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SUMMARY

A combined analytical and experimental study is made of the eigen-
value density and the cumulative number of eigenvalues of a thin
circular conical shell. The investigation is difected toward the
development of expressions that can be used easily in finding the
eigenvalue density and number of eigenvalues of a conical shell which
are applicable to a wide range of cone geometries, and which are valid
over a frequency range sufficiently wide to be of engineering value.
This is accomplished by applying wave number space integration tech-
niques and numerical procedures to obtain expressions for the eigen-
value distribution function based on two separate frequency equations
appropriate to thin conical shells. The expressions obtained are
normalized with respect to cone geometry, and presented for the fre-
quency range below the lower ring frequency and above the upper ring
frequency of the cone.

The experimental arrangement used to determine the resonant
frequencies of the conical shells examined is described, and the
results of this investigation are presented in tabular and graphical
form., The results of the analytical work are also presented along
with the experimental data for easy comparison.

Excellent agreement is obtained between the analytic and the ex-
perimental results. It is concluded that the expressions presented
for the cumulative number of eigenvalues and the eigenvalue density are
applicable over a wide range of cone geometries, and frequency ranges
of practical interest. The results represent computational procedures

of considerable engineering value.
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1. TINTRODUCTION

The concept of the density of eigenvalues, or resonant frequencies
as they are usually referred to in structures, arises from the fact
that any continuous structure possesses an infinite number of natural
modes of vibration. For this reason it is sometimes convenient to
introduce the concept of modal or eigenvalue density. The eigenvalue
density is essentially the density of resonant frequencies of natural
vibration with respect to frequency. It is therefore an indication of
the spacing of the resonant frequencies in the frequency domain.

When dealing with structures excited in a very complex, or random
fashion, it is often not only useful but necessary to resort to
statistical methods to determine the response of the structure to such
loading. 1In order to effectively use the statistical energy method
described in some detail by Ungar (1966) and Smith and Lyon (1965) it
is necessary to know certain properties regarding the structural geom-
etry being examined. One of these properties which must be known is
the eigenvalue density. Therefore in order to apply a statistical
type of analysis to a structural response problem it is necessary to
know the eigenvalue density of the basic structural elements, Basic
components such as beams, rectangular and circular plates, cylinders,
and spheres have been handled successfully in the literature (Smith
and Lyon, 1965; Bolotin, 1963; Miller and Hart, 1967). The problem of

. . 1
composite structures has also been examined”. However, the problem of

1Hart, F. D. and V. D. Desai. 1967. Additive properties of modal
density for composite structures. Presented at the 74th Meeting of the
Acoustical Society of America, Miami, Fla., Paper No. DD 1l. Dept. of
Mechanical and Aerospace Engineering, North Carolina State University
at Raleigh, N. C.



the eigenvalue density of a conical shell is heretofore unresolved.
Since the conical shell is a very common structural element it would
seem that this problem deserves some attention. It is therefore the
purpose of this paper to obtain an expression for the eigenvalue den-
sity of a thin circular conical shell.

Two separate but similar frequency equations for a conical shell
are presented and used to obtain expressions for the cumulative number
of eigenvalues and then the eigenvalue density. Both numerical count-
ing and k.space integration techniques are used to obtain these expres-
sions and then checked against each other. The results are normalized
in such a manner as to be independent of the geometry of the conical
shell. The frequency range over which the results of each frequency
equation are valid is discussed in detail, and simple algebraic ex-
pressions are presented for the number of eigenvalues and the eigen.
value density.

An experimental program was conducted on two conical shells of
different geometry, and the results are presented in some detail. The
results of the experimental work are presented in graphical form and
compared with the results of the two analytical expressions mentioned
above.

The final expressions resulting from this investigation are then
discussed and conclusions are drawn as to the correct expression for
the modal density of a thin circular conical shell. The experimental
results are also discussed in light of the analytical results.

Several appendices are included for more detailed explanation of

equations and procedures employed in the main body of this report.




The first appendix presents in detail the derivation of the first
frequency equation used beginning with the equilibrium equations on a
shell element. The second appendix presents a comparison between the
frequencies predicted by the first frequency equation and some of the
experimental findings available in the literature. The third and
fourth appendices present the details of the numerical computer pro-
grams used to obtain the expressions for the number of eigenvalues and

the eigenvalue density.



2. REVIEW OF LITERATURE

The problem of determining the eigenvalue density of a shell may
be broken down into what amounts to three distinct problems. First,
the differential equation governing the motion of the shell in ques-
tion must be obtained. Secondly, the differential equations for the
shell must be solved in such a way as to obtain an equation for the
eigenvalues. This is usually referred to as the frequency equation
for the shell. Finally, the frequency equation must be used in some
manner to obtain expressions for the cumulative number of eigenvalues.
This expression is then differentiated with respect to frequency to
obtain the eigenvalue density expression.

The first of these problems has been handied in some detail in
the literature. Vlasov (1949) derived the general differential equa-
tions applicable to conical shells making use of equilibrium and
compatibility relationships, as well as the fundamental elasticity
relationships. A similar and somewhat less detailed development of
basically the same equations is presented by Flugge (1966). Both
authors make liberal use of all the standard elasticity relationships
which are developed in depth by Wang (1953). Also, both of the above
treatments consider extension of the middle surface as well as bending,
transverse shear, and rotary inertia. The basic difference in the
derivations is in the final form of the differential equations.

Vlasov (1949) presents two simultaneous differential equations in terms
of the normal displacement and the stress function. Flugge (1966)
presents three simultaneous differential equations in terms of the

three displacements of the shell surface.
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The second part of the eigenvalue problem has also been presented
in the literature. Federhofer (1962) used energy methods to obtain an
approximate solution to the extensional vibration problem of conical
shells. An explicit expression for the frequency equation was not ob-
tained, however, and the calculation of the natural frequencies is
somewhat involved. Seide (1964) employed a Rayleigh-Ritz type of solu-
tion to the conical shell problem. The order of the matrix type solu-
tion was increased and solved until it converged. It was found that a
thirty by thirty matrix was necessary for convergence. A similar pro-
cedure was followed by Platus (1965) in which an eighteen by eighteen
matrix was used corresponding to a six term approximation for each of
the three displacements. Hu (1965) also used a similar technique along
with the Galerkin method to obtain a matrix form solution in which both
transverse shear and rotary inertia were included in the formulation.

A five term series was used to describe the mode functions in the
analysis. Other authors who have presented similar types of develop-
ments are Chao-tsin (1964) and Kol'man (1965) as well as Kogawa (1965)
and Meyerovich (1966).

It should be noted that although all of these authors present
solutions for the frequency equation problem, none of them present an
explicit frequency equation applicable to a general cone. Many present
approximate expressions for the minimum frequency of vibration, but no
general frequency equation of reasonable simplicity has been obtained.
It is also noted that Kol'man (1966) considered the effects of boundary

conditions on the frequencies of natural vibration. He found that



with the exception of small mode numbers, the effect of boundary con-
ditions are slight.

In addition to the analytical work discussed concerning the
eigenvalues of a conical shell, there has been a fair amount of
experimental work done along the same lines. Watkins and Clary (1964)
conducted experiments with four different cones having different cone
angles, and found the experimental frequencies to be in good agreement
with the work of Platus (1965). Weingarten (1965) conducted extensive
investigations with several different cones of different wall thickness
and slant height, and found the results to be in good agreement with
the work of Seide (1964). Hu and Lindholm (1966) conducted extensive
experiments which they found substantiated his own work (Hu, 1965).
Other experimental investigations along the same lines by Mixon (1967),
Tang and Hong (1966), and Hu et al. (1967) have reached more or less
the same conclusions. That is, the solutions of the differential
equations for conical shells by energy methods, as long as enough
terms are carried in the approximations, are in excellent agreement
with experimental results, with respect to the frequencies of resonant
modes.

In order to investigate analytically the prcblem of eigenvalue
density, however, it is necessary to have an explicit expression for
the natural frequencies of cones. Godzevich (1962) presented such an
equation. The equation is based on the solution of the differential
equations presented by Vlasov (1949) by the Galerkin method. The

golution is only approximate, but it is an explicit expression, and



does compare with a fair degree of accuracy to experimental values.
It will therefore be the frequency equation used in this paper.

The third part of the eigenvalue density problem, the use of the
frequency equation to determine an expression for the eigenvalue
density, will be the subject of this paper. A technique introduced by
Courant and Hilbert (1953) will be used where possible to obtain the
desired expressions. The k-space integration described in general in
the proceeding reference was used by Bolotin (1963) and (1965) to
obtain solutions to several eigenvalue density problems. The technique
is also discussed in some detail by Miller and Hart (1967). There
appears to be no specific information with regard to the cumulative
number of eigenvalues or the eigenvalue density of conical shell

available in the literature.



3. THEORETICAL DEVELOPMENT

3.1 Introduction

In this section the frequency equation which is developed in
detail in Appendix 8.1 is used to obtain an expression for the cumula-
tive number of eigenvalues contained in a specified frequency interval,
as well as an expression for the model or eigenvalue density of the
conical shell. The k-space geometry corresponding to the frequency
equation developed in Appendix 8.1 (referred to as the first frequency
equation in the work which follows) is obtained. Reasons prohibiting
the use of k-space integration techniques are discussed and a purely
numerical method is presented and used to obtain the desired expres-
sions. Finally a second frequency equation is obtained from a simpli-
fication of the differential equations used in Appendix 8.1 to obtain
the first frequency equation. The k-space geometry corresponding to
the second frequency equation is obtained, and integrated to obtain
the desired expressions. The results from both frequency equations
are normalized with respect to cone geometry. The two results are
then compared and their frequency range of application is discussed in

detail.

3.2 Frequency Equation One
The frequency equation for a thin conical shell obtained at the

conclusion of Appendix 8.1, and by Godzevich (1962) is as follows:



4

D_(on (1-02) +a_(1 + m’ [a“ (1 +o3 (o) +
g B 7+ 1o (-0 e, —= [ Y -z (0]
wl = [ ] EL"h sin™ ¥ n
= 5 ~ . . x
YL a 2 a
n 2m n 3 1
(5 o) +a 1+ 2y [ 2@ +a) - — (o] +
sin" V¥ n
4
4 2 a
m 4m 1 2 n 1 4 3 2. .2
+ ( . ) > (1-a)}% + ( 5 (1) - =5 (1-aD)
sin4¢ sinzw 2 1 tanzw 8 1 8ap 1
4 2
m 4m 1 1 5 1 3 3
+ ( 5" T3 ) 7'(1—a1)] { 10 (1-9)) - ——7'(1-a1) t— (1-a1)]
sin sin" V¥ 2a 4a
(3.1)
nit Lt
where a = 1‘a1 and al = T

The number of bending waves in the circumferential direction is
given by m, and the number of half waves in the longitudinal direction
is given by n. Equation (3.1) may be written in dimensionless form by
defining a dimensionless frequency ratio and longitudinal and circum-

ferential wave numbers in the following manner:

2 2 7L2 m

Substituting equations (3.2) into equation (3.1) and rearranging
terms results in the following expression for the dimensionless

frequency:
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3.2.1 Wave Number Space

In order to determine the k-space geometry corresponding to
equation (3.3) it is necessary to obtain an explicit expression for
either kl or k2 in terms of the other and the dimensionless frequency
A. The algebraic manipulation necessary to accomplish this is fairly
involved, but straightforward. It is found that the above equation

(3.3) reduces to a quartic in terms of kz, and may be expressed as a

2
polynomial in the following form:
k§+Akg+Bk3+Ck§+D = 0. (3.4)

The coefficients A, B, C, and D are all multiple term expres-
sions involving the variables kl and N as well as the constants which

describe the conical shell geometry. The coefficients indicated in

equation (3.4) are as follows:
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Closed form expressions for the roots of a quartic equation are
available; however, due to the complex nature of the constants involved
the final expression for k2 in terms of k1 and A is too involved to be
of any real value. For this reason a numerical solution was used to
obtain the roots of equation (3.4) on a computer, using several dif-
ferent cone geometries as well as a range of values for the independ-
ent variables kl and A. In this way plots of kl versus k2 with X as a
parameter were obtained for several different cone geometries. Sam-
ples of the results obtained in this manner are shown in Figures 3.1

and 3.2, Figure 3.1 illustrates a typical k-space for a truncated

cone, and Figure 3.2 illustrates a typical k-space for a closed cone.

3.2.2 Cumulative Number of Eigenvalues

Study of Figures 3.1 and 3.2 indicate that it should be possible
to obtain the number of eigenvalues within a frequency domain by the
k-space integration technique (Courant and Hilbert, 1953; Bolotin,
1963 and 1965; Miller and Hart, 1967). Employing this method the

cumulative number of eigenvalues is approximated by

1

N(NY = ATIAT ffdkldk (3.9)
2

2

where the integral is to be taken over that portion of the first
quadrant where the k-space exists.

