General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

Technical Memorandum 33-431
Volume I

FEDGE-A General-Purpose Computer Program for Finite Element Data Generation User's Manual

F. A. Akyuz

Technical Memorandum 33-431

Volume I
FEDGE-A General-Purpose Computer Program for Finite Element Data Generation

User's Manual

F. A. Akyuz

```
JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
    PASADENA, CALIFORNIA
```

September 15, 1969

Prepared Under Contract No. NAS 7-100
National Aeronautics and Space Administrution

Preface

The work described in this report was performed by the Engineering Mechanics Division of the Jet Propulsion Laboratory.

PRECEDING PAGE BLANK NOT FILMED.

Contents

I. Introduction 1
II. Definition of the Problem 2
A. Topological Definitions and Classifications 2
B. Model Representation of a Physical Problem 2
C. Setup for FEDGE Input for Two-Dimensional Problems 5
D. Setup for FEDGE Input for Three-Dimensional Problems 5
III. Description of the Program 6
A. Method of Solution 6
B. Capabilities and Restrictions of FEDGE Program 8
C. Programming Language and Operational System 8
D. Description of Deck Arrangement 8
IV. Preparation of Input 10
A. General Information 10
B. Title and Control Cards 10
C. Topological Connectivity and Properties Information Deck 11
D. Numerical Values Associated With Surface or Line Equations and Boundary Conditions 15
V. Error Messages and Diagnostics 16
A. General Information 16
B. Error Messages in Link 1 16
C. Error Messages in Link 2 17
D. Error Messages in Link 3 17
VI. Description of Output 18
A. General Information 18
B. Output in Printed Form 18

1. First page information 18
2. Volume, surface, and lines connectivity information 18

Contents (contd)

3. Coefficients of surfaces, lines, or coordinates 18
4. Boundary conditions 18
5. Results of computations 18
6. Time messages 18
7. Coordinate listing 18
8. Computation time 19
9. Boundary conditions 19
10. Element-data listing 19
11. End card 19
12. Plotting information 19
13. Time message 19
C. Output in Punched-Card Form 19
VII. Examples 19
A. Axisymmetrical Model for Spherical Motor, Cylindrical Inlet 19
14. Determination of subdomains 19
15. Defin. $\approx n$ of origin 20
16. Determination of coordinate lines 20
17. Input deck preparation 20
18. Output listing 20
19. Generation of natural coordinate system and final mesh 20
B. Cylindrical Shell Problem 20
20. Determination of subdomains 20
21. Definition of origin 20
22. Determination of coordinate lines 20
23. Input deck preparation 20
24. Output listing 23
25. Generation of natural coordinate system and final mesh 23
Appendix. Computer Results for the Examples 25
References 33

Contents (contd)

Tables

1. Typical maximum and minimum numbers of items that can be handled by FEDGE 8
2. Title card for input 11
3. Control card for input 11
4. Information associated with three-dimensional subdomains -two subdomains per card 12
5. Information associated with faces and surface units of two- and tinree-dimensional subdomains-two surface units per card 12
6. Information associated with line units of two- and three-dimensional subdomains-two line units per card 14
7. Input of constents associated with equations of surfaces, line units, or coordinates 15
8. Input of constants associated with boundary condition information 16
A-1. List of input data for axisymmetrical model for spherical motor, cylindrical inlet 25
A-2. List of output data after successful execution for axisymmetrical model 26
A.-3. List of input data for the cylindrical shell problem for membrane case 27
A-4. List of output data after successful execution for membrane case 29
A-5. List of input data for cylindrical shell problem for membrane and bending case 30
A-6. List of output data after successful execution for membrane and bending case 32

Figures

1. Concave domain subdivided into three nearly convex domains2
2. Axisymmetrical model of spherical solid-propellant rocket motor 3
3. Three-dimensional cylindrical open-end shell model representation 4
4. General schematic input model for two-dimensional problem with application to example of Fig. 2 5

Contents (contd)

Figures (contd)

5. General schematic input model for three-dimensional shell problem with application to example of Fig. 3 6
6. General flow diagram for computer program 7
7. Physical deck arrar.gement of FEDGE program 9
8. Physical deck arrangement of datc for FEDGE program 10
9. A face labelled (1) defined by two surfaces and the corresponding form of sequence lobel and line information 13
10. A face in a two-dimensional problem labelled (1) defined by five different line units and the corresponding form of sequence label and line information 13
11. The line defined by the coordinates of points 15
12. Natural coordinate system for axisymmetrical model 21
13. Final mesh for axisymmetrical model 22
14. Final mesh for cylindrical shel! problem 24

FEDGE-A General-Purpose Computer Program for Finite Element Data Generation

User's Manjal

I. Introduction

A general-purpose computer program-for the generation of natural coordinate systems (Ref. 1) and the preparation of input data for finite-element maiysis-is described in two volumes.

Volume I contains preliminary definitions and step-bystep instructions for the use of the FEDGE program. Although they have many basic, distinct definitions and properties as far as input procedure is concerned, the two- and three-dimensional problems are presented in a unifieci form. This form of presentation not only facilitated the composition of this report, but offers for the users integrity of the definitions for two- and threedimensional problems. Although the general input procedure has been presented by choosing two specific examples from the practice, the users, during their examination of the examples, must try to recognize the potential extension and versatility that FEDGE offers for geometrical configurations of any degree of complexity. Volume I is a tool for the user whose concern is solely the generation of data for his problem.

Volume II contains information concernirg the structure of the program (with summarized flow charts) and a complete listing of the program.

Volumes I and II, together with Ref. 1, comprise a complete set of information for those who wish to adopt or modify the existing program or prepare their own program for their specific field of application. The application area ranges from the finite-element analysis of structures to finite-difference solution of any physical problem, or any professional field wherein the description of a domain with a known boundary is required by the use of a natural coordinate system concept. The need for repeated use of such a description increases the efficiency of the concept and of the program itself. The physical program FEDGE can be obtained from COSMIC,* a NASA agency for the distribution of the computer programs.

[^0]
II. Definition of the P-oblem

A. Topological Definitions and Classifications

The finite-clement me hod is one of the most versatile toois for solving engineering analysis problems; it eiiminates the difficulties arising from the complex geometrical definitions of the olution domain in one-, two-, or three-dimensional spece. The only restriction to the geometrical form of the physical model to be treated by the finite-element method is that it must be representable by simple, open, bou ided, smooth lines and surfaces (and combinations of ther1). Topologically, this class of figures is defined as develo able in plane into squares or circles, and in three-dimen sional space into cubes or spheres by continuous deformations (Ref. 2). Further nore, a twoor three-dimensional closed domain mis c be either concave or convix. The use of the FEDGE program requires the defi ition of a nearly convex domain; that is, a domain tha: resembles a sonvex domain but might have practicall insignificant concave portions on its boundary (Fig. 1). Any concave domain can be subdivided into a aumber of nearly convex domains, and represented as a collection of them.

With respect to its use in the finite-element analysis and the FEi)GE program, a line, surface, or volume can be classified as:
(1) Real when it represents a physical material, such as a iine represcinting a frame element or surface representing a shell.
(2) A boundary when it separates two regions, such as the boundary of solution domain and the outer space.
(3) Fictitious when it does not represent anything, as described in (1) and (2), but is used to define the connectivity between real or boundary lines, surfaces, and volumes.

In this report, solid lines and solid, crosshatched surfaces will be used consistently to illustrate real material; thin lines and light, crosshatched surfaces will represent boundary; and dotted lines and light, simple, hatched surfaces will show fictitious lines and surfaces.

B. Model Representation of a Physicai Problem

Figure 2 illustrates the axisymmetrical representation of a spherical, solid-propellant rocket motor. The circular line $A B C D$ represents the external spherical shell; therefore, it is a real line, and is represented by a thick, solid line. The grain represented by the crosshatched

Fig. 1. Concave domain subdivided into three nearly convex domains
region is bounded by the iines $B E$ and $E C$ and the shel! $B C$. This is a real surface, and lines $B E C$ and $B C$ are boundary lines of the grain. The location of the symmetry axis and the overall coordinate system, as well as the equation of the lines, are sufficient for complete description of the model.

