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ABSTRACT

Argon atomized nickel-base alloy powders of two compositions were consolidated
by extrusion and processed thermomechanically. The compositions are strength-
ened by precipitation of the body-centered-tetragonal Ni Ta or NizCb phases.
Microstructural observations indicated good stability for the N1 %a phase up
to 1L00°F (760°C). Mechanical progerty measurements showed a ten311e yield
strength of 189,000 psi (1300 N/mm=) at 1200°F (650°C) for the alloy strength-
ened by the N13Ta phase with greater than 10 percent elongation.




SUMMARY

This work was undertaken with the objective of ascertaining the feasibility

of producing a high-strength 1000-1400°F powder-metallurgy alloy in which = .
precipitation of a tetragonal coherent y" phase would be the principal
strengthening mechanism. Two compositions were evaluated in which the
coherent body-centered-tetragonal y" phases were NiBTa and NizCb, respectively.

Alloy 1 - N1 -20Cr - 10 Co - 7.0Mo - 9.5 Ta - ,05 C - .02 Oxygen
Alloy 2 - N1 - 20 Cr - 10 Co - 7.0Mo ~ 7.0 Cb - .05 C - .02 Oxygen

Argon atomized powder of these two compositions was consolidated by canning
and hot extrusion. Subsequently, the extruded material was cold-worked and
aged to precipitate the body-centered-tetragonal y" phase in either case.
(NizTa in Alloy 1 and Ni,Cb in Alloy 2). Extensive microstructural analysis,
involving optical microscopy, scanning and transmission electron microscopy
(both thin foils and replicas) and diffraction, was performed in this study.

In addition, a limited program of evaluation of mechanical properties was
carried out. Of the two systems investigated, in Alloy 1 a NizTa strengthened
powder-metallurgy alloy system has been defined in which the 1200°F (650°C)
tensile yield strength is 189,000 psi (1300 MN/mE) with greater than 10 per-
cent ductility and the stress-rupture life at 110,000 psi (755 MN/mE) and
1200°F (650°C) is of the order of 4O hours. After 100 hours exposure at
1400°F (760°C), 92 percent of the above yield strength is retained at 1200°F
(650°C).

In this work no attempt has been made at optimizing the thermomechanical
treatments to obtain the highest tenslle and stress rupture properties.

The results, however, show feasibility and point to the potential of strength-
ening a powder metallurgy superalloy by precipitation of the body-centered-
tetragonal y" phase,




INTRODUCTION

The powder metallurgy processing method to produce fully-dense consolidated
material has been afplied to several superalloy compositions over the last 5
to 10 years. work(15,2,3)on pre-alloyed powders of B-1900, IN-100, 713-C

type compositions has shown the feasibility of consolidating such powders.
However, most of these attempts have concentrated on the powder-processing
technique using existent commercial alloy compositions and subsequent property
evaluation of the consolidated material.

The present work was undertaken to ascertain the feasibility of utilizing

the powder-processing method using certain previously-developed, precipitation-
strengthenable superalloy compositions to produce a high-strength superalloy
bar for 1000-1400°F (540-760°C) applications.

FPor the present program, powders were prepared by inert gas atomization of a
pre~alloyed master melt. After screening and separation, powders were canned
in steel Jjackets under argon and extruded at a ratio of 8-2 to 1 to provide
19.0 mm. diameter bar. This as-consolidated material has been processed by
cold-swaging and subsequent aging. Mechanical properties have been evaluated
for this precipitation-strengthened material and structural observations have
been carried out using optical, replica and thin foll transmission metallo-
graphic techniques.

The data reported herein includes extensive microstructural observations on
both the as-atomized powders and as-consolidated material in various stages

of thermomechanical treatment for two experimental alloy compositions. The
feasibility studies have excluded any attempt at optimizing thermomechanical
processing or heat treatments; nevertheless, the processing sequence and
heat-treatments chosen for this study have shown that a high strength P/M
alloy system has been defined which relies upon the precipitation of a
body-centered-tetragonal NizM phase for its strength. Of the two P/M alloy
systems investigated, Alloy 1 is a NizTa strengthened system. At 1200°F (650°C),
this system has manifested a tensile yield strength of 189,000 psi (1296 MN/m2)
with better than 10 percent elongation. After a 100 hour exposure at 1400°F
(760°C), 92 percent of these 1200°F (650°C) strength levels are retained.

In stress-rupture tests at 1200°F (650°C) the material shows properties
comparable to the wroughit superalloys currently in use.

EXPERIMENTAL PROCEDURES AND RESULTS

Alloy Preparation

140 pound (63 kg.) heats of two alloys were vacuum induction melted. The nominal
compositions sought were (in weight percent):

Alloy 1 - Ni-20Cr-9.5Co-7.0Mo-9.5Ta-0.05C-<0.02 QOxygen

Alloy 2 - Ni-20Cr-9.5C0o-7.0Mo-7.0Cb-0.05C-<0.020 Oxygen




In each case the material was cast into remelt bars. These bars were
remelted in a small induction furnace and atomized in a horizontal argon-
£illed tank. The atomization process involved the impingement of a high
pressure argon gas stream upon the stream of molten metal emanating from
a specially designed nozzle. The interaction of the high pressure gas on
the molten stream causes "atomization" to occur. The droplets of as-
atomized material are rapidly solidified by contact with the inert gas
within the horizontal cylinder chamber and collect therein. Various
distributions of sizes are possible in this process dependent upon the
atomization parameters; nozzle temperature, degree of superheat and

inert gas pressure being the primary controlling factors. In the present
investigation a liquid metal temperature of 2950°F (1620°C) and argon
pressure of 350 psi (2.40 MN/mZ) was used in the atomization process.
These conditions were chosen to minimize the oxygen content of the resultant
powders and as a necessary consequence the coarse particle fraction of
the as-atomized powders was higher than normel. The "clean-up" weight,
i.e., the weight of all atomized material collected from the atomization
chamber was 98 pounds (44.6 kg. ) for Alloy 1 and 105 pounds (47.8 Xkg.)
for Alloy 2.*

