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FOREWORD 

Electromagnetic explorations of the moon represent useful methods
 

for determining subsurface characteristics. The frequency range of DC
 

to 10 1 Hz can be considered to be available for passive and active
 

systems, in the monostatic, bistatic and even more elaborate forms.
 

The wide variety of experimental means for utilization of electro

magnetic techniques suggests that a unifying analysis be made of the
 

basic characteristics that are associated with selected frequency bands.
 

For example, how can the DC response of a magnetometer surface system
 

complement the RF reflection measurements from an orbiting satellite?
 

An equally important consideration is the effect of the electrical
 

parameters of the moon itself on the choice of observational system.
 

Thus a literature review and critical evaluation must be made of in

formation to date regarding lunar properties and models before a meaning

ful assessment can be made of the exploration means.
 

These and related considerations prompted a study by Professor
 

Stanley H. Ward, supported by NASA-Ames Research Center, to bring to

gether in a single volume the elements of electromagnetic theory that
 

have special relevance to the problem of lunar subsurface exploration.
 

Electrical properties of matter together with known or "best-guess"
 

lunar parameters are summarized. Possible electromagnetic systems are
 

identified and analyzed; then inter-related in an exploration sequence.
 

Finally, in this "Contractor Report" recommendations of Professor Ward
 

are given for programs for the immediate future, based on his scientific 

judgment. 

William I. Linlor 
NASA-Ames Research Center 
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1. 	Introduction
 

This document attempts to portray a comprehensive review of
 

factors affecting the experimental determination of the electrical
 

parameters of the Moon. The purposes of the study upon which this
 

manuscript is based are:
 

(a) 	to note the relevance of electrical experiments in contri

buting to our knowledge of the origin, history, composition,
 

thermal state, and electrical state of the lunar interior
 

and surface;
 

(b) to review proposed means for measuring lunar electrical
 

parameters from earth observatories, from orbiting space

craft, from emplaced scientific stations, from lunar
 

surface traverses, or from combinations of these opera

tional modes;
 

(c) to recommend for experiment that method or those methods 

which seem to offer the most promise of contributing
 

significant information about the Moon;
 

(d) 	 to define problems and problem areas on which theoretical, 

laboratory, or field research is required before lunar 

experiments can be conducted within a framework of 

reasonable knowledge of scientific constraints.
 

Initially, assumptions are made of the expected ranges of the
 

three electrical parameters: conductivity 9, relative dielectric
 

constant Ke, and relative magnetic permeability Km . Based on these 

values, possible electromagnetic experimental configurations are
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discussed. Only a preliminary attempt has been made herein to con

clude which of the possible configurations are apt to be the most
 

suitable. Such conclusions can be more definitive when systems and
 

feasibility analyses, relying on firmer estimates of the expected
 

ranges of electrical parameters, have been completed.
 

Some of the experiments considered herein are of interest to
 

scientists from several disciplines including fields and particles,
 

geology, geophysics, and geochemistry. However, the viewpoint taken
 

is that of a geophysicist concerned with answers to the important
 

geological and geophysical problems of the Moon and planets. The
 

frequency band treated is D.C. to l0l hz so that the experiments
 

considered range from surface geologic mapping to deep interior probing.
 

The starting point for development of the report is a statement
 

of the objectives of lunar electrical experiments as we visualize
 

these objectives now. A number of lunar electrical models has been
 

assumed and-theory pertinent to experimental verification of such
 

models has been sketched; a substantial bibliography of such theory
 

has been assembled.
 

This report, then, is intended to serve as a reference manual
 

for future more detailed analyses of lunar electrical experiments.
 

There are numerous standard geophysical methods for measuring
 

electrical parameters on earth. All such methods have been con

sidered in preparation of this report, as have logical-extensions
 

of these methods.
 



2. 	 Objectives and relevance of lunar electromagnetic experiments
 

(a) 	Specific physical objectives
 

We visualize the following physical objectives for lunar
 

.
electrical experiments

1) Determination of the three dimensional distributions of 

the conductivity a, the relative dielectric constant Ke. and the 

relative magnetic permeability, Km. 

2) Determination of the presence or absence of radial 

layering of any one or all of the three electrical parameters. 

3) Determination of the presence or absence of angular 

variation of any one or all of the three electrical parameters, at 

any depth range, over the lunar globe. 

4). Determination of the apparent conductivity, the apparent 

dielectric constant' and the apparent permeability for an equivalent 

homogeneous sphere. 

5) Determination of the frequency dependencies of the 

three electrical parameters over any given depth range or angular 

segment. 

6) Provide an explanation for the observations 

a) that interplanetary magnetic field lines appear to 

sweep through the Moon without arrest (Ness et al., 

1967; Sonett et al., 1967) and
 

b) 	that transients in the interplanetary field evidently
 

do not produce measurable secondary magnetic fields
 

due to induction in the Moon (Ness, 1968).
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(b) Geological objectives
 

The three-dimensional mapping of the electrical parameters 

a, Ke and KM can be expected to provide information on the mineralogical 

and chemical composition, temperature distribution. and interstitial 

water distribution within the lunar interior. Thus, any major layering 

within the Moon, such as the known debris layer, postulated permafrost 

layer, and differentiated internal layers which might exist, as well 

as any gross lateral changes associated with faulting, shearing, vol

c anism, igneous intrusion, mare-highlands contacts, meteorite impacts, 

etc., may be evident in the data from electrical profiling and sounding.
 

Any lateral or vertical change so detected is of importance to deduc

tions concerning the initial conditions of formation and subsequent
 

evolution of the Moon.
 

(c) Technological objectives
 

The location of accumulations of such potential natural
 

resources as water, hydrocarbons, and metallic minerals might be con

sidered as secondary geologic objectives, or as technological objectives,
 

of lunar electrical experiments, which will rise in importance if life
 

support on the lunar surface becomes dependent upon the use of lunar
 

materials. Detection of voids in the lunar surface and of the strength
 

of debris are additional geological objectives.
 

(d) General
 

Not all of the above objectives will necessarily be met by
 

any single experiment, or even any limited group of experiments. How

ever, they are objectives to be kept in mind in considering the merits
 

of the possible experiments considered herein.
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Some of the possible experiments described later could have a
 

multiple purpose insofar as they provide information on the spatial
 

and time variations of some of the parameters of the plasma flow
 

around the Moon.
 

(e) The relevance of lunar electromagnetic experiments
 

The geophysical methods which can be expected to yield
 

useful information on the lunar surface and interior include passive
 

and active seismic, heat flow, gravity, passive and active radio

activity plus passive and active electromagnetic. (The word electro

magnetic is here used in its broadest sense so that it is meant to
 

include studies of static electric and magnetic fields.)
 

On Earth the seismic methods are of fundamental importance in
 

obtaining the density and velocity profiles so necessary to estab

lishing an earth model. On the Moor density is not a major variable
 

whereas temperature and hence electrical properties are expected to
 

be. For this reason the electromagnetic methods may very well yield
 

more useful information on the physical state of the lunar interior
 

than will the seismic methods.
 

Problems face most methods in application to the Moon as the
 

following list suggests.
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Method Major Problems 

Active Seismic - coupling through debris 

- noise level unknown 

Passive Seismic - level of moonquakes unknown 

Active Electromagnetic - noise level unknown 

- attenuation in Moon 

Passive Electromagnetic - level of signals imperfectly known 

- sources of signals difficult to 

treat and analyse theoretically 

The report of the Program Evaluation Committee for the Conference
 

on Electromagnetic Exploration of the.Moon (Ames Research Center, June
 

11-13, 1968) lists the following characteristics of electromagnetic
 

methods which make these methods appear promising for lunar exploration:
 

(a) It is possible to obtain vertical and horizontal profiles
 

of the electrical conductivity.
 

(b) 	It is possible to obtain vertical and horizontal profiles
 

of the dielectric constant.
 

(c) There is available a wide range of frequencies and source
 

types for both active and passive experiments.
 

(d) There is a well established technology for the detection
 

and processing of the electromagnetic signals.
 

(e) 	Some electromagnetic experiments may be conducted from
 

lunar orbit to provide global coverage, thereby effecting
 

complete geologic mapping of the Moon's surface.
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(f) The useful connection between electrical conductivity and
 

elevated temperature permits deduction of the physical
 

state of the lunar interior.
 

(g) The useful connections between electrical conductivity
 

plus dielectric constant and water content permits ready
 

deduction of near-surface conditions (such as volcanism,
 

permafrost, water, etc.). 

References, Chapter 2
 

Ness, N. F. K. W. Behannon, C. S. Scearce, and S. C. Cantarano, 1967, Early
 

results from the magnetic field experiment on lunar Explorer 35,
 

J. Geophys. Res., 72, 23 5769-5778. 

Ness, N. F.y 1968, The electrical conductivity of the moon,(abstract) 

Trans. A.G.U., 49. 1. 

Sonett, C. P., D. S. Colburn, and R. G. Currie, 1967, The intrinsic magnetic 

field of the Moon, J. Geophys. Res., 72, 21, 5503-5507. 
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3. 	Elements of electromagnetic theory
 

So that the reader may evaluate subsequent theoretical develop

ments, the elements of electromagnetic theory employed are listed here
 

for reference. Throughout this report we shall use the rationalized
 

MKS system of units and shall assume a time dependency of the form
 

9 unless otherwise noted. For convenience the report has been
 

prepared assuming measurements are made in the frequency domain of
 

the discrete spectral component 10 . Deductions in the time domain
 

are then readily made by transformation. References used in preparing
 

Chapter 3 are listed at the end of the chapter.
 

(a) 	Maxwell's equations
 

Maxwell's equations are:
 

'V(VA-	 L-_c o 3-1 

k-(\77 	 4 r-b - _-,r)q 

-t = 	 3-2
 

\-7 	 3-3 

V5 'O> 
-3
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01-C 
(b) Constitutive relations
 

We shall assume for lunar materials that all media are
 

linear. Thus, we may write
 

f3-5
 

3-6
 

Usually we are prepared to assume on earth that both permeabilityt. 

and permittivity F, are isotropic, but the conductivity (' is 

sometimes assumed to be anisotropic in the crust and possibly in the 

-mantle. For most developments we shall use the isotropic forms " 

and :S . 

The dielectric constant is defined as the dimensionless quantity
 

K,~6/i 3-8 

and the relative magnetic permeability as the dimensionless quantity
 

-
where co = 8.854 x I0 12 farad/meter (free space value) and
 

104- r x 7 henry/mater (free space value). 

Dielectrics frequently exhibit losses, particularly near atomic
 

and molecular resonances. Hence, it has become customary to consider
 

a complex permittivity
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3-10
C-_ 8' +.i _,' 

or a complex dielectric constant
 

KH4 3-11 

where division of 3-10 by C., has been effected.
 

Similarly, magnetic materials exhibit energy dissipation during
 

the magnetization cycle and to allow for this, we may introduce a com

plex permeability
 

3-12/i--,. "U 

and a complex relative permeability
 

Wm~I4~th$~3-13 

obtained through division of 3-12 by /1 . Any of the quantities in 

equations 3-10 through 3-13 may be functions of frequency. 

To describe the state of polarization of a medium, we introduce 

the polarization vectors j and T via the defining relations 

3-14
 

3-15
 

The polarization vectors are thus associated with matter and vanish
 

in free space. In isotropic media, the polarization vectors are paral

lel to the corresponding field vectors and are found experimentally to
 

be proportional to them, implying linear media. The isotropic electric
 



and magnetic susceptibilities e and X .,are defined by the 

relations 

_P e Eo 3-16 

3-17
M 

so that we may write
 

K 1 3-18
 

S=- < - I 3-19 

For non-linear media we must generalize the definitions 3-16 and 3-17 to
 

Ee 3-20 

-A'3-21 

Footnote 1 - It is customary to express the susceptibilities of rocks 
in the cgs system, and therefore as 1-

Upon comparison with equation 3-19, we observe that W =44 

and that C -k-- where/M is the cgs permeability and 

is the cgs susceptibility. 

Footnote 2 - The symbol J = kH is used for magnetic polarization 

in most literature on rock magnetism. However, we have retained 

the symbol M throughout this text in order to avoid confusion with
 

the symbol J customarily used for current density.
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The wave number, or propagation constant, k is defined by
 

4- . 3-22 

where .1/ 

_Y3-23 "t LO 4 
(phase constant)
 

_ Nfl33-24 
c 4o4 j (attenuation constant) 

For a perfectly general treatment we should include the concept 

of complex conductivity 

7 = - + <s 3-25 

so that the wave number of equation 3-22 may be written 

4) 3-26 

Clearly, this last equation can be rearranged to yield
 

5 t> 0+] 3-27 

indicating that all dissipative factors may be lumped under one term
 

T7 : +eL 3-28 
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and all non-dissipative factors under another
 

3-29
 
,
 

This is the most straightforward of the possible representations but
 

it does not allow identification of all of the sources of (3 or '6 

When a representation employing only a complex permittivity is required, 

we are treating the medium as a lossy dielectric such that the wave 

number 3-22 becomes
 

-P[ aU (Et 4tTj 'LAic'4cui j' 3-30 

where now 3-31
 

and hence tj is given the name dielectric conductivity
 

and is assumed to be a real quantity. Portrayal of losses in a dielec

tric is aided by use of the loss tangent defined by
 

tan =- 3-32 

61 
and if this is extended to the general representation described by
 

3-27, we may write
 

tan 3-33 

Footnote - The expression 3-27 then has two additional convenient forms:
 

[wurj 



1k
 

When a representation involving only a complex conductivity is
 

required, the wave number 3-22 becomes
 

04t( jlo( -- 4 ) 3-34 

where
 

=--~ "O -35
 

is referred 'to as the imaginary component of conductivity. A conduc

tivity phase angle 4) may then be defined by 

'_ci- _ Fu 3-36 

Note that 4 is the complement of S Then the conductivity may 

be written in the form 

-: 3-37
 

(c) The wave potentials
 

We may find it convenient to use any or all of the following
 

scalar or vector'potentials
 

A defined by "B = A (electric sources) 3-38 

C defined by E r" 4 -W-A (electric sources) 3-39 

t defined by D X A (-magnetic sorces) 3-40 

defined by H -L- magnetic sources) 3-41-= A 

iT defined by =(VX (electric sources) 3-42 

__.=---f 
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" 1T 	 defined by = ' 
= T2-d 	 (magnetic sources) 3-43
 

C defined by H = \-, x (electric sources) 3-44
 

V defined by E = -- V . /&aG (electric sources) 3-45
 

F defined by E = V (magnetic sources) 3-46
 

U 	defined by H = -'-7 U . -C-t (magnetic sources) 3-47
 

() The homogeneous wave equation
 

For an e harmonic time dependency, the homogeneous
 

wave equation for fields or potentials assumes the form
 

-	 - 4 -= 0 
 3-48
 

where P represents any one of the potentials listed above or any 

one of the four field vectors B. D, E. or H. 

(e) 	The inhomogeneous wave equation
 

Similarly, the inhomogeneous wave equations are:
 

A 	 3-49
 

(Vm+ w 	 3-50
 

3-514-

~ v.43-52 
= eco 3-53
 

S--z 3-54
 



"-+) 
3---355 

3-5667 

S- 3-58 

where P, M are the electric and magnetic polarization vectors and JM
 

is magnetic current. These equations are employed, as expected, when
 

including sources in the propagation problem.
 

(f) Plane waves (solutions of the homogeneous wave equation in
 

one dimension in rectangular coordinates)
 

A solution of the wave equation 3-48 for waves propagated in
 

a direction z is
 

a 4Ar 3-59 

where A i and Ar are the amplitudes of the incident and reflected waves
 

respectively.
 

The phase velocity is defined by
 

_" ,L- 3-60 

while the group velocity is defined by
 

AS- 3-61 

We shall, in general, be dealing with dispersive media wherein 3t is 

a function of frequency. Two extreme cases will arise:
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) tan Z d, displacement currents predominate 

("high frequency phenomenon") 

3-62 

(ii) 	 tan 5 ' f displacement currents ignored

Lw ("low frequency phenomenon") 

3-63
 

For case (ii), appropriate to high values of /X or low values 

of Wi . we define the depth of penetration as the depth at which the 

electric field has fallen to _ = 0.368 of its value at the surface 
e
 

of the medium
 

= depth of penetration 3-64 

The wave length in a medium is
 

27. 	 3-65 

The phase velocity and the wavelength are given as functions of fre

quency and conductivity in the nomogram of Figure 1, for media in which
 

displacement currents may be neglected. The depth of penetration is
 

given as a function of conductivity and frequency for similar media in
 

2
Figure 2. (The relation g = 500 (-f)-i/ is useful for quick cal

culation of depth of penetration.) 

For case (i), appropriate to low values of or high values 

of L5 , a depth of penetration at which the electric field has 
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fallen to - = 0.368 or its value at the surface of the medium is: 
e
 

SW2 (6+1 3-66 

This equation reduces to the useful form
 

2rLt ( ,z)i
- t r-3-67 

when the permeability is given the free space value// 0 AIis the
 

free space wavelength. All loss is assumed to occur via the dielec

tric conductivity C W One can, of course, use equation 3-64 with
 

E b substituted for ' and obtain the depth of penetration in that
 

manner.
 

Equation 3-67 has been used to compute depth of penetration in 

lossy dielectrics of three types: (a) low loss dielectrics in which 

tans Z C I specifically tan$ = 0.0001 to 0.05, (b)medium loss 

dielectrics in which tan - 1, specifically tan. = 0.05 to 50, 

and (c) high loss dielectrics in which tan S '>- 1, specifically tan 

= 50 to 100. The three nomograms of Figures 3, 4, and 5 result. 

If we wish to allow for arbitrary and complex values of 0 , 

and allow for real values of/I ; it is best to obtain the 

depth of penetration directly from 3-24 

'
t,-73-68
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where we have generalized the conductivity and the inductive capacity.
 

We shall require expressions for the plane wave amplitude reflec

tion coefficient for two linear polarizations of a wave incident on a
 

plane surface. If the wave originates in medium 1 and is reflected by
 

medium 2, the amplitude reflection coefficient for the electric vector
 

normal to the plane of incidence is
 

• - C-, 3-69 

while for the electric vector in the plane of incidence it is
 

A 
// 3-70
 

where 7 and are the characteristic impedances of media I 

and 2 respectively, and where : is the angle of incidence. The 

quantities and Z _are defined by 

Y1 tk) Z-3-7114t 

For normal incidence, = 0, the two reflection coefficients are 

identical and equal to 

AL 3-72 

The energy reflection coefficients are then
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• 3-73
 

Two special limiting cases of the electrical parameters are of
 

particular interest to us-now. In the first, displacement currents
 

predominate, as in dielectrics at high frequencies. Then we find YCo
 

of 3-23 and 3-24 is very much less than unity so that there results
 

c'< =zto and =0. The other case pertains to 0j y 

displacement currents are negligible, and we find c/ 

Under these limiting conditions, the expressions 3-69, 3-70, and 3-72 

become r 

I LJ...-4 -374 
-- I------------T------I 
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However, for the general case of reflection, without constraints 

on ,yk then we should use equations 3-69, 3-70, or 3-72. Equa

tion 3-72 may be written'in the convenient form, for propagation from 

free space ( 7 -. ) into another medium 

1+ .+ Z .K 3-77
 

which reduces to
 

t ]- 1---6when./ ->/ and W)- -- 2 3-78 

(g) Arbitrary two-dimensional wave structure
 

By a two-dimensional wave structure we imply no change in 

the field vectors .E, H, B, D with respect to one orthogonal axis. 

Let this axis be y. Then the wave equation is, assuming that the 

electric vector is oriented along y, 

__4-= 0 3-79 

This is a simple, two-dimensional second order partial differen

tial equation which is easily solved by separation of variables. Let
 

= X(x)'Z(z), then /\2LX 

2-X XLT 3-80 

Zdz_ 
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and
 

2X 4- A o zzI, ; ,7- ,d- cL4+ttZ =6 3-81 

A general solution can then be expressed as a linear combination
 

of the separated solutions for various values of the parameter
 

In fact, the general solution will be the integral
 

ET" ff- e / .3-82 

A particular separated solution is a plane wave; for example,
 

when is zero, we have a one-dimensional propagating solution
 

* More generally, a plane wave propagating in an arbitrary 

direction, defined by the unit vector 1i , may be written & 

where ,L is a position vector in the xz plane and 1- . If 1

makes an angle % with the z axis (Figure 6), we may write 

C 3-83 

Thus, for a plane wave propagating at the angle V in any layer
 

of an n-layered structure, the separation constants &e and in the
 

general solution are easily related to this angle as follows:
 

1 3-84 



23
 

A particular solution for a single spectral component of the general
 

integral is
 

c 3-85(tett bstkj 

where the two terms in brackets indicate that waves can propagate in
 

two directions on the z axis but because of the infinite extent of the
 

model there will only be propagation in one direction on the x axis.
 

Where the ll- are identified with the plane wave equivalents of equa

tion 3-84, this solution represents a single plane wave obliquely inci

dent on the layered structure.
 

At the top interface of Figure 6, the continuity of tangential
 

electric field may be written
 

+ E I _-
= _. * 1 

and the only way this can be true for all x. since the L are con

stant coefficients, is for X j- 0 (In the plane wave case where
 

this is the statement of Snell's law,1.4._ ,- 1&1.
4 


This will hold true for all interfaces and hence we shall replace
 

by . 

The continuity of tangential H, i.e., Hx is obtained from
 

t0o& 4I 
3-87
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or
 

/tt oJ 1z Z 

The ratio
 

3-89
 

we define as the characteristic impedance of layer i and the ratio
 

where the lack of a left hand superscript indicates total
 

field quantities measured on the ith interface. is called the surface
 

impedance Zi. For a homogeneous half-space, the surface impedance is
 

equal to the characteristic impedance of the half-space since then the
 

quantity is zero.
 

It is convenient now to write
 

X 4, s3-90 

and compute the surface impedance as a function5' For a homogeneous
 

half-space
 

WA,'t 

3-91 
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Now is the impedance for a plane wave normally incident
 

since X .= will then be zero and consequently, from 3-84, 

U1 will equal .. Thus, the term (I_ S-1/2 is.a factor 

which measures how much the impedance for a general \ is different
 

from the normally incident plane wave impedance.
 

If or \t-4 , then from X= sin we see that 

sin o must be greater than unity or less than negative unity. This 

state can be interpreted physically in terms of inhomogeneous incident 

waves (planes of constant phase do not correspond.to planes of constant
 

amplitude) and complex angles of incidence. It is not necessary to
 

make this particular physical identification and, in fact, at times
 

it leads to confusion. 

Now assume thaty ' //O and that C T j , then 3-91 reduces 

to
 

+ ~ t 'Itt 

HN) yC r 3-92 

If we next consider an-obliquely incident plane wave. for which
 

i., sin % = L0S, and realizing that sin can never exceed 

unity for plane waves, we find
 

13C :S 3-93 

Thus, for plane waves incident at any angle on a conducting half-space,
 

the surface impedance will be 'ndependent of q and equal to the im

pedance for normal incidence. This conclusion is not necessarily true
 

for non-planar waves arising in finite sources.
 

http:correspond.to
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Now let us write down the boundary conditions for continuity 

of the Ey and HX components at the surface of a half-space. 

.4- o- - o f-c-) 

E'-+NE 
 -3-94
 

Z10 - , + 3-95 

The amplitude reflection coefficient A. , for normal incidence is 

- -o -c%.A.fr---.?-0 3-96 

For plane waves S is restricted to the range zero to unity, so that
 
if -it ,c.Z_ 1, then the reflection coefficient for normal incidence
 

reduces to
 

indicating almost perfect anti-phase reflection of the tangential elec

tric field. On the other hand, the tangential magnetic field is doubled
 

near any surface where ZLl, for
 

- toj_. 3-97 

and hence
 

H-
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If $9 is not restricted to the range zero to unity, even if
 

Z.,elI then the reflection coefficient may be complex; phase
 

shifts may occur. Further, the amplitude of the reflection coefficient
 

then need not be unity. That is, for finite sources, we should expect
 

to be other than unity and to invoke a phase shift. This is a
 

most important conclusion because it says that under some circumstances
 

measurements of the magnetic field of a plane wave source will be very
 

insensitive to the electrical parameters beneath a surface, but that
 

measurements of the magnetic field of a finite source can be very
 

sensitive to the same electrical parameters.
 

(h) Cylindrical waves
 

The scalar wave equation in cylindrical coordinates may be
 

written
 

which may be separated using 

t 47 ) '>(9k)&~' ~3-99 

where h is the separation constant, to obtain elementary harmonic
 

solutions. The resulting and ;,_equations are
 

' A 3-100 

3-101 

'2
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Equation 3-100 is Bessel's equation and has solutions in terms 

of cylinder functions, while equation 3-101 has a harmonic solution. 

The separation variable j is limited to integers n = 0, ±1, ±2, etc., 

if radial boundaries are excluded. 

Hence, an integral solution of the homogeneous wave equation in
 

cylindrical coordinates for axially symmetric media is
 

r~kt)rcwn L'2\)C 3-102
 

where Xh is a cylinder function, e.g. Jul Nn' n(1) n
Tn(2),
,
 

Kn.
 
The structure of this solution is such that 


and
 

Ctx '
7r;iepresent, respectively, elementary plane waves propagated
 

in the positive and negative z directions, the incident wavelets weighted 

by -RiX) and the positive wavelets weighted by nLQ • This wave 

structure is modified by an }t-dependent wave structure3 /W con

stituting either radially outward or radially inward travelling waves
 

representing standing waves or representing evanescent waves, depending
 

upon the particular cylinder function required to satisfy the boundary
 

conditions.
 

Sometimes we may treat a medium in which k 00 so that the wave
 

equation reduces to Laplace's equation
 

_L 3-103
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An integral solution of 3-103 is given by 3-102 with k set equal to
 

zero. When there is no z dependency the solution simplifies to either
 

of:
 

•) 	 3-104 

AhfA---/)6	 0 c > 
3-105
 

(i) 	Spherical coordinates
 

The scalar wave equation in spherical coordinates is
 

96J) 3-106__,I 

which separates, via ,/=q 4,R)',-L ).A4)into the three equations 

R t f.V f-["' 	 3-107 

/ 2 ,,\ /-lO 

3-109
 

2-2
 

and if we substitute p2 = n(n + 1), where n = 0, 1, 2, . . , then 

the solution may be written 
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and of Laplace's equation is
 

i 22--o i--ll 

Solution of the vector wave equation is not so simple and will
 

be treated in detail in a subsequent section.
 

(j) Solutions of the inhomogeneous wave equation
 

These solutions are obtained directly from the Green's
 

function e as follows:
 

A- & T 3-113 

ot -1 3-113 
4T I -

A 3-114M7V 

3-117 
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7±'ft3-120
~ue 

IV
(9 vt# a-3-

(k) The quasi-static approximation
 

In many electromagnetic problems concerning the earth-air
 

interface, we neglect the displacement currents in the ground and
 

hence, neglect them also in the air. Further, we assume the conduc

tivity of air is negligible. Then we can say the propagation constant 

of air, v0 , is approximately zero. 

This leads us to use Laplace's equation in air and the wave equa

tion in the ground. This approach to practical boundary value problems 

is referred to as the quasi-static approximation. Note that it only 

holds for.t-- ) in the ground. When Q-- is low or WU is high 

then this approximation may not be valid. Other subtle limitations of
 

the quasi-static solution are discussed subsequently.
 

(1) The fields of an electric dipole in an infinite medium
 

The electric and magnetic fields of an electric dipole in an
 

infinite non-conducting medium are
 

p 3 6}'f 7 3-122 

K b2 i~ftt le2>tu~e 3-123 

- 3-124 
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where , is the polar angle to the point of observation, measured
 

from the axis of the dipole and is the azimuthal angle. 7*=
 

the retarded time and R is the radial distance to the point of
 

observation. is the electric dipole moment, which for a linear cur

rent element is given by
 

X 3-125 

The term in-- is the quasi-static field, that in .-L is the 

inductive field, and that in - is the radiation field. ForAc 

the induction field predominates while for 4 >, / , the 

radiation field predominates. 

(m) The fields of a magnetic dipole in an infinite medium
 

Closed loops of wires behave as magnetic dipoles for which
 

the field expressions are
 

where in is the magnetic dipole moment given by 

m = NAI 3-129 

and N is the number of turns, A is the area of the loop, while I is 

the current in the loop. 
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(n) The diffusion equation
 

If, in equation 3-2 we neglect displacement currents, and
 

use Ohm's law for moving media
 

± ~Pz4)3-130
 

(where 'ZY is real) 

we obtain 

'Vx + Al~~ 3-'131 

We now take the curl of 3-131 and substitute for ?N S from 3-1 

with the result 

Vx174B 2 &5 4T/ 7 %t 3-132 

Expansion of the left side of 3-132, upon use of 3-3, yields
 

" - " V3-133 

where 7 --- is the magnetic viscosity.

AT' 
Equation 3-133 reduces to the magnetic diffusion equation when the
 

second term on the right predominates
 

7 V 3-134 

The induction in a body decays exponentially with a time constant
 

3-135
 



where L is a characteristic length of the body (e.g., radius of the
 

moon if the interplanetary field is diffusing through the moon).
 

If it is not permissible to ignore displacement currents then
 

we must rewrite 3-131 in the form
 

VXI-~jV-e~t(~~ sz~~-)3-136 

where 'Z- is complex. The conventional Cowling time then is not
 

descriptive of the problem.
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4. Electrical conduction and dielectric constants in rocks
 

A description is presented here of the factors affecting elec

trical conduction and dielectric constant of earth materials. Presum

ably, the same general factors require consideration for lunar materials.
 

(a) Normal mode of conduction in rocks at the earth's surface
 

Conduction in most rocks at the earth's surface is largely
 

electrolytic, taking place in the pore spaces and not significantly
 

through the mineral grains. The ions which conduct the durrent result
 

from the dissociation of salts, such dissociation occurring when salts
 

are dissolved in water. Since saline water contains more charge carriers
 

than fresh water, it will possess higher electrical conductivity. An
 

increase in salinity (activity) will increase the conductivity since
 

more charge carriers are then available. An increase in temperature
 

lowers the viscosity of water, with the result that ions in the water
 

.become more mobile. The increased mobility of the ions results in an
 

observed resistivity decrease with increase in temperature. The resis

tivity in a wet rock above 00 C may be expected to follow a relation of
 

the form
 

4-1
 

according to Keller and Frischknecht (1966) where is the resis

tivity at a temperature T and 1 is the resistivity at 18'C. The co

efficient 04 has a value of about 0.025. This relationship assumes
 

no conduction through the solid framework.
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(b) Dependence of wet rock resistivity upon rock texture
 

Even though most rock-forming minerals are essentially
 

non-conductive, they dictate the porosity and pore distribution and,
 

hence, the lengths and cross-sectional areas, of the electrolytic paths
 

through a specimen. Three basic pore geometries are found in
 

rocks. Sediments of chemical, detrital, or volcanic origin exhibit
 

intergranular porosity as might be typical of the pore space between
 

sphere packs. In igneous and metamorphic rocks the porosity occurs
 

primarily in joints, fractures, and to some extent, in linear inter

granular spaces. Extrusive rocks exhibit porosity by virtue or either
 

connected or non-connected chambers originally created by gas bubbles.
 

Various models of a rock may be used, including sphere packs and
 

the "bundle of capillaries" model. We shall consider only the latter
 

and assume that ,the capillaries are not interconnected, are of uniform
 

cross-section, and may be replaced by a single electrolyte path of
 

length Le and cross-sectional area Ae (Figure 7). We do not assume
 

that this equivalent electrolyte path is straight. Thus, its length
 

is greater than the length L of the rock sample to which it pertains.
 

Obviously, the conducting cross-section Ae is but a fraction of the
 

overall cross-section A of the rock sample. The excess length of the
 

equivalent electrolyte path is a result of contortion caused by the
 

solid framework of the rock system. We define the tortuosity coefficient
 

t as (Pirson, 1958)
 

_4-2
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The surface porosity is determined as the fraction pore
 

area to sample area
 

Ae 4-3s A
 
An increase in porosity or a decrease in tortuosity will both con

tribute to an increase in conductivity as may be seen from the fol

lowing development. The resistance between opposite ends of a rock
 

sample is
 

,r@. A e a 4-4
 

YA K 9 Ae 
where and (_ are the conductivities of rock and ele6trolyte
 

respectively. Then, from 4-2, 4-3, and 4-4 we find
 

(j-.G &i 45 

We have employed a very elementary model of a rock to arrive at
 

4-5. More sophisticated models allow for, among other things, inter

connection between adjacent capillaries and "dead-end" pore volume.
 

The volume porosity 4Vis measured more frequently than the
 

surface porosity. From Figure 7 we see that the volume porosity is
 

identical to the surface porosity
 

Ae Le -~ -LAt 

and represents the fractional volume of voids in a specimen.
 

(c) Partial saturation
 

When the pores in a rock are only partially filled with
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solution, conduction is less than when the rock is 100 percent
 

saturated. The percent water saturation controls the con

ductivity through the relations
 

3 9 4-7 

Yr 6§7 3 4-8 

where C - ), , and 7,.are experimentally determined parameters. 

:5 t is a critical water saturation value. Above S-v . water is
 

lost from the centers of the pore spaces, but a thin film of water coats
 

all rock frame surfaces. Once the critical saturation has been reached,
 

further desaturation will break the film of water over the grains and a
 

large decrease in conductivity is noted. Values of r, and M; are
 

observed to be about 2 and 5 respectively. The parameter CL varies
 

from about 0.05 for sandstones to about 0.5 for igneous rocks. The
 

critical water saturation is about 25 percent for sandstones and other
 

rocks of similar pore structure, but it may be as large as 80 percent
 

in igneous rocks.
 

(d) Solid conduction in surface rocks
 

While in general the framework of a rock does not contribute
 

to conduction, the presence of certain metallic minerals will alter
 

this condition. In Table I we list a number of common metallic minerals
 

and their typical conductivities. These minerals, with the exception
 

of magnetite, are anomalous constituents of rocks. However, if they
 

occur in abundance of order 10 percent in rocks, they can increase
 

the conductivity by one to three orders of magnitude. In amounts less
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TABLE I
 

ARSENOPYRITE FeAsS 104 - 105 mhos/m 

BORNITE Fe2S3 .nCu2S 102 - 106 mhos/m 

CHALCOCITE Cu2S " 104 mhos/m 

CRALCOPYRITE Fe2S3 .Cu2S 102 - 104 mhos/m 

GALENA PbS 10 -105 mhos/m 

MAGNETITE Fe304 "' 104 mhos/m 

MARCASITE Fe2S2 10 - 103 mhos/m 

MOLYBDENITE MoS2 Oi - I mhos/m 

PENTLANDITE (Fe, Ni)9S8 10 5 -106 mhos/m 

PYRRHOTITE Fe 7 S8 10- 106 mhos/m 

PYRITE FeS 2 1 - 10 3 mhos/m 
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than 5 percent, they seldom materially alter the electrical conduc

tivity of rocks. Magnetite is by far the most abundant of these semi

conducting minerals.
 

(e) Effects of surface chemistry
 

Some minerals, and especially the clay minerals such as
 

kaolinite, montmorillonite, vermicullite, illite, and chlorite, adsorb
 

anions and/or cations, retaining these in an exchangeable state. A
 

clay particle acts as a separate conducting path additional to the
 

solution path. Usually the conductance of this path is substantially
 

greater than the mineral grain conductance. The origin of this abnor

mally high clay mineral conductivity lies in the double layer of adsorbed
 

cations as shown in Figure 8. The cations are required to balance the
 

charge due to substitutions within the crystal lattice, and due to broken
 

bands. The finite size of the cations prevents the formation of a single
 

layer. Rather, a "double layer" is formed; it consists of a "fixed layer"
 

immediately adjacent to the clay surface and a "diffuse layer" which
 

drops off in density exponentially with distance from the fixed layer.
 

The diffuse layer, in contrast to the fixed layer, is free to move under
 

the influence of an applied electric field. The cations of the diffuse
 

layer add to the normal ion concentration and thus increase the density
 

of charge carriers. The net result is an increased "surface conductivity".
 

Although clay minerals exhibit this property to a high degree because of
 

their large ion exchange capacity, all minerals exhibit it to some extent.
 

All rocks containing clay minerals possess an abnormally high conductivity
 

on this account.
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The effect of disseminated clay on rock resistivities becomes
 

increasingly important as the conductance through the pores diminishes.
 

Increased alteration such as chloritization, kaolinitization, and ser

pentinization gives rise to increased surface conductivity. This is
 

particularly evident in sheared serpentinite and other ultrabasic rocks,
 

but is rarely evident in granitoid rocks which, when sheared, suffer
 

mylonitization, i.e., production of minimum surface area per unit volume
 

of mineral grains.
 

The conductivity of clay minerals is dependent on both solution
 

composition and normality (Berg, 1952; Wyllie, 1955). However, above
 

a certain normality characteristic of the rock specimen, the conductivity
 

of the clay minerals apparently becomes constant; this value represents
 

the maximum conductivity of the clay minerals.
 

(f) Frequency'dependence of conductivity, dielectric constant in
 

wet rocks
 

In wet igneous, metamorphic and sedimentary rocks, and espe

cially those containing clay or metallic minerals, the conductivity is
 

observed to increase slightly with frequency and dielectric constant to
 

decrease markedly with frequency. The causes of this frequency depen

dence or dispersion include normal dielectric effect, electrokinetic
 

phenomena, electrode polarization, and membrane polarization (Mayper,
 

1959).
 

(i) normal dielectric effect (yon Hippel, 1954) 

Under normal dielectric effect we would include polari

zation brought about by induced separation of nuclei and electrons.
 



Displacement of an electron orbit takes place in a very short period
 

-
of time, usually less than 10 9 seconds, so that at any frequency less
 

than 109 hz, electronic polarization has time to take place. Displace

ment of one atomic nucleus relative to another produces atomic polariza

tion. If permanent electric dipoles exist in the medium, these dipoles
 

may rotate under application of a field so that orientation polarization
 

may occur. While interfacial polarization contributes to the normal
 

dielectric effect, we shall treat it separately since it usually pre

dominates over all other polarization forms at frequencies below 104 hz.
 

We generally observe that for wet rocks the conductivity is a slowly
 

varying function of frequency while the dielectric constant is a rapidly
 

varying function of frequency. However at very low and very high fre

-
quencies, usually less than 10 2 hz and greater than 105 hz, both the
 

conductivity and the dielectric constant will become independent of
 

frequency. By contrast, rocks without moisture usually exhibit a rapidly
 

varying conductivity and a slowly varying dielectric constant over the
 

-
i01 hz to 105 hz interval. Reference to these functional-dependencies
 

will appear again liater.
 

(ii) 	electrokinetic phenomena (Keller and Frischknecht, 1966)
 

Charge is separated due to the motion of an electrolyte
 

through a rock pore structure. The free liquid in the centersof rock
 

pores is usually enriched in ions of one sign, while the water adsorbed
 

at the surfaces of the pores is enriched in ions of the opposite sign.
 

If current passes through the pore structure, the mobile cations in the
 

center of the pore structures carry along many molecules of water, so
 

that electrical current flow causes a simultaneous fluid flow and vice
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versa. This is the electrokinetic effect. When the applied potential
 

is reversed, inertia will cause the fluid flow to lag behind the im

pressed voltage and hence the capacitive behavior of a lossy dielectric
 

is simulated. No induced polarization effects have been attributable
 

to electrokinetic phenomena in rocks, presumably because it is diffi

cult to identify and probably is much smaller than interfacial polariza

tion.
 

(iii) electrode polarization
 

Whenever there is a change in the mode of current con

duction, e.g. from ionic to electronic, energy is required to cause the
 

current to flow across the interface. This energy barrier constitutes
 

an impedance which is frequency dependent (Madden and Marshall, 1959;
 

Ward and Fraser, 1967).
 

The surfaces of most solids possessa very small net attraction for
 

either cations or anions, as mentioned earlier for clay minerals. Imme

diately adjacent to the outermost solid layer is adsorbed a layer of
 

essentially fixed ions, one or a few molecular layers in thickness
 

(Figure 9). These are not truly exchangeable and hence constitute the
 

"fixed layer," although they can often be removed upon application of a
 

strong physical force.
 

Adjacent to the fixed layer of adsorbed ions there is a group of
 

relatively mobile ions, either of the same or opposite charge, known
 

as the diffuse layer. The anomalous number of ions in this zone decreases
 

exponentially, from the fixed layer outward, to the normal ion concentra

tion of the liquid. (The normal balanced distribution of anions and
 

cations has been deleted from Figure 9 for clarity.) The particular
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distribution of ions shown is only one of several possible distri

butions, but it is the most common. The electrical potential across
 

the double layer has been plotted also; the potential drop across the
 

diffuse layer is known as the Zeta potential, Z.
 

While the fixed layer is relatively stable, the diffuse layer
 

thickness is a function of temperature, ion concentration in the "normal"
 

electrolyte, valency of the ions, and the dielectric constant of the
 

medium. Most of the anomalous charge is contained within a plane dis

tance d from the surface, where (Grahame, 1947)
 

d = .__-_ 4-9b-7i.,[2 7, 
n = normal ion concentration of the electrolyte
 

v = valence of the normal ions
 

e = elementary charge
 

Ke = the dielectric constant of the medium
 

k = Boltzman's constant
 

T = temperature
 

The thickness is therefore governed by the balance between the
 

attraction of unlike charges at the solid surface and the thermal re

distribution of ions. Obviously, increasing n, the salinity, or v.
 

the valence, decreases the double layer thickness.
 

Returning now to polarization at electrodes, it may be stated that
 

there are two paths by which current may be carried across an interface
 

between an electrolyte and a metal (Figure 10). These are called the
 

faradaic and non-faradaic paths. Current passage in the faradaic path
 

is the result of an electrochemical reaction such as the oxidation or
 

reduction of some ion, and involves diffusion of the ions toward or
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away from the interface. The charge is carried physically across
 

the interface by conversion of atom to ion or vice versa. In the
 

latter (non-faradaic) case, charged particles do not cross the inter

face; rather, current is carried by the charging and discharging of
 

the double layer. (Recall that the diffuse layer is mobile and may
 

be "thinned" out momentarily by the application of an electric field.)
 

The double layer then behaves as a condenser in series with the resis

tance of the solution. The non-faradaic component thus may be repre

sented by a simple capacitance insofar as the variation of its impedance
 

with frequency is concerned. However, the non-faradaic path may become
 

frequency-independent at very high frequencies, when the inertia of the
 

ions inhibits their sympathetic oscillation with frequency.
 

;In the faradaic path, the ion diffusion impedance is not represent

able in so simple a fashion and, in fact, may not be adequately repre

sented by any combination of fixed capacitors and resistors. It is
 

customarily referred to as the Warburg impedance, ,\/. and its
 

magnitude varies inversely with the square root of the electrical fre

quency.
 

The interfacial impedances of many metal-electrolyte interfaces
 

may be described roughly as follows. Above 1000 hz, the major part
 

of the electric current is carried across the interface by means of
 

the non-faradaic path; hence, the interfacial impedance Varies with
 

frequency as approximately f-. As the frequency is lowered, more
 

and more current is carried via the faradaic path, and so the low fre

quency impedance varies with frequency in the range f-1/2 to f0 depending
 

on the magnitude of the impedance ratio
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Note that the impedance of the circuit of Figure 10 is infinite
 

at zero frequency because the Warburg impedance is expressed as
 

k(l + i)f-1/2, where k is a constant, and the capacitive reactance,
 

of course, as _L (fC)fI . It is important not to confuse zero fre

quency with direct current in this circuit, since its resistance to
 

D.C. is not infinite, but is finite and indeterminate. The ambiguity
 

lies in the derivation (Grahame, 1952) of the Warburg impedance, wherein
 

it is assumed that the reaction products'at the interface have no effect
 

on the diffusion impedance and so can be omitted from the derivation.
 

The derivation assumes that it is impossible to carry on such a reac

tion indefinitely in the same direction because the products of the 

reaction will accumulate and stop the reaction. Therefore, the inter

facial impedance is not defined for direct current by the circuit of 

Figure 10. 

It is frequently suggested that the above process may occur in
 

rocks at the surfaces between metallic mineral grains and the pore
 

water. A phenomenological explanation for dispersion of the conduc

tivity of a rock is obtained in this manner. Electrode and membrane
 

polarization may be lumped under the term "interfacial polarization"
 

in subsequent discussion.
 

Rocks containing grains of the minerals of Table I disseminated
 

throughout may have another phenomenon superimposed on the above, i.e.,
 

that of an intergranular capacitance which may result from capacitive
 

coupling between the discrete metallic particles. This capacitive coup

ling may become important at high frequencies. No experimental evidence
 

is available with which to confirm this speculation.
 

http:fC)fI.It
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Other models of a rock can be and have been employed to explain
 

the frequency dependence of rock conductivity. However, all models
 

are based upon similar reasoning. Most of the particles contributing
 

to electrode polarization are listed in Table I; graphite and carbon
 

also 	yield an appreciable frequency-dependent conductivity.
 

The variation with frequency of the real part of the interfacial
 

impedance, as described above, is accompanied by a variation with fre

quency of the imaginary part. The complex conductivity of the rock is
 

given, in phase and amplitude, for an andesite-pyrite particle mix in
 

Figure 11. It appears that at frequencies above 105 hz the conductivity
 

and dielectric constant approach their asymptotic constant limits.
 

(iv) 	membrane polarization (Madden and Marshall, 1959;
 

Ward and Fraser, 1967)
 

In rocks containing a few percent clay minerals distri

buted throughout the'rock matrix, membrane polarization is of importance.
 

Membrane polarization arises chiefly in porous rocks in which clay parti

cles (membranes) partially block ionic solution paths (Figure 12(a)).
 

The diffuse "cloud" of cations (double layer) in the vicinity of a
 

clay surface is characteristic of clay-electrolyte systems. On appli

cation of an electrical potential, positive charge carriers easily pass
 

through the cationic cloud but negative charge carriers accumulate
 

(Figure 12(b)); an ion-selective membrane therefore exists. Consequently,
 

a surplus of both cations and anions occurs at one end of the membrane
 

zone, while a deficiency occurs at the other end. This is because the
 

In geologic materials, we do not expect zones of cation-blocking
 
properties to exist.
 



number of positive charges cannot deviate significantly from the
 

number of negative charges at any one point in space due to the large
 

electric fields which would result if they did so deviate. These ion
 

concentration gradients oppose the flow of current. The overall mobil

ity of anions is reduced by this process. This reduction in mobility
 

is most effective for potential variations which are slow (e.g., 0.Ilhz)
 

with respect to the time of diffusion of anions between adjacent mem

brane zones. For potential variations which are fast (e.g., 1000 hz)
 

with respect to the diffusion time, the mobility of anions is not sub

stantially reduced. Hence, the conductivity of a membrane system in

creases as electrical frequency increases. Note that this model puts
 

a limit on the quantity of polarization that can occur in membrane sys

tems. Since the unrestricted cations can carry only a fixed quantity
 

of current, then the maximum D.C. impedance of an NaCl-saturated speci

men, for example, can be only approximately 2-1/2 times that of the high
 

frequency impedance.* This maximum will occur only if all the anions
 

are blocked completely by membranes at D.C. In natural membrane sys

tems, however, we can expect some leakage of anions through the cat

ionic clouds, especially where the pore capillary paths are of large
 

diameter.
 

Membrane polarization due to clays decreases as salinity of the
 

pore electrolyte increases. The cationic clouds of Figure 12(a) are
 

of smaller dimensions as electrolyte salinity increases and, hence,
 

block fewer anions. Examples of membrane polarization in a saturated
 

* 	 This figure is calculated from the equivalent conductances of 

Na+ (50.9) and CI" (75.5). 
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clay-containing sandstone are shown in Figure 13; two different solu

tion normalities yielded the two curves presented. 

A large quantity of clay in a rock (e.g., 7 30 percent) generally 

results in less polarization than if a smaller quantity (say, 10 percent)
 

were present. This is because the clay membrane zones have to be separated
 

by purely resistive zones in order to yield a significant frequency effect.
 

For a given percentage of clays, the quantity of polarization will
 

depend partly on the type of clay present. Since kaolinite particles
 

produce diffuse layers only at their surfaces, these clay particles
 

must occur in very narrow rock pore capillaries in order that their
 

membrane effect be significant. Otherwise, the membranes will be by

passed by purely resistive paths. For montmorillonite particles, elec

trolyte exists between the aluminosilicate layers. Conduction through
 

this interior electrolyte, which is cation-selective, thus is less de

pendent on the geometry of the pores or capillaries within the sandstone.
 

This, in conjunction with the large surface effects also present in mont

morillonite, implies that the existence of montmorillonite clay particles
 

in a rock may produce a larger polarization than a like amount of other
 

clay materials.
 

The-clay particles must be fixed in position, otherwise their
 

drift will permit ready movement of all ions and no polarization will
 

result. Broken bonds on silica and other mineral grains may also pro

duce minor membrane polarization.
 

The quantity of membrane polarization has been correlated with the
 

permeability of clay-containing sandstones (Dakhnov, 1959). The purpose
 

of attempting such a correlation is based on the fact that permeability
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tends to vary inversely with specific surface (which is the quantity
 

3
of grain-void interfaces per cm of rock) while membrane polarization
 

tends to vary directly with it. The dependence of both permeability
 

and polarization on specific surface is not exact; rather, it must be
 

considered only as a general trend. Iencevwe find that laboratory
 

polarization measurements on a wide variety of sandstones may yield
 

only an order-of-magnitude estimate of permeability. Induced polari

zation measurements have to date not been used in the field as a method
 

of permeability estimation.
 

(g) 	Frequency dependence of conductivity and dielectric constant
 

in "dry" rocks
 

The word "dry" requires definition in this use since it is
 

extremely difficult to drive out water adsorbed to the surfaces of
 

mineral grains. The presence of a small water content, say less than
 

1% of the saturation value, could still lead to some of the elements of
 

electrode or membrane polarization. If this occurs, then one might ex

pect a dielectric constant which was a slowly varying function of fre

quency and a conductivity which was a rapidly varying function of fre

quency. While the latter frequency dependencies are typically observed
 

in "dry" rocks, the explanation for them can be explained without re

quiring the presence of any moisture. The explanation lies in extrinsic
 

ionic conduction through the sol'id mineral grains as will be explained
 

later. At this juncture it is important to summarize the ' and Ke'
 

spectral characteristics for wet and dry rocks.
 

WATER SATURATED ROCKS 10 2 hz to 1O5 hz
 

c' slowly varying function f*
 

Ke' C I
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"DRY" ROCKS 10- 2 hz to 105 hz 

( -1 fl 

Ke ' slowly varying function - f0 

2PARTIALLY SATURATED ROCKS 10 - hz to 105 hz 

(--' c<cf 0 .fl 
K ' C f 0 f 0 

e 

Numerous examples of rocks exhibiting these spectral characteristics
 

appear in the literature (Smith-Rose, 1934; Tarkhov, 1948; Keller and
 

Licastro, 1959; Charles, Rao, and Westphal, 1966; Parkhomenko, 1967;
 

Scott, Carroll, and Cunningham, 1967; Madden and Marshall, 1959; Collett,
 

1959; Keevil and Ward, 1962; Troitsky, 1960; Ward, Jiracek, and Linlor,
 

1968).
 

-
Above and below the frequency window 10 2 hz to 105 hz, the dielec

tric constants and conductivities are expected to tend asymptotically to
 

constant values. However, a definition of the completej-' and Ke' spectra
 

has yet to appear in the literature.
 

(h) Lumped circuit representation of lossy dielectrics (yon Hippel,
 

1954)
 

(i) relaxation spectra
 

We shall draw an analogy between a lossy dielectric and
 

a two-terminal network of lumped circuit components. When we have se

lected an analog which produces the same frequency dependence of Ke'
 

and tan ., then we shall use that analog as a means of description 

of the medium. Dielectric spectra that can be represented by combina

tions of RC circuits are called relaxation spectra. In such spectra 

the dielectric constant Ke' stays constant or decreases with frequency
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whereas the loss tangent' reaches a maximum. A simple network which
 

canserve as an analog'for such a material is illustrated in Figure 14.
 

The admittance of such a network is
 

= ~ ~ ~ jjp~ ~ -L& LULOz41
 

where
 

Now the admittance of a capacitor containing a dielectric .'s (von Hip

pel, 1954)
 

- L 4, 4- 4-11 

where Co is the capacitance of free space.
 