A model representation of a cylindrical shell is illrstrated in Fig. 3. The shell is supported and open at both ends D_{1} and D_{3} and divided into two subdomains at the middle by D_{2}. The overall coordinate system is chose: as shown, and the geometry of the model shell is defined by the equation of the cylinder defining the shell and the plane defining the support condition in the overall coordinate system. The planes $D_{1} D_{2} D_{\mathrm{s}}$ are fictitious; the shell itself is a real surface; the volumes bounded by $D_{1} D_{2} D_{3}$ and the shell are fictitious dormains.

The objective of the FEDGE program is to generate the meshes that would represent the shell $A B C D$ and the grain BEC in Fig. 2, and the mesh and the boundary conditions for the cylindrical shell of Fig. 3, which could be used for finite-element analysis of these or other models. It should be noted that, by suitably changing intrinsic properties corresponding to the problem, one can obtain the input information for either stress-analysis or heat-transfer problems. It is assumed that the real lines and boundary lines are completely defined in the overall coordinate system x_{1}, x_{2}, x_{3}. Furthermore the interest of the analyst might be focused on some specific point, which is called a point of interest. Such points of interest are hypothetically chosen in the example considered herein. Around this point, some degree of refinement of the mesh will improve the convergence characteristics

Fig. 2. Axisymmetrical model of spherical solid-propellant rocket motor
of the finite-clement method; therefore, the accuracy of the results wiil also be improved.

Although the information as described above for Fig. 2 or 3 is completely sufficient for the definition of the problem, some additional work is required to translate the topological characteristics of the model into a form
acceptable by FEDGE. Once the model representation is set up, the preparation of the input for FEDGE follows the rules described below, separately, for two- and three-dimensional examples. As a definite rule, the collection of closed, bounded subdomains, interconnected with each other in two- and three-dimensional space, is the only possible form of model setup for input to

Fig. 3. Three-dimensional cylindrical open-end shell model representation

FEDGE. A real line in two-dimensional space, or real surface in three-dimensional space, must be a portion of a subdomain. (Besides those lines and surfaces, additional lines and surfaces might be used as additional information.) Subdomains that constitute a suitable input tool for scattered lines or surfaces are distinguished from the real subdomains by additional information. Furthermore, for each subdomain, the boundary must be divided into regions. In this work, these regions are called faces in analogy with the faces of regular geometrical figures,
such as squares and cubes, in two- and three-dimensional space. From the above consideration, it follows that any model has its equivalent collection of squares and cubes in two- and three-dimensional space.

Partition of the boundary into faces is, in general, arbitrary and can be used judiciously to obtain versatile mesh forms, whereas the regular analog, composed of a collection of squares or cubes, might (in general) be unique.

C. Setup for FEDGE Input for Two-Dimensional Problenis

Figures 4a and 4b illustrate the topological analog model and the setup itself, respectively, for input preparation of the two-dimensional model illustrated in Fig. 2. A few additional explanations will clarify the logic steps required between the model representation and the setup for input. After careful investigation of both Figs. 4 a and 4b, it can easily be concluded that. as far as the topological properties of the component; c. the two figures and labelling systems are concerned, they are completely equivalent; and the following can easily be observed:
(1) The real lines $A B F C D$.
(2) Boundary lines $B E$ and $E C$.
(3) Fictitious lines $A G, G E, E H$, and $H D$.
(4) Fictitious domains II and III.
(5) The I and J coordinate lines (Ref. 1).
(6) Direction of positive normal to the lines, and he labels in both Figs. 4a and 4b.
(a) TOPOLOGICAL ANALOGY

$\square \square$	$=$ FICTITIOUS DOMAIN
	$=$ REAL DOMAIN
-	$=$ REAL LINES
-	$=$ BOUNDARY LINES
---	$=$ FICTITIOUS LINES

The lines 10 at point F and 1 at point D are introduced to define the corner of the domain on a continuous line in Fig. 4b.

From this simple example, the degree of geometrical complexity that can be reached and input into FEDGE can be imagined easily by adding more and more real or fictitious demains (squares in Fig. 4a or any geometrical closed form as shown in Fig. 4b). The compatibility of faces between the faces of squares must be observed after the I, J coordinate system has been determined. The origin (in this example, the point E) is the oniy point whose coordinates must be known for input purposes if all other lines, fictitions or real, are defined by their equations. The additional arrows and signs of the line labels are explained later, together with labelling rules of the lines and surfaces, following the brief exposition of the logic and structure of the automation of the problem.

D. Setup for FEDGE Input for Three-Dimensional Problems

Figures 5a and 5b illustrate the topological analog model and the setup, respectively, for input preparation of the three-dimensional cylindrical shell problem
(b) SETUP FOR INPUT PREPARATION

Fig. 4. General schematic input model for two-dimensional problem with application to example of Fig. 2: (a) topological analogy; (b) setup for input preparation

Fig. 5. General schematic input model for three-dimensional shell problem with application to example of Fig. 3: (a) topological analogy; (b) setup for input preparatien
illustrated in Fig. 3. The topological analogy is obvious, and one can easily follow the numbers and the letters on the cubes and cylindrical subdomains, on the surfaces and lines, and on the corners, which explicitly show the analogy. As in the case of the twodimensional model, cubes can be added in three directions to obtain a topologically simple analogy between complex geometrical configurations and collections of cubes. Compatibility between the faces must be observed after the I, J, K coordinates have been chosen. The positive direction of the surfaces can be selected arbitrarily by the users. The origin and the equations of all labelled surfaces must be defined in the overall coordinate system x_{1}, x_{2}, x_{3} as shown in Fig. 5b.

III. Description of the Program

A. Method of Solution

The sol: tion starts by integration along the lines in two- and tiree-dimensional problems (see Ref. 1). The
origin (the point at which the integration starts) must be defined as input. The length of each line face is measured, and the natural coordinate system is determined along each face. In this program, the number of divisions along each line face is fixed equal to 16 (Fig. 6).

The natural coordinate system or the surface faces are generated by using the division established along the line faces (see Ref. 1). The mesh on any surface face will be 16×16 quadrilaterals, which constitutes a special case of the natural-coordinate-system concept.

In three-dimensional problems, the generation of the mesh on the faces is done on a plane, which is obtained by defining a plane normal to the component of the allnormal vectors of the surface along its face. The mesh obtained on this plane is projected to the surface. This procedure violates the application of the naturalcoordinate system on the surface faces, but it is a very close approximation for shallow surfaces, and provides an extremely fast automation scheme.

Fig. 6. General flow diagrain for computer program
In three-dimensional subdomains, the naturalcoordinate system is obtained by an interpolation scheme that generates each mesh nodal point through a systematic interpolation procedure between the corresponding points on the opposite faces.

All procedures described above are automatically done by the program after the necessary information concerning the lines, surfaces, and volumes, as well as their topological relationships, have been provided by the user. In two-dimensional space, a line can be defined either by its equation, which must be linear or quadratic, or point by point. In three-dimensional space, the lines are defined by the intersection of two planes or two quadratic surfaces or by a plane and quadratic surface. A line face in two-dimensional space can be defined by more than one type of line, and a surface face in three dimensions can be defined by more than one type of surface.

In the second link (see Fig. 6), the mesh is generated and the nodal points are generated in the sequence K, J, I (i.e., K varies first, then J, then I). The equivalent FORTRAN input/output (I/O) statement can be written as

$$
\begin{equation*}
\{[(K=1, N Z), J=1, N Y], I=1, N X\} \tag{1}
\end{equation*}
$$

For the form of the mesh, the users have three options:
(1) The number of divisions in the three directions of the natural-coordinate system for the first subdomain (the number of divisions in the other subdomains is determined by the program, with the resulting overall mesh depending upon the next two additional options of the users).
(2) The location of a special point in the first subdomain around which the users might want a refined mesh.
(3) The degree of refinement, which is defined by the ratio of the two successive division intervals, with the intervals being measured in the sense of the number of natural-coordinate-system divisions in the interval.