As-atomized powders were screened under argon to separate the -100 mesh
fraction and further screened to separate out the -325 mesh fraction and
to retain the -100/+325 mesh fraction. (At this point, microstructural
work on as-atomized powders was carried out as reported later in the
text.) The overall weight of the -100 fraction for Alloy 1 was 48 pounds
(22.0 kg.) and for Alloy 2, 52 pounds (24.0 kg.). Oxygen analyses

were carried out on each alloy for both the -100 and the -100/+325 mesh
fraction using a neutron activation analysis technique. The oxygen levels
were found to be as follows:

TABLE T

Oxvgen Analyses

Alloy 1 Alloy 2

-100/+%25 Fraction 163 ppm 73 ppm
159 ppm 68 ppm

~-100 Down Fraction 189 ppm 159 ppm
118 ppm

¥ Difficulty was experienced in maintaining adequately low oxygen levels for
Alloy 2 and three heats had to be atomized before an acceptable com-
position was obtained. It is the acceptable final heat that is reported
here.

no




The -325 mesh fraction of the -100 mesh material was, respectively, 13 pounds
(6.0 kg.) out of 48 pounds (21.8 kg.) for Alloy 1 and 15 pounds (6.8 kg. )
out of 52 pounds (23.6 kg. ) for Alloy 2. Thus it was clear that exclusion
of the -325 mesh fraction from subsequent processing would reduce the amount
of available material but also permit lower 0o levels (per the above quoted
analysis) in the eventually consolidated material, Accordingly, -100/+325
mesh blended powder was divided into approximately 2.5 pounds (1.1h4 kg.)
batches and canned in a 63.5 mm. 0.D. cylindrical steel jacket with 6.35 mm.
wall thickness which was closed at either end. The front end of the steel
can comprised a 45° tapered conical frustrum and the back-end comprised a
plate with an evacuation aperture. After welding of the end-plate the can
and contents were evacuated, back-filled with argon and the evacuation
aperture then sealed.

Extrusion of the powder-filled can was carried out at 2200°F (1205°C)

using an extrusion ratio of 8.2:1., The as-~extruded bar was pickled in a
50:50::HNO3:Hp0 solution to remove the steel Jjacket; care being taken to
remove all traces of the steel. From a 762.0 mm. long extruded bar, 150

to 200 mm. of material was removed from either end. The resultant bar was
checked with a magnet to insure that only as-consolidated P/M alloy bar was
obtained without any entrapped "folds" of steel being present (see Figure 4).

Analysis of the chemical composition of the as-extruded bar for Alloy 1 and
2 1s given in Table IT.

The as-extruded bar was examined by both optical and thin foil transmission
metallography to ascertain carbide particle distribution, grain size, etc.
This data is reported later. After ascertaining that the requisite micro-
structural conditions were met, the material was processed further by cold
swaging.

In the case of Alloy 1, various combinations of hot and cold swaging treat-
ments and subsequent aging treatments were preliminarily carried out. The
resulting microstructure was studied by thin foil transmission electron
microscopy. In the next section some of these observations are discussed.
It should be emphasized that the scope of the present program was limited
enough so as not to allow adequate iterative experimentation to ascertain
the best thermomechanical treatment sequence and aging conditions conducive
to optimized mechanical properties. Nevertheless, based on the micro-
structural observations, the following treatment was given to the as-
extruded bar of Alloy 1:

Treatment A - As-extruded 0.7-inch (18.0 mm.) diameter bar cold swaged
to 0.590-inch (15.0 mm.) diameter bar and aged for
120 hours at 1200°F (650°C).

Treatment B - As-extruded 0.7-inch (18.0 mm.) diameter bar cold swaged
to 0.590-inch (15.0 mm.) diameter bar, annealed for
8 minutes at 2200°F (1204°C), water quenched, cold swaged
to 0.460-inch (12.0 mm.) diameter bar and aged for 120
hours at 1200°F (650°C).
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TABLE TT

CHEMICAL COMPOSITIONS OF THE AS-EXTRUDED P/M

BAR FOR ALIOYS 1 AND 2 IN PERCENT BY WEIGHT

(Comparison with original melt chemistry and
chemistry of the as-atomized powders is provided)

Alloy 1 Alloy 2
Original Powder Extruded Original Powder Extruded

Heat (-100/+325) Bar Heat (=100/+325) Bar
53.7 51.8 5h.5 56.79 56 .64 56.65
20.08 19.7 20.2 19.9% 18.97 18.85
9.41 9.66 9.62 10.0kL 9.95 10.17
7.10 6.97 6.80 7.06 6.9k 6.84
9.53 8.57 8.77 - 0.37 0.10
- - 0.1 1.95 T.27 7.10
0.0k 0.036 0.038 0.143 0.1k 0.159
<0.2 <0.2 0.1k <0.01 0.18 0.18

- 0.0160 0.01L6 0.00k1 0.0071 0.0182

- - 0.005 - - 0.009

- - 0.00k4 - - 0.002

- - 0.029 <0.01 - 0.013
- - <0.1 0.1kL 0.02 0.02
- - <0.1 0.02 - <0.02




Microstructural examination of the material during the above processing for
both Alloy 1 and 2 was carried out on cross-sections of the bar material.
Thin foil microscopy was carried out on similar cross-sectional "slices"

of the respective bars.

Specimens for tensile and stress-rupture tests were machined from the as
cold-swaged bars and subsequently heat-treated as indicated above.

Specimen geometry was in accordance with ASTM specifications. The tensile
specimens comprised a 1.5-inch (38.1 mm.) long specimen with 1.0-inch

(25.4 mm.) gauge length and 0.16-inch (4.06 mm.) diameter in the reduced
section; ends were '"button heads" with a gradually tapered geometry. Stress-
rupture specimens were 3-inch (76.2 mm.) long with threaded ends with a
0.250-inch (6.35 mm.) diameter in the reduced section and 1.5-inch (38.1 mm.)
gauge length.

