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ABSTRACT

This report describes the results of the research work of G.E. /
TEMPO on the continuing studies of the reliability of large solid rocket
motors. The basic concepts of the study methodology were presented
in G. E./TEMPO document number 66TMP-90, 1 March 1967 prepared
for NASA/OART under contract number NAS 7-383. The present re-
port is devoted primarily to a description of the application of this
methodology to an existing solid rocket motor system. A hypothetical
example serves to explain the basic concepts and to illustrate both hand
and computerized computational procedures. The solid rocket motor
example demonstrates the practicality of the methodology in a realistic
case, showing that the data and design relationships can be obtained and
that the computational work load is not unreasonable.

Briefly, the reliability analysis methodology can be described as
follows. For each significant failure mode, transfer functions are
derived to express the requirements {(or stresses) which will be imposed
on the motor and the capability (or strength) of the motor to withstand
these requirements. (The words '"'requirements'' and '"capabilities"
are used in preference to "'stresses'' and ''strength'' to avoid the
incorrect implication that the method is restricted to structures.)

Using the initials, the method is called the R”C analysis technique.

All input and output parameters are treated probabilistically to pro-
vide proper realism. Simultaneous consideration of analyses for the
various modes yields the system reliability estimate. TEMPO elected
to use the General Electric time sharing computer system for per-
forming the computations. It provides speed, convenience, and
flexibility sufficient to permit design engineers or their analysts to
apply R”C analysis themselves, thus allowing the technique to serve
as an effective design tool.

The main body of the report contains (1) a brief description of the
concepts associated with the R“C approach, (2) an application of the
technique using the engineering information and data supplied by the Aero-
jet General Corporation (AGC), and (3) conclusions and recommendations
resulting from the study. The appendices contain (1) data on input
parameters supplied by AGC, (2) a discussion of the detailed analysis



which was performed in the course of the study, (3) some computer
printouts resulting from an R”C analysis of failure modes for which
data was available, (4) a brief description of the computational techni-
que used for combining random variables and the computer procedures
used to implement the technique, and (5) a mathematical discussion of
a portion of the theory of the R”C analysis technique.
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1. SUMMARY AND INTRODUCTION

For some time, the Office of Advanced Research and Technology of
NASA Headquarters, NASA/OART, has been concerned about the
problems associated with designing highly reliable large solid rocket
motor systems. Specifically, they would like to be able to estimate the
reliability potential of a candidate system design in advance of produc-
tion in sufficient detail to identify and quantify the sources of unrelia-
bility, Of course such an estimation method could also be used to evaluate
the reliability of a rocket motor system after fabrication. The familiar
""piece part'' approach which has proved to be so useful in the evaluations
of the reliability of electronic systems is not suitable for solid rocket
motors for two critical reasons. In the first place, a solid rocket motor
is largely fabricated as a single integrated system from raw materials
rather than piece parts. In the second place, system testing in large
samples is not feasible since test firings are destructive and large motors
are very expensive, Phases I and II of this study program were devoted
primarily to examinations of past experience on completed and continuing
solid rocket motor developments. These examinations attempted to dis-
cover criteria for extrapolating reliability growth experience from past
programs to current ones, As a result of these studies, the need for
the analytical approach of Phase III was quite clearly established. The
present report summarizes the results of this Phase IIIl research work
by G. E. /TEMPO%*, all phases being performed under the sponsorship
of NASA/OART.

In the initial phases of this research, TEMPO explored the possibility
of extrapolating test experience from other solid rocket motor programs.
This was partially successful for the purposes of reliability estimation
and of clarification of the elements of the overall problem. However,
the approach was clearly deficient in identifying and quantifying sources
of unreliability to assist the design engineer in his efforts to meet desired
reliability goals. It became apparent to the study team that the most
promising technique would involve analytical studies of the solid rocket
motor system to gain an appropriate insight into the physics of the fail-
ure phenomena which could occur. This report presents a brief descrip-
tion of the methodology of this approach, including some of the basic
theory involved, a simple hypothetical example, and an application of the

* Contributions to this research by Aerojet General Corporation and
TRW Systems are described elsewhere in the report.



technique to a number of the failure modes for a realistic solid propel-
lant rocket motor, the 260 inch motor manufactured by AGC.

The main body of the report, of which this section is a part, intro-
duces the reader to the background leading up to this study, states the ob-
jectives of the study in terms of the contract work statement, briefly
summarizes the fundamental concepts of the methodology, presents general
comments on the transfer functions and parameter data used in the study,
summarizes the results obtained from applying the methodology to a
large solid rocket motor, discusses the results, and presents conclusions
and recommendations for future work.

The appendices contain a complete summary of the input data and
transfer functions provided by AGC, the details of the application of
RHC analysis to a large solid rocket motor, and the computer printouts
resulting from this application. They also include a detailed discussion of
the approach concepts, computational techniques, and computer procedures
used in the study, and a mathematical discussion of a portion of the theory
of the R”C analysis technique.

This study had two prime objectives: (1) development of analytical
techniques that will enable the design engineer to estimate the reliabil-
ity of the system (e.g. a large solid rocket motor), and (2) the applica-
tion of these techniques to a large solid rocket motor system. The results
of the study indicate that the techniques are feasible and tractable and
provide the designer an efficient and economical analysis tool. For
example, using the unmodified data as it was furnished by AGC for the
parameters associated with the burn-through failure mode, the RIIC
analysis for this failure mode indicated that in one region of the motor
the probability of burning through to the case wall could be as
high as 0.137 depending upon the data used to define the burn-through
parameters. The important point here is that this could not have been
realized by the designer without describing these parameters probabil-
istically.

Another failure mode which helped to illustrate the importance of the
RHC analysis was that of case rupture in both the cylindrical and spherical
portions of the case. The welds are the most critical elements of the
case with respect to rupture and it was necessary to consider them in
detail, distinguishing between those that were made by machine and
those that required hand techniques. All welding was initially done by
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machine. According to AGC inspection experience, approximately

10 percent of the total weld length was defective and was reworked by
hand welding techniques. Test data derived from representative weld
specimens showed that on the average, the hand welds were weaker

and their strengths had a larger variability than did the machine welds.
Results of the R||C analysis indicated that the failure probabilities
associated with this failure mode were relatively small when based on'ly
on the machine weld strengths (90% of all welds) but increased many
orders of magnitude when the hand weld strengths (10% of all welds)
were included. This quantitative result is not immediately obvious to
the designer until he considers the probabilistic description of the
design parameters in an R”C analysis.

Relatively low probabilities of failure were also obtained from the
RHC analysis for the other failure modes when using the standard set
of unadjusted AGC data. In many cases, however, further R||C analysis
indicated that the probability of failure associated with a particular
failure mode could be increased many orders of magnitude by simply
changing the mean value and/or the variance of certain of the parameters.
On the other hand there was little effect upon the probability of failure
resulting from changes in the mean values and/or variances of certain
other parameters. Studies based on such changes of the means and/or
variances of input parameters are referred to as sensitivity analyses
in the text.

The recommendations evolving from this study address themselves
primarily to four areas---1) further analysis of the large solid rocket
motor to include those subsystems that have not yet been analyzed by the
R||C approach (e.g. ignitor system, nozzle, etc.), (2) 2 more detailed
study in certain areas where the sensitivity analysis indicated a criticality
of certain parameters (e.g. maraged steel versus HY series steel), (3)
a consideration of system interdependence and engineering trade-offs
(e. g. developing criteria for prorating unreliability of total system to
individual failure modes), and (4) extending the R||C analysis to other
types of motor systems (e.g. smaller solid propellant rocket motors,
liquid propellant rocket engines, hybrid motors, etc.).



2. OBJECTIVES OF THE PHASE III STUDY PROGRAM

The TEMPO Phase III study effort was directed toward the accomplish-
ment of two basic tasks. The first task consisted of the development of
a methodology for using a physics of failure approach in evaluating the
reliability of a large solid propellant rocket motor system. The second
task was actually composed of two subtasks. One of these was to apply
this methodology to an actual system-—the 260 inch motor system was
selected for this purpose. The other subtask consisted of the development
of computational procedures which were sufficiently simple to constitute
a demonstration of the practicality of the analysis methodology. The
TEMPO tasks were detailed in the most recent contract work statement
as follows.

"Statement of Work

TEMPO shall work toward development of a technique for the
assessment of reliability of large solid propellant motors, which
relies on an'engineering analysis and a description of the motor,
Work to include:

Task I

In cooperation of Aerojet General Corporation (AGC), identify
and list available failure modes of the Propellant Grain Sub-
system and establish priorities for the application of the

R”C analysis of these failure modes.

Task II

Define in coordination with AGC the ballistic and hardware
performance and reliability requirements of the Propellant
Grain Subsystem.

Task III

Identify in coordination with AGC measurable characteristics
which characterize the Propellant Grain Subsystem's
capability.

Task IV

Define, in coordination with AGC, relationships between re-
quirements and capabilities.



Task V

Identify data format and needs to be submitted by AGC
to G.E. for R||C analysis.

Task VI

Apply RHC analysis technique. This will involve setting up
a computer program to handle the typical comparisons to
be made.

Task VII

Preliminary ground work will be defined as it is associated
with the other motor subsystems, such as the case, to in-
sure proper lead time to application of the complete RHC
analysis in the next period of this study.

Task VIII

In cooperation with Aerojet-General Corporation (AGC),
identify and list failure modes associated with the Case-
Liner-Insulation-Propellant Subsystems and establish
priorities for the application of the R||C analysis to these
failure modes. In consultation with AGC and TRW, and
with the approval of NASA, the following failure modes
have been tentatively selected for analysis:

1. Case Rupture due to Overpressurization and
Flight Loads - parent metal.

2. Case Rupture due to Overpressurization and
Flight Loads - welds.

3. Skirt Failure due to Flight L.oads - forgings
and plate.

4. Forward Cap Failure - bolt failure.
5. Forward Cap Failure - joint flexure.
6. Insulation/Case Bond Failure.

Task IX

Define, in coordination with AGC, a set of the more
significant '""Requirements' (i.e., to be used in the
R||C analysis) that will be placed on the Case-Liner-
Insulation-Propellant Subsystems.



Task X

Identify, in coordination with AGC, measurable properties
which characterize the Case-Liner-Insulation-Propellant
Subsystems' '"Capabilities'’ (i.e., to be used in the R||C
analysis) to satisfy the '"Requirements' defined in Task IX.

Task XI

Define, in coordination with AGC, relationships between
the ""Requirements' and '""Capabilities' identified in Task IX
and Task X.

Task XII

Identify data format and needs to be submitted by AGC to
G.E. for the R|[C analysis.

Task XIII

Apply R”C analysis technique in line with Tasks VIII thru
XII. (This will include any necessary computer program-
ming. )"

Only the first seven of these tasks were listed in the original contract.
Tasks eight through thirteen were added later by contract modification
as an appropriate follow on or extension of the initial phases of this
research.

The basic methodology was developed in the TEMPO Phase IIIA
study effort, the results of which are described in the report ""The
Analytical Approach and Physics-of-Failure Technique for Large
Solid Rocket Reliability'", C., R. Herrmann and G. E. Ingram, TEMPO
Report 66 TMP-90, 1 March 1967, (Reference 1). The Phase IIIB
study program had as its objective the development of computer methods
for performing this analysis, using the propellant subsystem of the 260
inch solid rocket motor, thus initiating the work on the application of the
methodology to an actual system. An interim report was prepared on
this Phase IIIB work. It was given only limited distribution since it
was viewed essentially as a progress report.

The objective of the present report is to describe the results of the
entire Phase III effort. Since the Phase IIIA report explained the concepts
of the methodology in some detail, we are including only a summary of
the methodology herein.



3. THE FUNDAMENTAIL CONCEPTS
OF THE METHODOLOGY

System failure occurs when the capability or strength of the system
is insufficient to withstand the requirements or stresses which are
imposed upon it. The reliability of the system is of course the proba-
bility that the requirements do not exceed the capabilities for each and
every failure mode.* We immediately recognize this as the traditional
stress vs strength approach so commonly associated with analysis of
structures. TEMPO has chosen to replace the terms '"stress and strength'
by "requirements and capability' respectively to avoid the incorrect im-
plication that the method is restricted to structures— it applies equally
to any system type. Using the initials, we identify the method as the
R”C analysis technique. The significant aspect of the TEMPO research
is the development of the ways and means for performing R||C analysis—
the derivations of formulas, the collection of the necessary data from
design group such as AGC, and the actual performance of the required
computations.

The details of the R||C analysis methodology are briefly as follows.
A list of failure modes must be prepared. For each mode, a pair of
transfer functions are derived from the basic design equations. One
transfer function expresses the requirement, R, placed on the system
by the stresses it will see and the other expresses the capability, C,
of the system to withstand these stresses. KEach transfer function in-
volves design variables or parameters which must be treated probabilis-
tically if we are to obtain realistic and thus meaningful results from the
analysis, meaning that R and C are also treated probabilistically. It
will be helpful to describe this process in the symbolism and language
of mathematics.

Consider a single failure mode and denote its two transfer functions
as follows.

Requirement: R = fR(xl’XZ’ .

Capability: C = fc(yl,yz, A R

* For brevity, we will usually not make reference to the modifiers in

the more precise definition of reliability which cover the system mission,
the time span, the definition of satisfactory performance and the conditions
of operation. However, these elements are included in the analysis,



When we say that the x's, y's, R, and C are treated probabilistically,
we mean each of them is described in terms of its probability density
function. In the language of probability, the terms random variable
and stochastic variable are used to refer to a variable which has an
associated density function and we shall use these terms in this sense
herein. Thus, we can say that the probabilistic treatment of input
variables, x's and y's, and output variables, R and C, contrasts with
less realistic design approaches in which only single values are used
for inputs and hence for outputs and the detail of the arithmetic re-
flects this distinction. The combination of the density functions of the
input variables to generate the densities of the outputs for R and for C
according to their respective transfer functions is a significantly larger
task than the substitution of single (such as an average or worst case)
values as will be illustrated. However, we will show how currently
available computer systems perform such computations easily, quickly,
and cheaply for most functions and hence make this R”C analysis
methodology quite tractable., The probability of system failure by this
mode is obtained by computing the probability that C is less than R.
This is obtained by deriving the density of the difference, (C - R), and
then computing the probability that (C - R) is negative. ¥

The derivation of the probability density of (C - R) must be completed
for each failure mode. The system failure probability is then deter-
mined by computing the probability of the occurrence of at least one
mode of failure . Obviously there can and perhaps commonly will be
dependencies between input random variables in C and R functions for
the various failure modes. Therefore it is necessary to treat depen-
dent functions simultaneously to provide proper consideration of the
conditional probabilities involved,

Discrete vs Continuous Densities for Input
Data and R[|{C Analysis Output Functions

The density functions of the input random variables—the input data of
the RH_C analysis—can be presented in one of two forms: (1) discrete
variable relative frequency distributions, usually a summarization of
test results, sometimes called '""batch' data, and (2) a closed form
representation—a formula form of the density function. Of course we
must be able to carry out an RHC analysis when input densities are in
either of these forms or when they are in a combination of them. If

* The parenthesis in the symbol (C - R) is used to denote that we are
treating the difference as a single random variable.



one or more input densities are in the discrete form, then the output
density is necessarily discrete. Curve fitting procedures could then be
used to obtain a continuous approximation and a formula representation.
It is always possible to use discrete densities as approximations for con-
tinuous ones, and the computer programs which TEMPO has used in its
R||C analyses require that this approach be used.

We are especially interested in the case in which all input densities
are defined in closed form~-—a functional representation. In this case,
the output densities can be expressed as integrals involving the input
densities, but it is not always possible to perform the integration to
derive a closed form functional representation for the output, R, C, or
(C - R). Of course numerical integration techniques are available to
handle such complex integrals. It should be noted that the functional
form of an output density is often quite different from those of the inputs.
The importance of this point lies in the fact that significant inaccuracy
arises when one erroneously assumes an incorrect form of an output
density. The most commonly encountered error in this connection is
the false belief that Gaussian inputs generate Gaussian outputs. Appendix
VI of this report contains a number of examples of closed form solutions
to illustrate the intergration procedures and to show this transformation
of functional forms. Fortunately, the RHC analysis method does not re-
quire us to know in advance what form the output will take —the techni-
que is able to generate the appropriate form automatically.

Data Sources

Since the input parameters in the transfer functions are often material
properties, it is important to note that data sources need not be restricted
to the project's own test programs. For example, data on properties
of maraged steel can be obtained from manufacturer's tests or from
tests in any program in which maraged steel is used. The application
of such data to the system being analyzed is determined by the transfer
function from the designer's equations and not from a requirement that
the data be generated in tests of the actual system hardware. Thus, one of
the great strengths of the RHC technique is its ability to expand the data
base through the use of data from other programs which share in materials
being used even though the system hardware is entirely different. In fact,
the data base is not only extended in this fashion, but it is an appropriate
information source which is in existence in advance of the production of
any hardware of the system being analyzed by the R”C methodology.



4. GENERAL COMMENTS ON DATA AND
TRANSFER FUNCTIONS USED IN THIS STUDY

At the outset of this research program, it was recognized that the
derivation of R and C transfer functions and the collection of necessary
input data were major tasks. Aerojet General was charged with the
responsibility for performing these tasks in their contract with NASA/
OART. AGC not only supplied TEMPO with the data and the transfer
functions, but they also provided information on data adjustment pro-
cedures and on special interpretations of the information which they
felt to be appropriate and useful in the subsequent R”C analysis. Com-
ments about specific data and transfer function characteristics are
included in the application section of this report. In the present section,
we will confine our attention to the general nature of the information
supplied by AGC.

Since information unavailability is often alleged, it is extremely
important to note that AGC was able to obtain transfer functions and data
in spite of the problems involved. Of course, they found it necessary
to use some approximations and thus to introduce a degree of uncertainty
in the analyses of some failure modes—this is essentially the ever pre-
sent problem of data shortage coupled with uncertainty about such things
as physics of failure and environmental stress profiles. A slight degree
of uncertainty was also introduced when AGC was forced to use a design
criterion instead of a true physics of failure relationship for one trans-
fer function. It was expected that this would probably lead to an under-
estimate of reliability since design criteria frequently contain an un-
quantified degree of conservatism,

On a number of occasions, AGC expressed concern about the small
sample sizes which they were sometimes forced to use to generate input
densities. They indicated their belief that such data problems should be
handled by assuming that input densities should be Gaussian, that sample
data tended to give reasonably good estimates of mean values, and that
from other information, AGC could obtain good estimates of coefficients
of variation. Accepting these assumptions by AGC, TEMPO was re-
quired to use Gaussian inputs in all of the RHC analyses reported on
herein,

10



It must be pointed out that TEMPO has some reservations about this
widespread use of the Gaussian curve, and AGC recognizes that it is
open to question in some cases. For example, a parameter which can
never be negative can certainly not have a Gaussian density. One can
visualize many parameters which have finite bounds on both sides—
web thickness is greater than zero and it surely will never be infinite!
In the next phases of this research, it is hoped that data can be obtained
in a form which does not force the use of the Gaussian assumption,
especially where it is clearly quite inappropriate.

The limited data base which could be developed within the restrictions
of time and funding was responsible for one disappointment in this
study. It had been hoped that for a few cases, comparative R”C
analyses could be performed, one using raw or batch data and the other
using the fitted Gaussian functions. Unfortunately, there was no case
in which suitable batch data was available, so this comparative analysis
was not possible.

11



5. APPLICATION OF THE METHODOLOGY
TO A LARGE SOLID ROCKET MOTOR

A complete reliability study of a system would require the applica-
tion of the R”C analysis technique for each failure mode by itself,
that is, independently of all others, and then an application of the
methodology to all failure modes simultaneously, bringing into the
analysis all of the interdependencies which exist. Independent analysis
of a particular failure mode would tend to focus attention on specific
reliability problems in terms of design characteristics as related to
that individual mode. However, the study of all failure modes together
is essential to arrive at suitable estimates of system reliability. Of
course, the combined failure mode treatment can be derived from the
separate analyses of individual failure modes if the associated transfer
functions are independent. The analysis can often be simplified by
neglecting some failure modes, the criterion for the selection of these
modes being that their individual and collective contributions to unre-
liability must be insignificant, assuming an appropriate determination of
what we should mean by insignificant in the light of the seriousness of
failure. The limited research effort provided by the present contract
precluded the simultaneous consideration of failure modes so this re-
port covers only the analysis of individual modes by themselves.

In conference with representatives of NASA, AGC, TRW Systems
and TEMPO, the following 14 failure modes were selected for study
of the 260/SIV-B Motor System:

1. Hoop Stress Case Rupture
2. Insulation Burn Through
3. Failure of the Forward Motor Skirt Forging in

Combined Compression, Shear, and Bending
4, Meridonal Stress Case Rupture

5. Rupture of the Nozzle Joint Bolts

6. Separation of the Motor Chamber and
Nozzle Flange

7. Propellant Maximum Inner Bore Hoop Strain
Storage Condition

8. Propellant/Liner Interface Maximum Radial
Bond Stress Failure Mode, Storage Condition

9. Propellant Maximum Combined Stress (Principal

Stress), Shear and Tension Storage Condition

12
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10, Propellant/Liner Interface Maximum Shear
Stress Flight Condition

11. Propellant Maximum Inner Bore Hoop Strain
Flight Condition

12. Insulation/Motor Case Interface Bond Maximum
Shear Stress Flight Condition

13. Propellant Auto Ignition Due to Static Discharge

14. Propellant Auto Ignition Due to Self Heating

These failure modes are those selected consistent with contract
statements of Tasks I through XIII listed under Sudy Objectives. The
first six failure modes are in general those itemized under Task VIIIL.
However, some trade-offs were made by AGC to cover the aft closure
and bolt failure modes instead of the forward areas because better
design data was available. In order to gain further insight into the rocket
motor failure problems, special analyses were made for a few signifi-
cant subdivisions of some of the 14 listed failure modes.

Details of the analysis for each of the above listed 14 failure modes
is given in Appendix II of this report. In this section, we have included
a brief description of the basic nature of each of the failure modes, a
table summarizing the transfer function equations for each, a table
listing all of the parameters and giving values of means and standard
deviations, a table which summarizes the reliabilities associated with
each mode, and finally, a table summarizing the sensitivity analyses
for failure mode.l. These tabular summaries are followed by a few
comments on these study results. The discussion of computational
procedure is included in the appendices. Again it should be noted that
AGC asked TEMPO to base their analysis on the assumption that all input
parameters are Gaussian, recognizing that this is not entirely realistic.

Failure Mode 1, - Hoop Stress Case Rupture

This failure mode is identified as a failure of the longitudinal weld.
Past experience by AGC shows that about 10 percent of the machine
welds have flaws detectable in inspection. For these, the welds are
reworked by hand techniques and experience indicates that hand welds
are weaker on the average and they have greater variability in strength
than do machine welds. Hence, the failure probability for this mode is
computed on the assumption that 90 percent of the welds are by machine
and 10 percent are by hand. It is believed by AGC that 40" aft of

13



motor station 2 (Fig. 1) is the critical station for this mode, so this
failure mode probability for the motor is based on an analysis for this
station.

Failure Mode 2. - Insulation Burn Through

For this mode, AGC defined failure as burning all of the propellant
and burning through the insulation, meaning burning to but not necessarily
through the case. Obviously, the burn through probability varies by motor
station. AGC suggested that TEMPO consider stations 1, 2, 4, 5, 6, 7
and 12 as identified in Figure 1. At stations 1 and 12, there is no propel-
lant so the transfer function relationship had to be appropriately modified.

Failure Mode 3. - The Failure of the Forward Motor
Skirt Forging in Combined Compression, Shear, and
Bending

For this mode, failure consists of inelastic deformation and buckling
resulting from the joint action of axial compression, transverse shear
and bending forces acting on the forward motor skirt forging. The AGC
engineers felt that it would be better to use a modification of the usual
transfer function approach when considering this mode of failure. Rather
than attempting to express requirements in terms of the compressive,
shear, and bending forces and the capability in terms of the design and
materials parameters, AGC chose to use a design criteria relationship.
This emperical relationship combines the ratio of the requirement of
each type of load to the corresponding allowable in an interaction
formula such that if the sum of the ratios is greater than unity, failure
is assumed to occur.

Failure Mode 4. - Meridional Stress Case Rupture
Failure Mode

The major failure risk for this mode is the rupture of forward head
circumferential welds due to meridional stress. All welds are initially
made by machine but inspection shows that about 10 percent are defec-
tive. These must be reworked by hand techniques. It will be noted that
hand welds on the average have less strength than machine welds and
their strength is more variable. The failure probability for this mode
is computed as a weighted average using 90 percent machine welds and
10 percent hand welds.

14



ST

1280,62 (106.7 feet) -
B
A < =)
Lr :
d
! H
! i
1 '
; 1
—_ } h |
| -
r
AV
L)
=
A=t - '\J Bt
10+ a7 274 89
] 2 4 5 s) (7 12
PROPELLANT 260 DIA WEB, b = 85 INCHES .
INSULATION/PROPELLANT
LINER INTERFACE BOND (LINER)
ol KRELRRL e 4
BOOT
°° CRRKRRKER
INSULATION VAVAVAVAVAVAVLY7.
0.110 AR LER AR ]
% :.o:g‘.
TN ’~QQQ
NG l INSULATION XL
&Y STEEL CASE RRKKX
STEEL CASE % CASE/INSULATION I R
INTERFACE BOND S
NOTES L _ J

FORWARD EQUATOR
INSULATION TAPERS FROM 1.12570 0.11
INSULATION TAPERS FROM 0.11 TO 0.25
AFT EQUATOR

SECTION B-8

A
A
A
A
O

STATIONS 1, 2,3, 4,5, 6,7, AND 12 ARE REGIONS OF MOTOR UNDER
ANALYSIS IN THIS REPORT.

ALL DIMENSIONS GIVEN IN INCHES.

Figure 1. 260/SIVB motor-propellant grain, insulation and case design.

Y



Failure Mode 5. - Rupture of the Nozzle Joint Bolts

For this mode, failure is the rupture of the nozzle joint bolts due to
combined loads of pressure ejection and TVC bending moments., The
requirement function involves the tension due to pretorquing, a portion
of the ejection load due to internal and external pressure and inertia,
and the added tension effect due to the thrust vector control moment,

Failure Mode 6. ~ Separation of the Motor Chamber and
Nozzle Flange

This mode involves the same forces as failure mode 5. However,
in the case of failure mode 6, we are concerned with the occurrence
of leakage due to separation which is a consequence of deformation of
the bolts short of rupture.

Failure Modes 7 through 12

Five failure modes, 7 thru 12 inclusive, are related to propellant
stress problems. These will be discussed collectively because of
their close relationship. The failure modes are as follows.

Failure Mode 7, - Propellant Maximum Inner Bore Hoop
Strain Failure Mode, Storage Condition

Inner bore grain Failure in hoop stress due to cool down and
storage (undetected), critical station - center region of motor.

Failure Mode 8. - Propellant/Liner Interface Maximum Radial
Bond Stress Failure Mode, Storage Condition

Propellant/Liner interface bond fails radially during cool down
and storage (undetected), critical station-aft end of motor.

Failure Mode 9. - Propellant Maximum Combined Stress
(Principal Stress), Shear and Tension Failure Mode, Storage
Condition

Failure of propellant due to combined shear and tension stress
during cool down and storage (undetected), critical station - aft end of
motor,
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Failure Mode 10. - Propellant/Liner Interface Maximum

Shear Stress Failure Mode, Flight Condition
Propellant/Liner interface bond fails due to shear stress during
cool down and storage (undetected), critical station forward end of

motor,

Failure Mode 11. - Propellant Maximum Inner Bore Hoop Strain

Failure Mode, Flight Condition

Inner bore grain failure in hoop stress due to pressurization and
flight acceleration, critical station - aft end of motor.

Failure Mode 12. - Insulation/Motor Case Interface Bond Maximum

Shear Stress Failure Mode, Flight Condition

Insulation/Motor Case Interface bond fails in shear for 2g maximum
launch acceleration.

Failure modes 7, 9, and 11 relate to propellant cracking while
modes 8, 10 and 12 are concerned with separation between the propel-
lant and the case. The names identify the stresses. These various
propellant stress relationships are perhaps the most complex and
least understood of all solid rocket motor failure modes. AGC ran a
rather complex computer program to obtain some feel for the severity
of these failure modes using a set of randomly selected inputs for each
run of the computer program. Within the constraints of their analysis
and relatively few runs made (because of the cost aspect), the outputs
they generated were in the form of R and C functions. AGC also said that
these output R and C density functions were Gaussian. Hence we were
able to use a closed form solution, Gaussian in this case.

Failure Modes 13. - Propellant Auto Ignition Due to Static Discharge

Failure of motor due to propellant self ignition from static electrical
discharges.

Failure Mode 14, - Propellant Auto Ignition Due to Self Heating

Failure of motor due to propellant self ignition from endothermal
self heating within the propellant, caused by internal reactions.

These two failure modes, 13 and 14, are similar in that they both involve
ignition of the propellant. The causes of ignition do of course differentiate
them and the brief descriptions adequately identify these causes.

17



Discussion and Results - R“C Analysis of
Failure Mode 1 - 14

Table 1 shows the Requirement (R) function and the associated
Capability (C) function for each of the first six of these failure modes.
The parameters involved in these functions are defined in Table 2,
"Summary of Parameters'. A detailed discussion of this information
is given in Appendix II.

It should be noted that the units are not necessarily the same for
each of the R functions (Obviously, the units must be the same for an
R function and its associated C function.). The units depend upon the
type of failure modes being considered and very frequently the prefer-
ence of the engineer who derives the associated transfer functions.
For example, one engineer may prefer to express the requirement on
a structural member in terms of a load per unit of area (e. g. pounds
per square inch) while another engineer may prefer to express the
requirement as the total load (e.g. pounds).

As noted above, Table 1 contains the R and C functions for the first
six failure modes. For failure modes 1, 4, 5, and 6 and the R and C
functions are engineering relationships which describe an imposed
stress or load on the system (R) and the ability of the system to with-
stand that particular stress or load (C). For failure mode 3, however,
the R function is a somewhat different type of relationship. It is a
design criterion used to decide on the adequacy of the design of the
forward motor skirt under combined compression shear and bending
when considering inelastic deformation and/or buckling of the skirt.

If the value (which is dimensionless) resulting from this calculation is
less than 1, 0 then the forward motor skirt is judged to be adequate.

For failure mode 2 the R and C functions are gross time relationships.
However, in the absence of a more refined description of the time that
burning takes place in the motor and the time it will take to burn through
to the case wall in terms of the physics and chemistry of the propellant
and the insulation, these relationships are very useful for estimating
the probability of failure for this failure mode. A few of the parameters
in the R and C functions for the first six failure modes are treated as
constants rather than as random variabiles because they have essentially
zero variances. A discussion and description of how the random
variable are combined, via the appropriate R or C function, to deter-
mine the probability of failure is given in Appendix IV.
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Description, mean values, standard deviations, applicable failure modes

Table 2.

Summeary of Parameters.

L Location, Average |Std.Dev. Applicable
Parameter Description . x o .
symbol of Parameter Motor Sta.tmr} Failure Modes
A, Initial Throat Area Nozzle 6,235 0 5,6
ti .
in Throat
A i Initial Exit Area, Nozzle 56,116 0 6
€ in Exit
A Average Throat Area, | Nozzle 6, 355 20.9 1,4,5,6
t .2
in Throat
A Area at Nozzle Joint, 25,477 0 6
180 in2
b Propellant Web, in. sta 4 87.5 . 175 2
b " "5 85.0 .17 1,2,4,5,6
b " "6 71.85 . 1437 2
b " "7 70.57 . 1411 2
C,7 Propellant inner bore | Center . 242 . 0392 7
hoop strain storage Motor :
in/in
C8 Propellant/liner radiall Aft end 18.3 2.84 8
bond stress,storage, Motor
psi
C9 Propellant principle Aft end 18.3 2,84 9
stress, storage, psi’ Motor
C1 0 Propellant/Liner sheagd Fwd end 418 39,2 10
stress, flight, psi Motor
Cll Propellant inner bore | Aft end . 441 . 0674 11
hoop strain, flight, Motor
in/in
C Insul. /case bond sheay 375 64.13 12
12 .
strength, psi
Cl 3 Propellant Ignition Total 12.8 .188 13
threshold jowles Propellant
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Table 2 Continued

P . Descriptio Location, Averiage IStdb Dev. L Applicable
arameter scription . .
symbol of Parameter Motor ?’t’f“’"r ailure Modes
C14 Propellant auto-igni- | Total 586 5.5 14
tion temp, °F Propellant
Cw Mass flow coefficient, . 0062477 . 000019 1,4,5,6
sec”
d dist. TVC port & joint] TVC port 178. 84 0 5
in.
D, dia. of Nozzle joint, TVC joint 180 0 5
J in.
E Propellant Total 7-14
o
Propellant
Es Motor Case Modulus 27,500, 000} 54, 725 3
of Elasticity, psi
e Insulation erosion 1,2 . 003 . 000489 2
rate, in/sec
e " 5,6 . 005 . 002586 2
e i 7 . 006 . 000979 2
e " 12 . 0168 . 00274 2
Fb Min. Tensile Load per|Nozzle 213,310 0 5
Y bolt, 1b flange
Kbe Bending/discontinuity [cylinder . 95845 . 00693 1,4
factor (ND) (3)
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Table 2 Continued

Parameter Description Location, Ave;age Stdb’ Dev:| Applicable
symbol of Parapmeter Motor Statior] [Failure Modes
K, Biaxial gain factor, spherical 1.106 . 0312 1

x (ND) ends
K Ratio of Avg to chamber 1.18 . 008968 1,4,5,6
m/a Peak chamber press.
(ND)
Kc Ratio of Axial Com- Fwd Skirt . 0036 . 000685 3
pressive strength to E.
(ND})
Kb Ratio of pure bending " . 005 . 000968 3
strength to E, (ND)
Ks Ratio of transverse " . 00288 . 00334 3
shear to E. (ND)
K Fraction of bolt min. | Nozzle .60 . 077 5,6
p vield, to which bolt is | flange
pretorqued (ND)
L Axial compressive Fwd Skirt 2,200, 000 0 3
c
load, 1b.
Lb Pure bending load, " 94, 000, 000 0 3
1b.
LS Transverse Shear " 60, 000 0 3
load, 1b.
M180 Mach Number of gas Aft chamber} .0576 0 6
stream at joint dia.
(ND)
M Mach Number of gas Nozzle 3.205 0 6
© stream at exit plane Exit
(ND)
n Nozzle flange bolts, Nozzle 220 — 5,6
number, flange
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Table 2 Continued

[7—--‘ T o ) I "' .A.V'e ra.ge V Std. Dev. 3
Parameter Description Locat;on, . X o {‘.pphcable
symbol of Parameter Motor Statior} [Failure Modes
1
P Max Chamber Pres- Fow'd End (1) —_— 1,4,5,6
cmax R R
sure, Ppsil.
Pa Ambient Atmospheric | Nozzle 14. 696 . 0735 5,6
pressure,psi Flange
P Nozzle attach bolt Nozzle 245, 307 1987 5
¥ Load capability,
1b/bolt
R,7 Propellant Rqm't. Center, . 037 . 0374 7
corresponding to C7 motor
through Ci4 .
R8 " Aft end, 2,47 .282 8
motor
R9 " " 5.51 . 604 9
R " Fwd. Equa-| 30.62 9.52 10
10
tor of motor
R, " Aft end, . 0749 . 0489 11
motor
R12 " 30.62 9.52 12
Rl 3 " Total . 015 0 13
Propellant (max)
R14 " Total 100.1 0 14
Propellant {(max)
Ro Outside radius, motor| Cyl. portion 130. 631 . 0261 1
in. of case.
Ro " Spherical 130, 428 . 0456 4
protion of
B | case.
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Table 2 Continued

— Location, Average |[Std. Dev.| Applicable
Parameter Description : x o .
Motor Statio Failure Modes
symbol of Parameter ]
2)
r Propellant burn rate 2,5,6,7, .606 . 00361( ) 1,2, 4,
b in/sec. (2)
.28 " aft . 606 . 00818 5,6
(2)
Ty " 4 .590 . 00351 1,2,4,
Ri Radius to inner sur- Nozzle 129.903 . 0203 3
face of nozzle skirt, ind skirt
Rc Ratio of axial com- Fwd skirt (1) —_— 3
pressive load rqm't.
to material capabilit
PAND)
Rb Ratio of transverse " (1) —_— 3
shear load reqm't to -
material capability
(ND)
R Ratio of pure bending " (1) - 3
s load requirement to
material capability
(ND)
S w Ultimate machine weld] case welds 232,000 2,516.6 } 1 ,4
urm strength, psi
suhw Ultimate hand weld case welds 199, 333 8, 641 1,4
strength, psi
t. Insulation thickness,in] 1, 2 1.125 . 01667 2
1
t, " 5 .110 . 0033 2
i
t, " 6 . 250 . 01667 2
i
ti " 7 .43 . 01667 2
t " 12 3.6 . 01667 2
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Table 2 Continued

Std. Dev.

i Average .
Parameter Description Loca.t:lon,' J x & [+ .;Apphcable
symbol of Parameter Motor Statio Failure Modes
tc Motor case thickness)in] Cyl. . 6392 . 0095 1
tc " " " "] Spherical . 428 .0108 4
ts Motor skirt thickness, Fwd Skirt . 728 . 0093 3
in.
p Propellant Weight, 1b. Motor 3,400, 0001 6,120 1,4,5,6
. Initial Nozzle Weight, Nozzle 58,428 0 6
ni 1b.
W Initial Launch Weight of -- 726,466 0 6
v vehicle less first stage
propellant, lb.
™ Temperature sensitiv- | Propellant .16 .00676 | 1,4,5,6
ity coef. %/°F.
o T.V.C. angle, degree | Nozzle 3.6 0 5
Y Ratio of specific heats | Propellant 1.2 0 6
(ND)
Notes:

(1)

These terms are functions of many parameters, and density

functions can be generated for these for a given set of

input data.

(2)

AGC selected these input parameter values.

criteria are briefly discussed in Appendix IL.

(3)

(ND), Non Dimentional
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For failure modes 7 through 14, AGC did not submit transfer
functions and input parameter densities. Rather, they gave us means
and standard deviations for capability and requirement densities which
they said were all Gaussian. Hence for all of these modes, we could
write a closed form solution since the difference of two Gaussian
variables is also Gaussian. The notation is as follows.

Standard
Variable Mean Deviation
Capability C C Cc
Requirement R R or
Capability _ >
minus (C-R) C-R o =,/ 0% + o2
- C
Requirement (C-R) R

The probability of failure is obtained from tables of the normal function
as the area in one tail of the normal curve with zero mean and unit
variance beyond the point

C-R

2 2
Vo T or

The basic data supplied by AGC is shown in Table 2. As noted
earlier, this data was treated in two ways. First, an R||C analysis
was made for each failure mode using the input data with no modification
—these were called standard analyses. This was followed by analyses
which used a series of data modifications, usually increases or de-
creases in the input standard deviation and less often by shifts in the
value ot the mean. These so-called sensitivity analyses were made to
establish the criticality of the parameters with respect to the failure
probabilities. A listing of the results of all of the standard analyses is
shown in the body of Table 3. The footnotes illustrate the kinds of
answers obtained in the sensitivity analyses for failure mode 2, these

being quite completely described in Appendix II. Table 4 illustrates a
more complete sensitivity analysis which was made for failure mode 1.

The case insulation burn through failure mode (FM 2) provides a
very good illustration of the value of R||C analysis in terms of the
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Table 3. Summary of failure modes R[[C analysis.

Failure Motor P[s] for
Mode Description Station Standard Run
FM 1 Hoop stress, case rupture Forward >.999999
FM 2 Case insulation burn through 1, 2 >.999999
" " " " " 5 . 983907 (1)
1" " " " n 6 . 862888 (2)
n 1" n n Lh) 7 . 988810 (3)
" " (3] " 1 12 . 953370 (4)
FM 3 Failure of forward motor, skirt Forward >, 999999
forging in combined compression; Skirt
shear and bending
FM 4 Meridional stress, case rupture Forward >.999999
forward head Head
FM 5 Rupture of nozzle joint bolts Nozzle >.999999
Flange
FM 6 Separation of Motor Chamber and Nozzle . 999998
nozzle flange Flange
FM 7 Propellant max. inner bore hoop Center of . 999999
strain—storage Motor
FM 8 Propellant liner interface max. Aft end, >, 999999
radial bond stress —storage Motor
FM 9 Propellant maximum combined Aft end, . 999989
stress in shear and tension-—storage Motor
FM 10 Propellant/Liner interface max. Forward >. 999999
shear stress —flight end Motor
FM 11 Propellant max Inner bore hoop Aft end >.999999
strain—flight Motor
FM 12 Insulation/Motor interface bond. Bond >.999999
Max shear —flight Surface
FM 13 Propellant autoignition due to Total >, 999999
static discharge Propellant
FM 14 Propellant autoignition due to Total >.999999
self heating. Propellant
— == - . A _
NOTES: (1) For double insulation, P{S] = .999988

(2) For double insulation, P{S] = >. 999999
(3) 50% increase in insulation, P[S] =
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Table 4. Summary of sensitivity analyses for failure mode 1.

Variability
Factor
Run Parameter Ve o Vf c P[S]
Standard * 1 * * > .999999
Sumw 4 2516. 6 10066. 4
1 Suhw 2 8641. 17282, - 9997172
Sumw 8 2516.6 20132.8
2 Suhw 4 8641, 34564, - 994983
3 rb 4 . 00361 . 01444 . 999781
4 Kbe 5 . 00693 . 03465 . 999995
5 Kbe 10 . 00693 . 0693 . 999832
6 K 5 . 00897 . 04485 . 999999
m/a
7 / 10 . 00897 . 0897 . 999885
m/a
NOTE:

*The standard run used the unadjusted data supplied by AGC for all
parameters and, consequently, the variability factor is unity. For
other runs, unadjusted data was used for all parameters except for
those noted in the column labeled "Parameter."
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standard data and also of the sensitivity analysis. The reliability of

. 862888 at station 6, standard data, is entirely too low to be acceptable,
a fact which would not have been easily recognized and quantified with-
out R||C analysis. The significance of insulation thickness is shown in
the sensitivity analysis, footnote 2, in which a doubling of the insulation
thickness at this station raises the reliability above .999999. At
stations 7 and 12, an increase of 50% in insulation thickness is ample

to provide a reliability increase to the level of . 999999 at each of these
stations.

The hoop stress failure mode, FM 1, also provides an interesting
illustration of the value of R”C analysis, especially with respect to a
study of the sensitivity of the failure probabilities to changes in the data
inputs. The numerical results of eight runs are summarized in Table 4,
The unadjusted AGC data is used in the standard run which yielded an
estimated reliability in excess of . 999999. The other runs, identified
as runs 1 through 7 in Table 4, were based on modifications of the
unadjusted standard deviation. The modification consisted merely of
multiplying the unadjusted standard deviation, ¢, by a variability
factor, V¢, as shown in the table. The variability factors should be
selected to cover some realistic range for the particular parameter
under consideration. Runs 1 and 2 involved modifications in weld
strength standard deviations for both machine and hand welds. Each
of the other runs involved only one variability factor associated with
the indicated parameter. As expected, increases in input standard
deviations lowered the reliability estimates, the lowest value being
. 994983 for run 2. The details of this analysis are given in Appendix II.

In summary, Table 3 indicates that there are a few problem areas
in the case insulation burn through, but that for most failure modes,
reliabilities are close to the range of . 999999 and above. Further-
more, the sensitivity analyses identify those parameters which are most
critical in causing the unreliabilities and indeed it measures the extent
of the influence of each on the related failure probabilities. Thus, the
sensitivity analyses demonstrate the way in which the RHC technique
serves as a valuable design tool, quantifying the effect of a proposed
modification on reliability in advance of its implementation. In other
words, it permits the designer to make more nearly optimum trade-
offs in solving his design problems as they arise.
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Consideration of System Interactions In
Determining the Probability of One or
More Failure Modes

To determine the probability of the occurrence of one or more
failure modes (i. e. the probability of system failure) or, if one wishes,
the  probability of no failure mode occurrences (i.e. the probability of
system success-or reliability) the correlation between parameters
which interact to define the various failure modes must be properly
considered. If, for example, no correlation exists (i. e, all failure
modes, and consequequently all parameters, are statistically indepen-~
dent of one another) then the probability that no failure mode will occur
in the system is simply the product of the probability of the non-occur-
rence of each single failure mode. When correlation exists between
failure modes, however, the correlated failure modes must be treated
simultaneously to determine the probability of the occurrence of one or
more of the modes (It should be noted that this probability will be greater
than the probability of the occurrence of any single failure mode.). A
detailed discussion of this process is given in Appendix IV, entitled
"Computations When There Is Dependence Between Two or More Trans-
fer Functions."