The labelling of the nodes starts from the first subdomain. Fictitious lines, surfaces, and volumes are not labelled, and do not show in the sequence. The points are labelled the first time they appear in a subdomain, and are processed in the program sequentially as they appear in the input. The user either judiciously labels the subdomains and chooses natural-coordinate systems to obtain the minimum bandwidth in the complex configurations, or uses the relabelling scheme of Ref. 3 to reduce the bandwidth for any complex configuration. The resulting coordinates of the mesh nodal points are punched on the cards.

In link 3 , the boundary conditions and element data are generated. In two- or three-dimensional space, the boundary conditions are assigned by the users along the complete line face or surface face, respectively. Only linear relations between various degrees of freedom at a point can be taken into account. The boundary conditions are distributed to the faces in the sequence as the corresponding subdomains and associated faces appear in the input. The boundary information is punched in the form ready for use in the program of Ref. 4.

The element-data information is distributed to all real elements. The subdomains are treated sequentially as they are assigned in the input, and the sequence number of the elements follows rules similar to the sequencing of the nodal point numbers. The face elements are treated first (if they are real) in a subdomain in the sequence, as they appear in the corresponding connectivity information of the input, related to the faces of the subdomain. The elements in the subdomain are labelled if the subdomain is real.

The typical numbers corresponding to the intrinsic properties of the faces or subdomains in which the elements lie are punched ready for use in the program of Ref. 4.

B. Capabilities and Restrictions of FEDGE Progrom

The FEDGE program permits users to generate input data for their finite-element aralysis problem, where the geometrical configuration arising from the model representation of the physical object offers any degree of complexity. The objectives of the program are to provide the users with complete sets of coordinates and mesh topology and boundary condition information by automatically generating a mesh configuration as it is required in the firite-element analysis. The lines and information types associated with various regions are the only necessary input information for FEDGE. In twodimensional space, the lines can either be straight or quadratic lines, or can be prescribed point by point. In three-dimensional space, the faces are planes or quadratic surfaces. No practically defined model exists that cannot be handled by the program (see Refs. 1 and 2 for exceptional geometrical configurations). The computer time and engineers' hand labor increase with increasing complexity of the geometrical configurations. Typical numbers corresponding to the limited capacity of the program are listed in Table 1. These numbers are

Table 1. Typical maximum and mininum numbers of items that can be handled by FEDGE

Description	Maximum or minimum number
Subdomains in two- or three-dimensional space (maximum number) Surface units in three-dimensional space (maximum number)	50
Line units in two-dimensional space (maximum number)	200
Boundary condition types (maximum number) Boundary condition units that appear in a linear relation in a point (maximum number)	50
Nodal points (maximum number)	8000
Elements (maximum number) Number of nodal points in an input unit in two- dimensional space (maximum)	8000
Number of surface units in a surface face in three dimensions"	2
athe surface interfaces must cross two opposite line faces.	5

based upon the storage capacity of 32 K 36 -bit wordcapacity computers and upon the practical ranges encountered in engineering applications. With its actual form, the program can accommodate any finite-element analysis problem of continuous complex structures of any size within practically feasible, computer-time expenditures. However, if it is desirable to handle problems beyond the capability of this program (e.g., by the application of larger and faster machines), the entire program should be reviewed for minor changes.

C. Programming Language and Operational System

The computer program has been developed for the 32 K IBM 7094/7044 direct-coupled system; however, FEDGE may be used in other systems that have the FORTRAN II compiler and FAP assembler. The program uses the following tape units during execution:
(1) FORTRAN Unit 1 , system.
(2) FORTRAN Unit 2, chain.
(3) FORTRAN Unit 3, scratch.
(4) FORTRAN Unit 4, scratch.
(5) FORTRAN Unit 5, input.
(6) FORTRAN Unit 6, output.
(7) FORTRAN Unit 7, punch.
(8) FORTRAN Unit 8, scratch.
(9) FORTRAN Unit 9 , scratch.
(10) FORTRAN Unit 10, scratch.

D. Description of Deck Arrangement

The FEDGE program consists of three chain links. The deck arrangement is shown in Fig. 7. For each model problem, there must be one complete data set and any number of additional data sets for the same inodel problem if various types of meshes are requested. In the generation of the additional meshes, the users take advantage of the fact that, once the natural coordinate systems are stored (the generation of which takes the major portion of the machine time), the computer time for the generation of the additional meshes is very short.

The source deck consists of approximately 5000 cards, and the binary deck contains approximately 1000 cards.

Fig. 7. Physiczl deck arrangement of FEDGE program

IV. Preparation of Input

A. General Information

Regardless of whether or not it is a three-dimensional problem, the input data deck can be considered in three groups: (1) the title and control cards, (2) topological connectivity and properties information deck, and (3) numerical values associated with the surface or line equations and boundary conditions (Fig. 8).

The first group of data is prepared in a similar way in both three- and two-dimensional problems. In the presensation that follows (Tables 2-8), each table describes
a card, or the deck of cards, with a sequential instruction that refers to the column number on the card or deck of cards in question. Additional or unusual properties of input parameters are explained whenever they appear. The name of the parameter, as it appears in the program, is also included in the last column, following the description. The arrays are distinguished from the singlevalued constants by a dummy index.

B. Title and Control Cards

The input forms for title and control cards are presented in Tables 2 and 3, respectively.

FOR NE $=0, A, B$ ARE ALL IINPUT.
FOR NE $=1$, A IS THE ONLY INPUT. IT MUST BE PRECEDED BY ONE COMPLETE
DECK WITH NE $=0$.
FOR NE $=2$, A, B ARE ALL INPUT. THEY MUST BE PRECEDED BY ONE COMPLETE INPUT DECK WITH NE $=0$.

Fig. 8. Physical deck arrangement of data for FEDGE program

Table 2. Title card for input

Column	Description of input item	Name	Column	Duscription of input item	Name
1-2	A constant that defines the input type NE $=0$ The complete deck of data is required NE $=1$ The title card and control card are required. The point of interest, the refinement constant, and the number of final mesh divisions in three directions can be altered. The remaining values are assumed unchanged from the previous complete data information $N E=2$ The complete deck of data is required. Complete input data deck with $N E=0$	NE	3-80	must precede this deck. In this deck, the element properties and boundary conditions can be altered. The first link is skipped during execution $N E \leq-3$ The complete data deck is required in two-dimensional problems. In addition to the standard output deck, mesh topology information for plotting (element by element) is punched out Any title information to identify the problem	-

Table 3. Control card for input-format (I2, 213, 412, E4.0, 12E, 5.0)

Column	Description of input item	Name	Column	Description of input item	Name
1-2	Number of volume subdomains; zero for two-dimensional problem only	NVOL	31-35	The x_{3} coordinate of the special point in the overall coordinate system for three-	2O(10)
3-5	Number of surface units in three dimensions or number of surface subdomains in two dimensions	NSUR	36-40	dimensional problems only The x_{1} coordinate of the origin in the overall coordinate system; the origin must be on	XB(1)
6-8	Number of line units in three and two dimensions	NLIN		the starting point of the line labelled 1; the first line must be the I line	
$9-10$	Label of subdomain at which the special point lies (in this program, always $10=1$)	10	41-45	The x_{2} coordinate of the origin in the cverall coordinate system	XB (1)
11-12	Number of divisions in the direction I in the first subdomain	NX(IO)	46-50	The x_{3} coordinate of the origin in the overall coordinate system for three-dimensional problems only	ZB(1)
13-14	Number of division : in the direction J in the first subdomain	NY(IO)	51-55	Minimum x_{1} coordinate in the overall coordinate system	XMIN
15-16	Number of divisions in the direction K in the first subdomain; nonzero only for threedimensional problems	NZ(IO)	$56-60$ $61-65$	Maximum x_{1} coordinate in the overall coordinate system	XMAX YMIN
17-20	Factor of refinement CF >1, and if $1<$	CF	61-65	Minimum x_{2} coordinate in the overall coordinate system	YMIN
	CF <1.01, it is automatically assumed to be practically 1 in the program		66-70	Maximum x_{2} coordinate in the everall coordinate system	YMAX
21-25	The x_{1} coordinate of the special point in the overall coordinate system; it must be within or on the boundary of the first	XO(IO)	71-75	Minimum x_{3} coordinate in the overall coordinate system for three-ditnensional problems only	ZMIN
26-30	subdomain The x_{2} coordinate of the specirl point in the overali coordinate system	YO(IO)	76-80	Maximum x_{3} coordinata in the overall coordinate system for three-dimensional problems only	ZMAX

C. Topological Connectivity and Properties Information Deck

If the number of three-dimensional subdomains NVOL >0, the program will expect the information associated with the three-dimensional subdomains according to Table 4. For two-dimensional problems, the
deck associated with Table 4 is completely excluded from the input deck.

