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Weighted Least Squares Parameter Estimation in the Presence of Noise

l. Introduction

Discussed in this report is a generalization of conven-
tional weighted least squares state (or parameter) estimation
techniques to the problem of parameter estimation where all
sensor measurcments are noisy.

This problem is illustrated in Figure A. Sensors provide
noisy measurement vectors xB and YS. These vecters may con-
tain many repititions of some data measurement. At any rate,
the parameter matrix H relating the exact (deterministic5
states X, and Y_ is considered to be unknown. The problem
gthen is to provide an unbiased estimate of’H in a manner that

ﬁis optimal in a least squares sense. Thus it is necessary to
select a least squares performence index and some associated
we;ghtxng matrlx. - |

5 The transition from conventional welghted least squares
theory is made. An estxmat10n=equatlon is derived whlchg
provides an unbiased parameter estimate as well as‘least;E
squared error. The weightingrmatrix is selected so’as td
provide minimum variance of the eetimation,error. ‘The sélec-
tion of the-weighting matrix is shown to ﬁe more cémplicéted
)

than for the conventional least squares case. Two examples\

are given in which the weighting matrix is selected forf”w
f‘
SPGlelC problems. A procedure for operatlng on repeated

measurements is discussed. A simvlation is presented 1n

u
i

whlcn thie derlved estlmatlon equat;ons do provxde unblased

'1

)
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estimates and the variance of the estimation
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2. Conventional Weighted ILeast Squarcs Parameter Estimation

2.1 Conventional State Estimation
The conventional least squares state estimation problem

may be defined as follows. Consider an exact equation
Y, =l X, . (1)

where Ye and Xe arc states and I are known parameters.
Suppose a sensor provides noisy measurements of Y,

T

Y, =Y, + v,”{m(v(t)) = 0; B(V(t+T)V(t)) = RE(t-1)} (2)

Then select X, such that one minimizes
| - )
= flvg - ¥ x Iy g \% (3)
Subject to the requirement”of an unbiased estimate

E(Xg) = Xo “ (4)

~The welarknowﬁzanswer is that

x = @' nm tut my (5)
 The yariance\df“the estimation error is

. A j N T ‘7- Y
T ,P‘ﬁ E{(Xq XE’(xe; “ Xg )] L
R o R AR Coe T (6)

- M H)-l(ﬁ?;h RMH)(HT MH)~ L
The variance of the error'is miniﬁnmliﬁ M=RT
S Y, Js TS B
Pag = WORTHITT (D)
’ 4 : e

G : . o



The above probhlem can easily be rephrased as a parameter
estimation problem (estimate H with Xs being a ncisy measure-
ment of Yo The general problem is to estimate H with Ys
being a noisy measurement of Y, and also X being a noisy
measurement of xe. First, let us consider the former case

by simply rewriting theée above equations.

2.2 COnventional:Parameter Estimation

Consider an exact equation
Y, = X, 1 (8)

where Y and X  are states and H contains unknown parame:ers.

Suppose a sensor provides noisy measurements of‘Y@
Y, = ¥, +V {E(V(E) = 0; EIV(t+)VE(£)] = RE(t-1)} (9)

Then select H such that one minimizes

i :

N = ljys"" Xg HUM (10)
Subject to the requirement of>an‘unbiaéedrgstimate —,_ﬁ
CEM) =H 771y N
| A Y |
In this case, the answer follo@s'by rewriting Equations 5-7
1 T -1, T | o {
| H 5_(xe MX,) "X, M Y, ﬁ
A " : :
P=E[(H - H) (H' - H)) o
BRI B b (12)
T -1 ,,7T « T e Y =1
..(xe M xe) rgxe y R‘M‘¥e)r(¥e M xe)
A ‘:‘ : - l B P -1 N ; -1 .
g e 'gfﬁ
LT pts N



There are two interesting degeneracies associated with

Equation set 12,

1) Suppose M is a scalar. Then R must also be a scalar

(let R =0 2). Then Equations 12 are

v

oSNNI BN R
H (Xe )\e) )1. Y

(13)

Thus P is immediately mirimum variance since M cancels

oyt and P is independent of M.

2, Suppose X is a non singular matrix. Then Equations

‘12 are

FRR (14)
T S N ST ks S
P =Xy R(Xg) | ",Pmin' STy

Thus, P again-is minimum variance since again M cancels

’Outﬂpf“all the equaﬁions.and,P”is indepenaent-of‘m.

. " o v . : ' ’ " o b} ‘ i
"Witn the above'review accomplished, let us now consider a

© more general problem.

)
o s 1t

3. Weighted lLeast nggfés ParémetéfiEstimation f'Allmsenso@s Noisy

- T - . L ) ’ =, ‘ r} ;
3.1 Problem Statement and Approach to Solution

) i SO ) ’ o
- Consider an exact equation -

o
P

.
&
- s ) 6 -
¢ ~ ) ) .
(\\ [:-\//ﬂ ' ? a ‘ RS =

(&



where Y andxe are states and H contains unknown parameters.

Suppose sensors provide noisy measurements of Y, and Xo

Yo = Y+ V {E((E) = 0; E[V(t+T) vi(t)] = RS (t-1) )
b (16)
X, = X+ N){E(N(t)) = 0; EINT (t+1) N(t)] = S§(t-1)}

£+

Then select H such that mne minimizes (since x is not known)

|| ¥, - X, H f1M ‘ (17)

Subject to the requirement of an unbiased estimate

B(H) = i - (18)

3l

" if the objective function of Equation 17 was chosen as an

_ artltice such that a parameter estlmator could be derlved, then

one may addltlonally select M such that the variance (P) of the

ﬂestxmatlon error is a minimum.

n oA o
P = E[(H-H) (H -H )] - (19)

Now the following procedure will be followed in solving this
prqblemaﬂl e ° ,i E
: | _ﬁ

Step 1,1mchoese'ﬂ‘to minimize the weighted Squared~error J.

Step 2. . Select Xé;— X A and choose A such that the estimate
B is unbiased (E(H) = H) L L - (20) j‘ﬁﬁ

-Stép 3;W«Select M for mlnlmam-P,‘lf one 1s free to choose M. .

FM~If M Ls pre-selected, then only Steps l and 2 are

0

carried out. o ;*,P“ , _‘ Q : i

.
&

a7
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3.2 Derivation of Parameter Estimator and Variance of the

Estimation Error

Step 1.

Step 2.