General Comments on the Motor Example

Up to this point the report has provided a brief survey of the back-
ground upon which the current work is based, a summary of the current
state of development of the R”C methodology, and a description of the
application of the method to the reliability analysis of the 260 inch
solid rocket motor which has been performed to date. In this discussion
of the motor example, we would like to synthesize all of this information
into a logical presentation of the current status of this research program
and an interpretation of this status in terms of the objectives which we
believe we have accomplished and the objectives which should serve to
guide future efforts.

Throughout the sequence of studies on the reliability of solid rocket
motors, it has been clear that the purpose has been two-fold: (1) provide
information which can be used to enhance the reliability assessment of the
large solid rocket, or any system, and (2) develop techniques which will
help us assess the level of reliability throughout the development of these
systems. We have been concerned primarily with the use of the 260 inch
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motor system as an example with all the problems attendant an expen-
sive item which will have only limited production and naturally very
limited development test firing. These characteristics have necessarily
lead us to emphasis on analytical techniques. We feel very strongly that
this emphasis on analytical methods has not in any way sidetracked this
work from the two practical objectives listed above—we are certainly
attempting to provide the design engineer with information which will
assist him in his design effort and methods whereby he can assess his
progress toward assigned reliability goals.

The application of R”C methodology to the motor example led to
several observations. It is felt that the feasibility of performing R”C
analyses on real systems has been definitely established. Even though
we may not be able to analyze every failure mode, we can cover a
large number of them, perhaps the most critical, thus reducing the
area of uncertainty. In establishing this feasibility, it is clear that this
method is a useful design tool, especially in the performance of design
trade-~off studies in advance of testing. The limited examination of
closed form solutions in Appendix VI illustrates what really is involved
in the basic theory. Of course it points out the complexity of the mathe-~
matics involved and thus it serves to reemphasize the versatility and
economy of a time sharing computer system. The adaptation of the
GE time sharing computer for example, to the problem of combining
random variables quickly and cheaply, has been one of the most signifi~
cant outputs of this research effort. We have seen how it can combine
probability densities without resort to Monte Carlo methods—it in effect
generates discrete approximations to closed form solutions with the
capability of reducing approximation errors to any required low level.
The examples which have been worked out also demonstrate that, as far
as the method is concerned, it is quite unnecessary to attempt to pre-
judge the form of the input densities. The method works equally well
with density equations, with tables of discrete data, or with any combina-
tion thereof.

In summary, then, it seems appropriate to say that the numerical
results obtained in this phase of the study are encouraging to the extent
that they do validate the R”C method. With respect to methodology,
results seem to be quite close to expectation. The major problems in-
volved in combining random variables have been solved but future re-
search can provide even faster and cheaper techniques through proper
revision and improvements of the computer programs.

31



6.

CONCLUSIONS

The goals of this study, namely to demonstrate the R”C analyses
of certain failure modes on a large solid rocket motor, have been met
to a degree that demonstrates the soundness of the technique. The re-
search effort associated with these goals, and described herein covers
a) reliability analysis of the large solid rocket motor, and b) technique
developmert. Hence it is appropriate to present the conclusions (and
in Section 7 the recommendations) in the two corresponding categories.

lo

1.1

1.3

1.4

1.5

Conclusions Concerning Estimates of Reliability of the Large
Solid Rocket Motor System.

Failure Modes 1 and 4 cover hoop and meridional stresses of the
case welds. The analysis shows that the weld strength parameters
of hand welds are by far the most critical—they are used in the
rework of defective machine welds. Although only 10% of all
welds were done by hand, they greatly predominated the failure
probability by many orders of magnitude.

The insulation burn-though failure mode was found to be critical
at four motor stations, 5; 6, 7, and 12. These had undesirable re-
liability estimates of . 984, .863, .989 and . 953 respectively.

The sensitivity analysis indicated two things: first that these re-~
liabilities could be raised to satisfactory values if the insulation
were increased by varying amounts at the critical stations, or if
the standard deviation of the insulation erosion rate could be de-
creased; second, that the insulation erosion rate variability was
the most sensitive parameter by far. Some parameters showed
little effect on the estimate of reliability even when they were in-
creased an order of magnitude or more (e.g. propellant effective
web thickness could be reduced 10 inches and still not affect burn-
through significantly).

Analysis of the forward motor skirt forging in combined compres-
sion, shear and bending indicated very low probability of failure.

Results indicated that the probability of rupture of the nozzle
joint bolts was very low.

Separation of the motor chamber and nozzle flange failure mode
showed a reliability of . 999 998. However, further attention
should be given to the parameters associated with this failure
mode because the sensitivity analysis showed that values of about
.98 were possible.
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1.6

The two propellant failure modes 7 and 9 dealing with inner bore
hoop strain-storage, and principle stress-storage, appeared to
be marginal in terms of their reliability and warrant further
study.

The three propellant failure modes 8, 10 and 11, which involve pro-
pellant/liner interface radial bond stess—storage, propellant/
liner interface shear stress——flight, and propellant inner bore hoop
stress—flight, showed relatively low probabilities of failure.

The insulation/motor case interface bond failure mode showed a
relatively high reliability.

The auto-ignition failure mode appears to have an insignificant
probability of occurrence on the basis of the data and other
information currently avaiblable from AGC. They reported it to
be much less than 10-6,

Study results were distinctly encouraging in that the feasibility

of application of the RHC method seemed to be clearly established.
Given approriate support, and necessary input data and transfer
functions from AGC, then, GE time sharing (or possibly other
computer techniques) has the capacity and flexibility ideally
suited for such analyses.

Conclusions Relating to the Results of Technique Research.

A methodology has been developed that can be used directly by
the design engineer. The techniques used to implement this
methodology have proven to be tractable and economical.

Very satisfactory progress has been made in the development of
computation methods using time sharing computer techniques.

For example, the computer programs provided rapid and
economical processing of input data when the inputs were assumed
to be Gaussian as well as when raw data was used.

It should be emphasized that the computer technique permits the
accomplishment of R”C analysis, no matter what the forms of
the input densities, through the use of discrete approximations
to continuous densities.
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2.4

2.5

2.6

Numerical accuracy is dependent on the accuracy of the input
data and on the way in which the continuous density is approxi-
mated by the discrete one. Of course, the discrete approxima-
tion can be as good as required by forming a sufficiently large
number of intervals with sufficiently small widths.

The data, in general, was available but some searching of the
files by AGC was necessary.

The discussion of closed form solutions presented in Appendix
VI pointed out the fact that input densities of a specified type
do not regularly lead to output densities of the same type. In-

deed, it is neither easy nor necessary to attempt to guess the form

of the output density. The method will generate it without any
guess by the analyst.
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7. RECOMMENDATIONS FFOR FUTURE WORK

Future efforts should be continued in the reliability analysis and
technique development categories for solid rocket motor examples.
Technique development, which included the mathematics and computer
methods for handling the R||C analysis, is further advanced in the
present phase of work than is the reliability analysis of the failure
modes. It is therefore recommended that greater stress be placed
upon the reliability analysis category; however, certain important
improvements of the techniques are strongly advised.

1. Recommendations Relating to Reliability Analysis

1.1 The weld strengths were found to be the critical element of
failure mode 1. This will require a detailed analysis of the
elements that make up weld strengths and their associated
variabilities:

a) Fracture toughness, critical crack length,
location, size, etc.

b) Comparison of an alternative material such
HY-160 steels.

Further study of welds that require hand processing should be
made because of the predominant effect on reliability of their
reduced strengths.

1.2 It is recommended that additional factors associated with the
burn-through failure mode, such as the presence of cracks,
voids, laps and folds, be considered in the future work. Fur-
ther analysis of the variability of the insulation erosion rates
should be made, since this was found to be a critical element
of the analysis of failure mode 2. The time to burn through
the case could be considered and its effect upon system failure
could also be evaluated.

1.3 The current status of data generated and engineering analysis
made by AGC of the bond and tensile stress failure modes
associated with the grain was inadequate for a proper R||C
analysis. Within the limitations of the data, however, the
failure modes appeared to require further analysis because of
their relatively low reliability:
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2.4

2,6

a) the propellant maximum inner bore hoop strain
(storage condition), and

b) the propellant maximum combined stress in shear and
tension (storage condition)

It is suggested that further effort be made by AGC to gener-
ate additional data and transfer functions required for this
analysis.

Recommendations Relating to Technique Research.

The theory for handling dependence between failure modes which is
merely correlation between transfer functions has been presented.
However, the computational techniques for this situation need fur-

ther refinement and this should be included in future phases of
the research program.

Further study should be made of those subsystems that have not
yet been analyzed by the RHC technique (e. g. ignition system,
nozzle, etc.)

Consideration should be given to the problem of appropriately
apportioning the reliability required for the total systemto each
of the individual failure modes.

The R”C approach is general in its applicability and should be
applied to other systems, as well as the large solid motor, such
as the small motors, both liquids and solids, the hybrids, other
liquid systems, etc.

Future research should be devoted to further refinement of the
computational procedures and to additional study of closed form
solutions for more realistic transfer functions.

Computer program refinements which were made during the
course of this study indicate the feasibility of even more signi-
ficant improvements, specifically in a reduction in the time
which must be spent by an engineer in performing an RHC
analysis. Research in this area should be pursued.
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APPENDIX I

SUMMARY OF INPUT DATA,
RATIONALE AND DESIGN EQUATIONS
OBTAINED FROM AGC



Introduction

This appendix contains the input data received from AGC in the form
of data packages and progress reports. This information consists of
engineering equations, rationale, and density function data describing
the means and variability of the parameters. These data are in general
unmodified, with only minor changes and editing done in the interest of
conformity to the report format or to prepare the form of the material for
R||C analysis. The use of these data and transfer functions in R||C form
are discussed in Appendix II, and summarized in Section 5 of the body
of the report.

The AGC progress reports and data packages are listed in the refer-
ences in this report. AGC has also prepared a final report covering
these data (Reference 5).

Since it is not the intent to modify any data or comments, much of
the following data is only briefly presented and explained. Certain
sources referred to in their data packages were deleted. For more
details, the reader is referred to the AGC progress reports, work
packages, and final report as listed in the references.



Details of AGC Information on the Failure Modes

Failure Mode 1. Failure of Cylindrical Section Longitudinal Weld in
Hoop Stress (Location 40" Aft of Forward Equator)

The basic engineering data for this failure mode is covered by AGC
Data Pack II-1.

Table I. 1 summarizes the AGC parameter averages, standard devia-
tions, and coefficients of variations for this failure mode.

Table I.2 consists of the AGC support data, the '"batch'' data, from
which is made up the summary data of Table I.1. The rationale and
engineering discussion in support of these data as supplied by AGC is
as follows.

1. Capability Rationale. The formula used is the basic hoop stress
formula modified to allow for a reduction due to local bending and dis-
continuities and for an increase due to biaxial gain. TUltimate, rather
than yield parameters are used. The capability is calculated at the
exterior surface which theoretically will experience greater stress than
the interior. A location 40" aft of the forward equator™® was chosen to
eliminate the effects of discontinuity stresses associated with the tran-
sition from the cylindrical section to the forward head.

During the fabrication of the first two 260-inch diameter short length
motors, it was found that manual repair welds had a lower strength than
the normal machine welds. It is estimated by AGC that 10% of the total
weld length of the 260/S IV-B motor would consist of manual welds.
Therefore, the capability distribution should be constructed as the prob-
abilistic sum of both a manual and a machine weld distribution, with the
latter encompassing 90% of the total welds and the former 10%. All
parameters used in the formula are assumed to be iza_dependently and
normally distributed. The coefficient of variation, = , is assumed to
be constant for varying values of ¥ . *

Machine and Hand Weld Ultimate Tensile Strength. Data were avail-
able for a limited number of sample machine weld and hand weld coupons
that were maraged in representative locations on both 260-SL chambers.
A variety of weld wire heats are represented since it is this parameter
rather than parent metal strength that governs weld strength. As can be

* This region occurs at about motor station 3.



Table I. 1

Summary of Capability Distribution Parameters:

Averages, Standard Deviations
Variations for Failure Mode 1:

Stress Failure.

and Coefficient of
Motor Case Hoop

Standard
Deviation Coef. of
Avg. or (Est. of Pop Variation,
Nominal Deviation) ol/x Source
x o Non dim. of Values
Parameter
Machine Weld UTS, 232,000 2516. 6 . 010847 x,0: 260-SL-1 and 260-SL-2
s , psi Maraged weld coupons ¥
umw
Hand Weld UTS, 199,333 8641. 0 . 043350 x,0: 260-SL-1 and 260-SL-2
Suh w' DPSi Maraged weld coupons™®
Plate Thickness, t .63922 . 0095 . 0149 x: Design nominal
in, ¢ a: 18 plates from 18 heats used in
260-SL-1 and 260-SL-2*
Radius (exterior), R 130, 631 . 0261 . 0002 x: Design nominal
in. © ag: Tolerance on radius plus plate
thickness variability*
Bending /Discontinuity . 95845 . 00693 . 007231 %x,0: Est from 260-SL-1 and SL-2
Reduction Factor, Kbe hydrotest strain gage data*
Biaxial Gain, Kb 1. 1105 . 0312 . 0282 x: Two PETV subscale hydroburst
Factor x tests™
o: Nine D6AC 7. 25 in dia test vessels®
Web Thickness, b, in. 85,0 . 170 . 002 x: Design nominal
o: 260-SL-1 vs. 260-SL-2 (AGC Report
NAS 7-572 PR -2, Figure 3)
Propellant Weight, 3,400, 000 6120 . 0018 x: Design nominal
W, b o:  260-SL-1vs, 260-SL-2**
Burning Rate, r
at (80" F), in/sec . 606 . 00818 . 0135 x: Design nominal
o: 260-SL-1 va. 260-SL-2 plus
Scaleup Factor*
Temperature Sensiti- .16 . 00666 . 0416 x: Design nominal
vity, m V% /°F o: NASA Variability Study,
Report 0815-%F, Figure 11
Max Temperature 20 — —_ x: Extreme (100° F) Minus
Difference, aot, “F Nominal (80°F)
tAssumes max value)
Ratio of Peak to Avg. 1,18 . 008968 . 0076 x: Design nominal
Pressure, Km/a o Avg. of 4 Motor Programs *
Mass Flow' Coefficient, .0062477 . 0000190 . 00305 x: Design nominal
Cw. sec” a: Nine 52-in. -dia Motors *
Avg. Throat Area, 6355 20,9 . 00332 x: Design nominal
A, in g:  260-SL-1 vs. 260-SL-2*

* AGC routinely used the fiotation X for mean and 0 for standard deviation for all parameters in
their data presentations even though other letters were used in the equations.

** See Table I.2



. Table I 2 List of AGC Batch Data for Parameters
Summarized in Table I. 1.

Maraged Weld C(;ui:)on Ultirﬁaté Tensile Strength
1) Machine Welds , Sumw

Weld Wire UTS Maraged with
Heat No. 1b/in® Motor No.
63343 231, 000 260-S1.-1
8436 235, 000 " "
9035 231, 000 " "
8950 233, 000 B "
9620 228, 000 " "
9624 235, 000 260-S1.-2
9994 231, 000 " "

% =232, 000; ¢ = 2516.6

Cv = — = .010847

Maraged Weld Coupo;lrUitimate Tensile Stréngth
2) Hand Welds | Suhw

63343 189, 000 260-S1.-1

63343 195, 000 " "

63343 197, 000 " "
9624 214, 000 260-S1L.-2
9624 197, 000 N
9620 204, 000 " "

x =199,333%; ¢ = 8641

cv =2 = . 04335
X




Table I.2 Cont

3) miPlate Thickness

s to

Plate
Thickness, in.

Within

Heat No. (Avg of 15 Readings) Plate Std Deviation*
50265 . 651 . 0060
50264 Bl . 637 . 0052
50338 B2 . 640 . 0033
50210-3 . 647 . 0057
24997-1A . 631 . 0060
24999-1A . 639 . 0080
3951218-A . 631 . 0060
25126-1 .638 . 0070
3951215 B . 653 . 0097
3960819 . 635 . 0078
3960832 A . 640 . 0080
25098-1 . 643 . 0034
25007-1 . 642 . 0020
24998-1 .630 . 0026
3960829 B . 636 . 0092
3960870 B . 625 . 0051
24996 -1A . 642 . 0049
50234 . 646 . 0086
x = .63922 Gwithin plate = * 0060 (avg)
0plate to plate _ ° 0074
< sas 2 2
Total variability = o) + © ; o7 =.0095
pp wp t

(any location)

N’l rrq

260-S1.,-2
260-S1.-1

133

1t

1

[}
260-SL-1
260-S1-2

=.0149

o

Estimated by range method. AGC used this method routinely for
estimating standard deviations from small samples.




Table I, 2 Cont

4) Estimation of Radius Variability, R

O

(1) Tolerance on radius = . 125 in.

(2) Assuming tolerance = 60, o =, 0208 in.
R

0

(3) Variability of plate thickness o, = 0095
c
(4) Combining plate and radius tolerance, 0 =, 0228

. 0228 ~ . 0002

o)
(5) CV=—}:{-=

5) Bending/Discontinuity Strength R eduction Factor, Kbe

Net
Tensile
Stress Bending 1_Giending Stress >
Motor Location psi Stress, psi et Tensile Stress
260-SL.-1 16 151,200 + 4,850 .9679
n 17 153,500 i6,800 . 9559
260-81.-2 43 149,400 + 7,350 .9515
" 44 148, 200 + 6,400 . 9585
x = .95845
0 =, 00693
cv =2 =,007231
%




Table 1.2 Cont

6) Biaxial Gain Factor, Ky«

(1) x from 36" Dia Subscale Hydroburst Tests (18% Ni Maraged Steel)

Weld Coupon Biaxial
Uniaxial Burst Strength, KSI Gain
Test UTS, KSI (PR /t) Factor
PETV-1 216 240 1.111
PETV-2 217 241 1.110
x=1.1105

(2) Ofrom 7.25" Dia Subscale Hydroburst Tests (Ladish D6AC Steel)

Uniaxial
Test UTS, KS1

233
225
222
230
235
241
241
234
230

NO OO0 W~

Burst Strength, KSI
(PR /t)

258
262
254
257
256
263
263
252
246

cv

Biaxial
Gain

Factor

1.107
1. 164
1. 144
1.117
1. 089
1. 091
1. 091
1. 077

1. 070

x=1,106

e}

¥ija

= .0312

= ,0282




Table I.2 Cont

7) Propellant Weight, Wp

Motor Propellant Weight, 1b,
260_—SL-1 1,676, 366
260-S1.-2 1,673,000

Range = 3,366 lbs.
c = 3, 000*

Thus for 260/S IV-B: o = 3,400,000 (.0018) = 6120 1bs.

NOTE: This observed G/x compares well with a figure of .0021
calculated from estimated variability of density, length,

and web thickness.

8) Propellant Burning Rate, ry

Batch Mix

Web Liquid Strand

Duration Burning Rate
Motor sec in/sec
260-31,~1 113.7 . 444
260-S1.-2 114.0 . 441

Range = .003 in/sec

c = . 00265

cv = . 006

T Thus for 260/S WV-B: (E%) (2.255) %% =, 006 (2.255) = .0135

and 0 = (.0135) (.606) = . 00818

* Using the range method

*% Special AGC scaleup factor, see text, page I, 12
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Table 1,2 Cont

9) Ratio of Avg. to Peak Pressure , K

m/a
Motor to Motor
Average Coefficient
Ratio ) of
Program X Variation
Minuteman Wing VI 1.17 . 0050
Minuteman Wing I 1. 08 . 0082
Alcor 1. 27 . 0081
Algol 1. 08 . 0091
g = 1.18% & =2=.0076™*
X

For 260/SIV-B: 0 = 1.18 (.0076) = . 008969

10) Mass Flow Coefficient, C

W
52 -in. -dia
Motor no. Cw/sec
1 . 00624583
2 . 00628364
3 . 00624590
5 . 00622264
6 . 00626091
7 . 00624864
10 . 00623781
11 . 00622428
RCD-1 . 00625999
x = . 00624774
o =.00001904
cv =2 = . 003048
X

* This reported value was used in this study. (It should be 1, 15)

*¥% Average for 4 motor programs (see text).

I-9




Table I.2 Cont.

11) Avg. Throat Area, A

Motor No. Avg. Throat Area, '1n2

260-SL-1 3991
260-S1.-2 3979
Range = 12 in%

o = 10. 65 (Based on range)
cv=o  =.00332

For 260/S IV-B, 0 = 6355 (.00332) = 20. 9 in®

NOTE: This observed % value is the same as that obtained when based

upon dimensional tolerances and observed linear erosion rate
variability,
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seen in Table I.2, items 1 and 2, the hand weld strength averaged 86%
of the machine weld and it had a coefficient of variation of . 04335 com-
pared to the .0108 for the machine weld. The .04335 figure is probably
excessive and indicates an area in which additional data is required. ¥

Plate Thickness. These data came from 18 plates of material that
were used in 260-SL.-1 and 260-SL.-2, shown in Table I.2, item 3. In
addition to the plate-to-plate variability, a within-plate component of
variance was included to properly estimate the range of thickness pos-
sible at any given location. To save computational time, the within-
plate component of variance was estimated for each sheet by taking a
stratified sample of 15 readings of the 200 or more vidigage measure-
ments actually made, and the average of these 18 within-plate standard
deviations was squared and combined with the plate-to-plate variance
to obtain an estimate of the total thickness variability.

Exterior Radius Variability. The exterior radius variability was
estimated as the sum of two components of variance: the tolerance on
the inside diameter and the variability of the plate thickness. As shown
on Table I. 2, item 4, the coefficient of variation derived from this com-
bination of these two sources is an almost negligible .0002.

Bending/Discontinuity Strength Reduction Factor. While it is well
known that local contour deviations and material discontinuities can
result in bending stresses above that normally predicted, data as to
the magnitude and variability of the amount of reduced strength that
can be expected is extremely limited. The best data that can be obtained
was derived from strain gage measurements taken during the hydrotest
of the two 260-inch diameter motors. Table 1.2, item 5, shows the
bending stress estimated at four locations in the two motors. The loca-
tions were in the middle of the plates in the cylindrical section and were
chosen as control gages to compare with readings at other locations
where the effects of thin material, inclusions, and known contour devia-
tions were being assessed. The strength reduction factor, calculated
as one minus the ratio of bending stress to net tensile stress, was cal-
culated for each of the four locations. The computed coefficient of
variation, .0072, was assumed to represent the variability to be encoun-
tered.

Biaxial Gain Factor. The average level of biaxial gain in the cylin-
drical section was estimated at 1.1105 based upon the results obtained
in two burst tests of 18% maraging steel 36-inch-diameter chambers.
The coefficient of variation was determined to be ., 0282 for nine 7. 5-inch-
diameter Ladish D6aC test chambers. It is not known whether this value

¥ This is especially true since sensitivity analysis indicates that this
parameter's variability is the critical element of this failure mode.
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reflects heat-to-heat variability or whether the welds or parent metal
coupons were used in the uniaxial tests. (Table I.2, item 6)

2. Requirement Data Rationale. The requirement distribution is that
of the maximum chamber pressure expected when operating at the upper
specified pre~firing propellant temperature limit of 100°F.

Propellant Weight. The standard deviation of the first two 260-inch-
diameter motors was estimated by dividing the observed difference by
a factor of 1.128.* The resulting coefficient of variation of .0018
agreed well with a figure of . 0021 calculated by estimating the grain
weight variability from the variability of an equivalent cylindrical grain
whose density, length, inside diameter and outside diameter variabilities
can be estimated. (Table I.2, item 7)

Propellant Burning Rate. The motor-to-motor variability of average
propellant liquid strand burning rate was estimated from the average
batch mix ligquid strand burning rate cast in 260-SL-1 and SL.-2 motors.
The standard deviation estimated by the range method was . 00265 in/sec,
from which we obtained the coefficient variation, .00265/.4425 = .006
While the two motors were actually targeted for slightly different averages,
the difference between the two for batch mix propellant was felt to be a
conservative estimate of what could be attained if motors were actually
targeted for the same averages.

Experience in a variety of programs has shown that the variability
of veb action time is significantly greater than can be accounted for by
liguid strand burning rate variability. As a result, an adjustment or
scale up factor is used to account for this discrepancy. An average
adjustment factor of 2.255 was determined from eight different motor
designs and it was used to compensate between liquid strand burning
rate data and the 260/S IV-B motor estimate of burning rate. Multiply-
ing this factor times .006 yields a value of .0135 for 0 . (Tablel.2,
item 8). x

* Aerojet prefers to use the more conservative range method for esti-

mating standard deviations when the sample size is extremely small

(i.e., 2, 3, etc.). For a sample of two, this will result in a standard

deviation 25. 3% higher than that estimated by the conventional method.

Reference: (1) Bennet & Franklin, Statistical Analysis in Chemistry
and the Chemical Industry, 1954. Table 5.5, Page 165.

(2) Grant, E. L., Statistical Quality Control, 1952, Table 3,

Page 512, Factors for Estimating O' from R.
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Ratio of Average to Peak Pressure. This factor is included to reflect
the effects of additonal burning surface variability due to separations,
voids and manufacturing deviations. The average value is the design
ratio of maximum to average pressure for a nominal 80°F firing. The
variability was estimated as the average coefficient of variation meas-
ured in four motor programs. (Table I.2, item 9)

Mass Flow Coefficient. The most accurate measurement of C_ varia-
bility was obtained in a 52-inch-diameter motor program where the most
advanced computer data reduction techniques were employed. The esti~
mated motor-to-motor 2 for these motors was found to be .00305.
(Table 1.2, item 10) X

Average Throat Area. A _g_ of .00332 was estimated by the range

method using the average of p}§efire and postfire throat areas in the first
two 260-inch-diameter motor firings. (Table I.2, item 11)

3. AGC Design Equations™ for FM 1 Requirement. The formulafor
instantaneous chamber pressure P_ is derived from the steady state
mass balance equation

. rbAPp "
c CwAt
where
r, = propellant burning rate at nominal temperature, in/sec.
AP = burning surface, in. 2
P = propellant density, 1b/in.3
w mass flow coefficient, sec. -1
At = average throat area, in. 2

This formula was judged not to be an optimum one for use in estimating
the distribution of maximum pressures since the variability of burning
surface at time of maximum pressure cannot be measured. The following

* These data are found in Data Package II-1, reference 4.
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formula, which substitutes propellant weight and web thickness for the
density and surface area terms, was used to gain a better evaluation:

T At
- . Wp Ty Km/a e k 2
¢ max b Cw At )
where
WP = propellant weight, 1b.
Km/a = ratio of peak to average web pressure, (ND)
Cw = propellant mass flow coefficient, sec. -1
At = average throat area, in.2
b = propellant web thickness, in.
L = temperature sensitivity coefficient of pressure, %/°F

Capability. The ultimate burst pressure, me y due to machine welding
may be expressed by

umw tc Kbe Kbx

me = R (3)
o
where
me = ultimate burst pressure machine welds, psi.
S = machine weld ultimate tensile strength, psi.
umw
tc = case plate thickness, in.
Ro = radius (to exterior), in.
Kbe = bending/discontinuity strength reduction factor (ND)
Kbx = biaxial gain factor (ND)
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Ten percent of the time the weld strength will be reduced due to the
necessity to make local repairs by hand welding. The same formula
applies with Suhw hand weld ultimate tensile strength, substituted for

umw.

Failure Mode 2. Data, Motor Case Insulation
Burn-Through

Data used for this failure mode supplied by AGC is covered in Ref~
erence 3. Failure was defined as the occurrence of erosion through
the insulation to any part of the case prior to the end of action time.
Although additional time would be required to burn through the steel
and cause the chamber to rupture, this extra margin was not considered.

Capability. It was defined then that the capability at any section
of the motor is

b ti
Tbt = Tb + ;’—r (4)
where

Tbt = time to burn through insulation, second

b = propellant web thickness, in.

ry = propellant burning rate, in. per second

ti = insulation thickness, in.

e. = erosion rate, in. per second

This failure mode involves both the insulation and propellant bub-
systems and is an excellent example of why failure rates cannot be
calculated separately for the propellant or insulation subsystems of
solid rocket motors.

Requirement for this failure mode is total action time, or the max-
imum time of burning. This is derived by the formula

T. = — (5)
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where

Ta = total action time (maximum time of burning), second

b! = propellant web thickness, where the maximum Ta occurs
(generally where propellant web is a2 maximum), in.

r'b = average burning rate for maximum action time, in. per

second

The maximum web thickness for the 260/S IV-B motor occurs in the
forward part of the cylindrical section (Station 4) where the nominal
value for b' is 87. 5 inches. Although the design nominal propellant
burning rate is 0. 606 inches per second, the average burning rate for
the maximum web thickness section is less than this because the section
nearest the sidewall burns during the tail-off period when the motor
Pressure is decreasing rapidly. Since the design nominal total action
time is 148.5 seconds, the nominal average burning rate for maximum
web thickness is 0,590 inches per second, and occurs at motor station 4.

The nominal thickness and burning rate for the insulation and propel-
lant at other sections of the motor are tabulated in Table I.3. The assumed
nominal maximum erosion rates, based upon the estimated maximum
Mach number of the gas stream at that section are also shown in the table.

Estimation of Parameter Variability

Propellant Burning Rate, r The variability of the propellant burn-

b’
ing rate was assumed to be the same as the variability of the 12-pot
increments for motors 260-SL-1 and 260-S1.-2. As discussed earlier,
the increment-to~increment variability was used because a certain
amount of mixing of propellant occurs in successive pots as the motor
is cast. Table I.4 summarizes the burning rate data for both motors
and shows the distribution of individual values and the distribution of
the 12-pot averages. Because different target values were used for
the nominals of these first 260-inch motors, the data was rationalized
to provide coincidental average values.

g
The value of X (12-pot increment to 12-pot increment) was found

to be .0067 for Motor SLi-1 and . 0052 for Motor SL-2. The combined
average of .00595 was selected for this study.
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Table 1.3 260/SIVB Design Parameters, Mean (Nominal)
Values for Insulation Burn Thru Failure Mode.

Propellant Insulation
Web Burning Insulation™ Erosion
Thickness (b) rate (r,) Thickness (t.) rate (e.)
. . . . b . i . r
Location Station in. in/sec in. in/sec
A\ Igniter Boss 0 - 1.125 .003
£\ Fwd Head 24.5 . 606 1.125 . 003
(Igniter Boss
to Equator)
3. 35" Aft of Fwd 86.7 . 606 1.125 . 003

Equator

120" Aft of 87.5 . 590 .11 . 003
Fwd Equator

274" Fwd of 85.0 . 606 .11 . 005
Aft Equator

Aft Equator

A\
A
A\ 47 Fwd of 71.85 .606 . 250 . 005
A

Aft Equator 70.57 . 606 .430 . 006

8. 12.5in. Aft of

Aft Equator 70.57 . 606 .470 . 00625
8. Aft Head at
240" Dia 52.5 . 606 . 750 . 00725
10. Aft Head at 31.9 . 606 1.10 .00825
220" Dia
11. Aft Head at 15.5 . 606 1.80 .0105
200" Dia
A Aft Head at 0 - 3.60 .0168

Nozzle Joint

* V44 Silica Asbestos
These seven station have been used in the R”C analysis for this failure mode.
(See Figure 1 of this report for motor schematic)



Table 1. 4 Distribution Data* for Design Parameter r

Propellant Burning Rate. b

Propellant Burn Rate Propellant Burn Rate
In/Sec for In/Sec for
260-SL-1Motor 260-SL. -2 Motor

0.4369 0.4408

0.4391 0.4435

0.4426 0.4423

0.4401 0.4395

0. 4446 0.4377

0.4427 0.4426

0. 4443 0.4425

0. 4447 0.4422

0.4461 0.4388

0.4443 0.4417

0.4477 0.4431

0.4460 0.4388

0.4477 0.4365

0.4459 0.4402

0.4449 0.4450

’_‘1 = 0.4438 5;2 = 0.4410

Ol = 0.00299 in/sec 02 = 0.00229 in/sec

o o

cv :-_—l = 0.0067 cv =—_£= 0.0052
1l x 2 X
1 2

¢ CV. 4+ Ccv_ 7T
CcVv 3‘{ 1 2) = 0.00595
260/SIVB 2 :

% LSBR-BATCH MIX DATA from 260-SL-1 and 260-SL-2 motors,
based on 12 pot averages.

#% See comments in Appendix II, page II.2 which discuss the averaging
of two coefficients of variation.
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Propellant Web Thickness. The formula for web thickness for the
cylindrical grain was assumed to be given by the formula

o P -y
- 2

where

b = web thickness

Dc = inside diameter of the insulated case

Db = bore diameter

cb
A value of .002 was obtained for — for the propellant web thickness,

X
based on 260-S1.-1 and 260-SL.-2 motor data. From these data and nominat

web thickness for the 260/S IV-B motor, the standard deviation is equal to
.002(85) = 0.170 .

Insulation Thickness. The standard deviation of insulation thickness
was estimated from drawing tolerances. Assuming that the difference
between the upper and lower limits equals six standard deviations, a value
of 0.0033 in. was adopted for the cylindrical section (0. 100/0. 120 in. -
thick stock) and 0.0167 in. for the varying thickness sections of the for-
ward and aft ends.

Insulation Erosion Rate. The variability of the erosion rate was esti-
mated from the maximum erosion distance observed at four circumferen-
tial locations for four longitudinal stations in a sample of 24 Polaris A3
motors as shown in Table I.5. The coefficient of variation ranged from
. 12026 at the nozzle base to .1890 at the equator, with a high value of
.23914. The average of the eleven stations was .1631 which was chosen
for use in the study since data for other motors indicated no consistent

o
trend for higher _'5-{ variability at one station as opposed to another. The

maximum value of the four circumferential locations was used rather than
the average since the design nominal thickness was based on nominal maxi-
mum erosion rates and not on the average.

Table I. 6 shows the distribution of sidewall erosion data for 20 Min-

uteman Wing II motors. This data results in a considerably higher figure
for the coefficient of variation, .51714 instead of .1631 for Polaris data.
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Table I.5 Distribution, Polaris Insulation Erosion Data
from 24 Motors, Readings at Four Stations
909 Apart (V52 Silica Asbestos Insulation).

Total Erosion, Inches

Station No. X max from

Read 1 Read 2 Read 3 Read 4 Read l—m=4
26 (Nozzle .17 .36 .27 .29 .36
Base) .34 .28 .26 .28 .34
.36 .28 .29 .26 .36
.31 .29 .37 .37 .37
.33 .33 .35 .40 .40
.30 .30 .32 .30 .32
.33 .38 .35 .42 .42
.30 .35 .34 .28 .35
.42 .27 .30 .26 .42
.37 .37 .39 .39 .39
.39 .30 .27 .38 .39
.. 40 .28 .34 .31 .40
.36 .38 .35 .25 .38
.42 .27 .36 .25 .42
.36 ..35 .29 .35 .36
.25 .28 .25 . 26 .28
.29 .34 .24 .31 .34
.34 .35 .37 .40 .40
.24 .25 .41 .26 .41
.30 .17 .38 .23 .38
.40 .42 .40 .43 .43
.27 .28 .31 .30 .31
.20 .24 .23 .23 .24
.29 .27 .32 .37 .37
27 .22 .40 .27 .30 .40
.37 .33 .35 .28 .37
.33 .29 .28 .28 .33
.27 .33 .36 .56 .36
.37 .29 .39 .36 .39
.30 .27 .33 .33 .33
.34 .29 .25 .43 .43
.31 .34 .23 .35 .35
.41 .28 .29 .29 .41
.32 .30 .40 .37 .40
.41 .32 .28 .35 ' .41
.34 .33 .32 .31 .34
.35 .37 .35 .25 .37
.43 .29 .40 .25 .43
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Table 1.5

Cont

[ Total Erosion, Inches
Station No., |~ =~ T 1 T - X max from
Read 1 Read 2 Read 3 Read 4 Read l—w4

27 (Cont) .30 .36 .32 .37 .37
.24 .29 .26 .26 .29
.27 .32 .22 .40 .40
.32 .37 .34 .38 .38
.30 .21 .38 .29 .38
.28 .17 .33 .21 .33
.42 .43 .40 .39 .43
.26 .25 .29 . 26 .29
.18 .26 .28 .21 .28
.26 .32 .25 .30 .32

28 17 .41 .24 .27 .41
.28 .33 .36 .25 .36
.34 .29 .27 .25 .34
.26 .34 .30 .35 .35
.37 .32 .37 .36 .37
.27 .25 .31 .30 .30
.34 .25 .21 .36 .36
.30 .33 .21 .32 .33
.38 .28 .27 .27 .38
.25 .27 .31 .33 .33
.33 .28 .31 .30 .33
.34 .33 .31 .34 .34
.33 .31 .36 .29 .36
.39 .24 .38 .29 .39
.26 .35 .32 .37 .37
.23 .28 .21 .25 .28
.24 .28 .22 .36 .36
.31 .33 .32 .39 .39
.31 .24 .32 .27 .32
.21 .12 .28 .18 .28
.42 .40 .39 .39 .42
.24 .24 .27 .24 .27
.20 .23 .27 .14 .27
.23 .29 .18 .24 .29

29 .21 .41 .34 .25 .41
.32 .30 .28 .23 .32
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Table I.5 Cont
Total Erosion, Inches
Station No. X max from
Read 1 Read 2 Read 3 Read 4 | Read 1—i=4

29 (Cont) .30 .24 .25 .23 .30
.22 .31 .31 .30 .31
.37 .29 .34 .34 .37
.25 .24 .28 .28 .28
.31 .19 .18 .36 .36
.28 .30 .20 .37 .37
.40 .24 .29 .31 .40
.25 .28 .26 .28 .28
.28 .27 .29 .29 .29
.34 .33 .29 .33 .34
.27 .27 .31 .23 .31
.34 .19 .40 .23 .40
.27 .37 .29 .37 .37
.21 .24 .18 .19 .24
.20 .26 .29 .33 .33
.28 .27 .31 .42 .42
.21 .21 .29 .29 .29
.28 .12 .29 .21 .29
.36 .37 .33 .35 .37
.22 .27 .30 .20 .30
.19 .22 .28 .16 .28
.17 .26 .16 .24 .26

30 .17 .36 .30 .27 .36
.25 .25 .24 .23 .25
.25 .24 .23 .25 .25
.18 .30 .27 .28 .30
.27 .28 .36 .36 .36
.24 .23 . 24 .30 .30
.32 .21 .16 .35 .35
.27 .28 .25 .18 .28
.37 .21 .31 .29 .37
.23 .25 .25 .33 .33
.30 .31 .26 .29 .31
.29 .30 .28 .35 .35
.29 .25 .32 .24 .32
.33 17 .39 .24 .39
.25 .36 .29 .36 .36
.16 .25 .17 .18 .25
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Table 1. 5

Cont

Total Erosion, Inches
Station No. ‘ X max from
Read 1 Read 2 Read 3 Read 4 | Read 1—#4
30 (Cont) .11 .24 .38 .32 .38
.25 .24 .27 .38 .38
.19 .19 .35 .36 .36
.32 .15 . 29 .21 .32
.36 .34 .29 .42 .42
.24 .24 .40 .19 .40
.18 .24 . 24 .18 .24
.16 .26 .18 .23 .26
31 .16 .31 .27 . 24 .31
.23 .20 .23 .27 .27
.20 .24 .22 .23 .24
.16 .28 .24 .27 .28
.27 .28 .36 .33 .36
.26 .20 .25 .29 .29
.29 .23 .16 .38 .38
.25 .28 .25 .20 .28
.32 .19 .31 .28 .32
.18 .28 .23 .31 .31
.30 .31 .25 .25 .31
.26 .29 .29 .30 .30
.29 .25 .36 .25 .36
.30 .15 .36 .25 .36
.26 .33 .29 .31 .33
.15 .24 .19 .19 .24
.14 .21 .37 . 29 .37
.20 .23 .25 .38 .38
.19 .15 .34 .35 .35
. 29 . 20 .31 .18 .31
.29 .32 .25 .37 .37
.20 .26 .39 .21 .39
.17 .27 .24 .18 .27
.11 .27 .21 . 24 .27
32 .17 .28 .24 .20 .28
.25 .14 .27 .29 .29
.18 .20 .22 .21 .22
.12 .24 . 24 .25 .25

1-23




Table I.5 Cont

Total Erosion,” Inches

§tation No. ) . X max from
s Read 1 Read 2 Read 3 Read 4 | Read 1——m=4

32 (Cont) .27 .25 .31 .27 .31
.19 .22 .23 .27 .27
.29 .28 .17 .31 .31
. 26 .27 .24 .16 .27
. 25 .17 .30 .30 .30
.16 . 26 .19 . 26 .26
.27 .29 . 20 .21 .29
.24 .27 .24 .25 .27
.27 .29 .35 .22 .35
.29 .15 .32 .22 .32
.28 .28 .25 .36 .36
.21 .21 .21 .20 .21
.17 .13 .30 .27 .30
. 20 .23 .25 .34 .34
.19 .16 .29 .31 .31
.25 .17 .30 .16 .30
.19 .29 .25 . 25 .29
. 20 .23 .32 . 20 .32
.15 .23 . 20 .13 .23
.12 .25 . 20 .22 .25

33 .17 . 26 .21 .18 . 26
.22 .15 .23 .27 .27
.20 .16 .24 .17 .24
.11 .21 .22 .24 .24
.25 .16 . 24 .23 .25
.23 .21 .20 .21 .23
.28 .29 .17 .22 .29
.29 .23 .25 .18 .29
.13 .17 .27 .29 .29
.12 .27 .16 .21 .27
.24 .20 .19 .13 .24
.26 .27 .24 . 24 .27
.22 .27 .32 .23 .32
.24 .13 .28 .23 .28
.25 .27 .21 .37 .37
.24 .19 .16 .16 .24
.15 .09 .25 .28 .28
.21 .25 .23 .45 .45
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Table 1. 5

Cont

- Total Erosion, Inches

Station No. i T - ¥ max from
Read 1- Read 2 Read 3 Read . 4 Read l—=4
33 (Cont) .23 .13 .26 .25 . 26
.25 .16 .22 .15 .25
.15 .22 . 24 .18 .24
14 .19 .31 .15 .31
.10 .16 .09 .12 .16
.11 .25 .16 .15 .25
34 .12 .21 .13 .20 .21
.20 .16 .22 .19 .22
.21 .19 .22 .18 .22
.15 .18 .23 .24 .24
.18 .17 .18 .22 .22
.19 .21 .21 .16 .21
. 25 .25 .16 .21 .25
.25 .23 .21 .17 .25
.11 .14 .23 .25 .25
.07 .28 .16 .17 .28
.21 .21 .19 .11 .21
.21 . 28 .22 .27 .28
.17 . 24 .39 .25 .39
.22 . 14 .26 .25 .26
.13 .24 .16 .26 .26
.21 .21 .15 .17 .21
.16 .09 .23 .25 .25
.22 .32 .24 .39 .39
.19 .12 .19 . 24 .24
.25 .12 . 20 .15 .25
.06 .18 .21 .16 .21
.12 .14 .29 .18 .29
.10 .12 .05 .13 .13
.12 .24 .13 .18 .24
35 .11 .22 .11 .20 .22
.15 .14 .20 .13 .20
. 20 .17 .21 .15 .21
.13 .17 .21 .23 .23
.18 .13 .13 .21 .21
13 .13 .15 .17 .17
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Table I.5 Cont

Total Erosion, Inches

Station No. X max from
Read 1 Read 2 Read 3 Read 4 Read l~—w4

35 (Cont) .21 .19 .17 .18 .21
.18 .20 .17 .20 .20
.14 .12 .21 .19 .21
.08 .21 .15 .16 .21
.23 .19 .16 .15 .23
.16 .20 .16 .18 .20
.18 .19 .24 .18 .24
.20 .12 .24 .18 .24
.18 .19 .12 .20 .20
.13 .18 .15 .16 .18
.17 .10 .15 21 .21
.19 .34 .17 .35 .35
. 15 .11 .15 .15 .15
.17 .19 .14 .16 .19
.06 .13 .07 .14 .14
.13 .11 .37 .15 .37
.13 .08 .08 .15 .15
.18 .23 .09 .16 .23

36 (Equator) .10 .20 .11 .16 .20
.12 .11 .20 .15 .20
.15 .17 .15 .08 .17
.12 .12 .17 .21 .21
.15 .10 .08 .20 .20
.12 .12 .13 .17 .17
.15 .20 .14 .16 .20
.16 .17 .18 .18 .18
.10 11 .14 .15 .15
.06 .23 .16 .19 .23
.23 .18 .13 .16 .23
.17 .21 .14 .12 .21
.17 .15 .23 .20 .23
.14 .12 .21 . 20 .21
.10 .18 .09 .15 .18
.15 .14 .11 .19 .19
.19 .15 .15 .14 .19
.17 .27 .16 .32 .32
.09 .06 -.13 .14 .14
.13 .22 .16 .16 .22
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Table I.5 Cont

Total Erosion, Inches
Station No. X max from
Read 1 Read 2 Read 3 Read 4 |Read 1—a=4q
36 (Equator) .09 .08 .10 .15 .15
(Cont) .15 .14 .22 .11 .22
.16 .08 .13 .17 .17
.16 .12 .08 .15 .16
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Table I. 6 Distribution of Sidewall Erosion Data 20 Minuteman
Wing II Motors (V44 Silica Asbestos).