Hence, if we equate 4-10 and 4-11, we obtain the real and imaginary
 

parts of the relative dielectric constant
 

C- /o
 
PSr__ _ 4-12 

C-2' 4-13 

and the loss itangentis. given by 

L/ ' -4-14
 

If we now introduce the limiting values of dielectric constant,4K '
 o
 

at zero frequency and K.' at some very high frequency, we find

weIt+w~qt . 4-15
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4-16I/ -___-


/.- I
 

v§'4sjt S4-17 

where S = 1%o
 

The functions 4-15 and 4-16 will have the forms depicted in Figure 15.
 

(ii) resonance spectra
 

Resonance spectra may also occur and they can be dis

tinguished from relaxation spectra by anomalous dispersion of the di

electric constant, For example, the circuit of Figure 16 often is
 

found to serve as an adequate analogy for materials. The admittance
 

of this circuit is
 

-+ 4-18
 

.it) 1,)- "I,
 

where t, and Li, % 

If C isthe geometrical capacitance of a simple capa

citor equivalent in admittance to 4-18, but with a complex dielectric
 

constant given by
 

y 4i7-/L)4)4-19 

then we find Ke to be
 

/ 
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from which we deduce that
 

(A 4-21 

i 
 _______4-22 

449 4-23 

where - and where it is assumed that 10- 14 

The spectra of Ke' J Ke" and for a resonating dielectric are
 

given in Figure 17. The above formulation for a resonating dielectric
 

is consistent with the dispersion formula of classical physics:
 

---. k1 5 4-24 

where O is the resonant frequency of the sth oscillator in a popula

tion of N. dipoles for which the frictional loss is & e and.m are
 

the electronic charge and mass, respectively. The dispersion formula
 

of classical physics and its electrical analog portray the behavior of
 

resonating atoms or molecules in the gaseous state. The analog requires
 

L, R and C components in series, the whole shunted by a capacitance.
 

The classical approach to the treatment of dipole molecules in the con

densed phases of liquids and solids is to consider the polar molecules
 

as rotating in a medium of dominating friction. The frictional term
 

in 4-18 is ( -i2w L7- ).• .This term will predominate over the reso

nance term, depicted by L2_W if -,--; o . Thus, the resonance 

spectra degenerate to relaxation spectra when frictional terms predominate. 
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This is the usual case in liquids and solids. In water, at room
 

temperature for example, we find a relaxation spectrum with a peak
 

of Ke'' about 1010 hz and with constant Ke' up to about 109 hz after
 

which it decreases.
 

For convenience we can write the relaxation spectra for Ke', le'',
 

tan and z in the forms following:
 

4-25
 

14/ - Lit 4-26 

I4-27 

i,., *~4-28 

These expressions have been used to compute the curves of Figure 15;
 

the conductivity curve b is the mirror image of the dielectric constant
 

curve a. The frequency spreads for significant changes are one decade
 

for Ke' and two decades for Ke'' above and below the center frequency.
 

(iii) spectra for electrode polarization
 

For interfacial polarization in a rock in which electrode
 

reactions or membranes can exist, circuit analogs may also be developed.
 

However, they are more complicated than the analogs used above to de

scribe simple relaxation spectra.
 

For a rock in which electrode polarization predominates, the rock
 

system may be pictorally described in a simplified form by Figure 18.
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Th& analagous circuit, given in Figure 19, has the following components:
 

/ 2 
W- = k(l + i)flI and is the Warburg impedance,
 

c is the double layer capacitance,
 

RI is the resistance representing diss.ipation in oxidation
 

or reduction at surface of metallic particle,
 

R2 and R3 are the ohmic resistance ofsolution paths and
 

mineral grains in the interstices of the rocks.
 

The admittance of the circuit of Figure 19 is given by the expression
 

C -t 6 c 92uaf;R 3 


where C-


If this expression represents the admittance of a rock sample of length
 

and cross-sectional area A, the conductivity of the rock of the sample is
 

4-30 

or
 

Now the frequency dependence of the complex conductivity will be inde

pendent of the dimensions of the samples so that a general expression
 

for should be of the form
 

12- 4-32 
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4-3 

Values of the constants A through F can only be obtained by empirically
 

fitting observed conductivity spectra with the function of equation 4-32.
 

The low and high frequency limits of equation 4-32 are real, being
 

T.+~ L 4 4-347 


The conductivity.spectrum presented in Figure 11 suggests that the high
 

frequency resistive limit is reached somewhere above 105 hz and that the
 

low frequency limit is well below 10-1 hz. The range over which signifi

cant change of <-takes place is then at least 106 hz. The data of
 

Figures 25 through 30 confirms such a broad range, even though this
 

data relates to other rocks and soils. Evidently interfacial polari

zation leads to relaxation spectra with a very extended range of change
 

and some unusually large ranges for Ke' and(3-' A publication by 

Inglesias and Westphal (1967) provides additional evidence for the ranges 

of Ke' and 'r to be expected in rocks, soils, and ice. 

(iv) spectra for membrane polarization
 

An equivalent circuit used to describe membrane polari

zation in a rock is illustrated in Figure 20 and the rock model to which
 

it pertains is illustrated in Figure 21. It may be established readily
 

that equation 4-35 adequately describes the complex conductivity of such
 

a rock.
 

A+ 
4-3 
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The Warburg impedance in this rock model describes the frequency-depen

dent diffusion impedance resulting from the presence of the membrane
 

zones. The resistance R, represents leakage of charge carriers around
 

or through membrane zones; the leakage decreases as the thickness of
 

the double layer approaches the diameter of the pore. Resistances R2
 

and R3 simulate series and parallel unblocked ionic paths. The low
 

frequency and high frequency resistive limits of 4-35 are
 

I 

(> = 7+ A 4-36 

C 
Membrane zones, we conclude, also give rise to relaxation spectra.
 

(v) Cole-Cole diagrams and the general material
 

Equation 4-17 presents a relation which is referred to
 

as the Debye equation. It may be written in the form
 

6/ - - 0 4-38 

The terms of the left of 4-38 correspond to a pair of orthogonal vari

able vectors whose vector sum is always a constant ell
 

Thus, equation 4-38 describes a circle with the quantity W6I-K
 

as diameter. -If we plot Ke'' versus Ke' in the complex plane, a semi

circle with its center at W& -1-- will result; this is the 

Cole-Cole diagram and is depicted in Figure 22. The loss factor K' 

reaches its maximum at the critical frequency 

we- _-
 4-39
 
AT. 
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so that the single relaxation time of a material obeying the Debye
 

equation can be obtained in this fashion. The quantity I -As 

is a measure of the polarizability of the material. We have demon

strated that interfacial polarization spectra are broader and flatter
 

than those predicted by the Debye equation. In general, this is true
 

for all forms of polarization. To account for this broadening, powers
 

of k, other than unity must be used in the expression for complex
 

dielectric constant. Thus, for example, the following expression is
 

used:
 
hI
 

00 .- 4-40 

where c< is an empirical constant which may vary between 0 and 1. On
 

a Cole-Cole diagram, equation 4-40 plots as a circle with its center
 

below the Ke' axis. The angle between the Ke ' axis and a line joining
 

the center to K,' is the angle , so that c>< may be deter

mined from the diagram. It may be demonstrated (Davidson and Cole, 

1950) that equation 4 40 requires that . is a mean time constant around
 

which other time constants are spread in a symmetrical log normal fashion.
 

Keller and Licastro (1959) and Keller (1959) have discussed "7 distri

bution functions for rocks. We have seen, however, that even the modi

fied Debye equation (4-40) is inadequate to explain interfacial polari

zation and this is not too surprising since the Debye model predicts a
 

zero value for L5 ' at zero frequency, which is not confirmed by experi

ment. A simple model for conductivity which would be analogous to the
 

Debye model for dielectric constant is illustrated in Figure 23. The
 

admittance of this circuit is
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V~1406?4-41 

which we may convert to conductivity via the relation 

A 4r42 

Hence, we find
 

)wZX
A R 
4-43
 

\Ft + _ 

where L'= R2C2 

/ I 

and 4-44 

Equation 4-43 may be written
 

which is also the equation of a circle of diameter 

centered on the __ axis. A Cole-Cole diagram for equation 4-45 is
 

illustrated in Figure 24.
 

(i) Normal values of dielectric constant for earth materials
 

Since the dielectric constant is frequency dependent, it is
 

necessary to specify the frequency or frequency range at which it is
 

measured. For example, below 109 hz we may observe electronic polari

zation, while below 104 hz we may observe interfacial polarization.
 

If measurements of the real part Ke' of the dielectric constant is
 

made well above 105 hz or is a rock is dry, then the contribution of
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interfacial polarization is minimal and we refer to normal values
 

of dielectric constant. Table II contains Ke' values for some typical
 

earth materials, measured in materials for which interfacial polarization
 

was negligible (Keller, 1966). 

(j) Abnormal values of dielectric constant for earth materials
 

If a rock or soil is partially or fully water saturated, and
 

if measurements of Ke' are made at sufficiently low frequencies, then
 

the values of dielectric constant may be many orders of magnitude higher
 

than those observed at higher frequencies on dry rocks and soils. Keller
 

(1959, 1966) has given some representative values of.Ke' pertinent to the
 

frequency range 0.01 to 10 hz and these values are reproduced in Table III.
 

(k) Abnormal attenuation of plane waves in polarizable materials
 
/ 

Values of the observed ratio C/]- of a few rock types are 

listed in Table IV (after Keller, 1959). It may be noted that c/

is relatively constant for any given rock type, but that the range varies 

from one rock to another. If this ratio could be anomalously large, then 

the depth of penetration would be anomalously great, even at frequencies 

as high as 104 hz. We have computed the depth of penetration for the 

rhyolite tuff at a frequency of 10 hz, using both equation 3-64 and equa

tion 3-67. The first computation ignores the dielectric constant while 

the second computation utilizes a loss tangent, tan S , defined by 

-
* We assume a typical conductivity of 10 3 mhos per meter
 

for the tuff. The dielectric constant Ke' then is 7 x 107 and the loss
 

tangent has the value 2.53 x 10-2. The free space wavelength of a wave
 

of 10 hz is 3 x 107 meters.
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TABLE II 

Normal dielectric constants for earth materials (2000) 

Material 10 2hz 10 3hz 104hz 105hz 10 6 hz 1O7bz 

distilled water 81.1 81.1 81.1 81.1 81.1 81.1 

ice (-I°C) 72.5 t 4.3 

limestone, dry 10.4 9.35 9.01 8.86 8.69 8.56 

arkose sandstone, 5.94 5.78 5.60 5.39 5.34 5.31 
dry 

graywacke sand- 11.6 8.78 7.37 6.59 6.12 5.87 
stone, dry 

sandy soil, dry 3.41 2.90 2.75 2.65 2.59 2.56 

loamy soil, dry 3.06 2.83 2.69 2.60 2.53 2.43 

clayey soil, dry 4.72 3.93 3.26 2.79 2.56 2.44 

diabase, dry 13.4 11.2 9.95 9.10 8.31 7.76 

diorite, dry 7.21 6.61 6.27 6.05 

dunite, dry 10.0 8.47 7.83 7.60 7.37 7.18 

gabbro, dry 15.0 11.5 10.2 9.65 9.12 8.78 

granite, dry 9.63 8.00 6.86 6.11 5.57 5.23 

obsidian 7.31 7.09 6.90 6.80 6.69 6.59 

argillite, dry 11.9 10.4 9.22 8.65 8.30 7.97 

talkschist, dry 31.5 22.7 15.7 10.8 8.46 7.57 
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TABLE III 

Abnormal values of dielectric constants for earth materials
 

Rock Ke' mhos/meter
 

sedimentary rocks 

graywacke sandstone 3.45 x 108 1.1 x 1o- 3 

x 107 0.78 - 1.2 x 10-3 sandstone with galena 5.9 - 9.2 


-3
 
quartzitic sandstone 2.68 x 108 2.6 x 10


0.24 - 7.2 x 10- 3 shale 5.4 - 15.2 x 107 

x 105 0.034 - 3.4 x 10 - 3 
limestone 4.9 - 620 

x 105 0.11 - 0.70x 10 - 3 
dolomite 9.6 - 860 


igneous phanerites and microphanerites 

granite 1.34 - 1.68 x 105 0.043 - 0.051 x 10 - 3 

quartz porphyry 9.9 - 67 x 104 0.007 - 0.021 x 10-3
 

8.8 - 45 x 106 0.182 - 1.35 x 10-3
 monzonite 


0.013 - 0.42 x 10-3
 diorite 10.8 - 940 x 104 

-3
 
feldspar porphyry 4 x 105 0.14 x 10


6.5 - 25.4 x 105 0.12 - 0.41 x 10 - 3 
hornblendite 
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TABLE III (continued)
 

Rock Kle' mhos/meter
 

igneous aphanites
 

1.2 - 71 x 10- 3
 
pyritic rhyolite 1..66 - 12.7 x 107 


- 3

0.13,- 0.14 x 10
2.52 - 3.96 x 105
felsite 


0.031 - 0.10 x 10-3
 1.22 - 10.0 x 106
mineralized andesite 


x 10- 3
0.89 - 12
7.5 - 213 x 107
basalt 


17 - 18 x 10- 3
 2.87 - 7.9 x 108
mineralized tuff 


metamorphic rocks
 

0.037 - 1.5 x 10- 3
 5.9 - 480 x 105
gneiss 

3
 

x 105 0.0051 - 0.28 x 101.03 - 100
granulite 


0.085 - 0.10 x 10-3
 2.02 - 2.56 x 105
greenstone 
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TABLE IV 

No. of 

Rbck Type Measurements Average Range 

glacial till 9 0.80 0.30 - 3.0 

rhyolite tuff 19 0.63 0.25 - 2.6 

sandstone 306 0.18 0.015 -4.0 

greenstone 10 0.17 0.022 - 0.36 

granite, quartz, 8 0.16 0.030 - 0.57 
porphyry 

limestone, dolomite 18 0.10 0.030 - 0.25 

diorite, monzonite 19 0.085 0.026 - 0.23 

gabbro, chromite. 15 0.0014 0.00033 - 0.033 
troctolite 
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These values lead to the following values of depth of penetration:
 

(a) ignoring dielectric constant d = 5 km
 

(b) assuming a lossy dielectric d = 45 km
 

Evidently the abnormal dielectric constant leads to an order of mag

nitude increase in depth of penetration.
 

-
Actually, the tan S value of 2.53 x 10 2 places this material
 

in the low loss dielectric category despite a conductivity as high as
 

-
10 3 mhos/meter. The depth of penetration for a lossy dielectric is
 

most readily obtained with the aid of the nomogram of Figure 5.
 

(1) Conductivities, dielectric constants, and attenuation for
 

earth materials as functions of percent saturation and of
 

frequency
 

If we are to provide geological interpretation of measurements
 

of lunar electrical parameters, then we must have studied the variation
 

with frequency, water saturation, salinity, and temperature of lunar

like rocks. Jiiacek (1967) has made a study of dielectric constant,
 

conductivity, and attenuation of one soil and two basalts from Hawaii,
 

with both frequency and percent water saturation as variables. Figures
 

25, 27, and 29 portray the (real) dielectric constant and (real) con

ductivity as functions of frequency and percent water saturation (Sw)
 

for one soil and two basalts. Figures 26, 28 and 30 portray the ab

sorption A and depth of penetration d as functions of frequency and
 

percent water saturation.
 

Figures 25 and 26 pertain to the electrical parameters of the soil
 

when dry (circles), containing 20% by weight of water (triangles), and
 

containing 73% by weight of water (squares). The dry density of the
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soil was 0.763 gms/cc. It exhibits normal values of dielectric con

stant at all frequencies as might be expected from earlier discussions.
 

The wet soil (20% H20) exhibits abnormal dielectric constants below
 

104 hz, while the wet sample (73% H20) exhibits abnormal polarization
 

at all frequencies, but especially below 105 hz. The depth of pene

tration increases by 1 to 3 orders of magnitude, depending upon fre

quency, as the moisture content decreases from 20% to zero. At 100 hz
 

and 20% water saturation, the depth of penetration is about 10 km.
 

Figures 27 and 28 pertain to a porous basalt of dry density 1.40
 

gms/cc. The water content is varied from zero (circles) to 0.044% by
 

weight (triangles), and to 2.71% by weight (squares). The dielectric
 

constant is normal at all frequencies for the dry rock and for the same
 

rock with 0.044% water, but is abnormally high below 104 hz when the
 

moisture content is 2.71%. Note, however, that the dielectric constant
 

is normal at all saturations above about 106 hz. The conductivity in

creases by one or more orders of magnitude as the frequency is varied
 

from 102 hz to 107 hz for all saturations. The depth of penetration
 

increases by one to three orders of magnitude, depending upon frequency,
 

as the moisture content decreases from 2.71% to zero. At 100 hz and
 

2.71% water saturation, the depth of penetration is about 4 km.
 

Figures 29 and 30 pertain to a basalt of dry density 2.559 gms/cc.
 

The water content is varied from zero (circles) to 0.358% (triangles)
 

to 0.377% (squares). The dielectric constant is normal at all frequen

cies for the dry rock, but it is higher than the other basalt. It is
 

only slightly abnormal at 102 hz when the water content is 0.377% by
 

weight. The conductivity increases by two or more orders of magnitude
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as the frequency is varied from 102 hz to 107 hz for all saturations.
 

The depth of penetration increases by an average of one order of mag

nitude, for all frequencies, as the moisture content decreases from
 

0.377% water aturation. The depth of penetration is about 4 km at
 

102 hz for the rock with 0.377% water saturation.
 

(m) Reflection coefficients for earth materials
 

We established in Section 3 that if - c3 and _P '(I, 

the quasi-static approximation may be used. That is, if displacement 

currents may be ignored in the ground, then they may be ignored in air. 

For this condition we found that the plane wave amplitude reflection 

coefficient for electric fields reduced to r = -1 and for magnetic 

fields it reduced to r = +1 regardless of the angle of incidence. 

This is a result applicable to very low frequencies and typical earth 

conductivities such that / > 7 1 as is evident from equations 

3-74, 3-75, and 3-76. 

For higher frequencies, even where - S 5-J as before but 

not neglecting displacement currents in air, we may use equations 3-73, 

3-74 3-75, and 3-76 to compute the power reflection coefficients for E 

vector polarization parallel and perpendicular to the plane of incidence, 

and T?,/ respectively. A 600 khz signal incident on sea water,
Cr = 3 mhos/meter with Ii= O = 1, the reflection coefficients K 
and are given in Figure 31 (after Stratton, 1941). Note that
 

, and that at 86.2 degrees the coefficient reaches a mini

mum. Hence, if the electric vector of the incident wave is linearly 

polarized in a direction that is neither normal nor parallel to the plane 

of incidence the wave reflected from sea water will be elliptically 

polarized. 
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If now the electrical parameters of the earth and the frequency 

are such that'j&4-1tz/, then the reflection coefficients have a 

different dependence upon the angle of incidence. Figure 32 illus

trates - and K// as functions of the angle of incidence over 

4fresh water (Keo = 1, Kei = 81, C< = 2 x 10 - mhos/meter) and over a 
resistive rock (Kei = 6, - " 10 - 5 ) at frequencies in excess of 106 hz. 

(n) The effect of pressure on water-saturated rocks
 

Parkhomenko and Bondarenko (1963) found that a dry diabase
 

8 - 9 
or amphibolite at 10 kb pressure had a conductivity of 10- to 10

mhos per meter and that conductivity increased up to 70 percent in 

40 kb pressure. The same rocks under low confining pressure and satur

ated with water may have a conductivity of 10-4 or 10-5 mhos per meter. 

Brace, Orange, and Madden (1965) investigated the electrical con

ductivity of eight water-saturated igneous rocks and two crystalline 

limestones to 10 kb pressure. The pore pressure was maintained near 

zero. The dependence of conductivity on temperature, porosity, and 

pore fluid salinity suggested that conduction was primarily electrolytic 

throughout the entire pressure range, even with rocks of porosity less 

than 0.1 percent. donductivity decrease with increasing pressure aver

aged a factor of 250 over the 10 kb range. 

Figure 33 presents the results obtained by Brace, Orange, and 

Madden using an NaCI pore solution of 0.30 ohm meters resistivity. 

From this data they conclude that the electrical conductioii of these 

rocks consists of 

(a) conduction along cracks, below a few kilobars pressure
 



7L , 

(b) volume and surface conduction along a network of pores
 

which persist throughout the entire range.
 

Surface conduction of the rocks saturated with tap water was 10 to 20
 

times greater than the volume conduction of the pores.
 

(o) Rocks at high temperature
 

Rocks near the surface of the earth's crust conduct elec

tricity by virtue of the phenomena described in the preceding sections;
 

ionic conduction is predominant. An expected decrease in ionic conduc

tivity with depth, due to decrease of porosity, is counterbalanced to
 

someextent by an increase in mobility of ions brought about by in

creased temperature with depth. However, the increased temperature
 

probably is first noticeably important when it leads to ionic or elec

tronic conduction in the solid framework of the rock. At, or perhaps
 

considerably before the depth at which this occurs, ionic conduction
 

through pores becomes negligible.
 

Conduction in the solid framework of a rock takes place via four
 

mechanisms; the total conduction is the sum of intrinsic semi-conduction,
 

extrinsic semiconduction, intrinsic ionic conduction, and extrinsic
 

ionic conduction. These processes are described below.
 

(i) intrinsic semiconduction (electronic conduction)
 

The electronic bands leading to intrinsic semiconduction
 

are illustrated in Figure 34. At 00K the conductivity is very nearly
 

zero, although with enough field, some electrons still can be excited
 

across the gap. Then practically all states in the valence band are
 

filled and all states in the postulated conduction band are vacant,
 

As temperature is increased, the conductivity increases because elec
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trons are thermally excited part or all of the way up to the conduction
 

band. In this state, small fields easily excite electrons across the
 

gap. Both holes in the valence band and electrons in the conduction
 

band will contribute to the electrical conductivity.
 

The intrinsic conductivity at temperature T is computed from the
 

relation
 

r j-l Mi- 4-46 

where V, 1$e are the electron and hole equilibrium concentrations, 

and where VnC and Mh are the mobilities of electrons and holes re

spectively; e is the elemental charge. 

Kinetic theory leads us to expect a temperature dependence of the
 

form e for the concentration of electrons in the conduction
 

band. Assuming a relatively small variation of mobility with tempera

ture, we are then led (Kittel, 1953) to predict a conductivity depen

dence of the form
 

4-4-7 

in which Eg is the gap energy, 1 includes the mobility function and,
 

in this form, is the conductivity at 00K, k is Boltzmann's constant.
 

Thermal, electrical, or optical excitation of electrons across the
 

band of forbidden energy renders the solid conducting.
 

(ii) extrinsic semiconduction (electronic conduction)
 

Impurities and crystal imperfections in the material
 

produce extrinsic conductivity. Above some temperature, impurities
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may be unimportant so that we define the temperature range above
 

extrinsic conductivity as the intrinsic range in which the previous
 

mechanism is operative.
 

However, below the intrinsic range, certain types of impurities
 

and imperfections markedly alter the electrical properties of a semi

conductor. Extrinsic semiconduction arises by thermal excitation of
 

electrons, occupying intermediate energy levels, in the forbidden gap
 

and produced by impurities in solid solution, into the unoccupied con

duction band, or by the excitation of electrons from the occupied
 

valence band into unoccupied impurity levels. In the first case the
 

current is carried by electrons; in the second case the current is
 

carried by holes. If the excitation energy between the levels through
 

which the electrons are excited is E, the electrical conductivity is
 

given by
 

cY:-(3- 4-48 

where is proportional to the number of electrons per cm3 associated
 

with the impurity levels.
 

The difference between extrinsic and intrinsic semiconduction can
 

be seen from the energy diagrams of Figure 35. Conductivity in the im

purity semiconductor may be due to an electron which has jumped from
 

an impurity level b to the conduction band p. This impurity band is
 

then called a donor. In other cases the conductivity may be due to
 

the movement of an electron from the full s band to the impurity level
 

a; the impurity is than an acceptor. Conduction is due to the motion
 

of the positive hole in the s band; we then speak of a p-type (posi

tive-type) semiconductor; n-type semiconductors are those in which an
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electron is the current carrier.
 

The conductivity of all semiconductors is extremely sensitive
 

to pressure, since pressure decreases Eg. A pressure of 20,000 atmos

pheres increases the conductivity of a semiconductor by about two orders
 

of magnitude while only increasing the conductivity of a metal by a fac

tor of about two. The donor and acceptor levels may be due to crystal
 

imperfections as well as to impurities.
 

At high temperatures, electrons cross the energy gap of Figure 35
 

much more readily than at low temperatures. This conduction mechanism
 

will predominate at high temperatures, even when impurities are present,
 

because the impurity levels contain far fewer electrons than do the va

lence bands.
 

(iii) intrinsic ionic conduction
 

Ionic conduction in a solid occurs as a result of mobile
 

ions moving through the crystal lattice as a result of defects in it.
 

The simplestimperfection is a missing atom or lattice vacancy (Schottky
 

defect). The diffusion of the vacancy through the lattice constitutes
 

transport of charge.
 

In the Schottky process, two energies are of importance: i.e., 

half that required to produce a pair of oppositely charged lattice de

fects (V/2 ), and the height of the potential barrier separating adja

cent sites occupied by the mobile ions (V). The excitation energy E 

of the process is the sum of these two energies ( E / 2 +'/ ). The 

conductivity is given by the equation 

C-m 4-49 
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in which qo is proportional to the number of ions per cm3 . A Frenkel
 

defect may also be important in ionic conductivity; its diffusion follows
 

the same law. Frenkel and Schottky defects are illustrated in Figure 36.
 

In the Frenkel process, under the influence of thermal fluctrations,
 

atoms will from time to time undergo such large displacements that they
 

become detached from normal lattice positions and find themselves in
 

interlattice or interstitial positions. An ion in an interstitial posi

tion will vibrate about this point in the normal way, until there is
 

again a large fluctuation in energy when it will be pushed through a gap
 

in the surrounding atoms to the next interstitial site. Positive inter

stitial ions subject to an electric field will jump more frequently in
 

the field direction than in the opposite direction. The opposite holds
 

true for negative ions. An electric current flows on this account. In
 

the Schottky model, there are no interstitial ions but instead there are
 

equal numbers of anion and cation charge unbalances due to vacancies;
 

the vacancies moving under the influence of an applied electric field
 

constitute a current.
 

(iv) extrinsic ionic conduction
 

Ionic conduction in solids displays two characteristics 

when temperature T is varied. First there are two main regions in the 

conductivity curve and second in both these regions the logarithm of 

the conductivity is roughly a linear function of T-1. In the high 

temperature or intrinsic region above the knee of the curve, measure

ments are quite reproducible. In the low-temperature region the number 

of vacancies or interstitial ions may be controlled by the impurities 

present or by the previous heat treatment of the crystal, so that the 

number of charge carriers is independent of temperature and E = W. 
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Conduction of this type is called extrinsic ionic. The slope of the
 

(T'versus T-1 curve is smaller than for intrinsic ionic conduction.
 

The complete solid ionic conductivity curve is a superposition of two
 

lines
 

4-- CT e 4-50 

where the subscripts H and L refer respectively to the high and low
 

temperature regions. Typically, we find = 05 and /I= 2. 

In general the greater the purity of the specimen the smaller C9
 

becomes. For rocks at room temperatures onemight expect the second
 

term in 4-50 to predominate, but there is no information available in
 

the literature with which to clarify this point.
 

An impurity-vacancy pair, but not an anion vacancy-cation vacancy
 

pair, will constitute a dipole which will rotate upon application of
 

an electric field. A dielectric constant and a dielectric loss will
 

arise on this account. Losses also arise in the ionic diffusion mechan
/nearly
 

ism but this conduction mechanism is/frequency independent whereas the
 

conductivity associated with the dipole oscillator losses follows a
 

Debye frequency dependence. The presence of more than one contributor
 

to the dipole sources will introduce a distribution of Debye relaxation
 

times so that the conductivity spectrum will be much broader than that
 

arising in the simple Debye model.
 

Because impurities are not important to conduction in the intrinsic
 

range, the Debye relaxation process will not be important in intrinsic
 

conductivity. Hence, the intrinsic conductivity and its associated
 

dielectric constant are frequency independent.
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The transport numbers t+ and t- for positive and negative vacan

cies may differ, so that in an inhomogeneous medium a polarization
 

mechanism analogous to membrane polarization may occur. Of course, a
 
/small part of
 
the dispersion of extrinsic ionic conductivity might also be related
 

to the dispersion of energy dissipated in small motion of an impurity
 

about the vacancy with which it is associated. At high frequencies
 

the motion is small so that the distance up the "potential well"
 

around the vacancy is small. Keller and Frischknecht (1966) and Lidiard
 

(1957) provide discussions of ionic conduction of interest in the study
 

of rocks.
 

(v) metallic conduction
 

We can reasonably expect the high temperature conduc

tivity of a metal to be a function of the Debye temperature 0D and
 

the ambient temperature T. Kittel (1953) gives the conductivity of a
 

metal in the form
 

e 4-51
 

where e = charge on electron
 

M = mass of the lattice oscillators
 

k = Boltzmann constant
 

OD = Debye temperature of lattice
 

p = +k = electronic momentum
 

"s = mean scattering cross-section for an isolated ion
 

t - where h = Planck's constant
 
2
 

LU = frequency of lattice oscillators
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In deriving this formula, the wave function for the electron was
 

taken in a form which neglected modulation by the lattice. Increased
 

pressure will therefore modify the wave function so presumably we may
 

follow Elsasser (1-950) in-writing
 
L 

k. 	 4-52 

where 	C lumps the constants and also assumes a dependency on pressure
 

to account for modulation of the electronic wave function. The Debye
 

temperature is found experimentally, and theoretically, to be propor

tional to the velocity of sound.
 

(vi) 	conductivities of rocks at high temperatures within
 

the earth
 

Within the deep crust and the mantle of the earth we
 

may expect intrinsic and extrinsic solid ionic conduction plus intrin

sic and extrinsic electronic semiconduction to predominate since the
 

rocks there are composed of silicates and oxides. Within the core of
 

the earth we assume iron or an iron-nickel mixture so that metallic
 

conduction at elevated temperatures and pressures is an appropriate
 

mechanism. Runcorn (1956) estimates the conductivity of the core to
 

be 3 x 106 mhos/m. Tozer (1959) has summarized the methods of esti

mating the conductivity of the mantle.
 

Hughes (1955) has estimated E and ' , for olivine, for each of 

total ionic conductiony intrinsic semiconduction, and extrinsic semi

conduction. From these estimateshe was able to indicate the tempera

ture range of importance of each mechanism at ordinary pressures. 

Hughes' data is given in Table V. 
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TABLE V 

Conduction in the Deep Crust and Mantle 
Range of 

Type of Conduction q-0 E Importance 

Extrinsic electronic 10-6 mhos/m I e.v. 6000C 

Intrinsic electronic 10-3 mhos/m 3.3 e.v. 6090C to 11000C 

Total ionic 103 mhos/m 3.0 e.v. 11000C 
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Hughes also studied the effect of pressure on the conductivity of
 

Peridot and his results are indicated in Table VI. Keller (1965) has
 

illustrated that conduction of rocks at elevated temperatures is fre

quency dependent (see Figure 37).
 

The conduction mechanism above 11000C has been recognized as in

trinsic ionic because, when an iron electrode is used in contact with
 

the magnesium orthosilicate, iron diffuses into the silicate replacing
 

the magnesium. Hamilton (1965) questions this conclusion.
 

The application of Hughes' results to the explanation of the dis

tribution of electrical conductivity in the mantle is clear only in -a 

general way. The conductivity for mantle rock can be computed from 

laboratory values of r and E, assuming the temperature distribution 

and the rock composition are known. The limits of the temperature dis

tribution are estimated in one of two ways: (a)by assuming that the 

material is everywhere at its melting point except in the outer 700 

kilometers for a maximum, and (b)by assuming that the temperature 

gradient is adiabatic for a minimum. The unknowns in rock composition 

are apt to be the most serious stumbling block to estimating conductiv

ities from known or assumed temperature distributions. As Hamilton
 

(1965) has demonstrated clearly, a very small percent of impurity
 

added to MgO will change-the conductivity at elevated temperatures
 

by one or more orders of magnitude. Further, Hamilton was unable to
 

conclude from his experiments which conduction mechanism predominated
 

in the temperature range 500'K to 12000 K. He believes that no convin

cing answer to this latter problem appears in the literature. If we
 

assume a mantle composed of olivine, then the problem of estimating
 



TABLE VI
 

Effect of Pressure on the Conductivity of Peridot
 

Temperature Pressure range 


13330K 1000-8500 kg/cm3 


14290K 1000-8500 kg/cm3 


15130K 1000-8500 kg/cm3
 

Percent change in 3
 
conductivity per 1000 kg/cm
 

increase in pressure
 

-(2.9 + 0.9)% 

-(3.7 ± 0.3)% 

-(2.3 + 0.6)% 
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the temperature in the upper mantle from conductivity results, depends
 

critically on the assumed composition.
 

Estimates of the conductivity profile to depths-of the order of
 

700 km have been made by the magnetotelluric method (Fournier, 1966;
 

Srivastava and Jacobs, 1964; Fournier, Morrison, and Ward, 1963; Sri

vastava, Douglass. and Ward, 1963; Bostick and Smith, 1962; Cantwell
 

and Madden, 1960; Niblett and Sayn-Wittgenstein, 1960; Tikhonov and
 

Lipskaya, 1952; and others), and some of these studies have suggested
 

a layer of high conductivity somewhere in the vicinity of 100 km, as
 

shown in Figure 38. However, as shall be indicated later, there now
 

is considerable doubt concerning the validity of the magnetotelluric
 

method in this application.
 

The most reliable estimates of electrical conductivity of the
 

mantle I consider to be those derived from studies of geomagnetic
 

fluctuations (Eckhardt, Lamer, and Madden, 1963; McDonald, 1957;
 

Rikitake, 1950; Lahiri and Price, 1939; Chapman and Price, 1930).
 

The gross assumptions involved leave our knowledge of the mantle
 

temperature and conductivity on rather precarious grounds, although
 

there is general agreement in the literature (Noritomi, 1961; Tozer,
 

1959; Lubimova, 1958; Jacobs, 1956; Runcorn, 1956; Verhoogen, 1956;
 

Uffen, 1952; Lahiri and Price, 1939). The presently accepted models
 

of the conductivity distribution within the earth are presented in
 

Figure 38.
 

(p) Lateral variation in observed surface conductivities
 

The rocks near the surface of the earth exhibit a wide range
 

of conductivities as Table VII will indicate (Keller, 1966). There is
 



TABLE VII
 

Conductivity Ranges of Water-Bearing Rocks (.a-m)
 

Chemical
 
Geologic Age Marine Terrestrial Volcanic Intrusive Precipitates
 

limestone
 

sand sand basalt granite dolomite
 
shale claystone rhyolite gabbro anhydrite
 

graywacke arkose tuff etc. salt
 
2 4
 

10 "I - 100 6xlO 2 - 2x10 2 10 "1 - 5xlO 3 xio " - 5x10 4 2xlO - 2xlOQuaternary, 

tertiary
 

- 4
3
- 2
2 2xlO - 5x10 -4  10 - 10Mesozoic 2xlO " - 5x10 4xlO " - 10 5xlO - 2x 

5
3 3
2
Carboniferous i0 " - 2.5x10 2xlO 2 - 3xlO 3 2xlO 2 - o- 10- - 2xlO 4 5x10 3 - 10

10-
5


2 10 - 10-Precarbon, 2.5xi0 - 5x10 3 10-2 - 2x10 3 10-2 - 5x10 4 - 2x10 4 

paleozoic 

" 10 4 -5 2x10 - 5x105 10Precambrian 10-2 - 5x10 4 3x10 " - 2x10 4 5x10 " - 2x10 4 

10.1 
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a general increase in conductivity with porosity, salinity of pore
 

solution, and amount of conductive solids. These factors then are
 

manifested in an observed dependence of conductivities on rock type
 

and age as Table VII indicates.
 

While crustal conductivities as measured in situ may vary by
 

several orders of magnitude over very short lateral or vertical dis

tances, there are some observable patterns to average resistivities
 

measured over large areas. For example, the National Bureau of Stand

ards (NBS Circular 546) estimated average earth resistivities from the
 

spatial rate of decay in field strength about a radio transmitter. Re

sistivities so estimated represent the average values for rocks over an
 

area of a few square miles about the broadcasting station to a depth of
 

about a hundred feet. Figure 39, after Keller and Frischknecht (1966),
 

shows the general distribution of high, low, and moderate near-surface
 

conductivities in the United States.
 

Most rocks are electrically anisotropic, with the conductivity
 

measured along the bedding being greater than the conductivity normal
 

to bedding. The coefficient of anisotropy, computed as the square root
 

of the ratio of the longitudinal to the transverse conductivitiesp may
 

vary from 1 to 3 in sedimentary rocks according to Keller (1966). Ani

sotropy in a horizontal plane is common in the older metamorphosed rocks.
 

(q) Conductivities of rocks at low temperatures
 

The behavior of the conductivity or rocks below 00C is governed
 

to a considerable extent by the conductivity of ice formed in the inter

stices. Figure 40 (after Keller and Frischknecht, 1966) shows the elec

trical conductivity of pure ice as a function of temperature and frequency.
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Freezing has only a moderate effect on conductivity of rocks
 

because (Keller and Frischknecht, 1966),
 

(a) 'qost ground water is moderately saline, and the presence of
 

salts in solution lowers the freezing point. Moreover, if electrolytes
 

are frozen slowly, they do not freeze uniformly. Salt ions migrate from
 

the solidifying phase to the still-liquid phase, increasing the salinity
 

of this fraction and further lowering its freezing point. As a result,
 

pockets of liquid brine remain in ice at temperatures down to -600C.
 

Freezing can be considered then as merely a reduction in the fractionof
 

pore space which is saturated with water.
 

(b) "Pressure also lowers the freezing point. Water adsorbed on
 

grain surfaces is under great pressure and will not reorient into ice
 

crystals until the temperature is considerably below the normal freezing
 

point. Also, as some water does freeze, it attempts to occupy a greater
 

volume than it has in the liquid state, further increasing the pressure
 

on the unfrozen water. Surface adsorption pressures would be expected
 

to be greatest in fine-grained rocks with large surface areas exposed
 

in the pore structure.
 

"These two factors cause the freezing process in rocks to take
 

place over an extended temperature range rather than at a single tem

perature. The higher the salinity of the pore water, the lower will be
 

the temperature at which freezing first starts to take place, and the
 

finer the grain size, the broader will be the temperature range through
 

which freezing continues."
 

In Figure 41, there is displayed the behavior of conductivity in
 

granular rocks as a function of temperature in the range -400C to 60'C.
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No experimental information is available on the conductivity of
 

rocks below -40'C.
 

(r) Dielectric constants of rocks at low temperatures
 

Few measurements of the dielectric constants of rocks at
 

temperatures below freezing have been made. Eder (1947) presented
 

the variation of the dielectric constant and loss tangent of ice as
 

functions of temperature and frequency. His illustrations are repro

duced in Figures 42 and 43. Water molecules in ice take longer to
 

align with a polarizing field than the same molecules in liquid, and
 

as a result, molecular polarization is apparent only at relatively
 

low frequencies. The lower the temperature, the more rigid the ice
 

structure and hence, the lower the rate at which molecules rotate.
 

(s) Dielectric constants of rocks at elevated temperatures
 

Keller (1966) presented the dielectric constants of three
 

rocks as functions of temperature and frequency. We have reproduced
 

in Figure 44 his diagram pertaining to granodiorite. Evidently Ke'
 

increases with temperature to 10000C and decreases with frequency from
 

102 hz to 105 hz. Zablocki (1964) has given values of dielectric con

stant of serpentinite at elevated temperatures.
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5. 	Magnetic properties of rocks (Nagata, 1961; Chikazumi, 1964;
 

Grant and West, 1965; Lindsley et al., 1966)
 

(a) 	Types of magnetism
 

There are two possible atomic origins of magnetism which
 

lead to the magnetization of magnetic substances - orbital motion
 

and spin of electrons. Spin moments usually predominate in strongly
 

magnetic materials.
 

All materials exhibit diamagnetism (Km.I), i.e., when placed
 

in a magnetic field they acquire a small moment which is in a direc

tion opposing the field (Figure 45). The cause of diamagnetism lies
 

in 	the Larmor precession of electron orbits; the effect is a very
 

weak one and may be neglected in relation to other forms of magnetism
 

in 	earth materials. The susceptibility is negative and of the order
 

of 	10-6 cgs units.
 

Many materials are also paramagnetic (Km>l), i.e., when placed 

in a magnetic field they acquire a magnetism which is proportional to,
 

and 	in the same direction as, the external field (Figure 46). Para

magnetism originates in the intrinsic magnetic moments of individual
 

ions 	and, while usually much stronger than the diamagnetic effect, it
 

may 	for many purposes be disregarded in geological materials in situ.
 

-6
The susceptibility is of the order of 10-4 to 10 cgs units and is
 

inversely proportional to the absolute temperature. At finite tem

peratures, the ion spins are thermally agitated and assume random or

ientations, but upon application of a magnetic field, the average orien

tations of the spins are slightly changed so as to produce a weak mag

netization parallel to the applied magnetic field.
 



93 

Both of the above forms of magnetism are exhibited only in the
 

presence of a magnetic field, i.e., they are induced.
 

Ferromagnets are characterized by the fact that they exhibit spon

taneous magnetization, i.e., they possess a magnetization even in the
 

absence of external magnetic fields. As mentioned above, the intrinsic
 

magnetic moments of the individual ions, which give rise to paramagnetism,
 

are normally randomly oriented because of thermal agitation. If, however,
 

the bonding between the atoms of a crystal is of such a nature that it
 

affects the orientation of the electron orbits and spins, an alignment
 

of the magnetic moments may take place. Interaction forces tend to
 

make each elementary magnetic moment parallel to its neighbors but the
 

alignment is maintained only over fairly small regions or domains. The
 

directions of magnetization of the domains may differ so that, in the
 

absence of an external field, there can be magnetization on a micro

scopic scale. The alignment forces are opposed by thermal agitation,
 

but below a certain temperature, the Curie temperature,-spontaneous
 

magnetization will occur. Figure 47 illustrates the alignment of mag

netic moments. As the temperature increases, the arrangement of the
 

moments is disturbed by thermal agitation, resulting in a temperature
 

dependence of spontaneous magnetization as Figure 47 shows. Above the
 

Curie point, the susceptibility obeys the Curie-Weiss law, which states
 

that rises from zero at the Curie point and increases linearly
 

with temperature.
 

There are also substances in which the interaction forces tend
 

to make neighboring moments anti-parallel. In general, this will pro

duce no spontaneous magnetization because the neighboring moments will
 

cancel. This is referred to as antiferromagnetism. The temperature
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dependence of the susceptibility of this magnetism is characterized
 

by a kink in the X1,-fjcurve at the Neel temperature Tn. Above 

the Neel temperature the induced moments become random, so that the
 

susceptibility decreases with an increase in temperature. Figure- 48
 

illustrates the behavior of this type of substance..
 

In other substances a number of moments are not cancelled and
 

point in the same direction. Spontaneous magnetism of this type is
 

called ferrimagnetism and occurs in oxides and ferrites. A ferrite
 

has the chemical constitution Fe203 MO where M is a bivalent metallic
 

ion. Magnetite is a natural ferrite. "In these substances magnetic
 

ions occupy two kinds of lattice sites, A and B, and spins on A sites
 

point in the plus direction, while those on B sites point in the minus
 

direction because of a strong negative interaction acting between the two
 

spin systems on A and B. Since the number of magnetic ions and also the
 

magnitude of spins of individual ions are different on the A and B sites,
 

such an ordered arrangement of spins gives rise to a resultant magneti

zation." (Chikazumi, 1964) As the temperature increases, the spin mo

ments tend to become random and a decrease of spontaneous magnetization
 

occurs as in Figure 49. At the Curie temperature the spin moments be

come completely random and the spontaneous magnetization vanishes.
 

There are several types of temperature dependence of the spontaneous
 

magnetization, depending on the relative intensity of the interactions
 

between A-A, B-B, and A-B sites. Figure 49 shows one common type of
 

temperature dependence, Above,the Curie pointj the'substance exhibits
 

paramagnetism and the susceptibility decreases with increase of tempera

ture as shown in Figure 49.
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Metamagnetism is the name given to the phenomenon which is inter

preted as a transition from antiferromagnetism to ferromagnetism and
 

vice-versa, caused by the application of a strong field or by a change
 

of temperature. A reversal of spins from minus to plus directions
 

occurs so that the intensity of magnetization increases abruptly as
 

in Figure 50.
 

Parasitic ferromagnetism is the name of a weak ferromagnetism
 

which accompanies antiferromagnetism such as is observed for hematite
 

d,Fe2Oj. Spontaneous magnetism of this type disappears at the Neel
 

temperature, where the antiferromagnetic arrangement of spins dis

appears. Figure 51 illustrates some possible spin-configurations capa

ble of explaining this type of magnetism.
 

Table VIII lists some geologic substances and indicates the type
 

of magnetism they exhibit.
 

(b) Hysteresis and the B-H diagram 

In ferromagnetic materials, B and H are related via
 

'B H 5-1 

whereAl is dependent upon field strength. A representative magneti

zation curve and a hysteresis loop are shown in Figure 52. The magneti

zation curve can be divided into three parts. In the initial portion.
 

OA, of the curve, the magnetization increases by means of reversible
 

domain wall displacements which result in the growth of the favorably
 

oriented domains. The steep portion, AB, of the curve results from
 

the sudden irreversible movement of a domain wall from one stable po

sition to another, with these points of stability being determined by
 

the location of crystal imperfections and inclusions. Therefore the
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TABLE VIII
 

Substance Type of magnetism 

iron, nickel ferromagnetism 

magnetite (Fe304) ferrimagnetism 

pyrrhotite (FeTS8) ferrimagnetism 

pyrite (FeS2) paramagnetism 

maghemite ()Fe203) ferrimagnetism 

hematite 6( Fe203) parasitic ferromagnetism 

ilmenite (FeTi03) parasitic ferromagnetism 

ulvospinel (Fe2TiO4) ferrimagnetism 

hematite )solid solutions ferrimagnetism 
ilmenite ss 
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magnetization in this steep part proceeds discontinuously, resulting
 

in the Barkhausen effect. Finally, in strong fields the magnetization
 

usually changes by rotation of the magnetization of whole domains until
 

saturation is reached.
 

If the magnetic field, H, is reduced from its saturation value,
 

the flux density, B, follows the hysteresis curve shown dashed in
 

Figure 52 and always lags behind the change in applied H. With H re

duced to zeros the flux density is still near its saturation value and
 

is equal to Br, the residual flux density or remanence. In order to re

duce B to zeros the negative field, Hc, called the coercive force, must
 

be applied.
 

The B-H curve is characterized by an initial permeability/it 

applicable in the region OA, maximum permeability l ; the inctemen

tal permeability s-n- as well as the coercive force and-/ 

the remanence. Beyond the range of initial permeability, the processes
 

of magnetization are no longer reversible as the hysteresis loop would
 

indicate. If the field is oscillated about its value at point B, the
 

induction follows the small loop B-B1 and it is the slope of B-B1 that
 

defines the incremental permeability; this permeability is reversible if
 

the field oscillation is small. The slope of each portion of the ini

tial magnetization curve OABC is called the differential permeability
 

A and the slope of the line which joins the origin 0 and each point 

on the initial magnetization curve is called the total permeability. 

The maximum permeability is that value of total permeability which is 

obtained by drawing a tangent to the initial magnetization curve from 

the origin. 
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The area enclosed by a hysteresis loop is proportional to the
 

energy lost as heat during the traversal of the loop.
 

5-2
PAPt( 
In rocks the hysteresis losses W are relatively small while the
 

saturation magnetization takes place at values of H much in excess of
 

the value for the ambient earth's field. Hence, the hysteresis loops
 

of Figures -53 and 54 are typical for igneous intrusives. One may note
 

from these latter curves that the incremental permeability is relatively
 

insensitive to field strength, over the range of field strengths consid

ered in the figures. Examples of magnetization curves for volcanic
 

rocks are given in Figures 55 and 56. Some rocks are magnetically soft,
 

the coercive force being but a few tens of Oersted, while others are
 

magnetically hard, the coercive force reaching values greater than 300
 

Oersted. Typically, volcanic rocks are hard and igneous rocks are soft,
 

as a result of different rates of cooling. Evidently both chemical com

position and grain size of the ferrimagnetic minerals are affected by
 

the rate of cooling. Further reference to these differences will be
 

made when we discuss the effect of grain size on magnetic parameters.
 

(c) Remanent magnetism in rocks
 

The remanent magnetism in rocks depends upon the amount and 

chemical composition of the ferrimagnetic minerals they contain, and 

the history of heat and pressure to which the rocks have been subjected. 

The total remanent magnetism of a rock is termed its natural remanent 

magnetism (NRM). 

Thermoremanent magnetization (TRE) is that magnetization acquired
 

by a rock upon cooling at temperatures below the Curie point in a magnetic
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field. This magnetization typically has a high coercive force and is
 

usually more intense than the magnetization induced by the same field
 

at room temperature. A partial TRM is a magnetization produced by cool

ing a material from its Curie temperature to room temperature, while the
 

magnetizing field has been applied only over a limited temperature inter

val; partial TRM's are additive, yielding a total TRM if the temperattre
 

range covered is from the Curie point to room temperature.
 

In some instances, TRM becomes reversed, i.e., directed oppositely
 

to the ambient magnetizing field. A variety of causes has been suggested
 

for this effect.
 

Chemical remanent magnetization (CRM) takes place whenever ferro

magnetic grains grow or are transformed from one form to another at a
 

temperature below their Curie point. During recrystallization, new
 

domains are formed whose moments are aligned by the external field.
 

It is probably the most important mechanism leading to remanence in
 

sedimentary and metamorphic rocks; it is acquired by rocks upon oxida

tion or reduction, recrystallization, chemical precipitation, or exso

lution of ferrimagnetic minerals at temperatures below their respective
 

Curie points. It exhibits a high coercive force.
 

Detrital remanent magnetization (DRM) occurs during the sedimen

tation of previously magnetized fine-grained particles. These particles
 

tend to become aligned parallel to an external magnetic field. In a low

turbulence depositional environment, this alignment may be retained in
 

the deposited sediments and produce a strong remanence. Because ferri

magnetic grains tend to be magnetized roughly parallel to their long
 

dimension and because this dimension tends to lie in the bedding plane,
 

the resulting magnetization may have a lower inclination than that of
 

the orienting field. The declination of this magnetization is, however.
 

apt to be in the direction of the external field.
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Isothermal remanent magnetization (IRM) may be acquired by ferri

magnetic material at constant temperature when placed in a field greater
 

than the smallest coercive force of any domain in the material. It de

pends upon the occurrence of a very strong magnetizing field such as
 

those arising in lightning strokes. Such magnetization is usually of
 

irregular orientation over a large outcrop and is soft.
 

Viscous remanent magnetization (VRM) is that form of IRM which 

arises because long exposure to the geomagnetic field may bias a Boltz

mann-type fluctuation of domain walls. 

(d) Complex permeability and magnetic losses
 

If a magnetic material is magnetized by an alternating mag

netic field H- H=e the induction B isgenerally delayed by 

the phase angle s because of the presence of loss and is thus ex

pressed as 

1Z 5-3
 

which becomes evident upon a study of Figure 52. The permeability is 

then
 

where
 

/l *A-t 5-5 

-5-6
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The quantity o i expresses the component of B which is in phase with 

H, so it corresponds to the normal permeability; if there are no losses, 

we should have,/,f/4. On the other hand, / /texpresses the component 

of B which is in quadrature with H. The ratio 

/5-7
 

is the loss factor.
 

The most important loss in ferromagnetic substances is the hysteresis
 

loss. If the amplitude of magnetization is very small, the hysteresis
 

loss, as expressed by 5-7, depends on the amplitude of the magnetic field.
 

The hysteresis loss becomes less important in the high frequency range,
 

because the wall displacement, which is the main origin of the hysteresis,
 

is mostly damped in this range and is replaced by rotation magnetization
 

(Chikazumi, 1964).
 