‘ mlnlmum. o ,;.ﬁ ‘41" ”/ﬁ'/

Let us solve for H such that ﬁi = 0. Then the
ot
result is
NI IR el O |
H (xe M xe) X, MY (21)

e

Let us evaluate the e%pected value of H for;{e =
XA, substituting the sensor Equations 16 into 21.
Assuming that A is non siﬂgulariwe get, neting
that the noise terms have zero mean and may be
eliminated whereverthey;éppear,as cross products:
E(H) = E{A7Y(x}

.*_l o , |
s M_xs) f@xé M xe) K} ’(22)

Now for an unbiased estimate, set Equation?22=ﬂ.
' 1.0

Suppbse'we‘sélecthZ-(xE‘M X’) [x M x o

E{NTMN}]. Thenfﬁe'have an unbiased estlmate of H.

Finally let us substitute'the~chosen valuekaf

~

X - into hquatlon 21, since the result is on

e

unbiased estimate of H.

'The result is after,simplif?péfion

H= (xT MX —E(NTEN)I"l x:3M¥s | (éf)k

';In summary Equation 23 is in upblased estlmatmon

R
i

of the parameter vector H and the estlmate also . YT

causes the welght least squared error to. be a



=

We are now in a position to calculate the variance of the

estimation error. Since the estimates of H, 6 are unbiased then

T

E(HHT) = E(H)HT=HHY, It follows that

P = E [(H-H) (HT=HY)] = -HHTY + E[HHT)] (24)

'
)i

We can now substitute Equations 16 and 23 into 24 noting that
all cross product terms involving the ncises can be eliminated.

The result of obtaining the indicated expected values is

N ~1,.,T T T T o -1
P = (xe Mxe) (X, Mnmxe+n{u M(YeYe + R)MN}](xe MX,)

(25),
With‘regard to Equations 23 and 25,wthere are th;eé degen~
eracies ofudefinite interest. ,

- 1l. N(t) =0 for all t. Then x = X, and Equatlons 23

/

.and 25 compaxe W1th H and P 1n Equatlon lz for the
conventional parameter estxmator.;

2. Suppose M is a scalar, ?henaRais a scalar ovz and

'Y is a scalar. Then we obtain

X STX sj X ¥g Lo
2

o L 2,, T, <1 2y, Ty (-1
Po= ogf (X XD T + (Y Thoy %) (XTX)

S VIS R
s(_;%e _; Xf?) ‘(2:6")1__ |

In this case, since P and H are indepehdent of M we can

then assume that the above'value of ‘P is the miniﬁhﬁ

o

S variance of the estxmatlon error forlthe case where

N

: ¥
';we are trep to choose M. Note that if S fLO then we

rfnave Equatlons 13 for the conventlonal parameter

esLxmator.:”

T
. .7)



3. Suppose we can write

T

;,('.P' a2 T ,
EN M(YeYe + R) MN} = Xe MQM Xe

Then P becomes

pe S M)t M R+ Mx ) (CMx)Th (27)

{iomparing Equations 27 and 12 we suspect that for the
case where we are free to choose M, Pmin occurs whén
M= (R+ Q72 “

- Let us now investigate the case where wé are free to choose
M. We are then interested in the conditions under which minimum
variance of the estimation error occurs as a functi&n&oflthe |

weighting matrix M.

3.3 Derivation of the Weighting Matrix to Minimize the Variance

‘of the Exrxror -t

Minimization of each element of P is equivalent to minimiéing
the trace of P. ‘Let us éqcomplish this by writing the optimum

value of M as M. We‘observe thatkany other M can be written
o : k/' S V

M = M,+ [>41]

P

where n is an arbitrary matrix. Then optimality demands -

.0 .trace P l
= TR e=0

= VOﬁ for ‘all n.

From Equatlon 25 we obtaln the follow1ng equatlon by takxng the

above derivative.

e R Lo



. 0 = trace

Y P A -1, A
[Xe n Ae][xe M xe] [ M X,

=D

T
X, M R
T
\S

!e

+ BNT M (v, YL + R) M N}

L0 T ~ T T N
+[xe n RM xe] + E{N" n (Ye Ye + g) M N}

oo amen.

i -1
x [X, M X_]

—

128)

Then any M satisfying Equation 28 results in P being a minimum.

Three degeneracies concerning Equation 28 tend to enhance the

understanding of this rather involved expression.

1. N(t) = 0 for all t. Then Equation 28 is zero for
M = r™L which is verified by Equation 12.
2. Suppose M is a scalar. Then so are R = ovz,Y, and n.

In this case Eqpatibn728 is identically zero for all M

- and any M results in P_, =~ as suggested in Equations 13

and 26.
3. SupboSe we can write

T+ R Mn} = x%

-
E{N .M(Ye_ye e MWQ M xe.

Then Equation 28 becomes

e P JOVERN, S R, LSRR S B, ZYNES B
O=trace (XgnXg) (X MKg) ™™ X M(RFQIMX, | (X MR)™"(

Ty

+En(ReIMR,

l

(29)

If we chobse‘Mj=gKR+Q)-l

+ Equation 29 is zero, hence
M= (R+Q)?lji§ optimal as suggested in the last section

t_ by;Equatiénﬂ27;f

- 1L S T | - -




Although Equation 28 is rather involved, general statements
can be made. If either N(t) = 0 or M is scalar then Equations 12
or 26 provide an estimator with minimum variance of the estimation
error and solving Equation 28 is unnecessary. "If, however,
N(t) # 0 and M is not scalar then Equation 28 must be solved. The
optimal matrix M contalns, say, n unknown weights. We wish to
minimize the trace of P which is then one equation in n variables.
Hence the optimal solution is, in general, a dependence of any one
weight on all other weights.' That is, any one weight can be
considered a dependent variable and all oﬁher weights are indepen-
dent. Now since we write M = ﬁ(éven, then for the ith Weight
h& = &i + eny. Thus Equation 28 provides n equatiqns which must
equal zero, one for each n, . By Selécting any oné'of these equa-
tions and then treating tiie corrésponding value of Qd = f(a.) j#i,
then any set of values ;l, i =1 to n which satlsfy *h;s equation
must be an optlmal set and therefore all equatlons multlplyang

: |
all other nj; j # 1 must go to zero. As an example, degenerary 1

calls for M = R* ', Suppose

5
R 1 :
M= 1 = (30)
7,

If we also investigate thé zeros of the equatién:mu;tiéiying Ns

and treat m, as being"dependent, then we obtaih a first order

equation whose solution is

' 2
N A (m2 02):7 , 3
12




Now the equation multiplying Ny might have been used with the
result that
(m1 oi{

nym gty = 2 (32
: o
2

~

Now not only‘does the sélution of Equation 30 work, suppose that
Qe chOSekﬁz = 1, forcing @l = o%/ci to satisfy Equation 31. Note
that this same selection ﬁatisfies also Equations 32. The point
to be made is that, to solve Equation 28 we need only obtain one
Eqﬁation multiplying, say, Ny treat the corresponding ;i as
being a dependent variable, set the equation équal to zero, and

then obtain m; = f(mj) j¥i. The equation which must be solved to 5

obtain the desired functionality is first order when degeneracy 3
ogcufs (assuming, of course, that N(t) ¥ 0), and fourth order in 3
the general case. The solution of a quartic is by no means
pleasant, hence no general answer has yet been obtained. However,
'two special cases have -been investigated and the results appear

in the following examples.