Microstructural Observations

Characterization of Powders and Consolidated Material

Figures la,b,c show scanning electron micrographs of the as-atomized powders
of Alloy 1. The majority of particles were found to be spherical in shape
and show a surface solidification structure. In some cases finer particles
of approximately 40-80 micron diameter were found to be attached to or
embedded in larger particles (Figure lc). Alloy 2 powders are shown in
Figures 19a and b. In Figure 19a, the low magnification (100X) scanning
electron micrograph shows that several larger particles have the finer
"attached" particles and Figure 19b provides an example of the nature of
the solidification structure at the particle surface. Dendrites can be
seen 1o radiate asterically from certain nucleation points on the surface
of the powder particle (Figure 19b) which resembles a spherical "micro-
casting". Upon sectioning the powder particles, the dendritic structure
was revealed even within the body of the particles,

In order to underbtake thin foil transmission electron microscopy of
individual as-atomized particles, a previously-developed technique(u) was
employed. Powder particles were spread upon an adhesive tape after the
adhesive side of the tape had been previously gold-plated. When this

sample was placed in a nickel electroplating bath, the adhesive allowed

the powder particles to stay in position and the gold-film provided adequate
conductivity to enable the plating process to begin. Once the nickel
electroplate was sufficiently thick to "hold" the particles, the tape backing
could be removed and the gold layer etched away. The "powder particles held
in nickel plate" sample was further electroplated to provide a firm specimen
approximately O0.004-inch (1.0 mm.) thick. Discs, 3 mm. diameter, cut from
this sample were then electropolished in twin-jets of electrolyte so that a
"dimple" was created on either side of the 3 mm. disc. TFigure 2 shows an
optical micrograph of an as-dimpled disc. When a perforation appears within
the electropolished dimple it is possible to examine the surrounding edge by
100 K.V. transmission electron microscopy and study both the thinned electro-
lytic nickel plate and the thinned powder particles. Figures 3 and 20a and b




provide examples of the thin foil microstructure of individual powder
particles of Alloys 1 and 2, respectively. The dendritic solidification
structure shown in the scanning electron micrographs (Figures la,b,c and
19a,b) is now revealed to have a primary carbide phase assoclated within
the dendrites. These carbides were found to be MC type carbides where,
presumably, M is predominantly tantalum in Alloy 1 and predominantly
columbium in Alloy 2. It is also worth noting that the carbides in the
as-atomized particles are platelets., This is shown in Figure 20b where
the matrix material surrounding the carbide has been eiched away. In
the as-atomized powders, dislocation tangles can be seen (Figure 20a)
which indicate that during the solidification some thermally-induced
strains have occurred.

As indicated in the previous section, after the as-atomized powder par-
ticles had been microstructurally analyzed the material was canned and
extruded. In Figure 4, a photograph of the as-extruded and de-canned bars
is shown. The end regions of the extruded bars were removed ito eliminate
any "folds'" of steel and a cross-section "slice" of the consolidated B/M
bar taken for microstructural examination. Figure 5a and 2la are optical
micrographs of the as-extruded P/M bar for Alloys 1 and 2, respectively.
Since the extrusion temperatue was 2200°F (1205°C), the as-extruded bar
has essentially a recrystallized matrix. The thin foll transmission
electron micrographs in Figure 5b and c¢ (Alloy 1) and 21b and c (Alloy 2)
clearly show the recrystallized structure. It is worth noting that the
carbide particles and platelets in the as-atomized powders (see Figures 3
and 20a and b) are greatly refined after extrusion and there is a well-
distributed morphology of MC carbide particles ranging in size from

0.25 micron to 1.0 micron. A low dislocation density can be observed in
the as-extruded material (see Figure 5c).

Heat Treatment of Extruded Material

Some preliminary heat treatments were carried out on the as-extruded

P/M bar for both Alloy 1 and Alloy 2 to ascertain the behavior of the

NizTa (Alloy 1) and NizCb (Alloy 2) strengthening precipitates and in
particular, to ascertain the change in size and morphology of the strength-
ening precipitates with aging time and temperature.

Figures 6a and b are thin foil micrographs of Alloy 1 extruded P/M bar which
had heat treatments of 71 hours at 1450°F (790°C)(Figure 6a) and 2,75 hours
at 1450°F (790°C) plus a further 64 hours at 1200°F (650°C)(Figure 6b). The
body-centered tetragonal NizTa precipitate can be seen to exist in a well~
distributed, homogenously-nucleated, Intragranular morphology. The precip-
itate is in the form of platelets. In Figure 6a the NiBTa platelets are
approximately LOOOA in length and still maintain coherency with the matrix.
In Figure 6b the two-stage heat treatment has been manifested in a bimodal
morphology of the NizTa precipitate - the coarser 1450°F (790°C) platelets
can be clearly seen surrounded by a much finer 1200°F (65C°C) NizTa
precipitate.




In analogy to the above results with Alloy 1 P/M bar, Figures 22a and b
and Figures 23a,b,c show the microstructure of Alloy 2 P/M bar after heat
treatment at various temperatures. Here again the coherency of the Ni_Cb
Precipitate was confirmed at the various aging temperatures ranging frdm
1150°F to 1350°F (620°C to 730°C).

Comparing the coarser platelet-like precipitate (e.g., LOOOA size of N15Ta
in Figure 6a or the BOOOA size of Ni_ Cb in Figure 25a) with the fine pre-
cipitate (e.g. "1200°F" (650°C) Nig T2 in Figure 6b or the "1200°F" (650°C)
Ni,Cb in Figure 23c) found after treatment at lower aging temperatures, it
appeared that the best strength levels from the present alloy systems would
be obtained when the heat treatments caused a finer precipitate morphology
to occur in the microstructure. However, to avoid a completely arbitrary
choice of heat treatment conditions under which the limited testing allowed
under the program would be performed, a few "quick-check" tensile tests
were carried out. Material in as-extruded and variously aged conditions
was tested at 1200°F (650°C) and it was revealed that the Precipitation-
strengthening effects of the NisTa (Alloy 1) or NizCb (Alloy 2) precipitates
superimposed on a fully recrystallized (as-extruded) matrix would not be
adequate to approach the 1200°F (650°C) yield strength of 200,000 psi
(1373.2 MN/m?) sought in this program.

