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Nomenclaturc

A Matrix chosen to provide an unbiased estimate	 of H

L{ Expected value operator

d Parameter matrix

Performance index

M Weighting matrix

m Aerodunamic stability derivative ( II /sec 2 / 0 of a)

M Fin effectiveness gain ( 0 /sec 2 /* of 6)

Weighting coefficient (element of M)

IN	 - Additive noise on Xe

Na	 - Normal acceleration (g's)

P	 - Covariance matrix of the estimation error

R Covariance matrix' ,Of the noise V

S Covariance matrix of the noise N

X Sensed value for the system state vector

V Additive noise on Y

Y Exact value for the product X" He e

Y	
-

Sensed value for Ye

La	 - Normal force coefficient -(g l s/* of a)

a	 - Angle of attack (0)

6	 - Fin deflection-angle

L mean

V Angular acceleration (0/ sec 2

2	 - Via~ Variance

Summation

^&' -- Norm	 e, Me ("fines squared error for error vectore)
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Weighted Least Squares Parameter Estimation in the Presence of Noise

1. Introduction

Discussed in this report is a generalization of conven-

tional weighted least squares state for parameter) estimation

techniques to the problem of parameter estimation where all

sensor measurements are noisy.

This problem is illustrated in Figure A. Sensors provide

noisy measurement vectors X ,, and Ys . These vectors may con-

tain many repititions of some data measurement. At any rate,

the parameter matrix H relating the exact (deterministic)

states Xe and Ye is considered to be unknown. The problem

^then i s to provide an unbiased estimate of H in a manner that

is :optimal in a least squares sense. Thus it is necessary to

select a least squares performance index and some associated

weighting matrix.

The transition from conventional weighted least squares

theory is made. An estimatiomequation is derived which":

provides an unbiased parameter estimate as well as least,

squared error. The weighting matrix is selected so as to

rk
provide minimum variance of the estimation error. The selec-

tion of the weighting matrix is shown to be more complicated

Ell	 than for the conventional least squares case. Two Pxamp',Ies

are given in which the weighting matrix is selected for

specific problems. A procedure for operating on repeated

measurements is discussed. A simulation is presented it
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2 . Conventional Vlel h d !,east Squares ParameterEstimation
kfF

2.1	 Conventional State Estimation
^f

^k

' »:	 4r^vr.nt onal least square	 statte estimation problem

may be detin u as follows.	 Consider an exact equation

ws
--	 li	 X	 (1) f

^ where Ye and Xe are states and 11 are known parameters. i

Suppose a sensor provides noisy measurements of Ye
E

Y$	 Ye + V^	 (L(v(t))	 0;	 L(V('t+T)V(t))	 R6 (t- -r))	 (2)

Then, select Xe such that one minimizes
if

G

^^Y
s	H
	 Xe^^M	

(3)
_

Subject to the requirement of an unbiased estimate



The above problem can easily be rephrased as a parameter

estimation problem (estimate It with Y S  being a noisy measure-

ment of Ye . The general problen, is to estimate H with Y S
being a noisy measurement of Ye and also X. being a noisy

measurement of ate .  Firsto lot us cons lidex the former case

by simply rewriting the above equations.

II

2.2 Conventional Parameter Estimation

Consider an exact equation

Ye 	x G 11

whereVo and e are a " =a

Suppose a sensor provides noisy measurements of Y.

Y	 Y + V (E, (V (t))	 0 E (V (t+ T"') V (t))	 R6(t-T)} (9)8	 e

Then select H such that one minimizes

Y s- x e 1111 M (10)

SubJect to the requirement of an unbiased estimate

E(11), It

In this case, the answer follo4s by rewriting Equations 5-7

T-1 x	 14H	 (XT	M x Ye	 e	 e s

P	 H) kiT	H

(12)



There are two interesting degeneracies associated with

Equation set 12.

1) Suppose M is a scalar. Then R must also be a scalar

(let R = a v 
2	 Tlien Equations 12 are

T	 1 T yH	 (X	 x	
key
e

(13)
P	 a IV 2 (Ixe T xe),- i 	 P min

Thus P is inunediately mi nimum variance since M cancels

o^kt and P is independent of M.

2, Suppose X is a non singular matrix, Then Equations

are

1 141
T

P -= X	 A (Xe	 e	 min



where Ye and X  are states and i l contains unknown parameters.

Suppose sensors provide ,no sy measurements of Ye and Xe,

	

Y $	 Ye + V^ {L(v (t)	 0;_ H [V(t+-r) V (t) ]	 R6 (t-^r)

	

S	 e
X = X + N){H(N'(t)) - 0 H[NT (t+T) N(t) l - Sb (t- 10 }

Then select H such that one minimizes (since x  is not known)

J	 !	 Ys - X 	 H	 11
	 (17)
M

l
Subject to the requirement of an unbiased estimate

f
IAA (H)	 =	 ki

	

(18)
_

If the objective functions of Equation 17 was chosen as an

3 parameter es timator could be derived	 thenartifice-such  that a	 ara^

one may additionally select M such that the variance (P) of the

-e stir ation error is a minimum

k-H)	 (H -H	 ))	 (19)

Now -the following procedure will be followed in solving this
,

problem.
s ,,

S tep 	 r-	 'ze the weighted squared error J.Ste	 1. - Choose H to minim r,

Step Z.	 Select X' , - X"'A and-choose A such that the estimate

n

e	 s,

_	
(2 p
	 ,,.is unbiased	 (E `(H)	 H))	 `.

-Step 3.	 Select M for mininmu -M . P	 if one is - free to choose M.

If M is pre-selected, then only Steps 1 and 2. are 

ed out.carried

r
e 	 -

AIAW

iie ,



"Variance3.2	 Derivation of Pam er Estimator and	 of the
t

Estimation Error
k

Zj
Step 1.	 Let us solve for H such that 	 0.	 Then the

aH
result is 3i

s
^T	

_ 1 ^,

II I	 ( Xe 14 Xe )	 X, M Y s	 (21)

Step 2.	 Let us evaluate the expected value of H for

XsA, substituting the sensor Equations 16 into 21.
{

Assuming that A is non singular we get, noting

that the noise terms have Zero mean and may be f

eliminated wherever they appear as cross products:
x

;k

`

E{A.. 1 (XT 	 M X ) -1J (XT M X )	 H}	 (22)
s	 s	 e	 e

Now for an unbiased estimate	 set Equation - 22=H.