Eddy current loss is not apt to be large, except at high frequencies,
 

in natural ferrites. These losses decrease with grain size.
 

A delayed change in magnetization accompanying a change in magnetic
 

field, the magnetic aftereffect, or magnetic viscosity, discussed by
 

Chikazumi (1964) will also contribute to losses at high frequencies.
 

(e) Dispersion in ferrites
 

von Hippel (1959) provides an illustration of dispersion character

istics of two artificial ferrites. We have reproduced his diagram in
 

Figure 57. Evidently dispersion, due to resonance phenomena, becomes
 

important in ferrite above 106 cycles per second. Very little infor

mation is available on this type of dispersion as it relates to natural 

ferrites. Obviously, the imaginary part of the permeability,, , will 

reach maxima in the vicinity of the resonances.
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(f) Magnetic anisotropy
 

Ferromagnetic substances are crystalline with a number of
 

atoms composing a regular crystal lattice in each domain. Consequently,
 

the polarization diagrams of magnetite, for example, are dependent on
 

crystallographic axes. In Figure 58 we have shown the M-H curves for
 

the three crystallographic axes of magnetite. This is anisotropy on
 

a "microscopic" scale.
 

On a "nacroscopic" scale, the individual grains of magnetite will
 

usually be polarized in the direction of their long dimensions. Hence,
 

in an assemblage of grains, as in a rock, there may be three orthogonal
 

axes along which both susceptibility and remanence will differ. Aniso

tropy of this type is common, especially in sedimentary rocks.
 

(g) Magnetic minerals
 

As mentioned earlier, the general formula of the ferrites
 

can be expressed by MO Fe203, where M is a divalent metal ion, such as
 

n2+. Fe2+1 C02+-1 Ni2+ Cu2+- Zn2+ 2 or Cd2+. 
Magnetite, FeO Fe203P
 

is the most common ferrite in rocks. Ferrites have the spinel crystal
 

structure shown in Figure 59. "The white circles in this figure repre

sent the oxygen ions, and the black and hatched circles represent the
 

metal ions. The radius of the oxygen ions is about 1.32 A, which is
 

much larger than that of the metal ions (0.6 - 0.8 A); hence, the oxy

gen ions in this lattice touch each other and form a close-packed, face

centered cubic lattice. In this oxygen lattice the metal ions take
 

interstitial positions which can be classiftd into two groups. One is
 

a group of lattice sites called tetrahedral or 8a sitesY each of which
 

is surrounded by four oxygens as shown by the hatched circles in the
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figure. The other is a group of sites called octahedral or 16d sites,
 

each of which is surrounded by six oxygens as shown by the black cir

cles. From the point of view of valence, it seems reasonable to have
 

M2+ ions on the 8a sites and Fe3+ ions on the 16d sites, because the
 

number of oxygen ions which surround the 8aand 16d sites are in the
 

ratio of 2:3. We call this structure a normal spinel. It turns out,
 

however, that the magnetic ferrites have half of the Fe3+ ions on 8a
 

sites and the remaining half of the Fe3+ and all of the M2+ ions on
 

the 16d sites. We call this structure an inverse spinel. The spin
 

moments of the Sa and 16d sites are aligned anti-parallel to each other
 

by the negative exchange interaction." (Chikazumi, 1964).
 

Magnetite, Fe304, and maghemite, 2'Fe203, are common natural oxides 

of inverse spinel structure. Hematite, o< Fe203, and ilmenite, FeTi0 3,. 

crystallize in a lattice having rhombohedral-symmetry. Both hematite 

and ilmenite show parasitic ferromagnetism. The solid solutions of 

both oxides, however, show ferrimagnetism. 

'The minerals which have magnetic properties that are important
 

in geology may for the most part be put into two geochemical groups,
 

viz., the iron-titanium-oxygen group (mentioned above) and the iron

sulfur group. The geochemical and magnetic properties of the iron

titanium-oxide system have been carefully and intensively studied, but
 

they are not by any means fully known." (Grant and West, 1965).
 

Figure 60 indicates some of the two-comporent systems of the FeO-


TiO2-FeO3 group which have been investigated geochemcially. Also appear

ing on the drawing are areas of composition commonly associated with
 

basic igneous rocks, acid igneous rocks, and metamorphic rocks. Solid
 

solutions of the pure minerals, then, occur in nature, but there are
 



regions in this diagram where stable solid solutions are not possible.
 

Thus if time and temperature permit, the oxides commonly found in ig

neous rocks are apt to separate into two-component intergrowths. The
 

properties of pure minerals of this group are as follows (Table VIII
 

lists the type of magnetism associated with each):
 

(i) Magnetite (Fe304) crystallizes in the cubic system with the
 

inverse spinel structure indicated in Figure 61. It is ferrimag

netic. It has a Curie temperature of 58000 and an easy direction
 

of magnetization along the [III] axis. "At low temperature it has
 

fairly complete solubility with ulvospinel but only limited solu

bility with ilmenite or hematite." (Grant and West, 1965).
 

(ii) Ulvospinel (Fe2Ti04 ) has the same structure as magnetite
 

and is ferrimagnetic. However, it is paramagnetic at room tem

perature, indicating that the Curie temperature of this structural
 

group falls rapidly as the composition moves from pure magnetite
 

toward ulvospinel.
 

(iii) Ilmenite (FeTiO3) crystallizes in a rhombohedral structure.
 

It exhibits parasitic ferromagnetism.
 

(iv) Hematite (c< Fe203) has a rhombohedral structure and exhibits
 

parasitic ferromagnetism.
 

(v) Maghemite (3'Fe203 ) is ferrimagnetic and of inverse spinel
 

structure.
 

(vi) The iron sulfide group has the general composition FeSI+x.
 

When x = 1, the mineral is pyrite which has a cubic structure and
 

is paramagnetic. When x = 0. the mineral is the relatively rare
 

troilite which hasa hexagonal structure and is antiferromagnetic.
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When x falls in the range OCxL1I.0, the minerals are referred
 

to as pyrrhotites, with "pure" pyrrhotite having the composition
 

Fe7S8 . Between x = 0.1 and x = 0.94, pyrrhotites are ferrimagnetic
 

with a Curie temperature of 300'0 to 32500.
 

(h) The influence of grain size
 

When magnetite grains are smaller than about 10 microns in
 

diameter, the magnetic properties of a rock are altered. As grain size
 

decreases, the domain boundaries find themselves more deeply trapped.
 

Thus the magnetization induced by a given external field in a material
 

containing fine-grained ferromagnetic constituents is less than would
 

be induced in a coarse-grained material having the equivalent concen

tration. Moreover, when the field is removed, a stronger residual mag

netization remains.
 

The hysteresis effect continues to increase with decreasing grain
 

size until the material contains only monodomain grains. Obviously,
 

domain wall movement then ceases to be a factor in determining mag

netic properties, and magnetization occurs only by rotation or inversion
 

of the spontaneous moment of those grains which are not magnetized in
 

the direction of the field.
 

Thus we find that fine-grained magnetite produces lower values of 

susceptibility, or permeability, than coarse-grained magnetite of the 

same volume percentage in a rock. The effect of grain size on the sus

ceptibilities of rock forming titaniferous magnetites is illustrated in 

Figure 62.
 

Rocks which have cooled quickly (igneous extrusives) will have a
 

smaller grain size. and quite possible a lower susceptibility, than
 

rocks which have cooled slowly (igneous intrusives). Remanence is
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also to be higher in volcanic rocks than in igneous intrusives as
 

a comparison of Figures 53 and 56 will attest. The chemical composition
 

also controls the remanence and susceptibility. However, even within a
 

single rock unit, the susceptibility and remanence may change markedly.
 

(i) Effect of pressure and stress
 

Differential stress of up to 2000 psi produces appreciable
 

shifts of the direction of remanent magnetization of rocks containing
 

magnetite, but has no effect on rocks containing members of the hematite

ilmenite series. The source of the shift lies in inverse magnetostric

tion. For the same reason, compression of rock specimens produces a
 

decrease in susceptibility measured in a field parallel to the direc

tion of stress. Susceptibility measured perpendicular to the com

pression axis may increase or decrease with compression.
 

The magnetization of ferromagnetics is usually accompanied by
 

their mechanical deformation; this is magnetostriction. It is inter

preted as strain of the crystal form due to the magnetic interaction
 

among the atoms forming the crystal lattice. The inverse interaction
 

is, of course, inverse magnetostriction. Hence, if an internal stress 

exists in a crystal. as might occur due to the presence of an impurity, the
 

magnetization curve will change. Similarly, applied stress will change
 

-the magnetization curve and hence affect both remanence and susceptibility.
 

These processes are related to crystal anisotropy for single crystals,
 

Mechanical rotation of mineral grains, in a polycrystalline sub

stance, will lead to rather obvious stress induced changes in remanence
 

and susceptibility.
 

(j) Effect of temperature
 

For many igneous, metamorphic, and sedimentary rocks, the
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susceptibility first increases slowly with increasing temperature up
 

to some temperature roughly within the range 200'C to 400'C. There

after the susceptibility decreases rapidly to zero as the Curie point
 

is approached. In the absence of physical or chemical changes caused
 

by the heating, the curve is reversible upon cooling.
 

Heating to 200'0 to 3000C may destroy viscous and isothermal rem

anent magnetization.
 

(k) Relationships between percent magnetite and susceptibility
 

The magnetic susceptibility of most rocks is proportional
 

to magnetite content. Balsley and Buddington (1958) from a suite of
 

Adirondack rocks and ores, obtained the following relationship:
 

2.6 x 10-3V1 "33  k = 5-8 

where V is the volume percentage of magnetite. Mooney and Bleifuss 

(1953) measured the susceptibilities of a suite of Precambrian rocks 

from Minnesota and thereby derived the following formula: 

k = 2.89 x10- 3V1 .01 5-9 

Another formula was determined by Bath (1962) from analyses of magne

tite-bearing iron ores. His formula is 

k = 1.16 x 10-3V1 _39  5-10 

Jahren (1963) confirmed the relation of 5-10 for a bedded iron formation. 

The non-linearity of equations 5-8 and 5-10 possibly may be attri

buted to a diminishing grain size as V becomes much less than 1 percent, 

and a decrease in the effective demagnetizing factor when the concentra

tion is relatively large (Grant and West, 1965). 

Evidently there is no universal statistical relationship that will 

cover all rocks. For most practical purposes, a very simple formula of 

the form 
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k = 3 x 10- 3V 5-11 

will suffice for a crude estimate of susceptibility of rocks containing 

from 0.1% to 10% magnetite by volume. 

(1) 	The Koenigsberger ratio
 

The intensity of natural remanent magnetization Mn of igneous 

rocks is fairly large compared with induced magnetism 7 hof the same 

rocks in the earth's magnetic field F. 

The Koenigsberger ratio Qn is introduced as a measure of the rela

tive importance of the two.
 

Qn 	= Mn 5-12 

This 	ratio is usually written
 

Qn Jn 
kF 5-13 

in the cgs system, but it is dimensionless. Qn ranges from 1 to 10 in 

most rocks but may exceed 100 for some basalt effusive rocks, while in 

others it is less than unity. 

Because of relaxation processes wherein rocks naturally demagne

tize with time, older rocks are usually found to have smaller values
 

of Qn than younger rocks.
 

(m) 	 Typical values of the magnetic parameters of rocks 

(i) 	susceptibility
 

Susceptibilities of rocks are extremely variable because
 

of extreme variation in content of magnetic minerals. Table IX, from
 

Lindsley et al. (1966) shows the trend and ranges associated with broad
 

rock classification.
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TABLE IX 

Percentage of samples with susceptibility 

Rock type 

Number of 

samples k/10 

4 

10--kzlO 3 1Olzk4x1O 3 k>-4x10 3 

Nafic effusive 
rocks 

97 5 29 47 19 

Mafic plutonic 
rocks 

53 24 27 28 21 

Granites and 
allied rocks 

74 60 23 16 1 

Gneisses, 
schists, 
slates 

45 71 22 7 0 

Sedimentary 
rocks 

48 73 19 4 4 
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The main trend in these data is evident; mafic igneous rocks 

have higher susceptibilities than do the more silicic igneous rocks,
 

and sediments are notably of low susceptibility.
 

Unfortunately, the field strength at which these measurements
 

were made is not always stated, but presumably it is close to 0.5 oersted.
 

Based upon the simple relation 5-11, we have presented the cgs sus

ceptibility k and the permeability Km as functions of magnetite content 

in Figure 63. Typical ranges of k and Km for a number of rock types 

are also shown, but these should not be considered as limiting ranges. 

Magnetite contents of 5-8% are not unusual in intermediate to basic 

rocks and hence, permeabilities as high as 1.25 are frequently observed.
 

(ii) remanence
 

For reasons described in previous parts of Section 5,
 

natural remanent magnetism of rocks is extremely variable. Rather
 

than list observed Jn, we choose to tabulate a few Qn, to provide some 

measure of the relative importance of remanence in igneous rocks on
 

earth; Table X contains such information, extracted from Nagata (1953).
 

(n) Effect of permeability on reflection coefficients 

For normal incidence of a plane electromagnetic wave, the
 

amplitude coefficient is given by equation 3-77, repeated here for con

venience
 

/+
 
/Sz . " 5-14 



TABLE X 

Rock type Locality Qn 
basalt Meizi-Taisyo lava, Vols. Mihara, 106-135 

Japan 

olivene basalt An'ei lava, Volc. Mihara, Japan 99-118 

olivene basalt Huzi, Hoei Crater, Japan 3.7 

olivene basalt Amagi, Zizodo, Japan 1.0 

basalt Volc, Mihara, Japan 40-99 

basalt MAunsterberg, Germany 3.5 

basalt Kassel, Germany 0.55 

basalt St. Flour, Auvergne, France 13.4 

basalt Murat, Auvergne, France 3.3-3.8 

basalt St. Sauves, Auvergne, France 1.2-5.3 

olivene basalt dike Astano, Ticino, Switzerland 1.5 

diabase Angermanland, Sweden 2.7 

quartz-porphyry Kollmen., Wurtzen, Saxony, Germany 0.43 

gabbro Cuillin Hills., Skye, Great Britain 29 

gabbro Loftahammar, Kalmar, Lan, Smaland, 9.5 
Sweden 
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From Figure 63 we may conclude that 4 1I may reach values as high 

as 1.25 for igneous rocks, but this high value would be unusual. Assum

ing - __-,-then this can contribute only a 25% error in mea

surement of / if it is ignored. For the same condition of negli

gible conductivity, and assuming Ke = % to be 2, the amplitude re

flection coefficient changes from -0.171 when Km = 1.25 is inserted,
 

to -0.225 when Km= 1.0 is inserted in 5-14. Similarly, for Ne = 51
 

the values of r are -0.333 and -0.382 with Km = 1.25 and Km = 1.0
 

respectively. Thus in dealing with dielectric reflection from the lunar
 

surface, the reflection coefficients will be decreased due to the pres

ence of a permeability Km in excess of unity, but the determination of
 

dielectric constant will only be in error by a maximum of 25% if we ig

nore the permeability. These deductions, of course, assume that lunar
 

surface rocks are similar to basic effusives on earth. Note that the
 

presence of a permeability greater than unity will lead to an estimate
 

of Ke lower than actually exists, if this permeability is ignored.
 

(o) Effect of permeability on depth of penetration
 

From equation 3-68 we conclude that the depth of penetration
 

is inversely proportional to the square root of the real part of per

meability. The depth of penetration is reduced whenever the permea

bility exceeds that of free space; but this reduction has a maximum
 

value of about 11% for earth materials.
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6. The electromagnetic spectrum
 

Electromagnetic energy arriving at the moon from the sun will
 

be carried by radiation and by the supersonic solar wind. Referring
 

to Figure 64, much of the electromagnetic spectrum from 10-6 hz to 1020 hz
 

will be incident upon, reflected from, or emitted by the moon.
 

In subsequent sections of this report we will limit our attention
 

to frequencies less than 108 hz (7 3 meters) with particular emphasis
 

on lower frequencies. Radar observations of the lunar surface have ex

tended from 0.86 cm to 19.2 meters (Hagfors, 1966) and we have purposely
 

overlapped this range in our discussion so that the electrical parameters
 

measured by earth based and lunar orbiter radar scattering from the moon
 

may be related to the electrical parameters which presumably are to be
 

made at lower frequencies.
 

We thus encompass the following bands in our discussion:
 

VHF 3 x 107 - 3 x 108 hz 

HF 3 x 10 6 - 3 x 10 7 

MF 3 x 105 - 3 x10 6 

LF 3 x 10 4 - 3 x 10 5 

VLF 3 x 10 2 - 3 x 10 4 

100 
ELF - 3 x 102
 

<.1100
ULF 
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7. 	Known and assumed lunar parameters
 

(a) 	dynamical parameters
 

The following parameters are considered reliable:
 

radius = 1737.9 km = 0.2725 earth radius
 

mass = 7.349 x 1025 grams
 

3
 cm
volume = 2.199 x 1025 


mean density = 3.34 gm/cm3 

surface gravity = 162.0 gals 

atmospheric density 4 10"12 of the Earth's 

at sea level 

sidereal period 27.32 days 

distance from Earth 356,400 to 406,700 km; 

mean 384,404 km 

surface escape velocity 2.38 km/sec. 

The physical libration of the Moon consists of small oscillations
 

performed by the Moon about its mean position and results from differ

ences between its moments of inertia about its polar and equatorial
 

axes. These oscillations are mainly due to the irregularities in the
 

Moon's orbital motion. MacDonald, (1961). Caputo, (1965) and others
 

have considered an interpretation of the Moon's irregular shape in
 

terms of internal strength. For a largely molten Moon the figure should
 

be in hydrostatic equilibrium. A cold outer shell may be able to support
 

the stress difference according to Caputo (1965), or alternatively, the
 

bulk of the Moon is sufficiently rigid to support the non-equilibrium
 

shape.
 

The mean density of 3.34 gms/cc is consistent with a composition
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approximately that of the Mantle and would infer only silicate mineralogy.
 

However, Caputo (1965) suggests that a denser core might exist. A radially
 

layered lunar model seems probable, although obviously this layering is
 

not as well developed as in Earth. It could be at least partially obscured
 

by angular variations. Runcorn (1968) reports that the Moon's gravitational
 

field indicates an angular variation in density.
 

(b) Internal temperature distributions
 

Urey (1952, 1957, 1962), MacDonald (1959, 1962, 1963), Levin (1962), Kopal 

(1962,1966). Phinney and Anderson, (1965,1966), Fricker, Reynolds, Summers (196? 

and others have computed a number of possible temperature distributions
 

in the Moon, based on chondritic and terrestrial models for the radio

active abundances together with several limiting distributions of the
 

initial temperature in a solid Moon. "The results indicate that melting
 

and, consequently, differentiation have occurred in the Moon. It is
 

demonstrated that, for a wide range of assumed conditions, the redistri

bution of radioactive elements is achieved by partial melting. The extent 

of the partially molten regions through time suggests that volcanic 

activity, possibly on a large scale, has taken place. . . . Although 

partially molten matter may exist in the interior, the present study 

indicates that the bulk of the Moon is solid at the present time. Such 

a largely solid body would be consistent with an explanation of the
 

inequalities in the Moon's figure on the basis of internal strength."
 

(Fricker, Reynolds, and Summers, 1967) Their results of thermal calcu

lations for a solid Moon are given in Figure 65 for various initial
 

conditions as indicated in the legend. These models do not allow for
 

some heat being utilized in the heat of fusion. Hence, most curves
 

indicate temperatures in excess of the melting temperatures for common
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Mantle silicates below depths of the order of 300 to 500 km. depth.
 

When these models are refined to allow for the heat of fusion, fluid
 

convection, differentiation, and subsequent upward movement of the
 

radioactive isotopes, they suggest that the interior of the Moon, below
 

about 400 km, is partially molten at the present time. No completely
 

molten part seems likely to exist. Yet the partially molten material
 

is sufficiently near surface that tectonism, resulting in relief of
 

pressure, can readily lead to volcanism.
 

These tentative conclusions on the temperature distribution are
 

extremely important in estimating the possible conductivity distributions
 

in the interior of the Moon. If one assumes a Moon that has accreted
 

from 00C and of basaltic composition, then curve 4 of Figure 65 would
 

appear to be applicable. For convenience, we shall adopt this curve in
 

subsequent discussion with full realization that it is only the most
 

likely profile, not a necessary profile, on the basis of current
 

information.
 

(c) Surface temperature variation
 

The temperature at and near the surface of the Moon is of importance
 

in measurement of electrical parameters since these parameters could be
 

functions of temperature.
 

We thus wish to record the observations and theoretical calculations
 

of the lunar surface brightness temperature and to record the expected
 

penetration of the cyclic solar heating wave into the lunar surface,
 

Kopal (1966) has provided a comprehensive review of thermal emission 

from the lunar surface. For theoretical calculations the model of the 

Moon most commonly employed is that of a smooth homogeneous sphere of 

dielectric material of density e(gms/cc), thermal conductivity K 
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(cal/sec- cm2 -deg C/cm), heat capacity C (cal/gm - deg C), and dielectric
 

constant Ke. The model Moon is warmed by radiation from the sun, and the
 

pole of rotation is so oriented that the subsolar point always lies on
 

the lunar equator. The addition of a surface roughness and conversion
 

of the model to a two-layer sphere are common modifications of the simple
 

model described.
 

In Figure 66 appear Low and Davidson's (1965) observations of the
 

8 to 12± infrared lunar surface temperature throughout a lunation. This
 

data (curve A, Figure 66) may be fitted by a theoretical curve with the
 

thermal inertia, (8)1/2, given the value 0.001 cal/cm 2 deg secl/2.
 

Note that the temperature ranges from about 3900 K during the lunar day
 

to about 900 K at lunar midnight.
 

Jaeger's (1953) theoretical computations of the surface temperatures
 

of a homogeneous solid Moon are shown in Figure 67 for comparison.
 

There are, of course, many local thermal anomalies on the lunar
 

surface; hot spots occur in coincidence with many young craters, presumably
 

indicating different thermal conductivities for the material of the craters.
 

Tycho, for example, is 40' K warmer than its surroundings during a lunar
 

eclipse.
 

Saari and Shorthill (1963, 1965) and Shorthill and Saari (1965ab)
 

have provided extensive discussions of thermal anomalies on the Moon.
 

Beneath the surface a thermal wave is propagated downward. If
 

the surface temperature variation is expressed as
 

then at any depth 'X below the surface, the temperature is
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xwI 
*z 7-2 

TCe -1rcoi- - -- Z'h 6 

where j and £ is the wavelength of the fundamental wave given 
by & = 2(-PI1and P is the period of rotation of the Moon. The quantity 

j = k is the thermal diffusivity. Each component wave of 7-2 is propa

gated into the Moon with a strong attenuation coefficient given by-7r l 

While the temperature variation is ± 150' C at the lunar surface, this 

amplitude of temperature variation probably is reduced to ± 6' C within 

a foot or two (Kopal., 1966). The mean temperature is about - 350 C. 

Monitoring of the lunar brightness temperature is done at microwave
 

frequencies as well as in the infrared and the comparison between infrared
 

and microwave temperatures yields direct evidence of the decrease in
 

amplitude of the thermal wave with depth into the lunar interior. Curves
 

B and C of Figure 66 pertain to microwave measurements at 1 mm and 3 mm
 

wavelengths respectively.
 

(d) The physical nature of the lunar surface
 

Earth based observations, the Ranger photographic missions, Luna 9,
 

Surveyors I, II) V, VI, and VII, and the lunar orbiters have all contri

buted to our knowledge of the lunar surface.
 

In summarizing conclusions based upon Ranger photographs, Whitaker
 

(1966) made the following eight points:
 

1. The maria and other dark areas appear to be best explained by
 

fluid flows rather than ash flows, debris deposits, or dust aggregations.
 

There is no reason to think the flows are not of lava.
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2. The maria are not totally covered with a layer of cosmic dust,
 

and the mixing of the surface layer appears to be local only, say up to
 

about 3 or 4 km.
 

3. The so-called grid system of linear features that is seen parti

cularly well in the highlands is continued in the maria as isolated bright
 

mountain ridges, elements of mare ridges, chains of soft-edged craters,
 

shallow valleys, and Dr. Kuiper's so-called tree-bark structure.
 

4. The mare ridges appear to be caused by intrusions through fissures;
 

these intrusions failed to break out at the surface but instead formed
 

sills at lower levels.
 

5. Isolated mare peaks and mountain ridges appear to be actual ex

trusions of this sill-forming material.
 

6. The soft-edged craters seen in the higher resolution Ranger
 

photographs appear to be better explained as subsidence features, somewhat
 

analogous to terrestrial karsts, rather than secondary or tertiary impact
 

features.
 

7. The bright crater rays appear to consist of a thin layer of evenly
 

distributed bright material rather than discrete clumps of the same.
 

8. The average depth of finely divided debris on the lunar surface
 

may be of the order bf 1 meter, although there does not appear to be any
 

evidence for a sharp line of demarcation.
 

As a closer look at the lunar surface is taken, more detail is
 

apparent, as is indicated by the sunmmary of results, of the Surveyor I
 

mission according to Jaffe and Shoemaker (1966).
 

"Surveyor I landed on a dark, relatively smooth mare surface, 

encircled by hills and low mountains. . . . Within 1 to 2 km surrounding 

the Surveyor landing site, the lunar surface is gently rolling and studded 
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with craters from a few centimeters to several hundred meters in diameter.
 

The surface is composed of granular material of a wide size range;
 

coarse blocks of rock and smaller fragments are set in a matrix of fine
 

particles too small to be resolved. Observed angular fragments occupy
 

approximately 8% of the surface area and have a volumetric median grain
 

size of 130 mm. The volumetric median grain size of all fragmental material
 

on the surface is much smaller, probably 1 mm or less. . . . Near the 

spacecraft, the weakly cohesive material occurs as a layer that extends to
 

an 	average depth of about 1 m., as indicated by the rim characteristics of 

craters that have been formed in the layer, and of layer craters that have
 

penetrated the layer. This material is probably composed of fragments of
 

a wide range of sizes, similar to those observed directly at the surface."
 

The 	topography described so concisely by these summaries is, evidently,
 

a result of a number of processes, including:
 

1. 	volcanism
 

2. 	igneous intrusion
 

3. 	meteorite impacts and related secondary "spraying"
 

4. 	fracturing related to tectonism
 

*5. fracturing and "gardening" related to the change in thermal
 

environment of 3900 K of lunar day and 900 K of lunar night
 

6. 	proton-irradiation from the solar wind in the absence of a
 

lunar atmosphere
 

There is no reason to believe that the lunar surface materials contain
 

significant moisture.
 

Information on the lunar surface has not only been obtained from
 

visual and photographic landform observation but also from several other
 

types of physical measurements. Relying solely upon Earth-based physical
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measurements until the time of Surveyor I, they presented an image of a
 

dust or ash covered rock surface. The only electrical parameter of this
 

surface which could be measured by these techniques was the dielectric
 
I
 

constant. Estimates of Ke for a non-layered surface ranged from 1.1 to
 

2.8 depending upon the method of measurement. We have observed in
 
I
 

Figure 25, values of Ke about the upper end of this range for dry soil
 

exhibiting a density of 0.763 gms/c.c. This low density infers a compaction
 

factor of order 0.3, i.e., 70% of the sample was void. In fact, 73% water
 

was required to occupy the voids. The dielectric constant of a loosely
 

packed material will be less than that of the solid material constituting
 

the grains. Several formulae are available for estimating the dielectric
 

constant of loosely packed materials. One formula which has been quoted
 

by Krotikov and Troitsky (1962) is as follows:
 

- I7-3 

where is the observed dielectric constant Re is the dielectric
 

constant of the grains, and 4 is the porosity. Assuming a porosity of 

0.7, and a value of Ye of about 5, the observed dielectric constant should
 

be about 1.8. The dielectric constant of 5 for the solid material is in
 

line with values obtained for dry Earth materials at 107 hz and in line
 

with the dry materials of Figures 25, 27, and 29, for a frequency of
 

order 107 hz or greater.
 

Thus it is not too surprising that a two layer model of the lunar
 

surface was also used to explain Earth based observations. Hagfors et al
 

(1965) have summarized the problems which arose in attempting to elucidate
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the lunar surface by means of Earth-based measurements. We quote:
 

'Radar measurements of the total backscattered power have previously
 

been used to infer the reflectivity and hence the dielectric constant of
 

the moon. For the frequency range of interest . . . the dielectric constant
 

has been determined to be about 2.6 to 2.8. Studies of the backscattered
 

power as a function of range beyond the subterrestrial point on the moon
 

have led to models of the lunar surface which can be described as gently
 

undulating, with mean slopes on the order of 10* to 120 on the scale of
 

about 1 meter. Young craters or rayed craters on the moon have been shown
 

to be anomalously strong scatterers, and it has been inferred that they are
 

rougher and must have a higher intrinsic reflectivity than their surroundings.
 

Depolarization studies have been carried out to the extent that the two
 

orthogonal, circularly polarized waves have been observed when a circularly
 

polarized wave was transmitted. These measurements have shown that a very
 

appreciable amount of power is being returned in that circular component
 

which should contain no power if the reflector were an ideal, properly
 

oriented, large, surface facet. This has been interpreted to mean that the
 

surface must contain small-scale structure which backscatters in a manner
 

akin to that of a collection of randomly oriented dipoles. Randomly
 

oriented, linear dipoles, should, however, depolarize to the extent that
 

the two circularly polarized, backscattered waves should have equal power
 

when illuminated with a circularly polarized wave. If the same model were
 

illuminated by a linearly polarized wave, it could be shown that three

fourths of the back-scattered energy should be polarized in the same plane
 

as the incident wave. In view of . . . [the fact that Evans and Pettingill
 

(1963) demonstrated (a) that the bulk of the lunar surface appears to be
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smooth and undulating, and (b) that only 14 percent of the surface is
 

rough at 3.6 cm wavelength while only 8 percent of the surface is rough
 

at 68 cm wavelength, and that the surface therefore, in bulk is not a
 

random scattererl . . we might therefore conclude that the lunar surface
 

will largely scatterback in a polarization corresponding to that of the
 

incident wave, when illuminated with linearly polarized waves. The general
 

picture of the lunar surface which emerged from the radar observations alone
 

I 
is therefore one of a sandy, desert-like surface (for quartz sand, Ke.-,2.6)
 

of fairly gentle undulations, with a few rocks strewn over it to act as
 

discrete scatterers at very oblique incidence.
 

Radiometer studies of the thermal emission from the lunar surface
 

have centered around the following types of observations. Measurements
 

have been made of the emission temperature of the lunar surface throughout
 

complete lunations, and the thermal cycle of the moon has been obtained
 

at several wavelengths (see Figure 66). These measurements basically are
 

sensitive to the ratio of the penetration depths of the thermal wave and
 

the electromagnetic wave of observation. The results of these measurements
 

show that the upper layers of the surface must have a very high thermal
 

inertia, possibly corresponding to an extremely tenuous medium. Another
 

type of observation consists in the measurement of temperature distribution
 

across the lunar disk. The amount of limb darkening can- be used to deduce
 

an equivalent dielectric constant of the surface. The results of such
 
.I 

observations have generally indicated a dielectric constant of Ke = 1.1
 

to 1.7 [a good discussion of the estimation of the electrical parameters,
 

the thermal parameters, and the porosity from thermal data is presented
 

by Troitsky (1962)] corresponding to an extremely tenuous medium. The
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most direct method of obtaining data on the lunar surface material from
 

radiometric observations appears to be the measurement of the polarization
 

of the emission as a function of angle of incidence on the surface."
 

The polarization of the thermal radiation of the Moon in the microwave
 

domain was first observed by Soboleva (1962) at 3.2 cm, and confirmed
 

by Heiles and Drake (1963) at = 21 cm. The values of the relative 

dielectric constants Ke proved to be 1.7 by Soboleva and 2.1 ± 0.3 by
 

Heiles and Drake. Attempts to reconcile the radiometric and the radar
 

data by carefully considering the effect of roughness on the thermal
 

emission properties brought about somewhat closer agreement, but a
 

very significant discrepancy still persisted. Hagfors et al (1965) then
 

proceeded to describe an experiment wherein they measured the ratio of
 

backscattering coefficients of two orthogonal linear polarizations. From
 

this analysis they deduced that a two layer model of the lunar surface
 

would explain all radar backscattering information, provided the surface
 

layer was of dielectric constant Ye = 1.8 and that this layer was underlain
 

by material of Ken.-'5. The interface between the two layers would need to
 

be rough in order that backscattering be contributed by that interface.
 

Again quoting Hagfors et al (1965), "... itwas felt that the backscattering 

at oblique incidence on the lunar surface might arise from some sort of
 

irregular structure actually buried underneath a tenuous surface layer on
 

the Moon. If this layer were of sufficient thickness (that is, in excess
 

of the wavelength of observation), it was argued that the strength of the
 

backscattering should be systematically different for the two linearly
 

polarized components in and across the local plane of incidence of the
 

wave. This systematic effect was thought to arise from the difference
 

in the transmission coefficients of the two linearly polarized waves
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penetrating the top layer." . . "We have to reconcile our model with 

radar observations of cross section which, when interpreted on the basis 

of a single layer model, appears to give a dielectric constant of 2.6 to 

2.8. On the assumption of a double layer model, the upper layer being of
 

random thickness and having a dielectric constant of 1.8, it is possible
 
I 

to obtain the right amount of reflection with a base layer with Ke = 4.5 

to 5. This model, incidentally, could also explain the increase in 

[scattering] cross section observed by Davis and Rohlfs (1964) at wavelengths 

between 10 and 20 m. if the top layer were some 5 to 10 m. deep. The 

radiometric determinations of the dielectric constant based on the polari

zation of the thermal emission might also be brought into line with our
 

naive two layer model. Calculations show that near grazing angles of
 

incidence the polarization of the emission will be determined almost
 

entirely by the top layer. A two layer model of the lunar surface of
 

the type suggested thus provides a rather self-consistent explanation of
 

several different types of observations made of the Moon by radio waves."
 

The surface layer of this two layer model would need to have a porosity
 

of about 70%, as we have seen, in order to exhibit a dielectric constant
 

of 1.8 and to have been derived from the underlying material of dielectric
 

constant Re 4'5.
 

Because Hagfors at al (1965) made their measurements at 23 cm.
 

wavelength, the overlying layer must be at least 23 cm. thick and the
 

later optical evidence provided by the Surveyor Series confirms this.
 

In the vicinity of the lunar crater Tycho, Hagfors, et al discovered
 

that the overlying layer is either absent or very thin. Later measurements
 

by Thompson and Dyce (1966) with high resolution radar reflection
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(resolution 20 x 30 km. areas) led to the following results.
 

' 
"I. The lunar highlands of the southwest quadrant of the Moon
 

backscatter 1-1/2 to 2 times as effectively per unit area as the mare
 

regions of the east and northeast quadrants of the Moon.
 

2. The mountain ranges which surround the circular maria backscatter
 

1-1/2 to 2 times as much power as the adjacent mare regions.
 

3. Some craters were found to backscatter as much as 10 times as
 

much power as their environs. The craters which had enhanced backscattering
 

were bright under a full moon illumination and were nearly always young."
 

A surface that is rougher than its environs appears to be
 

responsible for the radar enhancements from the craters. The variation
 

of backscattering from a rough surface as a function of dielectric constant
 

is not known, and so it has been assumed that this variation is similar to
 

the variation of backscattering from a smooth surface at normal incidence."
 

Once the increase in backscattered power predicted by a rough surface
 

has been removed, the total return powers in the vicinity of the craters
 

-Aristilus, Tycho, Copernicus, and Diophantus demand dielectric constants
 

of the order of 5 to 20 according to Thompson and Dyce. Such dielectric
 

constants are right within the range for dry surface rocks at frequencies
 

in excess of 106 hz according to Table II. In fact, a dielectric constant
 

of 20 would even permit the presence of moisture in a rock.
 

Thus the radar scattering observations, when properly interpreted,
 

provide a description of the lunar surface which is remarkably consistent
 

with that described by the Surveyor and Orbiter photographs.
 

Piddington and Minnet (1949) computed the amplitude and phase of
 

radio thermal emission from the lunar surface heated during lunation.
 

The phase lag of radio temperature relative to infrared temperature is
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shown to depend upon the ratio of infrared and microwave skin depths.
 

In cgs units the relation is given by
 

where L is the frequency of the thermal source 

is the density at the lunar surface in gms/cc 0. 

C = specific heat capacity in cal/deg. 

= thermal conductivity in cal/cm deg sec. 

= = = attenuation coefficient when tan S4-

By assuming the following: 

thermal inertia =@e-i/2 = 1000 

C = 0.2 cal/gm
 

C = I gm[cc 

Lo = lunation frequency
 

Ke 2.8 

=
fA= constant An 64; f /21<i 

then the conductivity of thr surface at 3 x 108 hz is found to be
 

3 x 10 - 4 mhos/m. Kopal (1966), England et al (1968), Troitsky (1962), 

and Pawsey and Bracewell (1955) are references pertaining to this
 

computation. Three experiments are required to obtain the parameters
 

entering into z the dielectric constant from radar reflectivity, the
 

thermal inertia from lunation and/or eclipse temperature measurements, and
 

the ratio of infrared and microwave temperature oscillations during an
 

eclipse or lunation.
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(e) The elementary basis of radar scattering from the Moon
 

(i) The radar equation
 

Because radar observations of the lunar surface have extended to
 

19.2 meters (1.56 x i0& hz) and because we wish to overlap the radar
 

frequency range in our discussions, it is desirable to set down the
 

elementary basis of radar scattering from the Hoon. We begin with the
 

development of the radar equation (Evans, 1962).
 

Consider a transmitter driving a power F watts into an antenna,
 

which radiates equally in all directions. Then the flux density at a
 

point ( meters distant is 

# k ?watts_ per meter2 . 7-4 

To increase the flux density at the target, an antenna array may be
 

employed which directs the signal towards the target. If such an
 

antenna array has a gain G over an isotropic radiator, the flux density
 

at the target becomes
 

2 
watts per meter 7-5
 

When this array takes the form of a reflector having an effective
 

aperture A, over which the transmitted power is uniformly distributed
 

in such a way that a plane wave is produced, the gain G is given by
 

G= A-r A 7-6 

where is the wavelength.
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We shall assume that the beamwidth is larger than the area presented
 

by the Moon's disk. Thus, if a is the radius of the Moon, the total
 

power intercepted by the Moon's disk is
 

(ILI- watts. 7-7
 

The re-radiated power is dependent upon the power reflection coefficient
 

R = ir 2 for normal incidence so that, to the first order, the total
 

re-radiated power is approximately 

1c...GI- watts. 7-8 

The Moon is assumed so far to re-radiate isotropically as for a uniform
 

sphere. We know, of course, that R is variable over the disk so that
 

7-8 is indeed a first approximation.
 

The total power given by 7-8 has been assumed to be scattered equally
 

in all directions, but there may be favorable rdflection back toward the
 

Earth. This will depend upon the size and distribution of the surface
 

irregularities, and a directivity factor g may be used to denote the
 

gain of the Moon over an isotropic reflector when viewed from the same
 

position as the transmitter. Possible theoretical values for g range
 

from 1.0, when all the irregularities on the surface are assumed to be
 

less than \ /8,to about 6, when the surface is considered to be very
 

rough with irregularities whose average size is much greater than the
 

radio wavelength. Hence the flux density of the reflected radio power at
 

the surface of the Earth is
 



132 

C- -9'z 

______________ watts per meter2 . 7-9 

If the same antenna is used for receiving as for transmitting,
 

then the power received is
 

pO- 7 u- .watts.1 7-10
 

If we insert the expression for gain G given earlier, we obtain
 

-'- - watts. 7-11 

The noise power Pn at the receiver, upon analysis, turns out to be
 

?;, ro ± watts, 7-12[TiJ) +b 

where n is the receiver noise factor, To is room temperature -'290'K, 

Ta is the effective antenna temperature, which is a function of both 

the frequency and of the direction in which the antenna is aimed, k is 

Boltzmann's constant and b is the energy bandwidth,of the receiver. The 

signal to noise ratio in the receiver is 

This is known as the radar equation, and tin product gRi2 2 = s is the 

scattering cross-section of the Moon. 
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(ii) The scattering cross-section
 

The roughness of the lunar surface at radar wavelengths is not
 

overly great and as a result, about 50% of the echo power arises as
 

the result of reflections from a region at the centre of the visible
 

disk having a radius of 1/10th of that of the Moon. Hence, most reflec

tion is specular, leading to the conclusion that the surface, in an overall 

sense, must be smooth and undulating, but since some 8-14% of the reflec

tion comes from diffuse sources, the surface must be covered with objects 

of the order of a wavelength in size. 

The geometrical cross-section of the Moon is, of course, Ta 2. and 

the ratio of the observed scattering cross-section to the geometrical 

cross-section is equal to gR. The quantity gR is plotted versus wavelength 

in Figure 68 and tabulated in Table XI. While there is a suggestion of a
 

slight increase of gR with wavelength, it is only just beyond observational
 

error. The value of 0.065 found by Evans and Hagfors (1966) for 23 cm
 

wavelength would appear to be the most reliable, and it is near the mean
 

of all other values.
 

We note that it takes longer for an echo to return from the limbs 

of the lunar disk relative to the center of the disk; the delay is, in 

fact, 11.6 msec. We may then plot the relative power backscattered 

versus delay (or range, as it is sometimes called) and learn of the 

contribution to total power arising in each incremental annular ring. 

Figure 69 shows then the observed reflected power plotted versus range. 

A wavelength dependence is clearly seen in the data. 

"Ehe scattering near normal incidence decreases markedlywith
 

wavelength. However, as oblique incidence (long delay times) the
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Table XI
 

Values for the Radar Cross Section of the Moon
 

As a Function of Wavelength Reported by Various Workers
 

Wavelength Estimated 
Author Year cm s/ta2 Error, db 

Lynn et al 1963 0.86 0.07 ± 1. 

Kobrin 1963* 3.0 0.07 ± 1. 

Morrow et al 1963* 3.6 0.07 ± 1.5 

Evans and Pettengill 1963c 3.6 0.04 ± 3. 

Hughes 1963* 10.0 0.05 ± 3. 

Victor et al 1961 12.5 0.022 ± 3. 

Evans and Hagfors 1966 23.0 0.065 ± 0.5 

Blevis and Chapman 1960 61.0 0.05 ± 3. 

Fricker et al 1960 73.0 0.074 ± 1. 

Trexler 1958 100.0 0.07 ± 4. 

Evans 1957 250.0 0.10 ± 3. 

Evans et al 1959 300.0 0.10 ± 3. 

Evans and Ingalls 1962 784.0 0.06 ± 5. 

Davis and Rohlfs 1964 1130.0 0.19 + 3. 

1 - 2. 

Davis and Rohlfs 1964 1560.0 0.13 + 3. 

- 2. 

Davis and Rohlfs 1964 1920.0 0.16 + 3. 
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scattering is much more effective at shorter wavelengths. The back

scattering near normal incidence can be thought of as arising from flat
 

facets tilted with respect to the mean lunar surface so as to be favorably
 

oriented for reflection. On this basis, a power versus angle of incidence
 

relationship can be translated to a distribution of surface slopes. The
 

r.m.s. slopes found in this way typically correspond to the range 10'-15'.
 

At the shorter wavelengths the slopes observed tend to appear steeper.
 

This may be understood if it is realized that the shorter wavelength
 

observations are sensitive to structure of smaller lateral extent than
 

the longer wavelength ones." (Hagfors, 1967)
 

At oblique angles, the concept of reflections from flat facets becomes
 

invalid and instead we need consider scattering from a collection of rela

tively small individual objects. The increase in the relative amount of
 

oblique angle scattering with decreasing wavelength may be understood if
 

it is realized that the shorter wavelengths are sensitive to a wider
 

range of rock sizes than the longer wavelengths.
 

Theoretically, the gain g can be calculated if the complete angular
 

scattering law P(i4, ) is known. This law specifies the scattering
 

properties of unit area of the surface when illuminated at an angle of
 

incidence i reflecting at an angle and where the angle between the
 

vertical planes containing the incident and reflected rays is C-. as
 

is shown in Figure 70. The gain g is then given by
 

-t14
 

which holds where the effects of phase correlation among the surface
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elements can be neglected, i.e., there is no systematic constructive
 

or destructive interference which would lead to g being a function of
 

i. P(i) is the case pertaining to a uniform flat surface for which
 

i = and -= 0. 

As mentioned earlier, P(i., ,- ) cannot be determined solely 

from Earth-based observations, although P(i) can be, since for observa

tions from Earth, i = q5, and C = 0. Hence, a rigorous solution for g, 

and consequently an accurate value of the reflection coefficient R, 

cannot be determined. Three possible values for g are worth noting. 

These are, 

(a) smooth sphere-isotropic reflection
 

g=l
 

(bY sphere with smooth undulations
 

g = I + <2 o< = r.m.s. slope 

(c) Lambert sphere 

g = 813 

Isotropic reflection only occurs when the irregularities of the surface
 

are less than X /8. Lambert scattering occurs where the average
 

irregularity has a size approximately equal to the wavelength and for
 

a curved surface, this introduces some limb darkening. Hagfors (1964)
 

examined in detail the scattering from a sphere with a smooth undulating
 

surface and found the relation g = 1 +0<2 given above.
 

If the Moon is illuminated by a radar which transmits short pulses
 

at intervals large enough so that no two pulses ever illuminate parts
 

of the surface at the same time, then the echo power P(t) observed as
 

a function of delay t can be converted to the function P(i). This
 



157
 

follows because the annulus illuminated by the pulse at a delay time t
 

presents to the incident ray a surface everywhere inclined at an
 

angle i. That is,
 

i = cos'(l-ct/2a) 7-15
 

where a is the lunar radius and c is the velocity of light. (See
 

Figure 70) The resulting distribution of echo intensity with angle 

of incidence, P(i), is called the angular power spectrum. The area of 

the surface illuminated by a pulse of duration 4' seconds is the area 

of an annular ring and hence is 2Tiaclt. It is independent of the delay 

t., and hence P(i) states the angular distribution of the echo power per 

unit element of the surface. However, the echo intensity depends on the 

projected surface area which varies with i as cos i. Thus we should 

expect a uniformly bright surface to obey a law 

P(t) '1 - ct 7-16 
a

or 

P(i) o< cos i 7-17
 

-whereas for a Lambert law of re-radiation, one would have
 

P(i) 0( cos2i 7-18
 

When the scattering of the lunar surface is studied with pulses
 

of 12psecs at 68 cm wavelength, the scattering has been observed, by
 

Evans and Pettengill (1963), to indicate a scattering law of the form
 

+ 1
 
-C's-* 7-19 
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The first term in 7-19 represents quasi-specular scattering arising
 

from a smooth undulating surface. This part of the echo exhibits a
 

very'rapid fall in echo power with increasing i and becomes less than
 

the second term when ± '; 45 for 68 cm radiation. The second term is
 

only a slowly varying function of cos i and hence exhibits little varia

tion over the lunar disk as does the uniformly bright surface described 

by 7-18; this component is referred to as the diffuse component. Evans
 

and Pettengill (1963) associate this diffuse component with surface
 

structure comparable in size with the wavelength. As is evident in
 

Figure 71, the division of the total reflected power between the two
 

terms is 80% quasi-specular and 20% diffuse. The diffuse scattering
 

component of 7-19
 

P(i) c< cos3/2i 7-20
 

is not unlike Lambert's law
 

o cos 2i 7-21 

which yields a value g = 8/3. This value of g is usually assumed, 

then, to apply to the diffuse component. If we now arbitrarily assign 

the same reflection coefficient R to the two components, the total cross

section becomes (Evans and Hagfors, 1964) 

4- .4 

where X is the fraction of the surface area associated with the quasi

specular component. Evans and Pettengill (1963) established that
 

7-22 
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cv - 0.1 at 68 cm and hence, we find that at 68 cm wavelength the power 

division 80% quasi-specular to 20% diffuse corresponds to an area 

division X = 92% and I-X = 8%. Then equation 7-22 becomes 

S =1.13 R 7-23 

If we now take - 0.074, which seems reasonable for 68 cm 

according to Figure 68, the value of R comes out as 0.064 and this yields
 

a value Ke = 2.8 for the dielectric constant. Note that Hagfors (1966)
 

has demonstrated that the accuracy in determination of dielectric constant
 

is 

Ak 6 7-24 

and since R is approximately 0.064, then the accuracy in determination
 
I 

of Ke at 2.8 is
 

I 
Xe = 2.8 ± 0.7 7-25
 

For a model consisting of a large smooth sphere made of loss-free
 

dielectric material, the reflection coefficient should not vary with
 

frequency unless the equivalent Ke does. If a frequency dependence
 

were in fact to be found, this could be explained in one of several ways.
 

It might be that the material is conducting and that the ratio of real
 

and imaginary parts of the complex dielectric constant changes with
 

frequency. We have no strong evidence for or against this, although
 

dry lunar surface materials are apt to be loss free and not, therefore,
 

prone to abnormal dielectric constants which are functions of frequency.
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The lunar surface is evidently of the two layer category, on the average,
 

and if the two layers have different dielectric constants, as is suspected,
 

the dielectric constant obtained from the homogeneous model will evidence
 

a frequency dependence. Yet another cause of a frequency-dependent
 

reflection coefficient might arise from the presence of surface rough

ness; we do not have a means of determining dielectric constant for a
 

rough surface and the surface roughness may be a function of wavelength.
 

(iii) Polarization of backscattered radiation
 

To avoid polarization problems arising due to Faraday rotation in
 

the Earth's ionosphere, right circularly polarized waves are transmitted
 

while both right and left circularly polarized waves are received. Reflec

tion from a plane surface leads to a reversal of polarization and hence
 

the received left circularly polarized signal is normal in this sense.
 

The received right circularly polarized waves are then referred to as
 

the depolarized component. As we have mentioned, the presence of a
 

depolarized component has been interpreted to mean that the surface must
 

contain small-scale structure which backscatters in a manner akin to
 

that of a collection of randomly oriented dipoles.
 

The depolarized component was recorded as a function of delay time
 

at a wavelength of 68 cm by Evans and Pettengill (1963) and is reproduced
 

in Figure 72. A cos i dependency evidently describes the mean depolarized
 

backscatter, but the departures from the mean curve are evidence of
 

inhomogeneity of the lunar surface. The mean curve displays the behaviour
 

of a uniformly bright Moon according to 7-17. By comparing the polarized
 

and depolarized components, the degree of polarization p(i) can be
 

evaluated as
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- - 7-26 

where the subscripts refer to left and right polarization. The quantity
 

p(i) has been expressed as a function of delay time t in Figure 73 for
 

68 cm radiation. As can be seen. the degree of polarization of the
 

received signal at first declines rather rapidly out to about 3 m sec.
 

and then more slowly out toward the limb where the polarization approaches
 

about 30 percent. Such depolarization could be caused by scattering from
 

individual small objects as mentioned and this conclusion is consistent
 

with the interpretation derived from the angular variation of the
 

backscattered power.
 

(iv) Range-Doppler mapping
 

"The Moon appears to rotate with respect to the observing radar
 

partly because of the eccentric motion of the Moon in its orbit, but
 

primarily because of the motion of the radar imparted by the rotation
 

of the Earth. This motion causes the frequency of the lunar echo to be
 

broadened because of the Doppler effect by about 10 hz at 4.30 x 108 hz."
 

(Thompson and Dyce, 1966)
 

The echo power sampled at a particular delay (Figure 74) comes from
 

an annular ring which lies in a plane perpendicular to the radar line
 

of sight. The echo at a particular frequency comes from a second annulus
 

which is perpendicular to the delay annuli and parallel to the apparent
 

axis of rotation. The echo having a particular delay and Doppler frequency
 

comes from the intersection of these two annuli, the points P and Pl. As
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can be seen, this provides a coordinate grid on the Moon which is twofold
 

ambiguous. This ambiguity can be resolved by providing a beam sufficiently
 

narrow to resolve a small fraction of the lunar surface. Using a beam

width of 10 minutes of arc. and Range-Doppler coordinates, Thompson and
 

Dyce (1966) have mapped the lunar surface to a resolution of roughly
 

20 km by 40 km and our earlier comments on variability of radar scattering
 

over the lunar disk came from their measurements.
 