»f3§3.1 Example wiﬁhLa 2 x 2 weighting Matrix and a Scalar Error

Variance

‘The simplest non degenerate case involves y of dimension
2 x'1 (hence M is not écalar)iand correspondingly X is of dimension
2 x 1 (hence singular). Then there is but one parameter so P is

. a scalar. Thus we have an exact equation '

*
e A

v ] ;7
Yl.e o gle

"
4

,¥2e o fx2e
TR R A

13




There are then available sensor measurements

L . Vl(t) _ 0 .
7 . v, (t) o
Yls Yle Vl ! 2 .
= + e _—
Y Y \'4 2
w?%” qu_ __{* Ovl 0 |
= s (t-1)
2
0 Oyy-
- VZ_J
0 ‘ N.({#?’)
= | |5 EiNen wem] |l
0l ‘ -ﬁlzléﬂ')')
x1s xle Nl )
= +
X X N
28 2e 2 _ 2 2 .

X S
ls le '

J= || - h | \\

Y25 |  [*2e lml O'

0 m,

Equation 23 gives the estimator
ro  Xg M Yy * % m§,¥2s
, T2, 2 T

o Kyg moogy) By b (Kpg - Oyp) M

Equation 25 gives the vari#ﬁce'Of the estimation error

,2.

2.2 2 2 2. 2., ., 2 2 . 2.2 2.
LM [XKg oyl + ooy [ye + oyill + My (Ko dyp * Twal¥ae * Oyl
2 2 2 o "
(x1e + X )

m 2e My

(33)



In order to select m; and m, to minimize P we can proceed in two

-

ways. First, we might note that the above value of P resulting

15,2 '] :

from Equation 25 could be written =
| 7*"~1L““ ;E% (¥, 2 %) 0 $
T “10 T, oyl T, | X oVl ¥
P = (Xe M Xe) X> M (V1 JIMX +X"M|"le 2 M X ¥
) e o 2 e e e '
0 N2 2
P va 0 (¥, vz) ;
X
2@ :
B — E
T -1 : : 3
x (Xg M X)) 7} ( ;

as pointed out in degeneracy 3 in the last section, the correct
answer for the above results by making a comparison with Equation
12 for the conventional weighted least squares estimator. The -
koptimal M is simply |
M= (R+ QT

So |
m, = 1
283 < . - S -2 N - e
] g 2 + o (Y 2)
Vi X 7 le v
le ~
‘ g - (34)
o 1 |
2 = R
- 2 N 2 2
Oy2 ¥ T3 ‘Yze + dy3)

xle o o v

i

- Now the more dlfflcult approach whlch is more stralghtforward is
to evaluate Equatlon,ZB. The resultlng equatlon (whlch must be “Vr

tfhe for all ny and "2) ;s

15




2 2 2.2
O = 4n; Mlexze[xle vi*“Nl‘Y1a+°v1)]

J g2 g 2,2
Mz [xzedvz*Uwz‘Y Iyp) )
% 2, ~
tny M Mlxlc[x2c vat Nz‘Yze v2)]

f 2, 2 2
- My x2e[xle°v1+°Nl(Y‘r*le)]

I\2A 2
(xle 1 xz MZ)

Now one could force the product multiplying N, to be zero by

selectingiM1 as adaependent variable and one obtains
' 2

M, = M, (x2e°v2+°N2(Y2e v2)]
2,
2e[x1e vl (Y1e+°vl)]

or equivalently, one could force the product multiplying n,
, A . w , , .
to be zero by selectxng.M2 as a dependent variable and obtain

2

A, [xle g%:9N1‘Y1 vi)
2 | 2

as pointed out in the last section, it is only necessary £o

force any one product term on n, to be zero and all other prbduct
terms go to zero.’ (i. e.,_the ratios Ml/M2 is the same for both
thefabOVe equations) Note again that since this problem falls

0

‘under the category of degeneracy 3,: equation 28 results in a first
order egquation - in order to solve for M. The ‘above equatiogs

“are certa;nly‘solved using equatlons set‘34. It is most’
3in§eres§1ng to note~wiph regard to Equatxon‘JAthaﬁv;arge
meagureﬁentsyi; aﬁd:¥284§ymglt;piyingythe;signal to,poise‘
”ratlos ovlz/xlez‘eod 6&92%X52oouldedsily be,ﬁubhiarger Ehan

the Varlances 0V12 and cvzz. Thus, 1f one selected m, and my

as, per conventxonal least - squares theory

16

adj & :



9v1 Y2
one could select grosgsly incorrect weightings. The optimal value

of P, resulting from tne above correct selection is

l ;
Poin =7 x. 2 . 2 (35)
le + ; 2e
2 T2
. In2 2 2
| IN1 2 2 2 N
°v1 =5 (V1o * OyrT) Oyt g (Vg t Typ)
Xle X, -

A computer program was used to check out the optimum choice
of my and m,. The variance P was evaluated at*ali combinations
~of 100 values of my and 100 values of My The values of my and
m, giving the minimum,was selected. It is interesting to note
that P depends on the ratio of m,/ni2 so that the contours of P

in the my, M, plane are straight llnes (a plot of ml/m2 =

constant) The f;gure below illustrates this

PJ» P} f& P[ Rm}

P
, ; #/ 1 /x/’ﬁ -
AIn the abo'.a By 2 P3 > P2 P1 > P in' Now the followzng tablerf

“summarizes the two r$ns made for this problem.
f && oo
B/
/ 17

,L-v

]
/:f;\m\,

R

" ('\; ) \\\>



Rudbithtat i

Wroreind kit

“DATA | “RESULT
Case | Xy | X, | Yy | ¥ |02 |02 | 012 | 0un? | mi/m, | P
' 'le | "2¢ | "le | "2e | V1 \'’ N1l N2 17721 "min
1 1 | 2 | 1| 2 {100 |1000 |200 { 20 !.348 | 808
2 1| 2| 1| 2 [100 [2000| 1 1000 |21230.] 200

By substituting the above data into Equation 34, the observed
A ”~

optimum ratio ml/m2~is verified and by substituting the data

into Lgquatien 35, the observed minimum P is verified.