-	 T	 1 -T
Suppose we select A	 (Xs M Xs )	 [ Xs M_Xs - x

E

E{NTNN)I.	 Then we have an unbiased estimate of H.
.

Finally let us substitute the ,chosen value fore r

Jae	into Equation 21, since the result is on

Unbiased estimate o,f H y

The result is after_ simP li.fcation	 - ^r

(23)



We are flow in a position to calculate the Variance of the

estimation error.	 Since the estimates of	 kl ,,are unbiased then

E (I-IrI	 )	 E (H) H =HH	 It follows that

P = B [ (11-1) (H	 - ITT )) = -HI'I
T
 + E [H11	 '24)

We can now substitute Equations 16. and 23 into 24 noting that

t all cross product terms involving the noises. can be eliminated.

The result of obtaining the indicated expected values is

e 
--1 e
	 e	 T	

e 
eT	 R) MN) l (XeTMXe) -

1
P	 (X MX ) [ X [^IRMX +E ^ N M (Y Y

(25)

With regard to Equations 23 and 25, there are three degen-

erac.es o,l definite interest.

1. N(t) = -0 for all t. Then X	 X and Equations 23s	 e

and. 25 compare with H and ,P in Equation .11 for the~

c04, e ntional parameter estimator . - -
22. Suppose M is a scalar. Then -,,R is a scalar av2 and.

Y is a scalar. Then we obtain

H	 (X Xg-S] 1 XsTY	 J
r.	

Y +u	 -1S X TX -1	 262 T e-1	
e2 ^2	eT a	 e eV eP--ct	 (X X)	 t	 )(X	 X)	 t	 _

Ln this case, sinc e P and H are independent of - M we can

C
E

I F111,11,

I



3. Suppose we can write

E, IN 
T M (Y 

yT + R) MN)	 X 
T 
M M X

	

e e	 e	 e

Then P becomes

P	 (XT M Xe	 e
) -1 

(X T M (R + Q) M Xe 
(XT 

M Xe 1 (27)e	 e 

Oomparing Equations 27 and 12 we suspect that for the

case where we are free to choose M, P,.min occurs 
when

M m, (R , +

' Let us now investigate the ca ge where we are free to choose

M. We are then interested in the conditions under which minimum

varianQe of the estimation error occurs as a function',,of,the

weighting matrix M.

3.3 Derivation of the Weighting Matrix to Minimize the Variance

of the Error

Minimization of each element of P is equivalent to minimizi-ng

the trace of P. Let us accomplish this by writing the optimum

value of M-as M. We observe that any other M can be.written

	

M	 M + ET1

I€



t
tti

s
/	 rr

EXe M Xel 
_1	

CXe n xe1 CXe M e) -1 Cxe M R M X 

+ E(NT M (Ye she + R) M N)

0 trace
+ [X^^ RM XeI +E(NTn ( y yT + R) NI N)

X IX	
XTM Xel_1 -	 (28)

Them any M satisfying Equation 28 results in P being a minimum.

Three degeneracies concerning Equation 28 tend to enhance the

understanding of this rather involved expression.

1. N(t)	 0 for all t. Then Equation 28 is zero for
r,

M R-^ which is verified by Equation 12.

2. Suppose M is a scalar. Then so are R = ov2 , Y, and n.

In this case Equation 28 is identically zero for all M

and any M results in Pmin as suggested in Equations 13

and 26

3. Suppose we can write

E { NT ,M (Ye Ye+ R) MN }	 XT MQ	 M Xe .

Then Equation 28 becomes

	

0=trace (XTMX ) -1 - 
(X

T
nX ) (XTMX ) 

1 
XTM (R+Q) MX	 (X MX) 

-1
e e	 e e	 e e	 e_	 a	 e- e

+ 
ti4`en 

(R+Q) MXe

(29)



Although Equation 28 is rather involved, general statements

can be made. If either N (t)	 0 or M is scalar then Equations 12

or 26 provide an estimator with minimum variance of the estimation

error and solving Equation 28 is unnecessary. If, however,

N(t)	 0 and M is not scalar then Equation 28 must be solved. The

optimal matrix M contains, say, n unknown weights. We wish to

minimize the trace of P which is then one equation in n variables.

Hence the optimal solution is, in general, a dependence of any one

weight on all other weights. That is, any one weight can be

considered a dependent variable and all other weights are indepen-

dent. Now since we write M = M en, then for the ith weight

i i 	 i	
ns which mustm.	 m + en.. Thus Equation 28 provides n equations	 i,

equal zero, one for each n.. By selecting any one of these equa-

tions and then treating tLe corresponding value of m l,, 	f(mj ) j#i,

then an se	 y y	 t of values m i ,	 ^ 1. to n which satisfy *h°' Is equation	 ^°g
must be an  optimal set and therefore all equations multiplying:aP	 q

all other n.,	 1 must o to zero. As an example- 0 de ene'	 rar 1' 7 f^	 5	 p	 g	 Y

calls for M = R^ l . Suppose

^.	 l

Q	
0 ml

0
-

M	
l	

y A (30)
0	 ._.2 0, m2^

c 2

If we also investigate the zeros of the equation., multiplying n

and treat m	 as being dependent, then we obtain a first order

equation whose solution is

,.	 (m	 v2)
ml	 f (m2 ) a --2 2 (31)

ail1
12



Now the equation multiplying p 2 might have been used with the

result that

1l't.

(nil a1)
M2 

= f (m 1 )	 -2	 (32)

z
Now not only does the solution of Equation 30 work, suppose that

we chose m2 = 1, forcing 11111 = a2la1 to 	satisfy Equation 31. Note
t1

that this same selection :satisfies also Equations 32. The point

to be made is that, to solve Equation 28 we need only obtain one
F

equation multiplying, say, n i p treat the corresponding m  as

being a dependent variable, set the equation equal to zero, and

then obtain mi a f(mj ) j#i. The equation which must be solved to

obtain the desired functionality is first order when degeneracy `3

occurs (assuming, of course, that N ( t) # 0) , and fourth order in

the general case. The solution of a quart is is by no means

pleasant, hence_no- general answer has-yet been obtained. However,

two special cases have-been investigated and the results appear

in the following examples.

