt g Y)Y, +_3'yly2) 3 Y2
(5-91)
with
I'/\ a 1
P11 3 i};zz
£ = . (5-92)
a/ N
7 Py) Py2

Thau pointed out that the result, K case (3), 6 could
be applied to the construction of a Liapunov function for

a Lur'e system

$

|r<°
|:u>
1< s

Y + @V( g . (5-93) "

Considering (5-93) as a synthesized feedback control system

A .
for a control law VU ( &TX) in the inverse problem,
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/_P\_, /ﬁ(g_) and /R\('_L_J') can be calculated according to the

A
method of the inverse problem. If there exists a P,

positive definite, such that
T + R KTY) (5-94)

is positive definite, then the origin of (5-93) is
asymptotically stable in the large from Theorem 2-8, and
a Liapunov function is

P =y Py. (5-95)

/N
In fact, from (5-70), V°(Y) is the negative of (5-94).

Summarizing Thau's work, the form of his loss
function was less restrictive than that considered by
Kalman énd Suga. However, the nonnegative character of
ﬁ(g) was not discussed. The application of the results
to construct Liapunov functions is a unique contribution,

although the necessary assumptions are quite restrictive.

5.4 Comments

Based on Kalman's study of the inverse problem,
Suga generalized the assumptions to include time varying

multi-input linear systems (5-45), a performance index

with any time interval, a time-varying loss function and a
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time-varying linear control law. Thau further generalized
the assumptions to include multi-input nonlinear systems
(5-66), a broader class of loss functions and control
laws. Although relevant characteristics of the optimal
feedback control system are revealed by this work, the
nonnegative property of either the loss function or the
optimal performance index function was not adequately con-
sidered. Accordingly the results sometimes seem unrealistic
from the viewpoint of optimal control theory, as illustrated
by examplésa

For the inverse problem considered in the next two
chapters, generalizations of Kalman's assumptions are made
with respect to the nonlinear, multi-input systems, the
form of loss function and the nonlinear'control law,
Furthermore, nonnegativity of an optimized loss function
and an optimized performance index function are considered.
The canonical form developed in Chapter 4 contributes to

the efficient analyses and the compact descriptions of

the development.




Chapter 6

INVERSE PROBLEM OF THE OPTIMAL REGULATOR

In this chapter, the inverse problem of the optimal

| regulator is considered in a general context, i.e., for

a class of multi-input systems with an unspecified non-
linearity and feedback control law. Following a precise
description of the problem in Section 6.1, an equivalent
problem is defined in Section 6.2, using the canonical
form developed in Chapter 4. Fundamental lemmas for the
analysis are given in Section 6.3. Based on the Hamilton-
Jacobi theory and Caratheodory's lemma, a principal theorem
for the inverse problem is stated in Section 6.4. Section
6.5 has a discussion of the relevant aspects of this
theorem % optimal feedback contfol systems and to work

by other authors as special cases. Two practical examples
. 0of the application of the theorem are demonstrated in

Section 6.6,

,6.1 Statement of the Inverse Problem

The inverse problem of the optimal regulator is con-

sidered in this chapter‘under the assumptions such that T

(i) the system equation is given by

Y = ?‘_(1). + fl}_ v, , (6-1)

164
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where ﬁjg) is an n-dimensional vector valued function of
| . . A A .
class C, satisfying F(0) = 0 and B is an n x m matrix

such that

< <

A
0 <crank B=r-m=n, (6=-2)

(ii) the desired final condition of the system is

Y = 0 in R® x Rl, with a stable feedback control law
given by an m-dimensional vector valued function V(Y) of
class C2 with V(0) = 0 (thus the origin of the synthesized

systenm

1@

Pl
=Fw +

I

v(Y) (6-3)

is asymptotically stable in the large),

(iii) the form of performance index is restricted to

2

lﬁ.(g) + V'R v} at , | (6-4)

s

A 3 L3 L3 L [ ] [ 3
where R is an m x m symmetric positive definite matrix

and '@(z) is of class C, satisfying .

A
L

(0) =0 . (6-5)

na
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Equivalently an initial condition (Xo' to) and a
suitable control function V(t) defined on [to, ») are

assumed such that

[ {’f.@!(t: Yo, t)) + V() Rv(v)) at
tO

ot

o (6-6)

T
o 1im [{/I\‘(/.q\l (t; Y ) + y_T(t) /-;Ey_(t) lat

1

(iv) bis and A.S.R. are the whole R® x R and A.C.R,

is the whole R™ x Rl.

The inverse problem is to find performance indices
(6-4) or, equivalently, loss functions that are optimized
by the assumed control law, under assumptions (i)=-(iv).
This inverse problem'is a generalization of the inverse
-problems considered by other authors, as reviewed in
Chapter 5, i.e., the assumptions of the problem in

Section 6.1 are less restrictive than those previously

made. Specifically:

(a) (6-1 is a nonlinear multi-input’system with ﬁ:of a
‘general rank, in comparison with (5-35) used by
Kalman and (5-45) by Suga:

(b) the control law (6~3) is unspecified, in comparison
with (5-36) and (5-47) assumed by Kalm;n and Suga;

(c) the performance index (6-4) has a general penalty

function‘ﬁ(zh in comparison with the guadratic form

3
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used by Kalman, (5-37).

Consequently, Kalman's problem is completely generalized

in this chapter. However, all assumptions are limited

to time invariancy in comparison to those of Suga. Also | Y
the quadratic form in V in the performance index (6-4)

is more restrictive than the 'ﬁ(z) used by Thau (5-67).

6.2 An Egquivalent Inverse Problem

The analysis of the inverse problem can be facilitated
by using the canonical form given in Chapter 4. Consider
the canonical form of (6-1) as

X=F(X) +BU (6=7)

for the transformation

X=3"Y
(6-8)
u=Nty,
and specifically define
v &t v x) | (6=9)

as the feedback control law, equivalent to that given in

(6-3).

) i ppen e el Tl LA i .
e e R gy g R, 7, eme A e g g5 R e N AT ’
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The problem assumptions given in Section 6.1 are
invarient with this transformation (6-8) and can be
expressed in terms of the transformed variables. This
is shown in the remainder of the section., v

The rank of B is r from (4-193) and
(‘Ii 9_) = 2 [] (6-10)

Also F(X) is of class C2, as each function fi(g),

2£, (X) 22 £, (%)
5% Or 32;3§7— r 1,3,k =1,2,...n, is a linear com-
J J A
A of, (M X) 22 /f\i(y_ X
bination of fi(N X) ——-5xj and axkaxj

respectively, and Theorem 2-1 can be applied. As V(0) = 0,

from (6-8)

v =xtywo =0, (6-11)
and U(X) can be similarly shown to be of class C2.

To establish U(X) as a stable control law, a lemma

is introduced.

Lemma 6-1:

If V(Y) is a stable control law for (6-1) , then U(X)

is a stable control law for the transformed system (6-7).
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5 Proof: From Lemma 4-4, a solution for (6=7) with an

initial condition (Eo' to) is

‘-f

H _I\i tO) ’ (6-12) Y

Zov
VA . Nip s .
where ¢f(t; N X, t ) is a solution of (6-3) with an
- - =0 o
initial condition (N X4 tJ). Since the origin of (6-3)
is asymptotically stable in the large by assumption, for
f arbitrary € > 0, v > 0 and to' there exist a @(e, to) >0

A
and a T (8§, u, to) > 0 such that if

. /N
[l 1] = sty £ (6-13)
then
N
(a) [12ets ¥, £)1] = ¢, for all £ = £,
(6-14)
and
(b) [18.(t; Y, t)|| Su, for all t 2 ¢ + 7
—£'7" =o' "o ’ o *
(6-15)
Define
| VA € b
5 ( — t)
§(e, £) = (6-16) .
° A __(NT N)
max '— -—

and
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N I
(8, u, t) =T (8, b s t) 4 (6-17)
Apax ()7 N7)

where Amax( ) is defined in Theorem 2-5 with Q = NT N,

Then for the ¢ > 0, w > 0 and to chosen, consider
<
LIX 1] = 8te, t) (6-18)

From (6-1G), (6-18) and Theorem 2-5,

Ly

11N %1

v

(6-19)

&

Therefore, from (6-13) and (6-19), (6-14) becomes

€
-1

/N < >
llgf(tf XO' tO)H - S N for all t - tO ¢

Apax (077 N7
(6-20)
or :
Fx
> -1,T =1, 114 IR
€ = Apax (M7 N [leg (e e ) [ = [N Se(esN X .t ||
>
= ||gf(t;§o,to)|| , for all t = t_ , (6-21)
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vsing Theorem 2-5 and Lemma 4-4. Also, from (6-15) and

(6-17), it follows that

Ilﬁk(t: Xo' to)ll = "_1 é' T ¢ for all t 2 to + T, d
Apax (M )" N77)
| (6-22)
? or
? > eI I N >
: SRS i B B P N A B P LN

i for all t = t, + T, | (6=23)

again using Theorem 2-5 and Lemma 4-4. By (6-18), (6-21)

x and (6-23), the lemma is proved.

The value of the performance index given by (6=5)
for a suitable control z(t) and from an initial condition
(_¥_o, t,) is
ol _ | NN . T A
I (Y et V(E)] = j {L(g’_z(t,g_o,to)) + V7 (t) R V(t)ldt .

t (6-24)

fx

This reduces by Lemma 4-4 for (6-8), to -

R M U(t)}dt .