Surface information associated with the face of each subdomain is input according to Table 5. The labelling of faces must be sequential; otherwise, the labelling is

Table 4. Information associaied with three-dimensional subdomains-two subdomains per cardinput format [2(814,8X)]

Column	Description of input item	Name ${ }^{*}$
1-4 (4)-44)	Label of the sequential subdomain	MDM 1
5-6 (45-46)	Type of material in the ith subdomain	IMAT $=$ NMATE $/ 100$
$7-8 \quad(47-48)$	Type of temperature in the ith subdomain (if the volume subdomain is fictitious, columns 5-8 must be blank)	$\begin{gathered} I T E M=\text { NMATE }{ }_{1}- \\ 100 \cdot \text { IMAT } \end{gathered}$
9-12 (49-52)	Label of the first face that is conventionally defined as the $J K$ face for which $I=1$ in the natural coordinate system	NFl ${ }_{1,1}$
13-16 (53-56)	Label of the sacond face that is conventionally defined as the $J K$ face for which $I=17$ in the natural coordinate syste :	$\mathrm{NFL}_{1,2}$
17-20 (57-60)	Label of the third face that is conventionally defined as the KI face for which $J=1$ in the natural coordinate system	$\mathrm{NFL}_{1, \mathrm{~s}}$
21-24 (61-64)	Label of the fourth face that is conventionally defined as the $K I$ face for which $J=17$ in the natural coordinate system	NFL 1.4
25-28 (65-68)	Label of the fifth face that is conventionally defined as the IJ face for which $K=1$ in the natural coordinate system	NFLi,s
29-32 (69-72)	Label of the sixth face thet is ronventionally defined as the IJ face for which $K=17$ in the natural coordinate system	$\mathrm{NFL}_{1.6}$
*Computations shown	is column are in the FORTRAN integer sense.	

Table 5. Information associated with faces and surface units of two-and three-dimensional subdomains -two surface units per card-input format [2(914,4X)]

Column	Description of input item	Name ${ }^{*}$
1-4 (41-44)	Label of the sequential surface faces; if the face is defined by more than one surface, the sequence number of the face is repeated for each surface	MDM ${ }_{1}$
5-6 (45-46)	Element type number in the sense it is defined in Ref. 4	IELT $=$ MELMA $/ 100$
7-8 (47-48)	Material type number; in the case of fictitious surfaces, columns 5-8 must be blank	$\begin{gathered} \text { IMAT }=\text { MELMA }:- \\ 100 \cdot \text { IELT } \end{gathered}$
$9-10$ (49-50)	Pressure type	IPRS -: MPRTI, 100
11-12 (51-52)	Thickness type	$\begin{gathered} I T I C=\text { MPRTI } 1- \\ 100^{\circ} \text { IPRS } \end{gathered}$
13-14 (53-54)	Temperature change type	ITEM $=$ MTETG ${ }_{\text {I }} / 100$
15-16 (55-56)	Temperature gradient along the thickness type	$\begin{gathered} \text { ITGY }=\text { MTETG }_{i}- \\ 100 \cdot \text { ITEM }^{-} \end{gathered}$
17-18 (57-58)	Boundary condition type	MBON $=$ MBOVR $/ 100$
19 (59)	Convexity index MCV: MCV = 0 for a perfectly convex surface domain; MCV $=1$ for a nearly convex surface domain	$\begin{gathered} M C V=M B O V R_{1} / 10- \\ 10 \cdot \mathrm{MBON}_{1} \end{gathered}$
20 (60)	Blank	-
21-24 (61-64)	Label of the first line face that is conventionally defined as the first line of the second coordinate label of a surface defined by IJ or JK or KI coupled labels	$M L_{1,1}$

Table 5 (contd)

Column	Description of input item	Name*
25-28 (65-68)	Label of the second line fas t that is conventionally defined as the seventeenth line of the second coordinate label of the surface defined by IJ or JK or KI coupled labels	MLI,2
29-32 (69-72)	Label of the third line face that is converitionally defined as the first line of the first coordinate label of the surface defined by IJ or JK or KI coupled labels	MLi.a
33-36 (73-76)	Label of the fourth line face that is conventionally defined as the first line of the first coordinate tabel of the surface defined by IJ or JK or KI coupled labels	MLi,4
	In the case of a foce defined by more than one surface, the label corresponding to the interface of surfaces will be zero	
	In two-dimensiona! problems, only the IJ surface is in question; $\mathrm{ML}_{\mathbf{i}, \mathrm{f}}=\mathbf{0}$ for all fictitious faces	
*Computations shown in this column are in the FORTRAN integer sense.		

arbitrary. In three-dimensional problems, one facc can be defined up to two surface units, the label of which must appear in the surface information list as the label of the face repeated for each of the units (Fig. 9a).
(a)

(b)

SURFACE NO.			$\begin{aligned} & \text { FIRCT } \\ & \text { FACE NO } \end{aligned}$	$\begin{aligned} & \text { SECOND } \\ & \text { FACE NO. } \end{aligned}$	THIRD FACE NO.	FOURTH FACE NO.
1	1	(OTHER INFORMATION)	3	0	1	2
2	1		0	4	1	2

Fig. 9. A face labelled (1) defined by two surfaces and the corresponding form of sequence label and line information (two cases)

In two-dimensional problems, the surface is in the x_{1}, x_{2} plane, and all information associated with x_{3} is null. Furthermore, each subdomain is defined by a single surface; i.e., $x_{3}=0$. One face can be defined up to any practical number of line units, the label of which must appear in the line information list as the label of the face repeated for each of the units (Fig. 10).

The line information associated with the line units of the two- and three-dimensional subdomains are input according to Table 6. Labelling of the lines must be sequential. The values of the lines that define the two opposite boundaries of a face defined by more than one surface are repeated as described in the tabulation (Fig. 9b). Labelling of the lines is not completely arbitrary. Users must follow imaginary integration procedures along each line element. The lines connected at the end of the lines must assume a higher label than that of the

Fig. 10. A face in a two-dimensional problem labelled (1) defined by five different line units and the corresponding form of sequence label and line information

Table 6. Information associated with line units of two- and three-dimensional subdomains-two line units per card-input format [2(714,413)]