The integral in equation (3.9) may be written in iterated form
by recognizing the fact that the region over which the integral is to

be evaluated is bounded by an upper and lower value of k The upper

1°

value will be referred to as b and the lower value as a. The region

12
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is also bounded by upper and lower curves which will be referred to as

[kz]u and [k2]£ respectively. Equation (3.9) therefore becomes
1 b
172 a

where a and b are functions of A and the cone geometry, and [kz]u and

[k are functions of kl’ A, and the cone geometry parameters. The

2]£
expressions for [kz]u and [kz]z may be obtained from the solution of
the quartic equation (3.4), however, the evaluation of a and b is

somewhat more involved. Obviously, a and b must be the roots of the

equation obtained by setting [kz]u equal to [k Due to the extreme

2]£"

complexity of [kz]u and [k it has not been possible to obtain ex-

2]Z
pressions for a and b. For this reason the integration of equation
(3.10) to obtain an expression for the cumulative number of eigen-
values is a somewhat impractical approach to the problem.

Using a different approach, however, the number of eigenvalues
bélow any selected frequency may still be obtained. Using equation
(3.3) which is the frequency equation, the eigenvalues may be computed
for different values of m and n, the circumferential and longitudinal
wave numbers respectively., In this manner the number of eigenvalues
occurring below certain dimensionless frequencies may be obtained.

The values of m and n are increased until the count under each speci-
fied dimensionless frequency terminates. 1In order to obtain a suffi.-
cient number of calculations for different cone geometries an IBM 360

Model 75 digital computer was used. The details of the program used

for these calculations may be found in Appendix 8.4. The results of

15



these calculations appear in graphical form in Figures 3.3 through
3.5. Examination of equation (3.3) reveals that there are three
geometric parameters which will effect the dimensionléss frequency,
assuming that Poisson's ratio is constant and equal to 0.3. These are
the cone angle (¥), the thickness over length ratio (?p, and trunca-
tion ratio (al). Figure 3.3 shows the effect of changing the cone
angle, Figure 3.4 shows the effect of changing the thickness, and
Figure 3.5 shows the effect of changing the truncation ratio.

A study of Figures 3.3 through 3.5 indicates that the results
obtained may be normalized. It will be of some value to first define
what are known as the ring frequencies, The upper ring frequency is
defined as the frequency at which the longitudinal wave length is equal
to the circumference of the small end of the cone. 1In dimensionless

form the upper ring frequency would be given by

. _ 1
A (upper rlng) = m . (3u11)
This is equivalent to @ times the small radius of the cone divided by
the longitudinal wave velocity equal to unity.
Similarly the lower ring frequency is defined as the frequency
at which the longitudinal wave length is equal to the circumference of

the large end of the cone. In dimensionless form it is

A (lower ring) = siidf . (3.12)

This is equivalent to w times the large radius of the cone divided by

the longitudinal wave velocity equal to unity.
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The results given in Figures 3.3 through 3.5 will now be
normalized in the frequency range above the upper ring frequency.
Figure 3.3 indicates that the results are already normalized with
respect to cone angle in this region. Figure 3.4 indicates a varia-
tion inversely proportional to h/L with variations in thickness, and

i e . 1/5
Figure 3.5 indicates a variation inversely proportional to (1wa1)
due to variations in truncation ratio, Therefore the results obtained

thus far may be normalized with respect to cone geometry by expressing

them in the following form:

N(D) gzﬁqr%TjjIY [% (1-@1)1/5] = F(N) . (3.13)

The results of this normalization procedure are shown graphically
in Figures 3.6 through 3.8. Figure 3.6 corresponds to the normaliza-
tion of Figure 3.3 and so on. The figures indicate that above the
upper ring frequency (3.11) the value of F()\) is independent of the
geometry of the come. The plot of F(A) in this region appears to be a

straight line on log-log paper.

3.2.3 Numerical Approximations

Examination of Figures 3.6 through 3.8 yields the following
numerically obtained expression for the number of eigenvalues above

the upper ring frequency:

1/5
s h(l_O[l) -

N(N sin\h(lnaiy'[ T ] 2.0 X (3.14)

1
al siny

for A >
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Differentiating equation (3.14) with respect to A the expression

aN(N)

for the eigenvalue density is obtained where n(}) = o ¢

h(l_al) 1/5
sian(l-al) [ L

n(N) ] =~ 2.0 . (3.15)

As a form of limit check on the results it is of interest to
adapt equation (3.14) to the case of a flat circular plate, since a
solution to this problem is available in the literature (Miller and
Hart, 1967). For the flat circular plate the cone angle becomes 90°,
the truncation ratio becomes zero, and the length of the cone becomes
the radius of the circular plate (R). Hence for a circular plate

equation (3.14) becomes:

EX = 0.637 S . (3.16)

N(D) = B

A

Replacing the dimensionless frequency by %E-where CL is the
L

velocity of the longitudinal waves in the shell material, and dif.
ferentiating with respect to the circular frequency the following

expression for the eigenvalue density of a circular plate is obtained:

R2
n((JJ) = 0.637 HC— . . (3. 17)
L

The result cited above in the lit _.rature for the modal density
of a flat circular plate is as follows, keeping in mind that the value
given is one-half the actual value due to degeneracy of eigenvalue
effects:

RZ
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The difference between equation (3.17) and equation (3.18) is
less than ten percent and considering the numerical nature of proce-
dure used to obtain the equations on which equation (3.17) is based

this is regarded as excellent agreement.

3.3 Frequency Equation Two
Using the differential equations presented in Appendix 8.1 (8.51)
and (8.52) for a conical shell, and making the assumption that the
bending contribution in the longitudinal direction is small when
compared to the bending contribution in the circumferential direction,

the equations reduce to the following:

2
= o vl . Losd _a_z.w - 0 (3.19)
ox
2 2
cos ¥ é—— o + D vz vzw -7 w =0, (3.20)
r axz
c
here 2 _siny o 1 >
where v© =l o+ 5 ——
r” ®

Comparing equations (3.19) and (3.20) with equations (8.51) and
(8.52) it is noted that the equations are identical except for the
omission of the first tem in the :72 operator. The solution of
equations (3.19) and (3.20) is handled in the same manner as was the
solution of equations (8.51) and (8.52). The procedure is described

in Appendix 8.1, and will not be repeated here. The frequency equation
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which is produced in this case is as follows:

4 10 2 a l-o;  3(l-a)% 2
 (— 5+ 7 [81" ]
9 g E EL"h sin ¥ tan" ¥ 8an
w® o= c2] - 3 . (3.20)

7L 4 1o, 1l-¢ lo 3(1-ay)

m 1\ 1 1 1 \

(— I -—="* —
sin V 2an 4a

Proceeding in the same manner as in section 3.2, the frequency
equation is nondimensionalized by introducing the dimensionless
frequency, the circumferential wave number, and the longitudinal wave
number (see equation 3.2). Equation (3.21) therefore reduces to the

following form:

4 2
D 4 loo, 2 S 1-a1 3(1_a1) 2
7 (k2 5 ) + cotVY k1 [ 5 - > ]
EL"h 8k1
A = = 3 . (3.22)
l.a, 1o 1. 3(1-a)
4 ) 1 1 1
ko () (g 7 A
2k1 4k1

3.3.1 Wave Number Space

It is now necessary to solve for k2 in terms of kl and N in

order to obtain the k-space geometry corresponding to frequency equa-
tion two (3.22). Rearranging terms and collecting powers of kz in the

frequency equation it is found that the equation (3.22) reduces to a

simple quadratic equation in powers of k;° Therefore k2 may be ex-
pressed explicitly as a function of kl’ M\, and the cone geometry

parameters in the following form:
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k, =~/ 2L\ o 8AC (3.23)
where
A = E;DI-J-ZSOkZI
B = xz[.~16k‘1*(1+al+a§+ai+a‘1') +8k§(1+al+ai)~120]
¢ = 5 cotPylk] (LraytodHad) - 3k (L) 12

Sufficient . information is now available to describe the geometry
of the k-space corresponding to frequency equation two. 1In equation
(3.23) the positive and negative square roots indicate the upper and
lower bounds of the space respectively. Figure 3.9 illustrates a
typical k-space for a truncated cone, and Figure 3.10 illustrates a
typical k-space for a closed one. Both figures are shown with dimen-
sionless frequency as the parameter.

By equating the upper and lower bounds of the space given by

equation (3.23) the k., limits of the space may be obtained as functions

1
of the dimensionless frequency and the cone geometry parameters. The

expression which results from this process is a cubic in powers of k%

as follows:

6 4 2
k) + Sk; + Tk

1 + U —_ o (3. 24)
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where

[-3(1_0§)/(1-o§)] - [4k(1-a§)L1/3(1_v2)/5k1cot ¥ (1_o§)]

S =
T = 4k(1-o€)L 3(1-v2) / hcot V¥ (1-o§)
U = -6l(1_a1)L\/3(1_v2) / hcotﬂf(l_oq)

The solution of the cubic equation (3.24) yields three real roots
in the case of the truncated cone (Figure 3.9), and one real root and
two imaginary roots in the case of the closed cone (Figure 3.10). 1In
the latter case the real part of the two imaginary roots corresponds

to the value of k1 where the upper and lower bounds are at a minimum.

3.3.2 Cumulative Number of Eigenvalues

Recalling equation (3.10) which was developed in section 3.1 as
an expression for the number of eigenvalues, and substituting the
appropriate values for Akl (change in longitudinal wave number as n
is incremented) and Akz (change in circumferential wave number as m is
incremented), the following expression for the number of eigenvalues

is obtained:

b
NQV) EEET?%T:&IY‘ ~ [ (k] - [k,] pdkg (3.25)

a

The upper and lower bounds of the space [kz]u and [kzjz are given
by equation (3.23). Therefore equation (3.25) may be expressed in the

following form:

-

/ B +\/B ZGAC b 4f 5 _\B2.4ac «

1- £ 2A 1°-

I
YO sy ¢ f \
(3. 26)
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The upper and lower limits of the space i_and E are obtained
from the solution of equation (3.24). For the truncated cone case the
largest root of equation (3.24) is denoted as E? and the second
largest root is denoted as a. 1In the case of the closed cone, the one
real root obtained in the solution of equation (3.24) is used as P!
and the real part of either of the imaginary roots is used as a. 1In
this way the integral (3.26) is evaluated over the closed portion, or
the nearly closed portion of the k-space.

The evaluation of equation (3.26) for the number of eigenvalues,
and the solution of equation (3.24) for the upper and lower limits of
the k-space is handled by numerical procedures on an IBM 360 model 75
digital computer. The program used is described in detail in Appendix
8.3. Values are obtained for a wide range of dimensionless frequen-
cies and a range of different cone geometries. The results of these
calculations appear in graphical form in Figures 3.11 through 3.13.

As in section 3.2, Figure 3.1l shows the effect of variations in
cone angle, Figure 3.12 shows the effect of variations in thickness,
and Figure 3.13 shows the effect of variations in truncation ratio.

It should be noted that below the lower ring frequency (3.12)
the number of eigenvalue results shown in Figures 3.3 through 3.5 are
in very close agreement with the results shown in Figures 3.11 through
3.13. This is to be expected since the only difference between the
derivation of frequency equation one and frequency equation two is in
the assumption regarding the bending contributions to the differential
equations. In equation two it was assumed that the contribution to the

differential equations due to longitudinal bending is small in
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comparison with the contribution due to circumferential bending. This
assumption is equivalent to limiting frequency equation two to lower
frequencies as the results point out. It may therefore be concluded
that the results of the analysis based on frequency equation two are
valid below the lower ring frequency.

Careful study of Figures 3.1l through 3.13 indicates that the
dimensionless number of eigenvalues (N(2A) ETEWF%&:GEYQ varies with
changes in the cone angle directly as (tan%W), with changes in the
thickness inversely as (h/L), and with changes in the truncation ratio
inversely as ((l_a1)1/4). Hence, the number of eigenvalues may be
normalized in the following manner:

1/4
7 h (1_q1)

N(D sin W(l_al) N (tandf)l/z]

= G(V . (3.27)

Figures 3.14 through 3.16 show graphically the results of this
normalization process. Inspection of these figures, which correspond
to normalized versions of Figures 3.11 through 3.13, indicates that
with the exception of small variations near values of G(A) correspond-
ing to the first few modes (N(X) = 1), G()\) is independent of the
geometry of the conical shell and is a function of only the dimension-

less frequency.

3.3.3 Eigenvalue Density

Using finite difference techniques on the numerical results of the
k-space integration of equation (3.26) the density of eigenvalues with

= §§§329 The

respect to dimensionless frequency is obtained (n(d)
results of these calculations are shown graphically in Figures 3.17

through 3.19 in the following form:
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1/4
. h(l-ap)

n(») STV () [L(tanw)lfz]

= g(d . (3.28)

As before, Figure 3.17 illustrates variations in cone angle, Figure
3.18 illustrates variations in thickness, and Figure 3.19 illustrates
variations in truncation ratio. Inspection of these figures reveals
that g()) is independent of the cone geometry with the exception
values associated with the number of eigenvalues approximately equal
to unity, as was the case with G(})).