3,3.1 Example with a 2 x 2 Weighti M Matrix and a Scalar Error

Variance

The simplest:-non degenerate case involves y of dimension

2 x `' l (hence M is not scalar) and correspo nd-TIZAgly X is of dimension

2 x 1 (hence singular). Then there is but one parameter so P is

a scalar.' Thus we have an exact equation

Yle	 Xle
h	 -

Y 2e	 X 2

a^u 1



There are then available sensor measurements

Y	 Y	 V	 V 2 (t)	 V 2(147—)

	

is	 1e	 1

1	 Y2e	 Y2e	
V2	 2	 J

3	 vi	 o

2i j	 Y

0	
OV2

ti	
sh	 I§

r

0 
I f{

.t	
Nl(t)	 p	 I^

N 2 (t)	 o	 N, ►f^r)
x

Xls	 Xle	 N1

X	 N

	

2s	 2e	 2	
(aN_l + aN2) d (t)

The problem is 	 select h to minimize, a subject to E(h)=h

Yls _ Xle h+.

Y2s	 X2e	 ml 0,&

I0 m<.	 2	 $

Equation 23 	 th,e estimatorQ	 g

h Xls1 y1 + _X28 m2 Y2s

	

(X is 	 Nl) m 1 + 

(X22

	

2	 2
a s	 QN2) in

Equation 2 .	 r.I	 5 gives the var^mce 4f the estimation error
l a	 I,

x2	 2	 2	 2	 2	 2	 2 "

	

2	 2	 2 +Q 
2 [y	 +v )]	 [X	 u	 cr [Y	 +ar ))

P	 ml [
X1e 

Q 
Vi	 Ni le	 V1 

+m 2 2e V2 
+ N2 2e	 V2

r3	 f 2	 2	 2
I,

^Xle m
1 ^+ X2e m2)

(33)°

t

i
14



In order to select ml and m2 to minimize P we can proceed in.two

ways. First, we might note that the above value of P resulting
{

from Equation 25 could be written	 2

C

2 R _	

(yle+`^Vl) 0

P	 (X M Xe) 
^l 

Xe M (cVl 
62) 

MXe+X M Xle Q 2	 M Xe	 nf`

0	 crV2	
®	

N2 (Y 2+Q 2)

	

2	 2e V2
X2e

x (X M Xe) ^1}

as pointed out in , degeneracy 3 in the last section, the correct

answer for the above results by making a comparison with Equation

12 for the conventional weighted least squares estimator. The 
z

optimal M is simply

M = (R + Q)r

So

--

Q 
2

+

v
Y 2

+ v 2)	
p

W1 X• 	 le 	V1

le.
( 34)

	

)	
f

1	 YY^sM2

012. + N2 (Y 2e + °'V2)

Now the more difficult approach which is more straightforward is

to evaluate Equation 28. The resulting equation (which must be

true for all n1 and n 2 ) is

i

I

o n



+nl	 2 
(X 

2a 2	 2 Y 2+ 20	 M	 +a ( CF

I 

1:"2X2e le V1 N1 le viA 2 2	 2 2	 2	 2	 2
M x [X a +a (Y +CT2 1PA 2e V2 N2 2e V2

+n	
2	 2 2	 2	 2	 2

2	 M 2Mlx le' (x 2ea v2 +0 N2(y2e+av2))
^ 2X 2	 2 2	 2	 2	 2
Ml 2e EXleavl +a Nl (Yle 

+Cr vP j

A2	 2	 3x le M 1 + x 2e M2)

Now one could force the product multiplying n i to be zero by

selecting M as a,dependant variable and one obtains
x2 ( X 2 

Cy 
2 
+0 

2 
(Y 2+0 2 HM1 	 M 2 	 le 2e v2 N2 2e v2

x 2 (X 2a
 2 +a 2 ( y 2+c 2 H2e le vl N1 1 le V1

or equivalently, one could force the product multiplying n2

to be zero by selecting M2 as a dependent variable and obtain

	

2'	 2 2	 2	 2	 2x [X a +a (Y2e le vl Nl is
+d vi

	

M 2	 M1	 2	
Zav22(Yle" 2 tON2 2e 0+ V2

as pointed out in the last section, it is only necessary to

force any one product term on n i to be zero and all other product

terms go to .zero. (i.eo, , the ratios M10M2,-'s the same for both

the above eiquations), - Note again that sinc,orthis problem falls

in a firstunder the category of ,degeneracy 1,,_^ equation' ,,28 results

	order equation , in order to solve for H	 The above equations

are certainly solved using equations set 34. It is most

interesting to note with re'ard 
to 

tquatioji. 34 that large9, ,

'4



m	 2
vi

M2 UV2 2

He

11,1

orte could select grossly incorrect weightings. The optima .1 value

of P, resulting from the above correct selection is

P	 (35)
min	 x le 2
	 x 2e

2	 N 1 '	 2	 2 

+	

2	 N 2---
2
	2

	

V 1 +
	

2 (Yie + a 
vi	 CrV2 

+	 (y2e + a V2
x le	

x 
2e

A computer program was used to check out the optimum choice

o M, and m * The variance P was evaluated at 'all combinationsf 1	 2

of 100 values of m and 100 values of m2 The values of m1 and
& 

m2 giving the minimum was selected. It is interesting to note

that P depends on the ratio of ml/m 2 so that the contours of P

in the m11-m2 plane are straight lines (a plot of ml/m2

constant). The figure below illustrates this

Fit
P̂  P3 P4	 'P^

In the abo R > P > P > P	 Now the following table
4	 3	 2	 1	 min*

summarizes the two runs made for this problem.

17
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=AA RESULT

Case Xle x 2 yle y 2 avi aV2 2 2aN1 aN2 m1/m2 Amin

1 1 2 1 z 100 1000 100 10 ,348 808:,

2 1, 2 1 2 100 1000 1 11000 1230. 200



xx	 x 10 
x2e	

N. N 
2	 3, 

M N, M	 00
15	 ti5

+

x 3 S 
X 
4.13	 x 3 e^ x 

4	
N 
3 

N 4	 N 
3 
M N 11 ( I.:)

N 
1 
(t+T) N 

3 
(t+1	

1. 00 -4

LN

0

r 

(t+ T) N 4 (t+,r)2 

N1(t) N

N
3 
(t) N 4 (t).. 