In view of the above data, coupled with the fact that the scope of the
present program excluded any systematic evaluation of the best thermo-
mechanical processing sequence prior to the precipitation-strengthening
heat treatment, it was decided to process the as-extruded material by cold-
swaging and subsequently utilize heat-treatments which would give a fine
morphology of the strengthening precipitate. The next paragraphs describe
the processing procedure adopted.

Further Processing of Extruded Bars

The as-extruded P/M bars for both Alloy 1 and Alloy 2 were further
Processed by cold-swaging. In the case of Alloy 1, the 0.7-inch

(18.0 mm) diameter extrusion was directly cold- swaged'mao 590-inch
(15.0 mm) diameter. The optical microstructure of this material is
shown in Figure T7a. A portlon of this bar was heat-treated for 8
mimutes at 2200°F (1205°C), water quenched, and further cold-swaged

to 0.460-inch (11.18 mm) diameter. The optical microstructure of

this heavily cold-swaged material is shown in Figure Tb. Both sets

of bars were heat-treated for 120 hours at 1200°F (650°C). Figure 8a
shows an optical micrograph of the smaller bar after this aging treat-
ment (Treatment B) with a corresponding plastic replica micrograph
shown in Figure 8b and thin foil micrographs in Figures 8c and 8d. A
fine NizTa precipitation can be seen in the thinned samples where the
extinctlon contours of the foils allow the correct contrast conditions
to occur. Figure 10a is anoptical micrograph of the 0.590-inch (15.0
mm) bar as cold-swaged and aged for 100 hours at 1200°F (650°C) Treatment
A). Comparison of Figures 8a and 10a clearly reveals the difference




in grain size and the degree of cold work. In Figure 8a (Treatment B) the
grain size varies from 30-40 microns whereas in Figure 10a (Treatment A)
the grain size varies from 60-75 microns., Further, even in these optical
micrographs the deformation bands decorated by precipitation are clearly
more copious in Figure 8a than in Figure 10a,

Tensile tests were carried out on Alloy 1 specimens in both the above condi-
tions: Treatment A (Figure 10a) and Treatment B (Figures 8a thru d). The
test data is discussed in a later section.

Alloy 2 extruded bars were cold swaged in analogy to the processing employed
for Alloy 1. Instead of two different levels of cold-work and two different
grain sizes as in the case of Alloy 1, only one processing treatment was
employed. The as-extruded Alloy 2 P/M bar was directly cold-swaged to
0.600-inch (15.2 mm.) diameter (see micrograph in Figure 2la), annealed for
8 minutes at 2200°F (1205°C), quenched and further cold swaged to 0.495-inch
(12.8 mm.) diameter (see micrograph in Figure 24b). Figure 2hc shows the
thin foil microstructure of a cross-section of the as-cold swaged 0.495-~inch
(12.8 mm.) diameter bar. The size and distribution of the CbC carbide
particles is not greatly altered from that found in the as-extruded bar
(compare Figure 2ic and Figure 2lc). The as-cold-swaged bar was then heat
treated for 120 hours at 1200°F (650°C). Figure 25a shows an optical micro-
graph of the as heat treated alloy 2 bar in which the deformation bands can
be seen to be decorated by precipitation., In Figure 25b, the thin foil
microstructure confirms the existence of fine NizCb precipitate on the
deformed structure (compare with NizTe in Figures 8c and d). Alloy 2
gpecimens were tested in this condition as is discussed later.

In addition to the precipitation-strengthening heat treatments given to the
cold-swaged specimens of Alloy 1 and 2, some specimens in each case were
further exposed for 100 hours at 1400°F (760°C) as a test of stability. As
reported later, tensile properties have been evaluated on these "1L00°F
(760°C) exposure" samples. Here it is necessary to note some of the micro-
structural observations on the "as-strengthened" material after further
exposure at 1L400°F (760°C) for 100 hours.

Figures 9a,b,c and d show the microstructure of Alloy 1 P/M bar as extruded,
cold-swaged (with intermediate anneal) to 0.460-inch (11.65 mm,) diameter,
aged for 120 hours at 1200°F (650°C) (Treatment B) and then exposed for
100 hours at 140O0°F (760°C). Figure 9a shows an optical micrograph which
when compared to Figure 8a shows that further precipitation at grain bound-
aries has occurred. The replica micrograph in Figure 9b and thin foil
micrographs in Figures 9c and d clarify the effects of the 100 hours at
1L00°F (760°C) exposure. In limited regions (e.g., at "B" in Figures 9c
and d) a recrystallization effect is seen to occur together with a trans-
formation of NiBTa tetragonal strengthening precipltate to orthorhombic
NizTa acicular phase (see Appendix A). This transformation is not found in the




case of material with an undeformed matrix where the NizTa body-centered-
tetragonal precipitate retains its coherency even after 100 hours at 1500°F
(816°C). Therefore, it appears that the "recrystallization" cells in the
present samples after 100 hours exposure at 1LO0°F (760°C) are due to the
work introduced prior to the 120 hours at 1200°F (650°C) strengthening heat
treatment. As will be discussed later, this recrystallization does not have
any deleterious effect on ductility. Also, by a more complete study of the
thermomechanical processing prior to aging it should be possible to partially
eliminate the high degree of pre-precipitation cold work used in the present
processing sequence without sacrificing the strength levels obtained (see
later section) and, thereby, avoid this "recrystallization" problem at
1400°F (760°C) for Alloy 1.