Maximum Sidewall” Number of
Erosion, Inches - ___Samples _

. 005 - . 006

.009 - .010 4

.010 - .011 1

.011 - .012 3

.012 - .013 1

.015 - ., 016 5

.017 - .018 1

.030 - . 031 3

Total 20

Calculations for MM Wing II data:

x = . 01465
o = . 00738
c

cy =———= .51714
X

These data are maximum values obtained in the cylindrical

region of the motor, from a population sample of 20 motors.
They were used to compute g and }% for the cylindrical region
of the 260/SIVB motor (stations 4 and 5).
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The validity of using this data is questionable because: (1) it is more
difficult to measure sidewall than aft head erosion, (2) it was derived
from motors using a bi-propellant grain that might have had more vari-
ability in burning rate than a mono-propellant grain, (3) sidewall erosion
is mainly a function of tailoff time, which is usually more variable than
the web burning time that primarily governs the fore and aft head insula-
tion erosion rates.

These factors make the applicability of the .51714 value doubtful for
g
— and indicate that the variability of the V-44 erosion rate in sidewall
X
locations should be given additional study. (However, for purposes of
preliminary analysis this value was used for stations 4 and 5 in the motor.)

Failure Mode 3. Failure of the Forward Skirt
Forging in Combined Compres-
sion, Shear, and Bending l.oads.

Requirement versus Capability Relationship. When combined loads are
present, as in the case of the forward skirt which is subjected to com-
bined compressive, shear, and bending forces, it is the opinion of AGC
that the correct estimation of failure cannot be obtained by separately
comparing the requirement and capability of each type of loading and then
combining the total failure. The non-validity of such an approach, they
feel, is due to the fact that the combination of different types of loads
interact to reduce the material capabilities to levels below that which
they exhibit for single types of loads. As a consequence, stress engi-
neers have derived empirical relationships to account for the amount

of interaction between various types of combined loads. In these rela-
tionships, the ratios of the requirement of each type of load to their
corresponding allowables are combined in an interaction formula such
that if the sum of the ratios is greater than unity, failure is assumed

to occur. The transfer function used for the combined compression,
shear and bending in the skirts of solid rocket motors is

1/3
R+ QRb?’ + Rs3> (6)

R = the ratio of axial compressive load requirements to
material capability.
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R = the ratio of transverse shear load requirement to material
capability

R_b the ratio of pure bending load requirement to material capa~
bility
This function can be used in the R||C analysis to describe the require-

ment, or more specifically the requirement ratio. The capability distri-
bution is assumed to be the single value of 1. 000, with no variability.

Expanding the interaction formula to account for the geometry of the
260/S 1V-~-B vehicle, we obtain:

LC 3 { L L
Requirement Ratio = TR I K B +
is c's

These parameters are defined in Table 1.7, and a summary of the mean
values and standard deviations are also given.

Engineering Data for Failure Mode 3. Failure of the forward motor skirt
forging in combined compression, shear and bending, is discussed and the
rationale and data used in this study follow.

Lc’ Lb’ LS; Axial Compression, Pure Bending, Transverse Shear Loads.

The axial compression, pure bending, and transverse shear loads are
single limit values with zero variability.

Assumptions: The loads used in this analysis were specified'by the launch
vehicle systems designer, Douglas Missile and Space Systems Division.

In actuality, the maximum axial compression load occurred at 116 sec
while the maximum shear and bending moment occurred at 59 sec. How-
ever, lacking data for shear and bending at 116 sec, the 59 sec values

were used instead since this produced a conservative estimate. The values
used are maximum requirements based in part on a 95% probability quasi-
steady state winds, plus associated wind shears, wind speed changes and
gusts. In addition, the TVC portion of the loads also reflected a root-sum-
square combination of the maximum expected variability of thrust misalign-
ment, motor thrust, and vehicle weight. The probability of failure calcu-
lated from these loads is therefore a maximum one in the same sense that
the hoop stress failure rate was evaluated at the maximum temperature
requirement. To obtain the skirt failure probability for normal use would
require the vehicle designer to furnish variability estimates for these loads.
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Table I. 7. Summary of Parameter Average and Standard Deviations.

Maximum Axial Compressive Load,
Le, b,

Maximum Pure Bending Load, L,
in. -1b.

Maximum Transverse Shear Load,
Lg, 1b.

Skirt Radius (interior), Ri , in.

Modulus of Elasticity, E;, psi

Ratio of Axial Compression
Strength to Mod. of Elasticity, K.

Ratio of Pure Bending Strength
to Mod. of Elasticity, K

Ratio of Transverse Shear Strength

to Mod. of Elasticity, K,

Skirt Thickness, ty s in,

Standard Coefficient
Nominal Deviation of Variation
Vilue Units g
X g X Source of Data
2, 200, 000 0 0 Figure 4-17, Saturn IB Improvement
Study, Douglas Missile & Space Systems
Div., 3/30/66 (Douglas Rpt SM-51896,
Vol. II) Contract NAS8-20242.
94, 000, 000 0 0 Fig. 4-15, Same report as above.
60, 000 0 0 Fig. 4-15, Same report as above .
129,903 .0208 .00016 X: Design nominal
0: Assuming design tolerance = 6 sigma.
27,500, 000 54, 725 .00199 X: Design nominal
0: Est, from plate-to-plate variability
of material composition,

.0036 .000685 .190 X, 0: Development of design curves for
stability of thin pressurized and unpres-
surized circular cylinders, Report AZS-
27.275, 3/8/59, Convair Astronautics Div.,
General Dynamics Corp,

. 0050 .000968  .193 X, o: UL

.00288 .000334 .116 X,0: L
. 728 . 0093 .0128 X: Design Nominal

o: Assuming design tolerance =
6 sigma.



Ri ,» Skirt Radius Distribution

1. The tolerance on the interior skirt radius = 0. 125
2. Assuming the tolerance equals 6 0, 0 = 0.0208

o 0.0208
3. Tx = m = 0.00016

4. The population is assumed to be normally distributed.
Assumptions: Engineering judgment supports the statement that such
tolerances could be held in production motors.

Experience with similar manufacturing parameters in smaller motors
indicate a normal distribution.

tS , Skirt Thickness Distribution

1. The tolerance on the skirt thickness is 0. 056 inches.
2. Assuming the tolerance equals 60, o0 = 0.0093

o] 0.0093
. —_— = — = .0128
3 X 0.728 0

4. The population is assumed to be normally distributed.

Assumptions: Engineering judgment supports the statement that such
tolerances could be held in production motors.

Experience with similar manufacturing parameters in smaller motors
indicate a normal distribution.

Es, Modulus of Elasticity Distribution

Table I. 8 lists the data for ES . Twenty-four heat number values
are shown.

Assumptions: No data were available for the plate-to-plate variability

of modulus of elasticity. However, the chemical composition data avail-
able for each plate made possible an estimate of the modulus of elasticity.
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Table 1. 8. Es’ Modulus of Elasticity Distribution

Estimated
Modulus of Elasticity
Heat No. 1b /in% x 10-6
50265 29.138
50264 29.087
50338 29.138
50210 29.189
24997 29.248
24999 29.138
3951218A 29.036
25126 29. 146
3951215 29.240
3960819 29.138
3920781 29.129
2500 29.189
392077 29.078
25064 29.104
3960832 29.104
25098 29.180
25007 29.163
24998 29.129
3960829 29. 036
50187 29.180
3960870 29. 061
25050 29. 036
24996 29.155
50234 29.138
x = 29.132 x 10
o= 0.058 x 106
cv = —=  0.00199
X




This was done by obtaining handbook values for modulus of elasticity
of each of the ingredients and obtaining a weighted average estimate
of the modulus of each plate. While the true modulus of elasticity is
probably affected by other factors than composition, this method is
felt to be sufficiently accurate for variability estimating purposes.
The average value obtained by this method was 29, 132, 000 which is
within 5% of the design nominal value of 27, 500, 000.

The assumptions of a normal distribution and the constancy of the
coefficient of variation apply to this parameter.

Ratio of Strengths to Modulus of Elasticity Distribution. The varia-
bility of axial compressive strength, pure bending strength and trans-
verse shear strength was obtained from a study performed by Convair
Astronautics Division, wherein data from unstiffened circular cylin-
ders in compression, bending and shear from numerous studies were
analyzed and summarized. The results were calculated for various
radius/thickness relationships as well as length/radius relationships.
In addition to showing average values, results were portrayed for 90%
probability with 95% confidence levels which made possible direct esti-
mation of standard deviation. The results are summarized as follows:

Assumptions:
Radius/Thickness = 129.903/728 = 180
Length/Radius = 30/129.903 = 0.23
Coef.
No. of 0 betw of
Ratio of Strength to (No. een varia-
Modulus of Elasticity x & 90% prob. 95% Standard tion
Function 90%Prob. C.L. based on Deviation 0
Avg. Value 95%C.L. sample size) o x
Axial Compressive . 0036 . 0026 1. 459 . 000685 . 190
Strength, Kc
Pure Bending . 0050 . 0035 1.548 . 000968 .193
Strength, K
b
Transverse Shear . 00288 . 00238 1.497 . 000334 .116

(1.25 x torsion), KS

The data in the Convair study were shown only in summary form and it was

assumed that populations are normally distributed. It is interesting to note
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that coefficients of variation obtained, which ranged from .116 to . 193
are considerably larger than the . 025 obtained for the tensile strength

of the plates maraged in 260-SL~1 and 260-SL~2. This is to be expected,
since the initiation of buckling failures is more susceptible to local dis-
continuities and contour deviation than is the case of simple tensile tests.
As such, this data can be considered to include the bending/discontinuity
factor that was evaluated separately in the hoop stress failure mode.

Failure Mode 4. Data, Failure of Forward Head
Circumferential Weld in Meridional
Stress (Location: Weld Between
Igniter Boss Forging and Upper
Gore, 35" from Center Line)

Capability Distribution:

90% of time weld strength is

P _ Sumw C (Kbe) (8)
mw R
o
where
me = Ultimate burst pressure of machine welds, psi,
S = Ultimate tensile strength of machine welds, psi,
umw
tc = Plate thickness, in.,
RO = Radius (to exterior surface), in.,
Kbe = Bending/discontinuity strength reduction factor, ND.

10% of time weld strength is reduced due to the necessity of
making local hand weld repairs. The same formula applies
except S is substituted for S

uhw umw

Suhw = Ultimate tensile strength of hand welds, psi.

Motor Station 3
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As shown in Table.I. 9, the same values for average and standard
deviations for cylindrical welds as was used for FM 1 apply to the
forward head welds with the exception of.plate thickness and radius.

Requirement Distribution. The requirement distribution of maximum
chamber pressure for this failure mode is the same as for the failure
of longitudinal welds* in hoop stress. Tables I.10 and I.11 support
the plate thickness and exterior radius variabilities.

J,
$R

Failure Mode 5. Data, Rupture of the
Nozzle Joint Bolts

Failure of nozzle joint bolts in tension due to combined loads of pres-
sure ejection, and TVC bending moments.

Requirement Distribution. The requirement distribution is the sum of -
three distributions: the tension due to pretorqueing, a portion of the
ejection load due to internal and external pressure and inertia, and the
added tension efiect due to the thrust vector control moment.

The portion of the total ejection load that is felt as tension in the bolt
can be approximated by the ratio of the cross sectional area of a bolt to
the area of flange per bolt. Since this results in a load that is less than
. 1% of the pretorque load for the 260/S IV-B design, the ejection load
effects were not considered in this failure mode. The resulting require-
ment transfer function is then that the Bolt Tensile Load = Pretorque
Load + Thrust Vector Control Load.

The thrust vector control load results from the side force load of
the ligquid injection TVC system. It acts at right angles to the longi-
tudinal axis at the TVC ports in the exit cone and results in a bending
stress at the nozzle joint. The basic formula for the load/bolt at the
joint is:

(F ) (tan o) (d)
P - max (9)

b ’ 1)) '
n_1J
2 ( 2

Ref. Data Package II-1 and equation (2) of this Appendix.

** Ref. 4, Data Package 11-4.
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Table I1.9. Sumrﬁary of Parameter Averages and Standard Deviationss FM-4.

Coefficient

-Parameter
Parameter |: Standard of
Average Deviation Variation
Value, -in Units, o S
Parameter X Jos X Source of Values
Machine Weld 232, 000 2,516 0109 X, 0: 260-SL-1 and -
UTS, S s 260-SL-2 Maraged
umw
psi weld coupons (see
Data Package II-1,
Table 2).
Hand Weld 199, 333 8, 641 .0433 X,g: nnn
UTS, S s
) uhw
psi
Plate Thick- .428 .0108 .0250 X : Design nominal.
ness, t in, 0: 18 plates from
18 heat used in 260-
SL-1 and SL-2
Radius (exter-| 130.428 . 0456 . 00035 X: Design nominal.
jior), R, in. o: Tolerance on radi-
us r plate thickness
variable
Bending /Dis- . 9585 .00693 .72 X, 0: Est. from
continuity 260-S1.-1 and SL-2,
Reduction Hydrotest strain
Factor, Kbe gauge data. See Data
(ND) Package 1I-1 Table 5.
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Table I.10. Plate Thickness Variability

Plate

Thickness

Average Within-Plate

of 15 Standard Used In
Heat No. Readings Deviation Motor Number
3920778-B .414 .0089 260-SL.-1
25000-6A .429 .0050 250-SL-1
25064-1 .434 .0069 260-SL-1
25050-1 . 435 .0023 260-SL-1
3960870-C .436 .0023 260-S1.-2
50187-2T .443 .0032 260-S1.,-2
24996 -1 . 446 . 0059 260-S1.-2
50187-2B . 441 .0065 260-S1.-2
t. avg. = .434
0 - -
plateI::e . 0095 Ogithin = * 0051 (avg.)

P plate
: . e g s 2 2
0 = Estimated Total Variability = /O’ + O
; PP wp

(any location)

.0108

cv =

(o)
< .0250
X
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Table I.11. Estimation of Exterior Radius Variability.

(1) Tolerance on interior radius = .26
(2) Assuming tolerance = 6 0, o = ,0433
(3) Variability of plate Table 1.1 0‘t = ,0108
(4) Combining plate and radius
variability by RSS, o] = .0456

(5) Coefficient of variation

o . 0456 _

- T 130.428 = + 00035
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where:

max

D,
J

However,

= load per bolt, 1lb.

- maximum longitudinal thrust, lb.

= TVC side force deflection angle, deg.rees.

= longitudinal distance between TVC port and joint, in.
= number of bolts

= diameter at nozzle joint, in.

the maximum longitudinal thrust can be expressed in terms

of maximum chamber pressure which is the requirement parameter for

other failure

where:

sn

P
e

Constant values for o,

modes. The relationship is:

F =P A .C CK

—_— €
max sn ti f va + (Pe Pa) Ati (10).

f

= chamber stagnation pressure, psi.
= atmospheric pressure, psi.

=] initial throat area, in2

= nozzle thrust coefficient in vacuum, (ND)
= nozzle efficiency factor, (ND)

= nozzle expansion ratio, (ND)

= nozzle exit pressure, psi

C » K., and €, are used in the following
f vac f

formula for the bolt tensile load:
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B - | . 1LoP,
(tan a) (d) (. 8538 Pcma.x) (Ati) 1. 66642 — 558,
= K F : !
Qpr p by T
11
where: (11)
QBT = total tensile load per bolt, 1b.
K = fraction of bolt minimum yield strength to which
P bolt is pretorqued, %/100.
Fby = minimum tensile load per bolt, lb.
a = 3.6° (TVC side force deflection angle)
d = longitudinal distance between TVC port and joint, in.
= maximum chamber pressure, psi
cmax
Pa = atmosphere pressure, psi
G = initial nozzle throat area, in2
n = number of bolts, 220
Dj = diameter at nozzle joint, in.

Capability Distribution. The load capability parameter, PY is based on

the tensile strength of the nozzle attachment bolts. The nominal value
for bolt load capability is estimated at 15% greater than the specified
minimum of 213, 310 lbs per bolt, or 245, 307 lb/bolt. The coefficient
of variation is . 0081 as shown in Table I. 12 thus 0 = (cv) PY = 1987 psi.

A summary of the averages and standard deviations characterizing

these parameters, is presented in Table I. 12. Table I. 13 shows dis~
tribution data and rationale for the parameters shown in Table 1. 9.
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Table I.12, Summary of Parameters for FM-5.
Standard
Nominal Deviation Coefficient
Value Units of Va::_iation
Symbol Parameter X g /% Source of Data
K Pretorque fraction .60 .077 . 128 ¥: design nominal
P of minimum yield 0: measured variability for tensile
strength, ¢/100 strength for six 1% -in. -dia EWB
bolts all pretorqued to same
1000 ft. 1b. load. See Table 1.13
Fb Bolt minimum yield 213,310 0 0 x: design nominal
y strength, 1b/bolt 0: included in pretorque data
d Distance between 178. 84 0 0 x: design nominal
TVC port and nozzle 0 : no data available
joint, in.
Maximum chamber - - - A parameter expressed as a function of
cmax ] .
pressure, psi other parameters. (See equation (I.2))
P Atmospheric 14.696 . 0735 . 0049 x and 0: Handbook of Geophysics
pressure, psi for Air Force Design. Data is
for sea level. 30°N latitude.
A Initial nozzle 6235 0 0 x: design, nominal
throat area, in 0: negligible (one sigma equals
. 045%, assuming dia. dwg.
tolerance equal to 6 sigma
(see Table I.13)
n Number of bolts 220 - - X: design nominal
. Diameter of nozzle 180 0 0 x: design nominal
. joint, in. 0: negligible (. 001% assuming dwg.
tolerance equal to 6 sigma.
See Table .13
P Bolt Load Capability 245,307 1987 . 0081
y 1bs/bolt.



Table I. 13, Distribution Data for FM-5,

Pretorque Distribution

Pretorque design nominal is set at 60% of minimum bolt tensile
strength; the pretorque variability is estimated from 6 tests performed
on 1.25 in. dia. EWB bolts similar to LWB used in 260-in. /SIVB design
were torqued to 1000 ft-lbs (lubricated). The imposed tensile loads were
measured as follows:

Test Tensile load, psi

1 124, 000

133, 000

147, 000

153, 000

167, 000

174, 000

Avg. 149,667

19,210
0.128

[o ARSI N

cv

1

®la a

o
Assumptions: It was assumed that the — observed in these tests would

apply to 260/SIVB bolts when torqued ‘cc})c 60% of their minimum yield. It
was also assumed that the pretorque variability represented both the
variability of the inherent tensile strength and the variability resulting
from pretorquing itself.

Initial Throat Area

This parameter is assumed to be normally distributed with the tolerance
on initial throat area equal to 6 standard deviations. The 0. 060 inches
total tolerance on the 89.1 inch diameter becomes the equivalent of 0. 045%
for one sigma of initial throat area. This small magnitude can be neglected.
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TABLE L. 13 continued

Diameter of Nozzle Joint

This parameter is assumed to be normally distributed with the
tolerance on the joint diameter equal to 6 standard deviations. Thus,
the 0. 015 inches total tolerance on the 180 in. diameter of the bolt circle
becomes 0.00139%. This small magnitude can be neglected.

Summary of Bolt Tensile Strength Data

Only summarized data were available. The following were obtained
from AGC reports, reflecting strength measured in Aerojet acceptance
tests:

Average
Ultimate Standard Coefficients
Tensile Deviation of VaIiation
Type of Bolt Material Strength, psi psi o/x
- 8735 190,950 1667 0. 00873
- 8740 181,600 1718 0. 00946
NAS626 H4 - 214,900 1310 0.00610

cv Avg.= 0.00810

Assumptions: The average of the coefficients of variation, 0 /x was
used as the best estimate of the population coefficient of variation. The
assumption is also made that yield strength 0/x is the same as ultimate
tensile strength o/x .
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Failure Mode 6. Data, Separation of Motor
Chamber and Nozzle Flange

s
1. Relationship of Requirement and Capability.

The longitudinal compression of the flange due to pretorque can be
described by the formula:

o =
FF
where:
EC = fractional compression (ND)
th = pretorque load per bolt, 1b/bolt
AL = area of flange/bolt, in.?2
EF = modulus of elasticity of flange, psi.

Similarly, the longitudinal elongation of the flange due to the ejection
load can be described by the formula:

Qe.
‘e T R é
e
FF
where:
€ o = fractional elongation (ND)
er = ejection load per bolt due to internal pressure, external

pressure, and inertia, lb/bolt

The joint will separate when the elongation due to ejection load exceeds
the compression due to pretorque. This occurs when: €c = Ee or:

s

Ref. AGC Data Package II-4, 5
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pt ej

AF EF AF EF

This reduces to th = er at time of failure. Thus the ejection load

becomes the requirement and the pretorque load the capability.

Requirement distribution. The ejection load on the nozzle in flight is
made up of three components?

a. The force on the entrance to the nozzle minus the reacting forces in the
exit cone:

P1go®180 (¥ ”Mlsoz) P Al “’Mez)
where:

180 = pressure at 180" joint diameter, psi,
A180 = area at 180" joint diameter, inz,

5% = ratio of propellant specific heats (ND),
M180 = Mach number of gas stream at joint diameter, (ND),
Pe = gas pressure at exit diameter, psi,
Aei = initial exit area, inz,
Me = Mach number at exit plane, (ND).

b. The drag on the exterior surface of the nozzle due to ambient air
pPressure:

P, Ay — AISO)

where:

P = atmospheric air pressure.
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c. The inertial load.on the nozzle:

Wni erh
F
where:
ni = initial weight of the nozzle, lb,
erh = total weight of the launch vehicle, 1b,
F = thrust, 1b.

As in the case of the failure mode due to bolt pretorque and TVC
loads the thrust term has been replaced by chamber pressure, throat
area and other parameters. The final formula for the ejection load
per bolt is then:

2 2
= =1 - 2
R6 er 9981 Pcma.XAISO(1 +7M180 ) 01409 Pcma.eri(l +7Me )+
Wni (wp * in)
PoBei ~#180)] * P, n
cmax
(12)
where:
ej = ejection load ber bolt, lb/bolt,
P = maximum chamber pressure, psi (see Equation II. 22,
max .
Appendix II}),
Y = ratio of propellant specific heats, (ND),
180 - Mach number of gas streem at joint diameter, (ND),
Me = Mach number of gas stream at exit plane, (ND),
Pa = atmospheric pressure, psi,



Aei = initial exit area, in. ,
A = area at nozzle joint, in 2
180 - nozzle joint, .
wni = initial weight of nozzle, lb,
WP = propellant weight (first stage), lb,
w . = initial weight of launch vehicle (less first stage
vi
propellant), lb,
s . 2
Ati = initial throat area, in. ,
n = number of bolts.

A preliminary evaluation indicates that load Q ., or the requirement,
will be at a maximum immediately after igmition.

Capability Distribution. The formula for the pretorque load/bolt is:

C() = th = KP Fby (13)
where:
th = pretorque load on bolt, 1b,
K = fraction of bolt minimum yield strength to which bolt
P is pretorqued, %/100,
Fby = bolt minimum load capability based on yield strength, lb.

Table 1. 14 presents the FM 6 parameters giving estimates of the means,
standard deviations, coefficient of variations, and data sources. Table
1. 15 summarizes the rationale for those parameters assumed to have

o = 0.
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Table I. 14, Summary of Parameter Data FM-6.

Yield Strength to Which
Bolt is pretorqued, Kp

I-49

180° See Table II).

See Table IIO.

Handbook of Physics for Air Force Design.

(Douglas Report SM-51896

: negligible (sigma equals . 045% based on assumption that
See Table II).

Nominal Standard Coefficient
Value Deviation of Variation
Parameter X ° o/% Source of Data

Ratio of propellant 1.2 [} 0 :_g:'design nominal

specific heats, 7 o: is negligible . 00167% per Report 0815-81F

(ND) "Survey of Existing Solid Propellant Ballistic
Data', Contract NAS8-11033, 4-29-64.

Mach number at 0.0576 0 0 X design nominal

joint diameter, M180 0: negligible. (A one sigma change in Aﬁ

{ND) produces only . 04% change in M

Mach number at exit 3.205 0 0 x design nominal

plane, Me {ND) O: negligible (one sigma equals . 0039% based on . 04%
for A_. and . 01796% for A ..

ti et

Atmospheric Pressure, 14.696 . 0735 . 0049 X:and O.

psi Pa Data is for sea level, 20°N latitude,

Initial Exit Area, -

A i in' 56,116 0 [ x: design nominal

€ 0: negligible (one sigma equals . 01796% based on

assumption that exit dia tolerance is 6 sigma.
See Table II).

Area at Nozzle Joint, 25,447 0 0 X: design nominal

Algo inZ ' 0: negligible {one sigma equals . 00343% based on
assumption that joint dia. tolerance equals
6 sigma. See Table LI).

Initial Nozzle Weight, 58, 428 o . 0134 X: design nominal

wnj 1b 0 : same source as for sigma of ¥.

Propellant Weight, 3,400, 000 6120 .18 See Data Package -1, AGC

WP 1b (st Stage)

Initial Launch Vehicle 726,466 4085 .70 %: design nominal

Weight, Wv. b (Less 0: Saturn |B Improvement Study, Douglas Missile and

First Stage ’Propellant) Space Systems Division.
Vol. II, 3-30-66).

Inital Throat Area, 6,235 0 o] x: design nominal

Ati in a
dwg. tolerance equals 6 sigma.

Number of Bolts, n 220 - - --

Fraction of Bolt Min. 0.6 . 077 . 1283



0%-1

Table I.15,

Summary for Parameters Assumed Without Variance FM-6,

Requirement Equation
Formula Related for Requirement Variability of Corresponding Formula
Symbol Parameter Primary Parameter Formula Parameter Related Parameters Parameter Variability Assumption
M180 ‘'Mach number Ati Complex . 045% (o Ati) . 049, Negligible effect
at throat on requirement
diameter variability
Me Mach number Ati and Aei Complex . 045% (0 A i) . 0039% "
. e
at exit
.01
diameter 0 796%(cAei)
: s ; ( tol °
Aei Exit Area Exit Area Radius 2w ReioRei . OIZKORIBO_ T/ .01796% 1
A Nozzle Joint Nozzle Joint Dia 2m R o 00125 (o =t—°-1 ) . 00343% "
180 180 R180 ~ R180° 6 /
Area
A, Throat Area Throat Radius 2mrR.. O 019 (0 =ti1- \ . 0459, "
ti ti Rti Rti 6 /



*
DATA FOR PROPELLANT STRESS FAILURE MODES, FMT7-11 INCLUSIVE

These five failure modes are a representative group related to propel-
lant stress problems. They will be discussed together because only a small
amount of input data applicable for R||C analysis was made available. How-
ever, this data collection effort represented a sizeable computer and study
program on the part of AGC. It did, however, show that R||C analysis can
still be a valuable tool when data supply is marginal. The five failure modes
are as follows.

Failure Mode 7. Propellant Max, Inner Bore
Hoop Strain Failure Mode,
Storage Condition

Innerbore grain failure in hoop stress due to cool down and storage
(undetected) critical station-center region of motor.

Failure Mode 8. Propellant/Liner Interface Maximum
Radial Bond Stress Failure Mode,
Storage Condition

Propellant/Liner interface bond fails radially during cool down and
storage (undetected), critical station-aft end of motor.

Failure Mode 9. Propellant Maximum Combined
Stress (Principal Stress), Shear
and Tension Failure Mode, Storage
Condition

Failure of propellant due to combined shear and tension stress during
cool down and storage (undetected), critical station-aft end of motor.

Failure Mode 10. Propellant/Liner Interface Maximum
Shear Stress Failure Mode, Flight
Condition

Propellant/Liner interface bond fails due to shear stress during cool
down and storage (undetected), critical station-forward end of motor.

e

Data covered by AGC Progress Report No. 6, NAS 7-572. (Phase I study).
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Failure Mode 11. Propellant Maximum Inner Bore
Hoop Strain Failure Mode, Flight
Condition

Inner bore grain failure in hoop stress due to pressurization and
flight acceleration, critical station-aft end of motor.

Requirement Distribution. Data received from.AGC and used for the
R||C analysis for the failure modes 7 through 11 was given in the form
of output R and C density parameters. AGC said that these functions
were Gaussian and therefore TEMPO used closed formed solutions.

Detailed input and output data from the computer grain stress anal-
ysis performed by AGC are covered here. Input variables for the
eight storage and eight flight simulations were used in the AGC analysis.
Only the storage modulus of elasticity, the coefficients of thermal ex-
pansion, and the case wall thickness were varied, however, for the
simulation storage conditions. For the flight simulations, the flight
modulus was substituted for storage modulus and the propellant density
and initial chamber pressure were added to the parameters varied in
each run. A sample run is shown in Table I. 16.

The corresponding output data which are the grain stress and strain
requirements are presented in a sample run, Table I. 17, which is the
result of one of the eight simulation runs made by AGC. No Require-
ments are shown for inner bore strain in the forward part of the motor
since it is non-axisymmetric, and would require special analytical
treatment. The assumption was made that the grain design in this
forward end could be so modified as to ensure that the maximum bore
strain requirements would occur in the cylindrical section. AGC
260/S IV-B Propellant success criteria is as follows:

SATISFACTORY PERFORMANCE OF PROPELLANT/
LINER SUBSYSTEM

® Grain does not auto-ignite prior to planned ignition.

® Propellant burns without producing overpressure, burn-
through, or structural damage. (Does not include per-
formance failure wherein structure remains intact, but
delivered thrust, ignition delay, tail off, etc., are out
of specification.)

TIME PERIOD

® TF'rom start of countdown to end of motor total action time.
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Table I.16  Sample™ AGC Run #2, Input Variables
for Propellant Stress Failure Modes.

Case Initial
Propellant Coef. of Wall Prop. Chamber
Modulus of Thermal Thickness, Density, Pressure,
Elasticity, psi Exp.,%/°F Inches 1b/in3 psi
Prop, Case :

Section  Storage  Flight (X10%) (X109
1-3 55 857 5.3996 5.594 . 425 . 06328 528.1
4 63 1084 5.4003 " " . 06332 539.8
5 54 838 5.3995 " " . 06331 549. 8
6 63 1071 5.4005 5.590 .433 . 06331 547.8
7 58 954 5.4000 5.605 . 641 . 06330 561.6
8 63 1095 5.4019 " " . 06327 567. 4
9 64 1121 5.4008 5.595 .650 . 06329 591.3
10 62 1053 5.3992 5.514 . 625 . 06330 586.8
11 60 990 5.3988 5.606 .637 . 06332 588.0
12 62 1049 5.4007 " " . 06332 601.0
13 62 1063 5.4001 " " . 06331 596.5
14 57 923 5.3992 5.618 .618 . 06328 608.6
15 70 1269 5.4018 " " . 06328 613.4
16 61 1028 5.3984 " " . 06330 615.4
17 62 1049 5.4014 5.594 .641 .06334 608.1
18 60 1003 5.3992 " " . 06329 612.4
19 53 817 5.3980 " " . 06332 621.9
20 64 1097 5.4001 5.589 .621 . 06331 619.2
21 57 929 5.4002 " " . 06330 619.8
22 62 1063 5.3993 Y " . 06331 628.0
23 57 923 5.4007 " " . 06330 644.6
24 58 956 5.3985 5.600 .648 . 06329 639.6
25 60 993 5.3987 " " . 06333 659. 4
26 50 734 5.3974 " " .06329 647.3
27 58 948 5.3984 5.584 . 647 . 06331 635.9
28 60 993 5.3998 " " . 06329 646.1
29 64 1109 5.3996 " " . 06330 659.5
30 61 1014 5.4003 5.585 . 645 . 06331 658.1
31 54 823 5.3983 " " .06328 653.8
32 60 1165 5.3987 " " . 06330 672.1
33-37 58 946 5.3991 5.619 .637 . 06330 679.0
38-39 66 1154 5.4015 " " . 06330 661.0
40-41 54 829 5.4010 " " .06329 683.7
42-43 57 920 5.4002 5,602 .432 . 06331 689.1
44 67 1185 5.3989 5.598 .432 . 06329 690.3
45 57 913 5.3997 5.597 .426 . 06332 701.8

* 8 Simulation computer runs were made by AGC.
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Table I.17 Sample* AGC Run #2, Output (Requirements)
for Propellant Stress Failure Modes.

Flight Storage

Inner Bond Inner Radial Prop.

Bore Shear Bore Bond Principle

Strain, Stress, Strain, Stress, Stress,
Section % 1b/in % 1b/in2 1b/in%
1-3 2.76 17.7 1.80 2, 35%% 5. 26%%
4 3.15 4.9 1.75 1.03 1.88
5 3.50 : 8.7 1.13 .40 .91
6 5.00 7.9 2.16 1. 05 1.61
7 5.79 9.1 2.60 .93 1.44
8 6. 08 11.7 2.99 1.41 1.95
9 7. 70%% 14.3 3.53 1.42 1.93
10 7.23 16.0 3.48 1.79 2.28
11 6.58 14.8 3.44 1.41 1.88
12 6.29 12.3 3.45 1. 77 2.25
13 6.32 17.2 3.47 1.54 2.03
14 6. 26 12.4 3.38 1.78 2.23
15 6.20 18.2 3.32 1.51 2.04
16 6.15 15.1 3.38 1.82 2.30
17 5.91 15.6 3.44 1. 49 1.97
18 6.11 20.7 3. 54%% 1.78 2.25
19 6.32 13.5 3. 54%% 1.52 1.94
20 5.95 16. 7 3.44 1.69 2.18
21 5.65 15.9 3.40 1.51 1.96
22 5.96 18.5 3.38 1.64 2.13
23 6.42 17.3 3.38 1.48 1.93
24 6.66 27.1 3.36 1.57 2.04
25 6.92 16.7 3.38 1.36 1.85
26 6.70 13.0 3.43 1.55 1.98
27 5.84 16.6 3.31 1.25 1.74
28 5.53 18.3 3.09 1.38 1.90
29 5.58 21.8 2.91 1.11 1.72
30 5.51 24. 4 2.84 1.22 1.85
31 5.77 20.8 2. 86 .92 1.53
32 NA 28, 4%% NA . 76 1. 44
33-37 " 20.5 " . 81 1. 46
38-39 " 24.4 " .53 1.23
40-41 " 15.1 " .35 .85
42-43 " 2.0 " . 47 .73
44 " 10.4 " . 46 .69
45 " 17.3 " .56 1.09

* 8 simulation computer runs were made by AGC.
*% Maximum Value
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PRE COUNTDOWN ENVIRONMENTAL CONDITIONS

® Post cast cool down from 140° to 60°F.

® Horizontal storage 3 years prior to use.

® Handling and shipping maximum, 1.3 g's longitudinal, 3.0 g's
lateral.

® Countdown and launch at ETR, 2 g's axial load maximum.

EXCLUSIONS

® Grain cracks and flaws, slump, deformation, and propellant/
liner separations that can be visually detected prior to count-
down.

® All failures originating due to human error in manufacturing,
inspection, assembly, transport, etc., that result in material
strength or capability far below that normally considered in
design.

)

Failures resulting from the inability of quality control tests run
on samples of case, liner, insulation and propellant to accurately
reflect motor conditions.

Data for the input parameters used by AGC in the grain stress analysis,
is given in Table I. 18. Table I. 19 summarizes the results of the AGC com-

puter runs, which, although inadequate for a high confidence

*% in the results,

do show a relatively small variability for so few runs.

% It should be pointed out that some of the performance irregularities of
the last 260 inch SL-3 motor firing might include failure modes asso-
ciated with some of these exclusions.

*%* Note that these data which represent maximum stress strain data, have
standard deviations of from 10% to about 30% of the means. Only because
the capability is so much greater does this data appear reasonable. From
the few runs made, even if the data is representative of one of the ''tails"
of a distribution curve, our estimate is that RHC analysis would still
yield useful results.
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Table 1.18 . Propellant Stress Data

for Failure Modes 7 through 11.

Coefficient
of
Variation Standard
Requirement Capability Average [y Deviation,
Parameter Parameter Value X (o)
Inner Bore Strain, Critical Storage . 242 .153 .037
in/in Strain
Radial Bond Stress, Tensile Strength 18.3 . 097 .018
psi
Tensile Strength 18.3 . 097 . 018

Propellant Principle
Stress, psi
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Table I.19. Summary of AGC Computer Output, Showing Maximum
Stress and Strain Requirements For Eight Flight and
Eight Storage Simulation Runs

_ Propellant Flight Conditions

Max Inner Bore Hoop Strain Max Bond Shear Stress
Run No. in/in Section Location 1b/in2 Section Location
1 . 0747 31 24.5 32
2 .0770% 9 28.. 4% 32
3 . 0746 9 34.0 32
4 .0743 9 25.3 36
5 . 0746 ' 9 24.7 30
6 .0667 26 31.8 36
7 .0731 9 29.17 37
8 . 0845 9 52.8 39
% = .0749 (=R )" % = 30.62 (= ok
x = .0749 (= Rll) X = . (=Ry5)
O = .00489 in/in O = 9.521bs/in®
I = .o6s5 2= 3
% b4
Propellant Storage Conditions
Max Inner Bore Max Radial Max Propellant
Hoop Strain Bond Stress Principle Stress
Run No. in/in Section Loc. | 1b/in? Section Loc. | 1b/in? Section Loc.
1 . 0354 18 2.26 2 5.16 2
2 .0354% 18 + 19 2.35% 2 5.26% 2
3 . 0356 13 2,34 2 5.29 2
4 . 0353 21 2.14 2 4.93 2
5 . 0361 16 2.89 2 6.25 2
6 . 0362 14 2,34 2 5.24 2
7 . 0363 17 2.58 2 5.67 2
8 . 0457 14 2.88 2 6.26 2
X =.0370(=R7)** X = 2.47(=Rg) ** X = 5.51(= R9) ke
o =.00374 O = 0.2821bs/in® | ¢ = 0.604 Ibs/in®
2 - .101 Z - 114 2 - .09l
x X X

* Note max values in sample Table L 17.
**% The X values are also the requirement average values.
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It should also be pointed out that, the x values are also the Require-

ments: R7, R8’ R9, RlO’ and Rll' The following list the relationship

for R and C parameters, as given by AGC:

Measurement of Measurement of
Requirement Parameters for Corresponding Capability Parameters
Storage Condition: for Storage Conditions:

® Inner-bore Hoop Strain, in/in ® Measured Critical Storage Strain, in/in

2
® Radial Bond Stress, lbs/in ® Measured Tensile Strength, lb/inz
® Propellant Principal Stress, ® Measured Tensile Strength, 1b/in2
1bs/in2
Measurement of Measurement of
Requirement for Corresponding Capability Parameters
Firing and Flight Conditions: for Firing and Flight Conditons:
2
® Bond Shear Stress, lbs/in ® Measured Shear Stress Under

Pressure, 1b/in?

® Inner-bore Hoop Strain, in/in ® Measured Critical Firing Strain, in/in

Capability Distribution. Data relative to propellant capability is given in
Figures I.1 and 1.2, and those relating propellant modulus to critical firing
strain and shear strength are used in determining the capability for flight
failure modes for each section of the motor. WNo such correlation is assumed
to exist for storage failure modes. Therefore, the capability to resist
storage inner bore strain, radial bond stress, and propellant principle
stress is considered normally distributed in accordance with the param-

eter distribution data shown in Table I. 20,

A summary of AGC capability data is shown in Table I.21. These data
are obtained from Figures I.3 through I. 6. Appendix II discusses how this
data is used.

I-58



CRITICAL FIRING STRAIN PERCENT
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Figure 1.1
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MAXIMUM SHEAR STRESS, PSI
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0 | I
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Figure 1.2
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UNIAXIAL CONSTANT STRAINT, PERCENT
(DIVIDE BY 1.2 TO GET BIAXIAL CONSTANT STRAIN)
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Figure |.3
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UNIAXIAL TENSILE STRENGTH, (Ib/in)
(DIVIDE BY 1.2 TO GET BIAXIAL TENSILE STRENGTH)
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Bond Tensile Strength vs Modulus of Elasticity
for ANB-3254 Propellant From 260-SL-3.

Figure 1.4
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Table I. 20, Summary of Capability Parameter Data for FM-7 through FM-11,

Average

Storage Conditions Value, x

Critical storage strain, (C;) 242
in/in.

Tensile strength, (C8, C9) 18.3
psi

Firing Conditions

Inter-face shear strength, 418
(Clo) psi

Critical firing strain, (Cyj) .44
in/in.

* eg: .0392 = (,24 2) (.162)

Coefficient of

Source of Variation

Average Standard o Source of

Value Deviation X Standard Deviation
Extrapolated strain , 0392 . 162 ¢ assumed to be
at which 50% of same as 260-SL-1
ANB-3254 samples ‘data (Figure 1. 3)
from 260-SL-3
would fail,
(Figure I. 3)
Value corresponds- 2. 84 . 155 g— from same 260~
to modulus of 60 * SL-3 and data
extrapolated from used in Figure I. 4.
tensile stress vs : '
modulus data for
28 batches of ANB
-3254 from 260-SL
-3 (Figure I 4)
Value corresponding 39.2 . 094 Se,, from correlation
to modulus of 1000 between modulus and
1b/in from graph of shear strength for
shear strength vs one batch of ANB-
modulus based on one 3254 (Figure L 5)
batch of ANB-3254
(Figure I, 5)
Value corresponding .06 74 . 153 Se,, from correlation

to modulus of 1000
1b/in2 from graph
of strain vs modulus

single batch of ANB-
3254 (Figure 1. 6)

between modulus and
maximum strain for
one katch of ANB-

3254



Table I. 21. Propellant and Case Input Parameters Varied
by AGC in Grain Design Computer Simulation Runs.

_ Parameter x a c/x
Propellant Modulus-Storage, psi 60 4.67 .078
(3 year relaxation 60°to 100°F)
Propellant Modulus-Storage, psi 1000 59.3 . 138
(Initial)
Propellant Density, 1b/in.3 0.06330 0.0000147 . 000231
Propellant Linear Coefficient of 5.4x 10_5 0.00132x 10'-5 . 00231
Thermal Expansion in/in °F
. . -6 -6

Case Coefficient of Thermal 5.6x10 0.014x10 . 0025
Expansion
Case Modulus of Elasticity, E.
(200 grade marage steel), psi 27,500, 000 -— —
Case Thickness-Fwd and Aft Heads, 0.428 0.00482 L0115

in.
Case Thickness-Cyl Section, in. 0.631 0.0118 .0187
Initial Chamber Pressure- 700 10 . 0143
Fwd End* psi.
Initial Chamber Pressure- 530 7.6 .0143

Aft End* psi.