2	 2all 
1 + ON3

0
	 (°rN2

2
 +Q 

2 Y
 N 4)

L

6 (t-0-

A

The problem is to select H to minimize, subject to E(H)	 H

	

is	
x le x 2e h1J

	

Y 25	 3e	 4e,	 2
Mi

0 m2

Equation 23 gives the estimator; Equation - 25' gives the variance

of the estimation error and since X is a non si ngular-matrix
e

Equation 28 can bi^: simplified as follosO 	 This- provides a means'-,

for selecting m and m2 so P is^^ minimized. ,

T T T
 nX (X Mx Y,	

_J^R) MN(XG E{N M ( YIL y
T	 CA	 e	 e	 e e

x0-,	 trace
	

A
e-

T	 T+ -EfN n( 
e Ye R)MN

_( X
T
 Mxe	 e	

(36)



xi

Let us select the matrix n as

^j nl 0

0	 0

Hence we let m be a dependent variable and evaluate Equation 36.

By combining the above equations, factoring out common, /) terms ,

and writing the result in terms of (m,1/m2) the following quartic

equation results. (In the general, case with m i being the

dependent variable, the equation would be a quartic in m y with

the various coefficients being functions of all the other mi,

M
0	

4 

(X 
2 

+ -X 2) fax 2 + YX I + ( rte 3 IX X + X Xle	 2e	 2e	 le	 le, 3e	 2e 4e
M2	 -	 M2

M

	

X	 X 612-e X-4 -06, 	 + Xle ' X3e Y ' ]	 (-'r=) [X2e'e' X4eO + -Xle 3e
-M2

	

[X	 X	 + X	 (X 
2 _ 

+	
2 
1 1X' 

2	 2 6)	 (37)
2e - - 4e,,	 le X 

3e, . -	 .3e	 X-4 e	 -46^	 X 3e --



P was calculated on a computer for all combinations of 100

values of m and 100 values of m2" 
The resulting (trace of P)

is a function of the ratio. , m1 /m2  , so contours of constant

(trace P) in the (m 1 m2) plane appear as straight lines (plots

of ml/m2 = constant). The figure shown in the last section

^'	 represents the contours. The following table summarizes the

4-	 results of the computer study.

DATA RESULT

case X le X 2e X 3e X 4e Y le Y 
2e

2
ON1

2
"N 2

2
CN 3

2
'JN 4

2V
CIV 1

2
a 
V 2

Ml
trace P 

min

1 1 2 3 4 1 2 100 1 1 000 10 100, 1000 7,7 5 x 10 6

2 1 2 3 4 1 2 1- , 10' 10 1 000 1,0- 10 9.2 2.8 x 10 4

_3L1 2 3 4 1 2 1 0 0 000 10b 1000 25.8 6.1 x 10, 5

For example, if the data of case, 3 is usdd,. we desire the, solu-

tion of

M 
1 
4	 m 1 3	 m 1
	 6

-0.	 (111	 (2020)	 (3 8 8 0--	 22.5410),

m	 m	 M2	 - 2 	 2

The observed optimal value of '25-,-,8 when substituted into the.

above satisfies the eq ation,,demonstrating, - that-the optimuma	 u

ratio is -indeed a.root of - the above. Similarly, the optimal

solution for,cases 1 and -2 almo satisfy Equation

Additional computer runs were made for the above 3 cases



rather titan

M	 (40)

	

0	 m 2

it is interesting to note (using case 3 as an example) that the

	

^1	
^1	

^ 1 -optimum was m	 Oj^m 1	 .0383. Then the ratio 1/m 1 is compar-

able to ml/m2 . 
 

Then

26.1

	

m	 .0383

A	 11

	

which compare with m Ad,	 25.8. The point 1.9 that nothing is
2

gained by considering a non-diagonal M matrix since the end

result appears to reduce to a diagonal matrix. This result is
7

-true because the measurement noises are all independent and the

covariance matrices are diagonal. Hence, since no cross product

terms -appear in I' h^, covariance mat rii-ce.s I no crass-- product -terms

are necessary in theweighting matrix.

4. Repeated Data

,/The dimensions of the weighted least squares estimation

problem follow dizectlyfrom the exact equation

dt

i.

i4



Suppose that Equation 41 represents the result of making p

repetitions of the same measurement. Then the dimensions could

be written

Ye 	Xe	 H

(PM ,X l) Q)m'xn) (nxl)

After many such repetitions, the vectors and matrices could

beec,;,).,',ie exceedingly large in size. Fortunately, calculating the

estimation equation and the variance of the estimation error

involves products such

TXe	 M	 Xe

(nx m l ) Anm I xom') (nmlxn)
z.

MIMI	 Now this product is, in effect, the sum oftaking p - products of

the f orra

T
X	 << i	 pM i	 X

„^..
e	 e

(nxm l ) (m I xm') (m' xn)

The subscript i,refers to t l e measurement number, hence Xe,
i

a matrix_ of dimensi6'n,.(m'xn),- representing the data from the ith

repetition.	 Then we can write

T	 p	 T
X	 M X	 E	 (I X	 M X
e-e	 e

In an f.vnalogous manner, all the ,,o '	 s previously,describedoperations

can be translated directly into a summation format. 	 Now the

23



^ simulation iii section 5 involves repetitions of a single measure-g

"

merit Ye (i.e., m l = l) .	 In this case the matrix M (of dimens ion

pxp) can be reduced to a scalar if the weightings are not time

dependent, but rather, the matrices M
i 
are all equal.	 As

previously discussed, when M is a scalar the weights cancel out
F

of the estimation equation for H and of the variance of the
z

estimation error P (see Equation 26),, 	 For use in the next section,

I Ji Equations 26 are translated into summation format. 	 For simpli-

city, the subscripts i are dropped and the'summations are
2

assumed to be over all p repetitions of the measurement.

H =	 IE (Xs X5	 ) ] rl	 IE XS Y5 ]	 (42)

t (nxl)	 (nxn)	 (nxl)

P = ar y ,(EXe Xe ] 	+	 t CE (Y 2 ¢ Q 2 ) ] tEXT X ] ^1 S [EXT X ) -1
e„	 v	 e	 e	 e	 e

(nxn) Clxl)	 (nx n)	 -(1x1)	 (-nxn)	 (nxn)	 (nxn)
t

1
L

f

Note that all resulting matrices are of dimension n. 	 Hence, no

mat-per how large the matrices of Equation, 41 become, the matrices

.^ which must actually be used to comput ee H and P are always of

dimension n (the number of parameters to be estimated).