(v) bistatic radar
 

The electromagnetic radiation from the Lunar Orbiter I spacecraft
 

was emitted through an omnidirectional antenna at 2.295 x 109 hz. A
 

signal reflected from the moon was received on earth. The first bistatic
 

radar measurements of this nature were obtained in 1966 by Tyler et al
 

(1967). This method is capable of resolving small areas on the lunar
 

surface and has discovered local dielectric constant anomalies of
 

order 5-10 (Tyler and Peterson, 1968).
 

(vi) Surveyor astatic radar
 

Two radar systems, radar altimeter and doppler velocity sensor,
 
!
 

aboard the Surveyor III spacecraft have yielded estimates of Ke at the
 
I -

Surveyor III landing site of Ke = 3.5 ± 0.7. These values apply to 

regions external to the crater in which Surveyor III landed. 

(Brown, et al, 1967) 

(f) Results from Explorer 35
 

(i) data
 

Emphasis has been placed in the literature upon the significance
 

of the results obtained with the Explorer 35 magnetometers in deducing
 

the effective conductivity of the moon. However, there are difficulties
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with quantitatively interpreting this data as will be revealed subse

quently. First let us review the observational evidence from this
 

experiment.
 

Magnetometers and plasma probes aboard the Explorer 35 lunar orbiting
 

spacecraft have obtained data which permit the following early published
 

observations:
 

-. The intrinsic magnetic field of the moon in the region and at
 

the altitude of perilune (763 kin) of the orbit of Explorer 35 is
 

no greater than 2 Y and it could be zero (Sonett et al., 1967;
 

Behannon, 1968).
 

2. The interplanetary magnetic field lines appear to diffuse
 

rapidly through the moon, from which it has been concluded either
 

that 

(a) the effective electrical conductivity of the moon has a 

maximum value of about 10-6 mhos/m (Colburn, et al., 1967) or
 

10 - 5 mhos/m (Ness et al., 1967), or that 

(b) if the interior of the moon possesses a conductivity orders 

-
of magnitude greater than 10 6 mhos/m then this interior would 

be surrounded by an insulating layer (Sonett and Colburn, 1967;-

Colburn et al., 1967). 

3. The moon carves a void out of the interplanetary plasma (Lyon 

et al., 1967; Colburn et al., 1968).
 

4. There is a characteristic anomaly in the strength and direction 

of the interplanetary field on the leeward side of the moon which
 

may be interpreted in terms of loss of diamagnetism in the plasma 

void (Colburn et al., 1967; Ness et al., 1967).
 

5. There is no evidence for a strong lunar bow shock wave (Ness
 



et al., 1967, Colburn et al., 1967).
 

A reexamination of tie magnetic field signatures, on the leeward
 

side of the moon, for the first 220 orbits led to the discovery that
 

the leeward signature usually exhibited some or all of the elements
 

illustrated in Figures 75 and 76. Figure 75 is a plot of magnetic field
 

intensity versus time for orbit 26. The characteristic features of this
 

magnetic signature relative to an assumed 'normal'" field of 6.5 Y to
 

7.0 Y are:
 

1. an initial increase of 1.54 peak;
 

2. a subsequent decrease of less than 0.5 Y just within the in

bound edge of the optical shadow;
 

3. an asymmetrical central positive lying wholly within the
 

optical shadow and of intensity approaching iY;
 

4. an outbound negative spanning the edge of the optical shadow
 

and of IY peak intensity;
 

5. an outbound positive, of just under l1 peak intentity,
 

lying well beyond the limits of the optical shadow; and
 

6. a notch sometimes occurs in the central positive on the sun

moon line. Although this notch is not well developed in Figure 75,
 

it is, on the contrary, well developed in the magnetogram for
 

orbit 12 (see Figure 76). Debate exists as to whether this notch
 

truly reflects one facet of the reaction between the interplanetary
 

field and the moon or whether, instead, it is merely an interplanetary
 

field fluctuation which happens to coincide with the sun-moon line.
 

The geometrical relationship of these features to the moon, the sun,
 

the optical shadow, and orbit 26 are illustrated in Figure 77. The mean
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direction of the interplanetary field vector in the plane of the ecliptic
 

at the time of orbit 26 is also shown on Figure 77. The symmetry of
 

the distribution of the positive and negative anomalies about the sun

moon line and the asymmetry of the shape of the central positive anomaly
 

might indicate that both the direction of the interplanetary field and
 

the direction of plasma flow control the magnetic field pattern. This
 

facet of the moon-solar wind interaction has been discussed by Whang
 

and Taylor (1968).
 

The fact that the limits of the flanking positives are well forward
 

of the optical shadow and that these limits move forward with increasing
 

field strength suggests that a weak shock or discontinuity may, in fact,
 

be produced by the moon serving as an obstacle in the interplanetary medium.
 

Interesting recent discussions of the moon-solar wind interaction include
 

those by Taylor et al. (1968), Whang (1967), Michel (1967), Johnson and
 

Midgley (1968), and Sonett and Colburn (1967). However, before the pres

ence of a weak shock or discontinuity can be accepted one must compute
 

the effects of static and transient induction in the moon to determine
 

what influence, if any, these will have on the recorded signatures.
 

Ness et al. (1967) and Sonett et al. (1967) have indicated that the
 

moon is transparent to the moving static field and that no measurable
 

induction occurs on this account. Ness (1968), upon analysis of mag

netic fields recorded simultaneously by Explorers 33, -34, and 35-at the
 

time of a step-function field change, concludes that the mean conductivity
 

of a homogeneous moon must lie between 10-4 mhos/m and 10-5 mhos/m, a
 

result which is somewhat higher than his earlier estimate. Mihalov et al.
 

(1968) have also examined this problem.
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(ii) transient induction in the moon
 

The technique for solving problems of transient induction in the
 

earth lies in expressing the observed surface magnetic fields in terms
 

of surface harmonies and separating the resulting expressions into parts
 

of internal and external origin. This problem will be treated in detail
 

in section 8b. Those of internal origin must either be generated in the
 

earth's core by hydromagnetic interaction or be induced in the earth by
 

external fields. For periods shorter than about four years (Currie, 1968)
 

the induced fields predominate over the core fields and a study of the
 

relative magnitudes of the induced and inducing fields will yield infor

mation on the conductivity distribution within the earth.
 

In such calculations the vector wave equation for electric or magnetic
 

fields
 

VV, F -VA-A P 4- F 6 7-27 

applies to the interior of the earth while the vector form of Laplace's
 

equation
 

IX/ F .-- 1. C r = 

V V, 7-28 

applies to the exterior region under the quasi-static approximation.
 

In equations 7-27 and 7-28, F is a vector used to represent any field 

or potential while, CW -4-z is the wave number for a 

harmonic time dependency 49. The quantities g, C and cT-are the 

magnetic permeability, the dielectric permittivity, and the conductivity 

of the subsurface, while LU is the angular frequency. 

If we obtain bounded solutions to both 7-27 and 7-28 and require
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that they satisfy appropriate boundary conditions at the surface of
 

the earth, we obtain the poloidal magnetic, quasi-static reflection
 

coefficient for the nth surface harmonic (after Eckhardt, 1963).
 

1=) ii 7 Y 7-29 

where zn is a spherical cylinder function of order n, k is the wave 

number of the conductive interior of the earth, K is tie relative 

magnetic permeability of the conductive interior of the earth, r is 

the radius of the conductive portion of the interior of the earth,
 

while the prime indicates differentiation with respect to r. Usually
 

r is taken to be some large fraction of the radius of the earth. A
 

uniform inducing field requires only the first order (n = 1) in the
 

expression 7-29 and for this special case we may write
 

Z V/J 7-30 

where we have now substituted the appropriate Bessel function for zn(kr)
 

(Stratton; 1941, p. 406).
 

Wait (1951) includes RI in the expressions for the Cartesian com

ponents of the external magnetic field as follows:
 

n7-31 
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where RI = - [M + iN] 

M = real part of reflection coefficient
 

N = imaginary part of reflection coefficient
 

Ho = amplitude of the x-directed inducing field
 

r = radius of sphere
 

2 = x2 + y2 + z2 = coordinate of point of observation
 

relative to origin-centered sphere
 

This is the quasi-static solution for a dissipative sphere, in a 

non-dissipative whole space, in which is embedded a uniform plane al

ternating magnetic field. To assure a uniform field across the sphere 

we must demand that IkorlL4 1 where ko is the wave number of free 

space. This condition is only satisfied, for a sphere of 1740 km radius 

in free space, for frequencies less than 10 hz. Note that no inducing 

electric field is involved. 

For the moon, the analogous boundary value problem should involve
 

simultaneous solution of two equations of the type given by 7-27. One
 

solution pertains to the interior of the moon while the second pertains
 

to the anisotropic plasma exterior to the moon and it requires the intro

duction of either a dielectric tensor or a conductivity tensor in the
 

propagation constant k. This is a formidable boundary value problem
 

which has yet to be solved in general terms. Ness (1968) implicitly
 

made the following simplifying assumptions:
 

(1) a homogeneous moon
 

(2) free space surrounds the moon
 

(3) a uniform inducing magnetic field
 

(4) external electric fields are negligible
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part of the reflection coefficient, versus'p-. From these diagrams it
 

is evident that values of tan £ - 1.0 result in M and N becoming 

oscillatory as functions of-. If we set Re(kr) 'it is evident
 

that the first resonant absorption peak in Figure 80 occurs when
 

>= 2r. Values of K greater than unity result in a shift of these
 

resonant absorption peaks to higher values of 4&-. The oscillatory
 

behavior of the reflection coefficient of a dielectric sphere is discussed
 

by Johes (1964).
 

The conductivity within the moon, in addition to being a function
 

of rock texture and composition, should be a function of frequency,
 

moisture content, temperature, pressure, and hence, of depth. Since
 

temperature and moisture content are unknowns within the lunar interior,
 

it is difficult to ,estimatea profile of conductivity versus depth at a
 

single frequency, let alone over a whole range of frequencies. Let us
 

assume, for purposes of illustration, that the electrical conductivity
 

of an equivalent cold homogeneous moon can be represented by the spectrum
 

of curve T, Figure 83. This curve pertains to a sample of nephelite

melilite basalt of dry density 2.67 gm/cc; the sample contained 1% water
 

of conductivity approximately 10-1 mhos/m. The extrapolated portions of
 

the curves of G7 K* and tan S in Figure 83 are consistent with other
 

rock spectra and consistent within themselves, although they aie admittedly
 

"
somewhat speculative. The conductivity at 10 1 hz certainly would meet
 

the upper limits set for the homogeneous model by Colburn et al. (1967)
 

and Ness (1968).
 

The relaxation spectra of C, Key and tan evident in Figure 83 

can be attributed to interfacial polarization of electrode or membrane 

type (Marshall and Madden, 1959) and the frequency dependence of both 

* FOOTNOTE: In subsequent discussion, the symbol Ke will replace I 

for the real part of dielectric constant. 
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,I and Ke may be expected to increase as the percent metallic or
 

clay mineralization increases to about 20%. However, induced electrical
 

polarization of this type requires the presence of some pore water. The
 

most probable metallic mineral on the moon would presumably be magnetite
 

(Fe304) in concentrations up to 7%.
 

The dielectric constant will also be a function of rock texture
 

and composition, frequency, moisture content, temperature, pressure,
 

and hence of depth within the moon. However, for a study of an equivalent
 

homogeneous moon we shall assume the dielectric constant to be given by
 

curve Ke of Figure 83.
 

While in our computation of the reflection coefficient we previously 

employed values of loss tangent which were independent of frequency, we 

observe from curve tan S of Figure 83 that this is not true for the 

basalt with which we now wish to model the cold homogeneous moon. Never

theless, at any given frequency, we can use the value given by curve 

tan - , Figure 83, to compute the induction number ' with which to 

estimate the reflection coefficient at that frequency. 

If, in fact, Figure 83 is representative of the electrical parameters
 

of an equivalent non-magnetic (K = 1) cold homogeneous moon, then the
m 

induction number l3 for magnetic field perturbations of period 10 

seconds, will be about 1.55. Reference to Figures 79 and 81 will reveal 

that there is very little reflection for such small induction numbers. 

If, on the other hand, the moon is magnetic then the response at = 

1.55 will be that of a static magnetic moment as indicated in Figure 80;
 

the magnitude of the surface magnetic field has already been computed
 

for this case.
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Ness' purpose in selecting such an elementary model evidently is solely
 

to obtain some idea of the behavior of the reflection coefficient of
 

the moon so that in turn one might obtain some idea of the types of
 

transient induction signatures to be expected. These same four assump

tions were made implicitly by Ness et al. (1967) in estimating the lunar
 

conductivity from the Cowling time
 

-L ZA7-32
 

Further, we should recall that the Cowling time as given here is only
 

defined when displacement currents are negligible (e.g., Landau and
 

Lifshitz, 1960, p. 186).
 

If these four assumptions are accepted for transient induction in
 

the moon, we may calculate the quantities M and N as functions of the
 

induction number
 

- A 7-33 

for various values of the loss tangent
 

7-34 

and for various values of the relative permeability
 

It'miL 7-35 

The dielectric constant is given by
 

ke 7-36 
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For -tanS / 10, conduction currents predominate, while for tanS 4 0.1, 

-displacement currents predominate. For a conductivity of 10 6 mhos/m
 

the relationship between dielectric constant and frequency is given in
 

Figure 78.
 

Earlier we noted that for water saturated rocks, within the frequency

I' 

-
band 10 2 hz to 104 hz, we typically find that while c=-r constant, 

and therefore tan S is approximately independent of frequency. Values of 

dielectric constant in excess of 109 have been measured in laboratory
 

experiments on water saturated rocks. On the other hand, for dry rocks,
 

Ke v constant while (- Lt. so that again tan typically is within 

about one order of magnitude of being constant. Dielectric constants
 

of dry rocks at room temperature seldom exceed 30 for this same frequency
 

band. Evidence supporting the above statements is available in a number
 

of sources including Troitsky (1962), Keller and Licastro (1959), Scott
 

Carroll, and Cunningham (1967), Ward, Jiracek, and Linlor (1968), and
 

Ward (1968), as discussed earlier. Although the validity of extremely
 

high values of dielectric constant has been the subject of much contro

versy and the necessary experiments to resolve the controversy have yet
 

to be performed, Scott, Carroll, and Cunningham (1967) conclude that
 

values of KI to 105 at 102 hz are valid; these values, for moist rock,
e
 
-
may then reach 108 at about i0l hz. 

For our immediate purposes we shall make the first order assumption 

that tanS is independent of frequency for wet or dry rocks. 

Figures 79 and 80 contain plots of M, the real part of the reflection 

coefficient, versus 0-, the induction number for various values of Km 
and tan 5 Similarly, Figures 81 and 82 contain plots of N, the imaginary 
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The loss tangent described in Figure 83 is greater than unity and
 

conduction currents predominate up to 10 hz which is the approximate
 

limit of applicability of the formula upon which the data of Figures 79
 

through 82 is based. At a frequency of 10 hz the induction number for
 

the moon is greater than 10. Reference to Figure 79 reveals that approxi

mate eddy current saturation occurs for i0.1 Thus we conclude that 

below 10 hz there can be no oscillatory behavior of the reflection coef

ficient because tanS > 10, while above 10 hz the sphere has reached 

eddy current saturation where again no strong oscillations are permitted 

according to Figure 79. Thus the occurrence of dielectric constants as 

high as those illustrated in Figure 83 seems unlikely to modify electro

magnetic reflection from this particular model of the moon. However, 

we have selected a very special model which is unlikely to apply. If 

it does not, then an oscillatory behavior of the reflection coefficient, 

including positive values, may occur. Positive values of reflection co

efficient may also occur when Km)' 1, as mentioned earlier. 

Clearly, then, we must add to the list of original assumptions
 

necessary to deduce the effective electrical conductivity of a cold homo

geneous model of the moon from a study of the transient electromagnetic
 

response. The total required assumptions would appear to be
 

(1) a homogeneous moon
 

(2) free space surrounds the moon
 

(3) a uniform inducing magnetic field
 

(4) external electric fields are negligible
 

(5) tanS >, 1 

(6) KY' JI 



154 

Needless to say, one must question the validity of a deduction
 

based on so many assumptions and upon the use of a questionable model.
 

The fact that wet rock is used here to model the whole of the con

ducting portion of the moon is not as bad as it would appear because the
 

major contribution to an induced dipole moment will come from the outer

most shells where, in fact, wet rock is most likely to occur beneath an
 

overburden of dry rock. The effect of a highly conducting, even molten,
 

core inside the wet shell might not contribute much to the induced dipole
 

moment depending, of course, upon the conductivity and thickness of the
 

wet shell. Regardless of what homogeneous or inhomogeneous model is
 

used to represent the moon, the fact remains that deduction of an appar

ent or effective conductivity by observations on perturbations in the
 

interplanetary field at present is subject to a number of completely
 

unjustified assumptions. Further theoretical analysis of the moon

solar wind interaction is required.
 

Explorer 35 magnetic field data will not contribute detailed knowledge
 

of the electrical parameters of the moon until some very significant
 

advances can be made in the solution of the pertinent electromagnetic
 

boundary value problems.
 

Neglect of the possibility of values of magnetic permeability Km
I m 

as large as 1.7 and of dielectric constants Ke as large as 1010 as has
 

become custom in studying the deep interior of the moon, is simply not
 

justified. Analyses which involve "diffusion" of the interplanetary
 

field lines through the moon neglect K. and the particles attached to
 

the field lines. At the very least, the Cowling decay time should be
 

modified to take account of Ke since displacement currents could equal
 

or even exceed conduction currents in much of the moon's interior.
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Transient induction in the moon by shocks and discontinuities can hardly
 

be analyzed with any degree of rigour by current techniques because these
 

techniques invoke at least six unjustified assumptions as discussed
 

previously.
 

(S) A preferred chemical and thermal model of the moon
 

Suggestions have been made in the past for many different models
 

of the moon (e.g., Phinney and Anderson, 1966). At the present time,
 

however, there is a reasonable body of evidence which leads me to state
 

a preferred model, but with full realization that it is just a model
 

posed for the purpose of designing experiments to test its authenticity.
 

The C< scattering experiments of Surveyors V, VI, and VII have
 

indicated that the material at the moon's surface is of basaltic com

position where sampled (Turkevich et al., 1967; Turkevich, 1968). This
 

conclusion is substantiated by the mean lunar density of 3.34 gm/cm 3,
 

by the magnet experiment on the Surveyor series which has shown a magnetite
 

content consistent with-that of terrestrial basalts (de Wys, 1967, 1968),
 

by studies of lunar albedo and color data which are compatible with
 

particulate rock of basaltic composition (Adams, 1967), and by the
 

ray spectrometer data of Luna 10 which indicated a low-K rock
 

(Phinney and Anderson, 1966). The occurrence of basalt implies a hot
 

moon, as noted by Gault et al. (1967), from whom we quote: "Important
 

genetic implications arise from a basaltic composition. Basalt is de

rived by chemical fractionation of an ultramafic rock. Thus, it seems
 

highly probable that differentiation has occurred in the Moon as a result
 

of partial or fractional melting of lunar material." "The heat sources
 

necessary to melt the lunar material probably originated within the moon
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rather than from an external source. Internal sources include decay of
 

radioactive elements, gravitational compression, and dissipation of
 

kinetic energy by mechanical processes."
 

The uniform mean density of the 	moon is consistent with a rock
 

which is of the approximate composition of the earth's mantle. If the
 

figure of the moon is non-hydrostatic then a solid outer shell greater
 

than 350 1m in thickness is required (Phinney and Anderson, 1966) but
 

at least partial melting should 	be expected below this depth if the
 

required volcanism is to occur. However, Gold (1965) argues that if
 

volcanism has occurred on the moon then most of it took place in the past
 

because "there appears to be no 	active volcano on the Moon now of a
 

level of activity such as occurs in hundreds of places on the Earth."
 

This argument, if correct, then 	would cause us to seek a model of a
 

moon which is currently cooling.
 

Following Phinney and Anderson 	(1965) we shall assume slow accretion
 

of the moon with an attendant mean initial temperature of about 2000 K.
 

For convenience, we shall make 	this 2730 K or 0' C.
 

We are thus led to utilize the 	00 reduced "terrestrial" model of
 

Fricker, Reynolds, and Summers 	(1967) which is based on the following
 

parameters:
 

TABLE XII
 

initial temperature 	 00 C
 

I x 104
 K/U ratio 


Th/U ratio 	 3.7
 

U concentration 	 3.09 x 10-8 g/g
 

age 	 4.5 b.y.
 



157
 

surface temperature 00 C 

radius, r 1.738 x 106 m 

density 3.34 g/cm3 

heat capacity, Cp 1.2 J/g deg
 

heat of fusion Uf 400 J/g
 

lattice conductivity, c 7.89 x 105 J/cm yr deg
 

index of refraction, n 1.7
 

opacity I m
 

The content of radioactive minerals for this model is consistent with
 

low K tholeiite and ultrabasic rocks. However, as Phinney and Anderson
 

point out, "Taking the radioactive abundances from the low-K tholeiites,
 

we find that heat generation can be readily adjusted, within the uncer

tainties of the model, to provide for early or late lunar melting or
 

none at all." With this limitation, Figure 84, a semi-logarithmic version
 

of curve 4, Figure 65, shows the temperature distribution in a solid moon
 

without including the effects of melting. Of course we realize that at
 

depths where significant melting occurs the temperature may be held to
 

the melting temperature by the tendency for the radioactive elements to
 

rise in the melt. However, we shall accept the profile of Figure 84 as
 

our preferred temperature profile insofar as it leads to consistency
 

with most current observational evidence. For this model, melting starts
 

timewise at about 3.1 x 109 years and depthwise at less than 400 km
 

(Phinney and Anderson, 1965). The model demands a present-day lunar
 

surface heat flow of 8.85 ergs/cm2 sec.
 

Rubey (1951), in studying geochemical balances found that the
 

volatiles H20 and C02 must be continually brought to the surface in
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volcanic activity. A broad definition of volcanic activity, encompassing
 

basic and ultrabasic intrusion is invoked here. Thus we should expect to
 

find free pore water at some depth in the moon, although not necessarily
 

uniformly distributed over the globe. The surface temperature ranges
 

from a daytime peak of 3900 K to a nighttime low of 900 K, hence for the
 

low thermal conductivities of the surface debris layer on the moon,
 

temperatures of order -35' C (2400 K) may be expected at depths of the
 

order of one foot according to Kopal (1966). Any water moving upwards
 

may thus freeze in the pores of the rock so that permafrost may develop.
 

A sufficiently thick layer of overburden would prevent any rapid evapora

tion from either water or ice in the rock pores. These statements,
 

however, leave two factors unsettled: what is a sufficient depth of
 

overburden and can ice exist at that depth. Electromagnetic and seismic
 

sounding can provide answers to these questions. In this region, our
 

model has very little control at present.
 

Thus the above discussion leads us to prefer a hot wet moon which
 

would be expected to exhibit marked radial dependencies in each of the
 

three electrical parameters 7$, Kel and Km. By analogy with the Earth,
 

we would -expect the outer regions of the moon to be laterally inhomogeneous.
 

As Runcorn (1968) notes, these lateral inhomogeneities might extend to
 

substantial depth in the moon and could tend to obscure radial layering.
 

(h) Estimation of ranges of lunar electrical parameters
 

To facilitate following the arguments given for lunar electrical
 

models, some of the facts presented earlier are re-referenced to the
 

original literature in the following presentation. However, the reader
 

may find much of the documentary evidence for the arguments in the first
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six sections of this report.
 

(i) magnetic permeability and remanence
 

If we assume that the moon is of basaltic composition then the
 

magnetite content, by comparison with earth materials, would be expected
 

to lie in the range 0.7% to 4% by volume (Keller and Frischknecht, 1966,
 

p. 58). However, de Wys (1967p 1968) interprets the Surveyor magnet
 

experiments as suggesting a magnetite content as high as 7% by volume.
 

The susceptibility of magnetite ranges from 0.3 to 0.8 cgs units according
 

to Slichter (1942), and on this basis the ranges of relative permeability
 

Y. indicated in Table XIII may then be anticipated.
 

TABLE XIII
 

magnetite content min Km max Ym
 

0.7% 1.026 1.070
 

4% 1.151 1.402
 

7% 1.264 1.704
 

The remanent magnetization can greatly exceed that of induced
 

magnetism observed in basalts at the earth's surface. The Koenigsberget
 

ratio Q = J frequently ranges from about I to 100 for basalts on
 

earth (Strangway, 1967) and this ratio could be much larger for rocks in
 

an interplanetary field of 5 Y if the remanence was acquired in a
 

much stronger field. However, we know nothing about the magnetic history
 

of lunar rocks and hence we are unable to hazard a guess concerning the
 

relative importance of remanent and induced magnetism for static inducing
 

fields. However, for transient induction in the moon, the remanent mag

netization-can only be of secondary importance (Goldstein and Ward, 1966).
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The Curie temperature of magnetite is given as 8510 K (or 5780 C)
 

by Lindsley et al. (1966) so that the interior of a hot moon will not con

tribute to its magnetic behavior. In the hot model of the moon, adopted
 

here, such a temperature is probably reached at depths of the order of
 

150 km. On the other hand, Ness (1968) has suggested that the maximum
 

temperature in the interior of the moon may be only of the order of
 

10000 C and if this deduction is correct, then the Curie temperature may
 

not be reached at depths less than several hundred kilometers into the
 

lunar interior. In Table XIV the maximum polar (x = a, y = z = 0) induced
 

magnetic field of a spherical shell of outer radius a = 1740 km and inner
 

radius b = 1600 km 1400 km, and 1200 km has been calculated assuming a 

5 '1 inducing field He directed along the '"agneticaxis," and a per

meability Km = 1.7. The formula used in the calculations is 

H = 9 e b 7-37 

which gives the three components of the static secondary magnetic field
 

arising in the static inducing field H 0
 
O
 

TABLE XIV 

Induced Polar Field of Magnetic Shell Moon Model 

5 Y Inducing Field, Lm = 1.7 

Outer Radius Inner Radius Polar Surface Field
 

1740 km 1600 km 0.42
 

1740 km 1400 km 0.91'<
 

1740.km 1200 km l.28'
 

Solid Sphere 1.90
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The field strengths given in Table XIV would appear to be maxima 

for their respective models, since the maximum estimated value of mag

netic permeability Km has been used in the calculations. More probable 

values, based upon an assumption that Km - 1.25, are about 40% of those 

given in Table III. However, if the interplanetary rocks exhibit strong 

remanence, then the maximum static magnetic field would be considerably 

larger than the estimates given in Table XIV. Insofar as we do not 

observe an intrinsic field greater than 2 Y at a distance of 763 km 

above the lunar surface, the maximum surface magnetic field due to a 

remanent dipole cannot exceed about 6Y . Hence any residual permanent 

field of the moon is not apt to exceed greatly any static induced field
 

which might exist.
 

(ii) electrical conductivity
 

A previous analysis establishes that it is exceedingly difficult,
 

using presently available electromagnetic theory, to estimate the
 

effective conductivity of the moon from data provided by lunar orbiting
 

magnetometers. The question then arises,."To what accuracy is it
 

possible to estimate the conductivity depth profile on the basis of
 

other information?" As we shall see, estimates can be given but they
 

must assume substantial uncertainty ranges.
 

conductivity in the outer dry shell
 

The starting point for the next discussion is Kopal's (1966) estimate
 

-
of 3 x 10 4 mhos/m for the conductivity of the first five or ten meters
 

of the lunar surface, at a frequency of 3 x 108 hz.
 

The dielectric constants of many dry ceramics as reported by von 

Hippel (1954), are nearly independent of frequency and the loss tangent
 

is a slowly varying function of frequency. The same general behavior
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has been reported for dry rocks (Fensler, Knott, Olte, and Siegel, 1962,
 

Troitsky, 1962; Keller and Frischknecht, 1966; Ward. Jiracek, and Lin

lor, 1968). Thus the conductivity increases nearly linearly with fre

quency over several decades from, say,102 hz to 108 hz. Beyond this
 

range the conductivity becomes less dependent upon frequency. The con

duction mechanism may well be extrinsic ionic and the frequency depen

dence related to the restriction of movement of defects or impurities
 

in the lattices of the constituent minerals. Alternatively the fre

quency dependence may arise in surficial polarization due to a very
 

small amount of water remaining when the rock is "dried." Thus the
 

-4
 
conductivity of the lunar surface rocks should decrease from 3 x 10


mhos/m at 3 x 108 hz to 3 x i0- 0 mhos/m at 3 x 102 hz. Below 102 hz
 

the conductivity is much less dependent upon frequency so that at D.C.
 

-
the conductivity might be of the order of 10-10 to 10 12 mhos per meter.
 

This estimate is quite consistent with the D.C. conductivities given by
 

Fensler, et al. (1962) for dry rocks.
 

The slightest amount of moisture may raise this conductivity by
 

several orders of magnitude at DC. without raising it by more than
 

one order of magnitude at 108 hz (see Ward, Jiracek, and Linlor, 1968).
 

Thus we somewhat arbitrarily select an upper bound for the D.C. conduc

tivity near the lunar surface as 10-6 mhos/m, but this should be conser

vatively high. Fensler et al. (1962) measured a range of D.C. conductivi

ties from 2.8 x 10-8 mhos/m to 5.0 x 10-12 mhos/m for dry terrestrial
 

basalts. Nash (1967) noted the possibility that a thin film of carbon
 

might be deposited by the solar wind, and if this is true then a thin
 

surface layer of conductivity as high as 103 mhos/m might exist; England
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et al. (1968) discredit this hypothesis on the basis that "the amount
 

of carbon involved would be small and the effect on bulk properties
 

probably insignificant."
 

The near surface conductivity as defined here is assumed to extend
 

from surface to 10 m with little, if any, change. This depth would be
 

consistent with the maximum depth of "debris" estimated photographically 

and by radar. The bedrock from 10 m to £00 m is most likely dry, as sub

sequent argument will indicate, so that we shall refer to the outer 100 m 

of the moon as the "dry shall." 

conductivity in the wet shell
 

At some depth between a few tens of meters, say 100 m, and a few 

kilometers one would expect sufficient water to be present to begin to 

affect the conductivity of the lunar rocks. At 1 kbar pressure, corres

ponding to 18.5 km depth in the lunar interior, Brace et al. (1965) 

discovered that most of the cracks, in a number of samples of igneous 

rocks., were closed and that conduction was then through the pores for 

a very saline ((7= 3 mhos/m) pore solution and along the surface of 

the mineral grains for tapwater (( - 2 x 10-2 mhos/m). For natural 

waters contained in igneous and metamorphic rocks Keller (1966) gives a 

"
median conductivity of about 101 mhos/m and one should still expect
 

surface conductivity to predominate, for this salinity, above I kb
 

pressure. Figure 33 is a reproduction of the resistivity-pressure
 

diagram given by Brace et al. From this diagram it is seen that the
 

range of conductivities studied is about 102 between the Westerly
 

Granite (.007) and the Diabase (.001). The pore porosity is given by
 

the number after the name of the rock and it does not include the crack
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volume. All measurements were made at 200 C and 10 hz. These measurements
 

may then be used to predict a range of conductivities for lunar rocks at
 

18.5 km depth where water may be expected to fill the pores. The conduc

tivity at D.C. may be expected to be lower than those shown at 10 hz
 

since surface conduction is involved. Hence, we will extend the range
 

downward by an order of magnitude on this account. The change in conduc

tivity, of the rocks of Figure 33, when tap water replaces the salt
 

solution, appears to be about an order of magnitude lower at most pressures;
 

the range is then shifted one order lower on this account. One could, of
 

course, argue that the pore water of lunar rocks was very saline, but
 

we choose otherwise here. No correction for temperature has been made
 

even though we assume a temperature of +400 C'at 18.5 km; the change in
 

conductivity would only be a fraction of an order of magnitude even if
 

this temperature estimate was 200 C in error. Then upon use of the data
 

of Figure 33 at 1 kb pressure, after the corrections noted, the expected
 

-
range of conductivities is 10-4 mhos/m to 10 7 mhos/m at 18.5 lan depth.
 

Note that the addition to dry rocks of as small an amount of water as
 

0.1% shifts the conductivity higher by several orders of magnitude.
 

Using the same procedure, the conductivity range at 55 km has been
 

-
estimated to be 10-3 mhos/m to 10 6 mhos/m. The wet shell, where ionic
 

conduction in pore fluids predominates, probably extends to about 100 km
 

where semiconduction is expected to dominate.
 

conductivity in the hot interior
 

At a depth of 300 km a temperature of about 10000 C exists in the
 

preferred model of the moon according to Figures 84 and 85. The same
 

temperature is reached at a depth of 100 km in the earth (Verhoogen, 1956
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and Figure 84) where the conductivity is estimated from geomagnetic
 

2 10 - 3 variations to lie between 10 - mhos/m and mhos/m (Eckhardt, Larner, 

and Madden, 1963). (See also Figure 38.) If we assume identical composi

tions for the moon at 300 km and the earth's mantle at 100 km, then the 

conductivity at a depth of 300 kn in the moon should be 10-2 mhos/m to
 

10-3 mhos/m. However, additional uncertainty must exist over this esti

mate because of the large changes in conductivity associated with minor 

changes in chemical composition (Hamilton, 1965). To allow for this
 

uncertainty, a range of 100 mhos/m to 10 - 4 mhos/m is suggested. This 

range would encompass most of the rock conductivities measured in the 

laboratory at this temperature (Hamilton, 1965; Keller, 1966). Note that
 

this estimate is based on assuming identical compositions for the upper
 

mantle and the moon, and on using the conductivity of the earth at 100 km 

depth as estimated from geomagnetic variations. We have not invoked an
 

ionic conduction formula, as did England et al. (1968), to arrive at the 

estimate.
 

Using the same procedure, the conductivity at depths greater than
 

1000 !kmcan be estimated to lie within the range 102 mhos/m to 10 - 2 mhos/m. 

This range would also be consistent with extrapolations to 17000 C of 

laboratory measurements on rocks (Hamilton, 1965).
 

The conductivity in the hot interior of the preferred lunar model
 

would be essentially independent of frequency (Keller, 1966; Keller and
 

Frischknecht, 1967).
 

the question of permafrost on the moon
 

It has been suggested that the interstices of lunar rocks and soils
 

may contain ice (Watson et al. 1961a, b; Kopal, 1963; Qold, 1965) since
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the mean temperature a fraction of a meter into the lunar surface is
 

expected to be about -350 C (Kopal, 1966). One should bear in mind, 

however, that there are permanently shaded areas on the moon where the
 

surface temperature is constant at about 1000 K or -1730C. Watson
 

et al. (1961b) calculate that of the order of 0.5% of the lunar surface
 

is permanently shaded and that most of this area occurs between latitudes
 

780 and 900. The low thermal conductivity of the debris layer (Wesselink,
 

1948; Jaeger, 1953) would prevent ice at depth from being heated by verti

cal conduction during the lunar day and would prevent cold spots from
 

being heated by lateral conduction from adjacent illuminated areas.
 

If ice does occur then the evaporation rate of water from the lunar
 

surface would be so slow that most of the water arising in chemical dif

ferentiation in the lunar interior would be retained. Thus detection of
 

ice on the moon is considered by some to be positive proof of chemical
 

differentiation of the moon.
 

We shall refer to rock with interstitial ice as permafrost. Measure

ments of water-saturated rocks at temperatures of -35' C show that the
 

conductivity decreases by one to two orders of magnitude relative to the
 

conductivity at +20' C (Keller and Frischknecht, 1966). Pockets of brine
 

exist in a water saturated rock at temperatures down to -60 0 C. Thus if
 

permafrost does exist at the base of the debris layer, its conductivity
 

should be about one to two orders of magnitude lower than that for water

-
saturated basalt at 200 C. If we take the range of 10 1 mhos/m to 10-4
 

mhos/m for wet terrestrial basalts given by Keller (1966), then the hy

pothetical lunar permafrost should exhibit conductivities in the range
 

10 2 mhos/m to 10 6 mhos/m. Thus the presence of permafrost could cause
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the conductivity beneath the debris layer to be several orders of magni

tude higher than if this rock was dry. We shall assume a mean debris
 

thickness of about 10 m for this discussion. It is necessary to point
 

out that, if permafrost occurs, its top surface need not coincide with
 

the base of the debris.
 

Watson et al. (1961b) calculate a removal of ice by evaporation
 

from cold spots on the moon of about 8 m to 18 m per billion years. We
 

should thus expect the upper permafrost surface to be today at perhaps
 

100 m beneath the shaded lunar surface. Gold (1962) suggests a depth
 

of 30 m to the top of the hypothetical permafrost layer in these regions
 

where the temperature averages - 1200 K. Over the rest of the lunar
 

globe ice may not be pervasive. However, the low permeability of the
 

lunar crust may inhibit evaporation to the point where permafrost does
 

exist. One hundred meters is taken as an assumption of the depth to
 

pervasive permafrost in our preferred model. Then, if water is to
 

occur without ice overlying it, diffusion and evaporation will be more
 

rapid so that the depth to water saturated rock in a "no permafrost"
 

model should be much greater than 100 m. The thickness of this iypo

thetical permafrost layer can be estimated by comparison with maximum
 

thicknesses of terrestrial permafrost; Shumskiy et al. (1964) suggest
 

a maximum of order I km for the earth where the temperature rises at a
 

rate of about 100 C per km. Near the lunar surface the temperature
 

should rise, according to our preferred thermal model, at a rate of
 

about 4' C per km and hence the melting point of ice would be reached at
 

a depth of about 9 km. However, the effect of salinity and the effect
 

of increasing pressure on both the lowering of the freezing point of
 

ice and on the reduction of pore volume need to be taken into account.
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For these reasons a maximum depth to the bottom of the hypothetical
 

lunar permafrost of 3 km is suggested and the conductivity should de

crease from top to bottom. Gold (1962) states that the bottom of the
 

permafrost layer should occur somewhere between 1 and 10 km.
 

the conductivity profile.
 

The above conductivity ranges have been plotted versus depth in
 

Figure 86 for both "permafrost" and "no permafrost" models. The
 

conductivity gradually increases by about 7 orders of magnitude from
 

surface to the center.
 

Smooth profiles of conductivity for both the permafrost and no
 

permafrost models have been drawn on the diagram to indicate the "ex

•pected" 	conductivities of the preferred model. The resulting profile
 

is reasonably consistent with profiles estimated by other authors
 

(England at al. 1968; Schwartz, 1967; Keller, 1967).
 

The relatively high conductivity between 100 m and 10 km exhibited 

by the permafrost model is a consequence of inhibition of diffusion and 

evaporation caused by the presence of frozen pore water rather than 

liquid pore water. An increased temperature gradient in the outer 10 km 

of the moon could readily dissipate this hypothetical permafrost layer 

and hence it is not considered a necessary part of this presentation. 

(iii) dielectric constant
 

dielectric constant in the outer dry shell
 

Astatic radar measurement of the dielectric constant of the first
 

few meters of the lunar surface have indicated a mean dielectric constant
 

of 2.8 ± 0.7 (Hagfors et al., 1965) for a homogeneous model of the moon.
 

However, Hagfors et al. (1965) carried out an experiment which led to the
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deduction that all radar scattering information could be explained by
 

a two-layered model, the upper layer being of random thickness and
 

having a dielectric constant of 1.8 with the bottom layer exhibiting
 

a dielectric constant of about 5. Thompson and Dyce (1966) using astatic
 

range-Doppler radar, found that
 

1. The lunar highlands of the southwest quadrant of the moon
 

backscatter 1-1/2 to 2 times as effectively per unit area as the
 

mare regions of the east and northeast quadrants of the moon.
 

2. The mountain ranges which surround the circular maria back

scatter 1-1/2 to 2 times as much power as the adjacent mare regions.
 

3. Some craters were found to backscatter as much as 10 times as
 

much power as their environs. Once the increase in backscattered
 

power predicted by a rough surface had been removed, the total
 

return powers in the vicinity of the craters Aristilus, Tycho,
 

Copernicus, and Diaphontus demand dielectric constants of the
 

order of 5 to 20.
 

Tyler and Peterson (1968), interpreting bistatic radar data. find
 

enhanced power return over very local areas suggesting dielectric con

stants between 5 and 10.
 

From the above information we develop a picture of a moon covered
 

generally with a 5 to 10 meter underdense debris layer of low dielectric
 

constant underlain by blocky rubble or solid rock. In places, such as
 

the floors of young craters, the debris layer thins or is absent (Evans,
 

1965). Thus the radar scattering observations, when properly interpreted,
 

provide a description of the lunar surface which is remarkably consistent
 

with that described by the photographs of the Surveyor and Orbiter series
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(Whitaker, 1966; Jaffe and Shoemaker, 1966; Shoemaker et al., 1967).
 

The radar scattering measurements have been made in the 22 meter
 

to 8 mm wavelength range (approximate frequency range, 107 hz to 1011 hz).
 

There is no unambiguous evidence that the dielectric constant is a func

tion of frequency in this frequency range (Evans, 1965).
 

As mentioned earlier, radiometric observations of the polarization
 

of the thermal emission from the lunar surface have indicated a dielec

tric constant of 1.65 at 3.2 cm (Soboleva, 1962) and of 2.1 at 21 cm
 

wavelength (Ieiles and Drake, 1963). These observations then are con

sistent with the two layer model deduced from radar observations.
 

Campbell et al. (1968) deduce, from the radiometric data, a typical
 

density of 0.6 gm/cm3 for the uppermost centimeter of the lunar surface
 

and a typical density of 1.0 gm/cm 3 over the next few centimeters, corres

ponding respectively to 25 percent and 35 percent solid material on the
 

basis of a formula due to Twersky (1962). These estimates are some

what lower than the 1.1 g/cm3 to 1.5 g/cm 3 estimated from Surveyor I,
 

III, and V mechanical experiments (Christensen et al., 1966; Christen

sen, et al., 1967a, b; Scott and Roberson, 1967).
 

Then the general concensus obtained from photographic, radiometric,
 

radar, and mechanical studies of the top 5 m to 10 m of the lunar surface
 

is that it is vertically inhomogeneous in any one locality, varies sub

stantially with position on the lunar globe, and that it increases in
 

density and quite probably in content of large fragments, with depth,
 

until it bottoms in solid rock. The dielectric constant of this medium
 

should exhibit similar variations. Where comparatively recent volcanism
 

has taken place or where the surface is permanently shaded, small quan

tities of water or ice could occur in the debris or at shallow depths
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beneath it. If this is true, then values of dielectric constant con

siderably in excess of 20 could arise. However, we shall select the
 

range 2 to 20 for the mean dielectric constant of the first ten meters
 

at a frequency of 107 hz. There is evidence that for dry earth materials
 

dielectric constants are only slowly varying functions of frequency
 

down to 102 hz (Ward, Jiracek, and Linlor, 1968; Scott, Carroll, and
 

Cunningham, 1967; Keller and Licastro, 1959). Thus the debris dielec

tric constant range of 2 to 20 may be considered as the low frequency,
 

or "D.C." range.
 

For dry rocks immediately below the debris, some guidance is offered
 

by the dielectric constant range of 5.5 to 26.7 measured at 103 hz for a
 

variety of basalts by Fensler et al. (1962). It would seem prudent,
 

however, to extend this range to 5 to 100 to allow for the greater
 

range exhibited by igneous rocks in general (Keller, 1966) and for
 

the small increase in dielectric constant with decreasing frequency
 

expected for dry materials.
 

dielectric constant in the wet shell
 

Once again we should hardly expect vertical or horizontal homo

geneity of dielectric constant in the wet shell. Further, the dielectric
 

constant exhibits a marked dependence on frequency, temperature, pore
 

volume, percent water saturation, salinity of pore fluid, percent
 

metallic and/or clay minerals, pressure, and rock composition. We
 

should therefore anticipate a large range of dielectric constants to
 

characterize this layer. Dielectric constants as large as 108 at 10-2 hz
 

were suggested earlier and this is supported by observations by Keller
 

(1966) who reports values in excess of 109 at frequencies of order 1 hz
 

for many igneous rocks. This latter figure for the "D.C." value of
 

dielectric constant is only likely to be reached in wet rocks containing
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at least a few percent magnetite. The effect of pressure and temperature
 

on wet rocks is to increase the dielectric constant (Parkhomenko, 1967).
 

It must be admitted that the laboratory and field measurement of extremely
 

high values of dielectric constants are suspect (Scott, Carroll, and
 

Cunningham, 1967) and that a thorough, reliable investigation of rocks
 

which might simulate the wet shell is demanded. Nevertheless, we shall
 

adopt an upper limit of 1010 for dielectric constant of the rocks of the
 

wet shell and thereby feel safe that a substantial margin has been allowed.
 

This estimate might apply to depths between 1 km and 100 km in the 'no
 

permafrost" model. At depths shallower than this, the hypothetical pore
 

water should diminish. Hence we shall apply the upper bound at 18.5 km
 

and 55.5 km where conductivity estimates were previously made. For a
 

lower bound, a value of 102 is selected by terrestrial analog since no
 

other control is available for this estimate.
 

dielectric constant in the hot interior
 

Data reported by Keller (1966) and Zablocki (1964) suggest that for
 

temperatures above 3000 C, the dielectric constants of igneous rocks
 

range from 10 to in excess of 103 at low frequencies. An upper limit
 

of 105 will be adopted for our purposes, although there is insufficient
 

experimental evidence to provide much assurance that this is correct.
 

the dielectric constant profile
 

The above ranges of dielectric constant have been plotted versus
 

depth in Figure 87 for both "permafrost" and 'no permafrost" models.
 

Expected values are difficult to assess because of our general lack of
 

knowledge of dielectric constants of rocks under all conditions.
 

The gross frequency dependence of Ke for wet rocks makes it impera

tive that we stress that the estimates given are for low frequencies,
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sayZ 102 hz. For comparison, reasonable single estimates at 106 hz
 

are shown on Figure 87 for both "permafrost" and "no permafrost" models.
 

(iv) limiting -- and Ke profiles 

While sharp concentric boundaries are not nearly as realistic as
 

gradual transitions, it is convenient to represent any radial change
 

by one or more step-function changes in C, Ke and Km . In the limit,
 

one could utilize an infinite number of incremental changes to approximate
 

any smooth change. Figures 86 and 87 contain estimates of the lunar D.C.
 

conductivity and dielectric constant profiles from which we may recognize
 

three major electrical divisions of the lunar interior: the dry shall,
 

the wet shell, and the hot interior. Subdivisions of these layers such
 

as the debris and permafrost layers may also be recognized, again with
 

the full realization that radial changes in the electrical parameters
 

may be gradual rather than discontinuous. With these cautions, the
 

"layering" of the electrical parameters evident in Table XV is suggested
 

as one reasonable model. In view of the large uncertainties of --and 

Ke evident in Figures 86 and 87, a more refined model than that of 

Table XV is difficult to justify. Step function models of the D.C. 

conductivity profile based on Table XV are contained in Figure 88. 

At 106 hz these conductivities are substantially higher as Figure 88 

also reveals, and the conductivity contrast between the layers is
 

reduced. Similarly, possible step function models of dielectric con

stant are illustrated in Figure 89. The expected frequency dependence
 

of dielectric constant and electrical conductivity within the frequency
 

-
band 10 2 hz to 104 hz for each of the layers is given in Table XV.
 

The model described by Table XV and Figures 88 and 89 we shall
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Functional Funeti trnal 
Layer Subdivision DepthRange 0-(DO) T (iOhz) .(iO6hz) DependencyDependency02zofr Ke(DC) 6iepedcncyK(06z) o rKe(l0hz) Xe(10Olhz) ofTKc KinIMEm MaxYE 

Dry Shell Debris 0.4Cm 0 10 - 9 10-5  £ 5 3 2 1.00 2.00 

Wet Shell 

"Dry" Rock 
Permafrost 

lOin-10om 
102m-,xOm 

10-8 

10 

10-7  

10 

10-5  20 15 
3 

10 

30 

1.00 

1.00 

2.00 

2.00 

Shell t 102m-3xlO'm 10-7 10-6 4 103 3xlO2 10 4 . 2.00 

Inner Wet -102m lO"4  -i-1 3X1o " 1o " 4 o7 lO 10 1.0 2.0 

Shell 

Hot Interior >1 2lOm l "1 o " "1 
-O 103 3x102 30 1.0 1.00 
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refer to as the step function version of our preferred model. Limiting
 

high q- and lowV-step function models, consistent with Figures 86 and
 

87 are described in Tables XV and XVII and in Figures 90 and 91. The
 

-
deep conductivity of the low CS-model has been dropped to 10 5 mhos/m
 

to allow the possibility that the Ness et al. (1967) estimate is correct.
 

These two limiting and one preferred model are useful in allowing for
 

extremes in designing electromagnetic exploration systems.
 

(v) conclusion
 

It is evident that we are grossly ignorant of the electrical
 

parameters of materials which might be used to model the various shells
 

of the moon. Knowledge of dielectric constants is particularly lacking
 

under variation of pressure, temperature moisture content, salinity,
 

mineral composition, and frequency. Perhaps the most important point
 

brought out in this investigation is demonstration that the permissible
 

ranges for the electrical parameters are very large at all depths. The
 

only convincingly measured quantity is the dielectric constant of the
 

top few meters of the moon. However, its mean value for a homogeneous
 

model should be raised to 4.7 ± 0.7 if a magnetic permeability of 1.7 is
 

applicable, or to 3.5 ± 0.7 if a magnetic permeability of 1.25 pertains
 

as seems probable.
 

Despite the gross ranges of the parameters, the mere establishment
 

of them permits us to place limits on the design of lunar orbital or
 

surface electromagnetic experiments. Then this is as it should be,
 

for as we said earlier, lunar models are today established on the basis
 

of inference, theory, and meagre experimental data so that their authen

ticity may be tested.
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HIC (rMODEL 

Depth 6f FunctionalDepedenc FunctionalDep(10ehz)MinOhzmaxK 
"Layer Subdivision Range T(DC) T(o0h) DependnCcepney e(102hz) 6 hhMn Dependency Max 

Dry Shell Debris 0-10m 10 -6 10 10 - C 2 3 3 3 1.00 2.00 

Wet Shell Wet Rock lOin-lOOm 10 - 3  10 - 3  10 - 3 
- 102 30 10 1.00 2.00 

IOOM-31M 10 3 10 - 3 10 3 - 4i0 103 10 42 1.00 2.00 

-1k 1o "3 10 "3 lo "3  
- 1010 108 10 1.00 2.00 

Deep
Interior 1

10 110 
I 

10 -
510 104 102 1.00 1.00 
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LOW Ur MODEL 

Functional Functional 
Depth Dependency Dependency Min Max 

Layer Subdivision Range C (DC) f(iO hz) T (106hz) of r Ke(DO) Ke(lOhz) Ke(Ohz) nhofKe Km KM 

Dry Shell Debris 0-lO1 10 "1 2  i0 - 10 10- 6  f 3 3 3 1.O0 2.00 

"Dry" Rock iot-3k. 10 O l0 - . 10 - 10 10 10 1.00 2.00 

Wet Shell 
(,4 t% R2 o) 3e-lookm 10 

- lOo 
51/8 ±

.f lo0 30 10 1.00 2.00 

Deep 
Interior 

Hot 
warm 

1 
l02k 

10 -2 
10 5 

10 -

10 - 5 
10 -2 

o - 5 
-

100 
10 

100 
10 

100 
10 

1.00 
i.00 

1.00 
1.00 
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Any one of the electrical models suggested by Figures 86 through 91,
 

augmented by the data of Tables XIII and XIV, is quite compatible with
 

the observations of magnetic field perturbations recorded by Explorer 35.
 

Correctly-designed orbital or surface electromagnetic experiments 

can be expected, on the basis of the models suggested here, to yield in

formation on the three-dimensional distribution of :-, Ke, and Km to 

depths of several kilometers. By so doing, electromagnetic experiments 

can contribute to three-dimensional geologic mapping, detection of pore 

water or permafrost, detection of volcanism or its expressions, deter

mination of the depth of debris, detection of concentric layering and
 

other information. Many of these pieces of information have a direct
 

bearing on the origin, history and dynamic behavior of the moon.
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8. Lunar electrical models - theory
 

(a) Introduction
 

In interpreting the distribution of natural or artificial electro

magnetic fields in the vicinity of the surface of the Moon, reference
 

will need to be made to field distributions obtained with either mathe

matical models or scaled physical models. We thus become concerned with
 

electromagnetic induction in a spherical body. Rikitake (1966) has
 

summarized the literature pertaining to induction in the Earth due to
 

natural electromagnetic fields, while Ward (1967) has provided a similar
 

summary pertaining to artificial sources. In this section, our aim is
 

to set down formulation which would appear to be pertinent to lunar
 

electrical studies. The theory is divided into two parts, the first of
 

utility when studying natural fields (passive systems) and the second of
 

utility when studying artificial fields (active systems).
 