. Al A T T
p, = H 2
J [N X ,to,M U(t)] ( {L(N ¢>U(t,,X ,to)) + U ()M
t

° (6=25)
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Define

Lo x) (6-26)

L(X) is of class C2 because '%(X) is of class C2 and
Theorem 2~1. -Also L(0) ='3(§'2) = 0, and R is symmetric
and positive definite, from part (iii) of Theorem 2-4,

Then the performance index (6-4) is equivalently written as

o0

TR, et U(E)] = ({:L(g(_) + uT R Ulat (6=27)

o

for the canonical form (6-7), and assumption (iii) for

A

L(Y) and /_13; is completely preserved for L(X) and R.
Sincef4s, A.S.R. and A.C.R. in the X and U coordinates

are whole rR? x Rl

and R™ x Rl because of the bijective

mappings of (6-8), assumption (iv) is also preserved.

Thus, the original inverse problem stated in Section 6.1

can be considered in the canonical form (6=7) under the -
same mathematical assumptions without‘loss of generality.

The recovery of the solution for the original system

follows from the inverse transformations of (6=8) and

(6-26)0
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For convenience of analysis, the following notation

is used for (6-7), (6-2) and (6-27).

(1) X is decomposed into

A
il = [xl, Xpp eoey X

(6-28)
__2 [xn_r+l' e o0 ¢ Xn] [}

and, if n = r, X = 52.

(2)

[

is decomposed into

4 [ul, Uspy eeer U ]

2a m-r

(6=-29)

1>
=

[u

..qe - m-r+l’ *°°? um] ’

and, if m=1r, U=

Y%

(3) F(X) is decomposed into

lic

r T

(6-30)

~—
1>
~

1>

£ (R) s eenr £001T,

n-r+l

F(X) =ax+ FX , (6-31)
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where A X defines the first degree homogeneous function in
F(X), and E'(X) the remainder. A and E (X) are further

defined as

i . - 1
= T I - S R P } nex
A= = (6-32)
{-’izj Dy By [} T
L - o
n-r o
and
E*l(X)1 } n-r
Fx) = . (6=33)
EZ(EE) } r .
L -
Subsequently (6=7) can be written as
% = E,(X)
(6=34)
X, = E,(X) + U,
from (6-30), or
X =5 X4 .E‘l(z)
' (6-35)

X, =2 X+ F,(X) + U




from (6~-32) and (6=33).

(4) Let

=11

|=
>

-12

mn=-x

175
212 mer
(6-36)
222 } r
——
r

(5) 1If ﬁ?z)'is a scalar function of class C2, then

define

@
<
lic

Q
4
jo>

3% - Ypers

and

32y°

3%, 0%

;  82V°
351?&2

Y
]34

@
B

[wl(ﬁ), wz(g), oo wn_r(é)]T

(6-37)

(T
1By eee W (R)]

93X,0X

s

|

o
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awl awz .. awl
axl ax2 axn
awz .
axl

° ' . (6-38) -

6.3 Fundamental Lemmas

Lemma 6~2:

Let m and r be integers such that m > r > 0 and R
m x m symmetric matrix. Defining R as (6-36), R is

positive definite if and only if

: T -1 s
(i) 'Ell and 522 - 512511512 are positive definite,

or
L] L] - l T ) * L L 13
(ii) R,, and Ry; ~ Ry,R,,Ry, are positive definite.

Proof: Only (i) is proved; (ii) is proved similarly.

For R to be positive definite, §&l~mus§ be positive definite

g;i exists. Define a matrix

by (i) of Corollary 2-1. Thus
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-1
A L — “R11R10
s & (6-39)
(0] I,

which is nonsingular. According to (iii) of Theorem 2-4,

R is positive definite if and only if

B [0} |

T
rp 1 (6-40)

(o] Ry2"R12R11R2

wn
1o
1]

"

is positive definite. Since the characteristic equation of
(6-40) is

[AI-Rpy | ¢ IAI=(Ryp=RI,RI1R;5) |4 (6-41)

1

eigenvalues of (6-40) are those of R,; and of (R,, - 552511312).

From Theorem 2-4, the assertion is immediate.

Lemma 6-3:

For R given as in (6-36) and for the rank of 522

R is positive semidefinite if and only if

<
as rl- r,

(1) 522 is positive semidefinite,

i) @ 2 - R..DT T T o -
(ii) ¢ Ry1 = RypD33Pp5R53D55D55 Ry,  is positive semi

definite,
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where D,s is an r x r nonsingular congruent transformation

matrix such that

T Irl to] T | " v
Dy2 Ryp Dyp = ' (6-42)
[0] O

(the existence of 222 follows from Theorem 2-4 and (i)
above) ,

and

(iii) the last r =- Iy columns of Rl2 222 are null,

i.e. .

Ry, Dy, A1 s 1 m-r , with R = [0] .
s (6-43)
Xy ¥-ry

Proof: Assume an m=dimensional vector E.é [zl,zz,...,zm]T

and
_ T
El = [zl, Zor eeey Zm»r]
2. = [z z z ]T (6-44)
-2 m=-r+1’ “m-y+2? °°°? m-r+rl .
2, = [z A o z ]T |
-3 m-r+rl+l' m-r+qﬁ2' ***r “m *

Then R is positive semidefinite if and only if the guadratic

form ZTlE Z is positive semidefinite., Fix gi = 0 and then
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]
Z;
T _ o, T _
2" R2Z =12, 23] Ry, 2 (6-45)
_3.
L
and (i) is necessary. For (iii), define
[ ]
A ner (0]
D = (6-46)
4 Dy,
| ]
with
A z T RY | (6-47)

8 = Dyy Dyy Ryy Dys Doy Ryp e

D is nonsingular because of the nonsingular 222 given by

From (iii) of Theorem 2-4, R is positive semi-

(6-42)0
definite if and only if
i ]
T.T T
Ry1~A7Rj,8 Ry2P22=4 Ry5D55
T _ iy
D" RD= +4 " Ry54 (6-48)
T T T T
D55R127D55R554 D3 2R5285,

is positive semidefinite. But
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o AT T _ o T T T
Rypm A'Ryy = Ryph + ATRy54 = Ryy = Ry5D55055R520750228:5
= & (6-49)
and, from (6-43),
[0]) {0}
T - — | -~
Ry2B22 = A B32B55 = RByoBap =] e Ry o
(0] I__
. R
(6-50)

where R is the last (r - ry) columsof R;, Dy,. Sub-
stituting (6-47), (6-49) and (6-50) into (6-48),

g_p [6] R - } n-xr

! (6=51)

o
P
o

"
S
-
=)

rl .

)g,T [0} [0] | } r-ry

3

- rl | r-rl

In order for ET R D to be positive semidefinite, ® must

i T
“W .

be the null matrix. If it is not, consider _Z,2 =0 and 2

satisfying 2; R + 0. Then

(6=-52)
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As Z, can be chosen to provide a negative value for

(6=52), the positive semidefiniteness of DT

_13 D fails.

Therefore R= [0] and (iii) is necessary. Alternately,

fixing 52 = 0 and Zy = 9, ,
T.T T
ZDRDZ=2Q2 , (6-53)

and (ii) is required.

Conversely if (i)-(iii) are satisfied,

232, (6-54)

and DT

R D are positive semidefinite as SB is positive
semidefinite; by Theorem 2-4, R is then positive semi-

definite,

For the loss function in (6-27), define

T

T
V(T:§o'to) = {L(gf(t;zo,to)) + U (gf(tzﬁo,to))g H(gf(tggo,to))}dt
to . (6=55)
and
_lim y _ =
V(§°' tQ) = aw V(t; Eo' to) ’ (6-56)

where ¢.(t; X , t,) is the solution of
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(6=57)

152
I
=
-~
E
+
|w
Ic
L
I

from (50, to).

Lemma 6-4:

Provided that V(X, t), (6-56), is well defined on

1, for an arbitrary (3_{0, to) € rR" x r' and « > 0,

R? x R
V(X tg) = VX, £o + o) (6-58)

that is, V(X, t) is independent of t.

Proof: From (6-56), the statement is justified by proving

that for each (§o, to) and a > 0,

lim
ca e V(T X, ) = V(s X, £ty + a)} =0,

(6-59)

or, for an arbitrary e > 0, that there exists a T > 0 such

that

V(s X, t) - V(s X, t,+ a)| =€, forall t>T.

(6-60)




8

As (6=57) is autonomous, it is known that[l3]

Selt + a, X, £, + a) = 8. (t, X, ) . (6-61)

Then, for arbitrary t > to + a, it follows from (6=55)

that
T+a
= (4.
Vit X, tg) (L2t X, £y + a)
't°+a

+ UT (0 (£5X b +a) )R U(2p(t;X ,t_+adlat

32\:00
™ta

.V(t;}o,t°+a) + [{L(gf(tgzo,to+a)
T

T ; - o
+ UT (e (X st ta) )R U(S (85X, +a)) bdE .