3.32 Exanple with a 2 x 2 Weighting Matrix and a 2 » 2 ¥rror

Variance Matrix

A second problem, similar but more complicated than the

last can now be presented. Consider the exact equation

e T e R
Yle = _xl@ Xre | | M1
y e - £ ...J .
p o - j
There are available, the following sensor outputs :
¥ vl ( v o v, (t+T) | i
= };1 + 1Y \e [? - | ;Y ?Vl‘t*f’vz¢t+tﬂ
Y2e 1 | V2 vy (£) K vy(ern) | L m )
0y,% 0 - B
Vi 8 (t=1) %
0 g2 :
- w1 - )
N
| 18
fl g ~ : L ﬂ"/



N, (/: Ny (6) Wy(e)] oo

Ny | < Ng(£) N, (8)] 0o

\/’

a——

N. (1) N (t+7)]
E 1 3 X ;

N, (t+1) N, (t41)

N, () N, (t)
N, (t) N,(t)

¢ ! — —
| | 2 2 -
* (GNl +" GNB ) )( Iy
, 2 2

0 (Fnz * %n4)

, & §(t-1)

‘ : h 2

‘ ‘ : ‘ A ) ; A ’ ‘ ‘

The problem is to select i to minimize, subject to E(H) = H n ’
: - ' S £

Equation 23 gives thg'estimatot; Equation 25 gives the variance
~of the estimation error and since X_ is a non singular matrix

Equatxon 28 ‘can bn simplified as folloW%.ﬁkThié-providQS~a‘meahS‘

A~ e R AT

for selectlng m, and‘m2 SO P Lsfmlnimized.n

ST S ‘-i‘ -(x nX, )(x Mx )" E{NT

0= trace (X " M X)) , -
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Let us select the matrix n asu

Hence we let &l be a dependent variable and evaluate Eguation 36.
Bylcombining the above equations, factoring out commoﬁfterms,

| and'writing the result in terms of (&1/52) the following quartic‘
equation results. (In the generalfcase) with gi being the
dependent variable, the equation would be a quartic in &. with

i
' /
the various coefficients being functions of all the other m

j ’
3% 40
" A 4 ‘ N 3
my - m
| 2 2 2 2 1 »
my , my
’ gg ©d
: ml o o .
, Ko Xgo @ 7 ¥pe Xz Y1 = (=) [Xpg Kyoh +K) o X3l
o - 2 . o
: S 2
I¥2e Xte. * X1e X3l ~ (X et Xy ][xéas R e'al (37
‘ where ) " O ’A ) = - ‘ b s i
" - 2 ,, 2 = 2
o = oyy M1e * 91) :
{ 4 2 f“; 2 . ;
B ' ON3 (Y + ~,°V2‘) " N
B RN 5 2 oy f 2 ’
» | Y= oy (Yx #oyd)
o= g 2 (Y 0.2) - |
-8 - ;;GN3 (Y2 +. ?’*VZ) R '
General procedures exlst for solving quartlc equatlons but
he work is rather tedlous. For the present, it suffices by P4

,_,/\\

example to show that/optlmal solutlons do solve the above equatlon.

@
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P was calculated on a computer for all combinations of 100
values of m, and 100 values of m,. The resulting (trace of P)
is a function of the rati@’ml/mz, so contours of constant

(trace P) in the (ml - mz) plane appear as straight lines (plots
of ml/m2 = constant). The figure shown in the last section
represents the contours. The following table summarizes the

results of the computer study.

DATA | | ResuLT
el
2| 2of o 2f 2| 2 [ k
case |*le| ¥2e [*3e|*4e |10 Y22 N1 [M2f N3 w4 |%i Pva [&] [FF2° Pmin
1 (1|23 ]4 |2 |2 froo|1 fooo 10 (L00fr000[7.7 |5 x 10°
2 1] 2f3 |4 {2 |2 {1 ho{1opooo|20{20 [9.2]2.8 x 10
: 18 ) ol Bl 7 el

1] 2|34 1|2 |1 [0] 0[000/100[1000]/25.8 6.1 x 10

For example, if the data of case 3 is useéd, we desire the solu-

tion of |
: m, 4 | m m S g ,
0 = (w—) ’20?0) o+ (w~) (3888) (w') Q3(10) S~ 225(¢10) 7 (38)
my my )

The obSérved optimal value of 2R~B when substltuted into the

 above satlsfles the equatlon,,demonstratlng%that the?optlmum

)

,wratlo lS lndeed a root of the dbove. Slmllarly, the opt1ma1

solutlon for cases l and 2 also satlsfy Equdtlon 37

_A&ditional computer runs were madeafpr the abOVe 3 cases

N - L

where the matrix M was chosen

3:
i
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rather than

(40)

It is interesting to note (using case 3 as an example) that the

optimum was méw— 0, mi = ,0383. Then the ratio l/mi is compar-

~ (2}

able to ml/mz. Then

Ea) Ta)

~which compare with ml/m2 = 25.8. The point ig that nothing is
gained by considering a non-diagonal M matrix since the end
result 5§pears to reduce to a diagonal matrix. This result is
-true bééausc the meaourement nolses are all lndependent and the

covariance matrlucs are dlagonal. Hence, since no cross product

"
AN

0N .
_terms appear in ﬁhg covaria nce matrices, no Cross. product terms
(/

are necessary in the welghtlng matrix.

4. Repeated Data -
,The dimensions of thé_weighted‘least squares estimation

problem follow directly from the exact equation

¥e . =. . Xe E ;F;i:w - Hﬂ R ‘ A *‘_»/ J’:T N . N ,J;,“m\ o o r . st ( 41 )

mxl:.  (mxn).nxl

- The dlmen51ons of all other varlables follow ‘Hquation 41.

For example, the variance of the estlmatlon error is a matrlx P
of lmen51on nxn, the dimension belng dlctated by the parameter

amatrlx Hf ‘Similarly, the welghtlng'matrlx.M ls mkm, this

ol
,,.‘

"dfﬁension being determ1ned»byv¥.r}

. Pitv o T
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Suppose that Equation 41 represents the result of making p
repetitions of the same measurement. Then the dimensions could

be written

Ye . = Xe H

(pm'x1) (pm'*n) (nx1) | "

After many such repetitions, the vectors and matrices could
bec¢ie exceedingly large in size. Fortunately, calculating the
estimation equation and the variance of the estimation error
involves products such

T

Xe M Xe

(nxpm') (pm'xpm') (pm'xn)

"Néﬁ'thiS”proadCt'is,iiﬁ efEGCt;'thé'sumigfftaking'p"gfo§u¢t3~c£"
; the form | H |

(nxm') (m'xm') (m'xn)

~The subscript iqrefers to the meaéurement‘ﬁumber, hence ﬂ i
} €i
a matrxx‘of dxmens;on (m'Xn); representlng the data from the ith

repetxtxon.