* Varies Linearly between fwd and aft end
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Failure Mode 12. Data, Insulation/Motor Case
Interface Bond Maximum Shear
Stress, Flight Condition

The requirement distribution is the calculated maximum shear stress
at the chamber wall for a 2. 0 g maximum launch acceleration. It was
assumed that the Insulation/Motor case interface maximum bond shear
stress can be conservatively approximated by the maximum bond shear
stress of the propellant. Thus from the 8 computer simulation runs
made (as discussed in FM's 7-11), from Table I.19, the mean value
for the bond shear stress is 30. 62 psi and the standard deviation is
9. 52 psi. Although the sample size is small, the standard deviation
based upon this sample data is probably conservatively high—the 52. 8 psi
obtained in the 8th run appears to be abnormally large.

For the Capability distribution, no data was available for the distri-
bution of the shear strength of V44/Epon 948/Steel Bond. However,
engineering judgment indicates that the data given in Table 1. 22 for
shear strength of V45/SC 48:68 Epoxy Anhydride/Glass could be used
as a conservative estimate.

Failure Modes 13 and 14. Data, Propellant Auto Ignition
due to Static Discharge; and
Auto Ignition due to Self Heating.

The data for these failure modes is discussed in AGC report NAS 7-572,
Progress Report 6. Because of the extremely low probability of failure
based on the limitations of data, the following AGC summary is given:

PROPELLANT AUTOIGNITION DUE TO STATIC DISCHARGE

Summary for distribution, R and C. Autoignition of a 260-in. ~diameter
motor propellant grain because of a static electrical discharge is considered
to be unlikely because of the normally followed safety precautions and the
large amount of energy required to ignite the grain, The requirement (in
Joules) is assumed to be the single point value fixed by the U.S. Bureau

of Mines as being '""a reasonable value under not too extreme conditions. "
The capability distribution of the propellant is derived from ignition
threshold tests.

The AGC report yielded the following data: R13 = .013 Joules
_ max
charge energy, with O‘R =0 and C13 = 12.8 Joules charge energy,
13
with °c = .188 Joules.
13
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Table I. 22. Distribution of Bond Strength of
V45/SC 58:68 Epoxy-Anhydride/Glass

Bond Shear
Specimen Strength, @ 77°9F, psi

9 373
10 356
11 490
12 402
13 316
14 435
15 328
16 303

x = 375

o = 64.13

> = .170
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PROPELLANT AUTOIGNITION DUE TO AMBIENT AIR TEMPERATURE

Requirement Distribution. The requirement is established as a single
maximum value specified by the procuring activity. In the case of the
260-in. -diameter motor, this has been set at 100°F for the ambient air

at the surface of the propellant grain. With some propellants, the tem-
perature at the interior of the grain may be more than this because of
propellant self-heating. For ANB-3105 in an 87.5-in. web, the estimated
temperature rise is of a 0. 1°F order of magnitude and can be overlooked.

Capability Distribution. The capability of ANB-3105 to resist autoignition
is determined by heating small propellant samples until they ignite. A
value of 480°F was established for the ANB-3105 propellant. As is ordi-
narily the case where the capability is far in excess of the requirement,
there is usually little effort made to determine a variability for the capa-
bility parameter. A limited amount of data for a similar propellant
(ANB-3066) indicated a % value of .0094. Since this represented only

a single batch of propellant, it is recommended that a % value of .02

be used instead. This assumption is based on engineering judgment and
reflects experience with the batch-to-batch variability of other propellant
parameters.

The AGC report yielded the following data:

_ o . .
Rl4 = 100.1°F, with OR 0

max 14
and

586°F, with o = 5.5°F.
14

Q
1

14
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APPENDIX II

DETAILS OF APPLICATION OF
LARGE SOLID ROCKET MOTOR



Introduction

This appendix contains the details of the analysis and results that
were summarized in Section 5 of this report. It is based upon the
ground rules, data and rationale set up by AGC as given in Appendix I
of this report. Computer programs and sample printouts are shown in
the appendices which follow. A description of variability and sensitivity
is also given in this appendix. This is followed by a discussion of the
R| |C analyses for the fourteen failure modes.

Disc_l}_ss'ionrof Variability and Sensitivity Analysis

Standard Deviations, g

It is appropriate to include a brief comment on the manner in
which variances are computed and used in this report. The basic
formulas are as follows. Consider a set of n observa.ion of a variable,
say xXj, X3, ..., X, . (These n values are in effect what we have called
"batch data'’). The sample mean is iz

Z (1)

and the sample variance is i=
1
;X’m- (2)

The sample standard deviation is s, the positive square root of the var-
iance. Denote the unknown population variance by 6%, © being the
population standard deviation. An unbiased estimate of o2, denoted by
62, computed from the sample 1s

§=L—Zm-§ (3)
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Coefficient of Variation, cv

The coefficient of variation* is defined as the ratio of the standard
deviation to the mean. In this case, we can speak of two such ratios
based on computations from the n observations, namely

”~
and %
b-s

¥ijw

We can describe s/x as the coefficient of variation of the sample and
G/x as an estimate of the coefficient of variation of the population.

Following a regrettably all too common practice, both TEMPO
and AGC have used an inexact notation—we have used g to mean s some-
times and to mean § at others. This means that throughout this report,
o represents our estimate of the population standard deviation which
may be either s or 5. Of course there is little difference between s and
& for large n and we have regularly used the preferred one, 5, where
n is small. In the subsequent discussion, we will use this ¢ notation.

AGC has indicated that their data and their engineering analysis
leads them to believe that the coefficient of variation is a key parameter
and that it tends to remain constant over a rather wide range of designs.
In other words, they can extrapolate coefficients of variation without
adjustment—the scaling factor is nearly unity. This is an engineering
property and not a statistical characteristic of o/% so at this point we
can make no comment as to the validity of the AGC belief.

It often happens that various data sources yield a variety of
estimates of g/x. As an example, one might observe a design char-
acteristic for each of a number of different motors. AGC has chosen
to combine these estimates of g/x by computing their arithmetic mean.
Perhaps they consider that this is an appropriate method in view of
their belief in the constancy of the coefficient of variation. We are not
prepared to take issue with this method on theoretical statistical
grounds. It should be noted, however, that it is an unusual procedure.

>I|< - - - L3
AGC frequently obtains an estimate of a standard deviation for a new

parameter of interest, by multiplying estimates of the mean value of
the parameter of interest (e.g., 260/S IV.B), by the coefficient of var-
iation based on similar systems data. Thus

o = Estd cv (4)
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Variability Factor, Vf

The factor V; is used to test the sensitivities of the failure prob-
abilities to the values of the standard deviations of the input parameters.
This was accoimplished.by multiplying the unadjusted standard deviation
of the parameter, ¢, by a variability factor Vg

o= vf Ostd (5)

where
> 0.

Vf
If Ve > 1, we are analyzing the effect of increased parameter variability
on the failure probability—an increase is expected. If V¢<1, we would
anticipate a decrease in the failure probability. Sensitivity analysis
thus provides an indication of the motor characteristics which can be
adjusted through design changes or modifications in production methods
to effect desired changes in reliability.

Detailed Analysis of the Failure Modes

The fourteen failure modes discussed herein were selected for
analysis according to the provisions of the contract work statement
given in Section 2, Study Objectives. The first six failure modes are in
general those itemized under Task VIII, with some changes as suggested
by AGC. They wished to cover the aft closure and bolt failure modes
(numbers 5 and 6) instead of the forward areas because better design
data was available.

Failure modes 7 through 11 were propellant stress failure modes.
Failure mode 12 covered the interface bond stress of case and in-
sulation, and the final two, 13 and 14, dealt with auto ignition failures.

In order to gain further insight into the rocket motor failures,
special analyses were made in some cases of the fourteen listed
failure modes. Parameter variability is based upon the AGC data
and rationale shown in Appendix I. AGC has determined that as a good
preliminary approximation, for this study, all parameters will be
assumed normally distributed. The reader is reminded, however, that
the R||C analysis works equally well if the data is used as any other
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closed form or if discrete sets of data are used. A discussion of the
failure modes follows.

Failure Mode 1. Hoop Stress Case Rupture Failure Mode

la) Rupture with 904 of welds by machine 40" Fwd
of equator, station 3.

1b) Rupture with 104 of welds by hand. 40'" Fwd. of
equator, station 3.

For purposes of this analysis, motor station 3, Figure 1,
Section 5, was selected by AGC as being the critical one to consider.
Since the analysis is made before fabrication it is not known exactly
where hand welds will occur and hence AGC had to provide this
selection. Past experience by AGC shows, however, that about 104 of
the welds will have detectable flaws that must be reworked by hand
welding. AGC data shows that the hand welds tend to be weaker and
have more strength variability then those done by machine. For this
analysis, we assumed that 904 of the welds would be by machine and
the 104 remaining by hand. It was further assumed that these propor-
tions would hold throughout the motor case. The critical region of the
motor case, section 3, is a logical choice since it is where the trans-
formation of a thin walled spherical region joins the thicker walled
cylindrical section of the motor.

1. Requirement Function. The basic engineering equation was
described in Appendix I. To fit the Rl ‘C analysis format better, both
sides of the requirement equation are multiplied by Ry/tc , giving

'rrkAt
R W r R K e
R - _Smax o _ _p b o 'm/a (6)
1 t C A bt
c w ot c
where
m = propellant temperature sensitivity coefficient,
k
#/°F

At = ambient temperature difference between

nominal and an upper specified limit prior
to motor firing, OF.
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w = propellant weight, 1b.

p
b = nominal web thickness, in.
K = the ratio of peak to average web time
m/a
pressure. (ND)
™, At
The factor e was put in to allow for estimating the maximum

chamber pressure at the specified upper limit. wy is a random var-
iable but At is a single valued or fixed (maximum) design limit.

The factor Ky, /a is the ratio of the design maximum pressure to
the design average web pressure. The variability of this factor, ob-
served from data on other motor programs, was used to reflect the
effects of burning surface variability due to non-homogeneous burning,
propellant linear separations, voids, etc. AGC values are tabulated in
Table II. 1.

2. Capability Function. The capability of the case to withstand the
stresses imposed can be divided into two parts. The first part consists
of those stresses that are the result of the machine welds, which is
assumed to constitute 904 of all the case welds. The second part con-
sists of the remaining 104 which are hand welds. To fit the R||C
analysis format, both sides of the equation are multiplied by R,/tc and
the resulting capability equations become

o
Clrn— t - Sumw Kbe Kbx (7)

for the machine welds and
C1h = Suhw Kbe Kbx (8)
for the hand welds. *

The R| lC equation for failure mode 1, for the probability of
failure is :

PlF]} = P{(C; - R|) <0} (9)

The subscript designation is m for machine and h for hand welds.
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which becomes, for 904 welds:

Pm[F]lm = P{clm - R;) < 0}; (10)
and for 104 of the welds:

P [F];, = P{(Clh - R;) <0} ; (11)

and for 1004 of the welds:

P[F], = .9Pm[F]lm+ .1Ph_[}.-“]lh (12)
Finally, using Equations 6 through 12, we obtain
™ A
WprbRoKm/ae kit
Pl:F]l = - 9{Prn[KbeKbeurnW B CwAg b te ]5- 0} +
m™ A
w rbRoKm/ae kit
.1{P,[K, K, S o 1< 0} (13)

h" " be bx uhw C Abt
w t C

The machine and hand weld portions shown in Equation 13 were calcu-
lated in separate computer runs.

The program used for failure mode one, RELFMlI1, is given as an
example in Appendix V. Sample runs are shown for FM1  for the
standard case (Vg = 1 for all parameters), and for FMIlh for case 2
(Vg = 4 for the standard deviation of the parameter Syhw). Over 30
computer runs were made for this failure mode to cover the standard
case and the sensitivity analysis.

Table II. 2 summarizes the results of the solution to Equations
10 and 11. Based on the data supplied by AGC, the standard computer
runs were made for the 904 and 104 cases. For the 904 case, only
when the value for one standard deviation for S, . is increased from
2516. 6 psi to 20, 132. 8 psi (Vg = 8) does the probability of failure in-
crease from virtually zero to .00007567 (Vg = 1 for all other parameters).
From the table, the critical ranking of the parameters was obtained,
and is: S y S , T, Kk and K . The remaining parameters
are relativgi‘;;vinslélrrfls?tivebto iggreasesng{lavariability. If more detailed
sets of computer runs were to be made such as using other weld ratios
(namely, 80/20 or 95/05 etc.) the remaining insensitive parameters At’
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Table II.1.

Summary Data for Failure Mode-1

Mean Value Parameter
Symbol Parameter Description © = v Standard
Deviation
S mw Ultimate weld strength,
v psi. — Machine weld 232, 000 2516. 6
S — Hand weld 199, 000 8641
uhw
K‘b Bending/discontinuity . 95845 . 00693
e factor, (ND)
Kbx Biaxial Gain Factor, 1.106 .0312
(ND)
Wp Propellant weight, 1b. 3,400, 000 6120
Cw Mass flow coefficient . 0062477 . 0000190
sec”
T Propellant burn rate, . 606 .00818
in/sec.
At Average Throat area, 6355 20.9
in.
K Ratio of Avg to peak 1.18 . 008968
m/a
chamber pressure
(ND)
b Web thickness propel- 85 .17
lant, in.
R0 External motor radius, 130.631 . 0261
in.
tc Case wall thickness, in. .6392 . 0095
T Temperature sensi- .16 . 00676
tivity, 4/°F.
At Maximum temperature 20 ---

differentce, °F .

II-7




Table IL. 2. Summary of Results of Computer
Runs for Failure Mode-1

RUN | Variable x \'2 o Vg PIFlim, 11
FOR MACHINE WELDS (904)
Std. * % % * <<. 000 00O
1 Sumw 232, 000 4 10, 066.4 <. 000 000
2 Sumw 232, 000 8 20,132.8 | .o000 075
3 b . 606 4 . 03272 <<, 000 000
4 rh . 606 8 . 06544 . 000 009
5 Kpe . 95845 ~5 .03 <<. 000 000
6 Kpe . 95845 ~10 . 06 . 000 000
7 Km/a 1.18 5 . 04485 <<. 000 000
8 Km/a 1.18 ~10 .1 .000 000
9 ¢ 6355 ~5 100 <<. 000 000
10 te . 6392 ~2 .01 <<. 000 000
11 Cw . 0062477 5 . 000095 <<. 000 000
12 Wp 3,400,000 3 18, 360 <<. 000 000
13 Ry 130. 631 ~5 .125 <<. 000 000
14 T .16 ~3 . 0002 <<. 000 000
15 b 85 ~50 8.5 <<. 000 000
FOR HAND WELDS (104)
Std. * * * * . 000 000
1 Suhw 199, 333 2 17,282 .002 283
2 Suhw 199, 333 4 34, 564 . 049 484
3 rh . 606 2 . 01636 .000 012
4 rh . 606 4 . 03272 . 000 219
5 Kpe . 95845 5 . 03465 . 000 050
6 Kpe . 95845 ~10 . 06 . 001 684
7 Km/a 1.18 5 . 04485 . 000 006
8 Km/a 1.18 ~10 .1 . 001 145

01
01
67
01
47
01
13
01
04
01
01
01
01
01
01
01

81
40
70
04
25
83
02
19
91

V¢, the variability factor, is varied for one parameter at a time.

For the standard run, V¢ = 1 for all parameters.
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Table II. 3. Summary of R||C Analyses

for Failure Mode-1

S

Variability ek
Parameter Factor o Vio PLS]
Vv
f
Standard run¥* % %* >,999999
i Mémmw 4 2516. 6 10, 066
v . 999772
S 2 8641. 17,282
| _uhw ’
S mw 8 2616.6 20,132
v . 994983
S 4 8641, 34,564
rb 4 . 00361 . 01444 . 999781
Kbe 5 . 00693 . 03465 . 999995
Kbe 10 . 00693 . 0693 . 999832
K 5 . 00897 . 04485 . 999999
mfa
10 . 00897 . 0897 . 999885
m/a

The standard run uses the unajusted data supplied by AGC for all

parameters and, consequently, the variability factor is unity.

The P[S] is obtained by combining the data of Table II. 2 for 904 and
104 welds, using Equation 13; and noting that P[S] = 1 - P[F].
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C , W, R, wm andb could be treated as constants to greatly re-
d‘t:Jce compgter %1me, and determine the sensitivity of ratio of machine
welds to hand welds.

It can be seen from Table II. 2 and II. 3 that, as the variability
factor (V) increases, the probability of failure increases significantly.
The most significant of these increases in probability of failure are a
result of the welds made by hand techniques.

Table II. 3 summarizes the results of some of the combinations
of the Table II. 2 run results for 904 machine and 104 hand welds. We
note that for the standard run (Vg = 1 for all parameters) the relia-
bility is in excess of .999999. An illustration of a somewhat critical
case for the present design of the 260/S IV B welds arises if the Vy is
as great as 8 for machine welds and 4 for hand welds. This is shown
by the third calculation in Table II. 3 with a value of P[S] equal to
.994983. The table considers variability factors for one parameter at
a time except for the second and third calculations. The '"90/10"
ratio of welds should be investigated further and also the variability of
Suhw: Sumws b - Possibly Kpe and Km/a should also be investigated
to check if these in fact have significant influence for realistic values
of V¢'s.

Failure Mode 2. Motor Case Insulation Burn Through Failure Mode

2a) Burn-through of the insulation to case wall at stations
with propellant.

2b) Burn-through of the insulation to case wall at
stations that have no propellant,

Many motor stations are being considered in studying this failure
mode since it is not obvious which is critical—for purposes of this
analysis, AGC suggested that we examine stations 1, 2, 4, 5, 6, 7 and
12 as are shown in Figure 1, Section 5.

Transfer Function. Four basic parameters enter in the transfer
functions for this failure mode. These four parameters are as
follows.

b = nominal propellant web thickness, in.

r = propellant burning rates, in. per second.
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t.
1

insulation thickness, in.

e

r insulation erosion rate, in. per second,

The capability transfer function, C, is (b/ ry + ti/er). This function
represents the total time it takes to burn through the propellant and
insulation at any motor station.

The requirement transfer function, R, is b'/r!b . This function
represents the time it takes to burn through the propellant to the in-
sulation at that motor station, where the propellant web thickness, b',
divided by the propellant burning rate, r{ , is greatest. The resulting
transfer function for FMZ2 becomes

(C - R)2 = (b/rb + ti/er) - b'/ri) (14)

The requirement term involving primed parameters occurs at station
4—it is compared to the capability function at each motor station using
the equation

t
_ b o, 4 b
Plsl,= 1-P [(rb o rb,)io] (15)

Parameter Variability. The analysis for FM2, follows.

Propellant Burning Rate, rj. The burning rate variability is
estimated from the coefficient of variation based on LSBR batch mix
data for 260-SI1.-1 and 260-S1.-2 motors. Table II. 4 lists the burning
rate data from which the coefficient of variation for the propellant burn-
ing rate is estimated at 0. 00595 for the 260/S IV-B motor. Using the
propellant burning rate as 0. 606 in/sec at motor stations 2, 5, 6 and 7,
and 0. 590 in/sec at motor station 4, we can estimate the respective
standard deviations for the propellant burning rates as follows:

At Motor stations 2, 5, 6 and 7

Octq = 0.00595 (0.606) = 0.00361

At motor station 4

Ogpq= 0-00595 (0.590) = 0.00351
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Propellant Web Thickness, b. AGC assumed the coefficient of
variation is .002 and constant throughout the propellant. This then
resulted in the values for one standard deviation* at the various motor
stations and summarized in Table II.4.

Insulation Thickness, t;. The insulation thickness variability is
estimated by AGC to be + 0.010 inches for + 3¢ in the thin section of
the motor (stations 4 and 5, where t; = 0. 110 inches), and + 0.050
inches for + 3¢ in the remainder of the motor.

At motor stations 4 and 5

0.01
Ogeqa™ ~ 3 = 0.0033

At motor stations 1, 2, 6, 7 and 12

0. 05
Ogtd~ 3 = 0.01667

Table IL 5 shows this data as it will be used in the R||C analysis.
For the first set of data, standard runs will use the above data with
the nominal design values for t; . The second set of values are used in
the sensitivity analysis, where insulation thicknesses were doubled in
the thin sections (stations 4 and 5) and increased by a factor that was
less than double in the thicker sections. The results of this analysis
are discussed in Section 5 of the report.

Insulation Erosion Rate, e.. The insulation erosion rate varia-
bility is estimated from the coefficient of variations based on Polaris
and Minuteman (MM) data since these also use V-44 type Silica
Asbestos insulation on the motor case. AGC suggested that the MM
data may be used in the cylindrical sections of the motor as a prelimin-
ary estimate, but they feel that the high variability of the data may lead
to an over conservative analysis. Polaris data is to be used in the
remaining sections of the motor. Table II. 5 of Appendix I lists dis-
tribution data for 11 Polaris motor stations and are assumed by AGC
to be comparable to the hemispherical ends of the 260/S IV-B motor.
Table II. 6 lists the MM data estimated by AGC as conservatively com-
parable to the thin wall section of the 260/S IV-B, at motor station 5.

The assumption of a normal distribution for the propellant web thick-
ness, b, is based upon a homogeneous propellaht not having voids,
cracks, laps, folds, etc. This assumption appears to be less realistic
than some others. A more reasonable one would consider a skewed
distribution.
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Table II. 4., Variability Data for Propellant Web Thickness,
Parameter b

Motor Station Ostd )

2 0. 049

4 0.175

5 0.170

6 0.1437

7 0.1411

1 (no propellant)
2 {(no propellant)

Notes: Based on AGC judgment it is assumed that
the coefficient of variation , 0/x = 0.002,
is constant for the entire propellant grain.
(AGC report 0815-81F on 260 SL1 and
260 SL.2 motors.)
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Table II. 5., Variability Data for Insulation Thickness
Parameter, 'ci
Motor Standard Runs Sensitivity Runs
i o .

Station ti std Run No 1:i Ostd Run No.
1 1.125 | 0. 01667 1 (not rlquired) --
2 1.125] 0. 01667 2 (not rpquired) --
4 0.110] 0. 00333 (a11)™ (not apply)'* -
5 0.110} 0.00333 3,5 0.220 0. 005 4
6 0.2501 0. 01667 6 0.375 0. 025 7

0.500 0. 025 8
7 0.430 ] 0.01667 9 J0.516 0. 025 10
0. 645 0. 025 11
12 3.60 0.01667 12 4,32 0.025 13
5.4 0. 025 14

ats
-~
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Thus, from the Polaris data, the coefficient of variation is
estimated as being the '"average!' * of the 11 station maximums.
Using a computer program to compute the means, standard devia-
tions, and coefficient of variations for ""batch'' data, values obtained
for ¥ and cv are calculated and summarized in Table II.6. Thus:

cv = 0.16310=cv

POL 260/S IV—B; at stations 1, 2, 6, 7 and 12.

Table II. 6. Summary of Polaris Data

o

Station Mean, x cv,§
26 . 368333 .123837
27 . 366250 .120264
28 . 341667 .123079
29 . 328750 .151663
30 . 328750 .157890
31 .318750 .140394
32 .283333 .143245
33 .272917 .194025
34 .248333 . 214555
35 .214583 .239135
36 .197083 . 184974

CVPOL = 0.16310

Similarly, for Minuteman data based on 20 motor firings and
shown in Table I.6 of Appendix I the coefficient of variation was cal-
culated, to be

= 0.51714
CVMM 0.517
and this was used as the cv for stations 4 and 5. Thus, the estimates
of the standard deviations for the insulation erosion to be used in this
analysis for 260/S IV-B are as follows.

This is an engineering judgement rather than a statistical one. See
beginning of this appendix for comments on coefficients of variations.
(If the total population of 264 X maximum values were averaged, the

total mean would have been . 297159 and CVy6a = - 245477).

II-15



At motor stations 1 and 2 (cv = .16310)

Ogta >~ Vpor ®r ° 0.16310 (0.003) = 0.0004893

At motor station 5 (cv = 0.51714)

Ogta = VM Sr C 0.51714 (0.005) = 0.002586

At motor station 6 (cv = 0.16310)

= = .1 1 . = .
Oatd CVPOL er 0.16310 (0. 005) 0.000816

At motor station 7 (cv = 0.16310)
0.16310 (0.006) = 0.000979

Ostda = “VpoL ®r

0.16310)
0.16310 (0.0168) = 0.002740

At motor station 12 (cv

Osta - “VeoL °r

Results of Failure Mode 2 Analysis. The parameters, standard devia-
tions and summary of results are tabulated in Table II. 7. Fourteen
computer runs were made, including six standard runs for the six
motor stations. This resulted in critical values of . 862888 at station
6; .953370 at station 12; .983907 at station 5; and ., 988810 at station 7.
The sensitivity analysis showed that by increasing the insulation thick-
ness at these stations reliability values greater than . 999999 resulted,
except for station 5 where even for an increase of from . 110 to . 220
inches (cylindrical region) the P[S] was only . 999988. This represents
the conservative AGC estimate based on MM variability data for the
erosion rate of the insulation. It was noted that if Polaris variability
data were used instead of the MM data in the cylindrical region of the
motor, this would effectively amount to a V¢ value of . 316 on the stan-
dard deviation. Thus, for the thin wall region; t; = .110, and this
would have increased P[S] at station 6 from .86288 to . 998. This is
still too low, but coupled with increased insulation thickness, the P[S]
will exceed . 999999 at this critical station. A major effort may be
required to accomplish this gain. If further analysis indicates that the
MM data is in fact about the ''best estimate' of g, then the only course
open is to increase the insulation thickness about 1204 at station 5,
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Table II. 7. Summary for Failure Mode FM-2; Motor Insulation Burn-Through.
| [ M (2} R EQUIREMENT [Station 4]
| CAPABILITY REQU ation o
i l Web, b, ' Burn Rate, ry Ins. Thick., Eros. Rate, e, Web, b, Burn Rate, LI }
! ' ins (ins/sec) s ins (in/sec.} ins {in/sec.) i ;
i 1
. Computer ' Motor Variability _ _ ! - _ _ I . P[]
Run Station | Sensitivity X g X g | X o X o | X g X o 2 ‘
* * ' i ; ;
1 1 | Standard Run No Propellant i l 1. 125! 16670 .003 .000489, 87.5| .175 .59| .00351 ;l > .999 999
! | i ! !l I
o2 2 | Standard Run 24.5  .049 .606 ' .00361) " " " " Lo " " " b>.999 999
: . . : !
i N i ! : i \
©3 5 | Standard Run 85 t.170 in { 0.110. .0033 | .005  .002586; ' | ' o | .983907 !
' é ; : | ‘ \ \
o4 5 . Double Insulatiord " n : 1 0,220 .005 | " T v .999 988 |
| ‘ (3) i ; | : : fﬂ ; | !
| 5 5 i Decr. V. for exj " | » " | f0.110° ,0033] " .0008l6y ;oM " ! " .998 001
i | s , , .
6 6 ' Standard Run 71.85 i.1437 " " | 0.25 .oles7 " " " N 1 .86z 888
' !
I
7 6 : 50% Incr. Insul. n n n 1 : 0.375 025 " ARTI ! i " 1" n i _993 235
i I ' ; i
8 6 ; Double Insul. " \ " " |! 0.50 .025 | " " noow ” 1> .999 999
t .
9 7 . Standard Run 70.57 |.1411 it o " 0.43 .0l667 .006 .000979] v i n o " .988 810
+ ' . 1
[ H !
10 7 ! Incr. Insul. 20% [ " " [t it 0.516 .025 | " " A L " .995 213
. ; |
11 7 Incr. Insul. 50% ) " n v il 0.645 .025 " " g " " >.999 999
‘ H 1
12 12 , Standard Run No Propellant i i 3.6 . .0l667 .0168 .00274 | " ' " " .953 370
| i t
i | |
13 lz { Incr.Insul 50% No Propellant 4,32 ".025 ; " " oo " " .983 565
: i - :
14 12 Incr. Insul 50% No Propellant i 5.4 " | " " " o " " >.999 999
| | | |

@) R = b .

(3) Vf >~ 1/3; POLARIS Standard deviation

M C= (/r, + tle,

).

used at this station instead of MM standard deviation.
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Failure Mode 3. Failure of the Forward Motor Skirt
Forging in Combined Compression, Shear,
and Bending.

This failure mode involves consideration of the interaction ratios
of axial compression, transverse shear and pure bending load re-
quirements to their respective material capabilities. The mode is
associated with only one region of the motor case, namely the forward
motor skirt forging. The engineering data and rationale to be used for
analysis will be found in Appendix I.

The transfer function for this failure mode was given in Equation
6 of Appendix I. It was transformed into R||C form as follows.

3

P[F]3= P [(Rc+ W/Rb3+ RS3)31.000 ] (16)

By expanding the interaction transfer function, and by substitution we
have for the 260/SIV-B motor, in RI |C form, the following:

3

L, L, 3 L_ 3
PIFl;= PO | ZmmrrE ¥ ) )+ R xE)
is c s TR, t K E is s s
i s b s
> 1.000 . (17)
where
LC = Axial compressure load, 1b.
Lb = Pure bending load, 1b.
Ls = Transverse shear load, lb.
Ri = Radius to inner surface of skirt, in.
ts = Thickness of skirt, in.
ES = Modules of elasticity, psi
Kc = Ratio of axial compressure strength to Modulus

of Elasticity.
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K = Ratio of pure bending strength to Modulus
of Elasticity.

K = Ratio of transverse shear strength to Modulus
of Elasticity.

A summary of the averages and standard deviations character-
izing the distribution of these parameters is shown in Table I. 7 of
Appendix I. Based on this data, the computations indicated that the
probability of failure was very remote. Hence, with P[S]3 >.999 999
no sensitivity analysis was made for this failure mode.

Failure Mode 4. Meridional Stress Case
Rupture Failure Mode:

4a) Rupture with 904 of welds machine welded, Fwd head
circumferential weld, Meridional stress, spherical
section.

4b) Rupture with 104 of welds, hand welded. Fwd
head circumferential weld, Meridional stress,
spherical section.

The general analysis for this failure mode is similar to Failure
Mode 1. However, because of the spherical shape in the forward
region of the motor, the pressure capacity it twice as great for the
same thickness of material. In practice, the hemispherical motor ends
are made thicker than half that of the cylindrical sections; hence, this
region tends to be much less critical, all things being equal (weld
strengths, etc.).

The Requirement is the same, so Equation 3 is used.
Hence,

The Capability, again as with FM-1, is assumed to
have 904 of welds machine welded, and 104 hand welded.
Because of the spherical shape, there is no Kpx, bi-
axial gain factor. Hence the capability for 904 of the
welds becomes
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P R

mw 0
C4m_ Ztc - Sumwae . (19)

and for 104 of the welds

P, R
_ hw 0 _
c4h - ZtC - Suthbe (20)

In similar fashion to FM-1, these reduce to

_ m, At
Wprme/ae k
= . - <
PIFly =9 (B | KyoSumw 2C_A bt_ S
kat (21)
[ WonK e
.1 - <
Ph Kbesuhw 2C A bt — 0

L w t ¢

Computations for machine and hand welds were made separately.
Data and rationale appear in-Appendix I for FM-4. Table 1.9 of
Appendix I summarizes the data for the runs which were made. The
plate thickness parameter, t., uses the thinner plate (mean of . 428)
together with its associated standard deviation. The standard runs
yielded the following results.

P[S], = 1 - [.9(<.000 001)+ .1 (<.000001)] = >.999 999.

Since this failure mode has a considerably lower criticality
than FM-1, no sensitivity analysis was made.

Failure Mode 5. Rupture of the Nozzle Joint Bolts

The requirement Equation 11 was given in Appendix I. The term
Pcmax is contained within that expression, but Pcmax is also a function
of several other variables, which also appear in FM-1 as:

ki3
w rme/ae KAt
= B (22)

Pcrnax C Ab
w t

Substituting (22) in the R; function and using Equation 23

P[F]5 = P[C5 - R, < 0] (23)
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e
we can write the probability of failure for this failure mode as

'rrkAt
5.6912(tan o)A, . W r. K, e
ti p b m/a
P[F] =PJ\P -lkKF + - _
5 \ y p by nD, C A D
51.534(tan o)dA, . P \ (24)
o ti a < 0

J

Equation 24 could have been simplified by factoring, so that the
Pcmax terms transfer function would match those of FM-~1., This
would be better if we were considering correlated parameters of dif-
ferent failure modes and if all the terms were variables. In this
analysis, however, since many of the variables are constants,
Equation 24 was reduced to the following:

n D,
J

ZO'rrk
f 10.08146 W r K e
P[F], = P(P_- (213 310K+ p> m/a -

" y CW Atb
) A
77.9421 P | <0
J

Table II.8 lists the variables. and their deviations, the last six being con-
stants in this example. Equation 25 was used in the computer run and
the results showed a very low probability of failure. The sensitivity
analysis used variability factors to approach a low limit of reliability.

(25)

Four of the variables that showed some sensitivity, namely,
Wp » Th s At and K/, , Were varied together by using factors, Vr,
which ranged from 2 to 10. Resulting probabilities of failure were
still much less than . 000001. Reliability for this failure mode is
estimated as P[S]5 > .999999.

—
The numerical constants appearing in the Equations 11 and 24 are
the result of various computations performed by AGC—they were not

described in their reports.
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Table II. 8.. Summary for FM-5

o Standard Sensitivity
Parameter X Ogtd Vf o Vg
W 3,400, 000 6120 4 24, 480
p
CW .0062477 .000019 1 . 000019
rb . 606 . 00818 2 .01636
At .6355 20.9 4 83.6
K 1.18 00897 1 10 [ .0897
m/a
b 85 .17 1 17
1Tk .16 .00676 1 . 00676
Pa 14,696 .0735 1 10735
K 0.6 .077 1 .077
P
PY 245, 307 1987 1 1987
¥ 213, 310 0 1 0
by
o 3.1 0 1 0
d 178.84 0 1 0
A 6235 0 1 0
t1
n 220 - - -
Dj 180 0 1 0
i
p['F]5 = < .0000001 <, 0000001

Note: only 10 of the 15 paramaters had a distribution, and of these all

but three are correlated with FM-1
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Failure Mode 6. Separation of Motor Chamber and Nozzle Flange.

This failure mode deals with the separation of the motor chamber
from the nozzle flange caused by the ejection load per bolt exceeding
the pretorque load per bolt.

Requirement Analysis. The requirement Equation 12 given in
Appendix I, may be rewritten as:

: 2
.9981 A 180

R, = 180

6 Pcmax [ I+ vy M

2] 1
) - . 014092 A . (1 + yMe)] =+

(26)
i W Wpt Wi 1

P, [‘Aei - Also]EJr 1.42279 A, P -11 A.P n
ti cmax ti  a

Then, by substituting Equation 22 for Pc ; we obtain the equation in
terms of all of the variables:

1'rkAt
W B m/a® | 2 2| 1
= % - . =
Re C_A.Db P 9981 A goRItYM go) - - 014092 A (1+yM ) o
W (W _+ W_.)
1 ni' p vi 1 (27)
- - w, At
TP 1811800t | 1.42279A W r K, e k °
_ ti p b m/a _11A P
C Ab ti” a
w t
Since for this study many variables appearing in the above equation are
constants (g = 0), Equation 27 was reduced to the following:
nkAt
68. 0064 Wprme/ae
R6= T Ab + 139.405 Pa
w 't
59428 (W_ + 726 466) (28(
+ =P
'n'kAt
1, 951, 640 Wprme/ae
¢ A%t - 15,088, 700 Pa
w 't

Capability Analysis. The capability is the pretorque load per bolt. This
may be expressed simply as
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C 6= Kp by
where
C 6 = the capability of one bolt to withstand the
flange separation, lb.
K = the fraction of bolt minimum yield strength
p to which the bolt is pretorqued, (ND)
Fby = the minimum tensile load per bolt, 1b/bolt.

Failure, then is

(29)

_ - 1TkAt
68. 0064 Wprme/ae
P[F]6 = P Kpry - C AL + 139.405 Pa
w t —
59,428 (W_ + 726,466) (30)
+ P <0
nkAt =
1,951, 640 Wprme/ae
c A - - 15,088, 700 P, |
w t

A program was written for Equation 30 in which the last ratio, to be
denoted by "B'', befdre the inequality sign was treated as a constant.
This was done after a sensitivity analysis showed that the effect of the

last term, B, was negligible. It was found that even if the standard

deviation of the parameter of the last term were chosen at the values of
+ 3 ¢ that would cause the term to be a maximum (B, = 228, 653),
the effect on P[F7] was negligible. Had this not been so, a more com-

plicated program would have to have been written to account for the

correlation of the parameters.* Table II. 9 contains the data and results.
Note the effect of the B term when comparing two sets of identical runs.

Standard runs 1 and 2 yielded a reliability of . 999 998 for both B =

0,

and B = 228.653. Runs 6 and 7 were also unaffected in the 6th place.

The variability of » the pretorque factor, is somewhat sensitive.

Perhaps a 1004 increase in variability is unreasonable (which produces

a joint reliability of . 983 695); but for a 204 increase in variability,

reliability is . 999 949. This analysis has about the same effect as Run 8,

This is an example of parameter correlation within a failure mode.

The sensitivity analysis also showed that there was no need to over

complicate the problem with a more exact treatment, since the results

would have been nearly the same for all runs.
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Table 13, 9, Summary for FM-6.

“Standard .
Deviation Sensitivity Runs' ', for Values of Vg .
Parameter X Tstd 1 2 3 4 5 6 7 8
Wp 3,400,000 | 6,120 1 1 1 1 1 1 1 2
Cw .0062477 | .000019 1 1 1 1 4 4 4 4
T .606 .00818 1 1 1 1 1 1 1 10
Ay .6355 20.9 1 1 1 1 1 2 2 2
K / 1.18 . 00897 1 1 1 1 1 2 2 2
m/a
b 85 .17 1 1 1 1 1 1 1 10
) .16 . 00676 11 1 1 1 1 1 1
P, 14.696 .0735 1 1 1 1 1 1 1 1
Kp 0.6 .077 1 1 2 1.2 1 1 1 1
Algg 25,477 0 0 0 0 0 0 0 0 0
Agi 56,116 0 0 0 0 0 0 0 0 0
Ay 6,235 o} 0 0 0 0 0 0 0 0
Y 1.2 0 0 0 0 0 0 0 0 0
Mjgo . 0576 0 0 0 0 0 0 0 0 0
M, 3.205 0 0 0 0 0 0 0 0 0
n 220 0 0 0 0 0 0 0 0 0
Wai 58,428 0 0 0 0 0 0 0 0 0
Wi 726,466 0 0 0 0 0 0 0 0 0
B(l) -_— -_— 0 228 O 0 0 0 228 O
22 8 %82 32 2 @
P[S] =1 - P[F], = o~ > o NN -
6 6 o~ o~ o o (o] o~ o o~
o o [e0] o~ o~ o~ o o~
[=a] o o o~ o o o o

(1) B = Maximum value, within +3 &, for all variables in the last term of Equation 30,
When max, B= 228.653; when the termg is ignored, B = 0. (This term should not be
confused with the general notation 6f X for mean value of a parameter).

(2) Eight runs were made. Values in the table are Vg values (g = Vf ogtd); Zero
values of Vi or ¢ have no variance, or their estimates are assumed near zero.
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where the combined variabilities of propellant weight, mass flow co-
efficient, burning rate, throat area, maximum to average peak
pressure ratio, and propellant web thickness, produces about the same
reliability, namely . 999951.

Failure Modes 7 through 11 inclusive. Propellant Stress Failure
Modes

The propellant stress relationships are perhaps the most complex
and least understood of all the solid rocket motor failure modes. For
the requirement function, AGC ran a rather complex computer program
on a limited propellant stress analysis, using sets of randomly selected
input parameter values for each computer run to gain some feel for
R| |C variability, for those seven failure modes. Within the constraints
of the analysis made (see Appendix I for success criteria), and the
relatively few computer runs made by AGC (high computer run costs),
their outputs gave reasonable preliminary estimates for the mean values
of the requirement functions, R, for Failure Modes 7 through 11.

For the capability functions, AGC used values based on their
curves (see Appendix I) from which C estimates were made. These data
for Rand C are summarized in Table II. 10 together with the estimates
for standard deviations, ¢ . For R, the estimate of g was obtained
from the variability of the 8 computer runs. For C, the rationale is
given in Table I.20 of Appendix I.

AGC did not supply the transfer function equations and input
parameter densities. Rather, they gave the R and C output means and
standard deviations, stating that R and C had Gaussian densities.
Closed form solutions were used to solve for the probability of success
for these failure modes. The difference of two Gaussian random
variables, C - R, is also Gaussian. Thus, the probability of failure
is obtained from tables of the normal function as the area in one tail
of the nogmal curve with zero mean and unit variance beyond the point

—C-R ]

Table II. 10 also summarizes these calculations, and

2 4 2
O °r
the last column gives the P[S] . A sensitivity analysis was made on

two of the failure modes that yielded low estimates of P[S], FM-9 and
FM-11. Note that when the principlte stress, storage condition, has its
standard deviation doubled, P[S] is markedly reduced to . 972. Cer-
tainly FMs 9 and 11 deserve closer inspection of the input data and the
rationale used herein.
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Table II. 10 Summary of Propellant Stress/Strain Failure Modes in Storage and Flight Conditions

i 4 = — ]
! ‘ ! : t C-R | ‘
] f C=— t
. | = A o= N .Joz + g2 ! |
FM FM Description . R o C o] C R P[s] _
| i I [ |
| 7 Inner bore hoop strain, (| .037 .00374 | .242 .0392 | 5.20595 . 999999 |
storage. in/in ‘ " |
| I /
| 8 Prop/Liner radial bond || 2.47 .282 [18.3 2,84 7.61397 | >,999999 |
| stress, storage.#/in? |
9a Principle stress, stor- || 5.51 .604 |[18.3 2,84 4,405 . 999989
age, #/in2
- 4 (1) (1)
9b Principle stress, stor- 5.51 1,20 18.3 5.68 2.2025 (. 972360)
age, #/in?
10 Prop/liner interface 30.62 9. 52(2) 418 39,2 9.60301 | >,999999
shear stress, flight
#/in2
lla | Inner bore hoop strain, || . 0749 .00489|.441 .0674 | 5.41751 >. 999999
flight, in/in.
. (3) (3) (3)
11b Inner bore hoop strain, 7.49 ,978 144.1 8.9 4,08887 (.999956)

(1) V¢ = 2for gR and o¢ -
(2) At less than -30 value of R becomes negative, truncation required.

(3) Vg = Zforo'R,and ~ 1,3 for OC.



Failure Mode 12, Insulation/Motor Case Interface Bond Max. Shear
Stress Failure Mode, Flight Condition

Insulation/Motor Case interface bond fails in shear for a 2g
maximum launch acceleration.

The failure mode requirement is that the shear stress at the
chamber wall of the motor for a 2g maximum launch acceleration will
also be a maximum. From the 8 grain stress computer runs that were
made by AGC, a mean value for Rj2 of 30.62 psi maximum shear stress
with a standard deviation of 9. 52 psi was obtained (see Table I.19 of
Appendix I).

No data was available from AGC on the capability distribution of
shear strength for V44/Epon 948/steel bond. AGC did report, however,
that the shear strength of V45/SC 58:68 epoxy-anhydride/glass could be
used as a conservative estimate. From Appendix I, Table I.22, the
mean bond shear strength is given as 375 psi, with a value of 64.13 psi
for one standard deviation.

Since R and C are assumed Gaussian, the probability of success
is obtained from the closed form Gaussian solution. Thus, for FM-12

> Rz is 5.31182; and for this value, the table of the normal

oc * R
function yields P[S];, <.999 999. Because of the relatively small
value of the failure probability, a sensitivity analysis was made. It
showed that if V¢ = 2 for ggy2 and oRj2 , then P[S] <.99. Again, this
failure mode data and rationale should be more closely analyzed.

Failure Mode 13. Propellant Auto Ignition Due to Static Discharge.

Premature ignition of the motor due to propellant self-ignition
from static electrical discharges, and

Failure Mode 14. Propellant Auto Ignition Due to Self-Heating.
Premature ignition of the motor due to propellant self-ignition
from endothermal self-heating within the propellant, caused by propel-

lant internal reactions.