(6-62)

As L(X) and U(X) are continuous and zero at X = 0 by the
assumptions,i.e., (6-5) and (6-11), there exist My > 0
and My 2 0 satisfying

L | < 55 0 18 TR < uy (6-63)

and

@ < /gers—mr » 1 LIXI] < uy 4 (6-64)
max —
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where Amax(g) is given in Theorem 2-5. Since the origin
of (6-59) is assumed asymptotically stable in the large,

for the given (Eo' to), there exists a T, > 0 such that

¥
< e >
| 1egtts X o t, +a) || = Min(u,, uwy) , for all t = t_ + Ty
(6-65)
From (6-62~65), it follows that
|V(1;§°,to) - V(r;go,to+a)| =
rTHQ
S || neg(eix,,t*a))at]
‘T
rT+a
+ | 2?(gf(t;§o,to+a))B‘Efgf(tzzo,to+a»dti
‘1
S-z%'u'l'-z—i;'a=€,f0rallTZto+u+T1.
(6-66)
Thus (6-60) follows if
T& ¢ 44T (6-67) .
o l° - b

Accordingly, V(X, t) in (6-56) can be simply described as

V().
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Consider a class cf nonlinear systems given by

e

=Aax+BU+3B, F (X , (6-68)

that is, Efl(ﬁ) in (6-35) is identically zero and B,
given by (4-114). The controllability of this particular
class of systems can be established k; the application of

Lemma 6-5, based on Theorem 2-9,

Lemma 6-=5:

A system (6-68) is completely controllable if and only

if the system

I
h
>
1
+
|t
=

(6-69)

is completely controllable.

Proof: Assume that (6-68) is completely controllable,

Then, from Definition 2-11, for arbitrary Eo' 51 e RrR"

1

and tO € R™, there exists a control function lé(t) to

provide a solution

s £) (6-70)

-?-‘1_1: (t; 2{-0 o

satisfying
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'?;E(t; -}-(O' tO) = éig&(t' EO' tO)
Ntz o .
+ BUL) + B, Fo(8 (€7 Xo0 £)) (6=71)
v
and at some t 2 t
1 c
Consider a control function
9
WUit) + (6=73)
52(3%(1:;_}5(),1:0))
: for (6-69), i.e.,
X=2aX+BU) +BE, (2, (X ,t) , (6-74)

where 1] is (m - r) dimensional. Then the solution from

(56, to) is (6=70) and (6-69) is completely controllable
" if (6-68) is completely controllable.
The same arguments show that (6-68) is completely
controllable if (6-69) is completely controllable.

Thus, according to Theorems 2-9 and 4-3, the control-

NS

lability of (6-68) can be simply identified by the structure

of é(l,l) and 5(1'2) through the application of Corollary 4-1.
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Lemma 6-6¢:

Consider A, as defined in (6-32) with A given by /
(4-9) for v 4 2, and assume an arbitrary scalar function

"P(z{_l) of class C, and 59(9;) = 0 with X, defined by (6-28).

1
Then for
T
3 P (X%,)
- -—-a—z——-- _1'\_1 _}_(_ (6=75)

to be positive semidefinite in R", EP(ﬁl) must be

(i) identically zero if A X is from a completely

controllable system,

(ii) a function of‘only 5(1) defined by (4-116) if

él X is from an uncontrollable system.

Proof: Define

2 Pz
2 A =1 -
&'(-}-{-l) = _.5_2{:1__. . (6=76)
From Theorem 2-2,
9 A . -
-3_:13:; {.\_‘{_(?_(_1) } ' , (6-77)

must be symmetric. Then, using (4-9);
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AT = T AT v
-w (_}El)élzc_ = {‘\“7(1) (E-(-l) ’ E(Z) (.‘.'.l) r c°°y .‘.q.(v-]_) (51

o . 10 -
A " A

R(2,3)

X(2)

, X
-‘i(v-l.v)J =V

_ T AT
= =) X2, 1%y *+ ¥y BPA, 2 X2
AT " AT
W3y (BB p 3X(3) Feeet Wiply) 2oy, ) E )
(6-78)
where
\ I\

, S A - T
Wiy (%) = [Qpi-t-l(l{-l)' Wpy+2 By eeee sV oy (Xy)17 (6-79)

pi+2

with

i=1
J-.
(1) Assume v = "

2, Then it follows, from (6-28) and (4-116), S

that
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% =2
(6-81)
52 = 5(2) ’

If the system is completely controllable, A(1 1) = [0])
’-

from Corollary 4-1, and (6-78) becomes

_ _ AT
“’(1)‘“1’[[0] 12115(2) '

(6-82)

Ve Eay2a,2 %)

Therefore, if‘@}l)(x(l)) is not identically zero, 5(1)
can be selected to provide a nonzero value to w(l)(u(l)).
Then (6-82) becomes a linear function of X(z) with non=-
zero coefficients and can have negative values for a
proper choice of X(z) | Therefore w(l)( (1)) must be

identically zero. As P (0) = 0, then 83(_)2(1)) = 0,

(2) Assume a genefal case of v > 2. Then for (6-78) to
be positive semidefinite it similarly follows that

A s . . ; .
E(v-l)(é(l)) must be identically zero. According to the
symmetry in (6-76), it must follow that

A 4
aﬁ(i)(él) _ aw(v 1)(A )

3% = {01, for i = 1,2,...,v~-1 .
=(v-1) -—(1) '
" ' (6-83)

Therefore, w(xl) cannot be a function of X ( ~1) for the
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positive semidefinitcness of (6-78).

A similar process can be repeated for each .ubvector
i(v—l)' i{v-2)' cony 3(1) succeedingly. Then it is con-
cluded that, for (6-78) to be positive semidefinite,
giti)(ﬁl)’ i=v=-2,v=-3,...,2, must be identically zero and
N s A\
ﬂ(l)(zl) must he a function of only E(l)' say E(l)(ﬁ(l))‘
If the system is completely controllable, (6-78) reduces
to

AT «
" ¥y Ry 2,23 (6=84)

Then applying the results of (1), iz(l)(é(l)) must be
identically zero for the positive semidefiniteness of
(6-75).

If the system is uncontrollable, the same argument
follows, except, from Corollary 4-1, (6-78) reduces to

AT }

6.4 Ana{zsis of the Inverse P:leem

6.4.1 Hamilton-Jacobi Equation

Assume that (a) a specific loss function is given as

L(X) + UT R U » (6-86)
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for the inverse problem and (b) the resulting optimal
performance index function V°(§) is of class C,. The

Hamiiton-Jacobi ecuation becomes from (5-29) and (6-7),

$ o o T
_ Min oV m XY
0="y (gl BU+URD+ [3x] E@ + LX) .

(6~-87)

As R is positive definite by the assumption, the Hamiltonian
is normal from Definition 5-1. Thus, its minimum at each

X € Bn is uniquely provided by U satisfying

o]
2 2y, T T
0= (g1 Bu+URY
oT
- g3 B2, (6-88)

from (5-33). Identifying this U in a closed form as a
function of X, the Hamilton-Jacobi equation is realized

by a feedback control law such that

O
uR = -3 R 3. (6-89)

Define

R
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~Y ~J
Rii Rz
T AYE ' (6-90)
r~ ~J
Ri2 Ry

. ~NJ
where the dimensions of each Ri' are the same to those

°f.Bij in (6=36). Then it follows,tBRl that

~ -1 rT

Ryp = [Byy = R12-22--12]

X = -p~% IR S IS | )
Riz = "RBy1R1p [Rpp = RppRy1Ry0) 7 (6=91)

~J m 1
Ry = [k RI,R11R;1 70

For B given by (4~99), (6-83%) can bhe reduced to

o)

U0 = - 3R, f%—ﬁ;‘
(6-92)

oy — 1~ av°

Since'ﬁ&z must be nonsingular to insure the positive

definiteness of R from Lemma 6-2, it follows from (6-91)

that
AT | _ 1
[3§2] = =2Ry U (X) = =2[Ry, = Ry5Ry1Ry51U, (X) (6-93)
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and

R71 R u_(x) . (6-94)

l

Substituting (4-21), (6-30), (6-92), (6-93) and (6-94)

into (6-89),

. Ry By,
0 = 0,0,00.0'[—1“_] U(X) + U' (X) U(X)
8%’ == = = |RrT R,,| = =
f2 222y
1
E, ()
T ol
M LS Ll + L(X) (6-95)
21 22 F, (X)
T

or
R11R;51F, (X)

T R RS -
LX) = Ug (B [Ryy = RIHRIIR),10(0) + 2U5(X) [Ryy = ByopRy Ry,

o T
B B . (6-96)

6.4.2 Concerning Vo(g)

Since Vo(ﬁ) is a scalar of class C2, the functional

From (6-38),

22v°(x)
matrix Y ¢ is symmetric (by Theorem 2-2},
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awi(ﬁ) _ awj(ﬁ)

A : 4., , P4 =
wij(ﬁ) = axj = Bii = uji(ﬁ) , for all i,j 1,2,...4n,
(6-97)
and, with (6-92), it follows that
2,0 T 2,0
LI 3°V
I A S A S (6-98)
9%, 0%, 9%, 8%
220 T 2,0 al_(X)
)y PR T A e o'
Bingy T BEpgy) T 2 RaRRit,) r)
(6=-99)
and
2,0 T w20 » U _(X)
3 V - 5 V = ) 5,‘;,:5— ,A-l,k =D
{552522} - ‘agzsggl" "2{Ry57 0 2R 1 R 5] [“335‘] .
(6-100)

From (2-10), wi(é) can be calculated from its gradient as

X
’éwi(z(_) T
Wi(}_(_) = [—-gz—] dx
0
rxl X5
= wli(YIJO'QOQO)le + [ Wzi(xl, 2'0...0)dY2 + oo
"o o
[xn-r
+ wn—ri(xl'x2""'xn--r-l’Yn-r'o"’o)dYn-r
‘o
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] xn~r+lr
+ wn"r"'li (xlpxzpo . :’xn-r'Yn"r""l',o'.'. .O)dvn-r"‘l 4 see

-

o ' ‘ L.
x T -7 | Vs
‘ n . ’ 2 '
« / ’ :
. - [ . ) '
. wni (xl'xzpo o0 'xn_l'Yn)dYn L) . (6"101)
o , .