;
z
5
i
Il targ
=
=
:
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= . = o o

In an ﬁnalogous manner, all the. operatxons previously descrlbed 3

can be translated‘dlrectly into a summation format. Now the
ol -~ . @ n o
o Sy ” ‘ | .23
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simulation in Section 5 involves repetitions of a single measure-
ment ¥ (i.e., m'=l). 1In this case the matrix M (of dimension

pXp) can be reduced to a scalar if the weightings are not time
dependent, but rather, the matrices Mi are all equal. As
previously discussed, when M is a scalar the weights cancel out
of.the estimation equation for ﬁ and of the variance of the
estimé@ion error P (see Equation 26). For use in the next section,
Equations 26 are translated into summation format. Fox simpli-~

city, the subscripts i are dropped and the summations are

assumed to be over all p repetitions of the measurement.

o T -1 T
H= [Z(XS X;8)] [z x, Y] (42)
(nx1) (nxn) ~ (nx1)
2 T -1 2 2 T . -1 T . .-1
P = ovﬁizxe Xe] + [(X(Yet+ ?v)][ZXe Xe] S[EXe Xe]
~ (nxn) (1x1) (nxn) S {1x1)y (nxn) (nxn) (nxn)

Note that all resulting matrices are of dimension n. Heﬁée, no
matter how large the matrices of Equation 41 become, the matrices -
which must actualiy g; used to compute ﬁ and P are always éf
dimensiOn n (the number of parameters to be estimated).

- 5. simulation Demounstrating the Parameter Estimator

=3

Consider the following exact equation

M.

§”f= {a 61 & o
e e ‘e
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where Ge, Gy s and Ge are measurcable states. Suppose sensors

provide nojsy measurements

il

=6, +V (BEW() = GEV(EDV(E)] = 0 §(t-1)

N, (t)] (o] N, (£)]"

| L, 2 2

I p%Jt+T)N6(t+T)] = (Uu + 06) § (t-T1)
Ng(£)].

'l n
o e
+ +
= =
&
I

e TN E‘S(t)._ O,J

It is assumed that p repetitions of this measurement are to be
made. However, as discussed previously, since Be is a scalar
and since the weighting matrix is the saﬁe for each measurement,
then the estimation equation and the variance of the estimation
error become independent of M, hence minimum variance follows
once theunbias;d estimator is arrived at. In this context,
weighted least squares yields the same results as non-weighted
(M = 1) least squaré§; lHlence, it suffices to-consider“selecéing
?8 to minimize the following objective funcéion. Summation

M
format is now used

J= |l (o, - lag 8]
: a o
Minimization is subject to E = .
Mé M§_ -

s ed I

The solution.to this problem is presented in general in Section

3.1.i For the case of scalar M,kﬁe have Equations 26. 1In
summation fqrmét, we have Equations 42. Then the above,equations
may be substituted directly irto Equations 42. The result is

- a ’ - ! \/j: gv

.25




.

an unbiased estimator for Ma and M

6;

The variance of the

estimation error is also as small as possible for this class

of unbiased parameter estimators.

P

M

A

-
a

ot

=

P
%a

haacmsorse

+0

Bormms——t—

sy

satine

ag

Y

2 _ 2
E(ag - o3) (8 ag 68)

(€ oy 85 (182 -0D)| |z 8

2

20 0 20 e
(za2) (562) - (2a 8 )

2 L2 ooy 2
(Z&e) +*06(Zae6e£]

2

(zdé)z

; 2.7
~(2aeée)[0a(z6e)

-l e
Z a BS
8.
ol
— —
) 6@ ~Z aGGe
3 , |7
[7* %efe %

—2 . 2.2
—ca(zae) | :

L2 V2
_foa(zae) .

r , 2 ;72"
~(2aeée)[oa(zae)‘

(43)

L 2
L(o, + o)

2., 0s2 2
((za?) (262)- (a5 ) %)

In order to test Equations 43, the control system shown

in Figure 2 was uced. Essentially, it is a third order pitdh

plane normal acceleration control system with first order

%gcﬁugggg .dypa@ics and second order pitch planéﬁ(plant) dynamics.
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In Figure 1, the following symbols are used:
M, = Aerodynamic stability derivative (°/secz/° of a)
My = Fin effectiveness gain (J/secz/° of §)
T = Actuator time constant (l/sec)
U = Velocity along center line (ft/sec)
%2, = Normal force coefficient (g's/° of a)
o = Angle of attack (°)
§ = Fin deflection (°)

® = Attitude angle (°)

As shown in the figure, tlie parameters My Mﬁ’ and Za are
utilized to calculate control gains such that system
response characteristics to command are constant (corresponding
to a second order system which is .6 damped with a 2 cps band-
width) . I
Two basic modes of operation are poss;ble--off line and
Omrline. In ‘the off line‘mode,'all system gains are updated
using actual parameter values while the estimator processes
the resulting data in an attempt to reconstruct the parameter

g values. The off line mode was used in the s;mulatlon so that

( )

fnom;nal data results, data unaffected by parameter estlmates.
Hence, the\covarxance of the estxmatxon error is g:ven by

Mﬁ;t’eﬁi Equatxon 43.” It xs assumed that the parameter z is known

whereas M and M6 are not known.’ The second hode of operation
is the on-lzne mode wherln parameter estimates are used to
calculate the control system gaané. In this case; the variance
of the estlmatlon error is more compllcated since data such as

Y(t) becomes Y(t H), tgat is, a functlon of both tlme ‘and:

- 28
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previous parameter estimates. For the present then, the off-
line mode is used to derive data for use by the estimator.

A word should be said about the nature of the estimation
process. When no noise is present, then ﬁu and Qﬁ are
determinigtic time functions ﬁ () and ﬁs(t) When noise is |
present, M and M6 are stochastlc processes M (t, §. ), MG(t, §, ),
that is, functions of both time and the outcome of the i‘P
probabalistic experiment, here the selection of a sequence of
noise values. Hence, for any selection of a scequence of noise
values, there follows time functions ﬁ (t) and ﬁﬁ(t) Similarly,
at any one tiTi’pOlnt M (§) and M (8) are random variables with
a mean é; ana CA; and varxanues‘dg (the (1,1) term of the P
matrix) aﬂd a ?éhe (2 2) term of %he P matrlx)

In orde;m@b verlfy the predicted variances dg- and cg
each case anOLVlng noise was repeated 20 tlmés aga unblasgd
estimates of the mean and,variance‘of both Ma apdﬁM6 were made.