The Ni3Cb precipitate in Alloy 2 is inherently less stable at 1LO0O°F (760°C)
than the NizTa precipitate in Alloy 1. After 1LOO°F (760°C) exposure for

100 hours, the material cold worked and aged for 120 hours at 1200°F (650°C)
recrystallized as is shown in Figures 26a (optical micrograph) and 26b (thin
foil electron micrograph). As suggested by these microstructural observations,
the strength levels after exposure for 100 hours at 1400°F (760°C) are also
substantially reduced (see later text). It should be noted that recrystal-
lization occurs in Alloy 2 at 1400°F (760°C), even when the previous 1200°F
(650°C) aging treatment (which forms the strengthening NizCb precipitate) is
superimposed on an undeformed matrix. In either case the NizCb body-centered-
tetragonal precipitate does transform to acicular laths of NizCb precipitate.
Thus, in terms of microstructural stability at 1400°F (760°C) it appears that
of the two compositions evaluated here, Alloy 1 (NizTa strengthened) is cer-
tainly superior to Alloy 2 (NisCb strengthened) and this is confirmed by the
mechanical properties data reported infra.

Alloy Testing and Post-Testing Metallography

As indicated above, Alloy 1 was tested in two conditions, viz., Treatment A
where a 0.590-inch (15.0 mm.) diameter cold-swaged bar was aged to 120 hours
at 1200°F (650°C), and Treatment B where a bar cold-swaged to 0.460-inch
(11.7 mm.) diameter was aged for 120 hours at 1200°F (650°C). Also as noted
earlier, the grain size was 60-75 microns for Treatment A and 30-40 microns
for Treatment B.

Duplicate tensile tests were conducted at room temperature, 1200°F (650°C)
and 1400°F (760°C) for the material after Treatment B and for purposes of
comparison single tensile tests were conducted at the same temperatures for
material after Treatment A. These tensile data are tabulated in Table III,
and are shown graphically in Figures 11, 12, 13, and 14, It is worth noting
that the 1200°F (650°C) yield strength for Alloy 1 after Treatment B (see
Figure 12) is ~188,000 psi (1290 MN/m2), with better than 10 percent tensile
elongation and better than 15 percent reduction in cross-sectional area.
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Table III also includes data from room temperature and 1200°F (650°C)
tensile tests on Alloy 1 material both in "Treatment A" and "Treatment B"
conditions plus an additional 100 hours at 140O0°F (760°C) exposure. The
data shows that in the "best strength" condition (i.e., Condition "B")

the material retains 92 percent of 1200°F (650°C) yield strength even after
the 100 hours at 1L400°F (760°C) exposure without loss of ductility. This
reinforces the observation made in the previous section that although there
are "recrystallization" cells observed adjacent to grain boundaries (see
Figures 9b,c,d) after exposure at 1400°F (760°C) for 100 hours, there is

no deleterious effect on ductility. Some Alloy 1 specimens after Treat-
ment B were tested in stress rupture at 1200°F (650°C) (see Figures 18a

and b). The following data (Table IV) was obtained:

IABLE IV

STRESS RUPTURE TESTS FOR
Alloy 1 After Treatment B

Test No. Date Test Temp. Stress Level Life in Hours
°F °c p.s.i. UN/me

10266 10/15/69 1200 650 110,000  755.0 6.2
10255 10/10/69 1200 650 110,000  755.0 37.5
10189 9/5/69 1200 650 150,000 1030.0 3.2
10224 9/22/69 1200 650 150,000 1030.0 Ly

As stated earlier, for Alloy 2, duplicate tensile tests at room temperature,
1200°F (650°C) and 1400°F (760°C) were carried out on material which was
extruded, cold-swaged (with intermediate anneal) to .495-inch (12.6 mm.)
diameter, and aged for 120 hours at 1200°F (650°C) and also duplicate tests
at room temperature and 1200°F (650°C) on material which was further exposed
100 hours at 1400°F (760°C). This data is tabulated in Table V and graph-
ically represented in Figures 30 and 31.

The tensile properties of Alloy 2 confirm the microstructural observations
reported in the previous section. As in the case of Alloy 1, the 1200°F

(650°C) yield strength of Alloy 2 is at a high level (~189,000 psi (1300 MN/m2))
with greater than 10 percent tensile elongation and greater than 15 percent
reduction in cross-sectional area., However, in contrast to Alloy 1, the

1400°F (760°C) tensile yield strength of Alloy 2 falls off abruptly. In

Alloy 1, a 1200°F (650°C) tensile yield strength of ~189,000 psi (1300 MN/m?)
decreases to a 1400°F (760°C) tensile yield strength of ~145,000 psi

(1010 MN/mg), whereas in Alloy 2, the respective strength levels are
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~189,000 psi (1300 M/m?) and ~85,000 psi (590 MN/m?), This behavior is
confirmed by the microstructural observation on the specimens after testing.

Figures 15a,b, 16a,b, and 17a,b are thin foil micrographs cross-sectional
"slices" taken from the gauge-length of Alloy 1 tensile specimens tested
at room temperature, 1200°F (650°C) and 140O0°F (760°C), respectively.
Figures 16c and 17c are corresponding optical micrographs after 1200°F
(650°C) and 1L4O0°F (760°C) tensile tests. In each of the three test
conditions (room temperature, 1200°F or 650°C and 14OO°F or 760°C) the
strengthening NizTa precipitate has not altered in morphology during the
test nor has any transformation occurred in the crystallography of the
precipitate. (The Ni5Ia body —centered -tetragonal precipitate does exhibit
some transformation to NizTa orthorhombic phase, but only when exposed at
1400°F (760°C) for long times - see earlier text and Figures 9b,c,d.) By
contrast, in the case of the NiBCb precipitate in Alloy 2, transformation
to orthorhombic NizCb does occuT during the 1400°F (760°C) tensile test.
Figures 27a,b,c, 2a,b,c, and Da,b,c are micrographs of cross-sectional
slices of Alloy 2 tensile specimens tested at room temperature, 1200°F
(650°C) and 1400°F (760°C), respectively.