-~
- ~

Let ,conveniently describe the sum of the first (n-r)
integrals (6-101) as wi(ﬁl), a function of X only.
From (6=97), the last r integrals can be calculatad

'with wij(§), instead of‘wji(g). Thus, from (6-98),

"

i r :
w | s
1 s
av® _ | ¥2& |1 Wy (X))
a""l | . [} '
wn-r(_X-)J wn-r(il) |
22
Yner+l l(ﬁ)' Yn-r+2 1(5)' o 'wnl(ﬁ)
Ynerel 2E) e Wy pup (X e e e e o (X)
+ [ ] ‘ e dX
. | . 22
Yn-x+l n-r(ﬁ)'. . . . "™V n-r(ﬁ)
Jo * ' b
.9}
A~ : : 82\70 T

- o
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.}52
3U (X) T ’l

= -2| [—gy—1 [By~Ry,Ryy

Y
7 R;,18%, +W(X)) . (6-102)

Then the gradient of Vo(g) becomes, from (6-93) and

(6-102) ’ r -
3v°
(o] ?-{-1
[a_v__] = .
73X .
av°
3X
{l‘.z (x)
23U, (X)
T -1
2 [-—-a—}-q-] [R22 —llelRlZ]dX + (Al)
o ' '

(6-103)

_ . S
2[Ry, -12 Ry 1Ry218, (X)

and the Hamilton-Jacobi equation (6-96) becomes

. ol gmlo ST =1
L(X) = U, (X) [Ry, R],R R)1Ryp1H (X) + 202 [R,, “Ry5R11R121Ey (X)

#

%
80 (X) 7 T ol g T

(6-104)
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6.4.3 Principal Theorem 6f the Inverse Problem

With the preceding results, the inverse problem can
be investigated to determine combinations of L(X) and R
to satisfy the Hamilton-Jacobi equation (6-104). The

fundamental result can be stated as the following.

Theorem 6-1: The Inverse Problem.

For the inverse problem as described in Section 6.2
such that the optimal performance index function is of
class Cz, a performance index can be optimized by the

given U(X) if and only if

(1) Uy = -RjiR U 0 (6-105)
-1, 8y, (X) ,
(18)  [Ryp=R)pR] 1Ry =% (6-106)

is symmetric, and

(iii) there exists an (n - r) dimensional vector valued

function w(X,) of class C, and insuring symmetry in

RIS '
' 23U (X) T 3W(x ) ™
9 - -1
-2 g3t g 1 [RyymRipR] 1Ry p1880) + o) .
21 2 90Xy
© ' (6-107)

The corresponding Vo(i) is given from (6-103) as
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X
o7
Y@ = | 351 ax . (6=108)

o

Proof: The necessity of the conditions has been shown
by the previous work of the chapter. That is, (i) comes
from the absolute minimum condition of the Hamiltonian
(6-94) ., The symmetry in the functicial matrix of (6-100)
corresponds to (ii), and (iii) follows from the Hamilton-
Jacobi equation and the symmetry in (6-98), using (6-102),
Acéording to Theorem 5-1, the sufficiency bf the
conditions can be proved by showing that the existence of
a unique function 'ﬁ(ﬁi) satisfying the conditions of the
theorem can exist for each combination of L(X) and R as
the Hamiltonian is normal. Assuming the contrary, that
there exist two different functions, say ’ﬁ;(ﬁl) and
'@L(zl),satisfying (iii) for a combination of L(X) and R.

Necessarily, from (6-103) and (6-96),
~T _~T, . -
ga(§1)21(§) = yb(hl)gl(é) . (6-109)

Describe the resulting optimal performance index functions : i

as Vg (%) and Vp(X). Then from (6-103) and (6-108), it

follows that
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0O -— o LY S -

where <§(_>_{_l) is such that
X1
. m
Ay ~ <
P(xy)) = | (<w (X)) + ‘w (X)) ax, . (6~111)

o

This is not identically zero by the contrary hypothesis.
However P (0) = 0 as V:(g) = Vg(_(_)_) = 0, Thus there

exists a specific (n - r) dimensional vector

~_)£ = [Ll'-X-Z"...)Ln.-r]T satiSinng
f?(ll) = k, a nonzero constant . (6=112)

Consider the hypersurface EPK§1) = k in R® X Rl which
does not include X = 0. However, consider the time deri-
vative of 83(51) governed by the synthesized system

equation., This follows from (6-111l), (6-34), and (6-109),

> Pz oT
P(x)) = [—5x—1 {E(X) + B U(X)}

B0 + Uy (X)

- %z + @™ o

i
o

(6-113)

~ . ~ T
[- ¥ (%)) + %, (X1 Fp(X)
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from (6-109), This implies that every motion of the syn-

thesized system from points on S9(§l) = .k stays on this

hypersurface and can never approach to origin. This con-

tradicts the asymptotic stability in the large of the e
origin of the synthesized system, Lemma 6-1 and assumption

(1i) of Section 6.1.

6.5 Discussion

6.5.1 On the General Method of Solution of the Inverse

" Problem

A solution to the inverse problem is obtained by
determining all combinations of L(X) and 3 satisfying the
conditions of Théoxem 6-1. ' R must be determined to meet
conditions (i) and (ii) with respect to the given U(X).
The corresponding L(X) are then determined from (6-104)
by choosing various’ﬁjgl) satisfying condition (iii).

If no positive definite symmetric R exists for ﬁhe given

U(X), then the U(X) cannot be an optimal control law.
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6.5.2 Dependency within U(X)

As gd(ﬁ) is dspendent upon He(i)' (6-105), there
can exist at most r independent elements in an optimal
feedback control law, where r is the rank of'@. If
ms=r, i.e.,!E is full rank, condition (i) of the theorem
is nonexistent because Qd(ﬁ) is reduced to dimension zero.

In Thau's problem statement, Section 5.3.3, the rank
of @_ is not mentioned. If it is assumed to be either
full rank or less than full rank, an additional condition

corresponding to (6-105) must be given.

6.5.3 Consideration of the Variety of L(X)

For an R satisfying Theorem 6-1, a variety of L(X)
may exist for which the given U(X) is an optimal feedback

control law. These are associatedwith various pvi(:‘gl).

Corollary 6-1:

For an R satisfying Théorem 6-1, assume an La(z)
can be found from (6-~104) as an optimized performance
index for the given U(X). Let the resulting optimal
performance index function be Vg(ﬁ).’ Then an L(X) can

also be found from (6-104) for R if and only if
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2 X)) T
[—-—53{—1——‘] F, (X) (6-114)

L(X) = La(?j) -
where §>(§l) is an arbitrary scalar function of class
C, and ¥ (0) = 0. Necessarily, the resulting optimal

performance index function is
o 0,
V(X)) = v (X) + ‘:P(zi_l) . (6=-115)

Proof: La(ﬁ) corresponds to 'E;(zl) in (6-104). Then from

(6=-96), it follows that

3 @ (X,)
T 0K,

=1

V(X)) =W (%)) + [ 1, (6-116)

and the assertion follows directly from Theorem 6-1l.
Possibilities for a nonnegative L(X) can be con-
sidered by trying various Ep(gl) in (6-114). In the next

chapter, the nonnegative property of L(X) is examined in

some detail under additional problem assumptions.

6.5.4 Uniqueness of L(X)

Consider the case of n = m = r in (6-2),'(6428) and
(6-29). Then the dimension of X; is zero and the general

method of solution stated in Section 6.5.1 can be simplified.
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Condition (iii) of Theorem 6-1 is nonexistent because
'gkﬁl) is reduced to zero dimension. Thus, a corollary

follows directly from Theorem 6-1.

Corolla:l 6-2:

For the inverse problem, if n = m = r, then a unique

L(X) corresponds to each R and, from (6-104),

L(X) = U(X)R U(X) + 20T (X)R F(X) . (6=117)

6.5.5 Linear Control Law

Let U(X) be specified as a linear feedback control

law,
X , (6-118)

where K as an n x m matrix decomposed as

: ;
Byp Ky | oer

K 2 . (6-119)
Kop  Eoo | } r 3
L d .
—— —
m=-r ) of

Thus by (6-29), (6-118) is
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o, LT
Ug(X) = =Kp %) = K%
(6-120)
.. T
U () = -KppX) - Ky,
v
and
U, (X) -
——3_41'— 212
(6=121)
83U, (X) T
’—"“ax2 K2

The conditions in Theorem 6-1 can be identified directly

with these submatrices.

Assuming a linear feedback control law (6-118),

(6-104) becomes

- -

K
—-12 l

T 2o
L{X) (Ryp=R1,E11R10) (K1p EpplZ

i
14

Ks2

J

—~12

| -1,
- 2X [Ry5-R -12 Ry)1R151E5 (X)

=22

T

- 2%, [Rzz -12-11 Ry 1K] oF; ()

- WX E (X0 .