Column	Description of input item	Name ${ }^{\text {a }}$
1-4 (41-44)	Label of the sequential line units; if the surface face is defined by more than one surface in the direction of those line faces, the sequence number of the line is repeated for each surface unit; in two-dimensional problems, the face number is repeated for each line unit associated with the face if the face is defined by more than one line unit; the line label must be negative if the integration is opposite the positive direction of the natural coordinate base rector along the line	IDM ${ }_{\text {I }}$
5-6 (45-46)	Element type number in the sense defined in Ref. 4	IELT $=$ IELMA $/ 100$
7-8 (47-48)	Material type number; in the case of a fictitious or boundary line, columns 5-8 must be blenk	$\begin{gathered} \text { IMAT }=\text { IELMA }- \\ 100^{\circ} \text { IELT } \end{gathered}$
$9-10$ (49-50)	Pressure type	IPRS - 19RTE $/ 100$
11-12 (51-52)	Temperature type	$\begin{gathered} \text { ITEM }=\text { IPRTE }_{1}- \\ 100 \cdot \text { IPRS } \end{gathered}$
13-14 (53-54)	Temperature gradient type in the local \boldsymbol{y}-axis direction	ITGY $=1 G Y G Z_{1} / 100$
15-16 (55-56)	Teniperature gradient type in the local \mathbf{z}-axis direction	$\begin{gathered} \text { ITGZ }=\mathrm{IGYGZ}, \\ 100 \cdot \mathrm{ITGY} \end{gathered}$
17-18 (57-58)	Area type	IARE $=\mid A R M X_{1} / 100$
19-20 (59-60)	Moment of inertia around local x axis of the member type; the lecal x axis is along the member and in the direction of the base vectur of the natural-coordinate system	$\begin{gathered} \text { IMMX }=\text { IARMX }- \\ 100 \cdot \text { IARE } \end{gathered}$
21-22 (61-62)	Nioment of inertia around the local y axis of the member	AMY $=1$ MYMZ ${ }_{1} / 100$
23-24 (63-64)	Moment of inertia around the local \mathbf{z} axis of the member ${ }^{\text {b }}$	$\begin{gathered} I M M Z=I M Y M Z_{1}- \\ 100 \cdot I M M Y \end{gathered}$
25-26 (65-66)	Angle type that defines the direction ef the local y axis ${ }^{\text {b }}$	IMFI $=1 \mathrm{MFBO}_{1} / 100$
27-28 (67-68)	Boundary-condition type along the line in question (for two-dimensional problems only)	$\begin{gathered} \mathrm{JBON}=I \mathrm{MFBO}_{1}- \\ 100 \cdot I \mathrm{MFI} \end{gathered}$
29-30 (69-70)	Indicator for the type of expression that defines the line (in two-dimensional problems only): NDT $=\mathbf{3}$ for straight-line input NDT $=6$ for quadratic-line input $\mathbf{2} \leq$ NDT ≤ 10, the number of coordinates input when the line is defined point by point (maximum 5 points)	NDT $=1 \mathrm{IDTNR}_{1} / 10$
31 (71)	Indicator for the type of line input for two-dimensional problems: INR $=0$-the line is defined point by point; the number of points is defined by NDT/2 (Fig. 11) INR $=1$-the integration along the line stops the first time the end surface or line is reached INR $=$ 2-the integration along the line stops the second time the end surface or line is reached	$\begin{gathered} I N R=I D T N R_{1} \\ 10 \cdot N D T \end{gathered}$
32-34 (72-74)	In three-dimensional problems, the label of the first face whose interface with the second fice defines the line in question; the normal of the first face, the normal of the second face, and the pasitive base vector of the natural-coordinate system on the line form a right-hand coordinate system in this sequence In two-cimensional problems, the Inbel of one of the line faces connected to the end point of the line along which the integration is performed	IFL ${ }_{1,1}$
35-37 (75-77)	In three-dimensional problems, the label of the second face whose interface with the first face defines the line in question (the sequence is defined above for $\mathrm{IFL}_{6,1}$) In two-dimensional problems, the labels of one of the line foces connected to the end point of the line along which the int jgration is performed	$\mathbf{I F L}_{1,2}$
38-40 (78-80)	In three-dimensional problems, the label of the end surface where the integration continues; if one of the surfaces that define the line is fictitious, the lines connected at the end of the line are chosen automatically as the two lines of the assumed end surface of the subdomain associated with the line information are available, not more than one fictitious surface is allowed to define a line In two-dimensional problems, the label of the end line where the integration continues-zero if the next line unit defines the same line face	IFL ${ }_{1,1}$
-Computations shown bThis is dummy infor	is column are in the FORTRAN integer sense. . The generation of mesh in three-dimensional frame elements is not possible.	

Fig. 11. The line defined by the coordinates of points
previous lines. The starting point at each line is determined through the integration procedure of the previous line (and only once-the first time they are reached during the integration process). The direction of the integration thus obtained in a given line might or might not be in the direction of the base vector of the naturalcoordinate system. The label is then positive if these two directions coincide; it is negative if they are opposite.

D. Numerical Values Associated With Surface or Line Equations and Boundary Conditions

For three-dimensional problems for each labelled surface, as described in Table 5, even if the equations corresponding to various input units are identical, an equation of the quadratic surface must be read by the program, as shown in Table 7. The form of the equation will be as given by Eq. (2), and the sion of the equation will be determined by the positive direction of the normal to the surface.

$$
\begin{align*}
a_{1}+a_{2} x_{3}+a_{3} x_{2} & +a_{4} x_{1}+a_{5} x_{1} x_{3}+a_{6} x_{3} x_{2}+a_{7} x_{2} x_{1} \\
& +a_{3} x_{3}^{2}+a_{8} x_{2}^{2}+a_{10} x_{1}^{2}=0 \tag{2}
\end{align*}
$$

For two-dimensional problems for each labeiled line, as cescribed in Table 6, even if the equations corresponding to various input units are identical, a set of coordinates x_{1}, x_{2}, or a straight-line equation with three constants, or an equation of a quadratic line must be read depending upon the value of the corresponding indicator constant, as defined in Tabl 6. Equations (3), (4), and (5), and Fig. 11 clarify these ipput items.

$$
\begin{gather*}
x_{1}^{A}, x_{2}^{4}, x_{1}^{B}, x_{2}^{B}, x_{1}^{C}, x_{2}^{c}, x_{1}^{D}, x_{2}^{D}, x_{1}^{E}, x_{2}^{E} \tag{3}\\
a_{1}+a_{2} x_{2}+a_{3} x_{1}=0 \tag{4}\\
a_{1}+a_{2} x_{2}+a_{3} x_{1}+a_{4} x_{1} x_{2}+a x_{2}^{2}+a_{6} x_{1}^{2}=0 \tag{5}
\end{gather*}
$$

The constants of the equaion of ope input unit or ten coordinates (five points) are read ${ }^{2 \times 2}$ card, according to the form presented in Table 7.

Two integer numbers and one c.-*ant constitute a set of information for the linear relai o: between various degrees of freedom o: a given poiat. Up to eight sets of information can be read for a $s^{\prime \prime}(2)$ lype of boundary condition along a surface face in ther atnensional problems, or along a line face in tevodimensional problems.

Each card, therefore. will contain eight sets of information, as shown in Table 8, and each card will correspond to one type of boundary condition cited in columns 17-18 (57-58) of the connectivity information card, as described in Table 5, or in columns 27-28 (67-68) of the connectivity information card in Table 6. The number of cards for boundary conditions or the maximum number of boundary condition types is the maximum number that appears in the corresponding column of Table 5 or 6.

Table 7. Input of constants associated with equations of surfaces, line units, or coordinates-input format (10F8.0)

Column	Description of input item	Name ${ }^{\text {a }}$	Column	Description of input item	Name ${ }^{\text {a }}$
1-8	a_{1} v: Eqs. (2), (4), (5), or x_{1}^{4} of Eq. (3)	$\mathrm{AN}_{10(\mathrm{n}-1)+1}$	41-48	a_{6} of Eqs. (2), (5), or x_{2}^{c} of Eq. (3)	$\mathrm{AN}^{10(\mathrm{n}-1)+6}$
$9 .-16$	a_{2} of Eqs. (2), (4), (5), or x_{2}^{A} of Eq. (3)	$\mathrm{AN}_{10(\mathrm{n}-1)+2}$	49-56	$a_{\text {\% }}$ of Eq. (2) or $x_{1}^{\text {D }}$ of Eq. (3)	$A N_{10(n-1)+7}$
17-24	a_{3} of Eqs. (2), (4), (5), or x_{1}^{B} of Eq. (3)	$A N_{10(\mathrm{n}-1)+3}$	57-64	a_{s} of Eq. (2) or $x_{2}^{\text {D }}$ of Eq. (3)	$A N_{10(\mathrm{n}-1)+\mathrm{b}}$
25-32	a_{4} of Eqs. (2), (5), or x_{2}^{B} of Eq. (3)	$\mathrm{AN}_{10(\mathrm{n}-1)+1}$	65-72	a_{9} of Eq. (2) or x_{1}^{E} of Eq. (3)	$A N_{10(n-1)+0}$
33-40	a_{5} of Eqs. (2), (5), or x_{1}^{c} of Eq. (3)	$\mathrm{AN}^{10(\mathrm{n}-1)+5}$	73-80	a_{10} of Eq. (2) or x_{2}^{E} of Eq. (3)	$\mathrm{AN}_{10(\mathrm{n}-1)+10}$
${ }^{\text {a }}$ The n refars either to the sequence number of input items or to the sequence number of cards from which the information is read.					