For an N sample ensemble, one can estimate the mean { of a

random variable X by the sample mean X.

N :
& X - o
» i . )

T _ i=]1 ?

X = == : ) (44)

The végiande is estimated by

R N L - L
T ) xi . -2 ‘ .
~2 Vodamd N X : .

These estimates are unbiased; that is

A \\» 5 4 ‘ &

ViR f mya2y
V‘;Efx)r & e wgfex) = oy
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yuations 44 and 45 were used to verify that unbiased estimates
of ﬁa and ﬁa resulted and that the variance of the estimation
error for ﬁa and ﬁs was ag~predictéd abova,

Two cases were run with each case being repeated 20 times.

In both cases |

Ma = 500
M6 = 1000
Za = (

INITIAL g's = 10

In each %&éa, the plant dynamics were simulateﬂ by taking a set

of first order linear differential equations
X(t) = A X(t)+BU(E)

and transforming these CQUaflﬁﬁbnﬁﬁtﬁ the form

Ao
]

X(t+7) = ¢(1) X(t) + ¢(1) U(H)

i
Thevsransisioh”mattices were calculated. from the Taylor series
expans;on for an exponentxal. Ih ail 46 passes‘(that is 20

- repetitions of the 2 cases), 100 iterations were made, each

| s;mulatlpg a .01 sgcond duratxon. Addltlonal 10 g commands were
cailed for evsry 161iterations (.lﬂsecends). \Thls forced the
plant to be qulte active. The results are shown iﬁ the foiloWing

‘table. The data 1ncluded here, rOfers to the f1na1 or lOOth

lteratlon.

S



.Now if Y_ contains some noise, H might be slightly inaccurate.

u
el -

}Onvthe«other hand, since xs must be inverted, a relatively

‘The result, as expected, was a biased estimator

Predic- Ob~- Predic- Ob~-

Case Data Mean ted served ted serveé
02 02 02 M M d% c% 02 og
v o § ol § M " M M
| o S s
I 10 0 0 500.2 1000.3 564"  58.5 238.6  248.5

2 100 .006 .0015 540.1 1082.6 4731'": 7627 10045 31828

From the above data it is apparent that adding some noise

to measurements of a and § has an appreciable effect on the

£

- accuracy of the estimator. The simple rational for this occur-

rence follows from consideration of the eqguation

Yo = Xe H

“Ifhxe is square and invertible we could write

A
RS
H = Xs YS

R

small error in each element of X  could cause a disproportion-

ately large error in H, which is the case above.

Case 2 was rerun using a conventional pardmeter estimator
. L o : ) Y ' :
“ ‘ ) y .. . . ‘ i 3 g Yi *
(that is, one in which 02 and 02 are zero in Equation 43).
: 3 o T8 q e

I

B My = 308 g% = 478 .
. i - . N e . . P
d - q“. N AR M ! ¥
R e - ‘)‘ ,‘ 0 a ~ iy
0 )}J,r‘ - - & ’~,4V;‘ ) P, ‘ o .
I o : i = '
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| 6. Outline for Future Work
| With regard to the problem presented in this paper, it
would follow tnat one should investigate wafs of‘obtaining the
noise variances assuming that they are unknown. Then, an on- A
line simulation should be made to investigate the ability of
the estimatorgto provide invariant response characteristics.

A furthe% extension would be to time varying parameters.
one should coisider | |

i

X(t) = A(t) X(t) + B(t)u(t)

i

é ) §
How ¢an control gains K(t) be selected such that the

feedﬂack signal u(t) = K(t) X(t) renders the responSe
_ '%ime%invariant? What if u(t) must change only at

fixed 4 ime points?

\.

.

I

2) Supp@se ﬁh parameters contalned in i are time dependent

in t?at they dehend linearly on certain states. Thus °
H = #e H'.” Then, glven the exact;equet;on o 8
ia | ” V \ - ™
ﬁ | | ' T s . '»’t: ‘«"*“' } 5 -
I C , S
i = ' .
Ye \ Ze geﬂxe o

where ¥_, X , and 2 _ may be sensed with noise, how can

H' be(@stlmated to obtaxn an unblased estlmate? What

~ must be doﬁe to ensure mlnlmum varlance ofuthe
O v ‘ - . N (

estxmatxpn error? o ’ g
oy '—5\ C )
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3) Can the esLxmator of 2) be used to provmde the
necessary ccntrol gains for ) such tnat nearly

constant responsce characteristics follow?

It is suggested that the above could be applied to

a linear control system problem.
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Kalman Filter Problem - No measurement noise

Abstract

Suppose that the measurement noise for a Kalman filter
approaches zero. It is shown in this discussion that the
result is a filter suggested by conventional state variable
feedback and estimation techniques.

“State Variable Approach

Consider the linear constant parameter closed loop~ *""tem
shown in Figure 1. With control gains on all states, one can
then place the closed loop poles anywhere in the complex plane.
The elOSe& loop transfer runction (assuminé,zero initial condi-
tions) is

o~ (S) = [SI - A+ BKlljl BK, (1)

75 :
Suppose that not all the states (X) are sensed "but rather
h*only certaln measurements (X ) are avallable. If these measur-
ments are not nOLSy, Flgure 2 suggests using a filter to re-
construct (estxmate) the states X using the measurements XS.
This is’the éenventionalistate variable approach. <‘*?One may—use E
the results;of the modified obgerver design included in the
previous report : |

As an example, Figure 3 shows a‘second order, unity galn,
system w1tn feedback gains on the states xl and x1 W%th these
galns the closed loop transfer functlon lsi

S AN
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FIGURE 1 - Linear Cqﬁétant Parameter Closed Loop System
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X K
lc 5° + (K2~a)S + Kl

Suppose that only Xy is available as a measurement and that

we must e?timate il for feedback purposes. The other quantity
(ﬁz) ignihown since Kl' K2, X, and ch are all knowQ. Simple
block diagram manipulation;“gan he used to obtain Figure 4.

As usual some approximation such as E%E as p f_m‘must be used
to estimate il' P

Kalman Filter Approach

State estimation in theiﬁresence of noise, especially
white gaussian noise, suggests the use of a Kaiman filter.
Shown in Figure 5 are the .Kalman gains (KK) the feedback
gains K,, and the Kalman filtef configuration for arlinear
éonstaﬁt cééfficientrcontroi system.v‘mhe dét resuié ié ﬁhat
the transfer function of Equation 1 is realized as in_?igures'

1l and 2. The performance of the filter portion of the‘syStem‘
la)

-is best analyzed by considering the transfer function é (s).