5.	 Simulation Demonstrating-the Parameter Estimator 	 -

r Consider the following exact equation -

ae 6 et
M

6

t

~µhr

rJ!" c
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ii

where 0	 a and 6 e are measurable states. Suppose sensors

proviioAe noisy measurements

2
Hs	 0e + V
	 E (V (t))	 0; E EV (t+-r) V (t)	 Cr v 	(t-,r)

C4	 ae + N a	 Na (t)	 0	 N a (t)
s 	 IJ

2	 2
(t+T) N (t+T)	 (a	 Cr) cS (t-T)

e + N	 N (t)	 0	 N (t)

It is assumed that p repetitions of this measureifient are to be

made. However, as discussed previously, since 0 e is a scalar

and since the weighting matrix is the same for each measurement,

then the estimation equation and the variance of the estimation

error become independent of Mf

once the unbiasedestimator is

weighted least squarps yields

I) least squar(:-,7	 Hence#
M i	 -to minimize the following
M4

format is now used

hence minimum variance follows

arrived at. In this context,

the same results as non-weighted

it suf-fices to-consider selecting

objective function. Summation

M
J	 Z ( e s	 [as 6s]

N

M	 M.

Minimization is subject to E
Ms	 M

The solution,,to this problem is presented in general in Section

3.1. For the case of scalar M, we have Equations 26 In

summation format, we have Equations 42. Then the above equations

may be substituted directly- into Equations 42. The result is



an unbiased estimator for Ma aria M6 . The variance of the

ustimation error is also as small as possible for this class

of unbiased parameter estimators.

	

M	 Z(a2	 2
a	 s	 a	 s S)	

S 

s

	

r	 (43)

	

F1 M 	 Ot	
(,S 2 cr 2

s S)	 s S	 s U

2 `2 + 22
V	 e	 V)P	 +

2 ) (E62)	 Ot
2 	2 ij	 2) (Z6 2 ) 2

e	 e	 e e	 e e	 e	 e	 e e

'ae ri e )  [ O a
2
 (Ede)

	

(ES 2 ) 	 kG2

e a) 2FO,	 +Cr (Eae) 2

2x	 22-	 2-2[a (ES	 a (Lot(Ect 6e)e 	 F13	 e	 e

2	 2	 2	 2+a (Ea	 +a (z a 6a,	 e e

In order to test Equations 43, the control system shown

in ,, Figure X waiuced. Essentially, it is a third order pit6h

plane normal acceleration co'" 	 system with first order
F"

-,octu 1qr -dynamics and second order pitch plane (plant) dynamics.



a,

M
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Its Figure 1, the following symbols are used

Ma = Aerodynamic stability derivative ( 0 /sec 2/ 0 of a)
-

fl

14	 = Fin effectiveness gain (°/ S ec z/° of 6)
m(

T	 = Actuator	 time constant (1/sec)

}
4

1
U	 = Velocity along center line (f t/sec)

L	 Normal force coefficient  (g's/* of a)a
a	 Angle of attack (0)

} 6	 Fill deflection ( °

0	 Attitude angle (0)

As shown in the f igure, tide parameters Ma	 M , and Z 	 are

utilized to calculate control gains such that system

response crarac:teristics to command are constant (corresponding

to a second order system which is ,t damped with a 2 cps band-

width)

Two basic modes of operation are possible--off line and

on line. In the off line mode, all system gains are updated

using actual parameter values while the estimator processes
7

the-resulting data in an attempt to reconstruct - the parameter

values. The off line mode-was used in the simulation so that
s	 -

nominal data results, data. unaffected by par^ 	 ameter estimates.

z	 Hence, the-,covariance of the estimation error is given by

G

	

	 Equation 43. It is assumed tha the parameter Z is known

whereas. x	 Ma and M are not known. The 'secondAnode of 'operation

is the on-dine mode wherin parameter estimatesare used to

calculate the control-.system gaing . In this case, the variance

of the estimation error is more complicated since data such as

Y (t) becomes Y(t,H) , tt "t is, a function of both time_ `and

t
as

z

tE



f
41'f

previous parameter estimates# "or the present then, the off-

line mode is used to do,.-,ive data for use by the 6stimator.

A word should be said about the nature of the estimation
A

process. When no noise is present, then M n and M. are

deterministic time functions Ma(t)  and MS (t). When noise is
A

pr esent, M 01 and M 6 are s tochastic processes Ma (t f S i ) f M6 ( t f 0 )f

that is, functions of both time and the outcome of the i th

probabalistic experiment, here the selection of a sequence of
noise values. Hence, for any selection of a sequence of noise

A

values, there follows time functions Ma (t)  and Ml,(t). Similarly,

at any one time poini, Ma (9) and M M are random variables with

a mean	 and	 and variances cr ^ (the (1,1) term of theP
M	 2 M_	 M

matrix) and a 	 ALe-(2,2) term of tht ' , P matrix).

2In orderito verify the predjr,,.':ted variances ,, a 2̂ 
 and a,

Meach case involving noise was repeatedad 20 times AnUunblas9d
A

estimates of the mean a,nd.variance of both M and -MS were made.
For "an N sample ensemble, one can estimate the mean of ah

random variable X by the sample mean R.

rr
Xi

N	
(44)

I



Lquations 44 and 45 were used to verify that unbiased estimates

Of Me and 13 6 resulted and. teat the variance of the estimation
A

error for Me  and M6 was no predicted above.

Two cases were run with each case being repeated 20 times.

In both cases

M	 500tx
M	 1000

2	 0

INITIAL g's = 10

In each (6a'	 rse, the plant dynamics wee simulated b 	 ay taking set

of first order linear differential equations

X (t)	 A X( + B U(

and -transforming these equatiou _J- to the form-

X(t+T)	 X(t) + O(T) U(f,,",,)

The.transitil on matrices were calculated, from the Taylor series

expansion for an exponential. In all 40 passes (that is 20,

- repetitions of the 2 cases)," 100 iterations were made, each

simulating a .01 second duration. Additional 10 g commands were

called for every 10'iterations (.11 seconds). This forced the

plant to be quite active. The results are shown , in the following

table. The data included here, refers to the final- or 100th

iteration.
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Predic- Ob- Predic- Ob-
Case	 Data Mean tea, served ted serve4

dv	 a	
ad

Ma	 14^ c2 cr^ c^
2

a2
Ma Ma Did ME

100	 0	 0 500.2	 1000.3 56.° 58.5 233.6 248.5

2	 100	 .006	 .0015 540.1	 1032.6 4737."	 - 7627 X0045 31328

< 
p	 addingthe above data it is apparent that- , aaclin	 some noise f

to measurements of a and 6 has an appreciable effect can the t.

accuracy at the es timator.	 The simple rational for this occur-

rence follows f rom considetation of the equation

- Y	 Ys	 -^	 X	 ti

ll	 `

i	 ^4

f

It
If ,X	 is square and invertible we could write

lH w X	 Ys	 s

x Now -if Y	 contains some noise, H might b ,̂ - slightly inaccurate.s

S

can° tie other hand, since Xs must be _inverted, a relatively

` small error in each element of X	 could cause a disproportion-
s

.