Table 8. Input of constants associated with boundary condition information-input format ($812,8 \mathrm{E8} .0$)

Column	Description of input item"	Name	Column	Description of ingut item"	Name
$(1-2),(3-4), \cdots,(15-16)$ (17-24), (25-32), $\cdots,(73-80)$	Number of degrees of freedom associated with the nodal points on the face considered; each pair of numbers represents two direction labels on a point in connection with the prescribed boundary condition Constant that relates the degrees of freedom defined by the integers in	IBON ${ }_{1,1}$		columns 1-16. Each set is complete by consecutive pairs of integers in columns 1-16 and a corresponding constant in columns 17-80. Integers in columns 1-2 correspond to constant in columns 17-24. Integers in columns 3-4 correspond to constant in columns 25-32, etc.	

${ }^{\text {a }}$ The actual input format in the program is different, but this can be used as is. It is r.ore explicit than the actual format, which is (414,8E8.0).

V. Error Messages and Diagnostics

A. General Information

The occurrence of an error that causes a message generally has a detrimental effect on the results. The program stops when the contimution of the execution does not yield any additional information about the status of the input. When error messages occur, the user must check carefully that portion of the input designated by the error message. The error messages are as selfexplanatory as possible, and are listed below in the order of probable appearance during execution of the program. The meaning of the printed information (italics in parentheses), the name of the subroutine in which the error is detected, and the probable cause of the error message are also given.

B. Error Messages in Link 1

VOLUME SUBDOMAIN NUMBERS ARE NOT IN SEQUENCE (sequence number of volume subdomain and user's label)

Occurs in DORB when the user's sequence label for the volume subdomain is not correct.

ERROR IN THE FACE LABELLING OF SUBDOMAIN (number of subdomains involved) OR (number of adjacent subdomains)

Occurs in DORB when the face numbers are not correct in the subdomains involved with the label printed out in the message.

TOTAL NUMBER OF FACES MAY NOT BE ZERO

Occurs in DORB. The zero or negative number of surfaces and lines is not acceptsble by the program.

INPUT ERROR PROBABLY IN CONNECTION WITH INPUT UNIT (number of the input unit involved)

Occurs in COPY when an error exists in the label of lines or surfaces corresponding to the input unit indicated in the error message. Execution continues.

ERROR IN THE INPUT UNIT (number of input units) THE FIRST FOUR CONSTANTS FOLLOW (the coordinates $x_{A}, y_{A}, x_{B}, y_{B}$ of the segment $A B$)

Occurs in DSAN when the boundary is defined by straight line segments and the coordinates of the end points of the segments are not correct. Execution continues.

AFTER (number of steps) STEPS OF INTEGRATION STARTING POINT IS REACHED, COORDINATES AND COEFFICIENTS OF SURFACES FOLLOW (x, y, z coordinates and the coefficients of the surffce equations for left, right end surfaces sequentially:

Occurs in INTR. The coefficients involved, e probably not correct.

AFTER (number of steps) STEPS OF INTEGRATION END SURFACE IS NOT REACHED, COORDINATES AND COEFFICIENTS OF SUKFACES FOLLOW (x, y, z coordinates and the coefficients of the surface equations for left, right, end surfaces sequentially)

Occurs in INTR. The coefficients involved are probably not correct.

ERROR IN THE INPUT UNIT (number of the unit) COORDINATES AND COEFFICIENTS FOLLOW (x, y, z coordinates and the coefficients of the surface equations for left, right, end surfaces sequentially)

Occurs in LENG when the maximum or minimum coordinates assigned by the user are reached The m.ximum and minimum coordinates, the coefficients of the equations involved, or the direction of the integution may be incorrect.

ERROR IN THE COEFFICIENTS OF QUADRATIC. COORDINATES, COMPUTED CONSTANTS, COEFFICIENTS FOLLOW [The integers c.ed the constants in the common map from 1-150 (see Table 2 of Vol. II) and the coefficients of all equations up to the one in question are pinted out.]

Occurs in ROOT when the root of the quadratic cannot be found in the step considercd. The coefficients of the quadratic may be incorrect.

INPUT ERROR DETECTED DURING THE INTEGRATION OF (label of line along which the integration is performed) TH LINE, RELATED INFORMATIONS FOLLOW (the label of the line, the surface informations related to the line, user's input and program selection, and the label of lines at the end of the integration)

Occurs in BACO when an error exists in the connectivity information of three surfaces constituting three faces around a nodal point in three dimensions. Line labels corresponding to the surfaces and the surface labels corresponding to the lines must be reexamined.

INPUT ERROR IN THE SURFACE LINE LABEL INFORMATION, CHECK WITH THE FORMAT SPECIFICATION (the surface number and corresponding line labels are printed out for the surface in question and the consecutive one)

Occurs in BOLI when a face is defined by more than one surface and the labels of the boundary lines are not written properly.

END POINTS OF THE (number of lines in question) TH LINE DO NOT MATCH END POINTS OF THE PREVIOUS LINE (number of previous lines), COORDINATES FOLLOW (coordinates of the two ends of the previous line, the coordinate of the first point of the line in question)

Occurs in TEST when an error exists in the line label or the computation of coordinates on the lines.

THE ERROR IS (error) ON THE FACE (face number) ERROR TOLERANCE (error tolerance) IS EXCEEDED, COEFFICIENTS FOLLOW (coefficients of the surface equation)

Occurs in NOCO when the surface equations associated with the face in question are not satisfied by the substitution of the coordinates computed.

ERROR IN THE COEFFICIENTS OF THE SURFACE EQUATION, RELATED INFORMATIONS FOLLOW [The integers and the constants in the common map from 1-150 (see Table 2 of Vol. II), and the coefficients of all surface equations up to the one in question are printed out.]

Occurs in ROTZ when the roots of the quadratic equations dc not satisfy the surface equations involved. The coefficients of the surface equations may be incorrect.

C. Error Messages in Link 2

IN LINK 2 ERROR DETECTED IN CONNECTIVITY INFORMATION (the number of subdomains, surface in two dimensions, volume in three dimensions)

Occurs in ENFI. Usually this type of error is detected in link 1 .

D. Error Messages in Link 3

ERROR PROBABLY IN THE CONNECTIVITY INFORMATIONS OF (the number of the subdomain) TH SUBDOMAIN

Occurs in ARBU. It is unlikely that any error of this kind would be detected at this stage. If an error occurs, the related inpet should be checked carefully. Deeper study involving the structure of the program may be required

VI. Description of Output

A. General Information

The output of FEDGE can be considered in two basic groups:
(1) The output in the printed form, which is basically for documentation, but also allows the user to follow some of the procedural aspects of the program and the information concerning his input data.
(2) The output in the punched-card form, which is basically for use as input data in a finite-element analysis program (specifically in the actual form for Ref. 4); in some cases, the user may optionally request additional punched cards for plotting purposes for two-dimensional problems.

B. Output in Printed Form

1. First page information. The first page starts with the information in the title card. Under the title, the dimension of the problem is printed out. The information in the control card follows, line by line, in the same sequence as it appears in the control card (see Table 3), and the description of each item is given as explicitly as possible.
2. Volume, surface, and lines connectivity information. The next page starts with the information that is read in as described in Section IV-C. The content of Table 4 appears in the input deck and in the output list for threedimensional problems enly.
3. Coefficients of surfaces, lines, or coordinates. The following surface and line information is printed out with explicit headings, in the sequence they are read in, and in as explicit a form as possible. The numerical values associated with the surface equations in threedimensional problems appear under the heading: Coefficients of Surface Equations. The numerical values associated with the line equations or coordinates of the given points appear under the heading: Coefficients of Line Equations or Coordinates. The coordinates appear in two lines: the first line for the x_{1}, the second for the x_{2}.
4. Boundary conditions. Boundary conditions are printed out, if there are any, and the type is assigned as described in Sections IV-C and IV-D, under the heading: Number of Directions Related to Each Other and the Relation Constants. Eight possible combinations are grouped, and each group is printed out as zero (even if they are not assigned by the user) if one among them has been assigned.