(b) Induction theory for passive systems
 

(i) a homogeneous conducting permeable sphere in a uniform
 

alternating magnetic field
 

statement of problem
 

We wish to consider a sphere of radius R, of conductivity 2, 

and inductive capacities P2 and £ 2 embedded in an infinite medium 
defined by the parameters cij Ll' and £1 as in Figure 92. A uniform 

alternating magnetic field 

I-I 8-1 

is applied in the Zy -direction. We wish to find the distribution of 

secondary magnetic fields exterior to the sphere. 
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assumptions
 

One basic assumption is made to facilitate solution of the problem.
 

(Wait, 1951; Ward, 1967) This assumption is: 

To assure uniformity of the inducing field in the vicinity of the 

sphere, it is required thatie k'_j 1 where k I is the propaga

tion constant of the infinite medium. Since k= , this state

ment is equivalent to the requirement that the wavelength in the external 

medium is much greater than the radius of the sphere. 

solution
 

The Cartesian components of the external magnetic field are
 

3 l~g() R ~~4 t F K8-2JM-e) 

3

14+ - 8-4 

where
 

and
 



192 

The quantities M and N appear in Figure 93 as functions of the induction
 

number c =Qw-?# ' I for the special case where displacement 

currents may be neglected. Figures 79 through 82 pertain when displacement
 

currents are not negligible.
 

The geometry of the secondary field is that of an induced alternating
 

magnetic dipole oriented in the direction of the inducing field. One
 

could consider the quantity (M - iN) as a reflection coefficient for magnetic
 

fields scattered by a sphere.
 

(ii) a conducting permeable sphere in a uniform alternating 

magnetic field - radial conductivity distribution 

The above solution has been generalized by Negi (1962) to permit the
 

conductivity to be a function of radial distance from the centre; the
 

solution assumes a constant permeability throughout the sphere. First let
 

us rewrite 8-5 in the form
 

AMJLAtZ 8-6{5 ] 
(Negi, 1962; Grant and West, 1965); where 13/2 is a modified Bessel
 

function of the first kind of half odd integral order and where Y1 may
 

be identified with ik.
 

If we now allow a radial conductivity distribution
 

r r8-7
 

where r is the radial distance from the centre of the sphere, the
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complex response becomes
 

_ 8-8 

Equation 8-8 then permits calculation of the response for the very 

special distribution of U2 = T 7 

Negi (1967) has given formulae for other radial conductivity 

distributions. 

(iii) induction in a conducting permeable sphere - inducing
 

field of arbitrary form, conductivity distribution radially inhomogeneous
 

introduction
 

Electromagnetic induction in a conducting sphere and its application
 

to physics of the Earth's interior have been studied by many authors.
 

(Lamb, 1883, 1889; Chapman, and Whitehead, 1923; Chapman and Price, 1930;
 

Price, 1930, 1932; Lahiri and Price, 1939; Terada, 1939, 1948; Rikitake,
 

1950, 1951; Takeuchi and Saito, 1963; Eckhardt, 1963; Eckhardt, Larner 

and Madden, 1963; Srivastava, 1966). Much of this work has been reviewed
 

by Rikitake (1966). As noted earlier the technique for solving this
 

problem lies in expressing the surface magnetic fields in terms of surface
 

harmonics and separating the resulting expressions into parts of internal
 

and external origin. Those of internal origin must either be generated
 

in the core by hydromagnetic interaction or be induced in the Earth by
 

external fields. The internally generated fields will have periodicities
 

in excess of about four years (Currie, 1968), while the external fields
 

will exhibit mostly shorter periods. However, there is overlap between 



the internally and externally generated spectra. For those periodicities
 

where the externally generated fields predominate, the following analysis
 

is valid and the internal part of the field contains information on the
 

conductivity distribution within the Earth.
 

In the region exterior to the Earth, r > R. Laplace's equation 

holds, for fields or potentials, while interior to the Earth, r Z R, 

the Helmholtz equation pertains for fields or potentials. Solutions for 

each regime are indicated by equations 3-110 and 3-111, but these solutions 

apply only to scalar potentials or to the individual rectangular components 

of the vector fields. 

the vector wave equation and solutions
 

To obtain appropriate solutions for the vector fields, it is advisable
 

to start from the vector wave equation so that the physical structure of
 

the solutions may be visualized. Thus we write
 

7VP7F ± - -V =0 8-9 

where F represents any vector potential or any vector field. Solutions
 

to this equation in spherical coordinates for a homogeneous region can
 

be conveniently represented by a complete set of orthogonal vector
 

solutions which are usually designated as the vectors -M and N.
 

(Stratton, 1941; Morse and Feshbach, 1953.) We define these three
 

vectors in terms of a scalar
 

- - .'* 8-10 
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7= 'X I, 8-11 

= 'Vx Mbd8-12 

where i is the unit vector in the r direction. Each of these vectors
 

is a solution of 8-9 provided
 

v + 0 8-13 

as verified by direct substitution of 84I0 through 8-12 in 8-9. The
 

vector M may be expressed in terms of L by
 

LM.XC -148,Ih 

which is readily established by comparing the expanded versions of
 

8-11 and 8-14. We note from 8-11 that M is tangential to any 

spherical surface. 

Now if M1 , M2, and M3 are the r, ,and c components of M, 

we have 

i-A4 =0 
8-15 

8-16
 

8-17
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8-18 

The divergence of M is zero for these components and hence the vector
 

wave equation for X is
 

V>7x M 2 

Equation 8-18 may be expanded in spherical coordinates as follows:
 

--- S.-5- / /. 
- L £2 / 2K 

,IL2. .a.- 402-T 

8-19 
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We note that the radial or iI component of this determinant vanishes
 

when M1 is zero. If we separate the '2 and i3 components in
 

equation 8-19, either component will yield the equation
 

which is, of course, the scalar wave equation for - Hence the:
 

condition for the vectors L. M, N to be solutions of the vector
 

wave equation is that I satisfy 8-20. In the usual shorthand notation
 

we may state this condition as
 

V2 -, -- 8-21 

Equation 8-10 gives the components of the first solution; equations 8-15
 

through 8-17 give the components of the second solution; and from the
 

relation 8-12 we obtain-the first component of the third solution as:
 

~-~ 8-22 

and from 8-20 we see that the right hand side of 8-22 has the value
 

h8-23mAy 


Similarly, the q-and 4,components of 
N are given by
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- ____ 8-24 

and'
 

8-25 

The scalar wave equation in spherical coordinates, 8-20. is solved
 

by separation of variables with the general solution
 

~to~ 

~ "jb 8-26Al 

This form is in agreement with that given in 3-110 if it is understood 

that Z, is defined by 

77;1 8-27 

and where we have written s. to indicate
 

T 8-28 

are the associated Legendre Polynomials and is a 

surface harmonic of order n. The "20t is to be replaced by the 

appropriate spherical Bessel function 

4,2 8-29 
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8-30 

Li) (fl8-31 

h@ )H 12 8-32c~zr 
the choice of which depends upon the physics of the problem. The function
 

a,hjtt) is a standing wave which is finite at the origin; r is 

standing wave which is finite at infinity; whereas, ) and K £KJ 

represent outward and inward travelling waves suitable for the region 

r "7/ where R is the radius of the sphere. Substitution of any 

member of 8-26 into 8-20 yields the two equations 

/2, . 8-334 ;2 .+ 

and
 

- P1 (, '8-34 

With the aid of 8-33, we can convert the N, solution to the simpler form
 

Nh_ 4 -35


42 
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Some properties of the L. N, and N vectors are of importance
 

for our subsequent discussions. From equation 8-14 we obtain the result
 

M'" 
L. 6 8-36 

indicating that the L and N vectors are perpendicular. From the
 

definition of t, i.e., equation 8-10, it is evident that 
--k
 

-VxL ' 8-37 

The divergence of 8-10 may be computed to yield
 

~7L 8-38 

Finally, the divergence of M and N may be taken, and from 8-11 and
 

8-12, it is evident that
 

8-39
 

0 8-40 

Thus we conclude that L is irrotational while M and N are solenoidal.
 

The orthogonality properties of these functions are discussed by Stratton
 

(1941, p. 417). Any arbitrary wave function can be represented as a
 

linear combination of these characteristic vector functions.
 

The E and H fields may be completely represented by the N and
 

N solutions since E and H each has zero divergence in a region of
 

zero free-charge density and since each is proportional to the curl of
 

the other. The vector L is therefore not required for most electro

magnetic problems. According to 8-26 the general solution.AJ) of the
 

scalar wave equation in spherical coordinates is composed of a sum of
 

http:solution.AJ
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particular solutions A . Associated with each characteristic function 

'tfA are three vector solutions L,, Mn, Nmn. Thus, in general, 

we would write the electromagnetic fields in terms of these solutions, 

as 

_.- J-_~~~k rnz b8-41 tjiimj, 

and
 

i ---I8-42 

These two expansions are consistent with Maxwell's equations. For certain 

problems it is not necessary to use both M and N vectors to describe 

E and H. Thus, the two modes described as poloidal magnetic (Transverse 

electric) and toroidal magnetic (transverse magnetic), constituting the 

general solution, may exist independently. These two modes are as follows: 

poloidal magnetic 

-t _ - Mm8-43 

Z-L 6-k 8-44 

That this mode is indeed transverse electric may be established by noting
 

that the M solution has no radial component. In this mode, then, we
 

have identified the electric field with the vector M.
 

toroidal mode
 

K = 8-45 
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-±A= Lrn 8-46
4

b 

For convenience, we shall write down the complete form of the Mmn and 

Nmn functions. 

8-4
 

8-47 

where by it is understood that we shall substitute ,e-Pt"k 

and ,4-t w so that the coefficient k, really represents two 

coefficients be... and 0. corresponding to the even (.ni 5 
and odd(4Ic,M ) parts. 

separation of fields into parts of internal and external origin
 

Above the Earth's surface we find k ~ 0 for frequencies
 

sufficiently low that we may neglect displacement currents. In that
 

region we may write the vector wave equation 8-9 for H as
 

ji" -- 8-49 
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since 7. H -

This equation is satisfied if 

VY 148-50 

in which case B is derivable as the gradient of a scalar
 

8-51
 

as in equation 3-42. The assertion that 8-50 is correct, leads to
 

identification of N with H according to 8-11 and 8-12. If we
 

attempted to identify M with H, then N would be zero. Seemingly
 

then, equation 8-51 is an indication that we are dealing with a poloidal
 

magnetic mode and electric currents do not flow normal to the Earth's
 

surface.
 

However, equation 8-49 may also be solved if
 

vxit~ -&--iw~v48-52 

for then
 

7VX14-,5tVW}V 8-53 

and the right hand side of 8-53 is zero because the curl grad of any
 

scalar function is zero. Maxwell's equations inform us that
 

VxW 8-54 

so that the solution 8-52 indicates that the electric vector is derivable
 

from a scalar potential
 

8-55
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It is readily established that this latter solution leads to toroidal
 

fields. The question then arises as to which solution is most appropriate.
 

Lahiri and Price (1939) and most other workers in this field used only
 

the poloidal mode on the basis of two arguments. First, it is assumed
 

that vertical electric fields do not exist and second, that the H field
 

in air is virtually irrotational. Eckhardt, Larner, and Madden (1963)
 

refute these arguments on the grounds that; (a) the vertical component of
 

E within the ground, while vanishingly small, is not necessarily zero;
 

(b) that the vertical component of the electric field for toroidal magnetic 

mode (E identified with t) may also be vanishingly small because NI-- 0 

as j3>y 1,(c) that by placing IA =-74)4 we really have identified H 

with an L-type mode, and (d) that in the space above the Earth's surface
 

some vertical electric field is present for almost any reasonable physical
 

source. It should be noted that the quasi-static assumption, ', Y
 

forces a number of contradictions of this nature, even though it is a very
 

convenient device for solution of boundary value problems of this type.
 

Eckhardt, Larner, and Madden (1963) also note some simple arguments from
 

Stratton (1941) concerning the choice of modes for matching the boundary
 

conditions at the surface of the sphere. There really is no need to select
 

only one mode since both may be used simultaneously. However, we shall
 

confine our subsequent remarks to the poloidal mode for purposes of
 

illustration.
 

We then can write for the region above the Earth
 

85
4 tY 
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where we have modified the form of the solution given by 3-111 to suit 

our immediate purposes. The single index n is meant to replace two 

indices, n for the 'a dependency and m for the & dependency. 

In equation 8-55, en is the complex amplitude of the fields due to the ex

ternal sources while i. is the amplitude of the fields induced in the 

Earth. The quantity <I..,t- is a spherical surface harmonic for 

colatitude q- and longitude and is given by4 

Y1 eCrlftI hi fc4'47 Y0 ( 1 8-56 

where the P (& are the associated Legendre polynomials defined by 

t,_ L,_o ° 4-,.
WI. 

_ 21____ 8-57'P~ 

At the Earth's surface where r = R, the three components of the 

geomagnetic field, X, Y, and Z, are computed from the potential 

4 as 

-C], e 8-58 

-
-- 5 4 8-59kti-~jLWtl 

7_- - Itt4 - -. ,f?) fit ,-(In ,)4]S, 4 
-c60 
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By analysing the X, Y, and Z components from observatories
 

distributed over the Earth, it is possible to determine (?,4-1 and
 

eer-) 6 1) If then, we define
 

1 1 1)686
 

we may express 1 .%L, in terms of Tn as
 

_ _____8-62 

__ -W- -+ 

This is the ratio of the reflected to the external source contributions
 

and thus is the reflection coefficient for an arbitrary wave structure
 

impinging upon the Earth.
 

Our next step is to relate Rn to the electrical conductivity
 

distribution in the interior of the Earth. To do this, we determine the
 

magnetic field components interior to the Earth and match them to the
 

expressions 8-58, 8-59, and 8-60 at the surface of the Earth.
 

The internal magnetic field components are obtained from 8-44 with 8-48
 
-k 

substituted for Nmn. For convenience we will again use the single index
 

notation and use the symbol Sn to denote the surface harmonic described
 

by 8-56. Note that the e + of 8-48 has been decomposed into odd and
 

even parts in the following presentation. Thus the amn of 8-43 have
 

been absorbed in Sn as in 8-56. The magnetic field components may then
 

be written, following Eckhardt (1963)
 

(h= D 8-63 
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1 ... .. 8-64 

I .... -.. 8-65 

The boundary conditions require that, at r = R normal t continuous 

(2, o~ Acomponent) 

i- 1 . ) 8-66 

tangential H continuous (, 't, tt" components) 

/ __ - ~.8-67 

These last two equations may be expressed iii terms of the ratios Rn
 

or Tn at r =R.
 

... 8-68 

and
 

KN- ) :/1ki________ I . --- 8-69 

~' ~ lilt 
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and when the differentiations are carried out, a prime used to denote
 

the derivative of 4,) with respect to r, and 4 replaced by 

KmV we obtain' 

) 8-70 

and
 

t,,4,4t.4.4 O,- .0 (n~,>j), ) 8-71 

ff,n(AA)-'4-44) A+1A 
A uniform inducing field may be described by 

14V PAo, i - 8-72 

indicating that only the first order, n = 1, of the potential expansion
 

of equation 8-55 is required to describe such a primary field. Since
 

the reflected, or scattered, fields must match the primary field at the
 

boundary of the sphere, it 'isnecessary, for a uniform inducing field,
 

that n = 1 in 8-71. Thus, for this special case
 

, _ ;C' 4,- 2-4W"''L)
-A-.jIW , 

I(Iw~ qs~/1/ 8-73 

where we have substituted the appropriate Bessel function for 6 .
 
If now we change notation and use the prime to denote differentiation
 

with respect to the total argument equation 8-73 becomes
 

* 'j1(-t-~ A)~oA)8-74(2w4 
>42 jvt {tb16Z / z 
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and in terms of the Bessel function of half odd integral order, this
 

relation becomes
 

uI 

....... 48-75
 

and if we use the defining relation
 

r-, L--- 3 0 8-76
 

the expression 8-75 may be cast in the form
 

- ' 2 bi~@~ m ~ _ 8-77 

(j~wT -3 4 + 3
which is, of course, identical to the expression 8-6, deduced directly
 

from consideration of a sphere in a uniform field. As before Y is
 

to be identified with L-.
 

Lahiri and Price (1939) studied electromagnetic induction in a
 

sphere for which the conductivity distribution is
 

m- ,(-&j8 8-78 

where T0 is the conductivity at r = R and is a real constant. 

The solution, when substituted into 8-69 provides a theoretical "£:,0I.A 

which may be compared with observed ratios to infer the required magnitudes 

of C)57 and X To obtain their solution, we substitute for k in 

8-33 by (with displacement currents neglected) 
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4/4 - 8-79 

and obtain
 

-A ct2rn- Ztu 4 h AZ+n l 8-80 

We now seek solutions of this equation of the form
 

-A- 8-81 

whereupon 8-80 becomes
 

2J4 tLA--0J8-82
 

We- now make the substitution 

8-83 

in order to cast 8-82 in the form of the Bessel equation of half odd
 

integral order. From 8-83 we obtain
 

8-84
 

2

8-85 

Now, for convenience, we write 8-82 as
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8-86 

and make the substitutions indicated by 8-83 through 8-85 to find 

wi4/ 8-87;L~tti~~~ ~Y -

This is now Bessel's equation of half odd integral order with solutions
 

f such that
 

"- [± "\/ w) 8-88j 

(finite inside the sphere)
 
and
 

Y, 8-89,7 p --

(finite outside the sphere) 

where " 'a 4 L,as before. The reflection coefficient Rn is then 

given by 8-71 with 8-88 substituted for zn 

For a sphere in which the conductivity increases linearly outward 

from the center X , and assuming the inducing field is uniform, 

n = I, the reflection coefficient reduces to that given by 8-8. 

If the sphere is immersed in a conductive medium, rather than free 

space as we have generally assumed, Laplace's equation exterior to the sphere 

must be replaced by the wave equation and hence the exterior solutions are 
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of the forms given by 8-31, 8-32, or 8-89. Thus Negi (1962) gives the
 

reflection coefficient for a sphere in a dissipative whole space, uniform
 

field, as
 

~_ _ _ _ _ 8-90
2-+-X-, K_.1'61,io 

where = is the propagation constant of the exterior medium.
:, 


The choice of the special conductivity distribution given by
 

8-78 is limiting. Thus Takeuchi and Saito (1963) and Eckhardt (1963)
 

have solved the differential equation 8-33 by numerical methods so that the
 

wave number in the sphere can be given any radial dependency.
 

Srivastava (1966) has obtained an expression for the ratios of
 

orthogonal electric and magnetic field pairs for a sphere constituted
 

of n concentric shells, in each of which there is a constant conductivity.
 

From his expression, the reflection coefficient for an arbitrarily concen

trically stratified sphere can be obtained. We shall refer to this later.
 

(iv) inhomogeneities in a dissipative sphere
 

,D'Yakonov (1959) and Negi (1962) have presented solutions for a
 

dissipative sphere eccentrically located in another dissipative sphere.
 

Since two different coordinate systems are involved in this problem,
 

it is necessary to express spherical waves in one coordinate system in
 

terms of spherical waves in the second system by means of addition
 

theorems. So far no numerical results have been presented. However,
 

Erskine (1968) has recently overcome some problems concerned with conver

gence of the expansions of the fields.
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(v) homogeneous half space - uniform field
 

By equation 3-89, the surface impedance Z1 for a plane wave
 

incident upon a homogeneous half space, and propagating downward in the
 

positive z direction, is
 

Zz-~ -8-91 

7- .~ ; t_ 
X- i- 'jr:; 8-92 

from which we obtain
 

8-93
 

.9zL zt/"1 
I- 8-94
 

where T is the period of the wave, and where we have assumed negligible
 

displacement-currents and that/, A, -7  
4"Fix 0iC henrys per meter. 

Equations 8-93 and 8-94 are valid for P in ohm-metres, 1 - in 

fy I-I , Ax,x -1 in gammas, and T in seconds. 

(vi) anisotropic half space - uniform field 

For a half space of tensor impedance z- the relationship 

between the electric and magnetic field components can in general be 

written 
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-7g, 2 ,3 

Yz 8-957Z3V 

If a uniform plane wave is incident normally on a plane earth, then the
 

Ez and Hz components are lacking so that 8-95 reduces to
 

- x8-96
 

where the are the tensor impedance entries. There will be an
 

orthogonal set of directions (xy)such that 8-96 reduces to
 

8-97
 

so that and 7; are related to the principal axes of conductivity 

anisotropy and hence may be written
 

Z 2- 8-98 

=/ 8-99 

The principal values and 2 of C- can thus be determined. In 

general, however, the orientation of these axes is not known so that we
 

write
 



__ 

,15
 

f Z,, t 4 Y_ 1,/ 8-100
 

EII NA -)- Z22 -t 8-101
 

from which we deduce that
 

L-A i 8-102 

,_ 7z ,q t1]  --. -o
G:7-1 8-103 

The are functions of angular rotation, <--j of the measuring axes 

and of frequency tu . Note that the quantities I and-7 are now 

functions of the polarization T of the downcoming wave. Only in the 

special case where Z:.- C, does the polarization become unimportant. 
LI 

(vii) n-layered half space - uniform field
 

Cagniard (1953), Wait (1962ab), Ward (1967) and others have shown that 

the plane wave impedance of an n-layered structure, for normal incidence, 

may be written 
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A 7 

A
 

AA 
4,.
 

A
 

71 A 8-104 

and the 

and characteristic impedances of the ith layer. Usually the structure is 

terminated at the bottom in a homogeneous half space, so that the impedance 

where the and, are propagation constants,, thicknesses, 

A 

layer. If we then compute an apparent resistivity from :;7 , which 

is the impedance at the top of the n-layered structure, we obtain 

(9.2118-105
 

Figure 94 contains a number of curves of versus -rfor theoretical
 
Earth structures. The models chosen correspond to modifications of the
 

Fournier'.Ward-Morrison models of Figure 38. Model I allows for a 5 km thick

ness of sedimentary rocks while Model II assumes that the surface rocks
 

are crystalline basement.
 

The development of the formulation of 8-104 is straightforward.
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For normal incidence of a uniform plane wave upon a plane layered iso

tropic structure, as in Figure 95, the electric and magnetic fields in
 

the ith layer are
 

f- it- 8-106 

8-107 

where: 

is the propagation constant in the ith layer. 

/6 is the permeability of free space. All layers are assumed 

to have this permeability.
 

E is the vertical distance to the bottom of the ith layer.
 

is any vertical distance at which the field- is measured. 

At isthe amplitude of the outgoing electric wave in the ith layer. 
5 is the amplitude of the reflected electric wave in the ith layer. 

to is the angular frequency. A harmonic time dependency 6?
 

is assumed throughout but has been omitted from the equations
 

for convenience.
 

Since we have assumed a form for the electric vector and have computed
 

the magnetic vector therefrom, we are, in effect, assuming that the
 

electric vector is normal to the plane of incidence.
 

At z= we find
z i 

. -A i- 8-108 



H>:j -z8-109Q3 

where 7 isthe intrinsic impedance of the ith layer. From
 

8-108 and 8-109 we find
 

- 8-110 

- -- 8-111 

At "=9 continuity demands that
 

I -AL 8-112 

E, :: L-y 8-113 

Therefore, we may write 

'-1 ±e J ~ 'j 8-114 

- . _8-115 

Now if we let
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- 8-116 

Ai Bi
and substitute in 8-114 and 8-115 for the and given by 8-110
 

and 8-li, we find
 

-f~-J,( 8-117A4,L- 4 

X~I 
8-11
 

where use has been made of the identities
 

e-r 

Equations 8-117 and 8-118 may be written in the matrix form
 

r-cI -119 

and symbolically by
 

-8-120 

Lt
H1 
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Ti
The matrix is referred to as the transfer matrix of the layer. For n
 

Ti T2
layers we can find a succession of from through Tn+l, each
 

transfer matrix permitting us to write the fields in one layer in terms
 

of the fields in the next layer. Thus we can readily find the matrix
 

relationship between fields in the (i-l)th layer and those in the infinite
 

medium terminating the nth layer.
 

"Th - fl-- 8-121 

The product of n matrices is itself a matrix S so that
 

8-14 may be written
 

n+I 8-122 

where
 

j 8-123 

Then the impedance looking into the n layered medium from the surface
 

of the ith layer is
 

~~1ZL I ' Lt 22- X 

De !2 8-124 

t-, +, 
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For a model consisting of one layer overlying an infinite half 

space, the impedance may be found by making the substitutions for 

from equation 8-119, i.e., 

8-12

r/, - -&-4k_ j"o-t' h 

Thus we obtain from 8-124 the impedance
 

8-126 

which is defined in terms of the electric and magnetic fields measured
 

at the surface of the structure
 

-Z -Z 34 L?_--- 8-127 

We may now express 8-124 in terms of the known impedances7 - 

the known propagation constants -A.) .-I and the known layer 

thicknesses---------------- by computing first the impedance at the 

top of the first layer above the homogeneous half space. By analogy 

with 8-127, this impedance will be 

A -t 7 -' 
-in7 8-128 
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Once this impedance is computed, we may use it as the terminating impedance
 

of an equivalent homogeneous half space and write for the impedance at the
 

top of the (n-l)th layer
 

AA 

z ytj- Ey...A t4 j$,-I117 8-129 

and so on up to the surface where
 

AA 
7---- 8-130 

A'
 

We have used the notation F' to denote the impedance at the top of 

the ith layer and the notation ' / to denote the characteristic
 

impedance of the ith layer. A succession of n steps is required in
 

the computation of the impedance at the top of an n-layered medium.
 

The reflection coefficient of the n-layered structure will be
 

A 

A 8-131 

(viii) application of plane wave formalism to electromagnetic
 

reflection from lunar models
 

introduction
 

Ward, Jiracek, and Linlor (1968a) have applied 8-131 to studies of
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electromagnetic reflection from plane-layered models of the moon. Using 

an e LWL time dependency they obtained the plane wave impedance 2 

for a homogeneous half space: 

Z~ -r_- 8-132
 

where is the phase and FZJ the modulus of Z, 4I is the angular 

frequency, Lo is the magnetic permeability of free space, < is the 

wave number of the half-space, and 0 , 1 are orthogonal electric 

and magnetic intensity pairs. The wave number can be written, for our 

purposes as 

10/iwtw u ]'/ 8-133 

in which the dielectric permittivity " and the conductivity c- are 

real functions of frequency. The loss tangent then is defined by 

'&tlICt S = CT'_/w 6e; 8-134 

We could replace 8-133 by
 

(v 8-135 
/ 

where
 

- /( 8-136 

is a complex conductivity which can account for both real conductivity
 

and dielectric constant. This complex conductivity is then, via 8-132,
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related to the impedance as follows:
 

--- C - V/o ] 8-137 

8-138 
/0 (/1Z)2_ 

) 8-139 

The phase is zero for an electromagnetic wave incident on a loss-free
 

dielectric half-space and is 45 degrees for an electromagnetic wave inci

dent on a conductor in which dielectric displacement currents are negligible.
 

If the half-space is layered and representable by a lossy dielectric, the
 

phase may range from negative through large positive angles as the frequency
 

is varied. When the phase passes through zero degrees, the conductivity
 

changes sign according to 8-138, whereas, when the phase passes through
 

45O, the dielectric permittivity eI changes sign according to 8-139.
 

For an n-layered structure, the relations 8-137, 8-138, and 8-139 become
 
A 

when we write Z4 for Z,
 

8-140
 
- Z_ _ 2-

~-' 8-141 

4 8-142 
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where the subscript a refersto the apparent parameters defined as
 

the parameters for an equivalent homogeneous half-space.
 

It is convenient to use dielectric constant rather than permittivity,
 

so that 8-139 and 8-142 yield
 

-. ' .8-143 

and
 

- 8-144 

where is the dielectric permittivity of free space.
 

For a three-layered structure, i.e., a layer sandwiched between
 

two half-spaces, the above formulation simplifies, von Hippel (1954)
 

shows that the amplitude reflection coefficient for a wave transmitted
 

from medium 0 (free space) into medium 1, and subsequently to
 

medium 2, is given by
 

In e8-145 

I?-
C. 

where
 

The are the characteristic impedances of the media. Expression 

8-145 oscillates as a function of --Y , and, when layer I is lossless, 
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i.e., Z' . ,- it has minima at )- =&(n41) VL and maxima 

at - *n0) 32j - is the electromagnetic wave

length in layer 1. The minima are zeros when r '= , , i.e., when
 
/$I12 

;zz "- ) for lossless media. Hagfors (1967) has discussed the 

application of this phenomenon to the tenuous first layer on the moon. 

Nikodem (1966) studied the effects of soil layering, on earth, in a similar 

fashion. Whenever the dielectric constant increases with depth, the 

reflection coefficient will oscillate with frequency and with thickness of 

the surface layer. The presence of finite conductivity in any of the layers 

will decrease the amplitude of the oscillation, and the damping will increase 

with frequency. Hagfors (1967) notes that the thickness of the first lunar 

layer may be highly variable and that the dielectric constant may gradually 

rather than abruptly increase with depth so that the first layer may not 

become transparent at any frequency. If, however, the oscillations of the 

reflection coefficient do occur, they furnish a means of estimating the 

thickness of the first layer, together with the electrical properties of 

the layer and of the half-space below. 

The minima of the reflection coefficient occur in lossless materials 

at frequencies defined by 

"2- n4-1 * }b=-0 , . 8-146 

where C is the velocity of electromagnetic radiation in free space. If 

the minima are zeros, there is no reflection from the structure so that
 

the first layer has been effective in providing impedance matching between
 

free space and the second layer.
 



Without attenuation the first layer becomes invisible or transparent
 

at the maxima of the reflection coefficient, for then the reflection
 

coefficient of the structure becomes
 

____ 1 -2 -rZ6 8-147
 

At frequencies where this occurs, the reflection coefficient will yield
 

the dielectric constant of layer 2 uniquely.
 

From 8-146 we would conclude that, if is increased by an
 

order of magnitude, the frequency f at which the first minimum of r
 

occurs must be decreased an order of magnitude.
 

results
 

Model 1--frequency independent parameters.
 

We have chosen one'simple model to illustrate the characteristics 

of r, 2 VpJ ( , and as functions of frequency and of the 

parameters of the model. Some variations in this model have been made 

for illustration. The model, consisting of three layers that might exist 

in the lunar interior, is described by the following parameters: 

Layer 1 

Layer 2
 

L a y e r 3 6C t 

Figure 96 shows the magnitude of the reflection coefficient Ir]
 

as a function of frequency. The minima in the reflection coefficient
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" 
are, in fact, zeros bedause we have selected e The
 

frequencies at which they occur may be predicted from the simple equation
 

pertaining to a two-layered moon. The third layer is not evident in
 

the reflection coefficient because of attenuation in layer 2. There is
 

no appreciable damping of the oscillations of fri because the conduct

ivity of layer 1 is low.
 

The real and imaginary components of r are plotted versus frequency
 

in Figure 98; the oscillatory behavior previously noted for the magnitude
 

of r is evident above 107 hz in each component.
 

The conditions under which the first layer effects perfect impedance 

matching, alternating with its becoming transparent, are clearly brought 

out by plotting the magnitude of the reflection coefficient versus the 

number i .2' in Figure 99. Impedance matching occurs in, as a 

three-layer'loss-free dielectric model when ih-'' /4-ITIJ 
and transparency occurs when [2 - bjz i(i fuj'-- , provided that 

Increasing the dielectric constant of the first layer from 2.0 to 3.0
 

decreases the amplitude of the oscillations. When the first two layers
 

have the same value of dielectric constant, i.e., 4.0. the reflection
 

coefficient Hn is a monotonically decreasing function of frequency
 

trending from a real value of 1.00 below 1 hz (Figure 96) to a real
 

value of 0.333 above 107 hz (Figure 99) and possessing complex values
 

between I and 107 hz. Within this frequency range, the behavior of
 

the simulated lunar surface is in transition from that of a displacement

free conductor to that of a loss-free dielectric.- The oscillations due
 

to the dielectric slab effect are superimposed on the monotonic trend.
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If the thickness of the first layer is increased from I to 10 meters,
 

the first minimum in the oscillatory behavior of r is shifted downward
 

in frequency by approximately one decade. This downward shift would be
 

precisely one decade for a two-layer loss-free dielectric,beneath free
 

space. The three layer lunar structure we have chosen modifies the
 

location of the minima slightly; however, to a first approximation, the
 

dimensionless presentation of Figure99 is applicable for first layer
 

thicknesses ranging from I to 10 meters.
 

Figures 100 and 101 display the frequency variation of the teal
 

and imaginary parts of the surface impedance Za as defined by equation $136
 

The surface impedance is extremely small at frequencies less than 101 hz,
 

although a logarithmic plot would have displayed characteristic variations
 

within the band 101 to 10- 4 hz.
 

Figure 102 contains the magnitude of phase as a function of
 

frequency for model 1. The influence of layer 3 is evident from 1074
 

to about 3 hz. The nearly constant phase of 45' occurs from 3 to
 

3 x 103 hz, when only the second layer is influential, but above
 

3 x 103 hz the first layer markedly influences the phase. The oscillatory
 

behavior of 4_ above 5.3 x 107 is indicative of the dielectric slab pheno

menon. Alternate peaks above 107 hz are actually negative values of phase,
 

but we have chosen to plot the absolute values.
 

It is evident from the plot of the magnitude of the real part of
 

the apparent conductivity (Figure 103) that the conductivity of layer 2
 

is detected in the entire range 1 to 106 hz. The conductivity of the
 

-
third layer (10 2 mhos/meter) is becoming evident in the lowest plotted 

frequencies, but the values at high frequencies 2' 106 ,hz are seldom 
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within the range of the actual model values. This behavior is in accordance
 

with equation Fj14/ ; somewhat above 5 x 107 hz the phase oscillates about
 

zero degrees and GSI alternates between large positive and negative values.
 

Figure 104 shows Wa versus frequency for the range t01 to 5 x 108 hz. 

The apparent dielectric constant is negative up to a frequency of about 

6 x 10-1 hz, where the phase +cr decreases below 450 for the first time 

(Figure 102). The phase is less than 450 only until the frequency reaches 

3 hz, so that positive values of dielectric constant are restricted to a
 

relatively narrow frequency band. Above 3 x 102 hz, however, the dielectric
 

constant becomes positive again as the phase drops below 45'. Between
 

10. and about 5 x 106 hzj is nearly constant at slightly less than
 

the value for layer 2. Above 107 hz, the apparent dielectric constant
 

oscillates between 1 and 4. The minima occur at frequencies given by
 

8-146 at which point there is perfect impedance matching between free
 

space and the lunar model. The maxima of the apparent dielectric constant
 

coincide with the maxima of the reflection coefficient given in Figure 96;
 

at these frequencies, the first layer is transparent and hence I is 

identically equal to land has the value 4. The fact that has 

a lower limit of unity permits us to conclude that there is perfect 

impedance matching at the minima, and hence we obtain 

which, of course, is the value inserted in the model. This is also the
 

value about which Ka, oscillates when plotted on the logarithmic scale
 

in Figure 104.
 

The apparent quantities plotted in Figures 103 and 104 have yielded
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the actual values of and directly; however, it 

remains to determine the value of T This value may be determined 

after evaluating the firstilayer thickness from 8-146 and by modeling 

a two-layered structure with 31 variable. Curves of the apparent
 

conductivity functions thus obtained are presented in Figure 105-in
 

the frequency range 106 to 5 x 107 hz. All models with surface layer
 

conductivities - 10-6 yield ZF values that are nearly identical 

with those in model 1. Hence, we can only say that Q1 in model I 

must be 4 10-6 hos/meter. In essence we are saying that, once QJ 

drops to 10- 6 mhos/meter, - 6' above 106 hz and any further 

decrease in ( is undetectable. 

Model 2--frequency-dependent parameters.
 

To demonstrate the effect of frequency dependence of dielectric constant
 

and conductivity, we have employed data recently acquired on Hawaiian
 

soil and rocks with known moisture contents and over the frequency range
 

102 to 6 x 107 hz (Jiracek, 1967). The results are from measurements
 

made at the Massachusetts Institute of Technology Laboratory for Insulation
 

Research on a sample of loose volcanic ash soil (dry density 0.7627 g/cm 3),
 

on a low-density sample of pahoehoe tholeiite basalt (dry density 1.4001 g/cm3),
 

and on a high-density sample of nephelite-melilite basalt (dry density
 

2.6671 g/cm3). The dielectric constants and conductivities of the samples
 

were measured at room temperature after the samples were oven dried for
 

three days at 1050 C and at various saturations of water of resistivity
 

10.55 ohm meters.
 

The curves in each of Figures 106, 107 and 108 contain the measured
 

values of dielectric constant \ . conductivity " " , and loss tangent
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that we shall use to represent certain layers of the lunar environment.
 

it is evident in comparing curves 2 and 3, or 4 and 5 that even small
 

amounts of moisture (4 and approximately 1% by volume) account for large
 

changes in the electrical parameters, particularly at the lower frequencies.
 

This effect is largely due to interfacial polarization of either electrode
 

or membrane type (Marshall and Madden, 1959). The presence of metallic
 

minerals, such as magnetite, or of clay minerals -is essential to these
 

processes.
 

The parameters for model 2 are
 

Layer 1: dry-volcanic ash, h. = 10 meters
 

= curve 1, Figure 106
 

3 curve 1, Figure 107
 

Layer 2: 	 low-density basalt, h2 = 100 kn 

(a) 	 dry
 

= curve 2, Figure 106
 

= curve 2, Figure 107
 

(b) 	 wet
 

curve 3, Figure 106
 

0, = curve 	3, Figure 107 

.Layer 3: 	 high-density basalt, c1 O 

(a) dry
 

1'3 	 = curve 4, Figure 106
 

= curve 4, Figure 107
 

(b) 	 wet
 

K ]= curve 5, Figure 106
 

= curve 5, 	Figure 107 
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Although one could readily debate the choice of materials to represent
 

the second and third layers, these materials have been used primarily
 

because values of and were available for them over a broad
 

frequency range and with the materials both wet and dry.
 

In Figure 109 we have displayed the modulus of the amplitude reflection
 

coefficient, as a function of frequency, for (a) a totally dry model and
 

(b) the same model with layers 2 and 3 containing moisture. Note that
 

the electrical parameters have only been specified over the frequency
 

range 102 to 6 x 107 hz, so that the reflection coefficient may only be
 

computed for this range. Over the frequency range studied tan S/
 

in the three layers of model 2a, i.e., displacement currents predominate
 

over conduction currents. For this reason we observe an oscillatory
 

behavior in the reflection coefficient in the frequency range 102 to
 

3 x 104 hz. These oscillations arise in resonances in layer 2; the
 

number j)'C,1
is too small to permit layer I to respond at these low
 

frequencies. and the dielectric constant is intermediate between
 

and I'1 The oscillations of the reflection coefficient are
 

damped as frequency increases, and between 3 x 104 and 3 x 105 hz the
 

reflection coefficient is sensibly constant.
 

The reflection coefficient for model 2a becomes oscillatory above
 

3 x 106 hz, where the first layer may resonate because its dielectric,
 

constant is intermediate between that of free space and that for layer 2.
 

Damping of the oscillations above 3 x 106 hz is due to a finite conductivity
 

for layer 1.
 

For model 2b the reflection coefficient is nearly unity at 102 hz
 

and decreases without oscillation as frequency increases to about
 

3 x 106 hz. The oscillations beyond
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3 x 106 hz are characteristic of resonances of the first-layer-second-layer
 

complex. The locations of the resonances are only slightly shifted
 

relative to model 2a.
 

The apparent dielectric constant for each of models 2a and 2b appears
 

in Figure 110 together with the input values for the various layers over
 

the decades where they influence the response. In the case of the dry
 

model 2a, we see that x\,,,oscillates about the dielectric constant of
 

the second layer from 102 to 4 x 104 hz. The first peak at 6.2 x 102 hz
 

reaches a value of 10.6, close to that of the bottom layer, 11.5. The
 

value of the second layer dielectric constant is closely matched by
 

from 4 x 104 hz to about 3 x 105 hz, where the top layer begins to.
 

influence the values. Peaks in the first layer resonances (>9 107 hz) 

fall slightly short of the values for layer 2 because of the small attenua

tion in the first layer. The oscillations above 106 hz are about the
 

input values of 1 . The thickness of the first layer using 8-146 is 

found from the mean log values of W , e.g., at 107 hz, to be just less 

than the input value of 10 meters.
 

The high input and apparent dielectric constants plotted for model 2b 

are due to the moisture present in layer 2 of this model. No estimate of the 

dielectric constant of the third layer can be made from the data in frequency 

range considered; however, the values of Li agree quite closely with the 

values of layer 2 up to about 104 hz. Also, the peaks of the first layer 

resonances approximate the second layer dielectric constants at frequencies 

107 hz. Again, these log variations are centered about the 1< values 

of the first layer. The apparent dielectric constant function decreases 

to zero and changes sign, e.g., at about 2.15 x 105 hz and 3.65 x 106 hz, 

when the phase is 450. 
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Values of the apparent conductivity \ appear in Figure l1 along
 

with the input values for model 2. Apparent values for dry model 2a
 

exhibit large variations below 6 x l04 hz in a region where the phase
 

alternates about 00. (6 values above this frequency are not
 

directly related to the input values. Hence,,no readily obtainable
 

conductivity information is evident from the apparent conductivity
 

function for this model. When layers 2 and 3 have only - 4 and 1% 

moisture, respectively, added, we see more than 3 orders of magnitude 

increase even in the peak values of (5'6 at low frequencies (compare
 

models 2a and 2b). The apparent values of JI closely follow those
 

of 	layer 2 from 102 to 105 hz, but, as in model 1, the results rarely
 

represent the surface low-loss layer at high frequencies.
 

Model 3--frequency-dependent parameters.
 

In this model we have attempted to select layer parameters, which, on the
 

basis of information currently available, are apt to constitute a
 

reasonably good approximation to the moon's interior. These parameters
 

are
 

Layer 1: dry-volcanic ash, hI = 10 meters
 

curve 1, Figure 106
 

curve 1, Figure 107
 

Layer 2: high-density basalt,- h2 = 500 in
 

(a) 	 dry 

K-= 	curve 4, Figure 106
 

=
C> curve 4, Figure 107 

(b) 	 wet 

K',.I 	 curve 5, Figure 106
 

. = curve 5, 
 Figure 107 
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Layer 3: hot conductive rock, h3 = 

= 100
 

,= 10 mhos/meter 

The reflection coefficients )CI for these two versions of model 3
 

are illustrated in Figure 112. The resonances of layer 2 are only
 

evident in model 3a and the reflection coefficient is much higher
 

for model 3b than for model 3a. The gentle downward trend and high
 

values of the reflection coefficient, for model 3b, as frequency
 

increases from 102 to 106 hz, are strong evidence for the presence
 

of moisture.
 

• The dielectric constants computed from 8-144 for model 3a and 3b
 

are displayed in Figure 113 along with the input values. The gross
 

character of the results is similar to the results presented in
 

Figure 110 for models 2a and 2b. A zero in the W4 functions occurs
 

only once in Figure 113, near 102 hz for model 3a. The phase remains
 

below 450 at all frequencies above 1.1 x 102 hz; therefore, the sign
 

of fa stays positive. K) functions for both model 3a and model 3b 

yield values of WK throughout the entire frequency range studied,
 

whereas the magnitude of K becomes apparent above 106 hz when the 

top layer oscillates. Oscillations in the second layer are restricted
 

to the dry model only; thus, as little as 1% moisture, model 3b,
 

completely damps out these resonances. No estimate of 1 can be made
 

from these results; possibly this value would become evident at lower
 

frequencies.
 

The apparent conductivity results plotted in Figure 114 yield
 

direct information only on for both models. Curve matching as
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I
 

illustrated in model 1 could be used to determine the upper bounds of 07
 

The frequency variation of the electrical parameters would, however, in

crease the difficulty in obtaining a representative result.
 

Model 4--ice layer.
 

It is possible that an ice layer may be present at a depth in the moon
 

where the diurnal surface temperature fluctuations are sufficiently damped.
 

The temperature on the moon ranges from about 3900 K during the lunar day
 

to about 90* K at lunar midnight. Consequently, "permafrost" at a tempera

ture of the order of -35' C could occur below a thin surface insulating
 

layer. There are insufficient data available for permafrost on earth with
 

.which to describe the electrical parameters over a wide frequency range. 

We have, therefore, used K I T I, and tan S of frozen sea water, of 

salinity 33%o at -26' C to represent permafrost. The salt migrates to 

the ice crystal boundaries on slow freezing, so that a minor liquid 

phase of relatively high conductivity controls the conductivity of the 

sea ice. Such a phenomenon also occurs in permafrost. The electrical 

properties of this ice, according to Bogorodski (1963), are as displayed 

in curves 6 of Figures 106, 107, and 106. Thee values of K , I and 

tan for sea ice are consistent with the more limited measurements 

on permafrost at dc (Hatherton, 1960; Robertson and Macdonald, 1962) 

and at 108 hz (Cook, 1960). Even for sea ice, we only have electrical 

data available from 105 to less than 108 hz. 

The following model has been used to explore the effect of a 1-km
 

layer of sea ice buried beneath an insulating blanket of dry rock or
 

dry rock dust.
 

Layer 1: dry-volcanic ash, hI = 10 meters
 

Kl = curve 1, Figure 106
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= curve 1, Figure 107 

Layer 2: sea ice, h 2 = I km 

' = curve 6, Figure 106
 

3- = curve 6, Figure 107
 

Layer 3: wet high-density basalt, h3 = 499 km 

= curve 5, Figure 106 

= curve 5, Figure 107 

Layer 4: hot conductive rocks h4 = "c 

\4 I= 102 

M 1 = i0-2 mhos/meter 

The.thickness of 1 km of lunar permafrost is consistent with a projected 

temperature of about -35' C coupled with known thicknesses of permafrost 

on earth (Shumskiy et al., 1964). 

The reflection coefficient for this model has been plotted in
 

Figure 115. The high values of reflection coefficient and the rapid
 

change of reflection coefficient between 105 and 106 hz, if observed
 

in field data, would be interpreted as sufficiently high to be diagnostic
 

of the presence of water. Thus, an impure ice layer produces the same
 

basic effects as moisture in volcanic rocks. This curve of reflection
 

coefficient is to be compared with that of model 3b, Figure 112, which
 

represents the same lunar layering with the exception of the sea ice.
 

The apparent dielectric constant and actual layer values for this 

model appear in Figure 116. The large values of I at the lowest 

plotted frequencies are close to the values for both and . 

In each layer, it is the presence of water either in liquid or in impure 

frozen form that is responsible for the large values of y The peaks 
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and mid-log values of oscillations above about 107 hz distinguish
 

the values of W. and ft , respectively. Little direct information 

about the actual values of conductivity in model 4 is apparent in results 

of cj- (Figure 117). 

We have varied the thickness of the sea ice layer and found no
 

significant change in reflection coefficient between an ice layer of
 

1-km thickness and one of 10-meter thickness. This is to be expected
 

from the formulation of 8-130, which predicts a "saturation" effect
 

whenever the real part of the induction number 'Y exceeds about 10.
 

For the constants of the ice layer we have chosen, saturation occurs at
 

a frequency of 106 hz for an ice thickness of about 10 meters.
 

Discussion
 

Several elementary models of the electrical parameter distribution
 

in the lunar interior have been discussed in this manuscript. Factors
 

that have not been considered include:
 

1. The effect of the roughness of the interfaces in the model.
 

2. A range of models that would approximate distributions of the
 

electrical parameters that are slowly varying functions of depth.
 

3. The effect of the interplanetary medium.
 

Despite these omissions and other limitations of the analysis
 

we have made, the following conclusions can be drawn:
 

1. The dielectric constant and possibly the thickness of the
 

first layer could be mapped over the lunar surface from an orbiting
 

spacecraft by pulse or sweep-frequency sounding in the 105- to 109-hz
 

frequency band.
 

2. The conductivity, dielectric constant, and thickness of the
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second layer in simple models may be estimated by means of the frequencies
 

in the range 1 to 105 hz. Although the interpretation will not be unique,
 

a comparison of observed apparent conductivity and apparent dielectric
 

constant curves with the values obtained from model calculations can
 

yield a reasonable interpretation. Lunar surface traverses would seem
 

best for the frequency range 1 to 105 hz, Measurement from orbit in
 

this band would appear to be difficult with modest power expenditure
 

and antenna dimensions; however, this should be analyzed in greater detail.
 

3. To estimate the conductivity and dielectric constant of the
 

deepest layers in the moon would seem to demand use of frequencies as low
 

as,'or even lower than, 10-4 hz. Thus, it may become desirable to consider
 

passive systems for these measurements. A number of magnetometers deployed
 

at lunar emplaced-stations conceivably could yield information that would
 

permit separation of measured magnetic fields into incident'and reflected
 

components. The spectrum of magnetic disturbance in the vicinity of the
 

moon is incompletely known at present.
 

4. Although not displayed graphically, the conductivity of the
 

-
surface layer has been varied from 10 6 to 10-8 mhos/meter and this has 

not altered our conclusions. The reflection from the first layer is 

controlled by the number 1 , Y h, . The modulus of must 

exceed 0.1 before the first layer has any appreciable effect on the 

reflected fields. 

5. A fraction of a per cent of free pore water modifies the reflec

tion coefficient, the apparent conductivity, and the apparent dielectric
 

constant in such a manner as to allow the prediction of the presence of
 

water from observation of these parameters over broad frequency ranges.
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6. A 1-km-thick layer of lunar "permafrost" beneath a 10-meter
 

blanket of insulating debris was analyzed in one model. The reflection
 

coefficient and the apparent dielectric constant were diagnostic in the
 

frequency range 105 to 106 hz, insofar as they indicated dielectric
 

constants much higher than those found in dry rocks.
 

7. Although it is not possible to distinguish between a layer of
 

impure ice and a layer of rock with pore water in the frequency range
 

105 to 108 hz, the high dielectric constant is uniquely indicative of
 

the presence of solid or liquid water unless temperatures in excess of
 

about 5000 C are present. Available information indicates that dielectric
 

constants above 105 hz can reach over 200 for serpentinite above 8000 C
 

(Zablocki, 1964) and over 30 for granodiorite above 10000 C (Keller, 1966).
 

Water-free rocks at temperatures . 5000 C do not exhibit dielectric 

constants much in excess of 10. Temperatures in excess of 5000 C are 

not expected at depths shallower than about 125 km in the moon. 

(ix) application of plane wave formalism to electromagnetic
 

detection of lunar subsurface water (from Ward, Jiracek, Linlor, 1968b)'
 

plane sharp boundaries
 

Our objective in this present study is evaluation of the physical
 

feasibility of detecting lunar subsurface pore water (or ice) by means
 

of active orbital or surface electromagnetic experiments. Forprelim

inary assessment it is permissible to ignore the curvature of the moon
 

and to compute the plane wave impedance, the reflection coefficient,
 

or quantities derived therefrom, as functions of the electrical parameters
 

and thicknesses of the layers in a plane layered model.
 

In the previous section, a limited portion of the moon was modelled
 

by a layered structure with plane boundaries. Effects of lateral
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inhomogeneities, scattering from discrete objects, and anisotropic
 

electrical parameters were ignored. This procedure may be justified
 

provided the wavelengths used are long relative to the dimensions of
 

the scatterer, provided the depth to an interface is large compared
 

with the local topographic relief, and provided the moon is radially
 

layered in the gross sense, in such a manner that the plane wave imped

ance decreases with depth. For a substantial fraction of the lunar
 

surface it is probable that the above conditions will be met for fre

quencies less than about 107 hz to 108 hz. If these conditions are,
 

in fact, satisfied then one need only consider plane wave specular
 

reflection. Such an approach is taken routinely on earth, with full
 

realization of its limitations, to obtain depths to impedance discon

tinuities (Vanyan, 1967; Al'pin et al., 1966; Frischknecht, 1967).
 