These two failure modes are somewhat similar in that they in-
volve premature ignition of the propellant from other than a normal
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ignition sequence. From the data of Appendix I, and again the assump-
tion of Gaussian distributions for C and R for both FM13 and FM14,

solution for P[S] indicates an extremely high probability of success.
Thus:

P[S]13 > ,999 999
and

P[S],, > -999 999
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APPENDIX III

COMPUTER PRINTOUTS



Introduction

This appendix contains copies of a sample of computer runs for failure
modes 1 through 6. (Modes 7 through 14 were handled as closed form
solutions as discussed in Section 5 of this report.) Each run contains a
heading which identifies the failure mode. This is followed by the computer
run output in a three-column tabular format. The first column, FROM,
lists the lower bound of the (C-R) interval; the second column, TO, lists the
upper bound of the interval; and the third column, PROB, shows the
probability that (C-R) falls within the interval. The probability of
failure by this mode is shown below the three column table, identified
by the symbol P[{F]. This probability is computed by linear interpola-
tion as the probability that (C-R) is less than zero. Computer running
time is shown just below the failure probability. Note that some of the
times are listed as fractions, the charge unit being one-sixth of a second.
Running times on time sharing computer are of course longer than batch
computers but time sharing costs are much less. Dala is given at the
bottom of the runs. This first number in each line is the mean and the
second number is the standard deviation. Recall that a Gaussian assump-
tion is made throughout these runs on all input parameters. The remaining
numbers in each line are included for purposes of the program operation.

For failure mode 2, runs using unadjusted data are referred to in the
headings as nominal or standard runs. Sensitivity runs were made in
runs 4, 5, 7, 8, 10,- 11, 13 and 14. Eight runs are shown for FM6, and
results are tabulated in table II.9. Two types of sensitivity runs were
made. Runs 2 and 6 were made with B = 228. 653 (see page II. 24 for
explanation). Table II. 9 shows the variability factors used for the
various runs, for the second type of sensitivity analysis.
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RELFM1 13:20  SB WED 03720768

HOOP STRESS FAIL MODE FWD CYL SECT»FM-1,MOTOR CASE
9710 OF TIME

STANDARD
FROM TO PROB
kkkgkkbhkgkk bk k bkt bk Rkkk kR gk kkkh kb hk kg khkky
<=397+334 -397.334 o

=3974334 ‘896105 3.40275 E-34
'8961.05 18319.4 1.36223 E~23
183194 27671748 3.21347 E-17
2767178 37036.2 2.317702 E-{2
37036.2 46394+ 6 121983 E-8
4639 4.6 55753, 4.02486 E-6
55753« 651114 4041090 E-4
65111.4 T4469.8 1.28742 E-2
T 4469 .8 83828.2 «123791
83828.2 931866 368434
931866 102545. 358558
102545, 111903, « 12009
111903. i2ize2. 1.50104 E-2
121262. 130620. 9.82i85 E-4
130620. 139979, 149434 E-S
139979 149337 5.48731 E-8
149337, 158695, 3.23650 E-11
i58695. 168054, 195549 E-{5
168054« 177412 6.70829 E-21
i77412. i86770. 1.20673 E-27
186770. > {86770« 0

P(Fl= 1.44472 E-35

TIME: 1 MINS. 33 SECS.

LISTNH5000

5010 DATA 232000,2516¢651258¢3,10
5020 DATA 95845 «00693» «003465510
S030 DATA 1¢106,+0312,+.0156,10

S040 DATA 3.4E656120,3060,10

5050 DATA 6+247TE~3s1.9E-559+5E-6,10
5060 DATA «606, 00818, +.00409510
5070 DATA 6355,20¢9,10445510

SO080 DATA 1¢18,,00897,.004485,10
S090 DATA 855¢17»+085,10

5100 DATA 130¢631,.02615.01305,10
5110 DATA «¢6392».00955+00475,10°
5120 DATA «0016856+«678E~55338E-5,10
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RELFMX 15350 SB WED 03/20/68

HOOP STRESS FAIL MODE FWD CYL SECT,FM-1,MOTOR CASE

1716 OF TIME

RUN 2
e
FROM T0 PROB
s e ol e o ol e 2 o 2k ol o o o o afe o ol o 2 afe o ofe e ol o o ot o ok 2k e o ok e 28 2k 2k o e o ok ol ok e ol e e A ok ok e e e sk e o
<=~169692. -169692. 0
-169692. ~143875. 7.02443 E~17
- 143875« <118057. 1.20510 E=§
~118057. ~92240.1 2.08646 E=S
~9224041 = 6642249 2.39351 E<4
< 6642249 -~ 40605+ 6 2.36905 E~3
<40605.6 <14788. 4 1451561 E=2
<14788.4 "11028.8 055338
"11028.8 38846.1 «159163
34846-1 62663.3 «295196
6266342 884380.6 25941
88480, 6 114298. s 127791
114298, 140115, 6.36229 E-2
f40115. 1459324, 180443 E-2
165932, i91750. 3.27235 E=3
191750, 217567 3.60149 E~4
217567. 243384. 148032 E-S
243384. 269201 3.16083 E=7
269201 295018, 3.91324 E<9
295018« 320836, 4.28898 E~12
320836« 346653 4:02567 E~i9
346653. > 346653 1]

PLFl= 4.94847 E-2

TIMEs 1 MINS. 31 SECS.
L1STNH5000

S010 DATA 199333, 34564s 1 72825 10

5020 DATA +95845, « 006935 «003465510
5030 DATA 1.1065+03125+0156510

5040 DATA 3.4E6s 612053060510

5050 DATA 6.2477E-3s1.9E~5:;9.5E-6510
5060 DATA «6065 008185 +004095 10

5070 DATA 6355,20+9510-45510

5080 DATA 1.18, 008975 +004485510
5090 DATA 85,17+ +085510

S100 DATA 1306315 <026§5+01305510
5110 DATA +6392s 0095500475 10

5120 DATA «0016s 6¢676E~5,3038E~5510

III-3



RELF2 "17:38 SB THU 04/11/68

INSUL BURN THRU FM-2,MOTOR CASE
NOMINAL RUN

STA 1
l L ]
FROM T0 PROB
ok ek Kok skok sk sl ok sk stk ok ok sk skl ko ok ek ok sk ok sk kol ok skt ok ook ok sk ok ok ok sk

< 36.9237 36.9237 0
36.9237 136.809 J3.48628 E=-2
136,809 236.694 «561804
236,694 336.575 «338034
336,579 436,464 4,85317 E-2
436,464 536.349 1.48401 E-2
536,349 636.234 8.68104 E-4
636,234 736.12 B8.56160 E=-4
136.12 836.005 1.64879 E-4
836,005 935.89 1.14193 E=5
935.89 1035.78 5.,16168 E~7
1035.78 1135.66 2.33383 E~5
1135,.66 1235,55 4,83562 E~9
1235,.55 1335.43 0
1335.43 1435.32 3.06095 E~S
1435,32 1535,.2 2.11915 E-6
1535.2 1635.09 392546 E~7
1635.09 1734.57 0
1734,97 1834.86 0
1834.86 1934.74 0
1934,74 2034.63 0
2034,63 > 2034.63 0

PLF1= O

RAN 179/6 SEC
LISTNH 5000

5020 DATA 1.125,.01667,.008335,10
5030 DATA .003,.00048%,,0002445,10
5040 DATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10
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RELFM2 17132 S8 WED 04710768

INSULATION BURN THRU FAILURE MODE-2,;MOTOR CASE

NOMINAL CASE ‘

STA 2

1.

FROM T0 PROB

oo o e o ol e ke o e e e ot o ol ale ol o sl afe o o st ode ol o o e o e el o ol o0 ol ok o ok o o o o o o ok ko

e 75.7907 75.7907 o

75+7907 175.837 3.48628 E-2
175.837 275.883 *561804
£75.883 375.929 +338034
375.929 A75.97S 4.85317 E-2
475.9715 $76.021 1.48401 E-2
-576+.021 6764067 8.68104 E-4
676.067 7764114 8.56160 E-4
776114 87616 1.64879 E-4
876-16 9764206 114193 E-5
9764206 1076.25% 5416168 E=7
1076.25 1176.3 2+33383 E-S
11763 1276.34 4.83562 E-9
127634 1376439 o’
1376439 1476. 44 3.06095 E-9
14764 44 1576+ 48 2.11915 E-6
1576+ 48 1676.53 3.92546 E-7
1676+53 1776457 o
177657 1876.62 0
1876+ 62 1976.67 0
1976.67 2076.71 o
2076.71 > 2076.71 o

P(Fl= O

RAN 27876 SEC
LISTNHS000

S000 DATA 24¢55+049,.0245,10

S010 DATA +606,.00361,.001805,10
5020 DATA 1.185,.0164675 008335510
5030 DATA 0035 «000489s «0002445510
5040 DATA 87¢55+175,.0875,10

S050 DATA «59,+00351,.001755,10
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RELFM2 17350 SB WED 04/10/68
INSULATION BURN THRU FAILURE MODE-2,MOTOR GASE

ROMINAL CASE
STA 5
l.
FROM T0 PROB
ARERRE R R R SRk kgl R R kR ok ok o ol kol o o ok ok ok ok ek ok
<-14.0866 ~14+0866 o
<14.0866 -9.98349 S5+ 46581 E-12
-9.98349 =5.88037 4.57727 E<7
~5.88037 ~1.77725 717910 E<4
-1,77725 2032587 3.54963 E-2
2.32587 6+ 42899 147657
6+ 42899 10. 5321 «i99825
10. 5321 f4.6352 « 187377
14.6352 18.7383 «156787
18.7383 22.8415 8.24432 E-2
£2.8415 269 446 4¢30062 E-2
26.9446 31.0477 6470429 E-2
31.0477 35. 1508 6432103 E-3
35.1508 39.£539 « 03741
39.2539 43+3571 3.27647 E-2
43.3571 A7. 4602 3.13296 E-3
47. 4602 515633 1.73846 E-5
515633 55. 6664 1.57849 E-9
55.6664 59.7695 0
59.7695 63.8726 o
63+8726 67+9758 0
67.9758 » 67.9758 0

P(F)= 1.60934 E-2

RAN 270/ 6. SEC
LISTNH5000

5000 DATA 85541705.0855 10

SO0 DATA 606, +00361,.001805,10
S020 DATA «11,+.0033,.00165:10
S030 DATA «005s «0025865 «00076» 4
5040 DATA 874551755 0875510
5050 DATA .59,.00351,.001755510
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RELFM2 10:46 SB THU 04/11/68
INSULATION BURN THRU FAILURE MODE-2,MOTOR CASE

INCREASED INSULATION THICKNESS.

STA'5
l L]
FROM TO PROB
e ok e ofe e sfe ok e kol S e e i e ok 5k 2k e ke ke e e e ok sk ok ek ke ok ok sk ek ook ek ok sk sk ok e ok ok sk ke ok skok >
<-8.17169 -8.17169 0
-8.17169 -1.34136 4.34000 E-8
-1.34136 5.48898 5.98296 E-5
5.48898 12.3193 6.69687 E-3
12,3153 15.1496 8.15602 E-2
19.1496 25,98 .201266
25.98 32.8103 .207558
32.8103 39.6406 .171833
39.6406 46.471 8.64536, E-2
46.471 53.3013 6.38087 E-2
53.3013 60.1316 7.46558 E-3
60.1316 66,962 9.27011 E-2
66.962 73,7923 2.19805 E-3
73,7923 80.6226 2.44819 E-3
80.6226 87.453 3.28294 E-2
87.453 94,2833 4.01691 E-2
94,2833 101.114 2.95299 E-3
101.114 107.544 1.37432 E-17
107.944 114.774 0
114,774 121.605 0
121.605 128.435 0
128.435 > 128.435 0

P{F1= 1.17929 E=5

RAN 276/6 SEC
LISTNH5000

5000 DATA 85,.17,.085,10

5010 DATA .606,.00361,.001805,10
5020 DATA .22,.005,.0025,10

5030 DATA .005,.002586,.00076,4
5040 DATA 87.5,.175,.0875,10
5050 DATA .59,.00351,.001755,10
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RELFM2 10:55 SB THU 04/11/68
INSULATION BURN THRYU FAILURE MODE-2,MOTOR CASE_

STA 5
l.
FROM T0 PROB
skokok ok ok ki ks koo s sk sk sk s ok sk ok ok ek ok el Aok ok sk ok ol KoK ok ok sk Aok ok ok ok K
<=9,23797 -9.23797 0
-9.23797 -1.72932 1.98411 E-S
-1.72932 5.77932 8.59162 E-3
5.77932 13.288 «219643
13.288 20,7966 «589701
20,7966 28.3053 « 16963
28,3053 35,8139 1.16532 E=2
35.8139 43,3226 5.71658 E=-24
43,3226 50,8312 1.60487 E-4
50.8312 58.339% 3.35618 E-6
58.3398 65.8485 1.96193 E=5
65.8485 73.3571 3.72613 E-6
73.3571 80.8658 3.,04620 E-9
20,8658 88.3744 2.60923 E=-7
88.3744 $5.8831 1.63801 E-6
95.8831 103,392 6.05777 E-7
103,392 110.9 7.65812 E-9
110.9 F18.409 0
1184409 125.918 0
125.918 133,426 0
133.426 140.935 0
140,935 > 140,935 0

PLF1= 1.99858 E=3

RAN 281/6 SEC
LISTNH5000

5000 DATA 85,.17,.085,10

5010 DATA .606,.00361,.001805,10
5620 DATA .11,.0033,.00165,10
5030 DATA .005,.000816%,.000408,10
5040 DATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10

8-IIT



" RELFM2 10204 SB THU 04/11/68

INSULATION BURN .THRU FAILURE MODE-2,MO0TOR, CASE
NOMINAL CASE

STA &
l .
FROM 10 PROB
ok kg e o o Sk e sk ek e ok e ke ok 2k ok ke e sk ok ok ek e ok ok skl s ok ok ek ook 3k ok ok ok ok sk ok ok ok sk ok sk
«=22.0431 -22.,0431 0
-22.0431 -3.,78184 1.,41237 E-2
~3.78184 14,4794 «59387
14.4794 32.74017 » 543887
32.7407 51.002 4.27197 E-2
51.002 69.2633 4.46839 E-3
69.2633 87.5245 7.34970 E-4
87.5245 105.786 1.43720 E-4
105.786 124.047 3.,41082 E-5
124.047 142.308 1.30332 E-5
142.308 160.57 3.64074 E-6
160.57 178.831 4.75038 E-7
178.831 197.092 8.65461 E-7
197.092 215.353 1.09449 E-6
215.353 233.615 1.48392 E-7
233.615 251.876 1.39853 E-8
251.876 270.137 5.09671 E-10
270.137 288.399% 0
288.399 306.66 0
306,66 324.921 0
324.921 343.182 0
343.182 > 343.182 0

PLF)=z 137112

RAN 281/6 SEC
LISTNH5000

5000 DATA 71.85,.1437,.07185,10
5010 DATA .606,.00361,.001805,10
5620 DATA .25,.01667,.008335,10
5030 DATA .005,.000816,,000408,10
5040 DATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10

III-9



RELFM2 11:28 SB THU 04/11/68
INSULATION BURN THRU FAILURE MODE-2,MOTOR _CASE

TNCREASED INSULATION RUN

STA 6
l L]

FROM TO . PROB .

e ke sk 5 3 3k ok 3 ok 3 ok 3 3 ok ke ek e e e 3 sl sk ke v ok sk ok ke ke sk e ke sk sk sk sk ok sk ek e sk ok ok ok ok ok
<-12,8636 -12.8636 o]

-12.8636 13.9958 1.41251 E=-2
13.9958 40.8551 .593872
40.8551 67.7145 «343883
67.7145 94,5739 4,27197 E=-2
94,5739 121,433 4,46839 E-3
121.433 148.293 7.34970 E=~-4
148,293 175.152 1.43720 E-4
175.152 202.011 J3.41082 E=-5
202.011 228.871 1.30332 E-5
228.871 255,73 3.64074 E-6
255.73 282.589 4,75038 E=7
2824589 309. 449 8.65461 E-7
309 .449 336,308 1.09449 E-6
336,308 363,168 1.48392 E-7
363,168 390,027 1.39853 E=-8
390.027 416,886 5,09671 E-10
416,886 443,746 0
443,746 470,605 0
470,605 497.464 o]

497,464 524,324 0
524,324 > 524,324 0

P{F1= 6.76484 E-3

RAN 284/6 SEC
LISTNH5000

5000 DATA 71.85,.1437,.07185,10
5010 DATA .606,.00361,.001805,10
5020 DATA .375,.025,.0125,10

50650 DATA .005,.000816,.000408,10
5040 UATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10
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RUN

RELFM2 11206 SB THU 04/11/68

INSULATION BURN THRU FAILURE MODE-2,MOTOR CASE
INCREASED INSULATION RUN

STA 6
l .
FROM TO PROB
a3k e ok e o e o e s sk o e e 3ol e 3 ki o s e sk Kok ok ok o ok ok sl sk ok sk sk ok ok o ok ok ok ok ke
< .,902925 «902925 0
902925 33.8674 .020274
33.8674 66.832 «581951
66.832 99.7965 «344343
99.7965 1324761 «046933
132.761 165,726 5.34132 E-3
165.726 198.69 9.36390 E-4
198.69 231.655 1.40368 E-4
231.655 264,619 5.43655 E-5
264.619 297.584 1.16281 E=~5
297.584 330.548 1.14136 E=-5
330,548 363.513 5.29968 E-T7
3634513 396.477 3.78680 E=7
396,477 429.442 1.35102 E=-6
429.442 462,406 7.16786 E=7
462. 406 495,371 5,38941 E-8
495.371 528.335 5.,0967! E-10
528,335 561,3 0
561.3 594.264 0
594.264 627.229 0
627.229 660,193 0
660,193 > 660,193 0
P{F1= 0
RAN 27976 SEC
**k OFF AT 11:20 ELAPSED TERMINAL TIME = 87 MIN.
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RELFM2 1C:13 SB THU 04/11/68

INSULATION BURN THRU FAILURE MODE-2,MOTOR CASE
NOMINAL CASE

STA 1
l.
FROM TO PROB
s ko ek o oo s e oo ook s o sk sk ok ok ek ookl Kok ok sk sk sk oo ok sk ook sk s ik Kok ok ok K K
<=]10,6096 ~10.,6096 0
-10.6096 12.0817 2.,39327 E-2
12.0817 34,773 «57481717
‘34,773 57.4643 « 341176
57.4643 80,1556 5.17988 E-2
80,1556 102.847 6.92150 E=3
102.847 125.538 1.02544 E-3
125,538 148,23 1.53648 E-4
148.23 170.921 8.79634 E-5
176,921 193.612 3.90992 E-6
193,612 216,303 1.85895 E=-5
216,303 238.995 1.54487 E-6
238,995 261.686 5.49667 E-8
261,686 A 284,377 7.16786 E=-7
284.3717 307.069 1.58068 E-6
307.069 329.76 1.59826 E-7
329.76 352.451 3.,06095 E-9
352.451 375.142 0
375.143 397.834 0
397.834 420,525 0
420,525 443,216 0
443,216 > 443,216 0

PIF)= 01119

RAN 286/6 SEC
LISTNH 5000

5000 DATA 70.57,.1411,.07055,10
5010 DATA .606,.00361,.001805,10
5020 DATA .43,.01667,.008335,10
5030 DATA .006,.000979,.0004895,10
5040 DATA 87.5,.175,.0875,10

5056 DATA .59,.00351,.001755,10
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RELFNM2 10:36 SB THU 04/11/68
INSULATION BURN THRU FAILURE MODE-2,MOTOR GASE.

TNCREASED INSULATION THICKNESS

STA 7
l.
FROM TO PROB
kR K sk AR kR sk ok ok ok Kl ook Ak o sk ok ok ke et sk sk ok KRR Sk ok sk o e sk ok K
<-6,5389 -6.5389 o

-6.5389 21.72495 2.06893 E=-2
21.72495 49,9887 +581536
45,9887 T18.2525 « 3442714
78.2525 106.516 4,70051 E-2
106,516 134,78 5.24869 E=-3
134,78 163.044 1.02904 E-3
163.044 191.308 1.40368 E-4
191,308 219.571 5.43655 E=5
219,571 247.835 1.16281 E-5
247,835 276,099 1.14136 E=-5
276.099 304,363 5.29968 E=-7
304,363 -332,.,626 3.78680 E-7
332.626 360,89 1.35102 E-6
360.89 389.154 7.16786 E-7
38%.154 417.418 5.58541 E=-8
417.418 445,682 5.,0967! E-10
445,682 473,945 o]

473.945 502.209% o]

502,209 530,473 0

530,473 558.7317 0

558,737 > 558,737 0

P[F1= 4.78651 E-3

RAN 285/6 SEC
LISTNH 5000

5000 DATA 70.57,.1411,.07055,10
5010 DATA .606,.00361,.001805,10
5020 DATA .516,.025,.0125,10

5030 DATA .006,.000979,.0004895,10
5040 DATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10
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RELFM2 10:¢30 SB THU. 04/11/68

INSULATION BURN THRU FAILURE MODE-2,MOTOR CASE
INCREASED INSULATION THICKNESS

STa T
1.
FROM TO PROB
ok koo kR ok Rk R R KORK KRR KRR R Rk

< 5,3014 5.3014 4]
5.3014 38.8103 2.39327 E=-2
38.8103 72.3191 «574877
72.3191 105,828 «341176
105.828 139,337 5.17988 E=-2
139.337 172.846 6.92150 E-3
172.846 206,355 1.02544 E-3
206,355 259,864 1.53648 E-4
239.864 273.372 8.,79634 E-5
273.372 306.881 3,90992 E-§
306.881 340.39 1.85895 E=5
340.39 373.899 1.54487 E-6
373.899 407,408 5.49667 E-8
407,408 440.917 7.16786 E=-7
440,917 474,426 1.58068 E-6
474,426 507.934 1.59826 E=~7
507.934 541.443 3.06096 E-9
541.443 574,952 4]
574.952 608,461 0
608,461 641.97 0
641.97 675.479 0
675.47% > 675.479 0

P{Fi1z= O

RAN 27176 SEC
LISTNH5000

5000 DATA 70.57,.1411,.07055,10
5010 DATA .606,.00361,.001805,10
5020 DATA .645,.025,.0125,10

5030 DATA .006,,000979,.0004855,10
5040 DATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10
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RELF2 11:41 SB THU 04/11/68

INSUL BURN THRU FM-2,MOTOR CASE
STANDARD CASE :

STA 12
1.
FROM TO PROB
e s ok ok ok stk ok s sk s ook ek ok ksl e sk e sk ok ok sl e s sl ok sk ok ok ok ok
<-39'0822 -5900822 0

-39.0822 15.1613 «06472
15.1613 695.4049 «465459
69,4049 123.648 «405049
1253.648 177.892 4.31387 E-2
177.892 232.135 1.58754 E-2
232,135 286.3179 4.54125 E=3
286.379 340,622 1.01452 E=3
340.622 394,866 2.14589 E-7
394.866 445.109 1.76083 E-4
449.109 503.353 o]

503,353 557.597 2433432 E-5
557.597 611.84 5.16170 E-7
611.84 666,084 0

666.084 720.327 0

720.327 774.571 0

774.571 828.814 2.51475 E-6
828.814 883.058 0

883.058 937.301 0

937.301 991.545 0

991.545 1045.79 o]

1045.79 > 1045.79 0

P{Flz 4.66304 E-2

RAN 178/6 SEC
LISTNH 5000

5020 DATA 3.6,.01667,.008335,10

5030 DATA..0168,2.7401E-3,1.37005E-3,10
5040 DATA 87.5,.175,.0875,10

5050 DATA .59,.00351,.001755,10
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READY .
~ RUN

RELF2 11247 SB THU 04/11/68

INSUL BURN THRU_FM=-2,MOTOR CASE
INCREASED INSUL. RUN

STA 12
1.
FROM TO PROB
sk o§C o ok o e e e sk ok o o e ok ook e ok 3ok ok sk ok ok o ae sk sk ek ook ok sk 3ok o sk sk Rk ok sk sk ke sk ok sk skeok
< 18,5677 18.5677 i 0
18.5677 99.6375 .06472
99.6375 180.707 465459
180,707 261.777 405049
261,777 342.847 4.31387 E-2
342.847 423.917 1.58754 E~2
423,917 504,987 4.54125 E-3
586,057 667.126 2.14589 E-7
667.126 748,196 1.76083 E-4
748.196 829.266 0
829.266 910.336 2.33432 E-5
910,336 991.406 5.16171 E=7
991.406 1072.48 ]
1072.48 1153.55 (o}
1153.55 1234.62 o
1234.62 1315.69 2.51475 E-6
1315.69 1396.76 0
1396.76 1477.83 0
1477.83 1558,.89 o
1558.89 1639.96 o
1639.96 > 1639.96 0
PtF1= O

RAN 178/6 SEC

TII-16



RELF2 11:51 SB THU 04/11/68
INSUL BURN THRU FM=-2,MOTOR CASE

TNCREASED INSUL. RUN

STA 12
1.
FROM TO . PROB
ek of ok o ok e 2 e ok 2k 2k 2k ke ok 6 o ok sk e e ke o sk ok e e e ok s ok Kok o ok o sk ek ok e ok ok ek ok ok sk sk Aok ok ke o e Kk
<=-16.8416 -1§8.8416 0
-16.8416 48,5766 6,383%2 E-2
48,5766 113.995 «49545
113.995 179.413 « 375939
179.413 244.831 4.31391 E-2
244,831 310.249 1.61639 E-2
310.249 375.667 4,25228 E=3
375.667 441,085 1.01452 E=3
441,085 506,504 1.14192 E=5
506.504 571.922 1.64879 E-4
571.922 637.34 4]
037.54 702,758 2.37218 E-5
702.758 768,176 1.37526 E=7
768.1176 833.594 0
833,594 899.012 0
899.012 964.431 0
964.431 1029.85 2.51475 E-6
1029.85 1095.27 0
1095.27 1160,69 0
1160.69 1226,1 0
1226.1 1291.52 0
1291.52 > 1291.52 0

P(Fi1= 1.6435]1 E-2

RAN 17876 SFC
LISTNHS5000

5020 DATA 4.32,.025,.0125,10

5030 DATA .0168,2.7401E-3,1.37005E-3,10
5C4U DATA B7¢5,4175,.,0875,10

5050 DATA .59,.00351,.001755,10
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RELFM3 14:34 SB FRI 03/08/68

COMBINED STRESSES FWD SKIRT FM-3,

MOTOR CASE.

l.

S8R S4 48 RRESEREEEESLRBRREE SR SRS SR CRELBEREREPBRARSRELE SR RR

FROM

< 2.62092 K-2

2. 62092
9.6323%
«166439
236553
+ 306668
«376783
* 446898
«517012
e 587127
« 657242
« 727336
+ 197471
«867586
«937701

1.00782°

107793
1.14804
- 1.21816
1.28827
135839
).4285

P(Fl= O

TIME: SO_S!CS.
LISTNH 5000

5000
5010
5020 °
5030
5040
5050

DATA

DATA
DATA
DATA
DATA
DATA

>

TO PROB

2. 62092 £E-2 L]

9. 63239 k-2 «992361
e166439 760727
236583 2464528
+306668 264137
376783 123014
446898 239640
«517012 103689
587127 234873
« 657242 9.02492
« 727356 o

e 797471 o
«86758¢ 0
«937701 0
1.00782 o
1.07793 o
114304 o
1.21816 o
i.28827 0
135839 0

1. 4285 ]

j. 4285 o

1299035,+02085,+.0104,10

e 728500935 « 00465510

20 TSE 72 547255 273625510
20055, « 0009685 « 000484510

« 00288, 000334,000167510
e 0036, 0006855 30 425E-45 10

ITT-18

E-3
£-S
E-6
E-7
£-6
E-8
E-11
E-13



RELFMY 17¢55 SB THU 04/11/68

FOWD HEAD CIRF WELD MERIOD STRESS FM-4,SPHER SECT MOTOR

1710 OF TIME

STANDARD RUN
l.

FROM T0 PROB
ook sfeok e ek ok ok s ok o sR Rk ek o oo ok Rk ook sk sk ook sk sk e sl sk sk ok ok skl ok ok ok ok A Kok
<=16252.9 -16252.9 0
-16252,9 110,936 1,46022 E=-25
110.936 16474.8 2.56260 E-18
16474.8 32838.6 8.58624 E-13
32838.6 49202, 4 3.63771 E=9
49202.4 65566,2 9.97860 E-7
65566.2 81930, 6.15112 E-S5
81930, 98293.8 1,47640 E-3
98293 .8 114658. 1.57795 E=-2
114658, 131021, 8.60684 E-2
131021, 147385, «2437195
147385, 163749, « 343434
163745, 180113. «225681
180113, 1964177, 7.11609 E-2
1964717, 212841, 1.16288 E=2
212841, 229204, 8.79079 E-4
229204. 245568, 3.29577 E=5
245568 . 261932, 4,76476 E=17
261932, 278296, 3.62146 E-10
278298, 294660, 9.69555 E-15
294660. 311023. B8.39386 E=-22
311023, > 311023, 0

PlF1= 1.45032 E-25

RAN 497/6 SEC
LISTNH5000

5010 DATA 199300,8600,4300,10
5020 DATA .95845,.00693,.003465,10
5040 JATA 3,4E6,6120,3060,10

5050 UATA 6.2477E=3,1,9E~5,9.5E-6,10
5060 DATA .606,.00818,.00409,10

5070 DATA 6355,20.9,10.45,10

5080 DATA 1.18,.00897,.004485,10
5090 DATA 85,.17,.085,10

5100 CATA 130.428,.0456,.0228,10
5110 JATA .428,.0108,.0054,10

5120 LATA .0016,6.676E-5,3.38E=5,10
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RUN .

RELFM5 18:11 SB THU 04r/11/68

FAJLURE OF NOZ BOLTS JNT IN TENSION DUE TO COMBD LOADS:
PRETORQUE,PRESS EJECT , AND TVC MOMENT.FMS.

STANDARD RUN
l.

FROM T0 PROB
sk ok ok sk ok o o ok ke ke ok s ok skok sk sk ok ok sk ok ok sk ok sk sk sk kol sk ko kKRR K ok ok ok ok ok
< }17575.8 17575.8 0
17575.8 26507, 144950 E-8
26907. 36238.3 3.00193 E=-6
3623863 45569.6 3.474795 E-5
45569.6 54900,8 3.,23236 E-4
54900.8 64232,.1 2.25055 E-3
64232.1 73563.4 1.10885 E=-2
73563.4 82894.6 3.78618 E-2
82894.6 92225.9 « 090463
92225.9 101557. « 156003
101557. 110888, «201972
110888, 120220. «2019572
120220. 129551, +156003
129551. 138882. +090463
138882, 148213. 3.78618 E=-2
148213, 157545, 1.10885 E=-2
157545, 166876, 2425055 E=3
166876. 1762017. J3.23236 E=4
176207. 185539, 3.47479 E-5
185539. 194870. 3.,00193 E=6
194870. 204201 . 1.44950 E-8
204201, > 204201, 0
Pl(F)1= O

RAN 455/6 SEC
LISTNH 5000

5040 DATA 3.4E6,6120,3060,10
5050 DATA 6.,2477E-3,1.9E~5,9,5E-6,10
5060 DATA .606,.00818,,00405,10

5070 DATA 6355,2C.59,10.45,10

5080 DATA !.18,.00897,.004485,10
5090 DATA 85,417,.085,10

5120 DATA .0016,6.676E-5,3,38E-5,10
5130 DATA 14.696,.0735,.03675,10
5140 DATA .6,.077,.0385,10

5150 DATA 245307,1987,993.5,10
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"RELFM5 18¢30 SB THU 04/11/68

FAILURE OF NOZ BOLTS JNT IN_TENSION DUE TO COMBD LOADS:
PRETORGQUE ,PRESS . EJECT , AND TVC MOMENT

MAX CASE RUN -
1.
FROM T0 PROB
skeofe s ok s o stk e skl ok kb sk Rk ek ok sk ek sk st sk ek s skl ek stk sk ket ok ek ok
< 12927.2 12927.2 0
12927.2 22632.4 1.77511 E-10
22632.4 32337.6 1.22580 E=-7
32337.6 42042 .8 8.59278 E-6
42042.8 51748. 1.73523 E=-4
51748. - 61453.2 1.,87640 E=3
61453,2 71158.4 1.08657 E=2
71158.4 80863.6 3.82026 E-2
80863.6 90568.8 9.08202 E=-2
90568.8 100274, «156075
1002174, 109979. «201978
109979. : 119684, 201973
115684. 125390, « 156003
129390. 139095. +090463
139085. 148800. 3.78622 E=2
148800, 158505, 1.10897 E=2
158505. 168210, 2.25107 E=3
168210. 177915. 3.22902 E-4
177915, 187621, 3.36304 E=-5
187621. 197326, 2.32468 E-6
197326. 207031, 1.06864 E=-8
207031. > 207031. (o}
PIF1= O

RAN 47376 SEC
LISTNH

G! PRINT"FAILURE OF NOZ BOLTS JNT IN TENSION DUE TO COMBD LOADS:"
02 PRINT"PRETORQUE I

SToP.

READY .

LISTNH5000

5040 DATA 3.4E6,24480,12240,10

5050 DATA 6.2477E-3,1.9E~5,9.5E=6,10
5060 DATA .606,.01636,.00818,10

5070 UATA 6355,83.6,41.8,10

5080 UATA 1.18,.0857,.04485,10

5090 DATA 85,.17,.085,10

5120 DATA .0016,6.676E-5,3.38E~5,10
5130 DATA 14.696,.0735,,03675,10
5140 UDATA .6,.077,.0385,10

5150 DATA 245307,1987,993.5,10
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RELM6 17t 12 SB 1du 04704/ 63

NOZ SEP DUE TO EJECT LOAD EXCEEDING PRETOURWUE LOAD. FM-6
AT LINES 2070,3070» 5=*228.653 FOR MAX SENSITIVITY.MiN, E=0.
STANDARD RUN B=0

l.

F R i PROB
B AC A A A A KA 3K K A A K A KR K K K K A K 0K A K 3 K A K A6 R 6 K A K K N K K R A

<= 15846+ 7 =158 46+ 7 V)

- 1534647 = 6303+ 04 152915 E-10

- 630304 22404 62 20533808 E-6
22404 62 11234+ 3 2462024 E-5
1123443 20327.9 2463387 E-4
203279 29371« 6 2431861 E-3
293716 384153 1.3302y E-2
334153 474589 « 043946
47453+ 9 56502+ 6 943111 E-2
56502. 6 65546+ 2 e 151354
65546.2 7495399 « 193464
745899 83633+ 6 « 193349
33633« 6 926772 ¢ 15065
32677« 2 101721. F.18133 E-2
101721. 110765, e 044045
1107605 119308, 1. 578335 £=2
117808« 128852, 379693 E-3
12385¢c. 13739 6+ 5.21572 E-4
13739 6. 146937 4e 35434 E-S
146939 155933 283369 E-6
152943 3 165027. 2026736 E=-9
165027, > 165027. 0

PLFl= 190941 k-6

5040 DATA 3.4E65,6120,3060,10

5050 DATA 6:2477E-3519E-5,9.5E-6510
5060 DATA «6065.008185.00409510

5070 DATA 6355220.9210.45510

5080 DATA 1+18,.008975+004485,10
5090 DATA 855¢17».085510

5120 DATA «¢001656¢676E-~55338E~5210
5130 DATA 14¢6962+¢0735»+03675510
5140 DATA 6507750385510
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RUN

RELFM6 19:00 SB TUE 06711768

NOZ SEP DUE TO EJECT LOAD EXCEEDING PRETOURQUE LOAD. FM-6

AT LINES 207053070, =%228.653 FOR MAX SENSITIVITY.MINs, B=0.
1= 228. 653

“1e

FROM TO ' PROB
e o o o s s e s o s ke ke ke ke s ok 3 ok ok ke o ok i e o o o ol e e ok ok e ok 3 o o o ok e s o ok ok ok ok o o o ok ok e o s ok ok o
«=-15750.5 =15750.5 0

=15750.5 ~6715.09 171905 E~-10

-6715.09 2320.37 2454173 E-6
2320.37 11355.8 2. 65306 E-5
11355.8 20391.3 2+.74594 E~4
20391.3 29 426. 7 2045044 E-3
29 426.7 38 462.2 136361 E-2
38462.2 474977 4. 41442 E-2
474977 565331 9.41164 E-2
56533.1. 65568+ 6 «151874
6556846 74604. » 193468
T4604. 83639.5 + 193351
836395 92675, « 150662
92675- 101710 «+091881
101710. 110746, 4. 40582 E-2
110746. 119781. 1.58269 E-2
119781« 128817. 3.68919 E-3
128817. 137852 4.94189 E-4
137852 146888 4.08014 E-S5
146888. 155923. 2.89023 E-6
155923, 164959 . 2034895 E-9
164959 . > 164959. 0

P(Fl=s 1.88917 E-6

RAN 41576 SEC
LISTNHS000

5040 DATA 3.4E656120,3060,10

5050 DATA 6+2477E-3, 000019, +0000085, 10
5060 DATA «606,+00818, 00409510

S070 DATA 63555209510+ 455,10

S080 DATA 118, +.008975+004485»10

S090 DATA 8551754085510

5120 DATA 00165 6+676E~5,3+38E-5510
S130 DATA 14.6965+07355+03675510

5140 DATA «+65+0775 0385510
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RUN

RELFM6 17258 SB TUE 06711768

NOZ SEP DUE TO EJECT LOAD EXCEEDING PRETOURQUE LOAD. FM-6

B=0

1.

FROM TO PROB
o 3 ok o o e o ofe sl o o e ok ok ke sk ke sk ok ek ok ok ok ok koRok ok ok kokk Rk ko kR kkok kR kkkok kR Kk k
<=-97742. 4 -97742. 4 0

~97742.4 -80486.3 . 160919 E-6

~-80486.3 -63230.2 2.20507 E-5

-63230.2 ~45974.1 176269 E-4

-45974.1 -28718. 1.01635 E-3

-28718. ~11461.9 4. 54755 E-3

-11461.9 5794.17 «01587
5794.17 23050.3 4.31387 E~2
23050.3 40306. 4 913246 E-2
40306-4 57562.5 « 150569
57562.5 74818.6 «193334
74818.6 92074.6 « 193334
92074.6 109331, 150569
109331. 126587, 9.13246 E-2
126587, 1438 43. 4.31387 E-2
143843. 161099 . 1.58698 E-2
161099, 178355. 4054684 E-3
178355 195611. 101464 E-3
195611. 212867. 176445 E~-4
212867 230123. 237744 E-5
230123. 247380. 2.27938 E-6
247380+ > 247380. o

P(Fl= 1.63051 E-2

RAN 432/ 6 SEC
LISTNHS000

5040 DATA 3.4E6561205,3060,10

S050 DATA 6247TE~3s1+9E~5,9.5E-6510
5060 DATA «6065.008185.00409510

S070 DATA 6355220+49510.45,10

S080 DATA 1¢185+00897».004485,10
S090 DATA 855175085510

5120 DATA ¢0016s6+6T7T6E=55338E~5,10
S130 DATA .14.696s 07355 «03675510
5140 DATA 651545077210
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RUN

RELFM6 19309 SB TUE 06711768

NOZ SEP DUE TO EJECT LOAD EKCEEDING'PRETOURQUElLOAD. FM=-6
AT LINES 207053070, 5=228.653 FOR MAX SENSITIVITY-MIN» E=0.

F=228.653

1.

FROM T0 PROB
a2 900 ofe o 20 o ofe 2 o o o o ol o e ol e e e ofe ok e e e ok e ofe e ok e e e aje e ok e o ok e ke e afe e ok ol ofe a3 of ke o o ok ok ko
«=32175.4 ~32175+4 (1]
-32175+4 -21497.5 2.86101 E-9
-21497.5 -10819.5 2.87709 E-6
=10819.5 ~141.5861 4.10444 E~S5
~141.58) 10536. 4 501678 E-4
10536+ 4 2121 4.3 ‘371607 E-3
21214.3 31892.3 1.58131 E-2
31892.3 42570.2 4+40146 E-2
42570.2 S53248.1 919224 E-2
53248.1 63926+ 1 « 150649
6392601 T4604. * 193339
TA604- 85282. «193334
85282 95959.9 « 150575
95959.9 106638. 9.13674 E-2
106638. 117316. 4.33325 E-2
117316, 12799 4. 160796 E-2
12799 4. 138672» 4. 43709 E-3
138672. 149350. 7.89641 E-4
149350. 160028. 7497663 E-5
160028, 170706. 4.81893 E-6
170706 181383. 3.98219 E-8
181383. > 181383. 0

PLFl=s 5.05762 E-5

RAN 41076 SEC
LISTNHS000

5S040 DATA 3.4E6561205,3060510

5050 DATA 6+.2477E-35.000019, 0000085, 10
5060 DATA «606,.008185.00409,10

SO070 DATA 6355520¢9510¢45510

S080 DATA 1.185,:00897».004485510

S090 DATA 855175085510

5120 DATA <0016+ 6+676E~553.38E~5,10
5130 DATA 144696507355 .03675,10

5140 DATA +6+:09245 < 0462510
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RUN

" RELFM6 18147 SB TUE 06711768

NOZ SEP DUE TO EJECT LOAD EXCEEDING PRETOURQUE LOAD. FM=-6
AT LINES 207053070 =228.653 FOR MAX SENSITIVITY.MIN» =0,

_B=0
1o
FROM T0 PROB
o 2o oo o o o o ok o o o oo o o afe ol ok o o o o o o o o ol ok o ok ol e e o ool o o ol ok ok o o ok ok o ok o ok okok ok
<-18502.2 ~18502.2 0

-18502.2 ~9222.17 233536 E~-13

~9222.17 57845 250965 E-6
57845 ‘9337.86 239383 E-5
9337.86 18617.9 1.84368 E-4
186179 27897.9 1422233 E-3
27897.9 37177.9 786086 E-3
37177.9 46457.9 3.61686 E~-2
46457.9 557379 985807 E-2
557379 65017.9 «159057
650179 74298, « 196492
74298 83578. 2193796
83578 . 92858« « 151247
92858 102138 926404 E-2
102138. 111418, 4. 46199 E-2
111418. 120698 1.48513 E-2
120698 129978 2.91586 E-3
129978. 139258. 3.06028 E-4
139258. 148538. 279834 E~-S5
148538, 157818, 2456517 E-6
157818, 167098« 1.25330 E-10
167098 > 167098, 0

PLF)= 2.49401 E-6

RAN 43076 SEC
LISTNHS000

5040 DATA 344E65612053060,10

5050 DATA 6+2477E-3».0000765 000038510
5060 DATA «6065+008185+00409510

S070 DATA 63555209510+ 45510

5080 DATA 14185 +00897»4004485,10

5090 DATA 8554175.085510

5120 DATA «001656¢676E~553+38E-5-10
5130 DATA 14696507355 03675510

5140 DATA ¢65 4077540385510
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RUN

RELFM6 18128 . SB TUE 06711768

NOZ_SEP DUE TO EJECT LOAD EXCEEDING PRETOURGUE LOAD. FM-6
AT LINES 207053070, B2228.653 FOR MAX SENSITIVITY.MIN, S5=0.
B8=0

1

FROM TO PROB ,
e e o 3 o ol ok e o ok e ol o ke o e ke ok o ke ok e ok e ok o e o o e ok o gl o o e e e afe e ofe o ol ok e o e o ek e oo e o o K o K ok
<=-22108.2 -22108.2 o
~22108.2 -12546.9 7.08590 E-17
~12546.9 -2985.64 109311 E-6
~2985. 64 6575.62 2.03307 E-5
6575. 62 16136.9 1.77198 E-4
16136.9 2569841 1.02517 E-3
25698.1 35259. 4 4.81516 E-3
35259.4 4482047 2.10748 E-2
44820.7 54381.9 7.73554 E-2
54381.9 639 43.2 +170955
639 43.2 73504.5 +220067
73504.5 830657 «197828
83065.7 92627. «152161
92627. 102188. 9.52269 E-2
102188, 111750, +044557
111750. 121311. «012575
121311 130872. 1.93422 E-3
130872. 140433. 1.99803 E-4
140433. 149995, 2.41170 E-S
149995. 159556. 2.47208 E-6
159556. 169117, 6-93164 E-1°
169117, > 169117, o

PLFl= 7.44166 E-6

RAN 42276 SEC
LISTNHSO0O0

5040 DATA 3.4E6561205,3060:,10

S0S0 DATA 6.2477E-35 0000765« 000038510
5060 DATA «606».00818, 400409510

S070 DATA 63555 41.8,20+49,10

5080 DATA 1¢18,+01794».00897,10

S090 DATA 85#2.175.085510

5120 DATA «001656¢676E~5:3.38E-5,10
5130 DATA 14:.6965+07355+03675510

S140 DATA ¢65¢0775+0385,10
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RUN

RELFM6 18136, SB TUE 06/11/68
NOZ SEP DUE TO EJECT LOAD EXCEEDING PRETOURQUE LOAD. FM-6
AT LINES 2070,3070, B3=228.653 FOR MAX SENSITIVITY-MIN, 520.