_ , atel	 large error iny	 H,,} which is the case. above... j '

Case 2 was rerun using a conventional par^^tmeter estimator

   '	 , which Q 2 and ^ 2 are zero in ^^'̂  	 3^(that is, one in 	 Equation-4 .1a	 S 

_

The result	 ^-as expected, was a biased estimator

z n
M	 =	 308 , -	 2	 478	 .

,

,

l p

^I)
(y= 606	 Q^	 _.9600

k'

_ Rk	 M

rIt

r

-`L A
3 	̂

_	
t



6.	 Outline for Future Work

With regard to the problem presented in this paper, it

would follow that one should investigate ways of obtaining the

Al
noise variances assuming that they are unknown. 	 Then, an on- ii+

Line simulation should be made - to investigate the ability of

the estimatorto provide invariant response characteristics.

A furthet" extension would be to time varying parameters.

une should consider

1)	 Given the plant whose equat^11101ns_are

X (t)	 A (t)	 X (t)	 + B(t)u(t)

How ^^ Iollan control gains K (t)	 be selected such that the

ack signal u(t)	 K(t)	 X(t)	 reners the responsefeedb	 d

^L me 'invariant?	 What if u(t) must change" -only' at

f ixe(	 t,.Lme - points?

2)	 SuppOse ti^i^^,Parameters contained in H are time dependent

in that the	 de, end linearly, on certain states. 	 Thus'Y
H II	 Then, givenl^the exact-eq uation

Y
e	

z 
e 

11	 X 
e

where Y	 X	 and Z	 may be sensed with noise, how can
e	 e	 e

be	 to	 an'unbiased ,,'e'stimate?	 WhatHO	 stimated	 obtain

must '41 doVe to -ensure minimum variance of , -the

estimation error?

2





Kalman Filter Problem - No measurement noise

Abstract
Suppose that the measurementnoise for a Kalman filter

ru$4approaches zero. It is shown in this discus - .1,on that the

result is a filter suggested by conventional state variable
feedback and estimation techniques.

State Variable AERK_0ach

- Consider the liriear constant parameter closed loop"ay-tem

shown in Figure 1. With control gains on all states, one can
t ►' ►en place the closed loop poles anywhere in the complex plane.

The closed loop transfer function (assuming,zero initial condi-

tions) is

Y	 -1

T
(S)	 [SI - A + BK 1	

BK 2

C

Suppose thatt not a	 are sensed,   -	 b but ratherh -	11 the states M
-only certain measurements (X S ) are available. I-f these measur-

ments are notnoisy, Figure 2 suggests using a filter to re-

construct (estimate) the states X using the measurements XS'*

This is the conventional state variable approach. One may use

the results: of the modified. obtserver design included in the
previous report.

As anf, exam le, Figure-3 shows a second order, unity gaint

system with feedback gains on the states X and -1	 With these

gains the,,closed loop transter function is



0

YC	
*	 U	 X	

1	 X	 Y
K 2	 X	 B	 X	 C 

p	 3

ij A

-	 ^W^uW+wwiJ^FrrWrr^YTVfMhw^Twr^NwYNf.r.Awwr ^.sOwiWwYwVrr 	 ^.,	 ^	 ^ `Y

a

o

s	 FIGURE 1 - Linear Constant Parameter Closed Loop System

a

}	 yC	 ♦ 	
X	 1	 X	

XS filter, 	
X 

fK 2
	 X	 H+	 t^(%

reco^_
r

r

u

FIGURE, 2 - State Variable Estimator

r
t

1	 y

r i t	 1C	 ti	 -t-2	 1	 .. fr	 /	 I^1

K1
{	

S

K

H11

X _

i

r

2

r

FIGURE 3.- Second Order Unity Gain System
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X
(S)	 (2)X	 2lc	 S	 + (9 2 a) S +K1

Suppose that only X	 is available as a measurement and that

we must estimate X 	 for feedback purposes.	 The other quantity

(X	 is known since Kip K	 X, and X	 are all known.	 Simple2	 21,	 ic

block diagram manipulations-can be used to obtain Figure 4.

As usual some approximation such as as p	 must be useds+p

to estimate X

r Kalman Filter A22roach

State estimation in the presence of noise, especially

white gaussian noise, suggests the use of a Kalman filter. it

Shown in Figure 5 are the-Kalman gains (K	 the feedback

gains K l , and the Kalman filter configuration for a linear

constant coef-ficient control system.	 The net result is that

the transfer function of Equation 1 is realized as in Figures

r1 and 2.	 The performance of the filter portion of the,system'

-is best analyzed by considering the transfer function K (s).u
14
PTo derive thid transfer function the forward-path part of

Figure 5-can be written



r

X	 A	 0	 x	 B

ns

/0 S + a 5 )

X	 Ca	 11
X `x a	 s

Then it ii mediately follows that
rt

e

^
(SI-A)	 Q ..1

B

_ x

U (S)	 '^	 [0 1) -x H	 (S-A+K	 >
K	 K I3

C 6)
;E;r

which can be written more simply as

(S)	 [SI + KKH - A]	 l^kr'(S,I-A]	 B + [S I+KKH-A1 ,.lB i

` (7)

This reslult follows from the identity

X11	 ^x2	 ail	 A.12-
t ^

o

C 22 21	 ^2

w

`

where

-1	 l
X 2 2 	(A22 	A21A11	 Al2]

e
X1211	 Al2C22

r -2 l	 C 2 2^2 lA'l l

z
i 11	 x'11	 L11'	 12021)

M

Now comparing Equation -7.with Figure 5 rote that the first term 1

on the right side of Equation 7 represents the lower part , of
r
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1
K	 X	 l	 x 

X	
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s	
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Art

	

t	 ^1	 f	
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,^	
a

';	 I

FIGURE 4 Use of a State Variable Estimator

,-	 {r

v
YC	 t	 +	 #	 1	 ^► 	 ♦ 	 ♦ X lK 2	X t X	 x	 Ii X	 KK	 X	 $	 X...

f	 _	 I

A'
r.