Of course, surface roughness or interface roughness could be
 

included in the lunar model, but this degree of model sophistication
 

has seldom proven to be of value on earth (Mann, 1964).
 

In addition to a vertical decrease in electrical impedance, it is
 

expected that there will be significant random lateral changes in surface
 

impedance to correspond with geologic inhomogeneity expected for the
 

lunar "crust." Runcorn (1968) notes that current detailed information
 

on the figure of the moon provides evidence for a possible angular
 

variation of temperature (and hence of conductivity) of as much as
 

1002 .C.-T-here-a-i-so could- be sysPematic changes of surface impedance
 

associated with the change in mean temperature over the lunar surface.
 

That is, there are permanently shaded areas on the moon where the
 

surface temperature may be constant at about -170' C. Watson et al.
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(1961) calculate that of the order of 0.5% of the lunar surface is
 

permanently shaded and that most of this area occurs between latitudes
 

.
78' and 90' The young craters Aristilus, Tycho, Copernicus, and
 

Diaphontus were found by earth-based astatic radar to exhibit anomalous
 

values of dielectric constant.- Other examples of anomalous dielectric
 

constant have been measured by orbital-earth bistatic radar (Tyler and
 

Peterson, 1968).
 

Despite the lateral variations of electrical parameters expected
 

for the region near the lunar surface, we may anticipate mean radial
 

layering of electrical conductivity U-, relative dielectric constant
 

Ke, and relative magnetic permeability Im . While sharp concentric
 

boundaries are not nearly as likely as gradual transitions, it is
 

convenient to represent any radial change by one or more step-function
 

changes in 3- , Ke; and Y. as in Figures 90 and 91 and Tables XVI and 

XVII (Note: we have dropped the primes from the real quantities 

and Ke5 in this section, for convenience.).
 

The quantities I-L, Ka, and /4 are computed as functions of 

frequency for each model treated subsequently. The highest frequency 

used is 108 hz since this is a practical upper limit for rendering 

discrete scattering unimportant relative to specular reflection. 

The lowest frequency used in the calculations is 104 hz which yields 

asymptotic values of apparent dielectric constant and apparent conduc

tivity. The mean electron plasma frequency is expected to be 2.8 x 104 hz 

in the solar wind and hence this is the lowest frequency for orbiting 

measurement, unless measurements are made in the plasma void (Lyon et al.,
 

1967). While one may be on safer grounds to design for the frequency
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window 3 x 104 hz to 3 x 107 hz for low frequency active electromagnetic
 

experiments, we shall herein compute over the maximum range 104 hz to
 

108 hz. A fuller discussion of plasma effects appears later.
 

Models 3 and 4 of section 8-(viii) above provide the first informa

tion on the feasibility of detecting lunar subsurface water (see Figures
 

112 through 117). In many instances the actual values of the conductivi

ties and dielectric constants can be obtained as asymptotes of the
 

apparent conductivities and apparent dielectric constants. For example,
 

Figure 113 shows that the low frequency apparent dielectric constant
 

asymptote for a two-layer model gives the true dielectric constant of
 

the second layer. Similarly, the apparent dielectric constant above
 

106 hz oscillates about a mean log value equal to the true dielectric
 

constant of the first layer. It may be demonstrated that below 104 hz,
 

the apparent conductivity of the two-layer structure of Model 3 assumes
 

the true values for layer 2. In those instances where this type of
 

analysis is possible, knowledge of the true values of both U- and Ke
 

can be diagnostic of the presence of water if the spectra of Figures
 

106 and 107 are typical. This is the weakest link in the argument,
 

however, because the number of reliable rock conductivity and dielectric
 

constant spectra is extremely limited.
 

An orbital electromagnetic system operating in the frequency range 

3 x 104 hz to 3 x 107 hz would ideally record both the phase and modulus 

-of-the -ampl-itude---reflectiorrcoefficient-and--if- so-, -both a and Ka can 

be deduced as demonstrated above. The measured values of these quantities
 

are readily related to the presence or absence of liquid or solid pore
 

water via relaxation spectra such as those contained in Figures 106 and
 

107. However, if only the power reflection coefficient or the modulus
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of the amplitude reflection coefficient is recorded, then the echoes
 

returned from the lunar surface can still be interpreted in terms of
 

the presence or absence of pore water. The results of Figure 118
 

clearly show that for this particular model, values of Iri at fre

quencies of order 105 hz and lower are truly diagnostic of the presence
 

of either liquid or solid pore water. It is of fundamental importance that
 

this result pertains whether the depth to water or permafrost is 10 m
 

or 1 km.
 

The oscillatory behavior of the reflection coefficient shifts to
 

lower frequencies by approximately one decade as the top layer thickness
 

.is increased by an order of magnitude. In loss-free materials these
 

shifts would be exactly one decade and the amplitudes of the first
 

oscillation would be identical. The magnitude of Jr in Figure 118
 

at the peak of the first oscillation is different for each of the three
 

first layer thicknesses. This-result may be attributed to the dispersion
 

of the 1--and Ke functions used to simulate the lunar media. The
 

permafrost model shows the largest increase, in amplitude of the first
 

oscillatory peak of Irl, with increase in thickness 6f the first layer.
 

The reflection coefficient for the dry model is least affected in this
 

manner.
 

The reflection coefficient Ir( is most affected by the presence of
 

ice or water in the rock pores as frequency is lowered below 105 hz.
 

Hence, detecting water by inductive electromagnetic techniques would
 

optimally require frequencies of 104 hz or lower. For
 

orbital techniques anomalous propagation in the vicinity of the mean
 

electron plasma frequency at 2.8 x 104 hz may prohibit the use of these
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low frequencies. Further, the antenna size and power requirements at
 

S104 hz may be prohibitive for orbital experiments. Experience with
 

the Allouette topside sounder in earth orbit demonstrates that earth
 

echoes can be obtained with technologically feasible antenna size and
 

power for orbits about 1000 km above earth surface (Chia, et al., 1967),
 

for frequencies in the range 105 hz to 107 hz.
 

gradational boundaries
 

As we have noted, the physical and hence the electrical properties
 

of the assumed major layers of the moon are expected to be gradational
 

rather than abrupt. To- investigate the effect of a gradational boundary,
 

we have replaced the simple two-layer model used previously by a four-layer
 

model, in which the abrupt interface between the debris layer and the
 

subsequent layer is replaced by three interfaces. Any number of layers
 

might have been used but three was considered sufficient to illustrate
 

the point. The parameters for this model, labelled Model 5 herein. are
 

given in Table XVIII.
 

Table XVIII
 

Model 5
 

Layer Frequency

Thicknesses 103 hz 10 hz Dependence
 

h= 3m I!i= 3.6 J1 2.0c10-g K 2.2 f=l.x0K-4
 

- 5
5.4K 2 =8.9l 2 =3,4 c2 .6xiO
 A Iog_(f)+B;
 
" 
h3 =9 m ( = 7.1 3 2.0xl0 7 K = 4.5 -3 = 1.2xl0-3 A and B 

determined 
h4 = K4 = 280 <j- l.1xl0"5 K(4 = 13 = 5.0x10 - by end

points
 

The values given in Table XVIII are consistent with the values given for
 

the wet model in Table XV and Figures 86 and 87. Figure 119 presents
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the computed values of frj, Ka, and t, for this model. Oscillations 

in the reflection coefficient of Figure 119 are not nearly as regular
 

as those corresponding to the simple two layer cases. This result is
 

consistent with that found by Nikodem (1966). The separate contributions
 

from each layer and combinations of layers are superimposed thus reducing
 

the possibility of uniquely determining any of the thicknesses of the
 

three outermost layers. A gradational debris layer with no abrupt lower
 

boundary would result in no oscillations in the parameters plotted in
 

Figure 119. However, in terms of detecting tP presence of water, the
 

magnitudes of the quantities provide the most direct information. The
 

value 0.8 for the reflection coefficient at 105 hz, for example, would
 

be sufficiently large to predict moisture at depth. To estimate the
 

depth to this layer we may in this instance use the first minimum in Irl
 

which occurs at 2.4 x 106 hz. We estimate K, from the plot of Ka versus
 

frequency in Figure 119, and using equation 8-146, to lie between 2 and
 

3. Thus, using n = 0 we arrive at 18 m .4 hI C 22 m. This is the esti

mate of the sum of the thicknesses of the top three layers and agrees
 

reasonably well with input value of 18 m.
 

The estimation of the depth to the moist layer in the case just
 

considered was accomplished using the first minimum in Irt, the
 

assumption of lossless materials, and an estimation of an equivalent
 

first layer KI using the Ka information. Actually with the lossless
 

assumption, an estimate of equivalent K1I may be equally well made
 

without requiring Ka information. A mean value of Ir in the frequency
 

vicinity of the first minimum is represented in terms of an equivalent
 

K1 simply by equation 3-78-since we are considering normal incidence
 



248 

only. Estimating equivalent 1 in this manner does not require separation 

of Irj into real and imaginary components and depth estimates are identical 

to the other case. Hence, when oscillations in Irt occur; reasonable esti

mates of the depth to the lower discontinuity, in some cases, may be made 

using Irl versus frequency data alone. The importance of observing the 

first minimum in Irl is evident when multilayer resonances are superim

posed as in Figure 119. For the case of a single homogeneous surface 

layer we need only observe a successive maximum-minimum pair to determine 

hI. However, since Irj oscillations in multilayered structures can
 

resemble those due to a single layer in restricted frequency bands, it 

is desirable to observe the first minimum in )ri in all cases. To 

summarize, in order to detect and estimate the depth to a possible lunar 

layer containing solid or liquid water it would appear to require nearly
 

continuous recording of i r over a frequency range extending from about 

104 hz to just beyond where oscillations in Ir occur. A range of
 

3 x 104 to 3 x 107 hz would be necessary to detect water at depths of
 

10 m to 1000 M. 

power loss in reflection
 

Energy or power loss upon reflection from the layered models is
 

defined by
 

Io I 8-148 

The reflection coefficient functions of Figure 119 for the hI 10 M 

case have been converted to power loss P in db, using equation 8-148.
 

The power reflection loss P is plotted versus frequency in Figure 120
 

for dry, wet, and permafrost substrata beneath a 10 m thick dry debris.
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For example, at 105 hz there is less than 2 db difference between the 

dry and wet cases but about 5 db separates the dry model from the 

permafrost model. We wish to stress here that the electrical parameters 

used in the wet substratum pertain to an undersaturated (1% pore water) 

basalt and reflection would be enhanced if either or both of its conducti

vity and dielectric constant were made higher by the addition of still 

more water. In fact, the values of the electrical parameters of a wet 

rock can readily approach or even exceed those given for permafrost in 

Figures 88 and 89. We also must acknowledge of course, that lunar perma

frost may not possess c and Ke values as high as those adopted. Perma

frost composed of pure ice and rock would have much lower Z- and Ke values,
 

depending on the temperature and relative composition of the mixture.
 

However, the existence of relatively small amounts of impurities in the
 

ice results in marked increases in the electrical parameters. In fact,
 

the electrical properties of permafrost are thought to be similar to
 

those of sea ice as mentioned earlier.
 

The relative reflection losses for the three cases presented in
 

Figure 120 vary significantly with frequency. The curves pertaining to
 

the dry and wet substrata differ at most by 3 db, this occurring at the
 

lowest frequency plotted, 104 hz; and nearly this value at the first
 

minimum of jr\ at 5 x 106 hz. Moisture content less than 1% might decrease
 

the difference between the curves whereas increased water content, higher
 

salinity, or the presence of more magnetite would be expected to increase
 

their separation. In any event, it is apparent that an equipment resolution
 

of at least 2 to 3 db is probably required to detect liquid water in
 

amounts of about 1%.
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In any practical experiment it will be necessary to employ at least
 

13 frequencies over the band from 3 x 104 hz to 3 x 107 hz in order to
 

trace out the details of oscillatory behavior of Irl. Swept frequency
 

OW or pulsed systems, as well as discrete frequency systems, will need
 

to be considered in order to arrive at the optimum experiment design.
 

Conclusions
 

It is evident that the presence of minor amounts of liquid or solid
 

water, in the pores of lunar rocks, will significantly alter the reflection
 

coefficient over the frequency window 3 x 104 hz to 3 x 107 hz, available
 

for lunar electromagnetic exploration. However, the power return to an
 

orliting antenna, on the pessimistic side, may only differ by 2 to 3 db
 

(or even less) between a dry and a wet moon and this is just within the
 

limits of current technology. On the other hand, optimistically the
 

power return between a dry model and either a wet model or a permafrost
 

model may differ by 5 to 6 db or more.
 

The lower the frequency the greater the difference between reflection
 

coefficients for dry and wet (or permafrost) models.
 

The mean electron plasma frequency at about 2.8 x 104 hz places a
 

lower frequency limit based upon our current knowledge of radiation from
 

an antenna situated in a plasma. Anomalous propagation is anticipated
 

for frequencies in the vicinity of the electron plasma frequency. Anoma

lous propagation is also anticipated near the ion plasma frequency
 

(f= 6.6 x 102 hz), the electron gyro frequency (f = 140 hz), and the
 

ion gyro frequency (f= 0.08 hz) so that avoidance of frequencies below
 

about 3 x 104 hz seems prudent at this time for orbital experiments.
 

Of course, measurements can be made at any frequency in the region
 

covered by the plasma void.
 



251
 

An upper frequency limit of about 3 x 107 hz will assure that discrete
 

scattering from objects smaller than about 10 m in mean dimension will be
 

negligible. Scatterers larger than this should represent geologically
 

significant items and electromagnetic returns from them will contribute
 

information useful for three dimensional geological mapping, in addition
 

to indicating the presence or absence of water or permafrost.
 

The effect of discrete scattering from surface or buried objects
 

larger than 10-rm and the effects of topographic relief of the surface
 

and of buried interfaces have aot been studied in the present investi

gation. These factors could degrade the performance of an inductive
 

electromagnetic system designed to detect subsurface lunar water,
 

although they are dealt with routinely in geophysical prospecting on
 

earth. The major difference between earth and moon prospecting is that
 

dielectric constant is usually ignored on earth (though not always
 

justifiably), and that higher frequencies are required for shallow
 

exploration in the less conductive lunar environment.
 

The sparsity of reliable spectra of conductivity and dielectric
 

constant under variation of rock type and composition, percent saturation,
 

pore water salinity, temperature, and pressure is the greatest single
 

uncertainty in the design of lunar electromagnetic experiments.
 

(x) n-layered half space-arbitrary angle of incidence
 

The above development may be generalized for an arbitrary angle of
 

incidence (Wait, 1962b). Referring to Figure 121,'we shall first assume
 

a plane wave incident at an angle qc on a stratified medium composed
 

of n layers with the electric vector normal to the plane of incidence,
 

i.e., a y component only. The wave equation for E in the ith layer is
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then 

=0 8-149
 

This is a two dimensional wave equation which can be solved by the
 

separation-of-variables technique. Physically, reflections can take
 

place in the z direction but not in the x direction. Hence, we
 

seek a plane wave solution of the form, with variables separated,
 

a, e + 2]8-150 

where the first term in square brackets is meant to represent an
 

outward travelling wave and the second term a reflected wave.
 

Equation 8-150 will be a solution of 8-149 provided
 

4- + 8-151 

or
 

Thus
 

---- 8-152
 

where N is an arbitrary factor at the moment. There must be 

attenuation in the z direction, since the media are assumed to be
 

dissipative. Hence the real part of ui is positive. The incident
 

field is
 

- -0 8-153 
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By equating 8-150 and 8-153 we find that
 

Ce C,-8-154
 

S. ,8-155
 

\r £L~flCO8-156
 

The parameter is then simply defined,in terms of the propagation 

constant of the incident medium and of the angle of incidence. 

We note, that as far as reflections are concerned, we may ignore 

the factor P _in the solution 8-150 . Hence, by comparison with 

A8-114 and 8-127, we may at once write down the impedance of the 

n-layered structure to an obliquely incident wave 

,A
 

-
 = ja h,8-157 

The wave propagates with &n apparent wave number in the ith layer
ui 


so that-the apparent intrinsic impedance Y2 of the ith layer is
 

_ if/c II8-158
 

Snell's Law may be written (Stratton, 1941")
 

~ -t ' -~8-159 
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where o and are the angles of incidence and refraction
 

respectively. Thus the intrinsic impedance of the first layer may
 

be written
 

~ L048-160 

Note that Snell's Law also informs us that at the air-Earth interface,
 

the angle of refraction is always negligible if displacement currents
 

may be neglected. For then
 

so that §), 4/L, 

and the impedance of 8-160 reduces to
 

8-161

4 

(xi) anisotropic n-layered half space-uniform field 

The plane wave impedance at the top of an n-layered structure,
 

each layer of which is anisotropic, may be shown to be (Ward, 1967;
 

O'Brien and Morrison, 1967)
 

n'Y 8-162
 

It is a matrix whose elements depend upon the polarization'of the wave 
tl
 

0 , on the direction of measurement q_1 relative to the anisotropy, 

and on the elements S*,t, of a transfer matrix which relates the fields 
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in the first layer to the fields in the nth layer. Unless the polariza

tion is known, a priori, it is not possible to compute the elements of
 

impedance matrix.
 

In practical application of 8-162 we measure two orthogonal,
 

electric and magnetic field pairs and compute the elements of the
 

impedance tensor therefrom
 

2 K 8-163
 

Because of its length and of the tedium involved in it, we shall not
 

include herein expressions for the 7-. in terms of the parameters 

of the system. Practical application of such a complicated model is 

limited. 

(xii) the impedance of a concentrically layered sphere
 

The formulation for the impedance of a planar m-layered structure,
 

which forms the basis of the magnetotelluric method has been extended
 

by Srivastava (1966) to a radially layered sphere. (Figure 122) We
 

need first recognize that the induced electric field is non-radial, for
 

many practical problems, inside a planet. If we feel safe in making
 

this assumption, then we may use the poloidal magnetic (transverse
 

electric) mode given by
 

V)
 

-4 4 f  8-164
 

The orthogonal electric and magnetic field pair , q are then
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given by 8-43 and 8-44. Their ratio is defined as the radial impedance
 

of a spherical wave function, and is
 

X47 8-165
 

where ,7-,, satisfies the differential equation
 

2- 1 8-166
 

as before, but with a function of r. Similarly, we might write 

for the other orthogonal pair
 

_ - t r Ato _____ 8-167 

If a spherical conductor is divided into a number of spherical
 

shells in each of which the conductivity is constant, then equation 8-166
 

holds in each layer, provided we select the appropriate constant value
 

of tcM-Owfor that layer. Since there will be reflections at all
 

boundaries, one suitable solution of 8-166 for a constant k in a
 

thin shell is
 

E=g~ A3 K4 + 8-168 

Hence the impedance at a distance r inside the conductor will be
 

given by
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t u'&njc,,_-"jck/u8-1692

The terms involving i7,6h_ ) must drop out in the impedance at the 

surface of the central core because is not finite at r = 0.
 

If the central core is referred to as the (m+ 1)th layer, then
 

- B8-170
 

At the bottom surface of any spherical shell we would write
 

lfI. A_- E P CA4- 8-171 

-ZA 1" j rfzh al&,,[Jn(z-i 1 _ 

and at the top of the same layer, only the r has changed in the 

solution so that we may write
 

,/ ,n , , 2 "z 

r 12, f 7" 8-17 2 

We may eliminate the A' and from 8-171 and 8-172 since these 

.
 are two equations in the two variables A and 6Q The result is
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t ' 4 % -%)j . 8- 173L 

where 

and 

4Jn6 SFi etc. 

We may then write in terms of as follows,ushe ,,,) give by 8-17.N . 

There will be n equations of the type 8-174 the last of which will
 

use the given by 8-170. 

The terminating member ZA is the surface impedance of the sphere.
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(xiii) separation of internal and external field over a plane
 

or along a line
 

While it would be highly desirable to obtain a complete spherical harmonic
 

expansion over a spherical surface, the station density necessary to
 

calculate the very high order harmonics representative of semi-local
 

to local magnetic fields may be prohibitive. In such cases it is possible,
 

however, to treat some small area of the spherical surface as a plane
 

surface and make separations in rectangular coordinates.
 

Consider a conductor occupying a half-space z Z 0, with its
 

boundary at z = 0. The overlying medium z *7 0 is non-conductive
 

and we neglect displacement currents in both media. A vector wave
 

equation in E may be set down
 

(V 8-175 

where
 

4 inside conductor 

outside conductor
42~ 

Assuming that important time variations only take place in the z
 

direction, we write the separable solution:
 

2 . &) P4,4) 8-176 

Substituting 8-176 in 8,175 and dividing by ZF: 

t 

8-177
 .i i s 
1r 
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Letting
 

2- -8-178 

yields 

8-179 

>7 u$/x) 8-180 

Assuming that there is no charge distribution we have that the divergence
 

of E is zero.
 

-4 - - C-, 8-181 

or
 

Z(cc Q,1- 8-182 

From 8-182 it follows that either
 

fl *0-8-183 An-rt--

or 

\) -- -~ 8-184 
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we shall use the relationships in equation 8-183 as Price (1950) has
 

shown that of these two constraints, only the conditions of equation 8-183
 

lead to solutions yielding external magnetic fields due to the induced
 

currents in the conductor.
 

Now if
 

o_ ti13i CzQ 8-185 

F may be written in terms of a scalar P such that the components
 

of F are
 

j~t - 2-) 8-186
 

and it is seen that equation 8'186 satisfies the condition 8-185
 

Equation 8-186 can be written in the more compact form
 

F= U, /-VP 8 187 

where is a unit vector in the Z direction. Thus the E 

field may be written: 

x 8-188E LI(4UZ. i 

and in the conductor we have solutions
 

8-189
 

and above the conductor:
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- :. .8 . (4 XVP 8-190 

It is seen from 8-179 that 

< 

P satisfies 

C, 8-191 

Proposing a separable solution of the form 

we have that 

17w 

rf( e)>x(0o J 

8-192 

Letting 

Xtk~ 1~ 8-193 

we have 

v 
0--6 4-

2
x 8-194 

± YT 8-195 

where 

t - 8-196 
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From 8-194 and 8-195, !"'(': 9) has the general solution: 

_P 197
 

where for convenience we have taken the eigenvalues as integer numbers.
 

We can thus rewrite 8-189 and 8-190 as
 

8-198
 

E__ a ;7 8-199
 

where
 

Cn 8-200
 

' 7
 

2 8-201
 

2
 
-+ 11 8-202
 

From 8-186 it follows that is zero; i.e., that induced
 

currents flow everywhere parallel to the interface. From Faraday's
 

law and equations 8-198 and 8-199 were set down the following for any
 

harmonics m and n inside the conductor:
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8-203X C - l 

Y IC , 
8-204
 

Iq 8-205
' ~-V4 

8-206
. -

1 2
 
8-208
czzLD 

IIC 

outside the conductor: 

I'fe 4 ~ ( )S?± 
 8210 
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"N & C 8-211 

---- ~ i '~--


A{ ,e_ _ t : 8-213
 

E~z ffiy f8-214c~'21 

F 8-215 

-- 8-216 

S - 8-217 

/ W41'lA 
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Note that these new coefficients are in terms of the magnetic field.
 

To find the ratio of internal to external field we use the two boundary
 

conditions of tangential IH and normal B continues:
 

-I-- 8-218
 

4i ,I I 

which gives the ratio of internal to external magnetic field in terms
 

of the constants of the internal medium.
 

67-" 8-220
 

If the conductor and the inducing field have no variation in, say,
 

the y direction, then n can equal zero only, and it suffices to take
 

observations along a line in the "C direction. In practice, then, the
 

components of the magnetic field are measured over a limited portion of
 

the surface of the Earth and the reflection coefficients for the various
 

harmonics deduced as for the spherical Earth case.
 

(b) Induction theory for active systems
 

(i) general comments
 

An active system for planetary electrical studies is comprised of a
 

transmitter and receiver placed in proximity to the planet. In free
 

space, the transfer function of the system, i.e., ratio of voltage
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produced in the receiver to current in the transmitter is -j In
 

the presence of a planet, this transfer function is changed to 2; so
 

that information on the distribution of electrical parameters in the
 

planetary interior is contained in the ratio , - . The transmitter,
 

or source, may be an electrical dipole, a magnetic dipole, a line current,
 

an array of electric or magnetic dipoles or loops of wire of such large
 

dimensions that they may not sensibly be referred to as magnetic dipoles.
 

Mathematical calculation of the electric and magnetic fields in the
 

vicinity of such a source is referred to as a finite source boundary value
 

problem in electromagnetism.
 

Measurements of the electric and magnetic fields are typically made
 

with electric and magnetic dipoles or arrays of dipoles. The electric
 

dipoles may or may not be grounded for both source and receiver. The
 

orientation of the source has a bearing on the field calculations and
 

hence to facilitate subsequent discussion the following abbreviations
 

are introduced.
 

VMD--vertical magnetic dipole
 

HMD--horizontal magnetic dipole
 

VED--vertical electric dipole
 

HED--horizontal electric dipole
 

Only one mathematical development will be given below, that of the
 

vertical magnetic dipole over an n-layered structure. However, the formu

lation will be listed for all other source types; A complete presentation
 

of the mathematical physics pertinent to one source type permits the
 

reader to appreciate the assumptions and approximations made in all
 

such problems.
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(ii) the magnetic dipole source in free space
 

The Schelkunoff electric wave potential for a magnetic dipole source
 

is given by 3-120 as (Ward, 1967)
 

- 8-221 
4fiF T 8 

The magnetic current density . is defined in terms of the 

polarization M
 

- "8-222
 

Then for harmonically varying functions, 8-221 may be written
 

F 68-223 

The polarization vector M represents the dipole moment per unit volume,
 

t'V- __ h _ -- 8-224
 

where m is the dipole moment and Ot is an element of area of a loop
 

and I is the current in that loop. If we substitute 8-224 into 8-223
 

and assume a loop of elemental area, we obtain
 

.r t- '-.46L7-11- 1 &F & a e 8-225
 
-wFi

where 
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"f' 8-226 

Then 8-225 is the primary potential of a magnetic dipole in free space 

provided = and k kO. 

(iii) vertical magnetic dipole above a dissipative half-space
 

We wish to locate a magnetic dipole above an interface between a
 

homogeneous half space of wave number k, and the free space above it.
 

The dipole is to be oriented in the z direction at a height h above
 

the interface and at the origin of the cylindrical coordinate system
 

as in Figure 123. Since the normal to the elemental area of the loop
 

is in the z direction, then we need only a z component of primary
 

potential,
 

8-227
 

To this primary potential we must add secondary potentials brought
 

into existence by the presence of the half-space. The function
 

may be converted to an integral representation using the Sommerfeld
 

integral.
 

For the region &--- ,the
C expansion is
 

e'0 (XC~J ( '_S: 8-228 

(2
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while for the region i 4 " 7 C , the expansion is 

C. K_____(B8-229
7f1CA 

and finally for the region Z> F1 we have 

8-230
 

The positive value of the exponential has been used in 8-228 to ensure
 

proper behaviour of the expansion at z = - a- while the negative 

value of the exponential has been used in equations 8-229 and 8-230
 

to ensure proper behaviour at  -

Consider now the boundary conditions at the interface. For continuity
 

of tangential H we need to start from the expression for the field H
 

in terms of the potential F
 

e- F -J! ' v F 8-231 

For a vector F which has only a Z zomponent 8-231 reduces to
 

I -/ 
___F~

-I - 8-232 

so that at the interface we may write
 

9&~ ~9); .2.48-233
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Similarly, the electric field expressed in terms of F is
 

E -8-234 

so that continuity of E is assured if 

___ 1_ 8-235
 

The conditions 8-234 and 8-235 hold for all and hence can be inte

grated with respect to (, without regard for a constant of integration.
 

Thus the boundary conditions reduce to
 

_F,. / 8-236 

8-237
 

The primary potential has only a '2 component expressed by 8-227
 

-
with 8-228, 8-229, or 8-230 substituted for C' Note that only the 

zeroeth order Bessel function enters these expressions, i.e., n = 0. 

Hence the - components of the secondary potentials can only exist 

for n = 0 if the boundary conditions are to be met. Then we may write 

the Y components of the total potentials 3-102 as
 

in free space above the dipole
 

8-238
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in free space below the dipole
 

F _ - 8-239 

in the dissipative half space
 

F 8-240 

where
 

-- 8-241
 

'
 and ,2
 

8-242
 

We wish to evaluate the four eigenfunctions , , 'c\) 

and First we note that f because must 

tend to zero as _-tends to infinity. Next from the boundary condition 

8-236 we find 

" __/t"J8-243 

Also from the boundary condition 8-237 there results
 

o- \). .. A 8-244 

From these last two equations we obtain
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'A 8-245

.JCQLV1'/ 4 -'- f/<,q 38-4 

2 /=y147, 8-246 

The function must now be evaluated in terms of the constants
 

of the system. This may be accomplished by noting -that 8-239 consists
 

of a sum of primary and secondary potentials. The only term in 8-239
 

which can represent a primary potential is the second term because only
 

this term has a negative exponential to &orrespond with the negative
 

exponential of 8-229. Thus we may make the following identification
 

J';() q2 0- 8-247 

We have now obtained the formal solution of the problem and need .to
 

evaluate the integrals of 8-238, 8-239, and 8-240 in order to develop
 

useful formulae for application.
 

(iv) an infinitesimal loop lying on a homogeneous half space
 

Let us assume that g, = go, and that h = 0; the loop lies on a
 

homogeneous non-permeable ground. Then the potential in the free space
 

below the dipole, as given by equation 8-239, becomes
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~ ~1k:;; 644 TJ 4C{>8-248 

Z 

We wish to note for future reference that the expression
 

-14>--L, 8-249 

is just the amplitude reflection coefficient for the electric vector
 

normal to the plane of incidence. Now for ;E = 0, the potential may
 

be written
 

F7I C jLV ZX / 8-250 

If we are prepared to neglect displacement currents in free space, a
 

reasonable assumption, then k - 0 and we are dealing again with
 

the quasi-static approximation. Then we also conclude that
 

Ut 8-251 

In effect we are saying; in the integral of equation 8-248 very little
 

contribution arises from values of of the order of, or less than,
 

ko . Thus equation 8-250 converts to
 

8-252
F~ 1<\TL IctAL 
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This integral has been evaluated by Foster (1931) so that we may write
 

directly
 

F~j~ 2-C8-253


-(0? 
The electric field will have only a m component

vAy&b-~ 8-254 

and the magnetic field has the components
 

HC )kC ~ 8-255 

and
 

P 8-256
 

The vertical magnetic field is readily calculated from 8-254 as
 

jz 5.-4'(/J1 8-257
 

To compute f we must use in the form given by 8-240 

p fzc\8-258 

where once again we have replaced uo by A This last equation can
 

be written in the following form
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where 

IF TL>7 8-260
 

and 

U 561- -2-L2 <L .i.- ] 8-261Ttrtcr 

The functions and K. are the modified Bessel functions of order
Io 


zero. We may now carry out the differentiations indicated by 8-"256.
 

Let us reverse the order of differentiation, however:
 

L 18-262
~ kt :~ 1/k ~J 

From 8-259 we obtain
 

[K1 8-263
 

The first term on the right in 8-263 is zero at z 0 as may be 

established by differentiation of C . 

We know, further, that must satisfy the wave equation in 

cylindrical coordinates, and that any integral or derivative of this 
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function must also satisfy the same wave equation. Therefore
 

%J_ -+ ._--- - 4-I C_ 8-264 

This equation permits us to write 8-264, upon change of order of 

differentiation,
 

t8-2652-

To compute 8-265 we first note that
 

.,v.=-- 0L4& -4K"< ( --) 8-266 

1 xz8-267rr=' 

- _ -t h'--'<"' ~ ' 

)J8-268 

where and where the prime indicates differentiation with
 

respect to t. These latter two expressions may be converted to equiva

lent expressions involving only Bessel functions of zeroeth and first
 

order. To do this we use the recurrence relations (Watson, 1944, p. 79).
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- - .8-269 

8-270 

and the Wronskian for modified Bessel functions (Watson, 1944, p. 80).
 

I I 

-rc, -TcWO,8-271 

We find" 

and
 

Recalling that 10 and K. are functions of the variable
 

it is a simple matter to obtain the derivatives of with respect
 
to 

[To _V k- T_ __-273 

and
 

8-2 74
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Then we find, from 8-262
 

or
 

8-.76 

The formulae 8-254, 8-257, and 8-276 are individually useful for 

determining the electrical parameters of the half space. However, we
 

may-wish to cast these in a different form for measurement purposes.
 

For example, a dimensionless measurement is the tilt c< of the magnetic
 

vector in a radial plane as follows:
 

J4W(F13t 8-277 

A= -P C1 L jOO§<&b 8-278 

)8-279
 

C_ 8-280 

where t - (Q is the relative phase between Hf and 
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Another dimensionless measurement is the relative mutual impedance
 

between the source loop and another horizontal loop,
 

-- - 8-281 

or between the source loop and a radial horizontal dipole
 

-- - -- 282 

where in each of 8-281 and 8-282 we have assumed that
 

z L c~ A 8-283 

where eo- and cfA are the areas of the loops and is the distance
 

between their centers.
 

(v) an infinitesimal loop lying on an n-layered half space
 

The potential Fo for an n-layered half-space is obtained
 

directly from 8-248 upon substitution of the appropriate reflection
 

coefficient A-t() for an n-layered half-space. That is -- > is 

given by
 

cj sic Xie. +e 1, 8-284 

or by
 

8-285
i-z C42Z-4. 
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where
 

JL A 1 8-286 

and
 

A 

61/ 8-287 

The latter expression is derived from the impedance of a plane layered
 

structure to a uniform plane electromagnetic wave, equation 8-157, with
 

the-following substitutions
 

I7// t.8-288 

-In setting down 8-284 we are stating merely that there is a layered
 

half-space reflection coefficient J which would appear, at any 

single frequency, as the reflection coefficient for an equivalent
 

homogeneous half space. This reflection coefficient applies correctly
 

to each spectral component of the integral of 8-284 regardless of the
 

value of . The eigenvalue is given by 

8-289
 

where is the angle of incidence. For finite sources, 0 can
 

be complex (see section 3g) so that sin )7 may exceed unity. When
 

this occurs, cos G, and hence cos , the cosines of the angle 

of refraction-may depart from unity. Thus the integrals of 8-284 and
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8-285 may need to be evaluated numerically.
 

We should also note that 8-276 is an exact solution regardless of
 

the relative values of ko and kl, provided the correct reflection
 

coefficient is used. Hence this integral expression, and its derivatives
 

apply whether the half space is dielectric or dissipative.
 

(vi) the vertical magnetic dipole over a layered lunar model
 

(after Hohmann and Ward, 1968)
 

general
 

In the inductive electromagnetic depth sounding method, current is
 

induced in the subsurface by the electromagnetic field of an oscillating
 

electric or magnetic antenna. With-this method, measurement is made of
 

the field scattered by dielectric, conductive, or permeable material
 

in the presence of the source field. In general, the scattered fields
 

are functions of frequency, and consist of both in-phase and out-of-phase
 

components. From the measurements, one can deduce the subsurface distri

bution and electrical parameters of the scattering material.
 

We shall consider herein a source consisting of alternating current
 

flowing through a horizontal coil of wire at the surface of a horizontally
 

stratified lunar model, The diameter of the loop is small compared to
 

the distance between source and receiver, so that the loop may be closely
 

approximated by an oscillating vertical magnetic dipole. The arrange

ment is shown in Figure 124, where a two-layer model has been assumed.
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The propagation constant of the upper layer is ,that of the
 

substratum Y- , and that of the exterior 4 , the propagation 

cnstant of free space. The angular frequency is L6 , 07- is con

ductivity, F is permittivity, and p is inductivity.
 

Theoretical solution
 

Our solution, above, to this problem was obtained by starting
 

with Maxwell's equations and utilizing the continuity of tangential
 

electric and magnetic fields across the various boundaries. Maxwell's
 

equations in the MKS system of units are
 

-- 7A_ >- 8-290 

7 [- -- 8-291 

where and are the impressed magnetic and electric currents,
 

respectively.
 

-
iWt
The time-harmonic Maxwell's equations become, for e


-- - -- \
 

8-292 - 'VX E= QL u H "-/ / 

8-293
M
v4T r- .-z E}t ,. 

The permeability of most rocks is close to one so that we simplify
 

the solution by letting the permeability, jt/go of all layers be one.
 

The solutions to the layered model, derived from 8-284, are in the form
 

of infinite integrals, given by
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MJ ii- T 8-294 

14z1 k9 )L ? 8-295 

where Hz and H are the vertical and radial components, respectively,
 

of the magnetic field at a distance,e, from the transmitter. M is
 

the dipole moment of the transmitter, given by the turns, area, current 

product. A) and Cm are complex functions involving the 

propagation constants of the various layers, and JO and J are the 

Bessel functions of order zero and one.
 

The integrals can be evaluated asymptotically for the far field,
 

but in the general case the solution must be obtained by numerical
 

integration. Since the integration covers the entire positive real
 

line, a convergence accelerating transformation must be applied.
 

Euler's transformation, along with the Gaussian quadrature method of
 

integration was used by Frischknecht (1967). We have used a similar
 

method of evaluation, but have extended to higher frequencies.
 

Below about 5 x 104 hz, the so-called quasi-static approximation
 

can be applied to simplify the solution. This approximation assumes
 

that over the important range of integration V. is approximately
 
zero. Wait (1958) has shown that in this case the solutions for the
 

two-layer model are functions of
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B-

D = 2d/ 

k = __________ 8-296 

where is given by
 
'f2- "2

8-297
 

For frequencies higher than about 5 x 104 hz, the quasi-static
 

approximation is not valid, and the fields are not functions of the
 

two simple induction numbers B and D and admittivity contrast k. In
 

addition, both evaluation of the integrals and interpretation of ex

perimental results are slightly more difficult.
 

Effect of the Solar Wind
 

If the Moon's surface is bathed in the solar plasma, antennas on
 

or above the surface will launch several modes of electromagnetic and
 

acoustic waves. The dispersive behavior of the plasma may be described
 

in terms of a dielectric tensor. This subject will be discussed in
 

Chapter 11.
 

At frequencies significantly above the electron plasma frequency,
 

say, above 105 hz, the dielectric tensor reduces to a scalar with the
 

free space value of unity. However, at frequencies below about 105 hz,
 

the exterior medium is conductive and anisotropic, and the usual solution
 

for a stratified model is not valid. The existing theory is presently
 

being modified to account for a plasma above the surface but for the present
 

study we have used frequencies well above the assumed electron plasma frequency.
 

Inductive Depth Sounding
 

Inductive sounding to determine depths and electrical parameters of
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layers can be accomplished either by varying frequency or by varying
 

separation between source and receiver. As the frequency is lowered
 

or the separation increased, deeper material has more influence on
 

the measurements. Variable frequency sounding offers two advantages:
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(1) it is not necessary to move equipment as the sounding is being made,
 

and (2)geologic noise from lateral inhomogeneities is less because the
 

transmitter and receiver remain stationary. These advantages may be
 

outweighed in some applications, however, by the fact that only one
 

frequency is required for variable distance sounding, so that equipment
 

is simpler. Alternatively, sounding can be accomplished in the time
 

domain by using a pulsed energizing current.
 

The quantity usually measured in inductive sounding is the ratio
 

of the mutual impedance of a pair of loops in the presence of the earth
 

to the mutual impedance of the same loops in free space. Mutual imped

ance is defined as the voltage induced in the receiver divided by the
 

current in the transmitter. A sounding curve is a plot of the mutual
 

impedance ratio versus separation or frequency. The experimental
 

curve is matched graphically or numerically to the "best-fitting"
 

theoretical curve for a layered model.
 

An example of such a sounding made by Frischknecht (1967) on
 

the Kilauea Iki lava lake, Hawaii, is shown in Figure 125. The absolute
 

value of the mutual impedance ratio for co-planar loops is plotted versus
 

the induction number B. The circles are measured field data, and the
 

solid lines are theoretical curves for loops raised above a homogeneous
 

earth. At the time the sounding was made, the lava lake had a solidified
 

crust 12.2 meters thick, below which was a molten, high-conductivity lava
 

lake at least 100 meters thick. By interpolating between curves, one
 

finds that the field data fit a reference curve-for 2h/r = 0.39, indicating
 

that the response of the crust is negligible. From the electromagnetic
 

measurements, the thickness of the crust is inferred to be 11.9 meters,
 



287
 

and the conductivity of the lava 0.483 mho/meter.
 

Measurements can also be interpreted in terms of apparent conductiv

ity and apparent dielectric constant, i.e., the conductivity and dielec

tric constant of a homogeneous half space which woula yield the same 

field as that measured. Knowledge of the in-phase and out-of-phase 

components of the magnetic field is sufficient to solve for G;1 and 'L 

Figure 126 is an argand diagram showing the variation of the real and 

imaginary parts of the vertical field of a vertical magnetic dipole of 

moment 1000 over a homogeneous model at a frequency of 106 hz. Note 

that for small conductivities the fields vary only slightly with chahging 

conductivity because of the dominance of displacement currents. Simi

larly, when the conductivity becomes large, changes in dielectric con

stant introduce negligible changes in the fields. In the intermediate 

zone, values of apparent conductivity and apparent permittivity can be 

determined, and soundings can be interpreted in terms of these quantities. 

At high frequencies or short separations, the apparent values approach 

the true values for the upper layer, and at low frequencies or large 

separations the apparent values approach the true values of the lower 

layer. 

tilt angle sounding
 

general
 

The commonly used inductive sounding techniques require the precise,
 

absolute measurement of the magnetic field. However, instrument drift,
 

time limitations, complexity of operation, and natural noise may make
 

such a measurement difficult in the harsh lunar environment.
 

An easier and faster measurement is that of the angle of inclination
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of the major axis of the polarization ellipse of the magnetic field.
 

Figure 127 shows the field configuration in section and in plan view.
 

The angle is zero for a strictly layered structure, and indicates
 

the presence of lateral inhomogeneities if it is not zero; c4 is the
 

tilt angle, which varies with frequency and separation.
 

The receiver is a double-coil, phase-lock device; measurement is
 

made by rotating the coil pair until a null is obtained. Voltage from
 

coil R is fed into a phase-lock amplifier as the reference, while the
 

signal is obtained from coil s. There is no need for accurate cali

bration as with other inductive methods, and instrument drift is not
 

important.
 

The formula for computing the tilt angle is given in 8-277.
 

Quasi-static Curves
 

Sets of theoretical curves for tilt angle over two-layer structures
 

for the quasi-static case are shown in Figures 128, 129, and 130. In these
 

curves, the tilt angle, 0< , is plotted versus the induction number, 

B, for various ratios of depth to separation. The three sets of
 

curves are for conductivity contrasts of 10, 100, and 1000.
 

The major axis of the ellipse is vertical for low frequencies
 

and becomes nearly horizontal at high frequencies. As expected, the
 

curves become more widely separated for larger values of conductivity
 

contrast.
 

The curves are very diagnostic, and can be readily interpreted,
 

as shown in Figure 131, which is an actual field example from near
 

San Jose, California. In this case, the depth to a wet clay horizon
 

as determined by drilling is about three meters. The clay exhibits a
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higher conductivity than that of the dry overlying gravel. The sounding
 

was made by varying the separation between source and receiver, at a
 

constant frequency of 2400 hz. The field data fit the theoretical
 

curve for a depth of 3 meters, an upper layer conductivity of 0.0025
 

mh/meter and a lower layer conductivity of 0.077 mho/meter. While
 

interpretation is simple for models in which the conductivity increases
 

with depth, as expected at the lunar surface, it is nearly impossible
 

should the conductivity decrease with depth.
 

Lunar Models
 

Assuming the presence of the solar plasma on the sunlit side of
 

the moon, it will be necessary to operate electromagnetic exploration
 

devices at frequencies greater than 105 hz in order to relate the mea

surements to electrical parameters of the subsurface using existing
 

theory. Alternatively, measurements could be made at any frequency in
 

the plasma void region on the dark side of the moon. In this study,
 

we have computed tilt angle curves for the 105 - 107 hz band, using 

a two layer model constructed according to Table XIX. 

The resulting curves for different thicknesses of dry volcanic 

ash overlying dry basalt, with a transmitter-receiver separation of 

50 meters, are shown in Figure 132. The curve marked =0 corresponds 

to an infinite depth of ash. Again, the ellipse is vertical for the 

lower frequencies and tends toward the horizontal at higher frequencies. 

However, rapid oscillations similar to the plane wave reflections re

ported earlier occur at frequencies approaching 107 hz. As the
 

depth of the ash layer becomes greater, the dip angle curve approaches
 

that of an ash layer of infinite depth.
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TABLE XIX
 

Model 6
 

h! = 0, 5m, 10m, 30m, 60m, 

h2= -. 

=13- curve 1, Figure 107 

KI = curve 1, Figure 106
 

Sub-Model a (Fig. 132) b (Fig. 133) c (Fig. 134) d (Fig. 135) 

(2 curve 4 curve 5 curve 3 curve 6
Figure 107 Figure 107 Figure 107 Figure 107
 

K2 	 curve 4 curve 5 curve 3 curve 6
 
Figure 106 Figure 106 Figure 106 Figure 106
 

Figure 133 is for a similar model except that 1% moisture has been
 

added to the 	bottom layer. Although the addition of water increases
 

the conductivity by an order of magnitude, the measured dielectric
 

constant is about the same for the wet and dry basalt. At these high
 

frequencies, 	particularly above 106 hz, the loss tangent is small, as
 

shown in Figure 108. Therefore the curves do not differ greatly from
 

those for the model possessing a dry underlying layer. A slight dis

placement of 	each curve toward the lower frequencies has occurred.
 

The curves in Figure 134 are for volcanic ash of thickness ranging
 

from zero to 	infinity overlying a low-density basalt containing 3.8%
 

moisture by volume. The conductivity of the wet basalt isabout two
 

orders of magnitude greater than that of dry basalt. The tilt angle
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curves are significantly different from those for a dry substratum.
 

In general, the curves differ in shape, are displaced toward lower
 

frequencies, and the rapid oscillations at higher frequencies are
 

somewhat suppressed. The curves suggest that subsurface water present
 

in this amount would be easily detectable.
 

- Figure 135 shows tilt angle curves for a layer of volcanic ash on
 

top of sea ice. The electrical parameters of the sea ice should be
 

about the same as those of lunar. permafrost. The conductivity of the
 

sea ice is slightly higher than that of basalt with 3.8% moisture, and,
 

as a result, the curves are even more diagnostic of the presence of water.
 

For purposes of comparison, Figure 136 shows tilt angle curves for
 

ten meters of dry volcanic ash overlying infinite substrata of the four
 

materials. The features that best distinguish a moist from a dry sub

surface are the position and slope of the curves between 105 and 106 hz.
 

It would be desirable to measure tilt angle at short frequency intervals
 

through the entire two decades of frequency between 105 and 107 hz.
 

However, if economy of operation is a prime consideration, it appears
 

that it would be possible to obtain a good indication of the presence
 

of subsurface water by making measurements at only four or five fre

quencies in the 105 - 106 hz band. Graphical or computer interpretation
 

schemes can be devised to relate the measurements to subsurface distri

bution of conductivity and dielectric constant.
 

This study indicates that the tilt angle electromagnetic method
 

could find applicability as a simple, efficient tool for detecting sub

surface water on the moon.
 

(vii) a horizontal magnetic dipole over homogeneous half space
 

The asymmetry of this problem causes the vector potential F to
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have two components, one in the vertical and one in the horizontal 

along the dipole axis (Figure 137). Analysis of the problem leads 

to the following expressions pertinent to a horizontal magnetic dipole over 

a homogeneous half space 

F x +,trFm 8-299 

it~c '~H e-\ ~ILAcCX 8-254 

~ ~ be8-300 

F ='Ce-8-301 

F ,- -2 C __ - /- 'I _ 

4,0 076FL/; ;- zZ - -30 
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8-3041/ 5F 

8-305 

4) 8-306 

WI- / A8-307 

FF 8-308 

4

_ 

0 
F,-K 8-309 

4

G-2 8-310 

The above statements constitute an exact solution for arbitrary
 

values of k and k.
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If now we specialize the problem with the following assumptions
 

h.= 0 

Z=0 

UO,-.,/ (i.e., ko ,' 0)
 

then closed form solutions may be given for the fields. These are:
 

8-311
 

¢ s416 -ll 

_ C 8-313 

- I C*L 

Ex 8-314 

-1 - 8-315 
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114 -zC jj 8-316 

where 

9 8-317 

2.-

S1 8-318
 

The reduced mutual impedance between a pair of coaxial dipoles is
 

then
 

%727, , r 2 - -8-319 

and for a pair of coplanar coils it is
 

/22z 

-where Z IU A in 8-319 and is Zo = , aj
 

in 8-320. -/773
 

(viii) a horizontal magnetic dipole over an n-layered half space
 

If in equations 8-299 through 8-310 we substitute ua for u, where
 

ua is given by 8-287., then the solutions represented by this series
 

of equations pertain to a horizontal magnetic dipole over an n-layered
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half space. The integrals and their derivatives in this series of
 

equations may then be solved numerically. Numerical evaluation may
 

be used, even for a homogeneous half-space, if any dipole is elevated
 

above the interface, to simplify the computation. 

(ix) a grounded horizontal electric dipole on a homogeneous
 

half space
 

The following assumptions are typically made if a grounded electric
 

dipolar source is employed:
 

z=0
 

h=0 

Pi go
 
0 (o >ko 

Then the electric field components are found to be
 

8-321
 
r3 

2-1
 

I3zBc -322
 

for an electric dipole of length ds oriented in the x direction and
 

carrying a peak current I (see Figure 138).
 

The mutual impedance between a pair of grounded electric "dipoles" 

of lengths ab and AB is
 

Z IU)9 8-323 
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where
 

-- (resistive coupling term) 8-324 

Li' inductive 
AT(P m coupling 8-325 

I L K term 

ds, dS are elements of length along the wires and ( is the
 

angle between the wires. The resistive coupling term is the only
 

one of importance at very low frequencies where A-1/- 'L
 

In terms of the distances between the ends of the wires it is
 

D o) _ I _ I - I -t I_ -2 

(x) *a grounded horizontal electric dipole on an n-layered
 

half space
 

The fields above a homogeneous half space are derived from two
 

components of a Hertz electric vector potential as follows:
 

'-YF -i'= 
8-327
 

ff~ F8-328 
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8-329 

8-330 

-4,X-4j0 

*FIZ- C ~ Ct 2YN~C 8-331 

If we wish to generalize this solution to allow for an n-layered 

half-space, then as before, uI is replaced by ua and the integrals 

plus their derivatives evaluated numerically. It is customary to measure 

only the surface electric field from a grounded horizontal electric 

dipole and so we may set z = 0 in the above formulation after the 

derivatives have been computed. 

(xi) a vertical electric dipole over a layered half space
 

The electric and magnetic fields above the half space are given by
 

E 8-332 

f( '8-333 
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l 

6~ 

C 

Ac t 

=8-335 

v-tI8-336 

8-334 

8-337 

-HLa L[ 8-338 

o8-339 

;7, Z2 -
7,-I ta ,h 

8-340 
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(xii) a finite loop lying on an n-layered half space
 

While the infinitesimal dipole is an adequate representation for
 

most electromagnetic induction experiments, we have seen above that
 

finite "dipoles" are customarily employed in resistivity surveying
 

(two horizontal electric dipoles). Similarly when using vertical
 

magnetic dipoles, a large loop of wire is sometimes laid on the
 

I
surface. For measurements at distances OR where R is
 

the radius of the loop, the infinitesimal dipole approximation is
 

inadequate. Under those circumstances, it is necessary to employ the
 

e
 
following formulation (Morrison, Phillips, and O'Brien, 

1968) 


0Ql A]U L > -z 8-341 

I 8-342 

where is given by 8-157, is the intrinsic impedance of 

free space, a is the radius of the loop, I(tc) is the current in
 

the loop, ue is the apparent wave number in free space, and h is
 

the height at which measurement is made. These expressions have been
 

evaluated numerically by Morrison, Phillips, and O'Brien (1968).
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(d) Catalogues of curves for uniform field and finite source'
 

problems
 

There has been substantial application of electrical methods to
 

geophysical exploration on Earth. As a result some catalogues of model
 

response curves are available with which to compare field data. These
 

response curves are of two types:
 

soundings
 

In an electrical sounding, either the frequency of the source
 

or the geometry of the source-receiver separation is varied and a
 

characteristic response, such as a mutual coupling, is expressed as
 

a function of the parameters of the system. An electrical sounding
 

is intended to give information on the horizontal layering of the
 

electrical parameters.
 

lateral search
 

In lateral search the quest is detection and delineation of
 

subsurface inhomogeneities such as faults; dikes; spherical,
 

ellipsoidal, or cylindrical bodies; etc. The source frequency
 

and/or the configuration may be changed during a survey for
 

inhomogeneities, but most frequently a plan map or profile is
 

produced showing the change in some response function, such as
 

mutual coupling, over the area of search.
 