B=228.653
1.

FROM T0 PROB
a0 e s afe 20 o ofe e o o o ol o afc ok ke e e o ke o e o ok ok ok o e sk ok o ok ok ok ok 3 o e ok e o ok ok o K o e ok 3 Kok ok ok e ke o ok ek
<=21879.5 -21879.5 0

-21879.5 -12318.3 7.08590 E~17

~12318.3 -2756499 1.09311 E-6

-2756.99 6804.27 203307 E-5
6804.27 16365+5 177198 E-4
163655 259268 1.02517 E-3
25926.8 35488.1 481516 E-3
35488.1 450493 2.10748 E-2
45049.3 54610+ 6 773554 E-2
54610+ 6 64171.9 « 170955
64171.9 73733.1 « 220067
737331 8329 4+ 4 «197828
83294+ 4 92855+ 6 152161
92855.6 102417. 952269 E-2
10241 7. 111978. « 044557
111978« 121539, «01257S
121539, 131101, 1.93422 E-3
131101, 140662, 199803 E~4
140662. 150223, 2.41170 E~-5
150223. 15978S. 2.47208 E-6
159785 169346, 693164 E~13
169346. > 169346 0

PLFl= 6495546 E-6

RAN 41376 SEC
LISTNHS000

5040 DATA 3.4E6561205 3060510

S050 DATA 6+.2477E~35 0000765+ 0000385.10
5060 DATA «606s,.00818,.00409,10

S070 DATA 63555 41.8,20.9,10

5080 DATA 14185.01794,.00897,10

5090 DATA 85s+17,.085510

5120 DATA «00165 6« 676E~553+38E=-5510
5130 DATA 14¢6965¢0735,+03675510

5140 DATA «6,+0775+0385,10
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RUN

RELFM6 18314 SB TUE 06711768

NOZ SEP DUE T0 EJEcT LOAD EXCEEDING PRETOURQUE LOAD. FM-6

AT _LINES 2070,3070» B=228.653 FOR MAX SENSITIVITY.MIN, B=0
50 _ _

FROM T0 ' PROB
e e o o o e ol o 2 o e ok o o 3 e ol o 2k ok ok ok ke ok ok a8 o e e ok ke afe ol e o ok ol abe e e ol o ol e ofe ol 3k ol e ok ok ok o ok ok ol ol ke ook
<€=70769.2 ~70769.2. 0

=70769.2 ~57451.4 2.0347) E-21
~57451.4 ~44133.5 610704 E~-15

~44133.5 -30815.6 3.72071 E-10

-30815.6 -17497.8 162339 E-7

-17497.8 -4179.92 6+ 60487 E-6

~4179.92 9137.95 - 133906 E-4
913795 22455.8 163698 E-3
22455.8 357737 1.21776 E-2
357737 49091.5 575501 E-2
49091.5 62409. 4 «161236
62409.4 757273 «267306
75727.3 89045.1 «279736
89045.1 102363. « 15964
102363 115681. 4.9 4763 E-2
11568t1. 128999. 9.94846 E-3
128999 . 142317, 1.09352 E~3
142317. 155634. . 563756 E-5
155634. 1689 52. 168257 E-6
1689 52. 182270’ 9.18616 E-9
182270 195588. 663242 E-11
195588. » 195588. 0

P(Fl= 4.87950 E-S

RAN 428/ 6 SEC
LISTNHS000

5040 DATA 3.4E6,12240,6120,10

S0S50 DATA 6.2477E~-3» 000076, -.000038-10
S060 DATA «60650818,.0409510

S070 DATA 63555 418,209,510

S080 DATA 1185 .017945.00897510

S090 DATA 85517585510

5120 DATA 00165 6¢676E=55338E-5,10
5130 DATA 14¢6965+0735+403675510

S140 DATA ¢65¢0775 0385510
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APPENDIX IV

APPROACH CONCEPTS
AND
COMPUTATION TECHNIQUE



Introduction

The R||C analysis concept has been described in the previous phase
III-A report (66 TMP-90) and in Section 3 of the body of this report but
it is desirable for purposes of this study to review briefly the mechanics
of the process using a simple hypothetical example.

Let us consider a system having only one failure mode which is assumed

to be time independent®. IL.et us assume that the requirement, R, is a
function of the parameters X and Y , and that the capability, C, is a
function of the parameters U and V ., Specifically, let us assume that

R = X/Y, and C = U - V . The problem, then, is to determine the
probabilistic descriptions of R and C given the probabilistic descrip-
tionsof X, Y, U, and V . The probability that C is greater than

R (i.e., in this case, the probability of success, or reliability) can be
computed by using the formula

prob. {C>R } = prob. {(C - R)>0} = prob. { (U- V - X/Y)> 0 }

To evaluate this probability the density function for (U. V - X/Y) will be
generated and the area under the function in the positive region will then
be the probability value of interest.

Think of this computation as an illustration of the general approach
which is a straightforward technique of using discrete approximations
of continuous functions, considering all possible combinations of values,
computing the probability of each combination of values, operating on
the set of values appropriately to generate the output value, grouping
similar output values and then computing the probability of each group.
The area under each input density function was allocated to a selected
set of intervals so that the combination of values referred to above are
combinations of intervals of values and not combinations of discrete
values —the latter is, of course, an acceptable alternate method. The
density functions are combined pair-wise to reduce the total number of
combinations required in the process.

As noted earlier, the capability, C , is defined by the function (U - V)
and the requirement, R, by the function (X/Y) and the transfer function
of interest by {(C-R) = U. V - X/Y}. Variables U, V, X and Y each
have probability density functions as shown in FigureIV.1l. The figures

* The assumption of independence is not a restriction on the technique
but is made, merely, to simplify the illustration.
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should be interpreted as follows. Looking first at the probability

density function of U —the probability that the value lies between 3 and
4 is 0.1; between 4 and 5 is 0.5; and between 5 and 6 is 0.4. The prob-
ability density functions on V, X, and Y are interpreted in the same

way as those for U. The widths of the intervals are not the same for

all parameters and they need not be. Any appropriate widths of intervals
which adequately approximate the true density functions may be used.

Figure IV. 2 illustrates the combination of the first pair of parameters,
U+ V. Consider first the interval 3-4 on U and the interval 5-6 on V.
All values of U +V resulting from these intervals will lie in a new
interval having as a lower value 3 + 5 = 15, and an upper value
4.6 = 24 ., The probability associated with this new interval is
0.1. 0.1 = 0.01, which is simply the probability that the value of U
lies between 3 and 4 and the value of V lies between 5 and 6. The out-
put of this combination of intervals is shown in Row 1 of the table.
Columns 1 and 2 show the lower and upper limits of the new interval
generated by combining the first interval of U with the first interval
of V. Column 3 shows the probability that the new value U *V lies
in the new interval. Columns 4, 5, and 6 show the intervals into
which the outputs of the transfer of U * V are grouped. The probability
shown in column 3 that is associated with the interval indicated by
columns 1 and 2 is appropriately prorated into columns 4, 5, and 6.
This process is repeated for each combination of intervals. Because
U has three intervals and V has three intervals, there are nine com-
binations of intervals to be considered. (The numbers of intervals
need not be the same.) The intervals into which the outputs of the
transfer of U - V are to be grouped have been arbitrarily designated
as 15-26, 26-37, and 37-48.

The new interval generated by the first combination of intervals
is 15-24 with an associated probability of 0. 01 (this is shown in the
first three columns-— row 1 of the table). Because this interval is
wholly contained by the first interval of the output density function,
the entire 0.01 is put into the 15-26 interval.

The rest of the computations for generating the output probability
density function on (C - R), when (C - R) has been defined by (C-R) =
U-. V -X/Y (shown in Figures IV. 3 and IV.4), are accomplished in
basically the same manner as we have shown here., FigureIV.5 re-
presents the total process. First operate on U and V according to the



transfer function to produce the output U V. Then operate on X and

Y according to the transfer function to produce X/Y . Finally, operate
on (U V) and (X/Y) according to the transfer function to produce
{{C-R) = U- V -X/Y}.

It was noted earlier that discrete densities could be presented in
the form of probabilities associated with discrete values of the random
variables rather than the use of intervals of values. A common method
is to associate the probability with the value of the variable at the
interval midpoint. For example, the density of U was given with inter-
vals as.

U Probability
3-4 0.1
4 -5 0.5
5-6 0.4

Using midpoints as discrete values, we could have presented it as

U Probability
3.5 0.1
4.5 0.5
5.5 0.4

Either of these forms is acceptable for suitable accuracy can be ob-

tained with either one by increasing the number of classes and taking
smaller intervals (smaller difference between midpoints.) We have

used both techniques in our RHC analyses,

The use of continuous variable density functions in generating
densities of combinations of random variables is naturally a preferred
approach, but it is not always possible to carry out the complex inte-
grations which are quite often encountered. Appendix VI gives a
discussion of the process and it includes a number of examples for
which integrations could be performed and thus closed form solutions
obtained. It also includes a few cases for which integrations were too
complicated to be carried out. It is instructive to observe that the
discrete example presented here does provide a guideline for under-
standing the continuous cases because the mathematical techniques are
the same in essential characteristics even though the steps do appear
very different.
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The examples discussed thus far in this section involved independence
of input parameters and transfer functions., The extension to a dependent
situation is not difficult conceptually, but it does involve some computa-
tional complications. Hence, we are including a discussion of the
treatment of dependency in the following section.
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Computations When There is Dependence
Between Two or More Transfer Functions

Suppose we have two transfer functions,

U = Tl(xl’ Xys eves xm) and v = Tz(yl, Voo oes yn)

and suppose that there exists some type of correlation between the input
variables, implying therefore a correlation between the outputs, U and
v . Such correlation may arise from the fact that one or more x wvari-
ables are identical with y wvariables. On the other hand, it might arise
in the form of statistical correlation rather than from matching variables.

We wish to determine a computational procedure which permits us
to handle any of these cases, and we will also show simplified methods
for the independent and the identical variable cases. The initial step
will consist of a description of the process in a functional format. This
will be followed by some simple discrete examples to illustrate the
mathematics involved. Expressing this in terms of only two functions
is no real restriction—the extension to more is elementary.

For simplicity of presentation, we willlet m = 3 andn = 4. Thus,
the two transfer functions are

We will describe what must be computed, not being concerned at this
point with the time sequence in which the various tasks are performed.
It will be convenient to phrase the description entirely in terms of dis-
crete variables—the extension to the continuous case is obvious.

Select a specific set of values of the input parameters. For this set,
compute the associated u and v values by substituting in the transfer
functions T.(x.,,x,,x,) and T _{y,,v.,V.,,v,) . From the joint density

1 1723 2°°1°°2°73" "4
of the x's and y's compute the probability of the occurrence of the
selected combination of x and y values. Using the standard probability
notation, this probability computation is expressed by the equation



P(xla xZ’ x3: Yla st Y3’ Y4) =
p (x))p (x, |x))plx, %), %000y, |, %, % )8ly, |%), %, %27,
p(y3|xl, N T YZ)P(V4|x1, Xy X3 Y V0 ¥3)

Repeat these computations for every possible combination of input
parameters. Find the probability of a selected u and v pair by
adding together the probabilities for every combination of parameters
which yield the u, v pair under consideration. Do this same thing for
every possible u, v pair, thus generating the joint density of u and v.

Of course this description includes the case of independence in
which the indicated conditional probabilities are in reality equal to the
unconditional ones. Let us express this in basic probability language.
Take as an example the probability

p(yl le-' XZ: X3) .

If y. is correlated with one or more of the x's , then the density of ¥y
is modified if x|, x; and x3 are fixed. This modification of the y,
density is a reflection of the dependence. However, if y, is independent
of X1, X3, and X3, then its density is not modified and we would have

ply,) = ply, [x.%,,%,) .

Thus we see that the computational task is one of adjusting densities
after the determination of each parameter value. It is clear that this
description does indeed cover dependence whether or not it is generated
by the occurrence of the same variables in the two transfer functions.
The extension to more than two functions is quite clearly indicated by
the above presentation.



Examples to Show the Mathematics Involved
in Treating Dependency Between Transfer
Functions with Discrete Input Parameters

Let us express these examples in terms of capability vs require-
ment in reliability analysis, C and R respectively. We will illustrate
independence as well as the two kinds of dependence—one resulting from
the occurrence of identically the same variable in C and R and the other
resulting from a correlation without variable identity. This treatment
should be viewed as a display of the computational task and not as a
description of an optimal computation methodology.

Suppose the transfer functions are

Capability: C

n

Xy and

Requirement: R = X, +z .
We have chosen to use a notation common to capability vs requirement
analysis instead of the more general functional notation described earlier.
This should not create any real confusion. The variables x; and x,
will be treated under three different assumptions corresponding to the
three cases identified above. In each of the cases, the variable densities
will be as follows.

x,  Pplx;) x, plx,) y ply) z p(z)

1 .3 1 .3 1 .1 1 .2

2 .5 2 .5 2 .4 2 .2

3 .2 3 .2 3 .3 3 .6
4 .2

The general probability symbolism is needed later in the discussion so
we used it here instead of the general function notation. We chose p(xl)
to be the same as p(x2) in order to fit them into the dependency case
involving identical variables.

With respect to x; and X, , the basic input probabilities needed in
this analysis can be expressed as the four densities



shown in Table IV.6.
The basic formula for each of the three cases is

plx;,x,) = plx;) plx, %) .

However, in the first case in which xj and x, are independent, the
joint density reduces to the product of the single parameter densities
since

p(x,[x,) = p(x,) ,
giving
For example, take X, = 2 and x, = 3. Then we have
p(x1 = 2, X, = 3) = p(x1 = Z)p(x2 = 3)
= (.5).2)
= .10
and p(x2 = 3|x1 = 2) = p(x2 = 3) = ,2

In the second case, we have x, and x_ identically the same which

means that 1 2
p(x2 I xl) = 1 if X, = %
= 0 if X, # X,
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Table IV.6.

Probabilities involving x

and x..

1 2
Case Conditional Joint
Identification Probabilities Density
p(lexl) plx,,%,)
*2 *1 plx,)|%, *1 plx;)
1 2 3 1 2 3
Independent 1 .3 .3 .3 .3 1 .09 .15 .06 .3
2 .5 .5 .5 .5 2 .15 .25 .10 .5
3 .2 .2 .2 2 3 .06 .10 04 .2
p(xl) .3 .5 .2 p(xl) .3 .5 .2
plx, %)) p(x), ;)
X, X, p(xz) X, X, p(xz)
Dependent 1 2 3 1 2 3
= .3
K, =%, 1 1 0 0 3 1 .3 0 0
2 0 1 0o .5 2 0 .5 0 .5
3 0 0 1 2 3 0 0 .2 .2
pix,) .3 .5 .2 plx,) .3 .5 .2
p(lexl) p(x . %,)
x, X, p(xz) %, e p(xz)
Dependent 1 2 3 1 2 3
Xl andxz 1 .5 .2 .,25.3 1 15 10 .05 .3
correlated 2 .5 .5 .50.5 2 15 25 10 .5
but x, # x, 3 0 .3 .25.2 3 0 15 .05 .2
p(xl) .3 .5 .2 p(xl) .3 5 .2




Therefore we have
p(xl,xz) = p(xl) if x, = %
= 0 if X, £ Xy -

For the third case in which x, and x_ are correlated but are not
identical, we merely use the general formula

Regardless of the relationship between x., and x_, in our example

it is always true that y and z are uncorrelated. Hence, we can form
the joint density, p(y,z),for each case. The density, p(y,z), is

v 1 2 3 4 p(z)
zZ
1 .02 .08 .06 .04 .2
.02 .08 . 06 .04 .2
3 .06 .24 .18 .12 .6
p(y) .1 .4 .3 .2

We can express the p(x.,x_,Vy,2z) density in the format of the p(y, z)
density, three rows and four columns, in which each element is a three
by three matrix formed as the product of the single p(y,z) probability
and the entire three by three p(xj,x3) density. For each column, there
corresponds a particular pair of X and y values and for each row,
there is a particular pair of x, and z values. Therefore, we can
identify a C wvalue for each column and an R wvalue for each row as
shown in the three p(xl,xz, vy, z) densities which follow. The row and
column %) and x, values, 1, 2, and 3, increase from left to right and
top to bottom respectively.
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Table IV.7. Independent case. Values of pix., Xy Vs z), C, and R
for every possible combination of variables.

1 2 3 ! 4 R
.0018 .0030 .0012| .0072 ,0120 .0048 |.0054 .0090 .0036 l 0036 .0060 .0024 |.0600 2
. 0030 .0050 ,0020| .0120 . 0200 .0080 {.0090 .0150 .0060 |.0060 .0100 .0040 |.1000 3
. 0012 .0020 .0008 | .0048 .0080 .0032 |{.0036 .0060 .0024 |.0024 .0040 .0016 |.0400 4
.0018 . 0030 .0012 | ,0072 .,0120 .0048 |[.0054 ,0090 .0036 |.0036 .0060 .0024 /. 0600 3
. 0030 .0050 .0020 | .0120 .0200 .0080 |.0090 .0150 .0060 |.0060 .0100 .0040 |.1000 4
.0012 ,0020 .0008 | .0048 .0080 .0032 |.0036 .0060 .0024 |.0024 .0040 .0016 |.0400 5
. 0054 .0090 .0036 | .0216 .0360 .0144 |.0162 .0270 .0108 |.0108 .0180 .0072" ., 1800 4
. 0090 . 0150 .0060 | .0360 .0600 .0240 |.0270 .0450 .0180 |.0180 .0300 .0120 |.3000 5
.0036 .0060 .0024 | .0144 .0240 .0096 |.0108 .0180 .0072 |.0072 .0120 .0048 |.1200 6
. 0300 .0500 .0200| .1200 .2000 .0800 |{.0900 .1500 .0600 [.0600 .1000 .0400

1 2 3 2 4 6 3 6 9 4 8 12




Table IV. 8. Independent case. Worksheet to generate
joint density of C and R.
C 1 2 3 4 6 8 9 12 Sum
R _
2 .0018 .0030 .0012 .0120 .0048 .0060 .0036 .0024
.0072 .0054 .0036 .0090
Sum 0018 .0102 .0066 .0156 .0138 .0060 .0036 .0024 |.0600
C-R -1 0 1 2 4 6 7 10
3 .0030 .0050 .0020 .0200 .0080 .0100 .0060 .0040
.0018 .0030 .0012 .0120 .0048 .0060 .0036 .0024
.0120 .0090 .0060 .0150
.0072 .0054 .0036 L0090
Sum .0048 .0272 .0176 .0416 .0368 .0160 .0096 0064 [1600
C-R -2 -1 0 1 3 5 6 9
4 .0012 .0020 .0008 .0080 .0032 .0040 .0024 .0016
.0030 .0050 .0020 .0200 .0080 .0100 .0060 .0040
.0054 .0090 .0036 .0360 .0144 .0180 .0108 .0072
.0048 .0036 .0024 .0060 '
.0120 .0090 .0060 .0150
.0216 .0172 .0108 .0270
Sum .0096 .0544 .0352 .0832 .0736 .0320 .0192 .0128 3200
C-R -3 -2 -1 0 2 4 5 8
5 .0012 .0020 .0008 .0080 .0032 .0040 .0024 .0016
.0090 .0150 .0060 .0600 .0240 -0300 .0180 .0120
0048 .0036 .0024 .0060
.0360 .0270 .0180 .0450
Sum .0102 .0578 .0374 .0884 .0782 .0340 .0204 .0136 [3400
C-R -4 -3 -2 -1 1 3 4 7
6 .0036 .0060 .0024 .0240 .0096 .0120 .0072 -0048
.0144 .0108 .0072 .0180
Sum ,0036 .0204 .0132 .0312 .0276 .0120 .0072 .0048 }1200
C-R -5 -4 -3 -2 0 2 3 6
Sum .0300 .1700 -1100 .2600 .2300 .1000 .0600 .0400
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Table IV.9. Independent case.

C-R density.

Computation of

(_E:E;_ﬁ 7 Sum
-5 . 0036 . 0036
-4 .0102 .0204 . 0306
-3 .0096 .0578 .0132 . 0806
-2 .0048 .0544 .0374 .0312 . 1278
-1 .0018 .0272 .0352 .0884 .1526

0 .0102 .0176 .0832 . 0276 . 1386
1 . 0066 .0416 . 0782 L1264
2 . 0156 . 0736 .0120 .1012
3 . 0368 .0340 .0072 . 0780
4 .0138 .0320 .0204 . 0662
5 .0160 .0192 . 0352
6 . 0060 .0096 . 0048 . 0204
7 . 0036 . 0136 .0172
8 . 0128 . 0128
9 . 0064 . 0064
19 . 0024 . 0024
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Table IV.10. Identical variable case. Values of p(x;, xp, vy, z),
C, and R for every possible combination of variables.
y 1 2 3 4 Sum | R
Z
. 006 . 024 .018 L 012 . 060 | 2
1 .010 . 040 . 030 . 020 .100 |3
. 004 .016 .012 .008 |.040 | 4
. 006 . 024 . 018 L 012 . 060 | 3
2 .010 . 040 . 030 . 020 . 100 { 4
. 004 . 016 .012 .008 [. 040 { 5
.018 . 072 . 054 L 036 .180 | 4
3 . 030 .120 . 090 . 060 .300 {5
. 012 . 048 . 036 .024 [ 120 { 6
Sum | . 030 . 050 .020{.120 .200 .080(.090 .150 .060 | 060 .100 . 040
C 1 2 3 2 4 6 3 6 9 4 8 12




Table IV.11.

Identical variable case.
joint density of C and R.

Worksheet to generate

\\gfi\ 1 2 3 4 6 8 9 12 |[Sum
R o _ R
2 006 .024 .018 .012
Sum 006 .024 .018 .012 . 060
C-R -1 0 1 2
3 .006 .010 .018 .040 .030 .020
. 024 . 012
Sum .006 .034 .018 .052 .030 .020 . 160
C-R -2 -1 0 1 3 5
4 .018 .010 .004 .040 .016 .020 .012 .008
.072 .054° .036 .030
Sum .018 .082 .058 .076 .046 .020 .0l12 .008 |.320
C-R -3 -2 -1 0 2 4 5 8
5 030 .004 .120 .016 .060 .0l2 .008
. 090
Sum .030 .004 .120 .106 .060 .012 .008 |.340
C-R -3 -2 -1 1 3 4 7
6 .012 . 048 .036 .024
Sum .012 . 048 .036 .024 |.120
C-R -3 0 3 6
Sum 030 .170 .110 .260 .230 .100 .060 .040
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Table IV, 12. Identical variable case. Computation of

C-R density.

C-R Sum
-3 .018 .030 .012 . 060
-2 .006 .082 .004 . 092
-1 .006 .034 .058 .120 .218

0 .024 .018 .076 . 048 .166
1 .018 .052 . 106 176
2 .012 . 046 . 058
3 . 030 .060 .036 .126
4 .020 .,012 . 032
5 .020 .012 . 032
6 . 024 . 024
7 . 008 . 008
8 . 008 . 008
Sum 1. 000
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Table IV, 13, Correlated variable case, x # x. Values of P(xq, X5 Vs z), C,
and R for every possible combination of variables.,

Vi 1 2 3 4 Sum R
z
.003 ,002 .00l .012 .008 ,004 |.009 .006 .003 .006 .004 .002 | .060 2
1 .003 .005 ,002 .012 .020 .008 .009 .015 .006 .006 .010 .004 | .100 3
0 .003 001 0 .012 .004 0 .009 .003 0 . 006 .002 . 040 4
.003 .002 .00l .012 ,008 .004 §|.009 .006 .003 .006 .004 002 . 060 3
2 .003 ,005 .002 .012 .020 .008 .009 .015 .006 .006 .010 .004 | .100 4
0 .003 ,001 0 .012 ,004 0 . 009 .003 0 .006 .002 . 040 5
.009 .006 .003 .036 .024 .012 . 027 .018 .009 .018 .012 .006 . 180 4
3 .009 ,015 .006 .036 .060 024 .027 .045 ,018 .018 .030 .012 . 300 5
0 .009 .003 0 .036 .012 0 .027 .009 0 .018 .006 . 120 6
Sum .030 .050 .020 .120 ,200 .080 .090 .150 .060 | .060 .100 .040
C 1 2 3 2 4 6 3 6 9 4 8 12




Table IV. 14,

Correlated variable case, x; # x3. Worksheet to
generate joint density of C and R.

C 1 2 3 2 6 8 9 12 Sum
R
2 |.003 .002 .001 .008 .004 .004 .003 .002
.012 .009 .006 .006
Sum | .003 .014 .010 .014 .010 .004 .003 .002 |.060
C-R | -1 0 1 2 4 6 7 10
3 |.003 .005 .002 .020 .008 .0l0 .006 .004
.003 .002 .001 .008 .004 .004 .003 .002
.012 .009 .006 .O015
.012 .009 .006 .006
Sum | .006 .031 .021 .040 .033 .014 .009 .006 |.160
c-rR | -2 -1 0 1 3 5 6 9
4 |.003 .003 .001 .012 .004 .006 .003 .002
.009 .005 .002 .020 .008 .0l0 .006 .004
.006 .003 .024 .012 .012 .009 .006
.012 .009 .006 .009
.036 .027 .018 .015
. 018
Sum | .012 .062 .042 .080 .066 .028 .018 .012 |.320
C-R | -3 -2 -1 0 2 4 5 8
5 |.009 .003 .00l .012 .004 .006 .003 .002
.0l5 .006 .060 .024 .030 .018 .0l2
.036 .027 .018 .009
. 045
Sum |.009 .054 .034 .090 .082 .036 .02l .014 |.340
C-R | -4 -3 -2 -1 1 3 4 7
6 .009 .003 .036 .0l12 .018 .009 .006
. 027
Sum .009 .003 .036 .039 .018 .009 .006 |.120
C-R | -5 -4 -3 -2 0 2 3 6
Sum |.030 .170 .110 .260 .230 .100 .060 .040
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Table IV, 15, Correlated variable case, x. # x._.

O
1 1 1 1
N W b [7s)

QO =

© VW W N oUWy

-

Sum

Computation of C-R density, 2

Sum

.009 .009 . 018

.012 .054 .003 . 069

.006 .062 .034 .036 . 138

.003 .031 .042 .090 .166
.014 .021 .080 . 039 .154
.010 040 . 082 .132
. 014 . 066 .018 . 098
. 033 .036 .009 . 078

. 010 .028 .021 . 059
.014 .018 . 032

. 004 .009 . 006 . 019
. 003 . 014 . 017
.012 .012

. 006 . 006

. 002 . 002
1. 000
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Simplified Computational Procedures

The preceding discussion has presented a general computational
method. For the independent and the identical variable cases, we can
simplify the arithmetic because of the special relationships existing
for these two cases.

Independent Case

When the capability, C, and the requirement, R, are independent,
we can compute their densities separately and then obtain the density
of the difference, C-R, thus eliminating the need to derive the four
variable density used in the general approach. The arithmetic is
summarized as follows. First consider the computation for C and R.

Capability Requirement
C = 2384 R = x2+z
X 1,.3 2,.5 3,.2 X, 1,.3 2,.5 3,.2

v z
1,.1 1,.03 2,.05 3,.02 i,.2 2,.06 3,.10 4,,04
2,.4 2,.12 4,.20 6, .08 2,.2 3,.06 4,.10 5,.04
3,.3 3,.09 6,.15 9,.06 3,.6 4,.18 5,.30 6,.12
4,.2 4,.06 8,.10 12,.04

Each tabular entry consists of a pair of numbers, the first one being
the value of the input parameter or the output capability or requirement
as the case may be, and the second number being the associated probability.
This ""pair' notation will be used throughout this section. The function
densities are obtained by collecting terms.

C = Xy Probability R = x2+z Probability

Value Value

1 .03 2 .06 = ,06
2 .12+ .056 = .17 3 .10+ .06 = .16
3 .09+.02 = .11 4 .04+ .10+ .18 = .32
4 ,06+ .20 = .26 5 .04+ .30 = .34
6 .15+ .08 = .23 6 .12 = .12
8 .10 = .10

9 .06 = .06

12 .04 = .04
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The C-R density is computed in the following tables, again using
the paired notation in which the first number is the value and the
second is the probability.

We will compute the density of C-R for the identical variable case
in two ways. Since x, = x_, we can drop the subscripts. The problem
is to take each value of x and compute all corresponding values of xy
and x + z with associated probabilities, keeping proper identification.
This is accomplished in the following table. The columns of blocks are
identified by an x wvalue and the rows of blocks by a y wvalue. Within
the blocks we have a sequence of values and associated probabilities
corresponding to

xy,

x+2z for z =1,
x+ 2z for z =2, and
x+ 2z for z =3,
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R 2 .06 3 .16 4 .32 5 .34 6 .12 Probability
c _ Sum
1 .03 |-1 .0018 ;-2 .0048 {-3 .0096 | -4 .0102 }-5 .0036 . 0300
2 .17 0 .0102 {-1 .0272 |-2 .0544 -3 .0578 |-4 .0204 . 1700
3 .11 1 .0066 0 .0176 [-1 .0352 |-2 .,0374 }|-3 .0132 . 1100
4 .26 2 .0156 1 .0416 0 .0832 ]|-1 .0884 [-2 .0312 . 2600
6 .23 4 .0138 3 .0368 2 .0736 1 .0782 0 .0276 .2300
8§ .10 6 .0060 5 .0160 4 ,0320 3 .0340 2 .0120 . 1000
9 .06 7 .0036 6 . 0096 5 .0192 4 .0204 3 .0072 . 0600
12 .04 |10 .0024 9 .0064 | 8 .o0128 7 .0136 6 .0048 . 0400
Probability
Sum . 0600 . 1600 . 3200 . 3400 .1200 }1.0000
C-R Probability
-5 . 0036 = . 0036
-4 . 0102 + .0204 = . 0306
-3 . 0096 + .0578 + .0132 = . 0806
-2 .0048 + .0544 + .0374 + . 0312 = .1278
-1 .0018 +.0272 + .0352 + , 0884 = . 1526
0 .0102 + .0176 + .0832 +.0276 = .1386
1 . 0066 + .0416 + .0782 = . 1264
2 . 0156 + . 0736 +.0120 = .1012
3 . 0368 + . 0340 + . 0072 = . 0780
4 .0138 + . 0320 + .0204 = . 0622
5 . 0160 + .0192 = . 0352
6 . 0060 + . 0096 +.0048 = . 0204
7 . 0036 + . 0136 = .0172
8 . 0128 = . 0128
9 . 0064 = . 0064
10 . 0024 = . 0024
Sum 1.0000
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vy Value Probability | Value Probability |Value Probability
Value Probability| x: 1 .3 2 .5 3 .2
1 1 xy 1 .03 2 .05 3 .02
x+z 2 . 006 3 .010 4 . 004
x+z 3 . 006 4 . 010 5 . 004
x+2z 4 018 5 . 030 6 .012
2 .4 xy 2 .12 4 .20 6 .08
x+2z 2 . 024 3 . 040 4 . 016
x+2z 3 . 024 4 . 040 5 .016
x+2z 4 . 072 5 .120 6 . 048
3 3 Xy 3 .09 6 .15 9 . 06
x+2z 2 . 018 3 . 030 4 . 012
X+z 3 . 018 4 . 030 5 .012
x+z 4 . 054 5 . 090 6 . 036
4 2 Xy 4 . 06 8 .10 12 .04
x+z 2 .012 3 . 020 4 . 008
x+z 3 . 012 4 . 020 5 . 008
x+z 4 .036 5 . 060 6 . 024

Associated R and C values and their respective probabilities can

now be collected together as shown below, and this leads immediately

to the density of C-R which is also shown.
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C = R=x+2 Xy
xy 2 3 4 5 6 Sum
1 .006 .006 .018 .03
2 .010 .010 .030
.024 .024 .072
Sum | .024 .034 .082 .030 .17
3 .004 .004 .012
.018 .018 .054
Sum | .018 .018 .058 .004 .012 .11
4 .040 .040 .120
.012 .012 .036
Sum | .012 .052 .076 .120 . 26
6 . .016 .016 .048
.030 .030 .090
Sum .030  .046 .106 .048 .23
8 .020 .020 .060 .10
9 .012 .012 .036 . 06
12 .008 .008 .024 .04
Sum: R=x+z .060 160 .320 .340 .120 .00
C - R =xy - (x+z) Probability
-3 .018 + .030 + .012 = . 060
-2 .006 + .082 + .004 = . 092
-1 .006 +.034 +.058 + .120 = .218
0 .024 + .018 + .076 + .048 = . 166
i .018 + .052 + .106 = . 176
2 .012 + .046 = . 058
3 .030 + .060 + .036 = . 126
4 .020 +.012 = . 032
5 .020 + .012 = . 032
6 . 024 = . 024
7 . 008 = . 008
8 . 008 = . 008
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Consider now a direct computation of the density of C-R by first
generating a formula for this difference, namely

C-R

xy - (xt+z)

x(y-1)-z .

We can now compute all possible values of C - R together with their
associated probabilities. This is shown below as a three step process
in which we determine

(1) values of x(y-1) and associated probabilities,

(2) values of x(y-1)-z and associated probabilities,

(3) density of C-R = x(y-1)-z by combining values computed
in (2).

Iv-27



X

Value Probability | Value Probability | Value Probability
'y y-1  p(y-1) 1 .3 -2 ' .5 3 .2
1 0 .1 0 .03 0 . 05 0 . 02
2 1 .4 1 .12 2 .20 3 .08
3 2 .3 2 .09 4 .15 6 . 06
4 3 .2 3 .06 6 .10 9 . 04
Z
Value Probability | Value Probability |Value Probability
x(y-1) Probability 1 .2 2 .2 3 .6
0 .10 -1 . 020 -2 . 020 -3 . 060
1 .12 0 . 024 -1 . 024 -2 . 072
2 .29 1 . 058 0 . 058 -1 .174
3 .14 2 . 028 1 . 028 0 . 084
4 .15 3 . 030 2 . 030 1 . 090
6 .16 5 . 032 4 . 032 3 . 096
9 .04 8 . 008 7 . 008 6 . 024
x(y-1)-2z Probability
-3 . 060
-2 . 092
-1 .218
0 . 166
1 .176
2 . 058
3 .126
4 . 032
5 . 032
6 .024
7 . 008
8 . 008
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APPENDIX V

COMPUTER PROCEDURES



Introduction

~ Even a very simple RHC analysis example can involve a rather
heavy computational load so it was natural to try to develop computer
procedures to handle such problems. Indeed, recognition of the
burdensome arithmetic has been a strong deterrent to the use of this
reliability analysis procedure even though the validity of the basic
theory has been accepted for a long time. Furthermore, there has
been a decided hesitation to use computers even when they were avail-
able, largely because of the apparent loss of control when the design
engineer or analyst turned the work over to a programmer who then
turned it over to the computer operator. This lack of control was
reflected in an inability to react to problems as they arose and also to
provide prompt reaction to or use of study results as they were developed
by the computer.

These problems associated with computer usage have been largely
solved by the introduction of time sharing computer systems. It was
natural, therefore, for TEMPO to make use of the General Electric
Time Sharing Computer System in achieving one of the major study
objectives—showing that some system does exist for carrying out
R||C analysis with the expenditure of a reasonable computational effort.
Since the General Electric system turned out to be so well suited to
this task and since we were not required to find more than one suitable
system, no attempt was made to find others. It must be recognized,
however, that even though other systems might be adaptable to this pro-
blem, the programs which we have included and the running times and
costs which we have discussed in this report apply only to the General
Electric system. We do not know how these items would have to be
modified if one wished to adapt them to another time sharing computer
system.

Some of the desirable characteristics of time sharing computer sys-
tems have been implied in the preceding discussion. It would perhaps
be useful to identify them more precisely to provide an adequate back=
ground for understanding and appreciating the time sharing computer
system in the R”C analysis application. Since the computer is oper-
ated from a remote access teletype console, the design engineer or
analyst can operate the computer from a convenient location in his
own office or work area. Not only is the operating console handy,



but it is also easy to use. It is operated much like a standard type-
writer which has been tied in with a telephone. The modern compiler
languages have been so simplified that programming proficiency can
be achieved in a very short time. This means that the design engineer,
his analyst, or any other member of the staff can learn the technique
and operate the computer himself or he can participate in performing
a computerized R||C analysis. Thus control of the process is not lost
by going through the programmer-—operator cycle required on '"batch'
computers., The analyst maintains complete control and he receives
his answers promptly so he can debug his program with ease in a very
timely fashion. The rapidity with which the answers are generated
and displayed makes it easy to perform parametric studies which
realistically reflect the effects of design changes. Finally, because
of its high speed, flexibility of operation, and its ability to serve many
operators simultaneously, the computer costs are held to extremely
low levels.

Earlier discussion noted that the computer uses discrete densities,
with the random variable expressed either in interval form or as sepa-
rate distinct values. Data can be fed into the computer in one of these
discrete density forms or in the form of a density function formula
from which the computer will derive a discrete density approximation
according to instructions programmed in by the operator. Of course
it is possible to combine these different forms in a single RHC analysis.

The computer programs now available have the capability of com-
bining random variables by a mix of any appropriate mathematical
operations. In an RHC analysis, random variables are combined two
at a time, a succession of such pair-wise combinations being used to
derive the density resulting from the combination of more than two
random variables.

The listings of two typical computer programs that were used in

this study are included at the end of this section. The program named
"EF 260" is written in the Time-Sharing Fortran compiler language and it
is the program that was used to illustrate a computer run as discussed
in the example on the following pages. The program named "RELFMI"
is written in the Time-Sharing Extended Basic compiler language and

it is the program that was used to obtain the results that are shown in
the discussions of the motor example in Section 5 and Appendix II. It



should be noted that this particular program listing contains the instruc-
tions for doing the computations associated with the first failure mode.
The only difference in the instructions for the first failure mode and
those for the other failure modes occur in line number 2000 and above.

The hypothetical example that was used in Appendix IV to illustrate
the process of combining random variables was also solved on the
desk side computer using the program described above. The se-
quence of computer operations differed slightly from that used in the
hand computation of the example illustrated by Figures IV.1 through
IV.5. Copies of the output of the computer, Figure V.1, have been
marked to show the correspondence to the results shown in Figures
IvV.2, IV.3 and IV. 4.

Recalling that the transfer function used in the example was
{(C~R) = U:V - X/Y}, the computer performed the following
sequence of operations:

(1) Generate density function for (X/Y) .
(2) Save (X/Y) density function for later call-up.
(3) Generate density function for (U-V) .

(4) Call back (X/Y) density function and subtract it
from (U- V) density function thus generating the
density function for (C-R) .

It will be observed that notations are made on the computer output
sheets to point out which of the values are inputs to the computer and
which ones are outputs of the computer. The print-outs that occur
before the final density function print-out (i.e., for C-R) are optional.
They have been included here in order to show the sequence of com-
puter operations.
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Figure V.1 Illustration of Computer Run

USER NUMBER --888888 @—————— (Each user is assigned a number)

SYSTEM--FOR %- (Fortran compiler language)

NEW OR OLD--OLDe— (Program is stored in computer memory)

OLD PROBLEM NAME--F260 €—— (Name of program to be brought from

WAIT, memory)

READY €— (Computer has found program and is
ready to act)

RUN <« (User's command for computer to compile
program)

F260 15:14 SB FRI 10/31/67

IN F260A (Computer is compiling the three

IN F260B program sections)

PROGRAM TO COMBINE RANDOM VARIABLES

WANT TO SEE CODE, YES OR NO«First option of program-—to print-
? NO out various combining operations)

NUMBER, POINTS FOR FIRST DENSITY

? 4,24, 32, 40, 48
PROBABILITIES

?.2,.7,.1

(Description of first density function
HXII)

READ OPERATION CODE (1-15) (Tells computer - operation is to
? 4 <& divide two random variables)

NEXT DENSITY FROM STORAGE, YES OR NO&(At this point no den-
? NO sity function has been stored)
NUMBER, POINTS FOR NEXT DENSITY

? 2
4, 2, 4, 6, 8 (Description of second density func-

PROBABILITES DeSCIipt
2 .2,.5,.3 tion, "Y")
NEW OUTPUT POINTS, YES OR NO

? YES

NUMBER, OUTPOINT POINTS }(Descrlptlon of output grid for X/Y)

? 4, 3, 10,17, 24

WANT TO SEE DISTRIBUTION, YES OR NO
? YES
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Figure V.1 Illustration of Computer Run (continued)

sk RESULTING PROBABILIT ES sk

START STOP PROBABILITY
3.00 10. 00 . 8206 _ _
10. 00 17. 00 1344 ()lzc;r;sflty fU;lf:tlc:er(;r
17.00 24. 00 . 045 ; see Fig. .

CHECK SUM = 1.000000
MOMENTS = 8.070917E+00 1.293864E+01 2.250325E+00 7.142340E+00

READ OPERATION CODE (1~15) €= (Tells computer to save X/Y
? 11 density function for later use)

READ OPERATION CODE (1-15)€———— (Tells computer~there is a new

? 15 set of random variables on which
to operate)

NUMBER, POINTS FOR FIRST DENSITY
? 4,3,4,5,6

PROBABILITIES }'(']?ﬁls)cnpnon of first density function,
?.1,.5,.4
READ OPERATION CODE (1-15) (Tells computer - operation is
? 3 &—

to multiply two random variables)

NEXT DENSITY FROM STORAGE, YES OR NO-(Next density function not

? NO to be taken from storage)
NUMBER, POINTS FOR NEXT DENSITY
? 4,5,6,7,8

PROBABILITIES f']\)f?'s;crij)tion of second density function
?.1,.3,.6

NEW OUTPUT POINTS, YES OR NO
? YES }(Description of output grid for U-V)

NUMBER, OUTPOINT POINTS
? 4,15, 26, 37, 48

WANT TO SEE DISTRIBUTION, YES OR NO
? YES
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Figure V.1 Illustration of Computer Run (continued)

%k RESULTING PROBABILITIES ek

START STOP PROBABILITY
15. 00 26,00 .1222 ] )
26. 00 37. 00 .5497 (g?:‘;“‘y fu;?t“;%f‘;r
37.00 48. 00 .3281 » See ri1g. V.