In Figure Dc, the thin foll micrograph clearly shows that recrystallization
has occurred during the 1400°F (760°C) tensile test and that laths of
orthorhombic NizCb phase have formed. This clearly is the cause of the
change in the yield strength of Alloy 2 from ~189,000 psi (1300 MN/m2) at
1200°F (650°C) to ~85,000 psi (590 MN/m2) at 1LOO°F (760°C). The same
instability is manifested in tests on Alloy 2 material exposed for 100
hours at 1400°F (760°C) (Figure 26) where the 1200°F (650°C) yield
strength of 189,000 psi (1300 MN/m?) has decreased to 111,900 psi (768
MN/m?) whereas in Alloy 1 the 1200°F (650°C) yield strength after the

100 hours at 1400°F (760°C) exposure (~175,000 psi or 1200 MN/m?2) was

92 percent the strength level before exposure (~189,000 psi or 1300 MN/m<),
Stress-rupture tests on Alloy 2 were carried out and the following data
(Table VI) obtained. '

TABLE VI

Stress-Rupture Data for Alloy 2

Test No. Date Test Temp., Stress level Life In Hours
°F °C  p.s.i. MN/m?2
10316 11/12/69 1200 650 110,000  755.0 6.7
10322 11/14/69 1200 650 110,000  755.0 9.2
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DISCUSSION

The foregoing results demonstrate that a nickel-base composition, strengthened
by the precipitation of a body-centered-tetragonal phase on a cold worked
consolidated powder-metallurgy alloy matrix, is capable of exhibiting high
levels of 1200°F (650°C) tensile yield strength required in the instant
program. Of the two alloy systems investigated here, the NiBIa strengthened
Alloy 1 shows high 1400°F (760°C) tensile yield strengths and 92 percent
retention of the 1200°F (650°C) strength levels after 100 hours exposure

at 1400°F (760°C).

The NiBCb strengthened Alloy 2 demonstrates a lesser degree of maintenance
of strength at 1L00°F (760°C) and also after exposure 100 hours at 1400°F
(760°C).

In the latter case the instability of the NiBCb phase in the predominant

cause of the lower tensile strengths of Alloy 2 after exposure at 1400°F
(760°C). 1In the case of Alloy 1, the body-centered-tetragonal NizTa phase

is not, per se, unstable when exposed at 1400°F., However, the existence

of a highly cold-worked matrix prior to precipitation does cause localigzed
recrystallization to occur when Alloy 1 is exposed at 1L00°F (760°C). This
recrystallization is accompanied by limited transformation of the NizTa
(b-c-tet.) to NizTa (orthorhombic) phase. By contrast, in Appendix A data

is presented on the stability of NizTa in an undeformed matrix of gimilar
composition to Alloy 1. No transformation of the body-centered-tetragonal
NizTa phase to orthorhombic NizTa phase occurs in the case of the undeformed
matrix even when exposed for 100 hours at 1500°F (815°C). In Appendix B,
X-ray diffraction data is presented to show that the formation of orthorhombic
NizTa does occur in Alloy 1 when the cold worked and precipitation strengthened
(aged at 1200°F or 650°C) matrix is exposed for 100 hours at 1400°F (760°C).

This above mentioned data serves to emphasize that further improvements in

the stability of Alloy 1 are possible if the presently obtained strength
levels can be maintained while lessening the degree of pre-precipitation

cold work. Therefore, as a subsequent and continuing investigation of the
present preliminary study, it has been recommended that a program of optimizing
the pre-precipitation strengthening deformation of Alloy 1 be undertaken. The
goal of the envisaged investigation would be to: (a) meintain and, if
possible enhance the present 1200°F (650°C) tensile yield and ultimate
strength levels, while improving upon the 1400°F (760°C) stability of

Alloy 1, (b) to improve the present stress rupture properties of Alloy 1

and, (c) to modify and optimize the present composition of Alloy 1 and

define the compositional ranges for the resultant P/M alloy for 1000-1L00°F
(540-760°C) applications.

15
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CONCLUSIONS

A nickel-base composition, utilizing the powder-metallurgy method and
strengthened by the precipitation of a body-centered-tetragonal inter-
metallic phase has been defined which provides a 1200°F (650°C)
strength level of 189,000 psi (1296 MN/m?) with better than 10 percent
tensile elongaticn.

Of two alloys investigated in the present investigation, Alloy 1 (which
in weight percent is 54.5 Ni - 20.2 Cr - 9.62 Co - 6.80 Mo - 8.77 Ta -
0.1 Cb - 0.038 C - 0.14 Fe - 0.0146 0 - 0.005 S - 0,004 P - 0,029 N -
<0.1 Al - <0.1 Ti) which is strengthened by the precipitation of NizTa
phase is more stable than Alloy 2 (which in weight percent is 56.65 Ni -
18.85 Cr - 10.17 Co - 6.84 Mo - 0.10 Ta - 7.10 Cb - 0,159 C - 0,18 Fe -
0,0182 0 - 0.009 S - 0.002 P - 0,013 N - 0,02 Al - <0.02 Ti) which is
strengthened by the precipitation of NiBCb phase.

Microstructural analysis of the above alloy systems has indicated the
causes of 1LOO°F instability in these precipitation strengthened systems,
and 1t has been shown that by control of the deformation prior to
precipitation-strengthening, the 1LO0°F (760°C) stability of Alloy 1

can be further increased,

Alloy 2 is not recommended for further study, but in the case of Alloy 1,
a program to optimize the posi-consolidation thermomechanical treatment
is proposed. It is expected that with further process optimization, the
present strength levels of Alloy 1 can be maintained while improving
1400°F (760°C) stability and stress-rupture behavior at 1200°F (650°C).