FIGURE 5 - Ka lman Fl-ter for- a _Closed hoop System

v

- s	 t---	 s"	 X	 K2	 X	 s	 X	 s
+a	 ;

M
KK	 a

FIGURE 6 - Kalman Filter for the Second Order System of Figure 3

y

l	 1	 X - X
s -+

^,	 a

X	 X1

FIGURE 7 - Kalman Filter ,for No Measiurr-nent Noise
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the forward path (that part including the plant and the model)

while the second term on they right side of Equation 7 represents

t
t ,^

the upper part of the forward_ path ( that part including only the

model),.
t 7	 ,

Suppose we write j

X
F'(g)

	
.+.	 /

Low i ^ lore, R ,

Now when the noise w is present but the noise v is absent, an {

examination of the matrix Riccati equation reveals
1

that the r

r Kalman gains (K K) appr,)ach zero.	 Therefore

s

0
t U 

tawF^

,k

()	
1

U	
(s I - A)	 1 SU

Oekk 14

,i In this case the Kalman filter considers the measurement X. to
J

be noisy, hence the measurement is completely ignored and the

p arameter y>	 model.estimates follow directl	 from the

When noises w and v ► areresent, both the lowerr and.. upper

` paths Ore activated.	 We can combine, these as follows

U Is)
,^	 1	 -	 1	 (s I	 - A) (61[sT + ICKI - A)	 [KK I^ (sI	 A) _ A) ^,Z B

;

r
F.

[s I - A]	 13

Thus we alsoet (9	 ^	 ^	 paths being excitas^ .I - A) ^ 
1B ,Nith both	 `

I

}i	 Suppose we now consider Ithe case under discussion ( i.e .7

w 0 and ,v 0) . A consideration of the matrix Ricatti

39
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^

oquation reve-ils that the Kalman gains become infinite. '.then

we see from Equation 7

0

z
4

?` f	 nn	 l,' E

y 

u (s)	 u	 CKO) l (KKI-11 jsT	 A] 1B s (sI - A] 1 H	 j

:t

In thi s case, the Kalman falter considers the measurement K s	 'fa

to be reliable and only the lower path is activated with the m r^

I

model being used to reconstruct the unavailable states. Such
i,

F'J", op^.ration is identical with ^stato variable estimation procedures 	 ^!

Pmentioned earlier. 7.o em phasize this P Dint consider r

the Kalman filter , for the forward path of the second order

system of Figure 3. As the noise w approaches zero, the Kalman	 r'	 y

an	
y 	 approach inf in.ity, hence -only the lower portion s

`^ i s ^	
anc^

K	
KK 2 p

i

df of the system is activated. Let us write the transfer functions 	 r

}	 lE

relating the estimates to the measurement.
Frl

K	 s K	 + K,
1	 K l	 K 2

Ki	 K2

X2	 KK2 (s-a)	 -

x` (s)
s + (KK1 a) s + KK2

p	 Now,, as KK1 gets large-we note that

r 'LIMIT.- LIMIT
2	 s

K_ ^	 _.._ (s) _ K	
KKl 

^ rZ, ^	
^.	

^rK.l	 X	 R 1+00 ^ K
S	 K 1,

40
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Similarly, as KX2 gets lar"

LIMIT X2	 LIMIT 
R K2 (S a)

K2 
-*00 rs- ' s) = K X 2--o-oo	 KK2	

s	 a

It

as a result we have

XS

X	 (s	 a) X
2	 s

since 1 X
2 + aX1 we getX

X	 X2 + aX	 sxs

Then Figure 6 approaches Figure 7 as the noise w approaches zero.

If we add the control gains to Figure 7 and close the loop, we

have Figure 4 which resulted from state variable estimation

procedures*

Conclusion
r7

In the limit as the measurement noise goes to zero, the

Kalman Filter reduces to a state variable estimator derivable

from block diagram manipulations to reconstruct, for feedback

purposes, unavailable states.

If the input noise is a7bspInt then the output Xs
 is ignored.

In either case, after the states are estimated,-the state feed---"

back K1 
is nblected to either achieve the' Idesired transfer

function or to minimize a quadratic performance index. In the 	 011

absence of zeros these are equivalent operations (see Schultz

and Melsa).
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RANDoM SEARCH

car, 0

AIISTRACT

Many problems arising; in anginaerin6 and operations research contexts

have the following structure: The decision maker is provided with a class

of functions ) whose common domain^t+x bounded set is specified. Some

mechanism selects a function f from' 	 The decision maker is not/

informed of this choice. He would like somehow to find a point x* at

f

I[
which f assumes its maximum value (denoted by 	 Toward this .end )

the decision maker may sequentially and without constraint select elements

x lP x2 , .. from	 Upon choosing 
xct' 

he is informed of the value f (xn)

;Thus the decision maker may come to learn certain features of f Any	 7

(perhaps randomized) strategy for choosing xn on the basis of`the pairs
i

(e , f (x.))_ will be - termed a__ eararch _ procedure  The problem of L

finding a search procedure S under which, for 411 fe f (xn) converges tc

f	 rn some specified sense has eneratsd) a lively body ^	 ^'^ ^^ ^ ° .	 p	 ^	 g	 ^	 y	 Iy of research
s ^

paperer some of which will, be referenced and described in the present

For an example of the sort of engineering question giving rise to

a search problem, suppose 7`that an airplane is to fly in a fixed direction

and speed ._ Its ` fuel efficiency will then be a function of the carburation

setting. If x is the relative mixture of fuel and air, and f (x) the

associated fuel consumption required to maintain the °aircraft 's velocityi

then the framework for a search problem is present. 7C. may be t^aken to

be the unit interval and 	 perhaps. ., may be considered to be the set of,`

continuous functions on the unit interval.
n
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gradient `Vf of f at xa (by difference approximations derived from local

samples", and -then setting x +l	
x	 +AVI f (x^) .	 is chosen from heuristic

f

considerations and may varyas t he p	 i^ons of	 ,}=-e	 rocess. evolves. 	 If the f^.x:^ t-t-

_ are concave and M.	 is bounded)Pufficiently regular, the gradient method

`
w	 Ewill pro, ode a Cauchy sequency ^£ (x) 	 converging to	 E1 . f ^' . ^ Hadley 's

book Nonlinear and Dynamic-Programming8.	 gi 1 	 a nicely Britten chapter
Z'

to the gradient method ' and its variations.	 The review paper by 5pang
P

has an extensive bibliography on the gradient me thod.