To derive this transfer function the forward-path part of

Figure 5 can be written

,:\‘\‘%Q
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b
&)

A 0 [ B
+ u (5)

Thern if‘immediately followsvthat

X5) = o 1[(31"“ ° ]_1 T
=(5 = ) I o 7 ‘ 6
U “KH  (S-AHKH) [é]

which can be written more simply as

~

Xecy o e
5(s) = [SI + K,

-1 ..‘.]_B

B + [SI+K H-A]
- (7)

This result follows from the identity

H - Al 7Y [SI-A]

, -1
Ci2| [P P2
21 C22 A Paz
where
- - A . - l P l
Cap = [Ayy = Apyyhyy "Rypl
12 = "B11 B12Co a
¢ = -C..AA,. "L
21 22 21 11
! | ) s L o . B J 5 -
| 311~= Ay ‘111' ‘Alzczl’ IR | o s

Now comparlng Equatlon 7 .with Flgure 5 note that the first term

4

on: tne rlght szde of Equatlon 7 represents the lower part ofs %§
r - o . \
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i the forward path (that part including the plant and the model)
while the second term on the right side of Equation 7 represents
the upper part of the forward path (that part including only the
model).. |

Suppose we write

b () (8

C LowER werE R
Now when the noise w is present but the noise v is absent, an
examination of the matrix Rlccatl equation reveals that the

)
Kalman gains (K ) apprJach zero. Therefore

x) .
( E)Lw—ﬁfﬁo

-

(s) = (%) = (sI - A)-lB
e uepge .

ai >

In this case the Kalman filter considers the measurement X, to
be noisy, hence the measurement is completely ignored and the
parameter estlmates follow directly- from the model

When noises w and v are present, both the lower and upper
paths are activated. We can combigg these as follows

o

s

x— /,f - -‘ 4 ‘ _ - 1 N -
5 (s) = [sI + K.H - Al " (K H(sI - A)

-1 + (SI - A) (s8I - a) 1B

= [T - 'A]_]'B

Thus we also get (&I - A) -1y

B Wlth both paths being exc1ted.
Suppose we now con51der the case under d19cusszoeﬁ51 e.

‘w =0 and v # 0). A consxdenatlon of the matrix Ricatm

Ry



cquation revesls that the Kalman gains become infinite. Then

we see from Equation 7

i \ :U-) =0
L b\h‘)m
§ (s) = (%) = [KKH]'llxxnf(sx - A]'la = [sI - A]"lB

Lowe
In this case, tiie Kalman filter considers the measurement Xs
to be reliable and only the lower path is activated with the m
model being used to reconstruct the‘&naVailable states. Such
operation is idéntical with‘staﬁe variable estimation procedures
mentioned earlier. To emphasize this point consider Figure 6,
the Kalman filtef for the forward path of the second order
Asystem of Figure 3. Aénthe noise w approaches zero, the Kalman
.gainsmxkl,aﬁd,KKZNQpp;gggn infinity, hence<onlywthewldﬂerﬁpcrﬁ}0n,W,
 of the system is activated. Let us write the transfer functio;s

-

relating the estimates to the measurement. -

% e = 8 Kgy + Kyp | |
X \f T — /
s P87 (Ryy - a)s + Kyp !
X, K., (s=a)
s 87+ (Kyy - al)s f Ko
Now, as KKlgets large -we note that
5 “ | - -
SLIMIT . LIMIT |
Kovo 22 (s) = K oKL B 7
; 40 :

=3



i
i1

similarly, as X,, yets large

K2
LIMIT X, LIMIT Kg,(s - a)
K+ X 8 ® g K - =s-4
K2 s K2- K2

as a result we have

X1 = xs

since ,Xl = x2 + axl we get

¢ 4 ;
Xl = X2 + axl = sxs

Then Figure 6 approaches Figure 7 as the noise w approaches zero.
If we add the control galns to Figure 7 and close the loop, we
have Flgure 4 whlch resulted from state varzable estlmatlon o

procedures.

Conclusion

In the limit as the measureﬁent ncise goes to zero, the
Kalman Filter reduces to a state variable estimator derivable

from block &%agram manipulations to reconstruct, for feedback

- purposes, unavailable states.

If the 1nput noise ls absant then the output X is ignored.

In’extherrcase, after the states are estxmated, the state feedeﬁ

back K, is selected to either achieve the de51red transfer

1
function or to minimize a quadratxc performance index.q in the

aDsence of zeros these are equlvalent cperatlons (see Schultz

and Melsa). T a kR q

7/
/

L 5 = i 1
. i
L : ’ ;
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RANDOM SEARCH

ABSTRACT
Many problems arising in engincering and operations research contexts
have the following structure: The decision maker is provided with a class

'y

fﬁrof functions, whose common domaigsfa bounded set is specified. Some
mechanism selects a function £ £romi}:, The decision maker is notj
informed of this choice. He would like somelow to find a point x¥:at
which £ assumes its maximum value (denoted by || £|l 5- Toward this‘end,‘
the decision maker may sequentially and without constraint select eiements
X1r Xgpos from;E;. Upon choosing X , he is informed of Che value ﬁ(i;S.
‘Thus the decision maker may come to learn certain features of f. Any‘ |

(pcfhaps randomized) strategy for choosing x, on the basis of the pairs

) 4(xj,f(x )Rw will be termed a search grocedure., The thblem,‘Qﬁ,

finding a search procedure S under which, for all fle f(xn) converges to
h&}l,‘in some specified sense, has gcneratod3q lively bon of research
| papers, some of which will be q?ferenced qn& described in“the present
paper. |
For an examplé of the sort of engineering ques:lqn giving ris; tb
a search problem, suppose that an airplane is to fly in a fixed direétion'
an; Bpeed;, Its fuel efficiency will thén'bérg funétion‘of the carburation
setting. If x is the relative mixture of fuei and air, and f(x) the
o 4 asgociated fuel consumptdon required to maintain the aircraft's NGIOCIty,
\§~d then the framework for a search p{?blem 1s present. }E way ‘be ;akun ‘to -
| be the unit interval and '}ﬁ perhaps, may be considered to be the set of

i

continuous functions on the unit interval. ; o o



Under certain restrictions on}{ andhjt, effective search procedures
i;ave been revealed. The most publicized of these is the "gradient method"

which, in its simplest form, determines xj 1 from Xy by estimating the

+
gradient V€ of £ at x {by difference approximations derived from local
samples) andfthon setting’xj+l = xj +A$7£(xj). }\ is chosen from heuristic
considerations and may vary as the process evolves. If the funttidns of ,}-

are concave andéféis bounded)sufficiently regular, the gradient me thod

- will pro“ide a Cauchy sequency'if(x {f’converging to llf“. Hadley' 8

book Nonlinear and Dynamic Progr mm ng devotes a nicely written chapter

to the gradient method'and its variations. The review papor by Spang 2

t_ 3has an extensive bibliography on zhe gradient method.