(6-122)

:
&
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For the equivalent statement of condition (i), by (6-105),

it can be shown from (6-120) that

oY
(1)
S | T
K11 = B1%y0Kys
' (6=123)
[ S | s
Ka1 = B11Ry0%55 -
Conditions (ii) and (iii) follow directly, i.e.,
(ii)
T -1 T
[Ry2 = RypRy1Ry51K5, (6-124)
is symnmetric, and
]
(iii)
3w (X;)
(] (6-125)
21
is symmetric.
From (6-118) and (6-93), it follows that
avl _ 2(r.. - R ey kT KT . (6-126)
5%, =22~ =l2-11-12 fel2 =220t
Therefore
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2,0 2,0 o

0V - °V T I S | P
X%, - Kexy 2[R T RpRiitplh,

2_0 |

oV T =1 p
s = 2[Ry5 = Ry,R;1Ry,1K; )
£94, 222 T 2122112127222 (6-127)

220 _ Hix))

9%, 0%, 9%

Consequently, it follows that

[ (0] K. [(R..=RE.R~Im. 1]
K12[Ry5"R15R138y5
vo(x) = x° X+ Q%))
nl =1L T _nT -1 T
[Rya=RyoR11R21K 0 [Rpa=RyoRy1Ry51K), |
(6-128)
where
X
_ | -
P(x)) = [ W(xax, . (6-129)
(o]

From (6-128), the structure of VO(Z)‘is a sum of an

arbitrary scalar function fP(El) and a guadratic form in
§ldetermined by K and R. Ifn=m-=r, then - only one
Vo(g), a quadratic form; can exist for each R, according

to Corollary 6-2,
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Considering the results of Suga for a linear control
law, Section 5.3.2, from the viewpoint of the above

results, the symmetry in (6-124) corresponds to that of

'ﬁ':(t.) g(t) @(t) in Theorem 5-3. It is interesting to

note that the structure of $°(g, t) in (5-56), i.e., a
quadratic in Y determined by the given V(Y plus an
arbitrary function, is invariant for the general non-
linear system, (6-128). Thus the flexibility of L(X) due
to the function 'Ef_(_}_{_l) corresponds to that of /f4(3_{_, t)

due to T(Y, t) in (5-49).

6.5.6 Nonnegative V°(§) for a Linear Control Law

For a linear control law, a definitive statement is

possible for the sign definiteness of Vo(ﬁ).

Theorem 6-2:

For a linear feedback control law (6=118) in the inverse
problem, the resulting Vo(g), (6-128), is positive semi-

definite in R™ if and only if

(1) the last r - rl columns of R _12 g9 are null, r,

3 ~1
the rank of [5 R12R11R12], and

(ii) a function
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~ ,
?.(.1 Q ?.".1 + 9)(?.{.1) | (6-130)

L ] £ ] L] L [ ] » () n-
is positive semidefinite in R r' where

O 3 T o T T T

©2 & )R D D3R KT,D0D55R K], (6-131)
R. 2[R, - RIRIIR,,] (6-132)
B, 2[Ry = RIpRIIRyp)

and D _22 is an r x r nonsingular matrix for the congruent
transformation

-

I (01]

1 ,
2T p=lp
Ry - 1K = . (6-133)
D52 R)2R11R12 %2207 (0] (0]

hey

Proof: For (6-128) to be semidefinite, Bo must be positive

semidefinite, from

(o) T T T, .T
R, XD = KR KK, - (6-134)
Then the matrix D,, satisfying (6-133) exists, from

Theorem 2-4. Define a nonsingular matrix -

-

I [0]

o
I

(6-135)
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and a function

Y@ =ven , (6-136)
e
where
= T T | T T Cam
A= 22221250522222222§OK12 . (6-137)

Then
(a) V(o) =v%(0) =0,
(b) if ﬁb(ﬁ) is positive semidefinite, then

vx) =¥ 2o, for all x € R,

and (¢) if Vo(z) is positive semidefinite, then
~Y,
vo(x) = V(D X) 20, for all X € R" .

Thus Vo(g) is positive semidefinite if and only if'ﬁo(ﬁ)

is positive semidefinite. Therefore, from (6-128), it

"follows that
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[ Ay 7
S (0] R
Vo x =x | 00 1 0] | x+ 50(51)'
1
BT o (o)
- Q x + 21 [0 Ry,
1 (07]
£ xT |2 X, + -
X5 X, Pxp) (6-138)
[0} [0]J

where E@ is defined by the last r - ry column of KIZBODZZ.

Applying a similar argument as in Lemmas 6-~3 for (6-138),

the necessity of the conditions can be justified. The

sufficiency is apparent from (6-138) if R = [o1.

-

Theorem 6-3:

For a linear feedback control law (6-118) in the

inverse problem, the resulting VO(E), (6-128), is positive

4

definite if and only if

. T . .y .
(1) R K22 is positive definite, and
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N T, =Ly T
() KR KGR ELE + P Ep) (6-139)

. -1
andl_lo- RRR]

n=-xy
[Ry2"R12R11R15

is positive definite in R

Proof: The necessity of (i) follows directly from the

positive definiteness of v° (X) for X = 0 or

vO (107, X51) = X)R K7,X, . (6-140)

For the necessity of (ii), define

Tn-r (o]

lic>

D, . (6-141)

- (k=1) gT

22’ K12 r

T
The inverse of R _22 exists and is symmetric by (6-124).

Then with the same argument as used in the proof of
Theorem 6-2, Vo(ﬁ) is positive definite if and only if

Vo(glg) is positive definite. It follows that

- l . b

—12—2 2-130512 (0]
vop.x) = x* | X + P
== = (0] "REKI| T =1

= -xTr. x~lg kT T, T
= -XyR, K- R K + P(x) + IR KLX,

—1—12 22—0—12 l 2

(6-142)
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and (ii) is necessary. The sufficiency of the condi-

tions follows from (6-142).

The nonnegative characteristic of Vo(ﬁ) is completely
established by the above analysis. This is in cdntrast
to Thau's partial consideration of the topic, as discussed

in Section 5.3.3.

6.5.7 Necessity of Control Action

The problem of whether optimal control can exist for
"No control action" for a nonnegative L(X) in the per-
formance index can be considered through the corresponding
inverse problem. For the class of systems given by (6-68),
let U(X) be identically.zero, that is, the equation of

the synthesized feedback control system is

Xx=ax+B, F,x . (6-143)

Also assume that the origin of this system is asymptotically
stable in the large. For v 2 2, substituting U(X) = 0

into (6-104), L(X) for the optimized performance index is

X . (6-144)

L(X) = - ?lT.(.}El) 3}
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Then, from (6-136) and Lemma 6-6, for (6-144) to be positive

semidefinite,

(a) ?E(ﬁl) must be identically zero, if the given

system is completely controllable, or

(b) W(X,) must be a function of X only, if the

given system is uncontrollable, say 'Ejﬁ‘l)).

Subsequently, (6-144) reduces to

By f
( 0, if the given system is completely controllable,

L(X) = 4 L(X(yy). if the given system is uncontrollable,

where the state variables in z(l) are the

uncontrollable state variables, as discussed

L in Section 4.3.3.

o] o
If v =1, then [2%] = [2Y] = 0 from (6-103), and
L(X) is identically zero.
Observing these results from the viewpoint of the

forward problem, an important characteristic of an

|*i

optimal feedback control system is evident,
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Principle of Necessary Control Action:

Consider the optimal regulator problem such that
(i) the system is given as (6-68),

(ii) the desired final condition of the system is

X =0,

(iii) the pexformance index is

{{L(_)_{_) + U'R Ulat ,
o

where R is positive definite, and L(X) is a function of
the controllable state variables and is positive semi-
definite, then some control action is necessary for

optimality, i.e.; the optimal feedback control law cannot

be identically zero.

6.5.8 Asymptotic Stability of the Synthesized Feedback

Control System

The feedback control law U(X) by assumption (ii}
of Section 6.1 requires that the origin of the synthesized SRS
system be asymptotically stable in the large. No definitive

criterion exists to verify this, except for linearly

synthesized systems. Practically, if R, L(X) and V°(§) are
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determined according to the procedure of Section 6.5.1
for some given U(X), it is then necessary to check the
synthesized system for asymptotic stability. It may

be possible to do this by applying the Liapunov direct

method.

Theorem 6=4:

Let R, La(ﬁ) and Vg(ﬁ) be calculated for some
U(X), following the procedure of Section 6.5.1. If
7
there is a scalar function SP(EI) such that it is of

class C, satisfying
0,y A O ~ |
V(X)) = Vaig) + EP(z{_l) ' (6-145)

and Vo(g) and

2 Pxp T

T
L@ + U @R UE - T—Hz=1 £ (6-146)

are positive definite, then the origin of the synthesized

system is asymptotically stable in the large.

Proof: From Corollary 6-1, L(X) and Vo(g) in (6-114)

and (6-115) can be determined as a function of R and
U(X). Since the time derivative of (6-145) as governed

by the synthesized system is
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€0, r _ A 00y 4 O IR, :
VX = v +PxD) = -L (X-UT (DR U(X)

3 ® (X)) T
. P (X

———;ZI——] El(z) ' (6-147)

using (6-103), the proof follows directly from Theorem 2-8.

This theorem provides a sufficient condition only;
accordingly a failure of the conditions does not neces~
sarily mean that the origin of the synthesized system

is not asymptotically stable in the large.