J • Kiefer, 3'4 k4s	 " 	b,lished interesting analyses for the case thatPar

is a bounded ,interval in the zeal line.	 In'artcular	 under the search

rocedure--he proposes ° inn trials- ( the number n must be` specified in

advance) the point x r at which f (xY.1	 f	 can be located within a

distance- of -I- Lwhere L	 is the „nth Fibonacci	 ,number	 -provided `1-s the
n 	 n	 r

I7'set of concave functions on	 '.	 Further, the search procedure is minimax

_aan8e that no;n	 -	 _	 g	 can improve on this error	 -`in flee	 on rartdoMized effete ies_	 p

us , 	devote a 0̂	 Gotolerance uniformly in ^'.`	 Be11man and 1i`re t	 5	 terY	 p	 this

a	 ' oa . .	 , o this	 riter's knowledge,
,

optimization appr.` eh	 ^'	 w _ 	ge^, and ana ogouesaarch 

which also possesas the m nimax proper iy has yet to be :revealed €or Multi-
x

r

w ^	 dimensional-: --

`

n

An intriguing search- model (which , ris slightly c,]'oser to the path to
_	 -- .,	 . 	 -	 Ike	 ,:	 3 	 -	 ^^

^-promiinent and mu-"- ti-modallee f^llo^ed here in -that probabilistic ideas-arep -

functions are-- included in ^) was proposed	 by H. Kushner ^ '	 vho supposed

f to be anti S 4^ip le funetion from the Brownian mofton process on a bounded,

}

r

(' w

L

Under certain restrictions on and 3/ , effective search procedures

;tve been revealed. The mose publicized of these is the "gradient method"

_	 which, in itsk	 simplest form, determines x3+1 from x
i 
by estimating the



4

linear interval,	 An advantage to this viewpoint is - that, in addition

to including multi-modal functions, ideas from Wiener filter theory can

be brought to bear on the problem of designing an optimal search procedure.

Kushner points out that numerical evaluation of the optimal procedure is

n 
	 prohibitive,computationallyrohibitiva but provides a search procedure under which

n i 	L 4-f `xi) " J^f r almost surely , ,

The research report in''ths paper follows an approach sketched by

S. Brooks $	 Pie3sumably, Brooks took to be a finite set, and took the

t

	
loss associated with the function fE'^;and operating point_xeto be

z L .:.,f	 "proportion" of points x	 such that. f	 ^ f ^ , _	 )	
^^p	 p	 ^e	 p	 ^	 ^'.	 x^^ )	 ^)	 'fhen,

f

f	 `

given an	 positive numbers c dsmallest number N is readily . calculated{	 b	 y P	 ^ 	 y

ouch that if r xl ,x^,:s.xN are selected from by''s randomization which gives

, equal weight to each element of 	 , then for any real-valued function f,
a
,

IEi^ax ""I
	 n	 L(xi , f)	 c	 4 d,	 -	 for nr+N.

1 Brooks	 as well as Ku	 that the measure-shn	 the possibilityer	 consider-

y	 e considerationsment5	 f (x)	 may be c.or^uptad, b ^ additive _.noise. 	 Then

"

,

will be detailed 	 alon	 with	 tochasti4;,ipproximation",	 g	 a brief review of

in a later section	 Section `) of	 his _pape.
iL ^. 

Let us summarize the reil;ult ls of _this	 a er*rp p 	 wi11!	 in all otsr..studies, -	 °^

h ^_	 :=	 on _	 whicta.	 for expository^,ontinuous functionsat 	 -least	 nelude^ the `set of ^	 ^,-	 ,.',
n^l	 ^	 ^	 r,	 ^	 rc.^, 	 dtwo random seareasons	 will be the unit	 terva^.	 Section 2 reveals t
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procedures', the first of these achieves almost sure convergence of
rt

I/n Zf(xi) to ^Jfjj for each fe " and the second yields a random

sequenef, f (X.,)' ?̂, which converges in probability to (f 	 section 2

concludes with a theorem on the non-existence of a search procedure under

which f (xA	
jammost surely for all continuous f.

Section 3 reopens and extends the research path suggested-by Brooks 8

Where Brooks defines the loss - as6,ociated with operating point ,x and fe

to be "proportion"' of x- C	 such that Qx l )	 f (x)	 we define the loss

to be

L	 Lebesgue measure 	 x	 f (x	 f .(X)

it will be verified that this retains the important feature in Brooks'

otudy that ., for any positive numbers c and d ., one may compute in advance

of _makInK_, ,measuremehts jo how -many - measurements N are requireA, so., thatr for

any	 n,,;-, N.

:p	 ] 	 7^	 A-, f)	 c	 dP	 L(xny

x	 being the element x.	 14 1 ! np which r.'jiximizes the measurement f (xi)

Further, raradom e6arches S	 and S2 and numbers N 1 and N2 
are described

-- 

such that, for -any	 tind der S

L

n

O

UP	 In Z	 L (x.q f) 	 C	 d]nr,> 	 N,	 ,,.

and under S-
2

for allP	 (X	 ,n	 N(1.3)	 d
EL	;>	 2'n

C	 -r	 -c	 wi	 of noa-^6nl#vrm searchesThe section dpn ludes ,	 a id a r4, i on
J,

is- suggested ^tov Bayesfa	 to account for a -Oriori,It _ 	 t, the theory

not-ions of where the belctet". '-'Operating --points may be',foufid InXO

if
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If for each f64hnd each real number a, if f -1 ( a) has Lebesgue f

measure 0	 and if the x 's are selected according 'two the uniformi	 g	 rm law,

• ^	 le n f(xn)	 (xri beint; defined in connection. withLhen the random variabl e

(1.1) ) has the ex onentp	 'a	 law for a limiting distribution, as is demon-

s trated in Section 4.
^G

Section 51 studies the case that the measurements *(xi	are

corrupted by additive noise, which is assumed independent of x i , the
s

't

magnitude of f(x
i
 ), and the sampling time,, i.	 With no further assumptions

' on the noise process, we"reveal a search procedure under which the average
n d

{	 ? operating lossy 1/n 	 L(xi^f)) converges in probability to-0 for all, t
t

f	 however	 in the no	 rq	 -	 ;	 noise	 c..e,	 no ,- ' I owerLebes ue^:reasureable 	 unctions ^

F
--

bounds for the rate of this convergence have been discovered. 	 We'epmpare

thisroblem and the results obtained to the class of 	 toblemsp	 p	 .which ;ire f

, ,own to yield to the method of stochastic approximation, and also

mention related results due 	 to Brooks and Kushner. Y
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