Since the k-space integration presented in equation (3.26) avoids
the portion of the k-space in the vicinity of kl ~ 0, there is some
question as to the validity of the results. 1In order to provide a
check of the results presented, a numerical procedure similar to that
used in section 3.2 was used to obtain values of N(2). Using equation
(3.22) as the frequency equation, and an IBM 360 model 75 digital
computer, a very large number of frequencies were calculated and the
number occurring below certain specific dimensionless frequencies
was obtained. The result of this numerical counting procedure was
then put in the form N(X) ETHWT%T:aIY" The number of circumferential
and longitudinal number of waves was increased until the count in each
interval terminated. A discussion of the computer program for this
procedure appears in Appendix 8.4. The results of this procedure were
in excellent agreement with the k-space integration results, Therefore
the omission of a portion of the k-space in this case appears to be
justified. It should be pointed out that the portion of the k.space

which was omitted from the integration is unbounded.
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3.3.4 Numerical Approximations

Careful examination of Figures 3.14 through 3.19 indicates the
normalized number of eigenvalue and eigenvalue density curves are
straight lines on log-log paper except near values associated with
the first few resonant frequencies. 1In light of this, equations

(3.27) and (3.28) may be approximated by the following expressions:

1/4
NN " oy - 0.87612 (3. 29)
TN e M : "
x hl-ap) W 1/2
") ST 7 - 1.312/2 (3. 30)

It should be remembered that these equations only apply below
the lower ring frequency due to the assumption made in the derivation
of frequency equation two. The expressions also do not hold in the
vicinity of the first few resonant frequencies (N(A) = 1). This is to
be expected since the concept of eigenvalue density has little or no
meaning in this region. As a form of check, it should be noted that
although expressions (3.29) and (3.30) were obtained independently of
each other from the figures, equation (3.30) is indeed the derivative
of equation (3.29) with respect to dimensionless frequency as it should

be.

3.4 Summary of Analytical Results
The final analytic expressions for the cumulative number of
eigenvalues N()\) and the eigenvalue density n(\) above the upper ring

frequency and below the lower ring frequency have been collected in
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Table 3.1 for easy reference. A graphical representation of the final
equations is also given in Figures 3.20 and 3.21.

In preparing Figures 3.20 and 3.21 it was assumed that the (1_Oi)
term in each equation was approximately equal. This was done in order
to make it possible for the results to be presented graphically with
only one parameter, that being the cone angle. The curves for the
dimensionless frequency less than the lower ring frequency are shown
up to the lower ring frequency for several cone angles. The lower
ring frequency is shown as a vertical dotted line for each cone angle,
The minimum upper ring frequency possible is also indicated by the

same dotted line. This corresponds to the case for &, = 1, or a com-

1
pletely truncated cone.

It would seem appropriate at this time to give some explanation
as to how Figures 3.20 and 3.21 might be used in actual practice for
the determination of the cumulative number of eigenvalue and eigen-
value density corresponding to a given frequency. First of all the
dimensionless frequency corresponding to the frequency of interest
would be calculated and located on the axis of Figures 3.20 and 3.21.
Next the upper and lower ring frequencies corresponding to the cone
geometry being investigated would be determined and noted on the
graphs. There are now three possible cases, the dimensionless frequen-
cy of interest is either above the upper ring frequency, below the
lower ring frequency, or between the two.

If the dimensionless frequency of interest is above the upper ring
frequency the procedure is simple. The desired values are merely read

off the curve corresponding to the solution above the upper ring

frequency.
44|



Table 3.1 Summary of the theoretical results for the number of
eigenvalues and the eigenvalue density

Cumulative number of eigenvalues

L sin‘lf(tan\lf)l/2 (1_.061)3/4

N(N) =~ 0.876 [- - 1 23/2
Eigenvalue density
L sin’#(tan\h)l/z (1..051)3/4 1/2
n()) =~ 1.31 [ - 1 2

nth

. 1
Above the upper ring frequency: A > 5E7;{E—W-

Cumulative number of eigenvalues

L sinV (1-a1)4/5

N()) =~ 2.0 [ —

1 x

Eigenvalue density

L sin¥ (1-0) 4/5

n(\) =~ 2.0 [ _ ]
where:
2
kz = wz 7LE or A =w gi
gc L
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1f the dimensionless frequency of interest is below the lower
ring frequency the procedure is again fairly simple. The desired
values are read of the curve corresponding to the solution below the
lower ring frequency having the appropriate cone angle. 1In this case
the value of N(A) obtained should be checked to be sure it is not near
unity or below since the results have little meaning in this region.

Finally, if the dimensionless frequency of interest is between
the upper and lower ring frequencies the procedure is not quite as
straightforward. If a good deal of accuracy is required it will be
necessary to compute the desired values in the same manner as was used
in section 3.2 to obtain the results shown in Figures 3.3 through 3.5,
However, if only a reasonable estimate is needed the following approxi-
mation may be used. The value corresponding to the lower ring frequen-
cy should be located, and the value corresponding to the upper ring
frequency should also be located. The value desired may then be read

off a straight line drawn between these two points, as the resulting

curve is a fair approximation of what happens in this transition re-
gion,

There are two major exceptions which should be indicated concern-
ing the results presented in Table 3.1 and Figures 3.20 and 3.21.
First of all, for comnes with large cone angles the solution does not
hold, up to the lower ring frequency. 1In fact the above upper ring
frequency solution begins to apply even before the lower ring frequency
is reached. As a general rule, when working with cones with large
cone angles the values corresponding to both the solution above the

upper ring frequency and the solution below the lower ring frequency
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should be calculated and the minimum value used. This type of
behavior is clearly indicated in Figure 3.6.

The second major exception applies to cones with little or no
truncation. In this case the value of the upper ring frequency is
infinite or very high, and the above upper ring frequency solution is
reached long before the upper ring frequency. 1In this case a value
for the upper ring frequency of no more than ten times the lower ring
frequency should be used as a sort of artificial upper ring frequency.

This type of behavior is clearly indicated in Figure 3.8.
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4, EXPERIMENTAL PROGRAM

4,1 Objective

In order to provide a comparison with the analytical results of
this paper, an experimental investigation of the cumulative number of
eigenvalues was conducted. During this investigation two different
conical shells were subjected to sinusoidal excitation over a wide
range of frequencies, the object being to physically count the number
of resonant modes contained within the frequency range covered. Once
a count was obtained the results were nondimensionalized and compared

with the analytical results obtained in section 3.

4.2 Experimental Apparatus
The two conical shells used in the investigation are fully
described in Table 4.1. The cones used were formed of stainless

steel sheet and butt welded at the seams. The instrumentation used

in the investigation is shown schematically in Figure 4.1. The in-
strumentation consisted basically of a signal generator equipped with
a sweep drive, a power amplifier, a preamplifier, a narrow band
analyzer, and a level recorder.

The sinusoidal signal generated by the oscillator is fed to a
power amplifier, and from there to the electromagnetic shaker. The
shaker is attached rigidly to the cone and serves as the source of
excitation. The transducers used to record the cone response to this
excitation consisted of an accelerometer and a microphone which were
used alternately. The signal from one of the transducers is then fed

by way of a cathode follower type preamplifier to the narrow band
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Table 4.1 Data on cones used in experimental investigations

Cone Angle (V)

Thickness (h)

Length (L)

Truncation Ratio (al)

Material

Dimensionless Frequency

Multiplier

Lower Dimensionless Ring

Frequency

Upper Dimensionless Ring

Frequency

CONE 1

8,667°

0.06 in.

59.7 in.

0.3886

304 Stainless

524.04 Hz/\

6.64

17.08

CONE 2

12.385°

0.06 in.
40.45 in.
0.3881

304 Stainless

773.43 Hz /)

4.66

12.01
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analyzer. The narrow band analyzer which, in the instrument used, is
incorporated as part of the signal generator had the center band
frequency of the continuously variable filter (& 3 Hz of center) tuned
to correspond to the signal being generated.and used to excite the
conical shell. 1In this manner only the component of the signal picked
up by the transducer corresponding to the excitation frequency was
retained and fed to the level recorder. 1In this way only the cone
response to the generated frequency was recorded thus eliminating the
effects of harmonics, reverberations, and stray noise. Photographs of
various aspects of the experimental program are shown in Figures 4.2

through 4.6.

4.3 Collection of Data

The conical shell being excited is suspended vertically so that
a free-free type boundary condition may be approximated. The exciter
is then attached to the cone at a point near but not at the bottom
edge of the cone. The cone was suspended with one end up, and then
with the other end up so that it could be determined to what extent
the end at which the cone was excited affected the experimental re-
sults. Data was taken with both cones in the two configurations
referred to above. As mentioned previously two types of transducers
are used: a two gram piezoelectric accelerometer, and a one-half inch
capacitive type microphone. In the case of the accelerometer, attach-
ment to the cone surface was accomplished with a hard wax so that no
alterations were made on the surface of the shell, 1In the case of the

microphone, it was placed as clese to the shell surface as possible
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FIGURE 4.2 INSTRUMENTATION USED DURING THE
EXPERIMENTAL INVESTIGATION
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FIGURE 4.3 CONES ONE AND TWO USED IN EXPERIMENTS

S emad

FIGURE 4.4 ELECTROMAGNETIC SHAKER TO CONE CONNECTION
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R

FIGURE 4.5 CONE IN APEX DOWN POSITION WITH MICROPHONE

FIGURE 4.6 CONE IN APEX UP POSITION WITH ACCELEROMETER
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without any possibility of the microphone touching the shell surface
during a data run. A distance of approximately three sixteenths of an
inch was found to be satisfactory for this purpose.

Data was taken using both transducers at three different posi-.
tions on the cone surface. The recording points were picked in a
fairly arbitrary manner with care being taken to avoid the edges of
the cone, seams, and connection points for the exciter and the suspen-
sion system., Twelve runs were made in all for each cone using all the
combinations mentioned above of transducer type, transducer location,
and cone orientation. Each run consisted of a slow sweep of the
frequency band from one hundred Hz (below the first resonance of
either cone) to approximately six-thousand Hz. The magnitude of the
response of the transducer was recorded continuously and the paper used
was frequency calibrated. Samples of a portion of two of the chart

records obtained are shown in Figures 4.7 and 4.8.

4.4 Analysis of Data

Once the chart records for all data runs were obtained they were
broken up into bands corresponding to specific dimensionless frequency
intervals. The number of peaks corresponding to resonant frequencies
occurring in each band was counted and tabulated. The results of this
process appear in absolute and in non-dimensional form in Tables 4.2
through 4.13. The results pertaining to each cone were then lumped
together and the arithmetic average, as well as the absolute maximum
and minimum for each dimensionless frequency band, is shown in Table

4.14, The final results for each cone are shown compared with the
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Table 4.2 Experimental data for runs 1 and 2

Run No. 1 o Run No. 2
Orientation Apex Down Apex Up
Pickup Microphone Microphone
Position No. 1 1
-y a2
) AN N ETH%?E&IT AN N EIH%TE(?TJ
0.5 3 3 1.025 3 3 1.025
1.0 5 8 2.74 5 8 2,74
1.5 10 18 6.15 16 24 8.20
2.0 13 31 10.6 14 38 13.0
2.5 11 42 14.3 13 51 17.4
3.0 19 61 20.8 18 69 23.6
3.5 24 85 29.0 21 90 30.8
4.0 21 106 39.7 17 107 36.6
4.5 23 129 44,1 19 126 43.0
5.0 21 150 51.3 19 145 49.5
6.0 43 193 66.0 44 189 64.5
7.0 37 230 78.6 43 232 79.3
8.0 43 273 93.3 42 274 93.7
9.0 46 319 109.0 45 319 109.0
10.0 40 359 123.0 44 363 124.0
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Table 4.3 Experimental data for runs 3 and 4

Run No. 3 Run No. 4
Cone No. 1 1
Orientation Apex Down Apex Up
Pickup Accelerometer Accelerometer
Position No. 1 1
A o N N sinﬁf%%:;li AN N N sinﬁr%i:;li
0.5 2 2 0.685 3 3 1.025
1.0 5 7 2.39 5 8 2.74
1.5 10 17 5.80 14 22 7.41
2.0 13 30 10.2 14 36 12.3
2.5 15 45 15.4 16 52 17.8
3.0 15 60 20.5 17 69 23.6
3.5 19 79 27.0 20 89 30.4
4.0 20 99 33.8 19 108 37.0
4.5 19 118 40.4 21 129 44,1
5.0 22 140 47.9 19 148 50.5
6.0 39 179 61.1 43 191 65.3
7.0 38 217 74.1 37 228 78.0
8.0 37 254 86.9 40 268 91.5
9.0 38 292 99.9 37 305 104.0
10.0 39 331 113.0 37 342 117.0
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Table 4.4 Experimental data for runs 5 and 6

Run No. 5 Run No. 6

Eﬁhehﬁo. N 1 o 1
Orientation Apex Down Apex Up
Pickup Microphone Microphone
Position No. 2 2
-2 ~2
\ IR & R e
0.5 2 2 0.685 3 3 1.025
1.0 6 8 2.74 5 8 2.74
1.5 8 16 5.46 13 21 7.18
2.0 14 30 10.3 12 33 11.3
2.5 15 45 15.4 16 49 16.8
3.0 18 63 21.6 20 69 23.6
3.5 17 80 27.4 20 89 30.4
4.0 20 100 34.2 22 111 38.0
4.5 20 120 41.0 21 132 45.1
5.0 20 140 47.9 19 151 51.6
6.0 39 179 61.1 44 195 66.6
7.0 43 222 75.9 40 235 80.4
8.0 45 267 91.2 42 277 94.6
9.0 40 307 105.0 39 316 108.0
10.0 41 348 119.0 46 362 124.0
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Table 4.5 Experimental data for runs 7 and 8