Listed below are some available catalogues of sounding or lateral
 

search curves,. We list these under the headings of the geophysical
 

methods discussed in section 9.
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soundings
 

resistivity
 

1. 	 Mooney, H. M. and W. W. Wetzel, 1956, The potentials about a
 

point electrode and apparent resistivity curves for a two, three,
 

and four layer earth, Univ. of Minnesota Press, Minneapolis.
 

2. 	 Compagnie Generale de Geophysique, 1963, Abaques de sondage
 

electrique, second revised edition, European Association of
 

Exploration Geophysicists, The Hague, Netherlands.
 

3. 	 Al'pin, L. M., M. N. Berdichevskii, G. A. Vedrintsev, and A. M.
 

Zagarmistr, 1966, Dipole methods for measuring earth conductivity,
 

translated by G. V. Keller, Consultants Bureau, New York.
 

inductive electromagnetic
 

1. 	 Vanyan, L. L.2 1967, Electromagnetic depth soundings, translated
 

by G. V. Keller, New York, Consultants Bureau.
 

2. 	 Frischknecht, F. C., 1967, Fields about an oscillating magnetic
 

dipole over a two layer earth and application to ground and
 

airborne electromagnetic surveys, Quarterly Colorado School of
 

Mines, Vol. 621 No. 1.
 

Magnetotelluric
 

1. 	 Cagniard, L., 1953, Basic theory of the magnetotelluric method
 

of geophysical prospecting; Geophysics, Vol. 18, pp. 605-635.
 

2. 	 Yungul, S. H., 1961, Magnetotelluric sounding three-layer inter

pretation curves, Geophysics, Vol. XXVI, No. 4. pp. 465-473.
 



304 

lateral search
 

resistivity
 

1. 	 Keller, G. V., and F. C. Frischknecht, 1966, Electrical methods in
 

geophysical prospecting, New York, Pergaman Press.
 

inductive electromagnetic 

1. 	 Strangway, 0. W., 1966, Electromagnetic parameters of some sulfide
 

ore bodies, Mining Geophysics, Vol. I, Tulsa, Society of Exploration
 

Geophysicists.
 

2. 	Bosschart, R. A., 1964, Analytical interpretation of fixed source
 

electromagnetic prospecting data, Ph.D. Thesis, Delft.
 

3. 	 Ward, S. H.1 1967, The electromagnetic method, Mining Geophysics,
 

Vol. 11, Tulsa, Society of Exploration Geophysicists.
 

4. 	 Grant, F. S. and G. F. West, 1965, Interpretation Theory in Applied
 

Geophysics, New York, McGraw-Hill Book Co.
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9. 	Possible lunar electromagnetic experiments
 

Eight passive and ten active electromagnetic methods; spanning
 

the frequency band from D.C. to 101 hz have been considered. These
 

methods are as follows:
 

(a) 	Passive systems
 

*(i) the interaction between the Moon and the steady solar wind
 

* 	 (ii) transient induction in the Moon 

(iii) 	the separation of magnetic fields of origin internal
 

and external to the Moon
 

(iv) 	 magnetic variation deep.sounding method
 

(v) 	 AhMA
 

(vi) 	 static electrical fields
 

(vii) 	transient electrical fields
 

(viii) the magnetoselenic method
 

Those experiments marked with an asterisk are in progress.
 

(b) 	Active systems
 

(i) 	 resistivity method
 

(ii) 	 induced electrical polarization method
 

(iii) 	 fixed transmitter inductive method
 

(iv) 	 mobile transmitter inductive method
 

(v) 	 radar reflectivity method 107 hz to l0l hz
 

(vi) 	 radar reflectivity method 104 hz to 108 hz
 

(vii) 	capacitive coupling method
 

(viii) 	focusing of electromagnetic fields by Moon
 

(ix) 	 use of the communication link between Apollo CSM and LM
 

(x) 	 use of the LM radar altimeter
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The possible experiments listed above have been studied .in. rela

tion to the following modes of operation: 

(a) Earth observatories B(v) 

(b) combiiied Earth observatory and lunar orbit B(v), B(viii) 

(c) lunar orbit (A(i), A(ii), B(v), B(vi) 

(d) combined lunar orbit and lunar surface station B(ix), B(x) 

(e) emplaced scientific stations A(i), A(ii), A(iii), A(iv), 

A(v), A(vi), A(vii), A(viii), B(i), B(ii), B(iii), B(vi) 

(f) lunar traverse A(i), A(ii), A(iii), A(iv), A(v), B(i), 

B(ii), B(iii), B(iv), B(v), B(vi), B(vii) 

In subsequent pages we shall describe each of these possible
 

experiments and indicate their advantages and limitations based on
 

our current knowledge of the lunar environment. As knowledge of the
 

lunar environment is increased, these proposed advantages and limi

tations probably will require re-evaluation.
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10. Estimated ranges of the lunar electrical parameters
 

Sources of direct information on the electrical parameters of
 

the Moon include: 

(a) radar: Earth based astatic 

Earth-satellite bistatic 

lunar-lander astatic
 

(b) 	temperature cycle - thermal inertia measured during a
 

lunation or during an eclipse
 

(c) 	thermal emission: infrared
 
ratio and polarization
 

microwave) 

(d) 	Explorer 35 magnetic field measurements
 

(e) 	Surveyor V, VI, VII, magnetic experiments 

To summarize the information obtained by the above direct means,
 

we note the following. Astatic Earth based radar has indicated a
 

mean surface dielectric constant, of a homogeneous model of the
 

Moon, of 2.8 ± 0.7 (Ragfors, 1966). Brown et al. (1967) report
 

an interpreted value of 3.5 ± 0.7 obtained with astatic radar
 

equipment aboard Surveyor III, and this value applies to regions
 

exterior to the crater in which Surveyor III landed. Local high
 

values of dielectric constant
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ranging between 5 and 20 have been recorded with Earth based range-


Doppler astatic radar (Thompson and Dyce, 1966) at various points over
 

the lunar globe. Bistatic radar measurements confirm these local
 

anomalies and indicate a mean surface dielectric constant of 3.0 ± 0.2
 

(Tyler and Peterson, 1968; Tyler, 1968). The data upon which the
 

astatic mean value is based may also be interpreted in terms of a two

layer model; the first tenuous layer about 5m to 1Or deep is given a 

dielectric constant of 1.8 and the bottom or terminal layer of this
 

model is given a dielectric constant of 4.5 to 5. Tyler (1968), in 

interpreting the bistatic data, offers evidence against a uniform tenu

ous layer over the whole lunar surface and suggests that the debris is
 

gradational into the bedrock so that a sharp discontinuity does not in
 

general exist at the base of the debris.
 

Because the power reflection coefficient of the lunar surface is 

essentially independent of frequency over"much of the radar band, an 

upper limit of about 10-4 mhos/m for the conductivity of the surface 

is usually assumed above 1.4 x 107 hz, on the basis of astatic radar 

observations alone (Hagfors, 1967). Tyler (1968) makes an independent 

-4 8
observation from the bistatic radar of 2 x 10 mhos/m at 1.36 x 10 hz. 

Troitsky (1962), Lax (1965), Kopal (1966, p. 369), England et al. (1968) 

and others combine the radar determined value of dielectric constant, 

the infrared lunation and eclipse measurement of thermal intertia, and 

the ratio of the thermal and electrical conductivities from radio

metric measurements at microwave and millimeter wavelengths to obtain
 

a frequency dependent surface electrical conductivity; Kopal (1966,
 

P. 369) gives the values 3 x 10-2 mhos/m at 1 cm wavelength to 
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3 x 10 - 4 mhos/m at 100 cm wavelength. If the conductivity decreases 

linearily with decrease in frequency as is customary for dry rocks
 

at least down to 102 hz, the conductivity at 3 x 102 hz (106 m wave

length) would be 3 x 10"0 mhos/m.
 

The two-layered model-of the lunar surface is consistent with
 

radiometric observations of the polarization of the thermal emission
 

from the lunar surface. At a wavelength of 3.2 cm Soboleva (1962)
 

obtained a dielectric constant of 1.65 while Heiles and Drake (1963)
 

obtained a dielectric constant of 2.1 at 21 cm wavelength.
 

De Wys (1967, 1968) has interpreted the results of the magnet
 

experiments aboard Surveyors V, VI, and VII to indicate the presence
 

of as much as seven percent magnetite by volume at the lunar surface.
 

'This estimate could readily be large of a factor of two. Terrestrial 

basalts contain magnetite in amounts ranging from 0.7%to 4% by 

volume (Keller and Frischknecht, 1966). Thus, while a maximum rela

tive magnetic permeability as high as 1.70 is possible, a more 

probably value would be about 1.25 as indicated earlier.
 

Concerning the Explorer 35 magnetic field measurements and their 

importance in determining 9, Ke, and Kin, we have already in Chapter 

7(f) noted the ambiguity in interpretation of these data. However,
 

Table XX summarizes the conclusions reported in the literature.
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Table XK 

Explorer 35 Nagnetic Field Leasurements 

Static Field
 

-
Ness - Cowl ing time a Z -10 5 mho/m 

Sonett - Unipolar generator a410-6 mtho/m (homogeneous) 

or insulating outer layer and conducting core-

Transient Field 

-4 -5 
Ness 10 Z-, l 10 mho/m 

Sources providing indirect information and inference re the 

electrical parameters of the Moor include: 

(a) c> scattering experiments, Surveyors - basaltic rock
 

(b). mean density 3.34 GMS/CC - basalt?
 

(c) albedo and color data - basalt?
 

(d) '<ray,Luna 10 - basic rock? 

(e) mean surface temperature -'350 C 

(f) va&uum environment - dry surface rock
 

(g) thermodynamic arguments - hot Noon? 

(h) photographs
 

(i) gravity field and shape of the Moon 

(j) Surveyor mechanical experiments 

(k) terrestrial analogs
 

The above information has been utilized in Chapter 7(h)
 

to obtain a preferred model of the Moon and tvo limiting models of 

the Moop. These models are described by: 



317 

Permeability -A*004 m <1.25 

1740 vi r,0 1600 km 

IP = 1.00, r l1600 In 

Conductivicy - prefecred model - Table XV and Figures 86, 88, 90 

- high a model - Table XV1 and Figure 90 

- low a model ~ Table XVII and Figure 90 

Dielectric Constant - preferred model - Table XV and Figures 87, 89, 91
 

- high U model - Table XVI and Figure 91 

- low a model - Table XVII. and Figure 91 

The preferred and high a models pertain to a Moon in which 'internal
 

temperatures reach at least 17000 C and in which water or ice fills the
 

pores of the rocks in the intermediate shells. These models then repre

sent a hot wet TMoon. 

The low a model pertains to a Moon inwhich the internal temperature
 

does not exceed 10000 C and in which pore water, if present, is of minor
 

importance relative to temperature in determining the distributions of
 

electrical conductivity and dinlectric constant' in the lunar interior. 

This model then represents a cold dry moon.
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11. The effects of the solar plasma and solar radiation
 

The Moon orbits in the solar plasma, a fully ionized, collision

free supersonic stream of high electrical conductivity. This stream
 

both bombards the lunar surfaces with electrons and protons and serves
 

as a compressible anisotropic dielectric for electromagnetic waves
 

propagating in it. The particle bombardment can lead to static and
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dynamic electric fields at the lunar surface. However, this is but 

one mechanism for the generation of electric fields (Rycroft, 1965). 

There will be a static ,Lt< , term arising in induction by the inter

planetary field (Sonett, Colburn and Currie, 1967), a dynamic induction 

term arising in transients in the interplanetary field (Sonett, Colburn
 

and Currie, 1967), a photon bombardment field, and possibly a cosmic 

ray bombardment term. All of these processes can lead to the production 

of a lunar atmosphere and to ionization of the atmosphere and litho

sphere. According to Rycroft (1965) these processes compete and it is not 

clear (a) whether the Moon retains a net negative or positive charge or 

(b)whether the assumed lunar ionosphere is positively or negatively 

charged relative to the lunar surface. Further, very little can yet 

be said of the transient behavior of these fields. Any charge accumula

tion on the lunar surface may not be experienced.beyond a Debye length 

into the solar plasma and this is of order 10 meters (although an electron 

gyro-radius of about I km may be a more appropriate number than a Debye 

length). Petschek (1965) suggests static electric fields of order Ol 

to 100 volts per meter for the first 10 to 100 meters above the lunar 

surface. Thus the intensity and direction of the stationary or transient 

component: of electric field at: the Moon's surface may bear no relation

ship whatsoever to the electrical conductivity distribution in the in

terior. On the ether hand, if measurements are made above the surface 

at heights greaLer than a characteristic length such as a Debye length, 

then the electric fields .quite possibly could-be related to the elec-

trical conductivity of the lunar interior, 
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The transient behavior of the solar plasma density and magnetic
 

field, the collisions of solar particles with the lunar surface, and
 

the gyration of the protons pnd electrons about the field lines all
 

produce electromagnetic radiation which will constitute noise for elec

trical experiments. The spectrum of this noise is unknown.
 

The mere presence of a p asmaaround the Moon leads to the obser

vation that antennas situated on or above the lunar surface will launch
 

several modes of electromagnetic and acoustic waves. The dispersive
 

behavior of electromagnetic waves in a stationary unbounded plasma may
 

be described in terms of a dielectric tensor (Brandstatter, 1963, p. 157)
 

""y r 

-,f,. 

wher I---l ---- /),i = 

where = I is the ratio of the plasma 

) and appied (Lu) frequencies for the r-th species in the 

plasmc; ft-'j.r/ - _____* is the ratio of the gyro-frequency to 

the applied frequency for the r-th species; J'flr and e are the mass 

and charge of the r-th species respectively; F), is the scalar 

magnetic field oriented in the Z drection; i\Ibc is the number density of 

the r-th species; and C: is the dielectric pernittivity of free space. 
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For the interplanetary medium, we may consider protons and electrons
 

as the only species present. The electron plasma frequency is abbut
 

2.8 x 104 hz for a particle density of 10 per cc wThile the proton 

plasma frequency is about 6.6 x 102 hz. The electron and proton gyro

frequencies are 140 hz and 0.076 hz respectively for a 5 gamma anbient 

magnetic field. 

Equation lid immediately informs us that the dielectric behavior 

is anisotropic, is a function of frequency, and exhibits resonances.
 

At any frequency significantly above the electron plasma frequency, say,
 

about 105 hz, the dielectric tensor reduces to a scalar with the free
 

space value of unity.
 

If we now introduce the boundaries between the plasma and the
 

Moon's surface and between the plasnia and the antenna, then the problem 

becomes considerably more complicated except at frequencies above 105 hz. 

Thus we cannot simply relate 'the antenna pattern to the conductivity 

distribution within the Moon at frequendies less than 105 hz. 

lowever, the problem i s even more complicated, for description of 

both the electromgnetic and the acoustic modes requires the introduction 

of a compressibility tensor as well as a dielectric tensor (Phillips, 

1968). The importance of pressure gradients may be seen in Ampere's 
N 

law (Phillips, 1968) for frequencies shove the electron plasma frequency 

V,.l -£ -e 1-1-2 



-where = Lpe2/ ( 2 ge 

/O)pe = electron plasma frequency 

4)ge = electron gyro-frequency
 

)= source frequency, radians/sec.
 

Ke = dielectric teitsor
 

6e = compressibility tensor 

\7Pe = gradient of perturbation plasma electron pressure
 

Je = electric source term
 

Actually, Phillips notes, "The type of pressure wave existing 

divides the frequency axis into three natural regions. Above the 

electron plasma frequency at -- 2.8 x 104 hz we assume, because of 

Landau damping, only an electron pressure wave exists. This pressure 

wave probably is damped out approximately one order of magnitude above 

the electron plasma frequency. Also, in this region we assume that we 

can neglect ion motion and that the ions exist only to neutralize the 

plasma. In an intermediate frequency region, perhaps between the 

2 
electron plasma frequency and the ion plasma frequency (6.6 x 10 hz),
 

the electron pressure wave is cut off or is at least appreciably below
 

the ion wave in energy, and we consider that only the ion pressure wave 

may exist in the lower. part of this region." 

"Below approximately the ion plasma frequency we consider a PUID 

region where the ions and electrons oscillate together as a single
 

sound wave in the gas. Here we consider Alfven waves and the hybrid 
t
 

magnet o-a eous tic waves. 
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Until adequate work on this subject has been completed, further
 

detailed discussion, on the propagation of audio frequency electro

magnetic energy in and bel6w the plasma, would be poorly founded.
 

However, Phillips notes that for an orbiting antenna, the plasma will
 

interfere with propagation at frequencies between the electron plasma
 

frequency at 2.8 x 10 hz and the frequency where the plasma looks like 

5 411
free space, say, 10 hz. However, below 2.8 x 10 hz and above, say, 

t he electron gyro-frequency, there is effectively no electromagnetic 

propagation from an orbiting antenna. On the other hand, for an antenna
 

situated on the lunar surface, the plasma will serve to reflect all of
 

the electromagnetic energy below 2.8 x 104 hz and above 1.40 x 102 hz
 

into the lunar interior. Further analysis of this problem area is re

quired, especially since we are uncertain of the modification to the
 

plasma brought about by the lunar surface and the radiation reflected
 

from it.
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12. 	Discussion of possible experiments
 

The following is an analysis of the advantages and limitations
 

of the proposed experiments to the limit that current information 

permits such an evaluation.
 

(a) 	 Passive systems 

(i) 	the interaction between the Moon and the steady solar vind
 

With the-emplacement in orbit of Explorer 35, this
 

experimdnt was in progress. The data from this experiment and their 

interpretation were discussed in Chapter 7(f). The conclusions 
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reached there may be sumaarized as follows: 

1. Conductivities estimated from the Cowling time (Ness et al., 

1967) are meaningleas since the Cowling analysis is inappropriate for 

the problem at hand. Basically we are studying the interaction of a steady 

magnetic field which is moving relative to the Moon. The electrodynamic 

equation which then applies, derived from Mamell's equations in a frame 

of reference moving with the Mbol, is given by equation 3-133. 

Note that this equation does not include the effects of displacement
 

currents. Neglect of displacement currents in the Moon is not neces

sarily justifiable at the present time as the discussion of Chapter
 

7(f) brought out. However, with this assumption we are left with
 

equation 3-133, repeated here for convenience,
 

l i ) - ___ 12-1 

If we arbitrarily set the first term on the right equal to zero,
 

another assumption which is difficult to justify for the Moon-inter

planetary field interaction, we obtain the diffusion. equation hich 

predicts tbit the interplanetary field diffuses through the Moon with 

the Cowling time 

o-- */

12-2
 

from which Ness et al. (1967) estinated the conductivity a', by 

further assuming that the permeability/4 has the free space value. 

The most serios assumption, of c6urse, is that involving a finite 
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value for -2s In reality, is zero for the steady solar 

wind as Sonett and Cclburn (1967) have noted. A final limitation of 

the Cowling tine analysis is that the effect of the plasma and electric 

fields thereon are both ignored.
 

2. The unipolar generator analysis of Sonett and Colburn (1967) 

leads to a choice of two models: either a homogeneous Moon with a con

ductivity no greater than 10 - 6 mho/m, or alternatively, an insulating 

outer shell of undefined thickness surrounding a core of any conductivity
 

whatsoever. Clearly this analysis has not been developed to the point
 

where it is providing useful information on the conductivity distribution
 

in the interior of the Moon.
 

We are thus forced to conclude tha t we have as yet.learned very 

little about the body properties of the Moon from this experiment, and
 

the prospect of improvement in our techniques of data interpretation is 
. 

not great.
 

(ii) transient induction in the Moon
 

This experiment, also in progress via Explorers 33, 34, 

and 35 (Ness, 1968), has somewhat more promise 'than experiment (i) but 

has yet to yield reliable information about the distribution of the 

electrical parameters in the interior of the Moon. The difficu ties 

with the method are due to inappropriate assumptions as described in 

Chapter 7(f) and surmnarized as follows: 

1. the Moon is homogeneous
 

2. free space surrounds the Moon 

3. the inducing magnetic field is uniform
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4. 	external electric fields are negligible
 

5. 	conduction currents predominate over displacement currents
 

for the frequency range. considered in transient induction
 

(typically 10 sec period to 10 hoir period)
 

6. 	the magnetic permeability of the Moon equals that of free
 

space
 

These assumptions are difficult to justify individually and even
 

more difficult to justify en masse. There is a possibility that our
 

ability to analyse correctly the pertinent boundary value problem
 

without recourse to these six assumptions will improve in the ne&r
 

future. Certainly we need to research such problems aggressively.
 

For the moment, however, we are forced to conclude that this experiment
 

has contributed nothing to our knowledge of the electrical parameters
 

of the Moon.
 

(iii) the
IILparation of mazntic fields of origin internal 

and externsl to the Moon 

This experiment, as it has been applied to studies 

of the Earth's interior, has been described in Chapter 8(b) (iii) and 

8(b)(xiii). If we treat the fhole lunar sphere, the pro

cedure may be suiparized as follows: 

Solutions of the vector wave equation for the electric E or 

magnetic H fields about a sphere may be expressed in terms of two 

vectors M and N as follows (Stratton, 1941; Morse and Feshbach, 

1953):
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-- 1-2-3i- (Kjt~ -. ,__ IH 

" 
t _ 1- 1-2-4 

which represents a superposition of poloidal magnetic and toroidal
 

magnetic modes., These vectors are defined by
 

di? 12-5 

--6 KJ
"Lr\ J IT,,3A ?&4 
f / 1j -' *' If&- J-, :._1 Wt& 1L2-6 

where represents the spherical Bessel function appropriate 

C9 P11/ o\ 
to the region under study, , is the associated Legendre 

'
 polynomial, k is the wave nunlber defined by - =/Ati ", i'v 

while 1. , I . and /. are unit vectors in the 12.., : od C 

directions respectively. The terms 1$ (cos-) and 

describe the geometry of .the total fields over the surface of the 

moon.
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/
 

The functions (in! ) must satisfy the differential equation 

and are selected from 

12-8tin-

.,/,.)_1 & ) 
12-9Qn Ah 

t ~~ f442-10PH9 LT7 

12-11P 

g b; I V : K 1 t
 

the choice of which depends upon the physics of the problem. The 

( QN )function is a standing wave which is finite at the origin; 

(-.) is a standing wave which is finite at infinity; whereas 

((,) aod fl (.,U) represent outward and inward travelling waves 

suitable for tha region " 0,,1 where a is the radius of the sphere. 

ExerQto Whe Ntoon the field should Lthen be represented b1 7'-K. 9;) 

+ . -,. , .,ere and ) erre functions of frequency and of 

the geometry of the fields, The rcflection coefficient then is given 

by t/e ratio. The internal field of the Noon is the field 

transmitted across its surface (T) and is equal to T = I - R where R 

is the fielid refi oct-cd by the surface, .Thus if sic maosute the co -ipo:nuLs 
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of the magnetic field at the Moon's surface and obtain the reflected 

and transmitted fields from.them, we should be able to deduce some

thing about the interior of the Moon.
 

This problem has been solved rather readily for the Earth whore 

Laplace's equation pertains to the tegion exterior to the Earth. 

Under these circumstances the reflection coefficient of the Earth, 

i.e., the ratio of the reflected to the incident field, may be com

puted rather readily regardless of the.geometry of the incident field
 

(Lahiri and Price, 1939; Eckhardt, 1963; Eckhardt, larner, ad Madden, 

1963; Te1cuchi and Saito, 1963). This situation does not pertain to
 

the Noon at frequencies less than 10-5 hz because the region exterior
 

to the Moon is dispersive and anisotropic. The problem of a dissipative
 

sphere in a dissipative anisotropic whole space is not available in the
 

literature although Schwartz (1967) has described the problem. Putzer
 

(1967) has set down natural modes of oscillation of an isotropic homo

geneous Moon in an isotropic plasma.
 

Assuming that this problem could be solved, then the reflection
 

coefficient of the ocwn, being a function of the interior conductivity
 

distribution, would yield knowledge of that distribution. One would 

study the reflection coefficient as a function of frequency in order
 

to obtain co-i-iductivity estimates. The magnetic permeability and the 

dielectric constnt also affect te reflection coefficient. 

The density of stations required on the lunar surface for this 
purpos dni, h ... < " I rend )Wn 

pose dpcnds upon the degree of he surface hermoni W" @ 9 C,.: 

one wishes to define. If-we ascurie a uniform inducing field, a ininimi 
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of stations is required. The experiment might be difficult to perform
 

in orbit due to the confusion between time and space dependencies of
 

the magnetic field as recorded by an orbiting satellite.
 

A combination of one orbital and two diametrically displaced
 

magnetometers on surface has been suggested as the minimum experiment
 

by the Program Evaluation Committee of the Ames Conference on Electro

magnetic Exploration of the Moon. However.-this problem has not yet
 

been rigorously analysed.
 

An analysis pertinent to separation of internal and external fields
 

over a plane or along a line has been discussed in Chapter 8 (b)(xiii) 

afd - it could have application to the dark side of the Moon 

where the space above the lunar surface is assumed to be free space in 

the electromagnetic sense. Howevdr, again a rigorous analysis of the 

method, as it applies to the Moon, is required.
 

This experiment has great promise and demands a substantial quan

titative analysis at the earliest moment. -It offers the strong possi

bility of yielding information on the electrical conductivity and hence
 

t he temperature in the deep interior of the Moon.
 

An-interesting .added advantage of the low frequency three-component
 

magnetic field measurements at several stations simultaneously is that 

a check on the validity of the plasma diamagnetism theory of the dark 

side magnetic anomaly would be provided (Col-burn, et al., 1967). If 

the removal of diamagnetism is the correct theory then the amplitude 

of the anomaly will be the same on the surface of the Moon as at 763 km 

where recorded by Explorer 35. 
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(iv) magnetic variation deepsounding method 

Measurement of the ratio of the vertical magnetic field
 

(LO) as a fraction of the total horizontal magnetic fieldLT iY- 9 

at each of two stations simultaneously will yield information on the 

relative conductivity distributions beneath the two stations.
 

Schmucker (1959, 1964), Rikitake (1966). Wiese (1963), Whitham
 

(1963, 1964), Parkinson (1964), Goldstein and Ward (1966). and many
 

others have discussed anomalous earth conductivity and permeability dis

tributions detected by geomagnetic deep sounding. While the simple
 

analysis indicated above is all that is normally carried out on geo

-magnetic disturbances ranging from micropulsations to diurnal variation,
 

reference really should be made to the ellipses of polarization in both
 

the Vertical and borizontal planes as illustrated in Figures 139 and 140.
 

If the major axis of the inducing horizontal ellipse of polarization
 

rotates relative to the long axis of the anomaly, the recorded ellipses
 

in the horizontal and vertical planes will change rmrkedly as Ward and
 

Fraser (1966) have noted. Furthei, if the inducing field ellipse is
 

not of constant area and ellipticity over the region searched, the
 

accuracy of the interpretation will be degraded. For this reason it
 

is customary on Earth to record at six or more stations simultaneously
 

and to select for aialysis geomagnetic events which are uniform across
 

the array of stations.
 

Interpretation has in the past depended upon comparing an ob-

served profile of
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with a number of profiles obtained by computation or by inhomogeneous 

scaled models of the planetory interior. Sometimes a highly conduc

tive layer is placed beneath a conductive inhomogencity in order to 

obtain a good match co available wodel data and in this sense the 

depth to the highly conducting layer is predicted. 

The method should be satisfactory for use on the Moon, especially
 

ten the array falls in the plasma void where local spatial variations
 

in the inducing field are expected to be minimal. It would employ a
 

network of three-component magnetometers, the data from which might be
 

used for the internal-external separation experiment (a)(iii) above,
 

Thus on a 1000 km traverse of the lunar surface, three-component magneto

meters should be placed at regular intervals of, say, 100 km. One could
 

hope to interpret the results in terms of anomalous conductivity or per-.
 

meability distributions and this might shed some light on anomalous tem

perature distributions, if such exist, and on the geological environment.
 

A bandwidth of D.C. to 10 hz and a sensitivity at least as good as 0.2)
 

are indicated,
 

An alternate mode of operation would utilize one three-component
 

magnetometer at an emplaced scientific station (ESS) and a second
 

similar instrument-mounted on a boom attached to a lunar scientific
 

service module (LSSM) which is programmed to stop frequently while on 

traverse. This latter mode has the advantage that a greater density 

of observations can be established but suffers from two limitations. 

The first of these limititions arises iQ the length of stay at a single
 

station is but a few minutes; then the longest period of magnetic
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disturbance that may be measured is short. The second limitation is
 

related; the short duration of measurement at the roving station may
 

preclude measurements which include inducing fields of more than one 

direction relative to any subsurface inhomogeneity which might exist. 

Further, the inducing field direction may change from one roving station 

to the next. Interpretation therefore could be unreliable or impossible.
 

While an upper cutoff frequency of 10 hz has.been suggested, this
 

is by no means a magic number but rather a typical arbitrary cutoff fot 

many three-component magnetometers.
 

The experiment warrants high priority and should be designed to
 

couple with future application of experiments (i) through (iii).
 

(v) AFMA 

If measurements of the polarization characteristics of 

natural magnetic fields, discussed in (iv) above, are made with induction 

coils above 10 hz, then the orientation of the ellipse of polarization 

may be measured in one or more planes at each station and the resulting 

profiles compared with similar measurements on scaledmodels. This is
 

essentially the basis of the AFMAG method described in a series of articles
 

by the writer and associates (@ard et al., 1958; Ward, 1959; Ward, 1960; 

Ward er al!, 1966; Ward, 1967a; Ward, O'Brien, Parry and McKnight, 1968). 

The method is intended to be used'on Earth for rapid search for subsurface 

electrical inhomogeneities. The coeiditions are such on the Moon that 

audio frequencies (10 hz to 104 hz, say,) ai-e very promising for 

studying the electrical parameters of most reasonable models of the 

Moon. Thus the method might detec and delineate inhomogdneities 
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related either to near-surface geologic features or to deeper seated 

temperature anomalies. The simplicity of the measurement and equip

ment plus its compatibility with active cxperiments of a similar 

nature suggest that it should be analysed in-detail at the earliest
 

opportunity. The principal unknown in the method is the level of
 

natural fields in the 10 h% to J04 h1z range. 

(vi) static electrical fields 

The static component of the interplanetary magnetic
 

field (or any interplanetary electric field) may induce an electric
 

dipole in the conductive portion of the Moon's interior. If the elec

tric fields at the lunar surface, due to this source, are above noise
 

level, then the electrical conductivity of the interior may be assessed.
 

Chemical reactions or thermal convection within the moon may similarly
 

produce surface electrical potentials.
 

Sources of noise for this measurement would include the particle
 

and radiation induced electric fields mentioned earlier. Coupled with
 

this anticipated high noise level is the difficulty of making low im

pedance electrical contact with the assumed dry'lunar surface. Dark
 

side measurements should exhibit much lower noise levels than bright
 

side measurements, but the experiment is not promising for interior
 

studies and hence is not recommended for that purpose.
 

(vii) transient electrical fields 

Natural transient electric fields are expected at 

the lunar surface, and if thesc arise by induction from the interplane

tary magnetic field or by conduction from the interplanetary electric 

field; thenl they could yield inforhuation on the interior conductivity 
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distribution. The method is a relative one insofar as it will yield
 

the ratio of conductivity-thickness products of a given layer at loca

tions A and B-provided the tangential electric fields are measured at
 

A and B (Phillips, 1965; Berdi.-hevsii, 1965). For more thin two layers
 

the ratio of tangential electric fields at stations A and B may be
 

approximated by the ratio of the surface impedances of plane-layered
 

structures at these two locations. Measurements of the electric field
 

ratio over a broad frequency spectrum can be interpreted in terms of
 

relative layering beneath the two stations.
 

Once again the problem of high noise level due to particle and
 

radiation induced fields, coupled with the difficulty of obtaining low
 

electrode impedances can render the method of dubious value in a dry,
 

bright lunar surface environment.
 

(viii) the maanetoselenic method
 

The surface impedance pf a plane wave incident upon
 

a homogeneous half space and propagating downward in the positive z
 

direction is (Cagniard, 1953)
 

-i--s -<-,-1 -9 6 12-12 
Ix 1-1-Y 

N 

from which we obtain
 

, ' ". 1 
where A is the resistivity in ohm-meters, where T is the period of 

the .ave, and where we have assumed negligible displacement currents 

and that 4 -11-0 7 henrys per meter. Equations 12-12and 

12-13ar vli for Ex, Ey in mv/1:m, Hx; Hy in gammas, and T in seconds. 
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If then we study a small portion of the Moon and ignore the curva

ture (Srivastava, 1966) and are prepared to assume that uniform plane 

electromagnetic fields are incident upon the surface of this portion 

of the Moon, then we may obtain the resistivity of an equivalent homo

geneous half.-space. We call this equivalent resistivity the apparent 

resistivity ( and compute it, from measured values of E, H, and T. 

as a function of T. For a truly homogeneous Moon, in which displace

ment currents are negligible, O will be independent of T. but for a 

layered and/or an electrically polarizable earth (displacement currents 

not negligible) then P will be a characteristic function of the 

layering and of the parameters -( t; ) and 6 (c ) (Ward, Jiracek, and 

Linlor, 1968). The observed C function may be compared with computed 

functions based on simple plane-layered structures and a non-unique 

electrical structure deduced for the Moon. 

'The apparent conductivity and the phase between electric and 

magnetic vectors are shown as functions of frequency in Figures 141 and'142 

for a three-layered structure which could serve as a hot, wet model of 

the Noun. Note that because suitable relaxation spectra are not avail

able we have used values of conductivity and dielectric constant which 

are independent of frequency so that Figures 141 And 142 should only be 

considered indicative of tbe type of results which might be expected 

with magetoselenic sounding. 

Vard, Jiracci', and Linlor (1968) have generalzed the magneto

telluric cone pt to allovi for the dielectric permittivity ard they 

derive the exprress4ons (as given in Chapter 8(b) (viii) 
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and ,hereV") and are the real parts of apparent conductivity 

and apparent dielectric permittivity respeetively. Thus the dielectric
 

permittivity may also be obtained from magnetotelluric and magneto

selenic measurements.
 

The first tvo limiting problems with the magnetoselenic method is 

that the sources of natural electromagnetic waves are always of finite 

dimensions so that plane waves are not realized; the functions calcu

lated from the E to I ratios are not then simply the plane wave im

pedances. The second major problem with the method is that the interiors 

of planets are more apt to be anisotropic and inhomogeneous than iso

tropic and homogeneous so that the simple formulation of equation 12-13 

does not apply. In general we may write (Cantwell and Madden, 1960; 

Bostick and Smith, 1962; O'Brien and Morrison, 1967) 

Z l z12 Z13 I xi 
Z21 Z22 Z23 - y 

I 
EZ Z3 1 Z32 Z33 iz 12-17 
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for the matrix relationship between the electric and magnetic fields
 

at the surface of an inhomogeneous and/or anisotropic planet. For a 

plane wave the elements Zij of the impedance matrix are independent 

of time and characteristic of the subsurface conductivity distribution. 

If the source is of finite d'imenio,s and is moving or changing dimen

sions or orientation, the matrix elemerts are functions of time, and 

unique determination of the subsurface conductivity distribution be

comes impossible. Discussions of these problems as they relate to the 

Earth have been given by Price (1962), Wait (1962), Madden and Nelson 

(1964), and Morrison, Wombwell, and Ward (1967), all of whom note that 

the problems are increased if the resistivities are high.
 

In the lunar environment, oreshould, in general, anticipate both 

finite sources plus an inhomogeneous and anisotropic interior. The
 

high resistivities expected at the lunar surface will enlarge the
 

interpretation difficulties. Further, the high expected electric field
 

noise level and the high electrode impedances will cause further scien

tific and technological problems. The method could be applicable on
 

the dark side of the Moon where the sources (plasma oscillations) are 

reTtote and where the noise levels may be lower. However, the meLtod 

cannot be recommended at this time. 

Hoffman and Nakamiura (1967), 'Johnson (1966); and Hodder (1966)
 

have all commented on the use of the magnetotelluric method on the Moon.
 

(b) ActiAvC systems 

(i) res stivit_ method 
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It is customary to use a four-electrode array when measuring 

the electrical resistivity of a local region of a planetary surface 

(Kellcr and Frischknecht, 1966),. Current is applied via one pair of 

grounded electrodes while the potential is measured at a second pair 

of grounded electrodes. The rcjtual couipling between the pair of elec

trodes is given by the expression (Sunde, 1949) 

/ Ky-- / L lkfl).-jI--is 12-18. 

where S, s are the lengths of the wires extending from A to B and a to 

b respectively. The angle between the two wires is (%.- as illusLrated 

in Figure 138 

If the two wires are situated on the surface of a uniform bal f

space, then 

12-20 

where ( 'is the separation betw.een dS and ds"k 

The expression of 12-19 represents inductive coupling between the 

wires while 12-20represents "conductive" coupling. The inductive coupling 

texml becomes neglgible when I 0, i.e., at low frequencins.f_[ 
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It is the intent in resistivity surveying that the frequency be
 

made sufficiently low so that h'"f/-0 and so that displacement 

currents may be neglected. If these constraints may be realized, then 

the conductivity is obtained from 

_j J I 
S5 C2- P\3 12-21 

where 7 - is the ratio of the potential measured by one electrode
 

pair to the current applied to the other and where = A (=Ba 

Ab , andQ= Bb. 

For the Moon it is always possible to select49 to be negligible 

and henice remove the inductive term; both A )and P are variables for 

tIhis purpose. However, we suspect that we may not expect to ignore 

displacement- currents, at least for frequencies in the range 102 to 

108 hz if wet rocks are present. Thus equationl2-21 should be generalized 

to 

? 12-22 

where now Z is assumed to be complex. 

While we may readily calculate P C() for a homogeneous half

space or even for a horizontally layered half-space, this will not 

suffice for a Moon which is expected to be inhomogeneous and aniso

tropic. Thus, following noral practice on Earth, one would lover 

the frequency and reduce the electrode separations in order to eliminate 
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the inductive coupling term. We then obtain, at any frequency, the
 

apparent conductivity and the apparent permittivity froml2-22. These
 

values pertain to an equivalent homogeneous Moon at any single fre

quency regardless of the inhomogeneitios or anisotropies present. 

The quantities o'a and Z a may be measured as functions of fre
f 

quency or asfunctions of the spacing of the electrodes. Usually the 

four electrodes are maintained in-line using one of several arrays. 

For example, the Wanner array consists of four equally spaced in-line 

electrodes, the outside pair of which carries current. Any array may 

be used in lateral search for inhomogeneities in which case a constant 

electrode spacing array is moved across the area to be surveyed. 

Alternatively the electrode spacing may be expanded while the center 

of the array is fixed to obtain an electrical sounding of the depths 

to interfaces. In a frequency soundina the array geometry and position 

are fixed while the frequency is varied and the horizontal electrical 

layering so deduced. 

5-If we decrease the frequency below about 10 hz, then, the effect 

of the interplanetary medium would need to be taken into account. 

Alternatively the electrode spacing -would need to be small. For 

example, assuming a homogeneous Moon of tan - 1 and a , 10-4 at 

105 hz, i.e., above the electron plasma frequency, then 1kj is of 

order 10 so that must be restricted to lengths less than 10 

meters if Lc is to be.of order 0.1. This then sets a limit to 

the depth pf exploration, which decreases with decreasing C (Keller 

and Frischknecht, 1966). The skin depth in such vmterial at 105 hz 

is of order 100 meters. 
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Unfortunately, there is a capacitive coupling between the trans

mitting electrode wire and ground. At frequencies of order 105 hz,
 

and electrode contact resistances as low as 500 ohms, the potential
 

coupled into the ground in this fashion is of the same order as that
 

conductively coupled. Resistivity surveys using frequencies above
 

the electron plasma frequency therefore do not appear promising for
 

the Moon. 

As mentioned earlier, the presence of the plasma may assist in 

guiding the energy into the Moon at frequencies betweenzu 1.40 x 102 hz 

and 2.8 x 104 hz. 

On Earth, electrical resistivity probing has given information on 

the conductivity distribution to depths as great as 20 km (Cantwell 

et al., 1964; Cantwell et al., 1965; Cantwell and Orange, 1965), but
 

this 	does not appear practical and is not recommended for the Moon
 

because of the high surface resistivity which limits the current that
 

can be injected into the Moon and because of the very large weight of
 

equipment required to ensure adequate signal-to-noise ratio when both
 

the surface impedance and th noise level are-high.
 

(ii) 	induced electrical polarization method 

If, in a resistivity survey, measurements of potential 

are made at each of two transmitted frequencies and the change of con

ductivity with frequency recorded, then a measure of anomalous induced
 

electrical polarization is obtained (Wait, 1959; Marshall and Madden.
 

1959; Madden and Cantwell; 1967; Ward and Fraser, 1967). This anomalous 

induced electrical polarizatiou arises in.electrochemical raactios at 
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those surfaces of metallic minerals or clay minerals which are in contact
 

with pore solutions. Oxidation-reduction reactions at the surfaces of
 

the metallic mineral grains result in zones of frequency-dependent im

pedance in a rock. Clay particles in nicropores produce ion-selective
 

membrane zones which cause rocks containing minor clay content also to
 

exhibit frequency dependent impedance. Both processes are diffusion 

controlled and rav' for existence upon the presence of pore s6lution
 

as noted in Chapter 4 (f). 

The frequency dependent impedance of a rock mass may be inter

preted in terms of a frequency dependent conductivity and a frequency
 

dependent dielectric perittivity according to12-22,
 

The change in conductivity with freqrnncy is usually much less 

than an order of magnitude within the frequency range 0.01 hz to 10 hz
 

typically employed for induced polarization surveys. Hence a parameter 

more sensitive to frequency change than the absolute cenductivity is 

employed to portray the presence of anomalous induced electrical polari

zation, This parameter is the percent frequency effect (PFE) defined by
 

j12-23
 
where r) ( . are the conductivities at the high and lowAt 


frequencies respectively, Percent frequency effects from one to 50
 

percent are encountered on EarLh. To measure PE values as low as
 

unity with any reasonable, precision requires that the ratio A,, 

be measured to an accuracy approaching 0.2 percent. This is an 
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unusually stringent requirement on portable field apparatus but is 

achieved routinely.
 

The dielectric permittivity is not normally measured via equation
 

-22 because it So not requirrd and because the imaginary part of the 

"conductive" metual couplin, Z, is frequently very small in the fre

quency range 0.0 bz to 10 hz. This frequency range is selected to 

ensure that capacitive coupling and inductive coupling are both negli

gible in an Earth environment. Ont the Moon, where the conductivities 

within the 0.01 hz to 10 hz band arc probably low at depths to tens 

of meters or more, inductive coupling is of lesser importance. However, 

the electrode contact resistances probably would bd several orders of
 

magnitude above those encountered on Earth and hence, as Madden and
 

Cantwell (1967) demonstrate, the spurious percent frequency effect, 

arising from this source, could obliterate the effects sought.
 

The induced polarization measu.emcnts may be made in the time 

domain as well as in the frequency domain as described above.
 

- For lunar studies the method is of decided interest since it 

could permit measurement of both ? and a Any anomalous frequency 

dependence in either of these quantities would be indicative of the 

presence of water and migh- be indicative of the presence of Katallic 

minerals. As little as one percent metallic mineralization can bro detected 

by the met1od, The metallic oxide magnetite (Fe 3 04 ) known to be pre

sent in the lunar debris; if present at greater depths where water 

might exist, would give Uise to induced electrical polarization anomalies. 

Perafr ot, with a relaxation spectrn si5mil.ar to that of vet rock 

http:si5mil.ar
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according to Figures 106 and 107 would also produce an 

induced poaization anomaly so that the presence of water in either
 

liquid'or"solid form could be detected.
 

The limitations of tta method are the same as those given for 

resistivity, but the requiremenLs on accurate measurement are much 

more stringent, Hence thue mstho5 cannot be recommended. 

(iii) fixed transmitter inductive method 

Active electromvagnetic techniques may be classified 

as inductive if the current is induced in the subsurface by the mng

netic field of a transmitter consisting of an energized coil of wire, 

or as conductive if current is transferred to the. ground by means of 

a long energized cable grounded at both ends. The .data from the con

ductive method is difficult to interpret because multipoles ard induced 

in subsurface inhomogeneities by both electric and magnetic fields and
 

their addition is difficult to predict in an inhomogeneous and/or 

anisotropic medium. For this reason the method is used infrequently on 
N\ 

Earth. For the 'loon it suffers from this limitation plus the difficulty 

4
of injecting curr N" into the subsurfcee via electrodcs contacting dry
 

debris. Hence we shall restrict subsequent discussion to the inductive 

electromagnetic method.
 

The basic principle of active inductive electromagnetic systems
 

is measurecent of the change, of the mutual impedanre between a pair 

of wire loops or coils, introduced by the presence of nearby dielectric, 

conductive, or permeablematerial. Both.thc in-pbase and quadraure 

parts of the mutual impedence are recorded either at a sig e frequeney 
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or at several discrete frequencies. Alternatively the transmitting 

coi may be pulsed and the transient decay in the receiving coil 

related to the electrical parameters of the nearby media. 

Lateral search or sounding may be achieved with inductive electro

magnetic methods. 

Four configurations of transmitting and receiving coils are parti

cularly suited to lunar electrical exploration. The first consists of
 

a pair of horizontal co-planar coils (vertical axes) the second of a
 

vertical co-axial pair of coils (horizontal axes), the third consists
 

of a 	horizontal transmitting coil (vertical axis) and a vertical re

ceiving coil (horizontal axis) whose axis lies along a radius of the
 

transmitting coil, while the fourth consists of a pair of vertical co

planar coils. We shall refer to these three systems as TZ - RZ 

Tx- RX , TZ - RX ; and T - RI.respectively; the subscripts refer to 

the Z (vertical) and X (radial) and Y (tangential) directions of the 

axes of the coils. These coil pairs may be operated in-one of several 

modes, including:
 

(1) ftxed separation 6 between coils, variable frequency A) , 

stationary system 

(OY fixed separation 0 between coils, fixed frequency or
 

frequencies, or swept frequency, mobile system
 

(3) 	 fixed separation h between coils, transient current in 

transmitting coil, stationary system 

(4) 	fixed transmitter, moving receiver, transient or CWq
 

energizing at one or more frequencies.
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In this ection of this manuscript, discussion will be limited 

to the fixed transmitter, ioving receiver, discrete frequency W'" 

mode, but from this discussion, the merits of transient excitation 

in mode (3) or (4) or of G, excitation in lode (1) may be readily 

deduced. A discussion of mode (2) appears in the next section.
 

Figure 93 illustrates the manner in which the real (K)
 

and 	imaginary (N) parts of the reflection coefficient of a conductive,
 

permeable sphere in a uniform field vary vith the induction number
 

£6L 	 ; displacement currents have been neglected in
 

this 	model. We note that most of the change of the real or imaginary
 

parts of the reflection coefficient occurs for values of Q between 

1 and 30, assuming that the permeability of the sphere is approximately 

=
equal to that of its surroundings (// Zl/ a 1). The induction numbers
 

for 	various electromagnetic boundary value problems usually may be
 

written in the form
 

0 -:trsI L 	 12-24i 

where L, and L2 are significant linear dimensiovs of the problem and
 

& P . The following indctinn numbers are pertinent in electro

magnetic exploration (Ward, 1967a). 

(1) 	sphere, uniform field 6 Z--w . ; a = radius 

(2) 	infinite horizontal cylinder, 

uniform field a radius 

(3) "thin disk, uniform field -. 7t.L)ot ; a = radius 

t = thickness 
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(4) 	 a two-coil system above h = height 

a homogeneous earth 9 = separation 
(5) 	 a thin sheet beneath 65k /K phjz 

a two-coil system ; t = thickness 

= separation 

h = height 

For a coil system situated on the debris layer, expression (4) 

may be used, or alternatively, following Frischknecht (1967), two 

induction nuibers and may be specified where 

12-25
 

We have the freedom to vary 	 h , and measure the real and(t(a 


imaginary parts of the mutual impedance Z of the coil pair as a func

tion of 2 and Q Given the forms of Re(Z) or Im(Z) as functions 

of frequency for a range of models of the thickness and conductivity 

of the debris layer and of the conductivity of the layer beneath the 

debris, then an interpretation of observed data may be made. Electro

magnetic sounding of this type is generally useful only in those situa

tions where a resistive layer overlies a more conductive substrabt-n. 

An example of a frequency sounding made on the Kilauea Iki lava lake, 

Hawaii, is interpreted in Figure 125 (Frisehlancht 1967). 

Quoting Frischknecht, "At the time the sounding was made, in April 1962; 

the Kilauea Iki lava lake had a crust of solidified material about 12.2
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meters thick beneath which was a bodyof molten lava at least 100 

meters thick. The field data fit the family of curves for (horizontal
 

co-planar) loops above a homogencous earth very well, indicating that
 

the response of the crust i- negligible. From interpolation between 

reference curves, A/B w,0.39. Since ( = 61 meters, h = 11.9 meters. 

At a frequency of 104 hz B = 8.41, from which a = 0.483 mho/meter . 

In the nomenclature used by Frischknecht, A = n2d=tf-i
 

He measured the magnitude of the mutual impedance Z as a fraction of
 

the free space value Z0 .
 

If'we wish to allow for displacement currents as well as conduction
 

crrents in the lunar interiors the-induction numbers become
 

=ft (' c.--dJ~j12-26
 

To assure tht both types of.eurrents are measured with roughly the. 

same precision requires that the loss tangent (tau S = ) be 

subject to the following constraint
 

0.1 ' tan-S L 10 12-27 

.This constraint would seem to be satisfied for the wet materials of
 

Figure 108y but not for the dry materials except perhaps at
 

frequencies below i02 hz. A second constraint is introduced if we
 

wish to measure both the -real and imaginary parts of the mutual
 

impedance Z. That this is a-necessary constraint may be illustrated
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by-'reference to Figure 143 . This figure portrays the amplitude and
 

phase of the normalized mutual impedance resulting from reflection,
 

from a homogeneous half-space. The coils are horizontal co-planar
 

(TZ - RZ). We shall assume that the mutual impedance increment can 

be measured with a precision of one percent of the primary field. It
 

is evident from Figure 143 that the mutual coupling amplitude does not
 

exceed this one percent error until exceeds about 0.3. Similarly,
 

it may be shown that the anplitude is essentially zero beyond a
 

value of 30 0Wait, 1955). The second constraint may then be written
 

0.3 /- 30 12-28 

Note that the amplitude and phase of the mutual impedance ratio 

are independent of the values of the loss tahgent beyond these limits. 

Within the limits, a given value of amplitude and phase will permit 

unique determination of the induction nuber 0 and the loss tangent 

tan of the homogeneous earth. Since eu and are known variables, 

aid ifj% may be assumed to-be approximately that of free space, then 

sufficient-information is available with which to measure c 'and 

uniquely. Dias (1968) has demorictrated how the apparent conductivity 

and the apparent dielectric permittivity 5, may be obtained, by 

the same procedure, for an inhomogeneous or layered half-space. 

We have illustrated in Figure 108 that measurement of

tan " in itself is sufficient to detect the presence of pore water 

or ice in the Moon, The curves of Figure 143 pertain to a conductivity 

and a dielectric permittivity which are independent of frequency. 
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An increase of conductivity with frequency will cause a faster excur

sion through the full curves of Figure 143 than the eU 

dependency of LC would infer. The variation of tan S with frequency.. 

expected from Figure 108 would cause the curves of amplitude 

and phase of the mutual impedance ratio to exhibit shapes slightly
 

different to those in Figure 1 4 3 . However, it is not anticipated that 

this would lead to difficulty in recognizing the existence of water 

in liquid or solid form.
 