RECCMMENDATIONS

The results of the study demonstrate that the NiBIa strengthened Alloy 1 is
a viable P/M superalloy system. The body-centered-tetragonal NizTa phase
per se 1s stable up to 1500°F (815°C)(see Appendix A). However, when the
matrix is extensively cold worked prior to precipitation of NizTa, the alloy
shows the commencement of recrystallization at 1400°F (760°C) and the
existence of cold work in the matrix enhances the formation of orthorhombic
NizTa. Therefore, as a subsequent and continuing investigation of the pre-
sent preliminary study, it is recommended that a program of optimizing the
pre-precipitation strengthening deformation of Alloy 1 be undertaken. The
goal of the envisaged investigation would be to:

a. Maintain and, if possible enhance the present 1200°F (650°C)
tensile yield and ultimate strength levels, while improving upon
the 1400°F (760°C) stability of Alloy 1.

b, Improve the present stress rupture properties of Alloy 1.
¢, Modify and optimize the present composition of Alloy 1 and

define the compositional ranges for the resultant P/M alloy
for 1000-1400°F (540-760°C) applications.
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Scanning electron micrographs show atomized powders.

Alloy 1 powder.

Figure 1.

(A) 100x, (B) 1000x, (C) 1000x.

100/325 mesh fraction particles are shown.




Central region
is electropolished

Optical micrograph of a 3mm diameter disc from a 0, 003 inch thick
sheet of electrolytic nickel plate in which particles of Alloy 1 powders
have been "held". The disc has been dimpled for electropolishing

with twin jets.

Figure 2,

19
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Figure 3.

Thin foil micrograph of an individual particle of Alloy 1 powder.
Prepared by using a sample as shown in Figure 2. 25, 000x.




Figure 4.

Photograph showing Alloy 1 bars after extrusion and decanning.
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Figure 5.

e2

(A) Optical micrograph showing the microstructure of as-extruded

Alloy 1 bar. 500x. (B) and (C) Thin foil micrographs of a cross section
of as~extruded bar. Note the fine distribution of primary carbide particles
and the low dislocation density. The line marks on the micrographs represen

one micron.
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Figure 7. Optical micrographs of as-extruded and cold swaged Alloy 1 bar. (A) The
cross section of rod as-extruded and directly cold swaged to . 590 inch
diameter. (B) Cross section of rod annealed for 8 minutes at 2200°F in
the condition shown in (A) above and then further cold swaged to .460 inch
diameter. Both at 500x.

2L




(A) Optical micrograph of Alloy 1 rod cold swaged to .460 inch diameter
500x. (B) Plastic

Figure 8.
(cf Figure 7 (B) above) and aged for 120 hours at 1200°F.
(C) and (D) Thin

replica of Alloy 1 bar in same condition as in (A) above,
foil micrographs of Alloy 1 bar as cold swaged to .460 inch diameter and

then aged for 74.5 hours at 1200°F. The line marks on micrographs 8 (B),

8 (C) and 8 (D) represent one micron.
25




Figure 9.

26

(A) Optical micrograph of Alloy 1 bar cold swaged to .460 inch diameter
aged 120 hours at 1200° I and further exposed for 100 hours at 1400° F.
500x. (B) Plastic replica of Alloy 1 material as in (A) above. The regions
marked "B'" in Figures 9 (B), 9 (C) and 9 (D) seem to represent the be-
ginning of secondary recrystallization. (See fext.) Line marks on
Figures 9 (B), 9 (C) and 9 (D) represent one micron.




‘igure 10. Optical micrograph of Alloy 1 bar as-extruded and directly cold swaged
to . 590 inch diameter and then (A) aged for 120 hours at 1200° F and
(B) aged for 120 hours for 1200° F and further aged for 100 hours at
1400°F. 500x.
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Figure 15. Thin foil micrographs taken from the cross section of the gauge length
of an Alloy 1 tengile specimen fested at room temperature. Test No. 41211
The line marks on the micrographs represent one micron.
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Figure 18. Optical micrographs of the cross section of stress rupture specimens
(A) Alloy 1 tested in the "as-cold-swaged plus 120 hours at 1200° F "
condition. Test parameters were 110, 000 psi and 1200° F. Stress
rupture life of 37.5 hours. Test No. 10,252, (B) Alloy 1 specimen
tested in the "as-cold-swaged plus 120 hours at 1200° F" condition.
Test parameters 150, 000 psi at 1200°F. Stress rupture life 2. 75
hours. Test No. 10, 255. 500x.
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Figure 19. (A & B) Scanning electron
of alloy 2 powders.

micrographs of 100/325 mesh

fractic




tgure 20. Thin foil micrographs of individual particles of alloy 2 powders
se transmission micrographs have been prepared by "holding" the particles
lectrolytic nickel plate as shown in Figure 2). The line marks represent
nicron.
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Figure 21. (A) Optical micrograph of as-extruded bar made by canning and
extruding 100/325 mesh fraction of alloy 2 powder; (B & C) thin foil micrographs
of the as-extruded material showing the finely distributed MC carbides. The
line marks represent one micron.
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(B) aged for 8 hours at

>

(A) Aged for 24 hours at 1350°F
1350°F plus 48 hours at 1150°F; and (C) aged for 51 hours at 1200°F,

Thin foil micrographs of alloy 2 extruded bar after various
line marks on each micrograph represent one micron.