Run No. 7 Run No. 8
Cone No. 1 1
Orientation Apex Down Apex Up
Pickup Accelerometer Accelerometer
Position No. 2 2
) -2
A AN N N Ei_n.l‘w_%%@. AN N N ?fﬁqu‘/"l(g?&?
0.5 2 2 0.685 2 2 0.685
1.0 5 7 2.39 5 7 2,39
1.5 7 14 4.79 13 20 6.84
2.0 12 26 8.89 12 32 10.9
2.5 13 39 13.3 16 48 16.4
3.0 13 52 17.8 17 65 22.2
3.5 20 72 24.6 20 85 29.0
4.0 21 93 31.6 20 105 35.9
4.5 18 111 38.0 19 124 42.5
5.0 16 127 43,5 20 144 49.3
6.0 43 170 58.1 40 184 63.0
7.0 36 206 70.5 38 222 76.0
8.0 38 244 83.4 42 264 90.4
9.0 36 280 95.6 35 299 102.0
10.0 40 320 109.0 35 334 114.0
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Table 4.6 Experimental data for rumns 9 and 10

Run No. 9 Run No. 10

Cbﬁé-Nb. - 1 “ 1
Orientation Apex Up Apex Down
Pickup Microphone Microphone
Position No. 3 3
-2 -2
. e L R e
0.5 3 3 1.025 3 3 1.025
1.0 4 7 2.39 4 7 2.39
1.5 7 14 4.79 9 16 5.47
2.0 15 29 9.91 12 28 9.57
2.5 12 41 14.0 15 43 14.7
3.0 13 54 18.5 21 64 21.9
3.5 21 75 25.6 19 83 28.4
4.0 20 95 32.5 20 103 35.2
4.5 20 115 39.3 21 124 42.5
5.0 21 136 46.9 21 145 49.5
6.0 42 178 60.9 48 193 66.0
7.0 43 221 75.5 43 236 80.6
8.0 40 261 89.1 44 280 95.6
9.0 44 305 104.0 44 324 112.0
10.0 33 338 115.0 37 361 123.0

63



Table 4.7 Experimental data for runs 11 and 12

VRun No. 1i7. -Ruﬁ‘Non‘lé
Cone No. 1 | A o | --i-.-'>“..
Orientation Apex Down Apex Up
Pickup Accelerometer Accelerometer
Position No. 1 1
-2 -2
A AN N sinﬁf%g_ali ~N N N sinﬁf%g-ali
0.5 3 3 1.025 3 3 1.025
1.0 4 7 2.39 4 7 2.39
1.5 8 15 5.14 10 17 5.81
2.0 14 29 9.91 10 27 9.22
2.5 13 42 14.4 12 39 13.3
3.0 15 57 19.5 18 57 19.5
3.5 20 77 26.4 20 77 26.4
4.0 17 94 32.3 18 95, 32.5
4.5 16 110 37.6 21 116 39.7
5.0 18 128 43.8 18 134 45.9
6.0 39 167 57.0 45 179 61.1
7.0 31 198 67.7 30 209 71.5
8.0 40 238 81.5 41 250 85.5
9.0 33 271 92.6 41 291 99.5
10.0 37 308 105.0 37 328 112.0
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Table 4.8 Experimental data for runs 13 and 14

Run No. 13 o Run No. 14
Cone No. 2 | 2
Orientation Apex Down Apex Up
Pickup Microphone Microphone
Position No. 1 1
-2 -2
A AN N N sinﬁx%g-ali AN N N sin?f%gmali
0.5 3 3 0.717 4 4 0.955
1.0 5 8 1.91 9 13 3.11
1.5 12 20 4.78 10 23 5.50
2.0 10 30 7.17 19 42 10.0
2.5 15 45 10.8 18 60 14.3
3.0 16 61 14.6 22 82 19.6
3.5 20 81 19.3 21 103 24.6
4.0 26 107 25.6 26 129 30.8
4.5 27 134 32.0 25 154 36.8
5.0 24 158 37.8 28 182 43.5
6.0 71 229 54.8 63 245 58.5
7.0 61 290 69.3 55 300 71.6
8.0 60 350 83.6 56 356 85.0
9.0 - - - - - -
10.0 - - - - - -
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Table 4.9 Experimental data for runs 15 and 16

Run No. 15 Run No. 16

Cone No. 2 2
Orientation Apex Down Apex Up
Pickup Accelerometer Accelerometer
Position No. 1 1
A o N N sinj:IleOI:(zlli a N N sinjilf](-ol:(lei
0.5 2 2 0.478 3 3 0.717
1.0 6 8 1.91 7 10 2.39
1.5 11 19 4.55 11 21 5.02
2.0 10 29 6.93 13 34 8.13
2.5 18 47 11.5 18 52 12.4
3.0 14 61 14.6 16 68 16.2
3.5 18 79 18.9 19 87 20.8
4.0 23 102 24.4 23 110 26.3
4.5 23 125 29.9 22 132 31.6
5.0 22 147 35.2 25 157 37.5
6.0 56 203 48.5 533 210 50.2
7.0 49 252 60.3 46 256 61.1
8.0 50 302 72.1 38 294 70.3
9.0 - - - - - -
10.0 - - - - - -
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Table 4.10 Experimental data for rums 17 and 18

Run No. 17 Run No. 18

Cone No. 2 2
Orientation Apex Down Apex Up
Pickup Microphone Microphone
Position No. 2 2
A AN N N Hﬁ%:_i_y AN N N Ei‘ﬁ%%%%‘)‘
1 1
0.5 5 5 1.20 3 3 0.717
1.0 7 12 2.87 7 10 2.39
1.5 10 22 5.26 9 19 4.54
2.0 18 40 9.56 16 35 8.36
2.5 18 58 13.9 18 53 12.7
3.0 17 75 17.9 22 75 17.9
3.5 14 89 21.2 23 98 23.4
4.0 25 114 27.2 26 124 29.6
4.5 16 130 31.1 22 146 34,9
5.0 30 160 38.2 23 169 40.4
6.0 69 229 54.8 62 231 55.3
7.9 67 296 70.8 63 294 70.3
8.0 66 362 86.5 66 360 86.0
9.0 - - - - - -
10.0 - - - - - -
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Table 4.11 Experimental data for rums 19 and 20

Run No. 20

Run No. 19
Cone No. 2 - ~-A*2£
Orientation Apex Down Apex Up
Pickup Accelerometer Accelerometer
Position No. 2 2
~2 -2
A AN N N sinﬁfig-ali AN N N sinﬁf%?_ali
0.5 4 4 0.955 3 3 0.717
1.0 8 12 2.87 6 9 2.15
1.5 10 22 5.25 10 19 4.55
2.0 9 31 7.41 16 35 8.36
2.5 17 48 11.5 17 52 12.4
3.0 16 64 15.3 20 72 17.2
3.5 18 82 19.6 20 92 22.0
4.0 22 104 24.9 23 115 27.5
4,5 16 120 28.7 22 137 32.8
5.0 25 145 34.7 26 163 39.0
6.0 51 196 46.9 51 214 51.1
7.0 53 249 59.5 53 267 63.9
8.0 55 304 72.6 43 310 74.0
9.0 - - - - - -
10.0 - - - - - -
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Table 4.12 Experimental data for runs 21 and 22

Run No. 21

Run Nof 22
Eone No.i ) 2 2
Orientation Apex Down Apex Up
Pickup Microphone Microphone
Position No. 3 3
A AN N Ns—in—’fnl%)_ AN N ijfﬂlgl‘:?i‘r
1 1
0.5 3 3 0.717 3 3 0.717
1.0 5 8 1.91 5 8 1.91
1.5 13 21 5.01 10 18 4,30
2.0 14 35 8.36 20 38 9.08
2.5 18 53 12.7 22 60 14,3
3.0 19 72 17.2 23 83 19.9
3.5 22 94 22.5 24 107 25.6
4.0 25 119 28.4 25 132 31.6
4.5 20 139 33.2 24 156 37.3
5.0 27 166 39.7 32 188 45,0
6.0 63 229 54,7 63 251 60.0
7.0 65 294 70.3 61 312 74.5
8.0 58 352 84.0 52 364 87.0
9.0 - - - - - -
10.0 - - - - - -

69



Table 4.13 Experimental data for runs

23 and 24

Run No. 23 Run No. 24
Cone No. 2 2
Orientation Apex Down Apex Up
Pickup Accelerometer Accelerometer
Position No. 3 3
x R T L I UL
0.5 3 3 0.717 3 3 6.717
1.0 5 8 1.91 5 8 1.91
1.5 11 19 4.54 11 19 4.54
2.0 11 30 7.17 15 34 8.13
2.5 22 52 12.4 21 55 13.1
3.0 16 68 16.2 18 73 17.5
3.5 18 86 20.6 21 94 22.4
4.0 22 108 25.8 23 117 28.0
4.5 21 129 30.8 19 136 32.5
5.0 25 154 36.8 26 162 38.8
6.0 55 209 50.0 55 217 51.9
7.0 54 263 62.9 41 258 61.6
8.0 43 306 73.1 42 300 71.7
9.0 - - - - - -
10.0 - - - - - -
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Table 4.14 Tabulation of experimental data in reduced form

N sinﬁy?l-ali ® 10—2
CcoNE 1 CONE 2
min. average max. min. average max.
0.. 0.685 0.912 1.03 0.478 0.777 1.20
1. 2.39 2.54 2.74 1.91 2.27 3.11
1. 4.79 6.09 8.20 4.30 4,82 5.50
2. 8.89 10.5 13.0 7.17 8.23 10.0
2. 13.3 15.3 17.8 10.8 12.7 14.3
3. 17.8 21.1 23.6 14.6 17.0 19.9
3. 24.6 27.9 30.8 18.9 21.7 25.6
&, 31.6 34.9 39.7 24,4 27.5 31.6
4. 38.0 41.4 45,1 28.7 32.6 37.3
5. 43.5 48.1 51.6 34.7 39.0 45,3
6. 57.0 62.6 66.6 46.9 53.1 60.0
7. 67.7 75.7 80.6 59.5 66.3 74.5
8. 81.5 89.7 95.6 70.3 78.8 87.0
9. 92.6 103.0 112.0
10. 105.0 117.0 124.0
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analytical results in Figures 4.9 and 4.10. Analytical results cor-
responding to both frequency equations are shown.

Agreement between the analytical and the experimental results
appears to be very good. Data was not taken beyond six thousand Hz.
because beyond this point a good deal of overlap between modes appeared
to be present. This caused the resonant peaks to become less pro-
nounced on the chart record as the frequency was increased. This over.
lapping made it difficult to count the number of resonant peaks in the
last two or three frequency bands analyzed in the case of each cone,
and probably caused the values obtained experimentally in these bands
to be somewhat lower than would otherwise be the case.

It should be mentioned that the data runs taken using the
accelerometer as a pickup were consistently lower overall than those
obtained using the microphone as the transducer. This is as would be
expected, since the accelerometer picks up only the respouse of the
cone at the point at which it is attached, whereas the microphone
would tend to pick up the response of the cone over a broader area.
This would tend to make the microphone slightly less sensitive to
position, and would decrease the possibility of missing a mode if the
transducer were located on or near a nodal line for some of the modes
present in the conical shell.

The position of the transducer on the shell surface, and the
orientation of the cone seemed to have very little effect on the
overall count of resonant frequencies obtained. However, some dif-
ferences were noted in the shape and magnitude of specific resonant

peaks recorded. Also, the first few modes seemed to be affected to
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some extent with respect to the frequency at which they occurred.
This would be expected since changes in the orientation of the cone
would affect the boundary conditions slightly. It has already been
noted in section 2 that changes in boundary condition will effect the
first few resonant modes slightly, but will have little effect on

higher modes.
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5. SUMMARY AND CONCLUSIONS

The results of the analytical determination of expressions for
the cumulative number of eigenvalues up to a given dimensionless
frequency, and the modal or eigenvalue density with respect to dimen-
sionless frequency are given in Table 3.1l. The results have also been
presented in graphical form in Figures 3.20 and 3.21. There are
certain limitations regarding the results obtained which should be
noted before any attempt is made to use them to predice actual values.

First of all the curves and equations are invalid for cones with
large cone angles in that the shell goes into a so called plate mode
(above upper ring frequency solution) even before the lower ring
frequency is reached. Secondly the results are invalid for cones with
little or no truncation in that the shell goes into the plate mode
long before the upper ring frequency is reached (but not before the
lower ring frequency except as noted above). Finally it should be
remembered that the expressions obtained do not give explicit informa-
tion regarding the frequency band between the upper and lower ring
frequencies, although fair approximations for the values in this region
may be obtained using the techniques described in section 3.4,

Aside from the exceptions noted above, the desired expressions
for the cumulative number of eigenvalues and the eigenvalue density
of a thin conical shell have been obtained. The expressions presented
in Table 3.1 have been normalized in such a way as to make them in-
dependent of the cone geometry. Figures 3.20 and 3.21 have been

handled in a similar manner except for the fact that the cone angle

76



appears as a parameter for the results below the lower ring frequency.
The upper ring frequency has not been indicated in the figures since
it is a function of the truncation ratio of the cone and may vary
anywhere from the lower ring frequency for a completely truncated
cone to infinity for a closed cone.