6.5.,9 Miscellaneous Comments

As a generaiization of the inverse problem first
considered by Kalman (Chapter 5), Theorem 6-1 and the
succeeding developments of this chapter are shown to
include results of other authors. In addition, this work
reveals new important characteristics of optimal feédback
control systems, i.e., Sections 6.5.2 and 6.5.7. Moreover

these results are presented very compactly as a result

of the developed canonical form of Chapter 4. e
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Example 6-1:
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Consider a system given hy

r. " I y [ ) [ T [ 1
Xy O 1 0 31 0 0 0 .
%,] = [0 0 of |x,| + o[+ |1 of|*? (6-148)
u
. 3 2
hx3J L0 0 2- -x3- x3J bO l.
and assume a feedback control law
(o |
. x .
uy (X0 -1 -2 o] |t 0 |~
uz(ﬁ) 0 0 -1 -x:,’;'j
-3 - Lx3
As n=3 andm=1r = 2, it follows for the canonical form,
from (6-28~30), that
X)) = %10
T (6=-150)
Xy = Ixar %517
gd(i) nonexisting ,
(6-151)

()

U
—_

4

u(x)
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and 0
CF.(X) = .
-2 ‘= 3
2x3-x3
Thus,
[:gel [a:}‘(g_{,) a:i(:‘g) T -1
-1 1l 1l
and i
3u, (X) du, (X) :
age ax2 ax3 -2 0
[-53-5] " lou, du,, (X) "o -1-3d
22 2 X3
axz ?x3 -
o

fi>

0]

Substituting (6-149+155) into (6-103) and (6-104),

[

{aV
oV
aXx

_lav
3%,

3x3

%

o

, ~s
[lf O]B d§2 + w(xl)

(6=152)
'
T (6=153)
(6-155)
.
(6-156)




2)9

and

xl + 2:{2

- 3
L(X) = [xl + 2x2, Xq + x3]§ 5. + 3x3
3 3

X
22
- 2{[ [1, 0IR dX,} x, = (W(x)}xy, ,  (6-157)
o .

= - -1. 7T _ ,
where R = R,,-R;, R, R;, = R,, because

B is of f£ull rank in
(6-148). Referring to the statement of Theorem 6-1,

(i) is nonexistent and the symmetry for (6-108) is
satisfied since X is one dimensional. Consequently, for

the system (6-148), a performance index
l{L(_}g) + UTR U} dt (6-158)
can be optimized by the feedback control law (6-149)

if and only if symmetry exists for

J-2 0 ] -

I

¢ (6~159)
0 =-1-3x%

and ’v?(xl) is of class Cl.

Arbitrarily choose ’v\f(xl) = 2xlﬁ and
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R = , (6-160)

which satisfy the above conditions. Then (6-156 and 157)

become
d -
2xl + sz
ave. _ ~
[sz—] = 2xl + 4x2 (6-161)
3
2x3 + 2x3
and
.2 2 2 4 6
L(X) = 3 + 2x1x2 + 2x2‘+ 5x3 + 8x3 + 3x3
_ 2 2 2 2 4 -
= (xl+x2) + X5 + x3(5+8x3+3x3) . o (6-162)

From (6-161) and (6-108), the optimal performance index
function is

.7 X

+ 2x.X, + 2x2 + x3 + 5

@ = X 1%2

= (xl-i-xz)2 + x5 + xg A (6-163)

From Corollary 6-1, the performance indices from (6-114),

that 1is
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- 2P (x,)
2 2 2 2 4 1l 2 2
{(x1+x2) + x5 + x3(5+8x3+3x3) - {—_EEI_'}XQ +uy o+ uz}dt,
t
o

(6-164)

can be optimized by the feedback control law (6-149).

The op%imal performance index function from (6-115) then

becomes

4
O vy W2 L2, .2, %3P
VO(X) = (xy+x,)% + x5 + x5+ = + P(x;) , (6-165)
7.4 3
where ¢ (x,) is any function of class C,, e.y., X; + X .

To check the asymptotic stability of the synthesized

system, combine (6-148) and (6-149) for

[ 2 ] ] ]
*1 X5
X, = -Xy - 2x2 . (6-166)
0 3
Xy -3x3 - 2x3

o e By _ . .o « s s n
Then V' (X) for fP(xl) = 0 is positive definite in. R

and it follows, from (6-164), that

. oT ) v ’
VU031 (F(X)+B U(X) )} = ~2( (xp+3x,) 243xa+x] (3+5x5+2x3) )

(6-167)
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P P R SR AP ML S ST R4
. : b R T P e T Faa o

222 .'

which is negative definite in R®.: From Theorem 6-4, the

origin of (€-166) is asymptotically stable in the large.

Example 6-2: Consider a system given by

2 u
2 l
3 + (6-168)
xz-x2 0 1 u,

x.
t—l
1
»
-
o
"
N
1
»

x'
1
»
-
+
o]
N
i
]

and assume a linear feedback control law given by

w @] -1 o] [x
U(x) = = , (6-169)

u2" (X) 0 -1 Xy
J ". J -

As n = m=1r, it follows for the canonical form that

pSY is nonexistent and §‘= X5
oU -1 0
['a'z] = 0 =1| * (6-170)
av° 1
- CE 2 0
51 = | = R X , (6-171)
o) _— -
- oV
%, 0 2
2 .

and
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--x -2x +2x3+2x xz.I

1 2 1 172
L(z{_) = [xl' le B_ 5 3 ’ (6"172)
L2xl-x2+2x1x2+2x2

from (6-106). vArbitrarily assume

1 0
0 1
U (X)

Then the symmetry of 5{—%&3;] is satisfied. From

Corollary 6-2, a performance index given by

{L(X) +u
Jto

2

5 :
1 + u2} dt (6-174)

can be optimized by the linear feedback control law

(6-169) only if
o (2,2 2,.2,2 _
L(X) = (x1+x2) + 2(xl+x2) . (6-175)
Then the Optimél performance index function becomes

V(X = X+ x (6-176)

2 [

To check the asymptotic stability of the synthesized

feedback control system, calculate
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O
@ = BT (B +B U = -(x] + x2)° (6-177)

from (6-168), (6-169) and (6-171). Since V°(X) and
-\.70(3\:)- ar2 positive definite, the origin of the synthesized

system are asymptotically stable in the large,

7
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Chapter 7
THE INVERSE PROBLEM OF

LINEARLY SYNTHESIZED FEEDBACK CONTROL SYSTEMS

The inverse problem considered in this chapter is a
subclass of the inverse problem of»the previous chapter.
This subclass is identified basically by the additional
assumption that the synthésized‘feedback control syétem is
linear. The precise statement of this problem, called
the modified inverse problem, is given in Section 7.1.
After a lemma is presented in Section 7.2, the results of
Chapter 6 are restated for the specific subclass considered
in this chapter. Finally the nonnegative property of the
loss functions in an'optimized performance index is dis-
cussed. The purpose for considering this modified
inverse problem is to establish more general conclusionsg
about optimal feedback control sjstems synthesized as

linear systems, than have been presented in the literature.

7.1 Statement of the Modified Inverse Problem

The modified inverse préblem considered in this
chapter has additional assumptions to those stated for
the inverse problem. In addition to assumpfions (L) =(1iv)
in Section 6.1, it is assumed for the modified inverse

problem that:

225
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(i)' For the system equation given in the canonical

form (6-7),

(a) ) is of full rank, i.e., m = r,

(b) E:l(g) is identically zero, and

(c) E:z(ﬁ) is an r-dimensional, vector valued, finite

degree polynomial function given as

F,x =F2@ + P+ oo+ BV
(7-1)

th degree homogeneous and

where each -Ez(i) (X) is i
Eféw)gg) is not identically zero. (If a linear system
is given, it is convenient to set'w = 1 in (7-1) by
idéntifying AX = Efélj(g) in (6-35).) Thus the system
(6=-7) can be written as

k=ax+BI(E,(0 +U),

S

or, from (4-192) and (4-106),
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", - - | 1M
X1 2a,n 2,2 £(1)
X(2) Ac2,3) £(2)

'] , | 'A'(V"lrv) ®
2w | Riv,1) d * . ¢ f‘-(v,v) ] Z(v)
]
[0] fo] ‘
+ + g’, all other entries zero,
(7-2)
EZ (é) l' Ir _|

which has the nonlinear functions in the last r equations
corresponding to those equations which also have independent

control variables.,

(ii) For U(X) of (6-9)
ux = -kT x- F @ , (7-3)

where K is an n x r matrix such that
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[ T -
Ko gyn-r
E = (7“4)
Ko | } =

to provide negative real parts for all eigenvalues of
[é.- g_g?]. The synthesized feedback control system,
therefore, is the linear autonomous system

k=(2a-BKIX2n

3¢

(7-5)

and the origin is asymptotically stable in the large.
If the system (7-2) is uncontrollable, then all diagonal
elements of A(l 1) must have negative real parts for

- [ 4

asymptotic stability, i.e., state variables in X(1) behave

as 2= 21,1 E)-

(iii)' L(X), given by (6-27), is restricted to the form

Lx) =@ + 1@+ v, (-6

th

where each L(l)(ﬁ) is i degree homogeneous and ¢ Z22is

a given integer.

7.2 Fundamental Lemma

Lemma 7-1:

The form of the optimal performance index function
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vo(z) for the modified inverse problem is

W = v v o+ L0 B (g,
(7-7)

where

>

£ = max(o, 2¢y) , (7-8)

and ¢ and ¢ are given by (7-1) and (7-6).