The output related to the direct input terminates at this point. If users fail to obtain this part of the output, they should check carefully with the number of input cards and the corresponding numbers previously assigned by them.
5. Results of computations. The computations start and continue with: (a) an error message, as described in Section V, or (b) a message at the end of the integration of each line face that is printed out: LABELS OF SURFACES AND LINES INVOLVED IN THE (i) TH LINE INTEGRATION ARE l, m, n, p, q, and r, where, for three-dimensional problems, l and m are two surfaces that define the line and n is the end surface for the line. Line p is the line along which the integration is performed, and q and r are labels of the two lines that are connected to the end of line i. It follows that $p=i$, and, in complex geometrical configurations, this information might help users to adjust their input information as described in Tables 4, 5, and 6 if any related error message is printed out. In two-dimensional problems, only p and q are meaningful integers that represent the labels of the lines connected to the end of the i th line; l, m, and n are zero.
6. Time messages. Three time messages are printed out that indicate the computation time for parts A, B, and C of link 1, respectively (see Fig. 6):
(1) INTEGRATION ALONG THE LINE SEGMENTS TOOK ... SECONDS.
(2) DIVISION ALONG THE LINE SEGMENTS TOOK ... SECONDS.
(3) GENERATION OF NATURAL COORDINATES TOOK ... SECONDS.
7. Coordinate listing. The list of coordinates of the mesh that is generated follows the last time message in the format [$2(14,3 \mathrm{~F} 12.6)]$:

$$
\text { (i) } x_{1}{ }^{i} x_{2}{ }^{i} x_{3}{ }^{i} \quad(i+1) \quad x_{1}{ }^{i+1} x_{2}{ }^{i+1} x_{3}{ }^{i+1}
$$

where i is the nodal point number and x_{j}^{i} are the associated three coordinates in the overall coordinate system.
8. Computation time. At the end of the list, a time message is printed out:

gENERATION OF FINAL MESH COORDINATES TOOK ... SECONDS

which denotes the computation time for link 2 (see Fig. 6).
9. Boundary conditions. The boundary conditions (if any) are printed out in the format [8(I4,I1,I4,I1,F6.3)]:

$$
(i)(k)(i)(l) C_{m},(j)(p)(j)(q) C_{n}, \cdots
$$

where i, j, \cdots are the labels of the nodal points for which k th (or p th) degrees of freedom on i th (or j th) points are related to the l th (or q th) degrees of freedom by a constant C_{m} (or C_{n}) typically expressed as the m th (n th) boundary-condition type in the input information. The linear relation can be expressed as

$$
\alpha_{i k}=C_{m}^{0}+C_{m}^{1} \alpha_{i l}+\cdots
$$

In the input format and output listing, C_{m}^{0} is distinguished from C_{m}^{1} by $k=l$ and $\alpha_{i k}, \alpha_{i l}$ are the deflections of the i th point in the k th and l th directions (see Ref. 4).
10. Element-data listing. The list for element data is printed out in the format (2014), wherein the content of each integer number directly corresponds to the corresponding input item in Ref. 4. The sequence of the labels of the element vertices is determined, assuming always the positive normal of the surface inward the subdomain containing the corresponding face and that has the smallest sequence number.
11. End card. The number of nodes, boundary conditions, and elements are printed out in the end card:

NO. OF NODES (IN) NO. OF BC (IB)
NO. OF ELTS (IE) END
where IN, IB, and IE are computed during the generation of nodal coordinates, boundary conditions, and element data, respectively.
12. Plotting information. For $\mathrm{NE} \leq-8$ (for twodimensional problems in addition to the standard output deck), a mesh topology information for element-byelement plotting is printed out in the format (20I4). The nodal-point numbers associated with the elements are
selected in such a manner that the common faces of the elements are not plotted twice. Each group of five integers represents the nodal-point labels of an element in sequence in the cow direction. The nodal numbers corresponding to common faces are not printed out, and the remaining ones appear in the listing or in the cards as left-justified in each group of five integers. The plotting sequence follows the rule explained in Section III-A. Only labelled elements are accounted for.
13. Time message. The time message for the generation of elements is printed out as:

GENERATION OF ELEMENT DATA TOOK

SECONDS

which denotes the computation time for link 3 (see Fig. 8).

C. Output in Punched-Card Form

For NE ≤ 2, the output in printed form-as explained in B7, B9, B10, and B11-is punched in the same format and sequence, with each line corresponding to one card. This complete deck is ready for use with the program described in Ref. 4 (with a few additional information cards).

For NE ≤-3 (for two-dimensional problems in addition to the standard output deck described above), meshtopology information for element-by-element plotting is punched out as described in B_{12}. This information, together with the punched information corresponding to B_{7} coordinates of the nodal points, can be used for plotting purposes.

VII. Examples

A. Axisymmetrical Model for Spherical Motor, Cylindrical Inlet

The input listed in Table A-1 of the appendix can be followed in the light of the corresponding instructions of Sections II-IV, and with reference to Fig. 4. The users must follow the following logical steps:

1. Determination of subdomains. Subdomain I is determined by the grain material. Subdomains II and III are selected as simply as possible (otherwise, arbitrarily), and connected to subdomain I , to be able to include portions $C D$ and $A B$ of the outer shell in the analysis. The partition of the boundary of each subdomain into faces is a result of a very natural choice, as in the case
of subdomain III, or else depends upon the form of the final mesh as requested by the users. In subdomain II, the partition is a result of the selected form of the subdomain. In subdomain I, point F is selected to provide a quasirectangular form. It should be noted that each face has homogeneous properties; that is, $E C$ is a boundary of the grain, $B F$ is a shell, $A G$ is fictitious, ete.
2. Definition of origin. The origin can be any defined point on the common joint of two faces. The E is chosen because it is known without any computation. The H, G, or A could have been chosen as well because they are defined in an equally simple way.
3. Determination of coordinate lines. In twodimensional problems, the first line determines the $I J$ natural coordinate system; i.e., $E B$ is selected as the first line, and therefore determines the I direction. The other coordinate lines are the natural result of this selection. The positive normal of each line is on the left side of an observer, heading toward the direction of the base vectors for the I and J lines. The integration directions and the labels of the lines are determined at the same time, the integration dircetions being denoted by small arrows at each corner. The label of face 2 is positive because the small integration arrow at B is in the same direction as the J base vector. By the same token, the label of face $A B$ is -3 , the label of $F C$ is -4 , the label of $A G$ is -5 , etc. Face $B F$ can be labelled 2 because the origin is determined from the integration along line 1 ; face $A B$ can be labelled -3 for the same reason; face $F C$ can be labelled with the next sequence number, -4 , because the origin has been determined from the integration along line 2 , etc.
4. Input deck preparation. Once Fig. 4 is set up properly, the preparation of input decks according to the instructions of Tables 2, 3, 5, 6, and 7 is a simple exercise.
5. Output listing. In Table A-2 of the appendix, the output is listed in the form in which it appears at the end of the successful execution of the program. Parts corresponding to Sections VI-B-5 and VI-B-6 do not appear when $N E=1$ or $N E=2$. Parts corresponding to Sections VI-B-7 through VI-B-11 and VI-B-13 are always printed and punched in the same sequence and in the same format. The part corresponding to Section VI-B-12 is punched only when $N E \leq-3$.
6. Generation of natural coordinate system and final mesh. The natural coordinate system and final mesh are illustrated in Figs. 12 and 13, respectively.

B. Cylindrical Shell Problem

The input listed in Table A-3 of the appendix can be followed in the light of the corresponding instructions of Sections II-IV, and with reference to Fig. 5. The users must follow the logical steps described below.