The results of the companion experimental investigation which was
undertaken are presented in Figures 4.9 and 4.10. Besides the experi-
mental values for the cumulative number of eigenvalues, the two
analytical curves based on the two frequency equations are also shown
in these figures. Very good agreement is obtained between the experi-
mental results and the analytical curves, although the experimental
values appear to drop off for the higher frequencies investigated.
This is due to an overlapping of resonant modes rather than an actual
drop off in the number of eigenvalues. This is also the reason data
was not obtained for frequencies higher than those given.

The values for the upper and lower ring frequencies are also
noted in the figures corresponding to each cone. It is seen that the
data taken only extended a short way into the region between the two
ring frequencies. Therefore the experimental investigation served
only as a check of the analytical results below the lower ring frequen-
cy. Due to the overlapping of modes in this frequency domain it was
not possible to obtain data above the upper ring frequency, hence the
transition of the conical shell into a plate mode was not detected
experimentally. However it would seem reasonable that this would be

the case, as indicated by the results based on frequency equation one.
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It is concluded that the experimental results correlate with the
results of the two analytical solutions in the region where the two
approaches predict essentially the same values for the cumulative
number of eigenvalues, that is below the lower ring frequency. Above
the upper ring frequency data was not obtained, but since frequency
equation two is known to be invalid in this range, and since it is
expected that at high frequencies the shell would exhibit a plate mode,
the results in this range based on frequency equation one are assumed
to be valid.

In conclusion, it may be stated that expressions have been ob.
tained for the cumulative number of modes, and for the modal density
above the upper ring frequency and below the lower ring frequency.

The results are in agreement with experimental results below the lower
ring frequency and behave as would be expected above the upper ring
frequency. Between the upper and lower ring frequencies a procedure

by which the desired values may be approximated in an accurate manner

has also been given.

78



6. RECOMMENDATIONS

Based on the frequency equations presented in this paper,
expressions for the cumulative number of eigenvalues and the eigen-
value density of thin conical shell have been obtained for the fre-
quency ranges discussed. However, there are still several areas in
which further work on this subject could be done.

First of all, the k-space integration technique could stilil
theoretically be used to compute results based on the first frequency
equation., This technique was not used as it was not necessary to use
it in order to obtain the desired results, and because of the diffi-
culties mentioned in obtaining the appropriate k-space limits. How-
ever, this method would provide a good check of the work presented
here, and would also offer a mﬁch faster way, with respect to computer
time, of obtaining the cumulative number of eigenvalues and eigenvalue
curves versus dimensionless frequency. This would be particularly
helpful if more exact information regarding the region between the
two ring frequencies was required for specific cones,

A second area of possible analytic interest would be a more exact
method of handling the expressions in the frequency range between
the upper and lower ring frequencies. It would probably be necessary
to use the k-space integration discussed above to perform a more
complete parameter study of cone geometries in this region. The in-
formation which has been obtained indicates that the cone parameters do
not affect the curves in an independent manner in this region. It

appears that the relevant combination of parameters would have to be
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isolated, if indeed this is possible, before expressions in this
region could be formulated.

Finally, there is still a need, although of less importance for
more experimental work in the area of cones. The data presented does
not extend into the region above the upper ring frequency. In order
to obtain data in this area it would be necessary to either improve
the sensitivity of the instrumentation used or to choose a cone
geometry where mode overlap does not become a problem until well into
the region of interest. The latter procedure would probably be the
easier of the two, as it is felt that the instrumentation used per.
formed in a very satisfactory manner.

It might also be added that since this paper is based on a single
frequency equation derivation which is approximate, the possibility is
open for a similar type of analysis on a less approximate equation,
However, unless an exact frequency equation were obtained, it is felt
that there would be little value in this procedure as the results

obtained appear to be of sufficient accuracy for engineering work.
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8. APPENDICES

8.1 Development of Differential Equations and Frequency Equation

8.1.1 Equilibrium Equations

Starting with the equilibrium conditions on a typical conical
shell element, the differential equation of motion will be obtained.
Figure 8.1 shows the basic geometry of a conical shell and of a typical
element on the surface of the shell. 1In the figure, V¥ is one-half the
apex angle of the cone, r is the radius of the cone measured in the
plane perpendicular to the axis of the cone, x is the coordinate along
the cone surface measured from the apex, and © is the angular co-
ordinate measured in the plane perpendicular to the cone axis. Also,
L is the slant length from the apex to the base of the cone, Lt is the
slant length from the apex to the top of the cone, and h is the thick-
ness of the cone.

Figure 8.2 shows a typical element of the cone with the various
stress resultants indicated in their positive directions along with
the three body forces X, Y, and Z, 1In Figure 8.2 the normal stress
resultants are indicated by N, and Ngs the shear stress resultants are
indicated by N g and Ngyo and the transverse shear stresses by Q, and
Q9°

Assuming that the shell is of constant thickness (h) the result-
ant forces acting in the x, y, and z directions may be determined,
where z is the coordinate perpendicular to the shell surface and y is
the coordinate perpendicular to the x.z plane. Summing the forces

acting in each coordinate direction and neglecting second order and
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higher terms the three force equilibrium equations for a conical shell

are obtained:

g; (rNX) - Ne sin V¥ + ga'(Nex) +rX =0 (8.1
o o . -

e) (Ne) + = (rNXe) + Nex sinV - Qe cosV+ rY =0 (8.2)
SV g - LS ) + S5 ) = -2 (8.9

Figure 8.3 shows a typical shell element with the six moment
resultants necessary for equilibrium acting, again along with the
three body forces. The moment resultants are shown in the figure in
their positive directions. Under the assumption that the thickness of
the shell is constant, remembering moment contributions due to the
stress resultants in Figure 8.2, and neglecting second order and higher
terms which appear, the three moment equilibrium equations may be

written in the following form:

%; (ere) + MeX sin V¥ + g@ (Me) = Qgr (8.4)
0 M ) 0 M. ) + M. sinV{y = 8.5)

~ 3= (r o - 55-( O g SinV¥= _QXr (8.

Mex cos ¥ + rNXe - rNex =0 . (8.6)

8.1.2 Differential Equations

It is now necessary to obtain the strain relationships for the
shell element in terms of the three displacements of the shell. The
displacement in the x direction is given the symbol u, the displace-

ment in the 6 direction has the symbol v, and the displacement in the
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z direction the symbol w. Also defining the three strains due to
extensions of the middle surface as follows., The change in length in
the x direction over the length of the element in the x direction is
given the symbol € the change in length in the © direction over the
length of the element in the © direction the symbol €gs and the change
in angle between the x and © directions the symbol Yox The three

extensional strains may be written in terms of the displacements as

follows:
e, = g& (8.7)
g = %—usinllr+%w cos¢+%% (8.8)
= FHTEE D - (8.9)

These then are the strains in the middle surface associated with
the extension of the middle surface in terms of the displacements of
the middle surface u, v, and w. There are also three strains asso-
ciated with the bending of the middle surface which are given the

symbols Xk’ X

o’ and t. Assuming that the strain in the z.direction is

approximately zero, and that the u and v displacements do not affect
the bending strains significantly, and that the displacement in the
z direction is much smaller than the radius of the come (r), the

bending strains may be written in terms of the displacement in the =z

direction (w) in the following manner:
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Equations (8.7) through (8.12) have been derived by Flugge (1966) and

Wang (1953).

The stress resultants and moments used in the equilibrium equa-

tions and shown in Figures 8.2 and 8.3 are defined in terms of the

normal and shear

is the thickness

h/2
N =
% -h/2
h/2
Yo~ {h/z
h/2
Nx6 B -h/2
h/2
Nex - {h/Z
h/2
Moo= f
-h/2
h/2
Yo * _h/2

stress in the following conventional manner, where h

of the shell:

o, (1 - fi;fify dz
% dz
o - Z52Y
Tex dz

o (1 - Z_M) zdz

o. zdz
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Mxe =

il

Mex

The normal stresses Ck and o. and the shear stress Tx

h/2

- T (
{h/ 2 *®

h/2

-J T zdz .

_h/2 &

Elffiib zdz

S]

(8.19)

(8.20)

are re-

lated for an elastic shell to the strains in the shell by the theory

of elasticity in the following manner, where vy is Poisson's Ratio:

0'9 =

Txe =

E

Tex T Ty Tex ¢

(8.21)

(8.22)

(8.23)

where Ex’ Ee, and 7ex are the total strains in the shell surface.

The total strains are related to the extensional strains and the bend-

ing strains given in equations (8.7) through (8.12) by the following

relationships:
Ex = etz X
Ee = €g t 2z Xy
7ex = 7ex + 2z7T

Using

(8.24)

(8.25)

(8.26)

equations (8.24) through (8.26) along with equations (8.21)

through (8.23) to express the stresses in terms of the bending and

extensional strains and then using this result together with equations
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(8.13) through (8.20) expressions for the stress resultants in terms
of the extensional and bending strains are obtained. In so doing it
is assumed that the h cos V¥/r term occurring in several of the stress
resultant definitions is small compared to unity and may be neglected.
This assumption has the added effect of satisfying equilibrium equa-
tion (8.6) identically, which therefore needs no further consideration.

The stress resultants may be written as follows:

_ Eh
NX = — (ex + v ee) (8.27)
1.v
Eh
Ne = — (eg * Vv ex) (8.28)
l-v
Eh
Neo = Nox = 2@y Tex (8.29)
3
-Eh
M = e (X, -~V ) (8. 30)
X 12(1~v2) x %
Eh°
My = =Tt (X - v X) (8.31)
12(1-v5)
3
_ ~ Eh
Mox = Mo = - 2wy | (8.32)

For the remaining equilibrium equations (8.1) through (8.5), the
following assumptions are made. The X and Y body forces are assumed
to be unimportant in the vibration problem, and are neglected. It
‘is also assumed that the transverse shear may be neglected in the
second equilibrium equation (8.2). This assumption is based on the
supposition that the radius of curvature of the shell is large. The

equilibrium equations may therefore be written as:
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% (rN) - Ny + % (Ng,) =0 (8.33)

3 bo . -

35'(Né) + 5= (rNex) + Nex siny =0 (8.34)

o8y Ne_%[gf (xQ) +§e—(Qe>] +2=0 (8.35)
o . 3 -

- 3 (rMex) - Mex sin ¥ - 36'(Me) + rQe =0 (8.36)
) ) . -

- 3% (fo) - 32'(M9x) + Me 51n\h+-er =0 . (8.37)

The stress function (¢) which is a function of the coordinates x
and © is now introduced. The stress function is defined in the fol-

lowing manner:

1 3% _ sinv 6

N = oyt (8. 38)

r° ®

2

¢
N o 9% (8. 39)
o 2
N = 1 (52¢ sin V¥ a¢) 8. 40
x” "TE®E-TT @ (8.40)

By defining the stress function in the above manner, the first
two equilibrium equations (8.33) and (8.34) are satisfied identically.
This may be shown to be true merely by substituting equations (8.38)
through (8.40) into the two equilibrium equations mentioned,

Examination of the relationships cited previously for the bending
strains (8.10) through (8.12) reveals the following. The functional

dependence between the displacement normal to the shell surface w(x,6)
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and the three bending strains, X0 Xos and 1t is identical to that

between the stress function ¢(x,0) and the stress resultants Nk, Ny,

and Nx as given by equations (8.38) through (8.40). Therefore since
equations (8.38) through (8.40) satisfy equations (8.33) and (8.34)
identically, a similar result would be expected regarding Xx, X,, and

©
7. This analogy produces the following identities:

%; (rX) - X siny - % () = 0 (8.41)
d 3 C o
¥ X t 5 (r1) -~ T sin¥y=0 . (8.42)

Using the first two moment equilibrium equations (8.36) and (8.37)
explicit expressions for the transverse shears Q and Qg may be ob.
tained. If this result is used in conjunction with the expressions
for the moments in terms of the bending strains (8.30) through (8.32)
and the identities obtained above (8.41) and (8.42) the following

expressions may be written for the transverse shear components:

3
Eh 3
qQ = —_En [X_ + X.] (8.43)
R l2(1yly O x 78
a ER° 1 3 X+ X 8. Lk
% = _12‘('1'_v2)'F¥[ x T %l (8.44)

Introducing the expressions for the bending strains in terms of
the normal displacement (8.10) and (8.1l) and the :72 operator the

expressions for the transverse shear components become:
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Q = Do & (v w , (8.45)
ER> 13 2
Q@ = -1—2-—(1_-—Vz-)—;-5§(v w) (8.46)
where

1 .0 3 o ,10
vViErlxs R e Ew! -

Returning to the final equilibrium equation (8.35) and using the
expressions (8.45) and (8.46) to eliminate the transverse shear terms,
the z equilibrium equation may be expressed with the aid of the defini-

tion of the VZ operator as

3
COSWN _EP_Q_vzvzw+Z=0. (8.47)
12(1-v7)

T e~

Equation (8.47) may be rewritten in a simpler ferm by using the
definition of the stress function (8.39) to eliminate the stress

resultant Ne:

2 3
cos ¥ :xg fE 2% wiz=0. (8.48)

12(1_v2)

This then is the first differential equation for the motion of a
conical shell. The equation is expressed in terms of two dependent
variables ¢ and w which are both functions of the two independent
variables x and ©. 1In order to obtain a second differential equation
so that the system of equations may be solved, a form of the continuity

equation involving the volume deformation -©-is introduced. The volume
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deformation is defined as the sum of the two extensional strains €
and €g* Therefore from continuity considerations the following

equation is written:

2 1 .0 ow, - _

V- - (1.v) 5 [Ef <c051VEE9] =0 (8.49)
Using this equation together with the above definition of volume

deformation, the expressions for the stress resultants in terms of

extensional strains (8.27) and (8.28), the definition of the stress

function (8.38) and (8.39), and the definition of the (72 operator

the following relationship may be written:

2
1 2 2 cosy Ow
o AR VRN R = 5;2. = 0 . (8.50)

Equations (8.48) and (8.50) are therefore the differential equa-
tions governing the motion of a thin conical shell. These equations
have been derived in a more general form by Vlasov (1949) and have been
used in approximately the form given by Godzevich (1962) applied to a
conical shell.