Let us assume for the moment that 6(2 is fixed at 2 x 105 hz and 

that 0 is a variable. Then % will fall within the acceptable window 

of 0.3 to 30 if a falls within the range 0.34 to 34. Assuming a 

-conductivity a of 10 4 mhos/m at 105 hz, C must lie in the range 

34 m to 3.4 km . It should be recalled that these calculations pertain 

to a homogeneous half space but they should serve as a guide regardless
 

of inhomogeneities, anisotropies, or layering. It would seem advisable
 

to set a design goal of 10 m to 10 km range for a fixed transmitter 

system in which P is the only variable. Lowering the frequency below 

105 hz may enhance the energy guided into the Moon as noted earlier,
 

but further analysis of this problem is required. Raising the 

6 
frequency much above 10 hz probably might introduce capacitive
 

coupling although this has not been calculated. For the present, 

a frequency range of 10 hz to 107 hz may be contemplated.
 

In practice, a square loop of wire-of about 300 m to the side 

and of ten turns with 100 watts would produce a magnetic field of 

intensity 10- 3 gamw,, at a distance of 10 ks. This would be about 
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at noise level on Earth and hence a coherent detection system would
 

have little difficulty in extracting signal from noise. Possibly a
 

reduction in power to 10 watts could be tolerated for the Moon.
 

This method wili not only yield the dielectric permittivity and 

conductivity of an equivalent homogeneous Earth, indicate the presence 

of water, yield the depth to the bottom of the debris (assuming that 

a contrast in a or occurs there), anc yield the conductivity of 

the substratum below the debris, but it will provide information on 

the lateral and vertical distribution of the electrical parameters to 

depths of the order of half the maximum coil separation, i.e., to 5 

km, say. However, the depth of penetration of electromagnetic waves 

4of frequency 105 hz in a medium of conductivity 10 - mhos/m tan S =i1 
and K = 18 is only about 250 m. Not much contribution to surfacee 

fields will come from below this depth at such a high frequency. Thus
 

there is good reason to attempt to use ftequencies below 105 hz if
 

this does not introduce serious complications. A series of discrete
 

frequencies at decade intervals from 105 hz down to 10 hz would be
 

advantageous in separating the lateral from the horizontal variations
 

in electrical parameters and should aid in detecting a frequency
 

dependence of a and !5 for any given layer.
 

This method avoids many of the problems suggested for the resis

tivity and induced polarization methods and would seem to be preferable 

to them. In fact, the induced electrical polarization phenomena would 

be measured inductively by this technique rather than conductively as 

is done by the so-called induced polarization (I.P.) method. 
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The magnetic field noise levdls are entirely unknown in the 10 z
 

to 105 hz band so that ultimate performance of the system cannot be
 

predicted with any degree of certainty. The precise measurement of 

Z/Z is dependent upon a negligible drift in a bridge circuit; this 

may be difficult to achieve in the lunai environment. To overcome
 

this problem, the inclination of the major axis of the ellipse of
 

polarization and the ratio of the major to the minor axes may be
 

recorded in the simple modification of the method described in Chapter
 

8 (c) (vi). 

It is visualized that the transmitting coil would be established
 

:with or without the aid of astronauts) by using automatic coil ejectors,
 

at the landing site of the L.M. The receiving coil and electtonics 

would be a small nt 5 lb. package stored on a roving vehicle. Measure

ments could be made every time the roving vehicle stopped or perhaps
 

could be made continuously.
 

(iv) mobile translitter inductive method 

A continuously recording, double coil electromagnetic 

system could be rigidly mounted on a roving vehicle with a two to ten 

meter coil separation. A noise level of ten parts per million in 

Re(Z/Z0 ) and Tm(Z/Zo) should be attainable with power of 1 to 10 watts. 

The electrification noise level of the roving vehicle and the novement 

of the vehicle parts relative to the coil system could degrade this
 

performance 'slightly. A vertical coaxial or a vertical co-planar 

coil system would be logical for this function. These configurations
 

are employed on belicopterborne and airborne electromagnetic prospecting 



358
 

systems (Ward, -1967a, b). Figure 144 illustrates a helicopterborne
 

electromagnetic system employing the Tx - R coil configuration and
 

possessing a noise level of 10 PPM.
 

At 105 hz and for a coil spacing t of 10 meters the induction
, 


number ") is of order 0.1. Since the instrument noise level is only
 

10 PPM, it should 	 be possible to measure at this low induction number 

and possibly lower. However, the characteristic shapes of the curves
 

of Figure 143 then would not be available. This suggests that the fre

quency should be 	raised. If the transmitting and receiving coils are 

raised well above surface, capacitive coupling should pose no problem
 

but 	the higher the frequency the greater the likelihood of a high 

noise. level arising by induction in metal parts of the vehicle to which 

the 	system is attached. 

It is recommended that an analysis be made of the feasibility of
 

combining this method with those of methods A (v) and B (iii) to yield
 

a passive-active 	 inductive electromagnetic system which will facilitate 

both 	deep (tens of kilometers) and shallow'(meters) electrical exploration.
 

(v) 	radar reflectivi.met, 107 hz to I0l1 hz 

The results obtained with Earth-based astatic radar, 

Surveyor astatic radar and bistatic radar employing a lunar satellite
 

transmitter and an Earth-based receiver have been reviewed earlier.
 

The next logical 	developments in radar scattering in the conventional
 

7 100 '8
band 	 of 1.56 x 10 hz (19.2 meters)- to 3.5 x 0 hz (8.6 ran)m is a 

bistatic radar reflectivity study eriploying an Earth-based transmitter
 

and 	an orbiting receiver (Tyler et al., 1967). The dark side of the
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Moon would not be covered by this experiment. Beyond this experiment,.
 

completely orbital systems will permit radar reflectivity mapping at
 

high resolution over the whole lunar globe although this experiment
 

is difficult tojustify in view of the excellenL results of the bistatic
 

experiments.
 

The radar measurements so far completed support the hypothesis
 

that electromagnetic energy returned at oblique angles of incidence
 

arises through diffuse scattering from discrete objects whereas the
 

energy returned at near normal incidence is dominated by quasi

specular reflection.
 

The depth of penetration of electromagnetic waves into the Moon
 

is probably within the range 102 m to 10"1 m for frequencies of 107 z
 

to l0ll hz and for the electrical parameter ranges given earlier. In
 

the radar scattering band, one can therefore expect to map the depth
 

to shallow interfaces if they exist, to measure the dielectric constant
 

of the material near surface, and to detect boulders and voids within
 

the depth of penetration.
 

Scattering from discrete objects and reflection from rough sur

faces may be separated, to some degree, from specular reflection at
 

meanhorizontal interfaces by several procedures including narrowing
 

the antenna beamrwidth, measuring the depolarization, measuring the 

Doppler shift, and by applying the techniques of statistical copnuni

cation theory, By these means, one hopes to extract the "ordered"
 

specular reflection from'the 'random" reflection from rough surfaces
 

and scattering from discrete objects.
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Orbital measurements of radar reflectivity then may map the dis

tribution of dielectric constant in the near surface, would indicate 

the surface roughness in the radar sense, and conceivably could give 

some indication of layering if it exists within the top several tens 

of meters provided the "ordered" signal from specular reflection could 

'
 be separated from the "randow " scattering and reflection from other 

sources. Geleynse and Barringer (1964) and Holdsworth and Barringer 

(1966) are among those who have suggested orbital radar reflectivity
 

measurements as one weans of mapping the geology of the lunar surface.
 

Augmentation of the radar reflectivity measurements may be obtained
 

with the coherent radar imager which is capable of producing a map of
 

the lunar surface and/or subsurface at wavelengths from,3 m to 3 cm
 

(Badgley, Childs, and Vest, 1967).
 

On lunar traverse missions; the scattering from boulders on or
 

in the debris layer may obliterate the radar returns from the assumed
 

base of the debris layer. Photographs indicate that boulders of a
 

wide range of sizes up to several meters occur with an irregular dis

tribution in the debris. These objects constitute scattering centers
 

which produce a diffuse and incoherent energy return provided they 

are of dimensions approximating a wavelength. Success of the radar 

reflectivity in mapping the depth of debris on lunar traverses then 

.depends upon the density of the scattering centers. The probability 

of successful use of radar reflectivity, in the 107 hz to 10II hz 

band, as a means of mapping the variability of debris would then appear 

to be limited. Theoretical computations are required of the characteristic 
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polarizations and amplitudes of radar echoes from a substratum under
 

a debris layer in which various three-dimensional random distribuuions
 

of scattering centers are superimposed. Such calculatiors should be
 

the basis for ultimate conclusions concerning the applicability of 

this method to the stated problem. An extemely narrow antenna beam

width is possible within this frequency band, and this fact plus 

others may lead to circumvention of the major problem suggested
 

(Gold, 1967). The narrow beamwidth also minimizes the ambiguity 

of depth determinations present if the bottom surface of the debris
 

is irregular as expected.
 

A hypothetical reflection fran an ideal horizontal debris-sub

stratum interface is illustrated in Figurel45. The input, at t = 0,
 

was a delta function defined by
 

12-29
 

The first reflection, occurring at t 0.01/ sec, is of reversed
 

sign while the second reflection, occurring at t = 0.21 f/see, is of
 

the same sign as the input pulse. The electrical parameters selected
 

for the debris layer and the substrtum were, for this calculation, 

given by curve I of Figures 106, 107 and 108 for a 10 m 

thick debris layer and by curve 4 of Figures 106, 107 and 108 

for the substratum. 
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The dispeision is not appreciable in the debris layer so that
 

a sharp pulse front is established. The attenuation is 1.45 db/m
 

between the first and second echoes. From-this calculation we would
 

conclude that neither dispersion nor attenuation would be serious
 

problems for radar sounding of the depth of debris.
 

Adaptations of ice thickness radar sounding techniques (vans,
 

1967) might be considered for this task if the discrete scattering
 

problem does not prohibit its use.
 

It is recommended that until it can be demonstrated either by 

theoretical analysis, scaled model experiment, or field testing on 

Earth, that the method can produce useful information in a simulated 

lunar environment, that work on the method be limited td supporting 

research studies. The orbital version of this experiment is not 

recommended since the information it would obtain is essentially 

available now that bistatic radar experiments have proven their worth. 

(vi) radar reflpctivit method, 10 hz to 108 hz 

Within this band the scattering from discrete objects is 

unlikely.to be a -major contributor to lunar electromagnetic reflec

tions, except for objects of dimensions 30 m to 300 ra. Antenna 

beamwidth, from-an engineering viewpoint, probably cannot be made 

narrow for these longer wavelengths nor can we expect to minimize 

side lobes to the same extent. Hence the reflection from rough 

surfaces is averaged over a cone of substantial area; only mean 

depths to irregular interfaces are then deteninable. However, in 

this band, the loss tangent is likely to be nearer to unity thdn it will 

http:unlikely.to
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7 
be aL frequencies in excess of 10 hz (see Figure 108). Thus
 

measurement of electrical conductivity as well as dielectric pennittivity 

is witbin the realm of possibility. This possibility would be enhanced
 

4 
if frequencies as low as 10 hz could be used in a radar sounding
 

system as seems probable from a recent study. The depth of penetra

tion into the lunar interior in this band probably ranges from tens 

of meters to several kilometers. Hence deeper layering can be mapped 

and the effect of surface roughness decreases in relative importance
 

as an interface is made deeper.
 

Based upon information such as is contained in Figures 106, 107, 

and I08, earth materials do not exhibit dielectric con

s tants much in excess of 10, but values can be much greater than 10 

if moisture is present. If an apparent dielectric constant significantly
 

in excess of 10 (a power refledtion coefficient significantly in excess
 

of 0.25) is observed, then we can state with assurance that either water
 

or impure ice exists within'the depth of penetration of the electro

magnetic wave. The only known conflict with this statement occurs if
 

rocks at temperatures in excess of about 5000 C exist within the same 

depth range.- Such high temperatures at shallow depth will be obvious
 

from-orbital I.R sensing. Hence it seems that the unique detection 

of the presence of water in the outer kilometer is achievable from
 

lunar orbit (See Chapter 8 (b) (ix). 

An adaptation of the Alouette I satellite system (Chai et al.,
 

1965; Muidrew et al., 1967) should be suited to orbital measurement 

of reflection coefficient in this frequaency band.
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It is strongly recommended that this experiment be conducted 

from lunar orbit. The objectives of such an experiment include:
 

(a) three dimensional geological mapping from surface to 

depths of the order of 10 kin 

(b) detection and vapping of solid or liquid water in near 

surface rocks
 

(c) detection and xapping of un-usually strong heat flow'anomalies 

by virtue of the association between temperature and conduc

tivity. The conspicuous lack of such features is a con

ceivable and useful butcoe of this kind of analysis. 

(d) a search for pronounced layering or pronounced large

scale angular variation of the electrical parameters to 

depths of the order of 10 kan. 

(e) global mapping of the variation in the depth of the debris 

layer.
 

The above objectives are those stated by the Program Evaluation
 

Committee of the Ames Conference on Electromagnetic Exploiation of 

the Moon. Any or all of them are extremely important -in studies of 

the origin, history, composition, thurmal state, and dynamic behavior 

of the Moon. 
(vii) capacqitive copui _method 

Cook (1956, 1957) has described an electrical
 

crevacse detector for polar exploration. The system depends upon 

measurcment of the capacitive coupilug of a four.-nlectrode array. 

Referrins to Figurcl 46,vitage may be transferred from current to 
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potential electrodes via resistive coupling through the electrodes,
 

via capacitive coupling through the electrodes or leads, or via induc

tive coupling between the leads. Either conduction or displacement
 

currents flow in the half-space beneath the system so that in the first
 

approximation the half-space may be treated as a lossy dielectric.
 

Cook has made the electrodes sufficiently large in the crevasse
 

detector that potentials of order 2 volts are measurad at- the receiving
 

electrode when 1000 to 3000 volts r.m.s. at 100 to 400 hz is applied
 

across the transmitting electrodes. Of order 10 milli-amps of trans

mitting current flow into dry snow under these conditions provided
 

all electrodes are spaced about 20 m apart. Any void, such as a
 

crevasse, will reduce this current flow and produce a characteristic
 

potential signature as the four electrode array is dragged over the
 

snow surface.
 

Adaptation of this technique to the lunar surface has been
 

suggested (Cook, 1967) as a means for mapping conductivity and dielec

tric permittivity inhomogeneities and in estimating the dielectric
 

permittivity and conductivity of the material vithin the first few 

tens of meters of the lunar surface. The reactive and resistive 

components of the mutual coupling would be measured in order to 

yield both dielectric permittivitty and conductivity. 

The method exhibits the advantage that electrode impedances
 

may be reduced by enlarging the electrodes; 43-inch diameter "dishpan"
 

electrodes were employedin crevasse detection and typically led to
 

2 megohm electrode impedances for frequencies in the 100 hz to 400 hz
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range. An obvious disadvantage of the method is that the ratios of
 

inductive, capacitive, and resistive coupling will change with changing
 

values of the dielectric permittivity, conductivity, and roughness of
 

the surface debris. PresmNbly this disadvantage could be minimized 

through judicious instruient design. However, the high electrode 

impedance coupled with the high expected elecLrical noise level on 

the lunar surface should lead to low message-to-noise ratios for the 

nodest paoer expected to be available for lunar surface experiments. 

Friction, as the electrodes are dragged, has introduced noise in 

crevasse detection, but this can be elimated by measuring only when 

the transport vehicle is stopped. 

The effect of the interplanetary medium as a conductor requires
 

the same consideration for this method as for all methods utilizing
 

5.
frequencies below 10 hz. If the frequency of operation was selected
 

to lie above 105 hz, then the capacitive and inductive coupling between
 

.the leads and the capacitive coupling of the leads to ground would
 

seriously compete with the main coupling paths through the electrodes,
 

The method is not recommended for lunar exploration.
 

vi) of e~l~eetro~ma jo0nfoe.us. et.'ifields by the 


Salisbury (1967) has proposed that the diffraction 

of elacerot..gnetic woe-'s in the 104 hz to 308 hz band by the Moon 

will be such that the field of an Eorth-based transmitter will be 

focused behind the moon. A receiver on a spacecraft passing behind 

the hMon can iunasure the extent tie Moon acts es a spherical lens. 

Tbe diUI, t.'ion of the elent-ikc4 parameters of the Mou can be 

dedoced frm the infora.ion so ob.Kine 
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Salisbury Q927) gives the gain of the Noon as a spherical-lens
 

antenna as
 

12-30
 

where )\is the tieavelenatb, T is the thicnass of the lunar "crust" 

which is assumed to be transparent to cl ectlomagnetic waves, and R 

is the lunar radius. According to Salisbury, a transparent layer 

7 
only 10 m thick can produce a gain as high as 70 db at 4 x 10 hz.
 

Salisbury also gives the focal length of a spherical lens by the
 

approximate formula
 

y 

12-33. 

From this relation we observe that the focal length is equal to or
 

less than the radius R of the Moon when Ke "> 4. Under these circum

stances the focusing cannot be observed. Referring to Figure 107
 

we observe that dry volcanic ash has a dielectric constant of 

about 2 at 4 x 10 hz and that this would lead to a focal length of 

1.7 R.- Thus the focal point occurs at about 1200 ion beyond the Moon's 

surface, on the Moon-Earth line, for the inserted value of dielectric
 

constant. If, on the other hand, we assume a dielectric constant of
 

2.8 as suggested by radar reflectivity studies, then the focal point
 

is 400 km beyond the Moons far side. Evidently the location of the
 

focal point is critically dependent upon the dielectric constant,
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The attenuation must be negligible in the "crust" so then tan 6 < < 1 

is a constraint on this material for this experiment. This constraint 

may not be satisfied for rocks and soils of the types expected in the
 

lunar' environment. Note that the dielectric constants of dry basalt 

at 4 x 107 hz is in excess of 4, according to Figure 108, so that 

the focal point would be interior to the moon if these rocks pre

ponderate at the lunar surface. If the thickness of the "crust" 

is excessive, then aberration will occur.
 

The experiment proposed by Salisbury can be reversed, according
 

to the principle of reciprocity. Thus the transmitter of Explorer 35,
 

how in orbit, will yield information on the electrical parameters of
 

the exterior layers of the Moon. Data from Explorer 35 transmission
 

is being analyzed now, so that in effect, the focusing experiment is 

in progress, although not in an ideal form. No recognizable enhance

ment of signal due to focusing has been observed to date. Note,
 

however, that Explorer 35 transmission is only at 1.3 x 108 hz 

whereas Salisbury advocated use of five frequencies within the range
 

2 x 104 hz to 4 x 107 hz. Subsequent lunar orbital monitoring plat

forms may be expected to add to the knowledge of the lunar electrical 

parameters. Excessive depth of the transparent layer, as deduced
 

from the diffraction pattern of the Moon, would be an indication of
 

low conductivity and hence of low temperatures deep within the Moon.
 

Obviously, the lower the frequency the more information that can be
 

derived about the deep interior of the Moon.
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constant in the regions external to the crater in which Surveyor III
 

landed is presumably an apparent value for an inhomogeneous surface in
 

which the dielectric constant, with certainty, can be expected to vary 

with depth. The question then arises as to what depth range the 

measured value of dielectric constanL applies. It has been suggested 

that a radar target be buried in the lunar surface to facilitate in

vestigation of this question. Alternatively, one might use the LM 

radar altimeter to measure an apparent altitude, and photographic
 

triangulation to measure true terrain clearance. The difference
 

between the two measurements gives the effective depth of reflection
 

of the radar altimeter signal. To illustrate this point, consider
 

the time for a radar altimeter reflection through a path which is
 

partially air (a) and partially debris (d).
 

+- V> 

~z ~ 12-32 

The quanti ty _0 'ismeasured photographically, while is obtained 

from the reflection coefficient: 

12-33

CA 

~ p4712-34 
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If we assume that,' , then we may obtain hd from 12-32, 

12-33, and 12-34. 

The experiment depends, obviously, on the availability of a 

radar system plus a precision photogrammetric system and hence may 

not be feasible. However, a check should be made of the practicality 

of the experiment since, again, it is a potential "free ride." 
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For a Moon consisting of many concentric layers, the diffraction
 

pattern would be complex for those frequencies which penetrated any
 

number of layers. An inhomogeneous moon might riot produce an obvious
 

diffraction pattern.
 

The orbit of Explorer 35 is moving angularly relative to the Sun-

Moon line by about one degree per day. The perilune and apolune of 

the Explorer 35 orbit are 763 and 7670 Im respectively, and the space

craft at some times has been between 763 and about 2000 Ian above the
 

Moon's surface along the Earth-Sun line. These distances may be
 

near enough to the focal point to permit detection of lens gain if
 

it occurs.
 

Another means of accomplishing the same experiment would involve
 

passive measurement, in the l05 hz to 108 hz band, of solar radio 

emission.
 

This experiment, in the opinion of the author, is of borderline 

value and hence only the reciprocal experiment now in progress is 

recommended as part of the lunar electromagnetic sequence.
 

(ix) 	use of the communications link between the command and 

service module (CUS) and the lunar excursion module () 

as a means of measuring lunar electrical parameters during 

Apollo missions.
 

If the outer shell or crust of the Moon is transparent 

to electromagnetic waves of the frequency used to communicate between 

the CS4 and the IM (2.968 x l08 hz, 2.597 x 10 8 hz and higher frequencies), 
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then communication will be possible btyond the line of sight. Attenu

ation-of the -translunar communication signals will be less as the
 

frequency is lower. Measurement of the signal amplitude and phase 

may be interpreted in terms of the electrical parameters of the
 

'crust to the depth of penetration. Success of the method is dependent
 

upon accurate knonledge of anteeta field patterns. 

If the above technique does not yield the required information, 

then monitoring of the received communication signal when the CSM and 

LM are in line of sight will still yield information on the lunar in

terior since the received signal contains both a direct wave from the 

transmitter plus one reflected from the lunar surface. The reflection
 

coefficient at a single frequency will yield the appareut dielectric 

-permittivity and the apparent conductivity of an equivalent homogeneous 

Moon whereas the reflection coefficient measured over a range of fre

quencies will yield both the dielectric permittivity and conductivity
 

distributions provided the electrical parameters are not strongly 

dependent upon frequency.
 

This experiwent has considerable promise and is essentially a 

"free ride." Hence, it is strongly recommended for inclusion in the 

lunar electromagretic exploration sequence. 

(x) use of the LMaradar altimeter
 

Brown et al. (3967) have demonstrated how the radar 

a]timcter and Doppler velocity sensor aboard the Surveyor spacecraft 

may be used to obtain the dielectric constant of limited portioas of 

the lunar surface. Their measured value of 3.5 ± 0.7 for the dielectric 
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- 13. An electromagnetic exploration sequence for the Moon 

From the above discussion it is evident that many methods may 

be capable of yielding information on the distribution of electrical 

parameters in the lunar interior. However, from the eighteen methods 

described, we may extract a sequence of six experiments which, based 

upon current knowledge, provide the greatest assurance of contri

buting positive information. Two of these experiments are already 

in progress so that only four new experiments are recommended, and 

one of these is of the "free ride" type. The suggested exploration 

sequence is as shown in Table XXI. It is recommended that the ex

periments be conducted in the order shown and that the whole se

quence be completed. However,. if fiscal or other reasons force a
 

reduction in the lunar exploration program, then the experiments 

should be trimmed starting at the bottom of the list. In this
 

sense, then, the recommended exploration sequence may serve also 

as a priority list of experiments. Possible experiments not appearing 

on this list are not sufficiently promising to warrant a recommendation,
 

in the opinion of the author. This list differs from that of the 

Program Evaluation Committee of the Ames Conference on 
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Electromagnetic Exploration of the Moon in the following ways:
 

1. The orbital radar reflectLvity (104 hz to 108 hz) is given
 

higher priority than the magnetometer array because it can be accom

plished in an earlier phase of the Apollo program and because it 

involves less elements. The importance of the magnetometer array 

experiment cannot be overstressed, however. For this reason, early 

emphasis must be placed on theoretical studies of Explorer 35 data
 

to determine whether or not solid body parameters can be extracted
 

from that data.
 

2. The use of such "free ride" experiments as the CSM-tM comnuni

cation link and the LU radar altimetry are given the status of formal
 

experiments Early attention should be given to the possibilities
 

of all such experiments where steerable and omnidirectional antennas
 

and several frequencies are available. The communication system
 

employed by the surface walking a6tronaut or by roving vehicles
 

should be studied with-the same objectives in mind.
 

3. A three element audio through radio frequency inductive
 

electromagnetic system is strongly endorsed if the lunar exploration
 

program is carried that far. Theoretical analyses and feasibility
 

studies of this combined system should be funded immediately,
 

4. High frequency (107 hz to 108 hz) radar reflectivity at
 

lunar surface or in lunar orbit cannot be recommended since the basic 

inforration to be acquired by such experiments is either being 

acquired now by bistatic radar or would be acquired in a more com

prehensive manner if experiment 6 of Table III was completed. 
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Experiment 6 can yield information ranging from depth of debris
 

studies, suggested as the prime objective of high frequency radar
 

reflectivity, to intermediate depth (tens of kilometers or more)
 

electrical parameter evaluation.
 

Table XXI 

Suggested Ex~i oration Sequence 	 Mode Status 

I. 	Moon - steady solar wind interaction 0 I.P.
 

2. 	Transient induction in Moon - 0 I.P. 

3. 	Radar reflectivity 104 hz to 108 hz 0 U.A.
 

4. 	 CSH-LM comr unications link 0-S .... 

JA radar altimetry 

5. 	Magnetometer array - separation over plane S U.A. 

- deep sounding 

- magnetic anomalies 

- solar wind parameters 

6. 	Inductive electromagnetic system S U.A.
 

cormbined fixed transmitter
 

mobile transmitter
 

0 orbital 

S lunar surface 

I.P. in progress
 

U.A. unddr analysis
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14. Recomendationsfor__sup( rtin research and techno)rgy 

While mission planning and flight hardware and deve.opment should 

proceed on the last four experiments listed in Table XXI, it is 

essential that a substantial amount of supporting research and techno

logy be continued at an expanded level or be initiated immediately if
 

it 	is not already started. All electrowagnetic experiments, including
 

the 	first txo listed in Table I1 and which are in progress, are faced
 

with a number of problem areas which require supporting work. These
 

problems are central to either or both design of experiment and inter

.pretation of data. The required supporting research and technology
 

activities may be subdivided into three main categories as follows:
 

(a) modeling - Research in mathematical models and scaled laboratory 

models of the various experiments under simulated lunar condi

tions. 

(b) 	 physical pLppert measurements - laboratory measurement of 

the dielectric constant, electrical conductivity, magnetic 

permeability, magnetic remanence, and magnetic losses of Earth 

materials which are expected to simulate lunar rocks and soils. 

These measuremehts should be phased into similar measurements
 

to be made on returned lunar saaples.
 

(e) field testin&_ Earth ..full scale tests of system proto

types in those regions on Earth which most closely simulate
 

lunar conditions.
 

Definition of certain specific problems falling under the above
 

three categories follows, but the list should expand as more time is 
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spent considering the recomnended experiments. 

(a) 	problem definition - modeling 

1. 	The interaction between the Moon and the solar wind. 

- concentrically layered sphere in free space 

- concentrically layered sphere in dissipative isotropic 

whole space 

- concentrically layered sphere in anisotropic compres

sible stationary plasma 

- concentrically layered sphere in anisotropic compres

sible moving plasma 

- minimum number of magnetometers 

2. 	Antennas in plasma above and on the lunar surface
 

- electric and magnetic dipoles in anisotropic stationary
 

plasma
 

- finite electric and magnetic antennas in anisotropic
 

stationary plasma
 

- dipolar and finite antennas in anisotropic stationary
 

plasma above and on a homogeneous half space simulating
 

the Moon 

- dipolar and finite antennas in anisotropic stationary 

plasma above and on a concentrically layered' spherical 

model of the Moon 

- the effect of the plastoa sheath on antennas in the 

solar wind 
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- the effect on antenna patterns of a modification of 

the characteristics of the solar plasma near the 

Moon's surface, by interaction between plasma, solar 

radiation, and the Moon 

3. 	Models of the Moon's interior 

- continuing analysis of all available data to update 

current limiting models of the distribution of the
 

electrical parameters in the Moon
 

4. 	Scattering from lunar surface topography, buried topo

graphy, and inbomogeneities 

- scaled model and theoretical analyses of first 

approximations to evident problems in this class
 

(b) 	problem definition - physical property measurements
 

1. 	laboratory measurements of a, Ke, Km, remanence and 

and.magnetic losses on terrestrial analogs with pressure 

(0-5 kb), temperature (-150' C to 500' C), percent water
 

-5
saturation (0 to 1007), fluid salinity (10 N to 1 N),
 

chemical and mineralogical composition texture, and
 

frequency (D0C0 to 10II hz) as variables.
 

(c) 	2EoE2jem definition - field testing on Earth
 

1. 	field testing of active electromagnetic systems in high
 

resistivity, preferably basaltic and preferably perma

frost environments on Earth to demonstrate feasibility
 

and to deveiop methods of interpretation. Both airborne
 

and ground tests are required. An example of a prelimi-.
 

nary field test follows for illustrative purposes.
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Figure 147 contains a section of geophysical data obtained over
 

tholeiite flood basalts in the Canadian Arctic near Coppermine, N.W.T. 

In this region soil cover is mininal (0-10 feet) and permafrost, while 

extending todepths as great as 700 feet, is not pervasive, since it
 

is noticeably absent where a heat source such as a lake is present. 

The basalts, over which the iaeasurements were made, contained a variable 

amount(perhaps up to 5 percent) of fine-grained magnetite and.up to 15
 

percent chlorite. In zones of faulting or shearing the magnetite is
 

converted to hematite and near flow tops the oxidation-reduction condi

tions were such that hematite formed rather than magnetite. In porous 

zones such as breccias, faults, shears, fracturesj and flow tops, 

chalcocite (Cu2S), bornite (Cu FoS ), chalcopyrite (CuFeS2), and some 

native copper has been subsequently introduced. These latter metallic 

minerals may then be expected to alter locally the electrical properties. 

The section of Figure 9, while not tested by drilling, is not expected 

to contain concentrations of copper minerals, and hence the in situ 

electrical properties may be considered representative of thole)ite 

basalts in a permafrost area. Water and/or ice could occupy most of 

the rock pore space since rainfall in the area is about 10 inches per 

year. 

The upper row of data in Figure 9 is a quasi-section plot of 

apparent resistivity obtained with a dipole-dipole array with dipole 

spread of 100 feet. 

Figure 148 L]lustrates the electrode configuration, the field
 

techniques used with it, and the standard method of plotting the 
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resulting data. The current electrode pair is referred to as the 

transmitting dipole while the potential measuring electrode pair is 

referred to as the receiving dipole. The two dipole lengths, -e remain 

constant while their separation assums the values x where x = 1, 

2, 3, ---. We shall refer to j. as thie spread and x as the separation 

in the subsequent discussion. The two dipoles are colinear. Once the 

transmitting dipole is established, the first measurements are made 

with the receiving dipole at first separation (x = 1) and subsequent 

measurements with the receiving dipole at second, third, fourth, etc. 

separations (x = 2, 3, 4, ---). Then the transmitting dipole is moved 

one dipole length along the traverse and another four measurements are 

made. This procedure is repeated until the transmitting dipole has 

been moved completely across the required length of traverse. In 

effect, n points on a sounding curve are obtained for each location 

of the transmitting dipole, i.e., n x-values. 

The data are usually presented in the quasi-section of Figure 10.
 

A data point appears on this plot at the intersection of lines drawn
 

from the centers of the dipoles at 45 degrees to the horizontal. The
 

resulting field of data points may be contoured for comparison with
 

similar plots obtained with mathematical or physical models. 

The second row of data in Figure 147 istbe percent frequency 

effect (PFE) representing the percent change in apparent resistivity 

between 0.3 liz and 5 hz; This quantity is computed according to the 

formula of 6-23. The PFE data points are plotted in the same manner 

as the apparent resistivity data points. 
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The third set of data in Figure 147 isa profile of the tilt from
 

the horizontal, of the major axis of the ellipse of polarization of
 

4
 a VLF (2 x 10 hz) signal broadcast by the U. S. Navy at Seattle,
 

Washington. These tilt angles are plotted with the convention west
 

tilt below the line and eamt tilt above the line. A crossover from
 

west tilts on the west to east tilts on the cast represents the loca

tion of a conductive subsurfacc inho:ogenoity in which conduction 

currents are concentrated. These crossovers are marked by bars.
 

The fourth set of data in Figure 147 isthe vertical magnetic inten

sity measured at 100 foot intervals and plotted in gammas.
 

The following observations may be made about the data presented
 

in Figurel47:
 

(a) The apparent resistivities range from 1800 ohm/u to 27,800 

ohm/m (conductivities of 5.55 x 10 "4 mhos/m to 3.60 x 10.5 mhos/m at
 

,vql hz).
 

(b) The resistivity changes at a mean rate of about 10 percent
 

Iper decade of frequency at tyl
1 hz, but this is by no mecans uniform. 

This is an exceptionally high rate for Earth materials. 

(c) The vertical magnetic intensity varies somewbat erratically 

by 2009 ' over a distance of about 3600 feet. 

(d) Pronoupced resistivity lows and VLF polarization crossovers 

occur in coincidence with two magnetic intensity lows and presumably 

the cause of this association is henatization of basalts along a fault 

or shear zone. The PPE values also are locally lower in the vicinity 

of the two magnetic lows and this observation is in accordance with the 

conversion of magneti te to heitatite in a shear zone, 
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(e) The resistivities generally decrease with increased depth,
 

and this might be attributed to change of water or ice content, in 

the rock,pores, with depLhj
 

(f) The physical property environment is quitd inhomogeneous and 

quite aiomalous, Perhaps we should expect similar physical property
 

d istributions 'I the lunar environment, although the current or past 

presence of liquid of solid water may be essential to .all of the 

anomalous properties recorded in Figure 147. 
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List of Illustrations 

Figure 1 Phase velocity and wavelength in conductor as functions 

of conductivity and'frequency. 

Figure 2 Depth of penetration d as a function of conductivity and 

of frequency. 

Figure 3 Nomogram giving depth of penetration d = ll for low loss 

dielectrics. Tan S = 0.0001 to 0.05. 

Figure 4 Nomogram giving depth of penetration d for medium loss 

dielectrics. Tan S - I. 

Figure 5 Nomogram giving depth of penetration d for high loss di

electric. Tan I. 

Figure 6 An n-layered structure on which a wave of arbitrary con

figuration is incident. 

Figure 7 Equivalent electrolyte path in "bundle of capillaries" 

model of a rock. L and A-are length and cross-sectional 

area of rock Le and Ae are length and cross-sectional area 

(as intersected) of equivalent rock pore (after Ward and 

Fraser, 1967). 

Figure 8 Diagrammatic representation of ions adsorbed on clay particle 

(after Ward and Fraser, 1967). 

Figure 9a Hypothetical anomalous ion distribution near a solid-liquid 

interface. 

Figure 9b Corresponding potential distribution (after Ward and Fraser, 

1967). 

Figure 10 Circuit analog of interfacial impedance (after Ward and 

Fraser, 1967). 
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Figure 11 Frequency dependence of absolute value /If / and phase 

of resistivity of a rock (after Wait, 1959). 

Figure 12 Membrane polarization caused by negatively charged clay 

particles along pore paths of a rock; (a)pore path before 

application of an electrical potential, (b)pore path after 

application of a d.c. potential (after Ward and Fraser, 1967). 

Figure 13 Conductivity-frequency spectra of a clay-containing sand

stone (after Ward and Fraser, 1967). 

Figure 14 Simple analog electrical circuit for simulating relaxation 

spectra. 

Figure 15 Relaxation spectra for reduced dielectric constant, conduc

tivity, and loss factor. 

Figure 16 Simple analog electrical circuit for simulating resonance 

spectra. 

Figure 17 Resonance spectra for dielectric constant, loss factor, and 

loss tangent. 

Figure 18 Pictorial representation of rock specimen of length 4 
cross-sectional area A, by two capillaries, one of which is 

blocked by metallic particle. 

Figure 19 Simple analog electrical circuit for simulating electrode 

polarization. 

Figure 20 Simple analog electrical circuit for simulating membrane 

polarization. 

Figure 21 Pictorial representation of rock specimen of length cross

sectional area A, by two capillaries, one of which is partially 

blocked by membrane zones due to clay particles. 



392 

Figure 22 Cole-Cole diagram for real and imaginary parts of complex 

dielectric constant. 

Figure 23 Simple analog electrical circuit for simulating polarization, 

of any origin, in a rock. 

Figure 24 Cole-Cole diagram for real and imaginary parts of a complex 

conductivity. 

Figure 25 Conductivity 7 ' and dielectric constant Ke' as functions 

of frequency and moisture content for a soil. Dry soil -

circles; 20% water by weight  triangles; 73% water by 

weight - squares (after Jiracek, 1967). 

Figure 26 Absorption A and depth of penetration d as functions of 

frequency and moisture content for a soil.* Dry soil -

circles; 20% water by weight  triangles; 73% water by 

weight - squares (after Jiracek, 1967). 

Figure 27 Conductivity 'rS and dielectric constant Ke' as functions 

of frequency and moisture content for a basalt of dry den

sity 1.40 gms/cc. Dry rock - circles; 0.0441% water by 

weight - triangles; 2.71% water by weight - squares (after 

Jiracek, 1967). 

Figure 28 Absorption A and depth of penetration d as functions of 

frequency and moisture content for a basalt of dry density 

1.40 gms/cc. Dry rock  circles; 0.0441% water by weight -

triangles; 2.71% water by weight - squares (after Jiracek, 

1967). 
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Figure 29' Conductivity y' and dielectric constant Ke as functions 

of frequency and moisture content for a basalt of dry den

sity 2.559 gms/cc. Dry rock  circles; 0.358% water by 

weight - triangles; 0.377% water by weight - squares (after 

Jiracek, 1967). 

Figure 30 Absorption A and depth of penetration d as functions of 

frequency and moisture content for a basalt of dry density 

2.559 gms/cc. Dry rock  circles; 0.358% water by weight -

triangles; 0.377% water by weight - squares (after Jiracek, 

1967). 

Figure 31 Low frequency reflection from sea water (after Stratton, 1941). 

Figure 32 High frequency reflection from (1) fresh water, (2)resistive 

rock (after Stratton, 1941). 

Figure 33 Resistivity as a function of pressure in NaCi solution at 

20'0. Conductivity of solution 0.30 -m (after Brace, 

Orange, and Madden, 1965). 

Figure 34 Energy bands in intrinsic semiconduction. 

Figure 35 Comparison of energy gaps for intrinsic and extrinsic 

semiconduction. 

Figure 36 Schottky and Frenkel defects; ion in box is missing in 

Schottky defect; ion in box is displaced in Frenkel defect 

(after Kittel, 1953). 

Figure 37 Conductivity of granodiorite as a function of temperature 

and frequency (after Keller, 1966). 

Figure 38 Conductivity profiles of the earth's interior. 
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Figure 39 Areas of high, moderate, and low near-surface conductivity 

in the United States, as indicated by resistivity measure

ments near radio stations (after Keller and Frischknecht, 1966). 

Figure 40 The electrical conductivity of pure ice as a function of tem

perature and frequency (after Keller and Frischknecht, 1966). 

Figure 41 The behavior of resistivity in water-bearing rocks at tem

peratures in the range -40C to +60'0 (after Keller and 

Frischknecht, 1966). 

Figure 42 Dielectric constant of ice as a function of temperature 

and frequency (after Eder, 1947). 

Figure 43 Loss tangent of ice as a function of temperature and fre

quency (after Eder, 1947). 

Figure 44 Dielectric constant of granodiorite as a function of tem

perature and frequency (after Keller, 1966). 

Figure 45a Source of diamagnetism. b) linear M-H diagram for diamag

netic substance (after Chikazumi, 1964). 

Figure 46a Linear X-H diagram for paramagnetic substance. b) source 

of paramagnetism. c) behavior of susceptibility as a func

tion of temperature for a paramagnetic substance (after 

Chikazumi. 1964). 

Figure 47a Source of ferromagnetism. b) polarization-temperature 

diagram for ferromagneti- substance. Tc is the Curie 

temperature (after Chikazumi, 1964). 

Figure 48a Source of antiferromagnetism. b) susceptibility-temperature 

relationship for an antiferromagnetic substance (after Chika

zumi 1964). 
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Figure 49a Source of ferrimagnetism. b) polarization-temperature
 

diagram for ferrimagnetic substance (after Chikazumi, 1964).
 

Figure 50a Source of metamagnetism. b) polarization-field strength
 

diagram for a metamagnetic substance (after Chikazumi, 1964).
 

Figure 51a 	and b) Two possible sources of parasitic ferromagnetism,
 

c) polarization-temperature, and susceptibility-temperature
 

relationships for a parasitic ferromagnet (after Chikazumi,
 

1964).
 

Figure 52 Typical hysteresis loop for a ferromagnetic substance (after
 

Weiss, 1963).
 

Figure 53 Magnetization curve for an igneous intrusive (after Nagata,
 

1953).
 

Figure 54 Magnetization curve for an igneous intrusive (after Nagata,
 

1953). 

Figure 55 	 An example of a hysteresis loop for a volcanic rock. is
6 
the rock density (after Nagata, 1953). 

Figure 56 An example of a hysteresis loop for a volcanic rock. ( is 

the rock density (after Nagata, 1953). 

Figure 57 Dispersion characteristics for two ferrites (after von 

Hippel, 1959). 

Figure 58 Magnetization curves of a single crystal of magnetite (after 

Nagata, 1953). 

Figure 59 	 Spinel structure (after Chikazumi, 1964).
 

Figure 60 	 The FeO-TiO2-Fe2O3 phase diagram (after Grant and West, 1965).
 

Figure 61 	 The inverse spinel structure of magnetite showing the spin
 

magnetic moments associated with the 8a and 16d sites (after
 

Nagata, 1953).
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Figure 62 

Figure 63 

Figure 64 

The effect of grain size upon the susceptibility of 

magnetite. 

The susceptibility k (cgs units) and the relative permea

bility Km as functions of magnetic content according to the 

simple relation k = 3 x 10-3V. 

The electromagnetic spectrum. 
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List of Illustrations 

Figure 65 Temperature distribution within solid moon after 4.5 x 109 

years. Curve 1 assumes chondritic radio-activity with an 

initial temperature of 500 -C. Curve 2 assumes terrestrial 

radioactivity with an initial temperature of 5000 C. Curve 3 

assumes chondritic radioactivity with an initial temperature 

of 00 C while Curve 4 assumes terrestrial radioactivity with 

an initial temperature of 0' C. (After Fricker, Reynolds, 

and Summers, 1967) 

Figure 66 Variation of the central temperature of the Moon's surface 

versus phase. (After Low and Davidson, 1965) A = 8-12 t 

infrared, B = 1 mm microwave, C = 3 mm microwave. 

Figure 67 Theoretical cooling curves of the moon.(After Jaeger, 1953) 

Figure 68 The ratio of the observed scattering cross-section s to the 

geometrical cross-section .- a2 as a function of wavelength 

for the Moon. (After Hagfors, 1967) 

Figure 69 RelAtive power as a function of -delay time for three different 

wavelengths. (After Hagfors, 1967) 

Figure 70 Relation between delay and angle of incidence, a is the 

radius of the Moon and c is the velocity of light. 

Figure 71 The relative power versus delay time when 12 g sec pulses 

are reflected by the Moon at 68 cm wavelength. (After Evans 

and Pettengill, 1963) 

Figure 72 The average echo intensity versus time delay curve for the 

depolarized component at a wavelength of 68 cm. (After 
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Evans and Pettengill, 1963) 

Figure 73 The polarization p(i) versus delay time for circularly 

polarized illumination. (After Evans and Pettengill, 1963) 

Figure 74 Geometry of lunar radar reflections showing contours of 

constant delay and frequency. (After Thompson and Dyce, 1966) 

Figure 75 Intensity of interplanetary field near the moon. Orbit 26, 

day 214, week 3, Explorer 35, Ames magnetometer. 

Figure 76 Intensity of interplanetary field near the moon. Orbit 12, 

day 207, week 2, Explorer 35, Ames magnetometer. 

Figure 77 Location of positive and negative anomalies on leeward side 

of the moon for Orbit 26. Explorer 35, Ames magnetometer. 

Figure 78 Dielectric constant Ke versus frequency for various values 

of frequency, for a conductivity of 10-6 mhos/meter. 

Figure 79 Real part M of the reflection coefficient versus induction 

number CD.- for a dielectric, permeable, conductive sphere 

in a uniform-alternating magnetic field. Permeability 

Km = 1.0, loss tangent variable as indicated. 

Figure 80 Real part M of the reflection coefficient versus induction 

number ( for a dielectric, permeable, conductive sphere 

in a uniform alternating magnetic field. Permeability 

Km = 3.16, loss tangent variable as indicated. 

Figure 81 Imaginary part N of the reflection coefficient versus induc

tion number ( for a dielectric, permeable, conductive 

sphere in a uniform alternating magnetic field. Permeability 

Km = 1.0, loss tangent variable as indicated. 

Figure 82 Imaginary part N of the reflection coefficient versus induc

tion numberqh- for a dielectric, permeable, conductive sphere 
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in a uniform alternating magnetic field. Permeability 

Im= 3.16, loss tangent variable as indicated. 

Figure 83 Relaxation spectra of electrical parameters of a sample of 

basalt (after Ward, Jiracek, and Linlor, 1968). Density 

2.67 gms/cc, 1% water. 

Figure 84 Estimated temperature-depth profiles for the Earth and 

Moon. See caption Figure 85 for description of Moon model. 

Figure 85 Semi-logarithmic plot of temperature versus depth for the 

"reduced terrestrial model" with initial temperature of 0' C 

and surface temperature of 00 C (after Fricker, Reynolds, 

and Summers, 1967). 

Figure 86 Conductivity profile of the "preferred" model of the moon. 

Figure 87 Estimated dielectric constant profile of the "preferred" 

model of the moon. 

Figure 88 Discontinuous conductivity profiles which reveal the expected 

major layers in the moon. First order approximations to 

"preferred" profiles. 

Figure 89 Discontinuous relative dielectric constant profiles which 

rev&al the expected major layers in the moon. First order 

approximations to "preferred" profiles. 

Figure 90 Discontinuous low CTand high -pofiles of the expected 

major conductivity layers in the moon. 

Figure 91 Discontinuous lownd high 3-profiles of the expected 

major dielectric constant layers in the moon. 

Figure 92 Conductive permeable sphere in uniform alternating magnetic 

field t -t . Radius of sphere, R. Electrical parameters 

of sphere T Electrical parameters of surroundings 
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e T Point of observation z 

Figure 93 In-phase (H and quadrature (N) components of induced dipole 

moment of a sphere in a uniform alternating magnetic field. 

Figure 94 Theoretical magnetotelluric curves over layered structures. 

Figure 95 Uniform plane electromagnetic waves normally incident upon 

a plane layered structure. 

Figure 96 Modulus of amplitude reflection coefficient IV' versus 

frequency for model 1. 

Figure 97 Real part of amplitude reflection coefficient Rjr-) versus 

frequency for model 1. 

Figure 98 Imaginary part of amplitude reflection coefficient I (r) 
versus frequency for model 1. 

Figure 99 Modulus of amplitude reflection coefficient /4 versusti;hi 
for the first layer of model I and two variants therefrom. 

Figure 100 The real part of the apparent surface impedance47$j versus 

frequency for model 1. 

Figure 101 The imaginary part of the apparent surface impedance. 

Figure 102 Phase Lta_ versus frequency for model 1. 

Figure 103 Apparent conductivity C versus frequency for model 1. 

Figure 104 Apparent dielectric constant -versus frequency for model 1. 

Figure 105 Apparent conductivity 7 versus frequency for model I 

ST 10-6) and for three variants of layer I conductivity. 

Figure 106 Dielectric constant 1 versus frequency for a number of 

earth materials. 

Figure 107 Conductivity II versus frequency for a number of earth materials. 

Figure 108 Loss tangent tan s versus frequency for a number of earth 



1iO1 

materials. 

Figure 109 Modulus of amplitude reflection coefficient Il versus 

frequency for models 2a and 2b. 

Figure 110 Apparent dielectric constant versus frequency for 

models 2a and 2b. 

Figure 111 Apparent conductivity j versus frequency for models 2a and 2b. 

Figure 112 Modulus of amplitude reflection coefficient / versus frequency 

for models 3a and 3b. 

Figure 113 Apparent dielectric constant ' versus frequency for models 

3a and 3b. 

Figure 114 Apparent conductivity G versus frequency for models 3a and 3b. 

Figure 115 Modulus of amplitude reflection coefficient i (4 versus 

frequency for model 4. 

Figure 116 Apparent dielectric constant Wa versus frequency for model 4. 

Figure 117 Apparent conductivity .,Iversus frequency for model 4. 

Figure-l8 Reflection coefficient I versus frequency for two-layered 

lunar Model 3. Upper layer thickness hI = 10 mP 100 m, 1000 m. 

Substratum exhibits properties of (a) dry basalt, (b)basalt 

with 1% water, (c)permafrost. 

Figure 119 Reflection coefficient Irl , apparent dielectric constant Ka, 

and apparent conductivity- \_ versus frequency for model 5. 

Figure 120 Power loss upon reflection for model 3 with the first layer 

of thickness hI = 10 m overlying (a) dry rock (b)wet rock 

(1%water), (c)permafrost. 

Figure 121 Uniform plane electromagnetic waves incident at angle 6 

upon a plane layered structure. 
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Figure 122 Concentrically layered sphere.
 

Figure 123 Vertical magnetic dipole over a homogeneous half space.
 

Figure 124 Section view of inductive electromagnetic field configuration.
 

Figure 125 Kilauea Iki sounding interpretation.
 

Figure 126 Argand diagram, vertical magnetic field at i06 hz.
 

Figure-127 Plan and section views of tilt angle field configuration.
 

Figure 128 Tilt angle sounding curves, = 10.
 

Figure 129 Tilt angle sounding curves, = 100.
 

Figure 130 Tilt angle sounding curves, = 1000.
 

Figure 131 Tilt angle sounding interpretation, San Jose. California.
 

Figure 132 Tilt angle versus frequency for dry volcanic ash overlying
 

dry basalt.
 

Figure 133 Tilt angle versus frequency for dry volcanic ash overlying
 

basalt with 1% moisture.
 

Figure 134 Tilt angle versus frequency for dry volcanic ash overlying
 

basalt with 3.8% moisture.
 

Figure 135 Tilt angle versus frequency for dry volcanic ash overlying
 

permafrost.
 

Figure 136 Tilt angle versus frequency for 10 meters of volcanic ash
 

overlying different materials.
 

Figure 137 Horizontal magnetic dipole over a homogeneous half space.
 

Figure 138 Two adjacent current lines AB and ab on surface of
 

homogeneous half space.
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Figure 139,0 140 induction in en infinite circular cylinder by an
 

elliptically polarized field, total field solid,
 

secondary field dashed (after Ward and Fraser, 1966).
 

Figure 141 	 Real part of apparent conducLivity-qTTj versus
 

frequency for a hot wet model of the Moon (after
 

Ward, Jiracek, and Linlor, 1968).
 

Figure 142 	 Phase Q' versus frequency for a hot wet model of
 

the Moon (after Uard, Jiracek; and Linlor, 1968). 

Figure 143 	 The phase and amplitude of the mutual impedance ratio 

Z/Z 0 as a function of the induction number for two 

horizontal co-planai loops lying on a homogeneous 

ground, 

Figure 144-	 Varian Associates-Texas Gulf Sulphur Company heli

copterborne electromagnetic system.
 

Figure 145 	 Pulses reflected from the bottom of a simulated uniform
 

debris layer, delta function input.
 

Figure 146 	 Possible coupling paths for the capacitive coupling 

method. 

Figure 147 	 Induced electrical polarization and resistivity data, 

Coppermine PBicr Area, Northwest Territories, Canada. 
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Figure 148 .Quasi-section method of ploting resistivity and 

induced' polarization data. 
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