CHECK SUM = 1,000000
MOMENTS = 3.376485E+01 4.935178E+01 -2,102505E-01 2.343323E+00

READ OPERATION CODE(1-15) (Tells computer - operation is to subtract
? 2 €& a random variable from U :V which is now
in computer)
NEXT DENSITY FROM STORAGE, YES OR NO«(Tells computer that the
? YES random variable to sub-
tract from U-V is stored)

NEW OUTPUT POINTS, YES OR NO
? YES

NUMBER, OUTPOINT POINTS }(Description of output grid for U.V-X/Y)
?17,-9,0,9,18, 27, 36, 45

WANT TO SEE DISTRIBUTION, YES OR NO
? YES

wkFFFRESULTING PROBABILITIES k3

START STOP PROBABILITY
-9.00 .00 . 0046
.0 . 00 .0 ) .
9 08 12 00 123? (Density function for
18. 00 27. 00 "317¢ ) UtV - X/Y; see Fig.IV. 4
27.00 36. 00 .3354
36. 00 45. 00 .1395

CHECK SUM = 1.000000 .
MOMENTS = 2.569393E+01 9.235007E+01 -3.561212E-01 2.709346E+00

READ OPERATION CODE(1-15) (Tells computer that there are no more
? STOP € calculations to make)
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F260

00000C****x*%PROG FINDS PROB OF COMBe k¥*%k*

00005 $FILE F260D1/F260D2

00010 COMMON X(100),Y(20035ZC100)>P(2005,PP(200)>RP(100),SC(100>
20 COMMONZX (100>, RPX(10035NX

00030 1000 FORMAT(//" PROGRAM TO COMBINE. RANDOM VARIABLES')

00040 1002 FORMAT(//' OPERATION CODE')

00050, 1004 FORMAT(* ADDs 1"/' SUBTRACT» 2'/'" MULTIPLY, 3*V/

00060 +" DIVIDE, 4'/' C*X, S"/" X*xC, 6"/ SIN(X)s 7'/
00070 +'" COS(X)s 8"/ LOG(X)>s» 9%/" EXP(X)>» 10'/

00080 +* SAVE DISTRIBUTION, 11'/

00090 +" HALVE INTERVALS BOTH/FIRST/SECOND, 12/13/714"/
00100 +' RESTART., 15 OR GREATER"™)

00110 1006 FORMAT(//'"READ OPERATION CODE(1-15)")

00120 1010 FORMAT(///' NUMBER,POINTS FOR FIRST DENSITY'")
00130 1015 FORMAT(" PROBABILITIES™)

00140 1030 FORMAT('" NUMBER, POINTS FOR NEXT DENSITY'"™)

N0150 1040 FORMAT(/'" NEXT DENSITY FROM STORAGE, YES OR NO'™
00160 1060 FORMAT(//"%**%*%*RESULTING PROBARILITIES#***%x%')
00170 1070 FORMAT('"CHECK SUM ='",F10.6)

OU1&U 1080 FORMAT(//5Xs"START",10X,"STOP",6X>""PROBARILITY'")
00190 2000 FORMAT('" NUMBER, OUTPOINT POINTS'™)

0N200 2020 FORMAT(' NEW OUTPUT POINTS, YES OR NO")

00210 2040 FORMAT(/'"(",14,") AND ("514,") POINTS'™)

0N220 2060 FORMAT(/'"MAX CUMULATIVE PROB DIFFERENCE =",1PE14.6)
00230 2080 FORMAT(/"WANT TO SEE DISTRIBUTION, YES OR NO')
00240 3000 FORMAT("MOMENTS =",4(1PE14.6))

00250 3020 FORMAT(/"™ WANT TO SEE CODE, YES OR NO')

00255 3040 FORMATC(A3)

nnes6n IYES=/ 702562

00270 PRINT 1000

N0280 PRINT 3n20

00290 READC1)s 1Y

291 PRINT3040,1Y

00300 IFCIY-IYES)>10,55510
00310 5 PRINT 1002

00320 PRINT 1004

330 10 PRINT 1010

00340 LSD=0

00350 READC(1)sMs (Z(K)sK=1,-M)
00360 PRINT 1015

00370 JM1=M-1

00380 READC(1), (RP(I)s I=1,JM1)
N0390 15 PRINT 1006

00400 READC1)>, ICODE

401 PRINT, ICODE
405 IF(ICODE-999)16,5TOP, 165STOP:STOP316:CONTINUE

0nN4a10 IFC(ICODE-14>17517510
00420 17 IFCICODE~-11)30,30,20
00430 20 LQ=ICODE~-11

0044n GO TO (22,22,25),LQ
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Fa2s60 CONTINUED

00450 22 CALL HALF (N1, X)

00460 CALL PHALF(N1IM1,P)

00473 GO TO (25,28,25),LQ
00489 25 CALL HALF(N2:Y)

00490 CALIL. PHALF(N2M1,PP)
00500 28 PRINT 2040,N1,N2

00510 LSD=1CODE

091520 ICODE=LCODE

01530 GO TO 1090

00540 30 GO TO (315,31531531»315315,315,315,31,31,100),ICODE
00550 31 DO 38 I=1,JM1

00560 38 PCII=RPC(CI)

03570 DO 40 I=1,M

NISKN 40 RCIHX=ZC1)

10590 LSD=0

00600 Nl=JM1+1

00A10 NIMiI=N1-1

00620 GD TO (41,415,415 41549549, 49,49, 49,49), ICODE
00630 41 PRINT "1040

N0640 READ(C1)» IY

641 PRINT 3040,1Y

00659 IFCIY-IYES)A8, 42, 44
NN660 42 DO 43 I=1,NX

00670 43 Y(IDX=ZX(D)

NO6ED NZ2Mi=NX-1

No69N N2=NX

Nn0730 DO 44 I=1,N2M1

Na710 44 PP(IDNX=RPX(I)

00720 GO TO 49

00730 48 PRINT 1030

00740 READ(C1)>N2, (Y(I)5>I=1,N2)
00750 PRINT 1015

00760 NeM1l=N2-1

00770 READC1)> (PP(I),I=1,N2M1)
00780 49 PRINT 2020

00790 READC1DS 1Y

791 PRINT3D40,1Y

00800 IFCIYES-IY)>1005,50,100
N0&10 50 PRINT 2000

0ngan READC1)>M, (ZCID)» I=1,M)
DD0E30 100 CALL ADDER(NIMI1,N2M1,M, ICODE)
angao LLCODE=ICODE

00850 MT=M

NO0&60 155 MT=MT-1

00&70 IF(RP(MT))>156,156,157

008&0D 156 IF(MT-1)157,157,15S
00890 157 JM1=MT

n0nsnn T=R=CM=0.

00910 IF(LSD-12)>130,120,120
00920 120 DO 125 I=1,JMl
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Fa60

00930
00940
00950
00960
00970
00980
00990
01000
01010
01020

CONTINUED

122
125

130

T=T+RP (1)

R=R+S(I)

S(I)=RPCI)D
D=ABSF(T-R)
IF(D-CM)>125,125, 122
CM=D

CONTINUE

PRINT 2060,CM

PRINT 2080
READC1)»1Y

1021 PRINT 3040,1Y

01030
01040
01050
01060
01070
01080
01090
01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
1200

01210
01220
01230
01240
01250
01260
01270
01280
01290
01300

135

137

140

160
200

IFCIYES-IY)>135,1375135
LX=2

GO TO 140

PRINT 1060

PRINT 1080

LX=1

T=T1=T2=T3=T4=0.

DO 200 I=1,JM1

PRQ=RP(I)

XQ=Z CIDX+(ZCI+1)=-ZCI)Y¥/ 2
T=T+PQ

SC(I)>=PQ

T1=T1+XQ*PQ
T2=T2+PQ*XQ* %2
T3=T3+PQ*XQ*%x3
T4=T4+PQ*xXQ% % 4

GO TO (160,200),LX
PRINT,Z(I)>,Z(I+1),RP(I)
CONTINUE

PRINT 1070,T

C2=T2-T1%T1
C3=T3-3e*T2*%T14+2%T1%%3
Ca=T4=-4e ¥T3*kT1+6e %kT2kT14kk2~3 kT 1%k
C3N=C3/7C2%*1.5
CUN=C4/C2%%*2

PRINT 3000,T1,C2,C3N,C4N
GO TO 15

END

1310 $USE F260A
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Fa260A

00000C*k*%*x*x*kPROBS SEGMENT%%%k%%

00010 SUBROUTINE LOAD(TPR»>ZL5>ZH,»M»Z5RP)
00020 COMMON X(100),Y(200),Z(100)5P(200),PP(200),RP(100),5¢100)
00030 COMMON ZX(100),RPX(100),NX

00040 SP=ZH-ZL

00050 IF(SP)>20, 80,20

00060 20 DO 30 JL=2.W

00070 IF(Z(JL)Y=-Z2L)30,30,25

00080 25 ZLOW=ZL

00090 JTEMP=JL

00100 GO TO 40

00110 30 CONTINUE

Q0120 40 CONTINUE

00130 D0 60 J=JTEMP,M

00140 IF(Z(JY~ZH)50, 45,45

00150 45 JSAVE=J

00160 ZHIGH=ZH

00170 GO TO 70

00180 50 ZHIGH=Z(J)

00190 RP(J-1)=RP(J-1 )+ ((ZHIGH-ZLOW)/ SPIY*TPR
00200 ZLOW=Z (J)

00210 60 CONTINUE

noz220 70 RP(JSAVE-1)=RP(JSAVE-1)+((ZHIGH-ZLOW)/SP)*TPR
00230 GO TO 100

00240 80 DO 90 J=2,M

00250 IF(ZL-Z(J-1))85, 82, B5

00260 82 RP(J=1)=RP(J=-1)+TPR

00270 JSAVE=J

00280 GO TO 100

00290 85 IF(ZL-Z(J>)82590,90

00300 90 CONTINUE

00310 RP(M=-1)=RP(M~-1)+TPR

00320 JSAVE=M

330 100 CONTINUE
0340 200 RETURN

N0350 END
00360 SUBROUTINE HALF(N»A)

00370 DIMENSION A(1)

00380 LX=2%N-1

00390 LY=N

00400 DO 20 I=1,N

00410 ACLX)=ACLY)

00420 LX=LX-2

00430 LY=LY~-1

00440 20 CONTINUE -

00450 LIM=2%N-3

00460 DO 30 I=1,LIM,2

00470 30 ACI+1)=ACI)+(ACI+2)=-ACI))/ 2.
00480 N=2%N-1

00490 RETURN
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F260A

00500
00510
00520
00530
00540
00550
00560
00570
00580

CONTINUED

20

END

SUBROUTINE PHALF(N,A)
DIMENSION AC1)

DO 20 I=1,N
ACI)=AC(I)/ 2.
ACI+NI=ACD)

N=2*N

RETURN

END

590 $USE F260B
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F260B

00000C*%%%*%PROB6 SEGMENT**k%k

0010
00020
00030
00040
00050
00060
00070
000&0
00090
00100
nn110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
410

00420
00430
00440
00450
00460
00470
00480
00490

10

20

30

45

48

800

500
5000

SUBROUTINE ADDER(N1M1,N2M1,M, ICODE)
COMMON X(100)5,Y(200),ZC100)5P(200),PP(2005,RP(100),S(100)
COMMON ZX(100),RPX(100)sNX

GO TO (1s151515151515151515220), ICODE

DO 5 I=1,M

RP(I-1)=0.

DO 48 K=1,N1M1

PO 48 I=1,N2M1

GO TO (8,8, 8,85 80058005800, 800,800, &00), ICODE
CONTINUE

GO TO (€10,20,30540)s ICODE

Q1=X(K)+Y(I)

Q2=X(K+1)+Y(I+1)

Q3=X(KI+Y(I+1)

QA=X(K+1)+Y(I)

GO TO 45

Q1=X(K)-Y(I)

Q2=X(K+1)=-Y(I+1)

Q3=X(K)=Y(I+1)

QA=X(K+1)-Y (D)

GO TO 45

QI=XC(KI*Y(I)

Q2=X(K+1)*Y(I+1)

A3=XC(KI*Y(I+1)

QU=XC(K+1)%Y (D)

GO TO 45

QI=X(K)/Y(I)

Q2=X(K+1)/Y(I+1)

Q3=X(KI/Y(I+1)

QU=X(K+1)/Y (D)

ZL=MIN1F(Q1,Q2,Q3,Q4)

ZH=MAX1F(Q15Q25Q35Q4)

TPR=P (K)*PP ()

CALL LOAD(CTPR, 2L, ZHsMs Z5 RP)

CONTINUE

RETURN

CONTINUE

GO TO (49549,49,49,500, 5005 49,4949, 49,49), ICODE
PRINT 5000

FORMAT (/" READ CONSTANT™)

READ(1),C3PRINT»C

49

50

60

DO 200 I=1,NiM1

GO TO (200,200,200,200,50,60570,80,90,100), ICODE
Q1=CxX(I)>

Q2=CxX(I+1)

GO TO 150

Q1=X(I)**C

Q2=X(I+1)*%C

GO0 TO 150
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F260B

00500
00510
00520
00530
00540
00550
00560
00570
00590
00600
00610
00620
00630
00640
00650
00660
00670
00680
685

00690
00700
705

00710
00720

CONTI

70

80

90

100

150

200

220
230
JM1=

240
NX=M

NUED

Q1=SINF(XC(I))
Q2=SINF(X(I+1))
GO TO 150
Q1=COSF(X(I))
Q2=COSF(X(I+1))
GO TO 150
Q1=LOGF(X(I))>
2=LOGF(X(I+1))
Q1=EXPF(X(I))
Q2=EXPF (X(I+1))
ZL=MINIF(Q1502)
ZH=MAXI1F(Q1,Q2)
TPR=P(I)

CALL LOAD(TPRsZL,»ZHsMs»Z»RP)

CONTINUE
RETURN

DO 230 I=1,M
ZXCII=Z (1)

M~1

DO 240 I=1,JM1
RPX(IJX=RP(I)

RETURN
END

V.13



REL FmM 1

01 PRINT "HO@P STRESS FAIL MODE FWwD CrL SECI>FM-1,M3TOR CASE"
02 PRINT"9/10 @F TIME" '
03 PRINT"STANDARD RUN"

04 REM THIS IS BASIC PROG :EDI WEAVE REL AND FM1,AND IS BASIC
05 REM PRIGMS FOR RELFM1, RELFMXs RELFM 4, RELFMY
10 DIM A(2,22),B(2,22)5C(2,22), S(2,22)

20 H=1

30 READ MI#READ S1#READ WI1#READ N1

35 P=0

40 ACI> 1)=M1-N1*xWl1

S50 FYUR I=2 T4 21

60 AC1,I)=ACl>I1-1)+Wi

70 A=(.3939423/S51)4« W1

30 Al=(-CCACI,D)-(WI/Z72)-M1D)1t2)/7C2%(5112)))
90 ACZ2,1-1)=A%EXPC(A1)

95 P=P+A(2,I-1D

100 NEXT 1

101 FOR I=1 T2 20

102 A(2,1)=AC2,1)/FP

103 NEXT 1

110 READ M2#READ S2#READ W2#READ nNg

115 P=0

120 B(i, 1)=M2-N2Kx W2

130 FyuRr =2 TY 21

140 BC(1,I1)=BC(1,I-1)+k2

150 B=(+3939423752) % W&

160 Bl=(-C(BC(1,1[)-(W2/2)-M2)12)/(2%x(S212)))
170 B(2,I-1)=B*EXP(B1)

175 P=pP+B(2,1~-1)

180 NEXT 1

181 FoRrR I=1 TY 20

132 B(2,1)=B(2,1>/PF

183 NEXT 1

190 N3=20

200 G2 SuUb 3000

220 W=C(U-L)/N3

230 C(1s D=L

240 FYR I=2 To N3+1

250 CC1,I)=CC1>1-1)0+W

255 C(2,1-1)=0

260 NEXT L

270 FUR J=2 T9 21

280 FUR K=2 Ty 21

290 G3 SUB 2000

300 NEXT K

310 NEXT J

315 G¥ SUB 2005

320 G T® (3305,390,500) G

330 FOR I=1 T N3+1

340 AC1,1)=CC1,1)
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RELFM1 CONTINUED

350 A(2,1)X=CC(2, 1)

360 NEXT I

370 IF F=0 THEN 445

375 IF F<0QO THEN 4000

330 H=H+1

385 G&8 T@ 110

390 FBR I=1 T@ N3+1

400 S(IJI)'—'C(IJI)

410 SC2,I1)=CC2, D)

420 NEXT 1

430 HA=H+1

440 G T9 30

445 FYR I=1 To N3+1

450 BC1,I1)=SC1,1)

460 B(2,1)=50(2,1)

470 NEXT 1

430 H=H+1

490 G@ T 190

500 P=0

510 FUuRk I=1 T N3

520 P=pP+C(2,1)

530 NEXT I

540 PRINT P

545 FOR I=1 T4 5

550 PRINT#PRINT#PRINT

555 NEXT 1

560 S1=5#S2=20#53=45

570 PRINT TABC(S1)s3"FROM"; TAB(S2); " T "3 TABC(S3) 5 ""PRUB"
580 FOR I=1 Ty 60 STEP 3

590 PKINT TABCI)>3 "k&%x";

600 NEXT 1

610 PRINT ' "4#PRINT

620 S4=5#S55=20#S56=45

625 PRINT TAB (S54-1)53"<"3C(1, 1) TAB(SS5)3C(15,1);3 TAB(S6)Y3CC(2,0)
630 FUR I=1 TY N3

640 PRINT TAB(S4)3CC1,1)3 TAB(SS)sCCl,i+1)3 TABCS6)YsCC(2,1)
650 NEXT I

652 PRINT TAB(S4)53CC1sN3+1)53 TAB(SS5-1)3">"3C(1sN3+ 1) TABCS6)Y3C(2,N3+1)
655 PRINTHPRINT#PRINT

660 P=0

670 I=1

630 IF CC1,1)<0 THEN 700

690 G T 760

700 IF CC1,1+1)<0 TAEN 730

710 P=P+(~CC1,I127CCC1,141)-CC1,1I)2))>xC(2,1)
720 GB Ty 760

730 P=P+C(2, 1)

740 I=1+1

750 G¥ T 630

760 PRINT "P(F)="3P
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RELFM1 CONTINUED

770 END

1000 N=(N3/72)+1

1010 IF Z2<CC15N) THAEN 1040

1020 N=nN+5

1030 G¥ Ty 1060

1040 N=N-=5

1050 GY T 1110

1060 FUR I=1 TY C((N3/7100-1)

1070 IF Z<CC15N) THEN 1160

1080 N=N+5

1090 NEXT 1

1100 G T 1160

1110 FR I=1 T¥ ((N3/7100-1)

1120 I[F Z>CC1sN) THEN 1180

1130 N=N-=5

1140 NEXT I

1145 IF Z<CC1,N) [HAEN 1230

1150 W0 Ty 1130

1160 N=N-4

1170 G& T4 1190

1180 N=N+1

1190 FUR I=1 Tgd 5

1200 IF Z<CC15N) TAEN 1230

1210 N=N+1

1220 NEXT 1

1230 CC2,N-1)=C(2sN-1)+A(2,J-1)%B(25K-1)
1240 RETURN

2000 G T8 (2010,2010,2050,201052050,2010,2050,20105,2050,2010,2210> H
2005 G@ TV (2020,20405202052020,202052020,2020,20205,2130,2200,2220) H
2010 Z=CAC1,J-1)+AC1,J)I*(BC1sK=-1)+B(1,K))I/ 4
2015 GG Tg 1000

2020 G=1#F=1

2025 RETURN

2040 G=2#F=1

2045 RETURN

2050 Z=CAC1>J-1)+AC1,JI))/(BCI>K-1)+BC1,K))
2055 GJ Ty 1000

2180 G=1#F=-1

2185 RETURN

2200 G=1#F=0

2205 RETURN

2210 Z=(-ACl,J-1)-AC15J)+BC(lsK-1)+B(1,KJ)/2
2215 G TY 1000

2220 G=3

2225 RETURN -

3000 G4 TY (301u»3010,3050, 3010530505 301053050, 30105,3050,3010,3210) H
3010 L=AC1, 1)%B(1, 1)#U=AC1,21)%B(1521)

3020 RETURN

3050 L=AC1,1)/BC1,21)#U=AC1,21)/BC(151)

3060 RETURN
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RELFM1 CUNTINUED

3210
3220
4000
4010
4020
4030
4040
4050
4060
4070
409 0
4100
4110
4120
4130
5010
5020
5030
5040
5050
5060
5070
5030
5090
5100
5110
5120

L=~AC1:21)+BC(1, 1) #U=-AC1,1)+B(1,21)

RETURN

READ M2#READ S2#READ W2#READ

BCO1, 1)=M2-N2*x W2
FOR I=2 TO 2%N2+1
BC1,I)=BC1,{-1)+W2
B=(« 3989423/ 52) % W2

N2

Bl=(-C(BC1,1)-CW2/2)-M2)12)/(2%(S212)))

BC(2, I-1)=B*EXP(B1)
NEXT [

C=20

FUR I=1 Td 2xN2+1]
BC1, I)=EXP(BCL1,1)*0C)
NEXT 1

H=d+1#GJ TY 190

DATA 232000, 2516« 651253.35 10
DATA «958345,.00693,.003465510

DATA 1.1065+«03125+0156510

DATA 3. 4E6561205 3060510

DATA 642477E-351+9E~559+5-6510
DATA « 6065 +«003185.00409,10

DATA 6355, 20.9510. 45510
DATA 141350039 7s.004435510

DATA 855175085510

DATA 130 6315+02615+01305,10

DATA + 63925 «00955.00475510
DATA « 00165 6« 676E-55 3. 33E-5510
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APPENDIX VI

THE NATURE OF THE MATHEMATICS
INVOLVED IN ANALYTICAL
MODELING USING TRANSFORMATIONS
OF STOCHASTIC VARIABLES



Introduction

The mathematical theory involved in the analytical modeling of
system characteristics is essentially described by the title '""trans-
formations of stochastic variables''. Of course these transformations
are identical to those involved in the determination of volumes by
integration, an obvious fact when it is recalled that probabilities are
themselves integrals of density functions. We will first describe the
process in the general language of the calculus and then translate
it into the transfer function terminology of modeling analysis. Proofs
will be omitted since they are available in standard mathematics
books. We will write the relationships in terms of three variables —
the extension to more (or less) than three is obvious.

Consider the volume differential of a function of three variables,
f(x, y, z) dx dy dz.

Let the variables u, v, and w be related to x, y, and z by the trans-
formation functions

X = gx(U, V, W)a

u) V, w ) »
y gy(

z gz(u, v, W).
We wish to transform the volume differential into the form
h(u, v, w) du dv dw .

The transformation is given by the expression

h(u, v, w) du dv dw
= f<gx(u: Vy W): gy-(ua V, W)a gz(u, Vs W)) IJI du dv dw
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where

d9x ox ox

Ju ov ow

Jy dy oy

J_ ——— —— —

Jdu v dw

%z oz 23z
3u ov ow

Note that we take the absolute value of the determinant J, the Jacobian
or functional determinant of the transformation of x, y, z into u, v, w.
Naturally we will wish to express the determinant in terms of the new
variables, u, v, and w. In some cases, we may find it simpler to
compute J from the relationship

Su du 3u
ax 3y 3z

-1 v 3 v
dx dy oz -

ow 2w ow
9x Ay oz

We shall consider only transformations for which J # 0 -we exclude
the case of singular transformations for which J does vanish.

Let us now express this theory in the language of modeling analysis.
We shall call the analytical representation of the model by the common
engineering term '""transfer function''. Let the stochastic variables
X, v, and z be the input parameters of the transfer function of interest,
and, as before, denote the joint density of these parameters by
f(x, y, z). Let the transfer function itself be denoted by Ti(x, y, z)
and define the new variables u, v, and w by the relationships

u = Tl(x’ Vv, 2Z)
v = Ty(x, y, z)
wo= T3(X, Y, Z)
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where and T_ are essentially arbitrary, except for the condition
that the J%Lcob1an of the transformation be non-zero. We often set v and
w equal to two of the original variables for this reduces the Jacobian

to a simple partial derivative with respect to the other original variable.
Solve these three equations for x, y, and z, giving the transformation in
the form

X = gx(u: v, w) ’
y = gy(ua v, w) 3
7 =

gz(us Vs W) .

The joint density of u, v, and w in differential form is then given by
the previously indicated relationship

h{u, v, w) du dv dw

= f(gx(u, v, W), gy(u, v, w), gzlu, v, w)> |J'| du dv dw .

Now we are actually interested only in the density of u, the variables
v and w entering merely to permit us to define the complete transfor-
mation and we eliminate the two variables by intergration. The density
of u is then obtained by carrying out this integration and by dropping
du, giving

I J\ h{u, v, w) dv dw

The integration limits are chosen in the usual way as described in the
calculus. This theory will be clarified by applying it to some specific
examples in which we consider a number of different transfer and
density function combinations.

It should be observed that there are other mathematical procedures
for deriving densities of the transformations of stochastic variables,
For example, a number of such transformations are accomplished
through the use of Mellin transforms in a very fine report by M. D,
Springer and W. E. Thompson, G. M, Defense Research Laboratories,
TR 64-46, August 1964 entitled ''The Distribution of Products of
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Independent Random Variables''. However, it was decided to restrict
our discussion to cases for which we could apply the simple methods
described above. Where this is not possible, we can rely on the work
of Springer and Thompson as will be noted.
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Some Examples of Transformations of
Discrete Stochastic Variables,

Let x and y be two stochastic variables with probability density
functions p(x) and p(y) respectively as indicated below?,

x | plx) y | ply)
1 .3 1 .3
2 .5 2 |.a4
3 1.2 3 |.2
4 1.1

Densities of the reciprocal and the square of each variable are obtained
merely by performing the variable transformations and leaving the
probabilities unchanged. This gives the following four densities.

1 2 L. .2 1 2 1y 2

x x Mx)—Mx) - y Ny)-MV)
1 1 .3 1 1 .3
1/2| 4 .5 1/214 .4
1/319 .2 1/319 .2
1/4 | 16 .1

We will now derive densities of four functions of the two variables
to illustrate how we combine the variables and compute the associated
probabilities. The selected functions are x + y, x - y, xy, and x/y.
The detailed computations are shown below and it should be noted that
these four suffice to illustrate how one could handle any other function
of the two variables and also how we could extend the technique to more
variables. It should be mentioned that we are assuming independence
of x and y. The extension to the dependent case will be commented
upon later. The basic computations are summarized in Table 6. 1.

* The density function notation as used here is really the usual
probability symbolism. Thus, p(x) is the probability associated
with the event identified by the value of the variable x. We can
think in terms of all possible x values or of a specific value—
the meaning is always clear in context. Hence, the use of p(x)
and p(y) in our discussion does not imply identity of the densities.
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Table VI.1.

y p(y) x 1 2 3
p(x) .3 .5 .2

p{x,v) | .09 .15 . 06

x+y 2 3 4

1 .3 X-y 0 1 2
Xy 1 2 3

x/y 1 2 3

plx,y)) .12 .20 .08

xty 3 4 5

2 .4 X-y -1 0 1
Xy 2 4 6

xly |1/2 1 3/2

p(x; Y) . 06 .10 . 04

xty 4 5 6

3 .2 X-y -2 -1 0
xy 3 6 9

x/ly |1/3 2/3 1

p(x,y)| .03 . 05 .02

xty 5 6 7

4 .1 X-y -3 -2 -1
Xy 4 8 12

x/ly |1/4 1/2 3/4

For each possible pair of x and y values, Table VI.1l shows the
values of five different items: ' :

(1) The probability of the x, y pair which, by virtue of their
independence, is merely the product of their respective
probabilities,

(2) x+vy,
(3) X=Y,
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(4) xy, and
(5) x/y.

For example, let x =3 and y=2. We have

P(x=3, y=2) = p(x=3) p(y=2)
(.2)(.4) = .08

x+y = 3+2 =5
Xx-y = 3=-2 =1
xy = (3)2) = 6
xly = 3/2.

Now to find the density functions of interest, we must add probabili-
ties associated with all of the ways of obtaining each function value.
For example,

plx-y=1) = p(x=2, y=1)+plx=3, y=2)
= .15 + .08
= .23

All such additions are shown in Table VI. 2, the values being read
directly from Table VI, 1 .

It is obvious that the case of dependence between variables x and
v can be handled quite easily. The computational procedure requires
the calculation of the joint probability of each possible x, y pair, this
probability then being associated with the corresponding value of the
function of the pair—the x + y, x - y, or whatever it might be. Thus,
we would use the conditional probability formula

plx,y) = plx) plylx)
which expresses the probability of the joint occurrence of x and y

as the product of the probability of x and the probability of y, given
the occurrence of x.
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Table VI. 2.

Xty Density
2 .09 = .09
3 .15 + .12 = .27
4 .06 + .20 + .06 = .32
5 .08 + .10 + .03 = .21
6 .04 + .05 = .09
7 02 = .02
X -9V Density
-3 .03 = .03
-2 .06 + .05 = .11
-1 .12+ .10 + .02 = .24
0 .09 + .20 + .04 = .33
1 .15+ .08 = .23
2 .06 = .06
Xy Density
1 .09 = .09
2 .15 + .12 = .27
3 .06 + .06 = .12
4 .20 + .03 = .23
6 .08 + .10 = .18
8 .05 = .05
9 .04 = .04
12 .02 = .02
x/y Density
1/4 .03 = .03
1/3 .06 = .06
1/2 .12+ .05 = .17
2/3 .10 = .10
3/4 .02 = .02
1 .09 + .20 + .04 = .33
3/2 .08 = .08
2 15 15
3 06 = .06
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Continuous Stochastic Variable.

Transformations and Functions to be Considered
We will consider in some detail six transformations of input
stochastic variables which are described by four different density

function types. These transformations and functions are as follows:

Transformations

Applied to a single variable:

Reciprocal
Power

Applied to a pair of variables

Sum
Difference
Product
Quotient

Density Flunctions of Input Variables

Rectangular
Gaussian
Gamma
Cauchy

In discussing transformations of pairs of variables we will restrict
our treatment to the case in which the same density type applies to
each variable of the pair. We will further restrict ourselves to the
case in which the variables of the pair are independent.

The expressions for these four density function types are as
follows, the function parameters being subject to the usual restrictions.
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Table VI, 3.

Density Range of
Name Function Variable
f(x) X
Rectangular 1/a 0<x<a
0 x<0, x>a
gl
Gaussian 1 202 co<x<®
e
Jer o
1 a -x/B x=0
o+1 €
Gamma T(a+1)R
0 x<0
a
Cauchy _— -0 <@
2 2
m(a +x )

Note: For simplicity and consistent with the usage of many authors,
we have adopted the functional symbol, f(x), as a general identification
of the density function of an input stochastic variable. It will be seen
that this is a convenient symbolism and that it will cause no problem—
the meaning of f(x) will be clear in context. When treating more than
one density in a particular derivation, appropriate modification of the
symbol will be made.

Transformations Involving Only One Stochastic Variable

Consider the stochastic variable, x, with density f(x) and the
transformation of the variable defined by

T(x) = <

We are especially interested in two values of the exponent: n = -1

which gives the reciprocal and n = 2 which gives the square.
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Denote the new variable by up . Then

u. = X or X = uu @ .
n n

The Jacobian reduces to a single derivative in the one variable case.
It is ' : ' ' '

lan
J'=-——dx=iun .
du n n
n

Therefore the differential form of the density of u is

l-n
n

f(n | du_ .

n

The density function is obtained here by merely dropping the differential
since there are no variables to eliminate by integration.

For the two cases of interest we will use the following notation.
For the reciprocal, n = -1, we will replace u 1 by vy and we will
denote the density of y by g(y). Then

-1 -2
f(y ) [ -y 7|

Y-Z f(Y-l) .

g(y)

For the square, we will replace u, by z and we will represent the
density of z by h(z). Then

h(z) = f(zllz) | —;— z—ll2 |
- _;_ z-1/2 f(zl/Z) )

A warning is appropriate at this point. Care must be exercised
in the use of these formulas to take proper account of signs and
variable ranges. This is of course a repetition of our experience in
the calculus when these same problems were encountered. We can
expect them to occur again in the treatment of transformations involving
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two variables where we will also have the problems associated with
determining limits of integration. The specific derivations to be
included herein will illustrate how we handle these complications.

The Density of the Reciprocal of a Stochastic Variable for the Four
Functions. Using the formulas derived above, we can immediately
write the density of the reciprocal of the stochastic variable for each
of the four functions. They are as follows.

Rectangular:
v = — , Lx
ay
1
= <L -—
0 v 2
Gaussian: 12
-y -X)
-2 -1 2
gly) = v (Zmo) e 20 —e<y<®
Gamma.:
1 -2-a0 -1/8
gly) = ot 1 Y,OSy<co
No+1)AR
Cauchy:
a -2
gly) = A
2 =2
mMa +y )
mla vy +1)

Certain aspects of the variable ranges should be noted. Of course
y decreases as x increases, thus generating an inversion and the
negative and positive portions of the x range required separate
treatement. The following range relationships apply.
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X Trange Corresponding y range
{not reversed)

0 to a © to l/a
-0 to O 0 to =
0 to = ® to O
Note the two transforms of the limit where x = 0. As we go to zero

through negative values of x, y approaches - while on the positive
x side, y approaches += ., The first of the three listed intervals
applies to the rectangular density, the second and third combine to
give the ranges for the Gaussian and the Cauchy densities, and the
third one by itself applies to the Gamma density.

The discussion of the four reciprocal densities will be delayed
until later. However, we do wish to make one observation. In the
Cauchy density, if we set a = 1, it turns out that the density of y
is exactly the same as the density of x, a rather interesting relation-
ship which has implications on the densities of products and quotients
of Cauchy variables as we will see.

The Density of the Square of a Stochastic Variable For the Four
Functions. The transformation formulas for the square of the
stochastic variable x, with density f(x), as derived above are

Z = X ,X =z

h(z) = -;— z—llz f(zllz) .

However, we must take heed of the warning which followed the deriva-
tion of the function h(z) regarding the correct procedure for handling
ranges over which x is negative. The method is, of course, to
modify the above equations by using the absolute value of x. Thus,
let

which merely says
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1
=X = Z /2 for - <x=<0,

1
X = Z /2 for 0sx <>

In practice, it is usually convenient to apply the sign change on x over
the negative range to modify the density f(x) before applying the square
transformation, thus eliminating all negative x wvalues. This will be
illustrated in the examples given below.

First, let us look at a very simple density not discussed previously
as an illustration of the sign change method.

-1

Let f(x) 3

in Figure VI. 1,

(x+ 1), -1<x=<3., This is the triangular density

f(x)

(3, 1/2)

/

/ P, X
("1: O)

Figure VI. 1

Transforming the portion for the negative values of x gives
1
f(-x) = s (-x+ 1)
8
with new range 0<x<1. Hence, for this range, we have

-18-(-x+1)+%(x+1)= , O0=sx=x<1

N

and for the remaining range, we have
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%(x+l), l<x<3,

The graph of this transformed x density is shown in Figure VI. 2, the
added increment being the shaded portion

(3, 1/2)
(0, 1/4)

Figure VI.2

We can now write the density of h(z) by applyirg the previously
derived transformation formulas. Thus, we have

h(z) =-51§z-1/2 , 0<szs<s1,
1/2
_ 1 =z +1 1 -1/2
h(z)-——16 ——7-——212 --——16(1+z Y, 1=sz=<9,

The range computations are quite direct. As x goes from O tol,

so also does z and as x goes from l to 3, z = x“ goes from
lto9.

For the rectangular density, we expressed the function over a
positive range on x as

flx) =%, 0sx<a.
a

Hence we can write the square transformation immediately as

h(z) = z-llz s OSZSa.Z.

i
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We again encounter the negative x problem in deriving the density
of the square where x has a Gaussian distribution. This is handled

again by the transformation of the f(x) density for the negative range
on x. Thus, for

—2
-(x - x)
£(x) 1 20‘2

X) = =—— e

vato
over the range - ®* <x <0, we will replace x by -x, giving
—2

-(x + X)

1 202

e
Va2t o

where x now ranges from Oto+>. We replaced (- x - E)Z by its
equivalent, (x + X)“ to simplify the exponent. It is now possible to

express the complete density by adding this transform to the original
density over the positive x range, giving the function

2
-(x+ %) -(x-%)
2
1
f*(X):-\/_Z?O' l:eZO' +e20 ],03x<oo.

We can now apply the z =

x transformation directly to this new
function, giving, for the Gaussian case,

_(z1/2+§)2 _(21/2_E 2
2 2
- 1 -1/2 20 20
h(Z) mz [e + e ],0SZ<°’.

It is interesting to note the simplification which occurs if x = 0,
Then we have

2
h(z) = ‘/_2_;10 zul/‘2 e-z/Zc , 0<z <™,
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This case of the zero mean illustrates the situation in which f(x) is
symmetrical about the origin and the transform on the negative x range
merely changes

flx), —~»<x<o

into

2f(x) , 0sx <o ,

Naturally, if the original range had been finite, say -c to +c, then the
transformed x density would have been defined over the positive por-
tion 0 £ x < c. We will encounter another symmetrical case when we
treat the Cauchy distribution.

It is useful to observe that the distribution of x for the symmetrical
Gaussian density is actually the well-known xz density,

n-2

1 -x%/2 Z
n/2 n e
2 r(-z')

2) 2

(x dx

where n =1, We wrote the differential form of the density to permit
us to transform from the variable xz to the variable z to establish
the equivalence of these functions. Thus, let n =1 and let

2 2
X = zlo .
This gives
2 1
dx = —E dz .
a

Substituting in the xz density, we have

1 -z/Z(J'2 (i)-l/z 1 4z
21/21..(%) © 02 o2
= —L- z-ll2 e-Z/ZO‘Z dz
Vo o ’
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thereby checking the relationship stated above.

The Gamma density was defined for x = 0 so the density of z =x
can be written immediately. It is

1/2

h(z) = L Z e 8 s 0z <>,

2T (o + 1)».‘_?0Hrl

-1 -7
2

For the Cauchy distribution, we merely double the density on the
positive portion of the x range to reflect the symmetrical negative
portion, giving

f*(x)z——————-—-—za s 0x<oo |

2
wm(a +x )
. 2 . .
The density of z = x is then given as

a

172 0z <o ,
z

h(z) =

2

rzt %@l +2)

Densities of Sums and Differences
of Stochastic Variables

For these transformations we can restrict the discussion to only
two variables since this is immediately extendible to more than two
by adding variables one at a time. Furthermore, subtraction need not
be discussed separately since every difference can be expressed
as a sum: i.e., x-y=x+ (-y).

We will use the following notation. Let x and y be the two var-
iables with densities f1(x) and fp(y) respectively. Let w =x+y
and let f(w) denote the density* of w . The basic formula is

*Since we are using subscripts on the symbols for the densities of x
and y , the symbol f(w) is available for the density of the sum,

w = x+y. Repetitive use of a symbol when properly described
should be acceptable,
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| *2
(w) = [ £ 6, w-x) ax

X1

where the limits of integration are the bounds on x for fixed w . The
determination of these limits will be illustrated in the examples included
herein. This is the same as the transformation

w =xt+ty , v=x

which has a Jacobian equal to unity. We chose here not to replace
x by v, a common practice in such simple cases.

In deriving the density function of the sum of two variables each of
which has a uniform or rectangular density, we encounter a good
illustration of the complexities which sometimes arise from finite var-
iable ranges. Let the two input densities be

1

f].(x) s O0sx=<a,

a
1
5 O0<y<hb.

fz(y)

Without loss of generality, we can let’ a > b . (Later we will treat the
case a=b.) The density of w =x+y is given by

x2
1 1
fw) = | g ax = gy by - x)
X1

but there are complications in computing xj3 and x, . We can explain
them by reference to Figure VI, 3.

X1=W-b xlzw-b

(0, b)

X1 =0

- x2=w (b, 0) Xp=W (a, 0)

Figure VI. 3
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The w range is broken into three intervals
O0sw<b, bsw=<z, and a<w=<a+b .

For fixed w, x+ y =w is a straight line of slope negative one. The
solid lines w =b and w = a separate the three areas of interest. The
dotted lines are used to determine the x; and x, values in these
ranges. It is apparent from the figure just why we must treat the inter-
vals separately. Substituting the limits in the formula

f(w) -x.)

(x, - x;

gives

f(w)

i
|
b3
o
"
€
N
o*

= —(at+tb-w), asws=sa+b .

The graph of f(w) is quite interesting. As the functional representation
shows, it consists of three segments which are plotted in Figure VI. 4.

'f(w)=ﬂ- f()=—
b 1 a 1
& (b, ;) y (a, Z) fw)= a-l:};)—w
| |
0 (b, 0) (a, 0) (a+b, 0)

Figure VI. 4
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Obviously, if a=b,

i:'(w):l2 O<w=<a
a
= Za;W asw<2a
a

and the graph is triangular, the f£(w) =':f segment vanishing.

Consider next the case of two normal distributions, denoting means
by X and ¥ and standard deviations by o, and Oy for x and y
respectively. The formula for f(w) is

[se)
1 x
flw) = .[ 2wO_ 0O € 7
-0 Xy

In this case, the limits are determined by observing that x can range
from - to +o for any fixed w. We will not bother to perform the
simple integration required to obtain the well known result

— —2
-(w-%-7%)
flw) = 1 Z(O‘XZ + O‘YZ)
Zn(oxz + cyz)

Next consider the case of two gamma densities

fo{x) = —1— o -x/8 O0<sx<w
1 +1 ?
ot B
_ 1 a -y/8
fz(y) = a16a+1 vy e s 0=y <o ,

In this derivation we have chosen to use the factorial notation, a! and
a'. in place of T(a+1l) and T'(a+ 1) to simplify typing. Note also that
the parameter B is common to the two densities, an assumption needed
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to get a simple answer. We can express f(w) as

N
v e B o a
f(w) = ‘[ arar2 X (w-x) dx
0o a'alpB

To evaluate this integral, we will transform it into a beta function
form by letting x = wt . Then dx = w dt and the integral becomes

w
1 B
e ag+a+l o a
f(w) = J — s %1 - t)* at
o & a!' B

The beta density is commonly written as

_(a_-l-.p;t.l_)!xa(l_x)ﬁ’ ngsl.

Blx) = a! B!
H 1
ence, o a al al
Ju-nta = gy
0
Then we have
w
1 "B a+a+l al al
f = — e
(w) ol al ﬁa+a+2e w {(c+a+1)!
w
_ 1 a+a+ le-ﬁ
(@+a+1) gOTETE

also a gamma density.

Vi.22




The Density of the Sum of Two Stochastic Variables Having Identical
Cauchy Densities. Let us now derive the density function of the sum
of two stochastic variables having identical Cauchy densities. Thus,
let :

a 2

fl(x) = ,fz(y) =-—2—-— ~-nv<x, y<o,
m(a +x ) w(a +vy )
Letting w = x+ y, we have
© 2
fw) = | 2 dx

) 'rrz(az + xz) [az + (w - x)zj

In order to perform this integration, we will express the integrand in
the form

[AY)

a A + Bx C + Dx
=1 + ]

2 2 2 2
™ a +x a + (w-x)

where A, B, C, and D are functions of w which is considered to be
constant for this integration. It is not difficult to verify that they are

1 2 3 -2
As——m 5 :Bs—5 5 C=—5—.D="35"2
4a +w w(4a +w ) 4a +w w(4a +w )
Therefore the integral can be written as
2 - -
a T 1+2w 1x 3-2w lx
2 2 2 =5+ 3 7] o
™ (4da +w ) -® a +x a +({w-x)
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We now modify the expression to be

2w x 1 (2w+2x)
J‘ [ 2 2 2 2 T -3 ]d
0 (4a. +w) - w a +x a +(w-x) a +(w- x)
a? -1, 2 1 (w-x) -1 . 2 2,9
= S [—arctan +w “In(a +x )——arctan -w Infa"+(w-x) }]
a a
(4a +w )
i
T (4a +w )
_ 2a
- 2 2
m(d4a +w )

It is interesting to modify this density by the variable transformation
2z = w , 2dz = dw

Then we have for the density of z ,
a
2 2
w(a +z)
exactly the same density as for x and y.
The Density of the Product

of Two Stochastic Variables

Let the two variables be x and y with densities

fl(x) and fz(y)
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Let
u=xy and v = x.
Solve for x and y, giving
x = v and y = uv
The Jacobian of the transformation is
J = v-1
and the transformed density in differential form is

fl(v) fz(u v—l) v-.1 dvdu.,

As noted in the derivation of the sums of stochastic variables, it is
common to omit the substitution x = v, which in this case gives

£ (x) fz(ux"l) xlaxdu.

Then the density of u, P(u), is derived by integration as

X1
P(u) = J‘ fl(x) fz(u xnl) x-'1 dx ,

X1

the limits being determined in the usual way.

The Density of the Product of Two Stochastic Variables, Each having

a Rectangular Density., Let

fl(x) s 0<x<a and

a

o'f =

fz(y) , O0sy=<b .
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Then the density of the product, u = xy, is

a
1 -1
P(u)-.].:gx dx
o
b
a
& ]
u/b
1 u
= 3 l:lna-lnb]
or
P(u)-—l-lnz’:e 0<ucx<ab
~ ab u °’ -

The Density of the Product of ' Two Stochastic Variables, Each Having
A Gaussian or a Gamma Density., For these two cases, the simple
methodology which we have adopted leads to integrals which are too
complicated to handle. For derivations using more sophisticated
methods, refer to the paper by Springer and Thompson which was
mentioned earlier, This paper includes a table of ordinates for the
Gaussian case and these were used to plot the curve to be presented
later. For the gamma product, we used numerical techniques and a
GE time sharing computer to derive the table of ordinates.