The differential equations derived above are based on several
assumptions which although noted in the derivation will be restated
here in a collected form. It was assumed that the shell thickness (h)
remained constant over the shell, that the shell material obeyed Hooke's
elastic law, that the compressive strain of the shell element in the
z-direction was approximately zero, that the u and v displacements of
the shell element did not appreciably affect the bending strain rela.

tions, and that the X and Y body forces could be neglecting in the
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formulation of the vibration problem. All of these assumptions appear
to be such that no further explanation is needed. It was also assumed
that the radius of curvature of the shell was large, in other words
Toos ¥ is much greater than zero. This assumption is obviously true
for cones with large cone angles, and for points well away from the

cone apex; however, for small cone angles, and points near the cone

apex the assumption is only approximate.

8.1.3 Frequency Equation

Before proceeding with the solution of the differential equations
for the conical shell the results thusfar will be grouped and put in

the following form:

2
EIH e - °°i"’ —:—X%’- = 0 (8.51)
cos V¥ 52¢ 2_2 h
= ———2+Dv W - w = 0 (8.52)
ox c
where
2 62 siny o 1 62
v.o= =" xt7T =
A r r° »®

The only difference between these equations and the ones given
previously is that the Eh3/12(1_v2) term has been replaced by D, the
plate stiffness, and that the Z body force has been replaced by the
inertia force of the shell, where y is the shell density and w is the
frequency of vibration.

Since the main problem of interest is to obtain an expression for

the resonant frequencies of a vibrating cone, the solutions for the
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stress function and. the normal displacement will be confined to expres-

sions of the form:

]
I

w(x,0) W(x) cos mo m=2,3,..,. (8.53)

¢ (x,0) &(x) cos mé m=2,3,... (8.54)

It is therefore assumed that the circumferential modes are
independent of the longitudinal modes, and that the mode shapes in the
circumferential direction are sinusoidal and uniform over the length
of the cone. 1In other words for a given mode number there are the
same number of circumferential waves all the way up and down the cone
surface. Substituting equations (8.53) and (8.54) into equations
(8.51) and (8.52) and noting that r and x are related (r = xsiny) the
differential equations may be expanded to the following form. 1In so
doing, the independent variable x has been nondimensionalized by making
the substitution % = gL, where L is the slant length of the come, and

& is the new dimensionless variable:

L __z;d% + g_d_3_3m ~La- ___2_2”‘2 ) __z_dzm 1 a ___2_2‘“2_) do
Eh do @ do &T sin W' do a3 sin W' aa
4 2 2
1 m 4m L d°w
+ ( )m}-,———ﬂ,-—T:o (8.55)
(;ZI sin ¥ 51n211f @ tan do
L d26+D{d4w+Ed3w~_l_(l+2m2)d2w
dtan¥ 2 o % aos of sinZ¥  da
1 2m dw 1 m 4m 7hL4w2
+ —_— (1 + 5 ) ﬁ + —4 ( - ) } - W=0
04 sin™Vy a sin ¥ sin"y e
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Equations (8.55) and (8.56) are now two simultaneous differential
equations in the two dependent variables ® and W which are functions
of the independent variable . The equation may be solved by the
GalerKin Method, as has been pointed out by Godzevich (1962). 1In
order to use this method it is first necessary to assume a series type
solution for the unknown functions #(&) and W(a). The assumed solu-

tions to be used in this case are of the following form:

o0

p(@ = & A sin a (oz-ocl) (8.57)
n=1
o)

W) = = B sin a (0-0p) (8.58)
n=1

where a_ = 2% and @, is the ratio of the slant length of the
n 1-al 1

truncated portion of the cone Lt to the slant length of the entire
cone L. The integer n represents the number of half waves in the
longitudinal direction along the cone. The constants An and Bn are
unknowns which are to be determined as part of the solution.

The Galerkin method as explained in some detail by Mikhlin (1964)
essentially imposed an orthogonality condition between the differen.-
tial equations with the assumed solutions substituted into them, and
the assumed solutions themselves, It is this orthogomality require.
ment which is used to obtain the constants An and B, or in this case
is used to obtain the eigenvalue expression (frequency equation).

Substituting equations (8.57) and (8.58) into the differential
equations (8.55) and (8.56) and insisting that the resulting expres-
sions are orthogonal to the assumed solution form (sin a (a“al) h)

two simultaneous equations in An and Bn are obtained. Instead of
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solving the system of equations for the unknowns An and Bn the
determinant of the coefficient matrix is set equal to zero. This is
the condition which will lead to an expression for the eigenvalues of

the conical shell. The expression may be written in the following

form:
2 1 .2
2 By *vwr By
W = - < (8.59)
BBy ’

where Bl’ BZ’ and B3 are the integral portions of the coefficient
matrix which occurred due to the orthogonality condition which was

imposed. The integral expressions are evaluated over the length of
the cone, or from @ = 0 and @ = 1., Evaluating the integral expres-
sions which occur and substituting them into equation (8.59) results

in the desired expression for the eigenvalues of a conical shell.

This expression is given as

4
D_(Tn 1 o a 22)[ (1-0)) - o (1o0)]
——— - + a + QY [ ~CL +
) 8.E prln 10 1 ein W % 2a_ 1
(L) =[ 2_] - '4" N T R i - T
7L a a5 9 2 a 3 1
n 1mn n -
£T6 (1-0) +a (1 + : [7T (1mal) - 7;—'(1mal)J +
sin” V¥ n
4
2 l.a. 2 a
4 i 1 4 3 2. .2
(g - =) )t ——— (7 (1-0)) - = (1)) )
sin ¥ sin™V tan ¥ 8an
T 2 1-0
(s 2Ry L (L (1a)-i(1~a3)+i<1-a>}
4 7 ) 2 1 2 1
sin V¥ sin“y 2an 4an

(8. 60)
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It should be remembered that aside from the assumptions made in
the development of the differential equations, this equation is also
dependent on the assumptions which were made in obtaining a solution
of the differential equations. It was assumed that the circumferential
modes were sinusoidal in nature and the mode shape in the circumferen-
tial direction was consistent over the length of the cone, and that
the circumferential modes were independent of the longitudinal modes.
It was also assumed that the longitudinal mode shape could be approxi.
mated by a single term series of the form given in equations (8.57)
and (8.58). These assumptions all appear reasonable, however experi.
mental evidence regarding the mode shapes indicates that they are only
approximations. Equation (8.60) will be referred to as frequency
equation one throughout this paper.

8.2 Comparison of Frequency Equation One with Experimental
Results in the Literature

In order to provide some form of check for the frequency equation
derived in section 8.1, since it is an approximate equation, frequen-
cies predicted by this equation (8.60) are compared with experimentally
obtained frequencies available in the literature. The results of
studies conducted by Weingarten (1965) and Lindholm and Hu (1966) are
used as sources of experimental data for this comparison,

The data obtained by Weingarten (1965) is presented in tabular
form in Tables 8.1 and 8.2, and the data obtained by Lindholm and Hu
(1966) is presented in Tables 8.3 and 8.4. Relevant data concerning
the cones used in the investigation is also given in the respective

table with the corresponding data.
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Table 8.1 Experimental data in literature (1)a

Cone Angle (¥): 20°

Length (L): 14.14 inches
Truncation (Lt): 6.14 inches

Thickness (h): 0.04 inches

Material: 1020 steel, rolled and butt welded

m _ | f(Hz) for n=l | Vf(Hz) for n=2 f(Hz) for n=3
2 1850 5116 6388

3 1451/1453 - -

4 1206 2831 4417

5 1151 2374 -

6 1304 2277 -

7 1535 2449 3262

8 1831 2710 3453

9 2169 3007 3751
10 2555 - 4264/4219
11 - 3775 4732
12 - - 5291

13 - . 5871

aWeingarten (1965) ; taken from tables.
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Table 8.2 Experimental data in literature (2)a

Cone Angle (V): 20°

Length (L): 14.14 inches
Truncation (Lt): 6.14 inches

Thickness (h): 0.02 inches

Material: 1020 steel, rolled and butt welded

m f(Hz) for n=1 f(Hz) for n=2 f(Hz) for n=3
2 1551 - -

3 1468 3045/3049 -

4 1182 2407 3980

5 1001 2215/2175 3472

6 964 1858/1867 2989/2949
7 1032 1747/1734 2647/2623
8 1160 1781 2514

9 1317 1915 2542/2544
10 - 2090/2082 2694
11 - 2293 2796/2785
12 - 2419/2428 3070/2085

aWeingarten (1960) ; taken from tables.
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Table 8.3 Experimental data in

Cone Angle (\): 30, 2°

. Length (L): 15.7 inches
Truncation (Lt): 6.94 inches

Thickness (h): 0.01 inches

literature (3)a

Material: Shim stock, rolled and butt welded

n kaz) f;r n=1 fzﬁ;) for n=2 f(Hz) for n=3
5 670 - -
6 510 - -
7 410 - -
8 395 980 -
9 390 875 -
10 400 800 -
11 420 760 -
12 480 - -
13 500 800 1100
14 555 850 1125
15 600 895 1175
16 650 950 1210
17 705 1000 1260
18 780 1050 1315
19 820 - 1400
20 900 1195 1470

#Lindholm and Hu (1966) ; taken from graphs.
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a
Table 8.4 Experimental data in literature (4)

Cone Angle (¥): 45.1°

Length (L): 12.7 inches
Truncation (Lt): 5.61 inches
Thickness (h): 0.0l inches

Material: Shim stock, rolled and butt welded

n f(Hz) for n=1 f(Hz) for n=2 f(Hz) for n=3
6 6lQ - -
7 510 - -
8 455 - -
9 415 970 -
10 405 885 -
11 410 805 -
12 440 795 1300
13 480 805 1200
14 505 855 1160
15 545 895 1170
16 590 - 1210
17 610 975 1270
18 670 1005 1315
19 705 1060 1375
20 770 1105 1410

#Lindholm and Hu (1966) ; taken from graphs.
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Using the information presented in each table concerning the cone
geometry and the cone material in conjunction with the frequency
equation for the conical shell (8.60) the resonant frequencies cor-
responding to various mode numbers are obtained, Figures 8.4 through
8.7 show the results of these calculations in graphical form. The
resonant frequency is shown plotted as a function of the number éf
circumferential waves (m), and the number of one-half longitudinal
waves (n) is shown as the parameter. The experimental values pre.
sented in Tables 8.1 through 8.4 are shown in the respective figure
pertaining to each cone studied. Hence Figures 8.4 through 8.7 offer
a quick comparison between the experimental results and the analytical
results based on equation (8.60).

A study of Figures 8.4 through 8.7 indicates that the frequency
equation developed in section 8.1 is by no means exact, but does re-
flect trends of frequency variation with changing wave numbers. Since
the purpose of the investigation undertaken in this paper is not to
obtain discrete frequency values, but rather to study the overall
variation of frequency with respect to mode number, it is felt that

the agreement obtained is sufficient for the purpose at hand.
8.3 Computer Program for Numerical k.Space Integration

8.3.1 Description of Program

The general equation (3.25) used in the evaluation of the k.space
integral has already been discussed in some detail. In this section
a general outline of the program used to accomplish the integration

numerically will be presented.
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This program may be broken down into five separate parts; the
main program or control section, two function subprograms, and two
subroutines, plus data on the cone geometries studied. The two func.
tion subprograms define the upper and lower boundaries of the space as
functions as given by equation (3.23). The first of the subroutines
is a standard library subprogram used to find the real and imaginary
roots of a polynomial by Newton Raphson iteration techniques. This
subpreogram is used to solve the cubic polynomial (3.24) which yields
the upper and lower limits of the k-space. The second subroutine is
also a standard library subroutine used to evaluate integrals by
Simpson's Rule. This subprogram is used to evaluate the integral over
the upper and lower bounds of the space (3.26). The main program pro-
vides for input and output of information and serves to coordinate the
various subprograms and subroutines.

The basic sequence of events is indicated in Figure 8.8. The
program begins by inputting the data concerning the cone to be analyzed.
Each data card contains the data for one cone in the following sequence;
cone angle, length, truncation length, thickness, Young's modulus,
Poisson's ratio, and the density, This data is then used to generate
several constants which are needed in the equations to be solved.

Then, an initial dimensionless frequency value is calculated and
several more constants dependent on this parameter are determined.