Proof: From (7-3) and (7-6), the loss function with a

feedback control law is

L(x) + UTRU =1@ @ + 3@ o+ ...

+ 10 (®) + (k"x - FL01T R-K"X - £, (0)

b (@Dyxy 4 [Py 4+ s+ (Bx)

e

LX), (7-9)

where each ifl)(z) is ith degree homogeneous. Assume a

solution for the synthesized system (7-5) for an

~arbitrary (X5rt5) s

-?-f(t; -}-{O' to) = e . (7"10)

%
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The value of the performance index from (§o, to) is then

B A, (t-t )
Lo I - -l (o] 7
vO(x,) = ] [ (e X )dt . (7-11)
to
But the integral
(t=t )
i) , =K o) .
J J;( )(e _o)dt , for 1 = 2,3,.04,8 ,
t (7-12)
. .th . . . .
is.1i degree homogeneous in §° because the integrand is
. th o (i)

degree in X0 Defining (7-12) to be V (50), the

lemma is proved.

7.3 Solution of the Modified Inverse Problem

According to the assumptions of the modified inverse

o
problem, %%— , (6-103), and the Hamilton-Jacobi equation,

(6-104) , are reduced to

X2
i - T aF,(x) T
av°| |2K1oR X5 + 2 [-—-a-fl——] RdX, + w(xl)
aX o
[_aVo]: = =
oX o} v
- av T
3%, 2R KX F

(7-13)
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and

T T T, AN S
XRKREKX = 25K R X = 2XR Ky oiyX

L(X)

%) R, A X -Whx) A X . (7-14)

Then Theorem 6-1 can be restated as follows.

. Corollary 7=1:

For the modified inverse problem, a performance

index j (L(X) + g? R U)dt is optimized by a given U(X) if
%
and only if '
- 3f', (X)

X5
is symmetric,

(ii) there exists an (n - r) dimensional vectcr valued

function ?j(g(_l) such that.

@ W =¥MaEp + ¥ xp o+ 27V,
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th

where each ".\'_!(J‘) (3_{_1) is i degree homogeneous and ¢ is

given by (7-19),

%
) 9, (%) W (X))
(b) 2 -a—x-i( (- BXT-_le-}-{-Z} + [-—a')-(-l--] (7-17)
o]

is symmetric.

Proof: As m = r, (i) of Theorem 6-1 is nonexistent.

The required symmetry of (7-15) and (7-17) follow from
the requirements on (6=106) and (6-107). Since the
highest and lowest degrees in Vo(ﬁ) are 2 and & respec~
tively from (7-7),'[§¥S] must be the sum of homogeneous
polynomial functions gith degree from 1 to (& - 1l). As
Efz(g) is also a polynomial, from:(7—13) condition (7-16)

must be satisfied.

Corollary 7-2:

Let R and La(é) be calculated for an optimized per-
formance index for a given U(X) and a’ﬁ%(ﬁl) as (7-16),
and let V:(E) be the resulting optimal performance index

function. Then, a performance index with R and

L(X) = L_(X) - '[a&) ('}51)1T A, X (7-18)
- a‘'=— agl 1l —
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can be optimized by the same U(X), vhere §>(§l) is an
arbitrary Eth degree polynomial function from degree 2 to
(¢ - 1). Then the resulting optimal performance index

function VO (X) is
vOUX) = Vo(x) + Pxp) . (7-19)

The proof follows directly from Corollary 6=1 with the

additional assumptions given.

Consider ¢ = 2 in (7-6) and the given system is linear,
i.e., Efz(ﬁ) in (7-2) is identically zero, and ¢y = 1.
Then the control law (7-3) is a linear control law and
the optimal performance index function V°(§) is a quadratic
form, from Lemma 7-1. Necessarily "i‘r’(g(_l) of (7-16) is

a linear function of X, say

D>

.?‘i@l) = 2P

where Ell is an (n-r) x (n-r) symmetric matrix according

to (iib) of Corollary 7-1., Therefore, (7-13) 1is

B I 1
3v° Ei1 RSP % :
[s%) = 2 0 (7-21)
- T T
RE2 R %22 %
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which results in

[ T
vo(x) = x° x2xTrx. (7-22) ,
T T

Substituting (7-20) into (7-14), L(X) can be written as

a quadratic form,

i -
: o 217 212] [ X
L) 2 xT g x4 x] x5 . ., (7-23)
Q 0 X
212 Q22| | 5
where
11 7 KjaR Kyp = KjoR By = BoyR Ky = BBy = BBy
T T T T
Q12 = K1oR Kyp = B R Kjp = KyoR Ayy = B3K35R = ByyBy)
- T _ R SO SR T
Q5 = KyoR Ky = KyaR Byy = BoaR Kyp = R EjoaByp = BpKyoR

(7-24)

and A;; is given in (6-32). Then Corollary 7-1 can be

restated for this case.,

Corollary 7-3:

For the modified inverse problem with the given system
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linear and L(X) restricted to a quadratic form, a perfor-

mance index is optimized if and only if
(i) L(X) is given as (7-23 and 24),
(ii) 5_532 is symmetric, and

(iii) Ell is symmetric.

Then v°(§) is reduced to (7-22).

The sign definiteness of L(X) and.vo(ﬁ) can be identified
from Q and P, according to Lemmas 6-2 and 3. Thus
Corollary 7-4: The V°(X) of Corollary 7-3, (7-22), is
i s s . T _ -1,T
positive definite if and only if R K,, and P11 KioR K50K7,

are positive definite.

Corollary 7-5:
The L(X) in (7-23) is positive semidefinite if and
only if in (7-24)
(1) 9,5 is positive semidefinite, say of rank rye
(ii) the last r - ry columns of 912922 are null, and
(iii) Qyq = Q1,CY.Cy50,4,Cr.C..0 ., is positive semi-
=11 212=22=22=222=222=22=12
definite, ‘

where 922 is an (n-r; x (n-r) nonsingular for the congruent

transformation
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b o
T 1
€2 25 555 = . (7-25)

Corollary 7—6:

The L(X) in (7-23) is positive definite i’ 'd

only if in (7-23)

(i) 922 is positive definite, and

. _ -1.7T .
(ii) 9,; - 2,,92,,9;, is positive definite.

Thus the inverse problem that Kalman originally
presented has been generalized. While Kalman considered
a controllable, single input, linear svstem with a linear
control law, the results of this section are also
applicable to uncontrollable, multi-input and not necessarily

linear systems with a more general control law.

7.4 ©Nonnegative Loss Function of the Optimized Performance

Index

Generally the loss function in (6-28) is assumed
nonnegative. As R in this equation is restricted to be
positive definite, the nonnegative property of the loss

function depends on that of L(X). The nonnegative property
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of L(X) is considered in this section.

7.4.1 Nonnegative L(X) for a Controllable System

Theore@ 7=1:

For the modified inverse problem, assume that the
system (7-2) is completely controllable. Then L(X) in
an optimized performance index can be positive semi-

definite only as a quadratic form of X.

Proof: Assume the contrary, that an L(X) in an optimized

performance index is positive semidefinite polyvnomial

Lx) =1 + 13w + ...+ B,  (1-26)

where L(B)(E) is not identically zero for an arbitrary
B, 2 < B S 6 and o is given by (7-6). For (7-26) to be

positive semidefinite, B must be even, from Theorem 2-3,

217
'ﬁﬂﬁl) and zl are nonexistent. It follows from (7-2)

(1) Assume for the canonical form that v = 1. Then A

and (7-14) that o N

N
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T
=@FEMa@n 10 o Man (7-27)
where D is an r X r nonsingular matrix satisfying v
R=D'Dp. (7-28)

The existence of D is from (ii) of Corollary 2-1, as R
is positive definite. However (7-27) can have negative
values., Thus (7-26) can also have negative values

(Theorem 2-3), contradicting the hypothesis.,

(2) Assume v = 2 for the canonical form. Let 'f::(k)'(z{'_l)
be the highest degree, nonidentically zero, homogeneous

function in (7-16).

(2a) For the case of

2 3k+1c<2y, (7=29)

it follows from (7-14) that
(8) ()T () o ‘
LY = -EY @ R EV (7-30) -

Arguing as in (1), (7-26) cannot be positive semidefinite

and the hypothesis fails.
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(2b) For the case of
2329 <k +1, (7-31)

it follows from (7-13) and (7-14) that

T
LBz = K8 x, B=kx+1, (7-32)

and

X
T
v s = | ¥k ax, . (7-33)

o

According to (7-33) and Lemma 6-6, (7-32) can have negative
values since it is not identibally zero by the assumption
and the system is controllable, Thus (7-26) can have

negative values (Theorem 2-3) and the hypothesis fails.,

(2¢c) For the case of

232y =k+1, (7-34)

it follows that
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and

X

(k

~s
w

T
o(k+1) )

o) 4

From the results of (2a) and (2b), (7-35) can have
negative values if it is not identically zero and the

hypothesis fails.

To provide a quadratic form for L(X) consistent with
Theorem 7-1, EF',(X) must be identically zero, from
(7-30). Thus for a linearly synthesized feedback control
. system with a completely controllable system, a nonnegative
L(X) is possible only if L(X) is a quadratic form.