3,4

J Kiefer bms nrblished interesting analyses for the case that .

‘;!E is a bounded interval in the real 11ne.‘ In partxcular,‘under the search

'which also posseses the ninimax property has yet to be revealed for multi-

B

procedure‘he proposes, inn Lrials (the number n musc ‘be” specified in
advance) the point x*’at whicn f(x*) - \|f \\ can be located within a
dxstance of l/i , where L is the nth Fibonacci number, provided 3313 the

“set of concpve functions on ;g; Further, the search procedure is minimax e
- 91, B x" ;

fin the qense that no non-randomized Bcrategies can. improve on this error an;f

“T ‘ 5
tolerance uniformly in J‘ Bellman and Dreytus devo:e a ;hapter co this

Q4
2

optimizatton approach. To this writer ] knowledge and'analogousxtcarch~

‘\
L}

‘dmensionu;( T e T

o Bk i
i
\\

" An intriguingmsearch model (which is slightly ckoser to the path to
Ve “ p l N /r/ &y

be followed here in that probabilxstic ideas -ares prominent and musti-modalf, - :

'Q AT \ f;@,_ aeT
fnnctions arehincluded 1n_r) was prOposeL*by H. Kushnerﬂﬁ’] Zho supposed i

- “(v
&

f to be a‘sdmple function from the Brownian mocion process on a bounded

it



1_1n a later section (Section'ﬁ ) ofwthis paper. — B B : ';

N @ln

linear intervnl,;? An advantage to this viewpoint is that, in addition
to including multi-modal functions, ideas from Wiener filter theory can

be brought to bear on the problem of designing an optimal search procedure,

Kushner points out that numerical evaluation of the optimal procedure is

computationally prohibitive, but provides a search procedure under which

Lim Z LECx,) = {|£{ , almost surelym

-

The research report in- this pnpet follows an approach sketched by
S. Brooks 8 . Presumably, Brooks took;z;to be a finite set, and took the

loss associated with t:he function fe‘fﬁand operating point_ xet to be

T
h

mmitny

L(x«f) = "ptbportion" of points X ;-:% such that f(}‘ ) >f(x) Then,
5ivan any positive numbers c,d Asmallest number N is readily calculated .
luch that 1f xl,xz,.;.xN are selected fromjg-by a randomxzation which gives

equal weight to each element of;Ev, chen for any real-valued functiou f,r

\\

@"" itn :X""‘rf’*f‘*‘z“" L e "“

b
; o

Broaks, as well as Kushner, consider the possxbility that the maasure-

ments f(xi) may be corrupted by ‘additive noise. These consxdaratione

-

will be detailed, along wich d brlef review of ”otochnntid approximatiou" E

“ “"‘: f
i sl
oo

Let us summarize the reﬁulta of t&is paper. 9”%111, in all our scudies,'
: N 4, . i :
at least xnclude\the set of pont1nuous functions on‘if which for exposxtoty

. K \\ -N - “n
reasons, will be the unit iqtetva;. Section 2 revaals two randcm search

i / . w s "
A 5. ;- - ! . W
A . i ;; W [

L7 e




to be B | o o /

procedures; the first of these achieves almost sure convergence of
T
1/n gfixi) to {‘f{‘ for each Ee'?; and the second yields a xandom
=
sequencn‘{f(xi)? which converges in probability to, [f&) . Section 2
concludes with a theorem on the non-existence of a search procedure under

which f(xn}-qplglxalmost surely for all continuous f.

Section 3 reopens and extends the research path suggested by Brooks 8

| Where Brooks defines the loss associated-with operating‘point % and fe ;>:>

to be "proportion" of x'e :zéucn that f(x') f{x)p we define the loss
: /

L(x,r) = Lebesgue measure ‘Ix'- E(x') > 1‘3(:&))> .

C1e wili be verified Lhat this resains the important feature in Brooks‘ T

““study that, for any posivae numbers ¢ and d,'one may compute in advance

-TVQf makiﬂg measurements, how ‘many meaﬁurements N are required so0. that,. for

~

The section éoﬂcludea»wib&%

— - ; . A

Y ! .

e

any fe? n)N’ - ‘L\/_" B >>' ._ - ] ) ////’7 » )' - 7'

{4

(1. l)' ' P EL(X xE) > c’l 4d, L

X, *’being the element X, léLilth which Jaximizes the measurement f(xi)

i,

'/’“-w

Furthar, random séarches S1 and 82 and numbers N1 and N2 are deacribed
’“Iauch that, for any £z fF, under Si» ; el o  _‘%\‘
.y ?\?_[\sup, 3 : Lex, 5 £) 7 elea Y
S v ~ nPNl i"l ! SR g T L o
”';‘and under 82 _ - = B
‘1§; . : ’”"(i f?fi_'ig»;,.‘ﬂ' N ) S ) , - m'
7(1, 3y o p[_x,(x f)> ¢ _{ d forall 2> N, £ \

M

f’.\

O

- /(; \..
norians oE where the beLtex
N
N
\
; ) . 5 ) “ o : ’ . ~
f)‘ E{\“\ ) ’ 4 5 o L <§;
Yy r,/ b ik . ™ | . .

r\,\{ & ~;(; il ﬁ . -



If for each féjPhnd each real number a, if E'l( a ) has Lebesgue
measure 0, and if the xi's arc seleéted éccording‘to the uniﬁofm law,
then the random variable n E(x;V) (xﬁ*‘being défihed in connection with
(1.1) ) has the exponen%}al law for a limiting distribution, as is demon-
strated in Sectiun 4.‘

Section 5 studies the case that the measurements;ff(xi)g are
corfupteé by additive noise, which is assumed independéng'of X the

magnitude of f(xi),-énd the sampling time, i. With no further assumptions

on the noise process, we reveal a search procedure under which the average

. n -
operating loss, l/n :E: L(xi,f), converges in probability to 0 for all
, i=1 T

Lebesque“ineasureable functions f; however, in the noise csse, no. lower

bounds for the rate of this convergence have been discovered. Wefé§mparer

C,

th#b problem and the results obtained to the class of problems whicht@re

i : ;
i - h
,kgéwn to yield to the method of stochastic approximation, and also
mention related results due to Brocoks and Kushner. R
'NC\W‘)
™ :7 v
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