The first subroutine is then called and provided with the required
information. The subroutine solves the cubic equation given it, and
returns the roots to the main program. The main program then picks the

appropriate roots to be the limits of the k-.space integral. The second
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subroutine is then called and provided with the

appropriate informa..

tion such as the limits and the upper bound function subprogram. The

subroutine calculates the value of the integral

and returns it. The

subroutine is called a second time and given the same information

except that the lower bound functicn subprogram

is used. This value

is returned and subtracted from the value obtained previously; the

final value for the cumulative number of eigenvalues is then printed

out along with the corresponding dimensionless frequency. The dimen-

sionless frequency value is then increased and the above procedure

repeated until a sufficient range of dimensionless frequency values

have been covered.
Between each successive calculation of the

eigenvalues, the eigenvalue density is obtained

cumulative number of

by dividing the change

in number of eigenvalues by the change in dimensionless frequency.

This information is also printed out along with

a corresponding value

of dimensionless frequency equal to the value half way between the

values corresponding to the number of eigenvalues used in the deter-

mination of the eigenvalue density. After a sufficient number of

dimensionless frequencies have been used the data for a new cone is

selected and used in the same manner as above.
tained may be printed either in normalized form

given in equation (3.26).

All the results ob.

or merely in the form

A copy of the actual program used on an IBM 360 model 75 computer

written in G level Fortran appears in the next subsection,
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8.3.2 Main Program

001 DOUBLE PRECISION CONE (22,7)

002 DOUBLE PRECISION XCOF (4),COF (4) ,RO0OTR(3),RO0TI (3)

003 DOUBLE PRECISION A,DEG,ANGL,RL,XI,AL,H,E,RATO,DEN,G,C1,C2,ALl,
*AL2,AL3,AL4,ALS,SDFR, DFRE, S, T, U, B, SU, SL, DN, DELDN, DNO, DELDF,
*DFREM, DM, DFREQ

004 COMMON ALl,AL2,AL3,Al4,AL5,C1,C2,SDFR

005 EXTERNAL UPPER, LOWER

006 100 FORMAT('l', 'INTEGRATION OF K-SPACE FROM 2ND FREQUENCY EQUATION
#*TO GET D-NUMBER OF MODES'//'0','ANGLE=',F7.4,3X, 'LENGTH RATIO
#=' F6,4,3X, 'THICKNESS=",F6. 4, 3X, ' LENGTH="',F8.4//)

007 200 FORMAT(7F10.0)

008 300 FORMAT('0','D-FREQUENCY D.NUMBER MODES D.FREQUENCY
*D.MODAL DENSITY'//)

009 400 FORMAT(' ',F10.3,D15.5,F20.3,D15.5,313,216)

C

c INPUT OF CONE DATA
o
010 READ(1,200) ((CONE(I,J),J=1,7),I=1,22)
011 DO 1 K=1,22
012 DEG=CONE(K, 1)
013 ANGL=DEG/57.295779531
014 RL=CONE (K, 2)
015 XI=CONE (K, 3)
016 AL=XI/RL
017 H=CONE (K, 4)
018 E=CONE (K, 5) *1. D2
019 RATO=CONE (K, 6)
020 DEN=CONE (K, 7)
021 G=3. 864D2
022 Cl=(H¥**2) / (1, 2D1% (RL¥**2)%* (1. DO~ (RATO**2)))
023 C2=DCOTAN (ANGL) *%2
024 AL1=1.DO-AL
025 AL2=1,DO-AL¥*2
026 AL3=1,DO-AL#*%3
027 AL4=1, DO-AL¥%4
028 AL5=1, DO-AL¥**5
C
c IDENTIFICATION OF CONE
C
029 WRITE(3,100) DEG,AL,H,RL
030 WRITE(3,300)
031 DFRE=0.0925D0
032 DNO=0. DO
033 DFREQ=0. DO
C
C LOOP ON DIMENSTONLESS FREQUENCY
Cc
034 DO 2 L=1,100
035 DFRE=DFRE*1.0715D0
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036
037
038
039
040
041
042
043

049
050
051
052
053
054
055
056
057
058
059
060
061

SDFR=DFRE**2
S=-(3.D0*AL2/AL4+2, DO*SDFR*AL5/ (5. DO*ALA*DSQRT (C1*C2)))
T=2. DO*SDFR*AL3/ (AL4*DSQRT (C1*C2))

U=-3.DO%SDFR*AL1/ (AL4*DSQRT (C1*C2))

XCOF (1) =U

XCOF (2) =T

XCOF (3) =S

XCOF (4)=1.0D0

SOLUTION OF CUBIC TO OBTAIN UPPER LIMIT OF CKl

CALL ROOTS (XCOF, COF , 3, ROOTR,ROOTI, IC)
A=DSQRT (ROOTR(2))
B=DSQRT (ROOTR(3))

SIMPSON INTEGRATION OF UPPER BOUNDRY
CALL BOBYJO(UPPER,A,B,1.D-3,10,51U,SU, NU, IERU)
SIMPSON INTEGRATION OF LOWER BOUNDRY
CALL BOBYJO(LOWER,A,B,1.D-3,10,51L,SL,NL, IERL)

CALCULATION OF AREA OF K-SPACE
DN=SU-SL
DN=DN*H/ (DSQRT(DTAN (ANGL) ) ) *DSQRT (DSQRT (AL1) ) /RL
DELDN=DN-DNO
DELDF=DFRE-DFREQ
DFREM=DELDF/ 2. DO+DFREQ
DM=DELDN/DELDF
WRITE(3,400) DFRE,DN,DFREM, DM, IC, LERU,IERL,NU,NL
DFREQ=DFRE
DNO=DN
CONTINUE

. CONTINUE

STOP
END

8.3.3 Upper Bound Function Subprogram

001
002
003
004
005
006
007
008
009
010

DOUBLE PRECISION FUNCTION UPPER (X)

DOUBLE PRECISION ALl,AL2,AL3,AL4,AL5,C1,C2,CK1,T,U,V,W,SDER
COMMON AL1,AL2,AL3,AL4,AL5,Cl,C2,SDFR

CK1=X

T=AL1/2.DO

U=C2% ((AL4%* (CK1%%4) /8. DO) - (3. DO*AL2%* (CK1%%2) /8. D0) ) %2
V=(AL5* (CK1**4) /1, D1) - (AL3* (CK1#%2) /2. DO) +(3, DO*ALL/4. DO)
W=C1l#* (CK1#%%4)

IF (V#SDFR/(2.DO*W*T)) 1,2,2

1 UPPER=0.0
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011 GO TO 3

012 2 CONTINUE

013 UPPER=DSQRT (DSQRT ( (V¥SDFR/ (2. DO*W*T))* (1. DO+DSQRT (DMAX1 (1. D~
%25, (1. DO (4. DO*U*W/ ( (V¥SDFR) *¥%2))))))))

014 3 CONTINUE

015 RETURN

016 END

8.3.4 Lower Bound Function Subprogram

001 DOUBLE PRECISION FUNCTION LOWER(X)

002 DOUBLE PRECISION ALl,AL2,AL3,AL4,AL5,C1,C2,CK1,T,U,V,W,SDFR
003 COMMON AL1,AL2,AL3,Al%4,ALS5,Cl,C2,SDFR

004 CK1=X

005 T=AL1/2.DO

006 U=C2% ( (AL4* (CK1%%4) /8.DO) - (3., DO*AL2%* (CK1#%2) /8.D0) ) **2

007 V=(AL5% (CK1%%*4) /1. D1) - (AL3* (CK1#**2) /2. DO) +(3. DO*ALL1/4. DO)
008 W=C1* (CK1%*4)

009 IF (V*SDFR/(2.DO*W*T)) 1,2,2

010 1 LOWER=0.0

011 GO TO 3

012 2 CONTINUE

013 LOWER=DSQRT (DSQRT ( (V¥SDFR/ (2. DO*W*T) )* (1. DO~DSQRT (DMAX1 (1.D-

%25, (1. DO~ (4. DO*L*W/ ((V¥SDFR) **2))))))))
014 3 CONTINUE
015 RETURN
016 END

8.3.5 Subroutine to Solve Cubic

001 SUBROUTINE ROOTS (XCOF , COF ,M,ROOTR,ROOTI , LER)

002 DIMENSION XCOF (1) ,COF (1) ,RO0TR(1) ,ROOTI (1)

003 DOUBLE PRECISION XO,YO,X,Y,XPR,YPR,UX,UY,V,YT,XT,U,XT2,YT2,
*SUMSQ, DX, DY, TEMP, ALPHA

004 DOUBLE PRECISION XCOF,COF,ROOTR,ROOTT

005 IFIT=0

006 N=M

007 IER=0

008 IF (XCOF(N+1)) 10,25,10

009 10 IF (N) 15,15,32
010 15 IER=1
011 20 RETURN

012 GO TO 20
014 30 IER=2
015 GO TO 20

016 32 IF (N-.36) 35,35,30
017 35 NX=N

018 NXX=N-+1

019 N2=1
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020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070

40
45

50

55

59
60

65

70

75

78
80

85
90
95

100

KJ1=N+1

DO 40 1=1,KJ1
MT=KJ1.L+1

COF (MT) =XCOF (L)
X0=.00500101
Y0=0.01000101

IN=0

X=XO0

X0=.10.0%*Y0
Y0=.10,0%X

X=X0

Y=YO

TN=IN+1

GO TO 59

IFIT=1

XPR=X

YPR=Y

1CT=0

UX=0.0

UY=0.0

V=0.0

YT=0.0

XT=1.0

U=COF (N+1)

IF (U) 65,130,65

DO 70 I=1,N

L=N.I+l

TEMP=COF (L)

KT 2=X*XT.Y*YT
YT2=X*YT+Y%*XT
U=U+TEMP*XT2
V=V+TEMP*YT2

FI=I

UX=UX+F I*XT*TEMP
UY=UY~FI*YT*TEMP
XT=XT2

YT=YT2
SUMSQ=UX*UX+UY*UY

IF (SUMSQ) 75,110,75
DX=(V*UY.U*UX) /SUMSQ
X=X-+DX

DY=- (U*UY-+V*UX) /SUMSQ
Y=Y+DY

IF (DABS (DY) +DABS(DX).1.0D.05) 100,80,80
ICT=ICT+1

IF (ICT.500) 60,85,85
IF (IFIT) 100,90,100
IF (1N-5) 50,95,95
TFR=3

GO TO 20

DO 105 L=1,NXX
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071 MT=KJ1-L+1

072 TEMP=XCOF (MT)

073 XCOF (MT) =COF (L)

074 105 COF (L) =TEMP

075 ITEMP=N

076 N=NX

077 NX=ITEMP

078 IF (IFIT) 120,55,120

079 110 IF (IFIT) 115,50,115

080 115 X=XPR

081 Y=YPR

082 120 IFLIT=0

083 122 IF (DABS(Y/X)-1.0D-04) 135,125,125
084 125 ALPHA=X+X

085 SUMSQ=X#X+Y#Y
086 N=N-2

087 GO TO 140

088 130 X=0.0

089 NX=NX-1

090 NXX=NXX-1

091 135 Y=0.0

092 SUMSQ=0.0

093 ALPHA=X

094 N=N-1

095 140 COF (2) =COF (2) +ALPHA* COF (1)

096 145 DO 150 L=2,N

097 150 COF (L+1) =COF (L+1) +ALPHA* COF (L) ~SUMSQ* COF (L-1)
098 155 ROOTI(N2)=Y

099 ROOTR (N2) =X

100 N2=N2+1

101 IF (SUMSQ) 160,165,160
102 160 Y=-Y

103 SUMSQ=0.0

104 GO TO 155

105 165 IF (N) 20,20,45

106 END

8.3.6 Subroutine for Numerical Integration

001 SUBROUTINE BOBYJO (F,A,B,DEL,IMAX,SI1,S,N,IER)
002 DOUBLE PRECISION A,B,DEL,SI1,S,BA,X,SUMK,FRSTX,XK,FINC,F
003 SI1=0.DO
' 004 D=0.0DO
005 N=0
006 BA=B-A
007 IF (BA) 20,19,20
008 19 IER=1
009 RETURN

010 20 IF(DEL) 22,22,23
011 22 TER=2
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012 RETURN
013 23 IF(IMAX-1) 24,24,25
014 24 TER=3

015 RETURN
016 25 X=BA/2.0DO+A

017 NHALF=1

018 SUMK=F (X) *BA*2,0D0/3.0D0

019 S=SUMK+(F (A) +F (B) ) *BA/6.0D0

020 DO 28 I=2,IMAX

021 SI1=8

022 S=(S~SUMK/2.0D0) /2.0DO

023 NHALF =NHALF*2

024 ANHLF=NHALF

025 FRSTX=A+(BA/ANHLF)/2.0DO

026 SUMK=F (FRSTX)

027 KK=FRSTX

028 KLAST=NHAIF.1

029 FINC=BA/ANHLF

030 DO 26 K=1,KLAST

031 XK=XK+F INC

032 26 SUMK=SUMK+F (XK)

033 SUMK=SUMK #2=0DO* BA/ (3.0 DO *ANHLF)
034 S=S+SUMK

035 27 IF(DABS(S-SIL)-DABS(DEL*S)) 29,28,28
036 28 CONTINUE

037 IER=4

038 GO TO 30

039 29 IER=0

040 30 N=2*NHALF

041 RETURN

042 END

8.4 Computer Program for Numerical Count of Eigenvalues

8.4.1 Description of Program

This section contains a computer program which will determine the
cumulative number of eigenvalues by counting them numerically from the
frequency equation. The program used to accomplish the counting pro-
cedure is fairly simple and is described in block form in Figure 8.9.
A copy of the program used on an IBM 360 model 75 computer written in

G level Fortran may be found in the following subsection.
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The program begins by inputting data on the cones to be analyzed.
The data cards used are the same as for the program described in
section 8.3. Several necessary constants for the cone geometry are
calculated and then initial values for the number of circumferential
waves (m=2) and the number of one half longitudinal waves (n=1) are
set. The corresponding frequency for these wave numbers is calculated
and put in dimensionless form. This frequency is then fed into a
series of IF statements which act as frequency filters. Once the
calculated frequency becomes less than one of the filter frequencies
it is counted as being contained under that frequency and all succeed.
ing frequencies. This process is repeated until the designated range
of m and n values have been covered whereupon the number of modes
contained under each filter value is printed out. The count under
each filter is considered to be complete when a further increase in m
and n produces no change in the results. The program then moves on to
the next cone, and the entire process is repeated.