Optimal controls may be designed to minimize measures
both of errors and energy during the control action. A
performance index often used for these designs has the

form

J x* 9g x + U RU)AE , (7-37)
t

where Q and R are at least positive semidefinite. This
choice of a performance index is due primarily to practical

aspects of the problem, e.g., for mathematical convenience,

From Theorem 7-1, however, this choice is seen to be




,___,_‘__.‘.___‘_‘__,A,&
e
v,
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particularly appropriate if a completely controllable
system is to be synthesized as a linear feedback control
system,
For Kalman's inverse problem, Section 5.3.1, L(X) d
is restricted to a quadratic form. From Theorem 7-1,
it follows that no other nonnegative polynomial L(X) can exist
if the given system is completely controllable. In con-
trast, the example in Section 5.3.3, illustrating Suga's
work, showed optimized nonquadratic polynomial L(X).
Theorem 7-1 explains why these nonquadratic polynomials

are not positive semidefinite.

7.4.2 Nonnegative L(X) for an Uncontrollable System

Assume that the given system (7-2) is uncontrollable.
Then it follows that v 2 2 and X(1) represents the

uncontrollable state variables governed by

2y*Ra,n 2 (7-38)

Corollary 7-7:

Provided that the given system is uncontrollable in
the modified inverse problem, then it is necessary for

L(B)(i) in (7-26) to be a function of only X1 if L(X) is

positive semidefinite for some 8 > 0.
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Proof: For L(X) to be positive semidefinite with some
g > 2, L(B)(ﬁ) must be nonnegative from Theorem 2-3,
For 2y > k+l 2 2, L(B)(ﬁ) can have negative values, as |
shown in (2a) of the proof of Thevrem 7-1l, For k + 1 2 2y 4 2, v
it follows that
X
v°“‘“’<§>=r1“ﬁ ”"T(g_lmgz_l (7-39)
o :

and either

T
(@ 1B = -FE xpax, gkt 1> 20, (7-40)

or
T
m = -FM @r EM @ ¥ @pax,

ifk+1=2¢y . (7-41)

The last terms of either (7-40) or (7-41l) may be positive
semidefinite if it is a function of E(l)' from (7-39) and
Lemma 6-6. Therefore for (7-41) to be positive semidefinite,

Eé‘“ (X) must be a function only of Xy

For the case of the uncontrollable system, the con-

sequences of the nonnegative propertvy of L(X) are not as

definitive as those for the completely controllable system,
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Chapter 8
CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDIES

8.1 Conclusions

Systems considered throughout in this study belong to

the class given by

=fw +By,

L

as described in Section 4.1.

8.1.1 The Canonical Form

A new canonical form is presented for this class of

systems through a nonsingular transfofmation such that

a Y=NZX
i v=nuy

following the definition of an equivalent system,»

Definition 4-~1. This canonical form for a linear system,

1>

. VaS
i.e., F(Y) =

Y, is
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. L : |
B, 2,2 X(1)
22,3 X(2)
[ ]
= ®
@
é(v-l,vv)
vp e e e R || R
+ U , &ll other entries zero,
Ir

as characterized by the following statements.

(i) Each é(i.j)'

submatrix (Theorem 4-2).

(i, = 1,2,¢¢4,V), is an 2, % 2j

(ii) v and Ly (i =1,2,00.,Vv), for the decomposition

are positive integers uniquely determined by A and 'E

of the given system such that
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where each £, and the crdered set {2l,z2,...,£v} are
called the ith stage number and the stage distribution

(Theorem 4-2).

(1ii) It is possible to let v =1 if and only if
n=m=r when‘the system is completely controllable

(Theorem 4-2).

{iv) If v 2 2 and the system is completely controllable,

then
B,y = [0
and
R,2) = [[01 Izl] ‘
.g’i vhere
}(; Ly s zj ' L= i< 3 Sv.

In addition, if v 2 3, then

h N

(v) If the system is uncontrollable, then v 4 2,

A(y,1) is given in Jordan canonical form, and Ay o) = {0].

In addition, if v 2 3,
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é(i,i+l) =,[[0] Iz.} ¢ for i=2,3,...,7-1, and
"i

< .

L. o 2 i< 3 S v (Theorem 4-2).

L. are

In this case, only state variables Xy rXgpeee X
i

uncontrollable, as discussed in Section 4. 3.3.

(vi) The property of controllability is invariant

for the transformation te the canonical form (Theorem 4-3).

(vii) The stage distribution of the system, i.e., the
ordered set {21,22,...,2v}, is a unigue characteristic

(Theorem 4-4).

(viii) Provided m = r, the canonical transformation
is possible with M= Ir if the given system has the stage

distributions {r} or {zl,r,...,r} (Theorem 4-6).

(ix) If the given system has the stage distribution

{r,r,...,r,}, then only one N can exist with each possible:

gifor the canonical transformation (Theorem 4-5).

From these characteristics, a number of observations
can be made. The structure cf gtin~the canonical form
discloses the fundamental fact that only x independent
control variables out of the m control variables contained

in V can be effective in the control action. The number
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v and the structures of 5(1'1) and é(l,Z) simply identify
the controllability property of the given system from
(iii)-(vi) above. If a given system is completely con-
trollable and has @: of full rank and a stage distribution
{r, r,...r}, then a unique canonical transformation is
possible with M = Ir’ from (viii) and (ix). This particular
canonical transformation coincides with the more familiar
canonical transformation of Definition 4-1. Furthermore

a single input completely controllable system has a unique
phase variable canonical form and this unique form is the
familiar form proposed by earlier investigators.

For a nonlinear system, the canonical form can be
applied to the linear pgrt and the above 8 characteristics
are preserved for the linear part of the transformed
system.

In comparison with the other phase canonical forms
described in Chapter 3, the new canonical form has the

following advantages.

(1) It can be applied to the entire class of systems
given by (6-1l) while other suggested canoncial forms
are applicable essehtially to subclasses. =

(2) The many elements of the matrices A and B describing‘
the linear part of the new canonical form can be

reduced to units and zeros arranged in a simple and

unique order. These decouple the matrices uniquely
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due to the uniqueness of the stage distribution.
Thus the mathematical structure of a general class

of systems is compactly presented.

This canonical form has value for simplifying studies
of optimal control problems for multi-input systems,
Other known canonical forms are essentially subclasses

of this new one.

8.1.2 The Inverse Problem of the Optimal Regulator

The inverse problem of the optimal regulator is
coiisidered for the class of systems given by (6-1). It
ié shown that the problem can be equivalently considered
through the new canonical form under similar mathematical
as&sumption5~and without loss of generality. The recovery
of the resulis foi the originally given system is possible
by the inverse @f th# canonical transformation. The
analysis of the problem is efficiently performed with the

compéct structure of the canonical form.

Restricting the form of performance indices to

T

{L(X) +U" R U} dt

i

with positive definite R, the necessary and sufficient
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conditions for optimized performance indices corresponding
to a given U(X) are presented in a theorem (Theorem 6-1).
From this theorem, new aspects of optimal feedback control

systems are disclosed.

(i) At most, r functions out of m in the feedback
control law are independent in optimal feedback control,
i.e., there are r effective control functions for the

optimal control action.

(i1) Various L(X) can be paired with an R for optimized
performance indices based on given U(X) (Corollary 6-1).
However, if n = m = r, the L(X) is unique for an R and

given U(X) (Corollary 6-2).

(iii) When a.linear feedback wontrol law is given,
the structure of the resulting optimal performance index
function VO(E) is the sum of a quadratic form determined
by the given feedback control law U(X) and an arbitrary
function of §l° State variables in El are not exposed
to U directly. The nonnegative property of these V°(§)

is detailed (Theorems 6-2 and 6-3).

(Lv) The controllability of nonlinear systems given
by (6-68) is determined by the linear part of the non-

linear systems as (6-128). For this class of systems,

the Prinéiple of Necessity of Control Action is introduced.
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Specially for the problem of the optimal regulator such
that: the desired final condition of the system as

X = 0, the performance index is given as

T

{(L(X) + U~ R U} 4t

with a positive definite R, L(X) is nonnegative definite
and a nonzero function of the controllable variables,
then some control action is necessary for the optimality,
i.e., a feedback control law no£ identically zero is

necessary.

(v) When a feedback control law is given, the
Liapunov direct method can be applied to identify the

property of asymptotic stability in the large (Theorem 6-4).

With additional assumptions to the inverse problem,
the modified inverse problem allows observation of general
characteristics of linearly synthesized feedback control

systems with a polynomial L(X).

(vi) If the given system is controllable, a nonnegative

L(X) can exist only as a quadratic form (Theorem 7-1).

{vii) If the given system is uncontrollable, it is
necessary for a nonnegative L(X) that the lowest and

highest degree homogeneous functions in L(X) be functions
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only of uncontrollable state variables (Corollary 7-7).

Thus this statement of the inverse problem and its
solution is a generalization of the problem proposed by
Kalman. It is also a generalization of Suga's work
excepting his time varying assumption, and of Thau's
results excepting his more general assumption of‘g(Z) in

- (5-67).

8.2 Suggestions for Further Studies

Throughout this work, problems are considered only
under time invariant assumptions. The concepts and
techniques appear to be extendable fqr time varying
systems with some modification.

For the inverse problem, the matrix R is restricted
to be positive definite to insure a normal Hamiltonian.
Studies can be directed to attempt to relax this assump-

More generally, the inverse problem can be considered
for basically different problem assumptions, e.g., more
general systems descriptions and a different form of
performance indices. Exhaustive studies of the inverse

problem of the optimal regulator will reveal nev character-

istics 6f_optima1 feedback control systems.
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