Figure 23.
heat treatments.
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Figure 25. (A) Optical micrograph of alloy 2 P/M rod, cold-swaged to
0.495" diameter and aged for 120 hours at 1200°F; and (B) thin foil electron
micrograph of alloy 2 P/M rod, cold-swaged to 0.495" diameter and aged for
120 hours at 1200°F. ILine mark represents one micron.
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Figure 26. (A) Optical micrograph; and (B) thin foil micrograph of alloy 2
P/M rod, cold-swaged to 0.495" diameter, aged for 120 hours at 1200°F and fur-
ther exposed for 100 hours at 1400°F. Line mark in (B) represents one micron.
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APPENDIX A

In this Appendix, data (extrinsic to the present contract) is presented on the
coarsening behavior of the NizTa precipitate in a wrought (conventionally
processed) superalloy, similar to Alloy 1, of the following composition:

Ni - 20.47 Cr - 5.59 Fe - 5.41 Mo - 9.82 Ta - 5.02 Co - .089 C

Samples of this alloy were solution heat-treated at 2282°F (1250°C) quenched
and aged at 1200°F (650°C), 1300°F (705°C), 1400°F (760°C) and 1500°F (815°C).
The morphology of the NiBTa b.c.tetragonal precipitate after 25 hours and

100 hours at the above temperatures is shown in the successive thin foil
micrographs in Figure A. An Increase in size of the Ni5Ia b.c.tetragonal
precipitates can be observed as the aging temperature is increased from
1200°F (650°C) to 1500°F (815°C). It is worth noticing that the large

NizTa precipitates observed after 100 hours at 1500°F (815°C) are still
coherent as is manifested by the existence of delta fringes at the pre-
cipitate/matrix interface. Unlike the situation in the case of the deformed
matrix in Alloy 1 (where the commencement of recrystallization after 100
hours at 1400°F (760°C) is accompanied by a transformation from b.c.tetragonal
NizTa to orthorhombic NiBTa), in the present case no transformetion of the
NizTa b.c.tetragonal precipitate occurs.

Figure B is a log-log plot of half the NizTa platelet length (a/2) against
hours of aging time for three temperatures. The lengths of the platelets
for each heat treatments were measured for micrographs where the foil
orientation resulted in the platelets being "edge-on'". As shown in Figure B
the log a/2 vs log t (time) plots show a slope of 1/2. Assuming a relation
of the type:

a/2 = K .t

where K is the rate constant for a particular aging temperature, n is
determined to be 1/2. Following from this, in Figure C, a/2 is plotted
against t1/2 and a linear fit is obtained. The rate constants, K, for
each aging temperature can now be determined either from the intercepts
of the log a/2 vs log t curves with the y axis at t = 1 in Figure B or
from the slopes of the a/2 vs t1/2 plots in Figure C.

In Figure D, log K (K being the rate constants for each aging temperature)
calculated from Figures B and C) is plotted against the reciprocal of aging
temperature in °X. From this plot a value of activation energy for growth
of the NizTa b.c.tetragonal precipitate is obtained. The activation energy
is calculated to be 51.5 K Cals/mole. (Tutunik and Estoulin(5) have cal-
culated the activation energy for diffusion of Ta in Ni to be 57 K Cals/mole.)

From the foregoing it would appear that the same precipitate growth process
occurs at all of the aging temperatures investigated and that no transformation
of the b.c.tetragonal Ni§Ta precipitate occurs for aging treatments up to

100 hours at 1500°F (815°C).

L9
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APPENDIX B

In this Appendix, X-ray diffraction data on phases extracted from Alloy 1
is presented., The extracted phases are representative of Alloy 1 in two
conditions:

A. As cold-swaged and aged for 120 hours at 1200°F (650°C)

B. As cold-swaged, aged for 120 hours at 1200°F (650°C) plus
further aged for 100 hours at 1400°F (760°C)

The diffraction data is presented to show that after 100 hours at 1400°F
(760°C), there occurred a transformation of the b.c.tetragonal NizTa
phase to orthorhombic NizTa phase. This transformation accompanies the

recrystallization observed after the 100 hours exposure at 14O0°F (760°C).

(See Figures 9a thru d.) Without a cold-worked matrix, no formation of
NizTa orthorhombic phase occurs even after exposure for 100 hours or more
at 1500°F (815°C). The d spacings from the X-ray data are presented on
the next page.
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d Spacings
A B

4 418

L.12h
4,104

3.731

3.5%4

3.339
3,283

3.243

3,048

2.993

2.618
2.545  2.539
2.507
2.382 2.380
2.317 2.309
2,206 2.201
2.178  2.178

2,132

2,004
2.064 2,053
1.995

1.965
1.954  1.949
1.88L  1.88%4
1.862

1.848

1.801
1.789 1.783
1.706  1.707
1.637 1.637
1.601 1.610
1.565 1.566

1.521
1.500
1.472

1.464
1.376
1.367

1.352

5k

X-RAY DIFFRACTION DATA FRCOM PHASES
EXTRACTED FROM ALLOY 1 SPECIMENS

A

NizTa

(002)

(101)

(110)

(112)
(103)

(ook)
(200)
(202)

(211)
(11k)

(213)

B

.c.Tet.

120 Hrs. at 1200°F (650°C)

120 Hrs. at 1200°F (650°C)
+ 100 Hrs. at 1400°F (760°C)

NiBTa
Ortho.

(101)

(110)
(o11)

(111)
(200)

(201)

(020)

(012)

(211)

(121)

(220)
(310)
(221)

(122)

MC

TaC Type

(111)

(200)

(220)

M25C6

(L20)

(k22)

(333)

(4k40)

(531)
(531)
(620)

(622)

FCC Matrix

(111)

(200)




d Spacings

A B
1.335 1.336
1.310
1.285 1.295
1.277
1.267 1.269
1.2062
1.233 1.233

1.215

1.186 1.184

1.13%6

1.110 1.118

1,092 1.098

1.087

1.082 1.083

1.069

1,055 1.051
1.036

1.017 1.016

1.001

.991 .992

.978

.968

949

NizTa NizTa
b.c.BTet. Or%ho.
(20k) (203)
(220) (400)
(006)
(222) :
(301) (231)
(310)
(116) (ook)
(215,312) (223)
(k20)
(224)
(206,107)
(321)
(31k4)

MC

TaC Type

(311)

(222)

(koo)

(331)

M25 Cg

(64k)
(660)
(555)
(753)

(8lk)
(933)

(1040)

FCC Matrix

(220)
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