The program has one major drawback, and that is it is very time
consuming. Using the computer cited above run times of approximately
two minutes per cone were needed for the count to be complete for
values of dimensionless frequencies up to forty., This corresponds to
around a hundred.thousand frequency calculations per cone. Careful
selection of final and initial m and n values could greatly decrease
the time needed, however, this would be difficult to do without first

making some frequency calculations.
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8.4.2 Main Program.

001
002
003
004

005
006

007

008

009
010

011

0le
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

DOUBLE PRECISION CONE(12,7),DN(20),DM(20),DF(1,20)
DIMENSION M(21),N(21)
INTEGER O,P
DOUBLE PRECISION ANGL,DEG,RL,XI,H,E,RATO,DEN,G,Cl,C2,C3,AL,
*AL1,AL2,AL3,AL4,AL5,FN,A2,A3,FM1,FM2,FM3,A1,SFR1, DFR1, SFR2,
*DFR2, C4, FNOR
99 FORMAT(7F10.0)
100 FORMAT('l', 'NUMBER TO EIGENVALUES FOR A CONICAL SHELL UP TO
*THE GI VEN DIMENSIONLESS FREQUENCY'/'O', 'ANGLE=',F6.3,4X,
* 'LENGTH RATIO=',F6.4,4X, "THICKNESS =',F6.4,4X, 'LENGTH =",
*F6,3/70', '"DIMENSTONLESS FREQUENCY MULTIPLIER=',6F10.4)
500 FORMAT('0‘, 'LOWER DIMENSIONLESS RING FREQUENCY=',6F10.4/'0',
* '"UPPER DIMENSIONLESS RING FREQUENCY=',6F10.4/)
600 FORMAT('0', 'LOWER DIMENSIONLESS RING FREQUENCY=',F10.4/'0',
*'UPPER DIMENSIONLESS RING FREQUENCY IS INFINITE'/)
200 FORMAT (20F4.0)
300 FORMAT('0O', 'D-FREQUENCY',9X, 'D-MODES ONE',9X, 'D-MODES TWO
*MODES ONE  MODES TWO'//)
900 FORMAT(' °,F11.2,2D20.5,2112)

INPUT OF CONE DATA

READ(1,99) ((CONE(I,J),J=1,7),1=1,12)
READ(1, 200) (DF (1,JL) ,JL=1,20)
KONT=210

LOOP. ON DIFFERENT CONES
DO 1 K=1,12
INITIALIZE TOTAL COUNTS AT ZERO

DO 700 L=1,21
M(L)=0
N(L) =0
700 CONTINUE
DEG=CONE (K, 1)
ANGL=DEG/57. 295779531
RL=CONE(K, 2)
XI=CONE (K, 3)
H=CONE (K, 4)
E=CONE(K,5)*1.D2
RATO=CONE (K, 6)
DEN=CONE(K, 7)
G=3.864D2
Cl=(G*E) / (DEN* (RL*%2))
C2=(Hk*2) /(1. 2D1% (RL¥*%2)* (1. DO~ (RATO¥**2)))
C3=(DCOTAN (ANGL) **2)
C4=DSQRT (E*G/DEN) / (2.DO*3.1415926536%RL)
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a4

033

aan

034
035
036
037
038
039

040
041
042
043

a0

044
045
046
047
048

9}

049
050

051
052

053
054
055
056
057
058
059
060
061
062
063

AL=XI/RL
IDENTIFICATION OF CONE

WRITE(3,100) DEG,AL,H,RL,C4
AL1=1.DO-AL

AL2=1, DO-AL#*2

AL3=1, DO-AL¥*3

AL4=1, DO-AL*%4

AL5=1, DO-AL¥*5

LOOP ON LONGITUDINAL NUMBER OF WAVES

DO 2 P=1,KONT
FN=P*3, 1415926356

A2=( (AL4* (FN%*2)) /(8. DO* (AL1**2))) - ((3.DO*AL2) /(8. DO))
A3=((AL5) /(1.D1)) - ((AL3* (ALL*%2)) /(2. DO* (FN**2)) ) +( (3. DO* (ALL

%%%5)) /(4. DO* (FN**4) )

10
12
14
16
18
20
22
24

LOOP ON CIRCUMFERENTIAL NUMBER OF WAVES

DO 3 0=2,KONT
FM1=(1=DO) +( (2. DO* (0**2)) / (DSIN(ANGL)**2))

FM2=( (0%%4) / (DSIN(ANGL) #%4) ) - ( (4. DO%* (0%*2)) / (DSIN(ANGL) **2))
FM3=(AL1* (0#%%4)) / (2. DO* (DSIN (ANGL) *%4))

Al=( (FN**4)*AL5) /(1. D1* (AL1%%4) ) +(FM1) * ((AL3* (FN**2)) / (6.0DL*
% (AL1%%2)) - (AL1) /(2. DO)) =(FM2*ALl) / (2. DO)

CALCULATION OF DIMENSIONLESS FREQUENCY FROM EQUATION ONE

SFR1=( (C2% (Al%%*2)) +(C3* (A2%%2))) / (A1*A3)
DFR1=DSQRT (SFR1)

CALCULATION OF DIMENSTONLESS FREQUENCY FROM EQUATION TWO

SFR2=( (C2* (FM3*#%2) ) +(C3% (A2%*%2))) / (FM3*A3)
DFR2=DSQRT (SFR2)

EQUATION ONE FILTERS

IF (DFR1.5.0D-1) 5,5,6
IF (DFR1-1.0D0) 7,7,8

IF (DFR1-1.5D0) 9,9,10

IF (DFR1.2.0D0) 11,11,12
IF (DFR1-2.50D) 13,13,14
IF (DFR1-3.0D0) 15,15,16
IF (DFR1.3.5D0) 17,17,18
IF (DFR1.4,0D0) 19,1920
IF (DFRl-4.5D0) 21,21,22
IF (DFR1.5.0D0) 23,23,24
IF (DFR1-6.0D0) 25,25,26
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064
065
066
067
068
069
070
071
072

073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

a

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108

26
28
30
32
34
36
38
40
42

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
83
84

44
46
48
50
52
54
56
58
60
62
64
66
68
70

IF
IF
IF
IF
IF
IF
ir
IF
IF

(DFR1-7
(DFR1-8
(DFR1-9.

(DFR1-1.

(DFR1-1.
(DFR1-2.
(DFR1-2.
(DFR1-3.
(DFR1-4.

.0DO)
.0DO)

0DO)
0D1)
5D1)
ODL)
5D1)
0D1)
0D1)

27,27,28
29,29,30
31,31,32
33,33, 34
35,35,36
37,37,38
39, 39,40
41,41,42
83,83,84

EQUATION ONE COUNTERS

N(L)=N(1)+1
N(2) =N(2)+1
N(3) =N(3) +1
N(4)=N(&4)+1
N(5) =N(5) +1
N(6) =N(6) +1
N(7) =N(7)+1
N(8)=N(8)+1
N(9) =N(9) +1
N(10) =N(10) +1
N(11)=N(11)+1
N(12)=N(12)+1
N(13)=N(13)+1
N(14) =N (14) +1
N(15)=N(15)+1
N(16) =N(16) +1
N(17)=N(17)+1
N(18)=N(18}+1
N(19)=N(19) +1
N(20)=N(20) +1
N(21)=N(21)+1

EQUATION TWO

IF
iF
IF
IF
IF
IF
IF
IF
IF
IF
IF
1F
IF
IF
1F

(DFR2..5.
(DFR2-1.
(DFR2-1.
(DFR2-2.
(DFR2-2.
(DFR2.-3.
(DFR2-3.
(DFR2.4.
(DFR2.4.
(DFR2.5.
(DFR2-6.
(DFR2..7.
(DFR2-8.
(DFR2..9.
(DFR2-1.

D-1)
0DO)
5D0)
0DO)
5D0)
0DO)
5D0)
0DO)
5DO0)
0D0)
0D0)
0DO)
0D0)
0D0)
0D1)

F1LTERS

43,43,44
45,45 ,46
47,47,48
49,4950
51,51,52
53,53, 54
55,55,56
57,57,58
59,59, 60
61,61,62
63,63, 64
65,65,66
67,67, 68
69,69, 70
71,71,72
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109 72 IF (DFR2.1.5D1) 73,73,74
110 74 IF (DFR2-2.0D1) 75,75,76
111 76 IF (DFR2-2.5D1) 77,77,78
112 78 IF (DFR2-3.0D1) 79,79,80
113 80 IF (DFR2-4.0Dl) 81,81,82

@]

EQUATION TWO COUNTERS

114 43 M(1) =(1) +1
115 45 M(2)=M(2)+1
116 47 M(3)=M(3)+1
117 49 M(4)=M(4)+]
118 51 M(5)=M(5)+1
119 53 M(6)=M(6)+1
120 55 M(7)=M(7)+1
121 57 M(8)=M(8)+1
122 59 M(9)=M(9)+1
123 61 M(10)=M(10)+1
124 63 M(11)=M(1l1)+1
125 65 M(12)=M(12)+1
126 67 M(13)=M(13)+l
127 69 M(14)=M(14)+1
128 71 M(15)=M(15)+1
129 73 M(16)=M(16)+1
130 75 M(17)=21(17)+1
131 77 M(18)=M(18)+1
132 79 M(19)=M(19)+1
133 81 M(20)=M(20)+l
134 82 M(21)=M(21)+1
135 3 CONTINUE

136 2 CONTINUE

o
C CALCULATION OF RING FREQUENCIES
C

137 DFRL=1.DO/DSIN(ANGL)

138 1F (AL) 95,96,95

139 95 DFRU=1, DO/ (DSIN(ANGL)*AL)

140 WRITE(3,500) DFRL,DFRU

141 GO TO 1000

142 96 WRITE(3,600) DFRL
143 1000 FNOR=AL1*DSIN(ANGL)/(3.14151926356)

144 WRITE(3,300)
145 DO 800 KL=1,20
o
C NORMALIZATION OF RESULTS OF COUNT
C
146 DN (KL) =N(KL) /FNOR
147 DM (KL) =M(KL) /FNOR
o
c PRINT OUT OF RESULTS IN NORMALIZED AND ACTUAL FORM
C
148 WRITE(3,900) DF(1,KL),DN(KL),DM(KL),N(KL) ,M(KL)
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)]

149 800 CONTINUE
150 1 CONTINUE

151 STOP
152 END

8.5 List of Symbols

n-.nt/ (1 ..,Cll) .
EgC
velocity of longitudinal wave in shell material =~ 5

stiffuess of shell = En°/12(l.v%)

modizslus of elasticity of shell material
gravitational comstant (32.2 lbm ft/1bf secz)
thickness of shell

longitudinal wave number = a

circumferential wave number = m/sin

length of cone, apex to base slant length

length of cone truncation, apex to top slant length
bending moment resultants on shell element

number of circumferential waves m = 2,3,4,...
cumulative number of eigenvalues up to frequency A
normal stress resultants on shell element

shear stress resultants on shell element

number of one~half longitudinal waves n = 1,2,3,...
modal or eigenvalue density with respect to X
transverse shear stress resultants on shell element
radius of a circular plate

radius of cone perpendicular to cone axis
displacement in x.direction

displacement in 6-directicn
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displacement in z.direction, normal to shell surface

body force in x.direction

coordinate along shell surface

body force perpendicular to the x.z plane

body force in the z.direction

coordinate normal to shell surface

normalized coordinatre in x.direction = X/L
truncation racio = Lt/L

density of shell material

shear strain due to extension of middle surface
total shear strain

change in longitudinal wave number = n/(l_al)
change in circumferential wave number = 1/sinV
normal strains due to extension of middle surface

total normal strains

coordinate around surface of shell perpendicular to axis

dimensionless frequency, 2 = szzy/gCE
Poisson's ratio for shell material
ncermal stresses

shear strain due to bending

shear stresses

normal strain due to bending

stress function

one.half cone angle at apex

angular frequency, w = 2xf

volume deformation
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