The Density of the Product of Two Stochastic Variables Each Having a
Cauchy Density., Let us consider two stochastic variables with Cauchy

densities.

fl(x)= ZaZ , =®<x<® and
wx + a)
b
) = —5 2, ~e<y<o .
m(y + b))
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The density of the product u = xy, P(u), is obtained as follows. .
The joint density of x and y in differential form is

ab
> dx dy .

w2(xZ + a) (y2 + b2)

Transform this into the differential form of the joint density of x and
u by the expressions used before,

- -1
y=ux1,dy=x du,

giving

1
X dx du

2
22(x° + a%) (Wlx" %+ bo)

The density of u can be og)tained by integrating on x . To do this,
make the substitution z = x and the accompanying differential change,
dz = 2x dx . Multiply by 2 to overlap the negative and positive ranges,
giving

[>-]

P(u):f 2 b dz ,

2 2 2
0 1r(z+a)(u2+b z)

the limits on z corresponding to -® to = for x. By using partial
fractions, we can express this as

® 2
ab 1 b
P(u) T2, 2 2.2 j <z+a.2 - ufi-bzz)dz
™ (u ~-a b ) 0
_ I: ab In —2 + a.2 ]m
11'2'(u2 -aZbZ) \.12 + bzz 0
2
= ab |: In— - 12 ]
- 2 - ——
'n'z(t:l2 - aZbZ) b u2
2
ab u
= In y =~®<u<eo,
wz(uz -a.zbz) a.zb2



Consider the case in which the densities of x and y are identical,
obtained by letting a = b . Then we have
f

a.z uz
Pla) = 5= 3
T (u -a’) a

» - U< @,

If we further simplify this by a unit change in which we set a =1, we
find that

P(u) =——2—1—2-—— In u2 s =mo<u<® |
7 (u -1)

The Density of the Quotient of Two
Stochastic Variables

The notation which will be used in this case is similar to that used
for the product. The variables are x and y with densities

fl(x) and fZ(y) .

Let
v = x/y and u = y

Solve for x and y, giving
X = uv and y = v.

The Jacobian is v and the joint density in differential form changes from
f(x) f,(y)dxdy

into

fl(u v) fz(v) lvl dudv.

It is common not to replace y by v . Thus, we have the joint density
differential in the form

£yv) Ly |yl dydv
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The density of v , Q(v), is obtained by evaluating the integral
y2
o = [ gy £ Iyl ey,
1

the limits y; and Vo being determined in the usual way.

Density of the Quotient of Two Stochastic Variables with Rectangular
Densities. Let

fl(X)

ol= pl=

fZ(Y)

Using the transformation formulas derived above, the density of the

quotient, v = x/y, is
Y1 1
Q(v) = j‘ a5 Yy
0
1 2
= 2ab V1

where the values of y; can be determined as follows.
the graph of yv =

For fixed v,
x is a straight line through the origin.

Reference
to Figure VI.5 shows how y; is determined in two ranges.

(a, b)
e _:_ , V>%
(a, al/v)

> X

Figure VI.5
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We can see that

¥y, = b for v<% » and
a
vy, = alv for V>-‘t_>
Therefore

Qlv) = Eb; for v<% or OSVS%

fo >a a2 < < ©
r v ™ Or T =V -
b b

2bv

Density of the Quotient of Two Stochastic Variables Having Identical
Gaussian Distribution with Zero Means. Because of mathematical
complexities in the more general case, we will restrict ourselves to
the derivation of the density of the quotient of two stochastic variables
having identical Gaussian densities with zero means. Thus, let

2 2
- -
2 2
1 20 20
f(x) = e and f_(v) = 1 ~o<x, y<o,
The joint density of x and y in differential form is
2 2
—x -
2
1 2
e o dx dy
2
2To
As before, use the substitution x = yv, dx = |y| dv to obtain the
joint density of y and v in differential form as
22 2
2
1 2
> e o lyl dy dv
2mg
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The density of v » Q(v), is obtained by the following integration.

-(v2 +1) 2
- 5 7Y

. 2 _
— e ¥ Iylay

e—8

Q(v) :
: -c0 Z'm:rz

v +1) 2

1 7 2 7
o AR
o 0
-(v2+1) 2
——————— 'Y [oo]
2 2
1 -g 20 ]
= T2 [2 € 0
o +1
_ 1
=72 __
(v + 1)

Thus, the ratio of two variables with identical Gaussian densities
and having zero means turns out to be the Cauchy distribution.

Density of the Quotient of Two Stochastic Variables Having Gamma
Densities., In this case, we will denote the densities of the stochastic
variables, x and y , by the two gamma functions

x
fl(x)= ! e xaeB and O<x <
' + 1)8
X
1 a b
fz(y) = 71 Y °© O<sy<o ,
INNa + 1)b
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To obtain the joint density, we again form the product which will be
transformed by the substitution x = vy, dx = v dy, giving in
differential the joint density of y and v,

AN
B

o'l

(vy) %y e vdydv .

1
T+ 1) Na+ 1)8% T 1p2*1?

The density of v is obtained by integrating on y . Omitting factors
not containing y , we have the integral

G b
o
y+a+1e B b dy

O ——8

By reference to the gamma function in integral form, we can see that
the value of this integral is

1 -(a + a+ 2)
T(a+a+ 2)<%+E>

Therefore the density of v is

-(a+a+2)

) Tlo+a+2) av 1
Qv) = orl atl ¥ <ﬁ+b>

To+1)T(a+1)B b

If x and y have identical densities, thatis, if a=qa and b=§8,
then

-(2a+ 2)

I'(2a + 2) o v 1\
Q(v) = v =+ =
[I‘(a+1)]2/32a+2 (ﬁ B./

I'(2a+ 2).2 & (v+ 1)-(Zoz+ 2)
[T(a+1)]
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The Density of the Quotient of Two Stochastic Variables Each Having
Again we will consider two stochastic variables with

a Cauchy Density.
Cauchy densities

fl(x) = Za. > , =mo®<x<® and
wx + a )
b
fz(x) = > > », ~®<y<o ,
™y +b)

Using the previously discussed transformation,

x=VYadX=IY|dV:

in the product of the two densities, we have the joint density of y and
v in differential form as
2 b Iyl dydv.

2 2 2
wz(v y +a )(Y2+b2)

Transforming to a positive range for y , thereby multiplying by 2 , we

have the density of v, Q(v), as

v 2ab
Q) = | > ydy .
0

2 2 2 2 2
n(vzy +a )My +b)

We can easily verify that

1 _ 1 < v 1
2 2 2., 2 .2, .22 2 2 2 2 - 2 )
(vy +a )y +b) bv -a vy +a y+b2

VI.33



which, when substituted in the integral, gives

Qlv) = z(gzi;_laz) (I) [2‘; 2" L2 ]zydy‘

Integrating, we have

. _—
ab v +a
Qlv) = 2,22 _ [ln"z_y__
w (b v 0
ab
= Inv - Y
57 | ]
m (b
2 2
ab b v
722 -z s -=<v<

m(bv -a) a

It is interesting to write the density of the quoﬁent of stochastic
variables with identical Cauchy densities. Thus let a =b, giving

Q(v) = T—lz——— lnv2 , =<y <@
m (v =1)

Note that "'a'" does not enter in the expression for Q(v), a natural
consequence of the fact that the ratio of x to y is dimensionless in
this case. Note further that the quotient is density is the same as the
product for a = 1, an obvious result in view of the fact that the
reciprocal of a Cauchy variables has the same Cauchy density as the
variable if a=1.
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A Special Example-- The Generation
of the Rayleigh Density as a Transformation
of a Pair of Gaussian Densities

An interesting example of the transformation of a pair of Gaussian
densities is provided by the following problem. Suppose we have a
pair of independent forces, x and y, acting at right angles and having
identical Gaussian densities with a mean of zero and a standard devia-
tion of 0. The problem is to derive the density of the resultant force,
r . The relationships of the force vectors is diagramed in the tradi-
tional way with x and y shown as the sides of a rectangle and r as
the diagonal,

X

The zero mean merely implies that the forces are equally likely to act
in either direction, positive or negative.

The densities of x and y are

2 2
x
—? - z
1 e °C and 1 e 20
V2t O Vet O

and the joint density in differential form is

1 2 2
-—2(x +v)
1 20
5 e dx dy .

2To
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Since r = ‘/X2+Y2‘ s we can solve this problem by transforming to
polar coordinates, r and 0, and integrating on © . The differential
product is replaced by

rdfdr.

The integration is

2
T
2m T2
[ 12 eZU rdf®dr
'0 270
2
T
1 20'2
=5 e rdr , r<0
(o)

which is the Rayleigh density. It is perhaps more common to modify
the constant by the substitution

2
ro-Zo'

giving the function in the form

2
I
r
?e 0dr,rzO.
0

Here again we have illustrated with a rather typical engineering example
that a transformation of Gaussian densities can indeed lead to non-
Gaussian outputs,
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Implications of the Discussion of
Transformations of Stochastic Variables

In drawing conclusions from this discussion of transformations of
stochastic variables, we will restrict our coverage to include only a
few transformation properties. We will concentrate on those properties
which seem to be at odds with intuition or, in other words, properties
which at times seem to be misunderstood, thereby resulting in certain
erroneous analyses. It is perhaps worth noting here that these problems
arise because of a frequently observed characteristic of probability.
It is unsafe to trust intuition by guessing or anticipating answers to
problems in probability for it is so easy to guess wrong—probability
problem solutions often provide interesting surprises.

Perhaps the most significant observation is that transformations
of stochastic variables tend to change the density types. Stated in
another way, even if all the input variables in a transfer function have
the same kind of density, we cannot expect the output to be the same.
For example, the ratio of two Gaussian (normal) variables is definitely
not normal—in the case which was used herein, a Cauchy distribution
was obtained. Of course, the density form is sometimes preserved—
the sum of Gaussian variables is still Gaussian.

Although we did not bother to cover this point in the derivations,
it is nevertheless true that moments of transformed variables are not
in general equal to the corresponding transformation of the moments
of the input stochastic variables. As a simple illustration and one
which is really obvious, for any density with zero mean, the reciprocal
of the variable can have a density with a finite mean. Indeed, if the
density of the variable is symmetrical about zero, then the demnsity of
the reciprocal is also and hence it will have a zero mean. Thus, it is
necessary to derive the proper relationships on moments and it will
not be wise to guess at such relationships.

The discussion did point out the difference between the density of
the square of a variable and the density of the product of two independent
variables having identical densities. The square of a variable represents
the case of complete dependence or perfect correlation if you will. The
product is the opposite extreme—complete independence with absolutely
no correlation.
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It is interesting to look also at the case of a variable divided by
itself as contrasted with the ratio of two independent variables having
identical distributions. The variable divided by itself is the trivial
case in which the quotient must be unity and the associated probability
is also unity. The quotient of two independent variables is of course non-
trivial—the density may exhibit quite unusual characteristics as compared
with the common density of the input variables. For example, one can
verify that for the uniform density example used herein, the quotient has
an infinite mean value—a somewhat striking characteristic.

In deriving the closed form solutions presented herein, it was
observed that finite limits on the input variables tend to be more diffi-
cult to handle than infinite limits. In actual engineering applications,
it is likely that many variables will have finite bounds, perhaps arising
by truncation of a Gaussian or Gamma or some other density form.
This will have no impact on a computer analysis based on discrete
approximations, but it would be significant if one choses to derive
closed form solutions.
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Summary of Closed Form Solutions

The discussion of closed form solutions is summarized by the
formulas and graphs in Figure VI. 6. This figure shows graphs of the
densities of the variable, its reciprocal and its square and densities
of the sum, product and quotient of two variables for the uniform,
Gaussian, Gamma, and Cauchy distributions. Formulas for the closed
form solutions were derived and are shown for all but two cases—the
products of two Gaussian and two Gamma variables. These cases
involve derivations which are much more complicated than the others
in the figure. As noted earlier, an excellent treatment of some of this
theory is included in the publication ""The Distribution of Products of
Independent Random Variables'" by M. D. Springer and W. E. Thompson,
G. M. Defense Research Laboratories, TR 64-46, August 1964 as noted
in the discussion. In this paper, Springer and Thompson used Mellin
transforms to derive many closed form relationships and some in
infinite series form. Springer and Thompson provided us with a table
of ordinates for the density of the product of two Gaussian variables to
permit plotting this curve in the figure. We developed the ordinates
for the case of the product of two gamma's by using the GE time sharing
computer. Curves for the uniform density and sum were plotted from
their simple equations but all other curves were plotted from coordinates
generated on the G, E. time sharing computer. The tabular values
generated by these computer runs are included after Figure VI. 6. It is
of interest to note that the computer output was formated on 8-1/2 by
11 inch sheets immediately ready for reproduction without retyping.

It is also interesting to know that all of these computations required
less than one minute of computer time—each page took only a few seconds.
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« 055556

»0alB L €
« 03125
« (24631

« 02
c 016527
« 0134887

« 0115834
«+ 010204
« 008332

cLUYS T
s LUBYZ
« 006173

e BULS4
« 005

VARIAELEL

« 05
..l
15

.
[AN v (]
w

.
SN W
[V ]

CAUSSIAN LlSindburIoN

RECIFrUCAL

¢}
-« 000037
e 017136

« 103552
«2159¢€4
s 276325

« 293465
« 235389
« 26567

e 241971
«218104
» 175772

« 175604
e 157112
« 141977

« 1281838
<11€111
» 105522

U621 7
«UsdU16
« 000767

« 074336
» 068613
« 063502

« 054723
« Ub43U3
« 051097

e L4742
LN T T-Y )
«041v31

LUANE

1. 200604
«807171
62631

*Sléad4il
*« 433371
« 381545

336014
« 293383
e 263137

s 241971
e 219454
* 199864

o 182661
s 167432
« 153d¢€¢

141714
« 130778
« 120895

« 111232
« 1037747
«UY 6337

« U37531
s 0332323
fUT7562

e UTZ289
« (67423
U274l

«Ub3192
c 054952
CUSIIYT

VI.42

SWUARE

223607
158114
1. 290v9

111303
1
e912371

«d4515a
s 10569
* 745356

« 707107
« £742
e £45497

« 620174
e 53761 4
« 57735

«50YG17
- L42326
« 5270406

$12939
5

vAhIAZLE

3.2
3. 4
3. &

33
4
40 2

4e 4
4e 6
4+ 3

FrRJILLC

2499573
2. 30259
1e57712

1. 60744
1o 38629
1. 20397

1e 04932
«F1+2y1
- 193508

e €93147
e 597327
« 5104826

e 430733
«35€¢ 0>
e 251602

. 223144
e 162513
= 105361

«Lh127
(v}

o

LA

277238
« 271034
« 251815

« 220386
« 2139636
e 176811

« 1772317
« 143747
« 125492
« 105777
< 08412

e 066836

» 052052
« 037735
« 023433

« 021407
«015678
« 01104y

«CO762R]
«QUS1 67
« GLRa2y

« QU2231
R P
s U0USHY

« DUl hesh
« LUU3ET
e GuL192

ULl
< UOLOEB
s DLULSS



CASMA DLSIKIBUILUN-LENSL T

PALEEERRIRRREPFRPC LRI EE  ALPHA SEERRRIRRER L ANG L O REL T LK

VAKIABLE 2] 1 2 3 a
.2 «813731 « 163746 « 016375 « 001032 » 00005
A 67032 , e 268128 «U5S3626 «007)Y s ULL7YY
.6 « 548412 .« 323237 | « 093736 *» 019757 « 002Y 64
3 o%l9329 « 357463 « 143788 « 033342 « 007667
1 . « 367877 « 367377 + 13394 ~ 061313 « 015324
1.2 «301174 « 361433 «21686 . < 086744 .« 026023
1.4 » 2465377 345236 e 241665 « 112777 + 039472
1. 6 « 201877 « 323034 « 258423 * 137428 + 055131
1.3 165279 «297538 «267134 160671 « 072302
2 » 135325 «270&61 « 270671 s 180aay 090224
2.2 « 110803 «243767 «26d144 « 196639 « 108151
2.4 « 090718 « 217123 « 261263 + 209014 125408
2. ¢ ’ » 074274 «193111 « 251045 «217572 «lal422
2.3 « 06081 + 170263 «238375 . 222444 + 155737
a3 « 049737 « 149361 . 224042 .« 224042 168031
3.2 « 040762 + 130439 .« 208702 . 222616 e 175023
3e & + 033373 « 113467 192833 s218617 » 1d5s2%
3«6 « 027324 « 093365 « 171053 « 212463 s 171222
3.8 « 022371 « 085009 «161517 * 2045388 194357
4 «01831¢ » 073263 146525 = 135367 s 125367
Q.2 014230 «Ce2981 - 132261 *« 135165 s 174424
be A « 012077 « 05402 e 118845 « 174305 « 171736
4. 6 « 010052 » 046238 + 106343 - 163063 * 157524
4.3 « 00823 + 039503 -« 074307 2151691 e 132029
5 « 006738 « 03369 « 034224 « 140374 e« 1715467
5.2 « 005517 < 023636 « 074584 - 129273 « 163063
S. 4 «00a517 - 02439 « 065452 «118533 * 16002
5.6 « 003698 + 020708 = 057983 «~ 108234 = 151524
5.8 « 003024 « 01756 « 050923 - 098452 = 142754
& » 002473 «014873 » 044618 « 083235 s 1232852

B

GA4AA DISTRIBULILIN=-RECIFRICAL

LARER LA E RS S0 L LY ] AL PriA LRI AR LR PR R E RS SREE S

VARIABLE o ) 2 ) 3 4
.2 < 163449 +342243  2.10561 3.5093% 4. 38668
.2 - 513031 1. 24258 1. 60322 1. 33602 +835012
-6 524654 ‘d74424 . 728687 - 404826 - 1686717
-3 -+ 427664 55958 + 349737 + 145724 045539

1 ©367d79 +367379 <13394 +061313 +015328
1.2 301804 +251504 +104793 - 029107 < 006664
1.4 c2497¢6 < 175404 <063716 $01517 002709
i.6 < 209086 + 1306179 040837 - 008508 - 001329
1.8 177044 09838 027328 - 005061 -+ 0007u3
2 +151633 +075816 +018954 +00315y < 000395
2.2 +131144 <059611 +013543 - 002053 - LVE2332
2.4 - 11445} - 047685 009935 - 00133 <0001 44
2.6 100697 03873 007448 + 000955 600092
2.3 - 039244 031573 605692 < 00UETS + 00006

3 +077615 +026538 + 004423 000491 + 000041
2.2 «071247 . 022327 003487 +0003¢3 + 006023
3.4 + 064463 <01896 - 002743 + 000273 + 60002

3.6 - 053446 + 016235 . 002255 + 000209 + 000014
3.3 +053229 - 014008 < 001343 000162 + 000011
4 < 043675 <012169 + 601521 - 600127 + 000008
4.2 044673 +010638 . 001266 000101 + Q0GUO0E
4.4 041152 1009353 «GO10€3 - 000031 + 00000%
4.6 033025 + 003266 - 000899 + LOLOES + 600064
a8 03524 + 007342 *+ 000765 + 000053 + 000003
5 + 032749 + 00655 + 0LVESS +000LA4 - 000002
5.2 +030512 + 0050 68 6oL 64 - 600036 - 4uooL2
5.4 +02849 6 «0U5277 + 600439 - 00003 + L0000
56 +026673 +004763 - 000425 - 0v00C2s +00U0YI
Se8 +025017 +004314 + 600372 - 0UGL21 + 60UOG I
6 - 023513 +0G3919 000327 - 00U 14 + 000001

VI.L3



VARIADLE

.2
.4
.6

X3
1
1.2

1. 4
te 6
1«8

(A0
)
o« o

[ANANA]
o~ bR

vhnlABLE

REEEMEREE LRI R R R RN R RO KL

» 714377
» 420014
* 297503

» 228547
= 18374
«~ 152624

= 129432
» 111575
» 097424

* 085955
* 076483
+ 068553

« 061331
» 056063
+ 051073

s Qse72
» 042897
» 032517

vLoedl6
+03332a
= 031427

« 029259
- 027298
« 0255172

+ 0233832
= 022419
« 021065

« 019322

«013678
«017624

R N Y RPN R L)

ooo ocCco [aRal =) [aNeje) oco oocQC

[=ReNe)

cocoC ocCco

o000

[s]

o

GAMMA DISTKRIBUILIN= SuuAKE

«319704
« 265643
« 230445

« 204421
- 18394
* 167195

153146
«141132
» 130703

« 121558
- 113451
- 10621

« 099699
«093312
» 038461

< 033576
« Q0730697
« 074332

+071183
» 067668
« 064407

+ 061374
+ 053543
+« 055909

+ 053439
«051124
* DaBY S1

+ 046907
« 044933
« 043169

ALFIRA FEREKER RN EEEEERECEEEN O NS

+ 071433
« 054004
« 039251

e 09142
«09197
091597

« 020602
« 08926
« 037632

*«Us5955
« 084137
«032217

+«05803a
« 0734383
«UTEE0Y

« 074752
« 012926
«+071134

« 06938
« 067868
« 065727

« 06427
« 062746
- 061245

« 052747
« 058271
» 0568 7¢

055502
« 054167
«05287)

CA4MA DLIETRIBLILIN-LUA

coo oCc o coo [=ReNe] cooQ

[+ReNa] [oNalo] occ ooo

[N aN ]

« 035734

3

*+ 010657
U177

« 023044

«02725¢
« 030657
+ 033439

« 037635

= 039212

« 040519
«Ga1599
« 042484

« 43203

« 0423773

« 04423

«Ga4574
« 044323
+ 044939

«G45C32
«045112
045085

« 025008
» 044887
« 044727

« 044532
+ 044308
= 044056

« 04378
« 043484
« 043169

a

« 001173
« 0028
« 004463

« 006095
+ 007664
«007158

- 01057
« 011901
-013152

« 014326
« 015425
«016454

«017416
< 018314
« 017152

+ 019934
« 020662
« 02134

«02197
« 022556
« 023099

< 023602
-« U24063
« 024433

» 024394
-« 025259
« 025594

« 025901
« 026131
« 026435

ALPHAA  EXaKkEARh ok kr ke vhanhid bk

2

«QUUOO01
«UULLU36
« 0003

« 001247
+ 00353
» 007809

«014a5s7
-« 024673
+ 036162

« 050407
« 066153
«0326C8

« 093925
o 114321
-12812

« 139798
1437
« 155539

« 159332
- 160623
« 153461

«1%€166
«151053
« 144458

» 136718
« 123156
« 119067

« 109716
« 100328
« 09109

VI.hh
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Gamma Products
a=0,1,2,3,4.

{From runs of F260 Program)

Ordinate at midpoint between "START" and "STOP!" is five
times the probability, Curves were drawn by plotting the

probability and changing the vertical scale.

Gamma Product

a=0
START STOP PROBABILI 1Y
+ 00 « 20 °» 3384
*» 20 - 40 « 1557
e 40 * 60 » 099
» 60 80 « 0703
«80 1. 00 « 0527
1. 00 1.20 ¢ 0414
1. 20 1. 40 « 033
1+ 40 1+ 60 « 027
1. 60 1.80 « 0222
1.80 2.00 « 0138
2.00 220 <016
2. 20 2+ 40 «0136
2. 40 2. 60 «0117
2+ 60 2.80 « 0102
280 3. 00 « 0088
3. 00 3. 20 « 0079
3. 20 3. 40 « 0068
3, 40 3. 60 « 0061
3. 60 3+80 « 0053
3.80 4. 00 « 0048
4. 00 4. 20 « 0043
4. 20 fie 40 « 0039
4. A0 4. 60 « 0034
4. 60 4.80 « 0032
4.80 5. 00 «0028
5. 00 5.20 « 0026
5. 20 S« 40 « 0023
Se 40 5. 60 « 0021
S« 60 S.80 « 0019
5.80 6. 00 « 0017
6. 00 6. 20 + 0016
6. 20 &e 40 « 0015
6. 40 6. 60 « 0013
6o 60 6:.80 » 0012
6+80 7. 00 » 0011
7. 00 7. 20 =001}
7+ 20 7+ 40 P+ 43681E-04
7+ 40 T« 60 8¢94820E~04
T+ 60 780 8.23562E-04
7-80 8. 00 7« 55059E-04
8. 00 8.20 7. 01411E-04
8«20 8. 40 6+ 62229E-D4
8.+ 40 8. 60 S5¢93497E~04
8¢ 60 8.80 Se 68472E-04
8+80 9. 00 S5« 22160E-04
9.00 9.20 4+82370E-04
9. 20 9. 40 4« 52413E-04
9. 40 9. 60 40 29304E-04
9. 60 9.80 3.83981E-04
9.80 10.00 3¢ 70714£-04
10. 00 20.00 « 0055

VI.4s



Gamma Product : Gamma Product

o =1 o =2
START sTOP PROBABILITY START STOP PROBABILITY
«00 « 20 « 0321 « 00 : « 20 «0012
« 20 * 40 « 0423 « 20 . 40 « 0033
. 40 « 60 « 0467 - 40 60 « Q059
v 60 «80 « 0473 * 60 «80 .+ 0084
«80 1. 00 « 0461 «80 1. 00 «010S
1. 00 120 e 0442 1.00 1. 20 « 0122
1.20 140 « 0419 1«20 1+ 40 « 0137
1. 40 1+ 60 « Q395 1+ 40 1. 60 « 0148
1. 60 1.80 « 0371 1« 60 1.80 « 0158
2. 00 2. 20 « 0328 200 220 e 0172
2. 20 2+ 40 + 0306 2. 20 20 40 0176
2. 40 2+ 60 « 0287 2« 40 2. 60 «018
2. 60 280 « 027 2. 60 280 « 0182
2.80 3.00 « 0251 280 3. 00 «0183
3. 00 3. 20 « 0238 3. 00 3. 20 « 0184
3. 20 3+ 40 « 0221 3. 20 3. 40 « 0183
3. 40 3. 60 « 021 3. 40 3. 60 « 0183
3. 60 380 e 0194 3. 60 3.80 « 0181
3.80 4. 00 « 0185 380 40 OC «018
4. 00 4. 20 «0173 4+ 00 4. 20 «0177
4¢ 20 4. 40 « 0163 40 20 4 40 «017S
4. 40 4. 60 « 0152 4 40 4. 60 «0172
4+ 60 4.80 «014¢ 4. 60 4.80 « 017
4. 80 S« 00 « 0134 4.80 . 5.00 « 0166
S« 00 5.20 « 0129 5« 00 S« 20 « 0164
S« 20 Se 40 « 0121 S« 20 Se 40 «016
Se 40 Se 60 «0114 S5¢ 40 S« 60 20157
S. 60 580 « 0108 . 5«60 5.80 « 0154
S5.80 6. 00 - 010} S¢B0 6+ 00 «015
6. 00 620 « 0097 6« 00 620 « 0147
6. 20 & 40 « 0091 6+ 20 6. 40 «0143
6+ 40 6+ 60 « 008 ¢ 6« 40 6. 60 «014
6. 60 680 « 0082 6 60 6+80 « 0137
6.80 700 « 0077 680 7. 00 «0133
7.00 7«20 + Q074 7. 00 T« 20 « 0131
7. 20 7+ 40 « 0068 720 T 40 « 0126
T+ 40 7. 60 « 0066 T« 40 7. 60 «0124
7. 60 7.80 « 0063 1+ 60 780 <012
7. 80 8.00 + 0059 780 8.00 «0117
8. 00 8+ 20 « 0056 8. 00 820 «0114
8. 20 8. 40 « 0054 8. 20 8+« 40 « 0112
8. 40 8. 60 « 005. 8. 40 8. 60 « 0107
8. 60 8.80 « 0049 8. 60 880 « 0106
8.80 900 «-0046 8.80 .00 + 0102
9. 00 920 « 0043 9. 00 9+ 20 « 0099
9.20 9. 40 » 0042 9. 20 9% 40 « 0097
9. 40 9. 60 « 004 9. 40 9. 60 « 0095
9. 60 9.80 « 0037 9+ 60 980 « 0091
9«80 10.00 «0036¢ 9.80 1000 « 0089
10. 00 20.00 «0704 10. 00 20. 00 e 2352

VI.L6



STAR1
«00
» 20
o 40
- 60
«80
1. 00
1. 20
1. 40
1. 60
1.80

2. 00
2. 20
2. 40
2+ 60
2.80
3. 00
3.20
3. 40
3. 60
3.80
4¢ 00
40 20
4. 40
4. 60
480
S« 00
5. 20
Se 40
Se. 60
5.80
6. 00
6+ 20
6. 40
6 60
680
7. 00
7. 20
T« 40
7+ 60
7-80
8.00
8. 20
8. 40
8+ 60
8+80
9. 00
9.20
9+ 40
9« 60
9.80
10. 00

Gamma Product

o =

STOP
« 20
o 40
e 60
+80
1.00
1« 20
1« 40
1«60
1.80

2.00

2420

2. 40

2+ 60

2.80

3.00

3. 20

3. 40

3. 40

3.80

4,00

4: 20

4. 40
4¢ 60
4.80
500
S5+ 20
S« 40
S¢ 60
S«80
6+ 00
620
6. 40
6« 60
680
700
720
T+ 40
7. 60
780

8.00

8.20

8. 40

8+ 60

8.80

9. 00

9.20

9 40

9+ 60

9.80

10. 00

20. 00

3

PROBABILITY START

2.8519 7E- 05

1. 26807E-04

3+55770E-04

6+82424E-04
«0011
« 0015
« 002
« 0025
« 003
« 0035
« 004
« 0045
+« 005
« 0055
« 006
« 0063
« 0048
« 0071
« 0075
«' 0078
«+ 0081
« 008 4
.« 0087
« 0088
« 0091
« 0093
» 0095
« 0096
« 0097
« 0099
.01
«0101
« 0101
« G102
« 0102
« 0103
« 0103
«0103
« 0103
« 0103
« 0103
« 0103
« 0102
« 0102
« 0101
« 0101
« 01
«01
« 0099
« 0098
.« 3629

« 00

« 20

40

- 60

«80
1. 00
1. 20
1..40
1+ 60
1«80
2. 060
2. 20
2. 40
2+ 60
2.80
3.00
3. 20
3. 40
3. 60
3.80
4. 00
40 20
4¢ 40
4. 60
4.80
5. 00
5. 20
S. 40
Se 60
S«80
6. 00
6. 20
6+ 40
6+ 60
680
7. 00
7. 20
7+ 40
T+ 60
7.80
8.00
8.20
8. 40
8. 60
8.80
9. 00
920
9. 40
9+ 60
9.80
10.00

VI.h7

Gamma Product

a=4

STOP
« 20
e 40
-« 60
«80

1.00

1.20

1+« 40

1. 60

1.80

2. 00

2. 20

2+ 40

2. 60

230

3. 00

3.20

3¢ 40

3. 60

3.80

4. 00

4. 20

4+ 40

4 60

4.80

S 00

5.20

Se 40

Se 60

5.80

600

620

6. 40

6+ 60

680

7.00

7+ 20

7. 40

7. 60

780

8.00

820

8. 40

8. 60

8.80

9.00

920

9. 40

9. 60

9.80

10. 00

20.00

PROBABILITY

49379 7E-07
3.01330E-06¢
1:.26716E-05
3.26122E-0S
6+ 57359E-0S
109 647E~-04
1+ 70719E-04
20 43246E-04
3. 33558E-04
go326145‘04
¢ 41872E~04
6. 67T298E-04
8.05899E-04
9+ 42595E-04
« 0011}
« 0012
« 0014
« 0016
« 0018
« 0019
« 0021
« 0023
« 0025
«002¢
« 0028

- 003
« 0032
« 0033
« 0035
« 0037
« 0038

« 004
« 0042
« 0043
« 0045
« 0046
« 0048
» 0049

« 005
« 0051
« 0053
«+ 0054
« 0055
« 0056
« 0057
+« 0058
* Q059

« 006
« 0061
« 0061

« 33



CAsiAA LISIRIBUTIIN-GIITIENT

kkbhkdktrabbksrinkhkbbbbh AubrA EEFEEREEREEFTREERR IR Eh R kR

AKLABLE h] 1 2 3 4
.2 . 694444 « 5783704 « 401875 260476 « 162798
.a « 510204 « 62474 « 637489 « 607133 * 557571
6 « 370625 « 549316 « 64373 « 70408 * 742534
-8 « 303 642 e 457247 « 564503 « 650456 .« 722729
1 «25 «375 « 463715 «S46875 e 615234
1.2 «206612 «30735¢ » 38102 « 4408 43 « 471357
i 4 » 173611 *« 253183 « 307648 2457317 » 381716
1.6 e 147329 « 210077 « 243611 » 2746 «232474
1e8 «127551 « 175708 « 201706 «216113 * 22328
2 «111111 s las) 48 » 164602 « 170706 + 170706
2.2 « 097656 » 125835 135225 135538 ~ 131072
Dt « 036505 « 107757 e 111859 «1UB375 « 16125
2.6 + 07716 « 0926708 ~ 093165 - 047222 078742
2.8 « 069252 08057 «078119 «070€5€ c L6167
3 « 0625 «070313 « 065718 « 057673 « 043666
3.2 « 056639 «061703 - UbbY 66 «0471379 = 0338671
3o &t +051653 « 054428 + 047793 « 037169 « 030955
3.6 «C47259 « 043242 « 041037 - 032582 « 024944
3.3 » 043403 + 042951 + 03541y « 027261 -« 020233
4 «04 « 0384 « 03072 « 022933 «Cl1e515
4.2 + 036782 «0344¢¢ 026767 <017402 « 013561
4. 4 « 034294 «031048 + 023424 «0lé4a%4 <0112
4 & « 031838 - 028062 « 020583 » 01409 0073
4.3 » 029727 « 02545 «018157 -« 01209 « 007763
S « 027779 » 023143 «G16075 + 010419 « 006512
5.2 + 026015 021115 » (14282 « 009016 + DUSa88
Se 4 «024414 «013312 «Gl1273 - 007832 e QU4atas
5. & « 022957 « 0177038 -011382 « 006329 « 003951
Sed « 021626 « 016276 «010208 « 005975 063573
6 - 020400 «014994 « 009213 » 00524¢ « 00239

Cavtrny uwisinlBurlon

VAKRLABLE UENSLIY SUUAKF &4 VARLAbLLE rrJlbutl
o] « 315158 » 457538 *« 1587158 «3 « 268106
«2 « 306067 « 296568 « 157579 .6 « 161742
<3 «29202¢ 22352 « 155653 o9 « 112271
.4 « 274405 e 172747 « 153034 1.2 = 0337¢€5
S « 254649 « 150053 « 149793 195 « 065732
.6 234051 « 123418 146014 1.3 « 053174
.7 » 213631 « 1115878 « 141736 2+ 1 « 04402
3 « 1340321 « 08856 « 137203 2.4 « 03727
9 « 175362 « 088297 « 132352 2.7 » 031999

1 « 159155 = 079578 « 127324 3 - 027424
141 « 144032 « 072261 » 122192 2.3 « 024463
1.2 « 130455 «0660L4 « 117026 3+ 6 « 021703
1.3 «118331 + 060671 «+ 111884 3.9 « 013403
1.4 + 107537 « 056046 «106315 4e 2 «01747%7
1.5 « 027242 «05198 «10185% be 5 + 015333
1.6 « 0392413 « 048393 + 027046 4. 3 » 014422
1.7 « 081828 « 04521 + 092398 5.1 » 013201
fe « 075073 « 042367 « 037931 S5e 4 «01213¢
19 « 067048 « 039815 « 033656 Se 7 -0112

2 « 063662 « 037513 «+ 072578 [ « 010274
2«1 « 053837 » 035428 « 075693 6+ 3 « 00964
2.2 » 054505 « 033532 «07201¢ 6o £ « 003985
2.3 « 050666 + 031301 « 064527 6.9 « 0083798
2.4 « 047037 « 030216 « 065227 7.2 » 0078 8
25 « 043305 « 02876 - 062107 7+ 5 « 0073y
2. € « 041019 «0274)3 « 059165 7.3 s 0065
267 » 038327 « 026178 + 056338 Be 1 « 006561
2.8 « 036008 « 02503 « 053769 8. 4 - cre2
2.3 « 033427 « 023964 « 051299 87 « 0058 ¢9
3 « 031831 « 0229 72 " 048971 b - 005566

VI.L8



bis

10
20
30
40
S0
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
2206
230
250
260
270
2580
290
300
310
320
321
322
330
340
350
400
410
420
430
440
450
460
465
466
470
480
490
500
510

CAL

PRINT "skoeokokokkokodokokook kkkdokk gk kkdokkd kkfdkkkkkkk Rk khkkkkkokkok gk kks fkikd ki
FOR K=t TO 8 ) : .
PRINT\PRINT\PRINI\NPRINT\PRINT\PRINI\PRININPRINT\PRINT

IF K>S«.5 THEN 110 , _ ) :

GO TO (50056005, 700>800»,900510005110051200) K
PRINT : -
PRINT TABC13) ;3 wokkdkkckkdokkokdkkkkkhkkkkkkk  ALPHA  Frkkkkkkksorkkkkkkddknx
PRINT TAB(a):"VARIABLE"iTAB(17):"0";TAB(29)J"1"31AB(41)5"2":”'
PRINT TAB(53);'"3"3 TABC(ES)3 4" ‘

GO TO 120

G 19 (500, 6005 700,83005,9005, 1000511005 1200> «
CPRINT

I=0

IF K>7¢5 THEN 170

N=3

GO TO 180

N=2

FOR X=e¢1 TO & STEP .1

I=1+1 .

GO 1O (530» 630s 73058305,930,10305,11305,1230> K

GJ SuB 400

PRINT TABCTCOI)I 3 V(03 TABCI2+1C1)23v(1)3 TABC24+7T(2))3\(2)3;

PRINT TABC(I36+1(3))3Vv(3)3TABC48+TC 43530 4);5 1ABCEO+T(SII3 VIS

IF 1<2.5 1HEN 280

PRINT

i=0

NEXT X

IF K>7.5 TAEN 320

PRINT\PRINT\PRINI\PRINT\PRIN INPRININPRININPRININFPARININPFRINT\PRINT
G0 10 330
PRININPRINI\PRINTI\NPRININFRINT\PRININFPRININPRINI\PRINI\NFRINI\NFRINT
PRININPRININPRININFRINI\PRININPRININPRININPRININPRININPRININPRINI
PRINT\PRINT\PRIN1

FRINT "k ok ko ok ok ok ok ko ok ok o ok ok ok ok ok ok oK ok & 0k sk ok ok ok ok ok sk ko ko ok ok ok ok ok s & ok ok st ok ok sl ok ok ok ok ok ok
NEAT K

END

FOR J=0 T0 S

VCII=EINTCY(J)*1E6+e 50011/ 1E6

=0

FOR Z=2 TO 0O STEP -1

IF ABS(V(J)+.0001)>>=10tZ 1HEN 470

T=1+1

NEXT 2

IF v(J)<>0 THEN 470

=2

TCJd)=T

NEXT J

RETURN

PRINT TAB(23);3"GAMMA DISTRIBUTION-DENSIIY"

G0 19 60

VI.kg



DISCAL CONTINUED

1040
1045
1050
1055

1060
1065
1100
1105
1110
1115
1120
1130
1135
1140
1145
1150
1155
1160
1165
1200
1205
1210
1215
1220
1230
1235
1240
1245
1250
1255
1260

VO =CHEXP (=« 5% (X1 2))

Vv(2)=(C/ (X1 2 *EXP(-«5/(X12))

Vv(3)=(C/ SARCXI I*EXP(~« 5%X)

V(4 =3+(2%\(0))

V(5)=« 282095%EXF(-((Vv(4)-3012)/4)

G0 T0 210

PRINT TABC(27)3*"CAUCHY DISTRIBUTION"

PRINT\PRINT

PRINT TAB(2)3'"VARIABLE"™3 TAB(16)3'DENSITY"31AB(28)3"SQUARE';
PRINT TABC4023"5UM"3 TAB(S0) s " vVAKIABLE"3 1ABC64) 3 "FRODLCT"
GO 19 120

D=.31831

Vol =X

VEDI=D/C1+(X12))

V(2)=D/ (2% SQR(X)I *(1+X3)

V(3)=2%D/ 4+ (X1 2))

Vv(4)=3%v(Q)

VES5)=(Dt2)*(1/7CCVv(4)12)=-1))*L0GCV(H T2

G0 10 210

PRINT TAB(26)3™UNIFORM DISTRIBULTION"

PRINT\NPRINT

PRINT TABC2)3*VARIABLE"3 TABC15)3"RECIPROCAL"3 TAB(27)3"QUO LIENT"}
PRINT TAB(38)3'"VARIABLE"3TAB(S1)3"SQUARE'3 TAB( 633 '"PRODUCT"
G3 10 120

v(0)=5%K

viD=1/7cvior2)

vi2)=v(1)rs2

vi3r=Xs2

v(4)=1/0C2«SQR(V(3)))

v(5)=LOGA1/V(3))

60 1o 210

VI.50



DISCAL CONTINUED

530 v(0)=2#%X

540 V(1)=EXPC(~-Vv(0))

550 v(2)=v(1)*xv(0)

560 v(3)=wW2)%xv(0)/2

570 v(4=v(3)*W0X/3

SBO0 V(S)=v(A*y(0)/ 4

S90 GO T 210

600 PRINT TAB(22)3"GAMMA DISTRIBUTIUN-RECIPROCAL®"
610 GO TO 60

630 Vvi0)=2%X

640 V(1DI=EXP(=-1/7v(D))I/7C(Vv(D)t2)

650 v(2)=v(1)/v(0D)

660 Vv(3)=v(2)/7(2%xVyC(0))

670 v(4)=vy(3)/C3*%yC0))

680 VI(S)I=vy(4a)/(4%xy(0))

690 GO TV 210

700 PRINT TAB(24)3"GAMMA DISTRIBUTI@N-SQUARE"
710 GO TO 60

730 v(0)=2*xX

740 VC1I)=EXPC(-SQRCVC0)) I/ (2%xSQR(VC0)))

750 v(2)=v(1)*SQR(V(0))

760 Vvi3)=v(2)*SQR(V(0))/2

770 V€A =y( 3 *SARCV(0))I/ 3

780 V(S)=v(DxSQR(V(D) )/ 4

790 GO TQ9 210

800 PRINT TAB(25)3"GAMMA DISTRIBUTIQN~-SULM"
810 GO 19 &0

830 Vv(0)=3*X

840 V(1)=0

850 v(2)=0

860 V(I)=EXP(-Vv(0)I*(Vv(O)*6)/ 720

870 V(=0

880 v(5)=0

390 Gu T9 210

900 PRINT TAB(23)3"GAMMA DISTRIBUTION-QUO TIENT"
910 60 10 60

930 V(0D)=2%X

940 V(1)=1/7CCV(O)+1)2)

250 v(2)=C(v(1)12)*6+y(0)

960 VI(3)=Vv(2)%y (1) *S5xy(O)

970 V(A=v(3)*Vy(1)k(14/3)%y(0)

980 V(S)I=V(D*v(1)*(I/72)%y(D

990 GO 19 210

1000 PRINT TAB(26)3"GAUSSIAN DISTRIBUTION'"
1005 PRINT\PRINT

1010 PRINT TAB(2)3"VARIABLE'"3 TAB(16)3"DENSITY"3 TAB(27)3"RECIPRJICAL"'';
1015 PRINT TAB(39)3'"SQUARE'"3 TAB(S0)3"VARIABLE"; TABC 64)3''SuM*
1020 & 1v 120

1030 C=.398942

1035 v(0)=X

VI.51
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These packets include:

Some preliminary data on LSBR and insulation erosion rates
for 260 S1.-1, 260S1.-2, Polaris and Minuteman;

LSBR distribution data for 260SL-1, SL-2, and propellant modules
distribution data for 260SL.~3;

260 inch diameter motor, Saturn 1 B Improvement Insulation
Design, DLNA;

260/SIV-B Data for Burn Through Failure Mode Design Parameters;

Polaris Motor Insulation Erosion Data;
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Requirement/Capability Data for lnner Bore Hoop Strain and
Interface Shear Stress (Firing and Flight Conditions);
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Propellant Grain Requirement and Capability Data for 260/SIV-B
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(II-1) Failure of Longitudinal Weld in Hoop Stress;

(II-2) Failure of Forward Head Circumferential Weld in
Meridional Stress;

(II-3) Failure of Forward Skirt Forging in Combined Com-
pression, Shear, and Bending;

(II-4) Failure of Nozzle Joint Bolts in Tension Due to Com-
bined Pretorque Load, Pressure Ejection Load, and TVC
Moment; .

(I1-5) Separation of Nozzle and Chamber Flange Due to
Ejection Load per Bolt Exceeding Pretorque Load
per bolt;

(II-6) Failure of Insulation/Case Bond in Shear Stress.
Phase II Report, 2 60-inch Motor Reliability Study, Aerojet

General Corporation. 16 October 1967 through 17 May 1968.
Report NAS 7-572 PR-12.
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