1. Determination of subdomains. Volumes of subdomains I and II (which are fictitious) are distinguished by the D_{2} plane of Fig. 3. The partition of the boundary of each subdomain is realized by two planes: $x_{1}=0$ and $x_{3}=0$; that is, the six faces of subdomain I are (1) the $x_{2}=0$ plane, (2) the portion of the shell between the $-x_{1}$ and $+x_{3}$ axes, (3) the portion between the $+x_{3}$ and $+x_{1}$ axes, etc. With reference to Figs. 5 a and 5 b , one can see the fictitious planes (12) and (13) defining the faces of the subdomains; the base of the cylinder by (1), which is a fictitious plane; and the four faces (2), (3), (4), and (5), which constitute real surfaces and represent the lower portion of the shell. The boundary conditions are prescribed at the planes D_{3} and D_{1} defined by $x_{2}=0$ and $x_{3}=96$, respectively, which are fictitious surfaces and labelled (6), (11). The positive direction of the surfaces is assumed inward for the shell; the positive direction of overall coordinate axes is assumed for the other fictitious planes (1), (6), (11), (12), and (13).
2. Definition of origin. The origin has been chosen arbitrarily at $A\left(x_{1}=-153, x_{2}=0, x_{3}=0\right)$.
3. Determination of coordinate lines. The first line of integration is $A B$. The resulting simple, natural coordinate system is shown on Figs. 5a and 5b, where the arrows along the lines are the base vectors for the first and last lines of the subdomain. The sequence label of the lines follows the rules described in Table 6; that is, the integration along line 1 yields the coordinates and integration directions for lines $B C$ and $B F$, which are labelled +2 and +3 , respectively (according to this information, sequentially positive), because these directions are the same as the direction of base vectors along these lines. Lines $C G$ and $C D$ are labelled +4 and -5 by the same token, etc.
4. Input deck preparation. Tables 2 and 3 are selfexplanatory. Columns 5-8 (45-48) in Table 4 are blank because the volume is void. In Table 5, columns 5-8 (45-48) contain the element-type numbers in the sense in which they are described in Ref. 4, and material-type numbers of faces 2-5 and 7-10 are left blank for faces $1,6,11,12$, and 13 . The connectivity information in columns 21-36 (61-76) is blank for faces 12 and 13. The

Fig. 12. Natural coordinate system for axisymmetrical model

Fig. 13. Final mesh for axisymmetrical model
list that follows contains line information according to Table 6. Next, the list of constants associated with the surface equation is given according to Table 7. Each line corresponds to one surface input unit of Table 5, sequentially.

The boundary conditions are give 7 according to Table 8. Three directions along which the points that are in the 1 st and 11 t1 surfaces are restrained are 11,22 , and 33 ; and complete restraint is expressed by zero at corresponding columns 17-24. The type number at columns 17-18 (or 57-58) corresponding to the line of the 1st and 11th faces expresses the fact that the boundary condition, as defined by the last card, will be assigned to all points on faces 6,1 , and 11 .
5. Output listing. In Table A-4 of the appendix, the output is listed after successful execution of the program. In the part corresponding to Section VI-B-5, a message is printed out for each line-integration process. This part would not appear when $N E=1$ or $N E=2$. Parts corresponding to Sections VI-B-7 through VI-B-11 and

VI-B-13 are always printed and punched in the same sequence and in the same format.
6. Generation of natural coordinate system and final mesh. The final mesh is illustrated in Fig. 14. For cylindrical shells with the same geometry, the input and the output for the generation of another mesh configuration are illustrated in Tables A-5 and A-6 of the appendix, respectively. It shouid be noted that the type of shell is changed to membrane and bending by the change of element-type numbers from 14 to 12 in the third column of the surface information table. The boundary conditions are also changed by fixing completely both end points of the shell; that is, 6 deg of freedom, as shown in the table for boundary conditions (see Section VI-B-4).

This output was obtained with $N E=2$ from the natural coordinate system, which has been generated and stored in the previous case, and takes only 23 s compared with approximately 7 min for the first case, which includes the generation of natural coordinate systems in two- and three-dimensional subdomains.

Fig. 14. Final mesh for cylindrical shell problem

Appendix

Computer Results for the Examples

This appendix contains a listing of input data, together with the respective output data obtained after successful execution, for the following:
(1) Axisymmetrical model for spherical motor, cylindrical inlet.
(2) Cylindrical shell problem for the membrane case.
(3) Cylindrical shell problem for the membrane and bending case.

Cited in the appendix are sectional references, which the user wiil find helpful in following the applicable procedural aspects of the FEDGE program.

Table A-1. List of input data for axisymmetrical model for spherical motor, cylindrical inlet

Table A-2. List of output data after successful execution for axisymmetrical model

Table A-2 (contd)

Table A-3. List of input data for the shell cylindrical problem for membrane case

Table A-3 (contd)

Table A-4. List of output data after successful execution for membrane case

LABELS	LS UF	SURrACES	AvD LINES	INVOLVED IN	IN THE	1 TH	LINE	INTEGRATION	ARE	2	1	3	1	3	2
LABELS	LS CF	SURFACES	Avo LINES	INVOLVED in	IN THE	2 TH	LINE	Intecration	Are	3	1	4	2	4	5
LABELS	LS OF	SURTACES	Aun lines	INVGLVEO IN	IN THF	3 THL	LINE	Integration	ArE	3	2	6	3	6	7
LABELS	Ls of	SURFACES	A,b LINES	INVOLVED IN	IN THF	4 TH L	LINE	intigration	ARE	3	4	6	4	5	9
¢ABELS	LS OF	SUR+ACES	Avo LINES	INVOLVED IN	In THE	5 THL	LINE	INTEGRATIUN	ARE	1	4	5	5	11	10
LABELS	LS Of	SURFACrs	A 0 LINES	INVOLVED IN	in the	6 TH L	LINE	Integration	ARE	8	6	9	6	8	9
LABELS	LS OF	SURFACES	Avo LINFS	INVOLVED IN	IN THE	7 THL	LINE	Integration	ARt	7	6	10	7	13	17
LABELS	LS of	SURFACFS	AVD LINES	INVOLVED in	in the	8 TH L	LINE	INTEGRATION	ARE	8	9	11	8	14	15
LA8ELS	LS Of	SURFACES	ANO LINES	involveo in	In the	9 TH	LINE	INTEGRATION	are	6	9	10	9	17	15
LABELS	LS of	SURFACES	A.D LINES	INVOLVED IN	in the	10 THL	LIME	Integration	ARE	4	5	6	10	9	17
LABELS	LS Of	SURFACES	A.b LINES	INVOLVED I	is the	11 TH	LINE	Integration	ARE	1	5	2	11	1	12
LABELS	LS DF	SURTACES	AND LINES	involved in	IN THE	12 TH	LINE	Integration	ARE	2	5	6	12	7	17
LABELS	S UF	SUKFACES	A O LINES	INVOLVED IN	in ThE	13 TH L	LINE	Integration	ARE	7	13	11	13	19	18
LABELS	S Or	SURFACES	And LINES	INVOLVED IN	in the	14 TH	LINE	Integration	ARE	8	11	7	14	20	17
LABELS	S Of	SURFACES	A S D LINES	INVOLVED IN	IN THE	15 TH L	LINE	INTEGRATION	ARE	11	9	10	15	18	16
LABELS	S of	SURFACES	AVD LINES	INVOLVED IN	in the	16 TH L	LINE	Integration	ARE	9	10	11	15	15	18
LABELS	S or	SURFACES	AvD LINES	INVOLVED I:	İ ${ }^{\text {a }}$ THE	17 TH L	LIVE	IVTEGRATION	AKE	6	10	,	17	9	16
LABELS	LS 0 F	SURFACES	A D LINES	INVOLVED IN	iv the	18 TH	LINE	Integration	ARE	11	10	9	18	15	16
LABELS	S UF	SURFACES	Aat LIties	INVOLVED IN	IN The	19 TH L	LINE	Integration	ARE	7	11	8	19	20	14
LABELS	S OF	SURFACES	AVD LINES	INVOLVED IN	in the	20 THL	LINE	INTEGRATION	ARE	8	7	6	20	6	7
integration along thr live segments took						49.23 SECJNDS.									
divisign aluni, the line segments took					47.87 SECDVDS.										
generatiun of natural coordifates toik					276.25 SECONDS.										
$1-1$	152.	95995	0.	-0.034241	2	-153.000000		16.015967	-0.00						
3 -1	153.	OCL.	32.130346	-0. 300257		-152.998035		48.000000	-0.00						
${ }^{5}-1$	141.	45861	0.	-58.558963	36	-137.711567		$16.015972-62$	62.36						
-1	139.	13243	32.036349	-62.362927	8	-141.353840		$48.000006-5$	58.54						
$9-1$	114.	685,8	0.	-108.200986	1i	-123.174532		16.015974-10	08.19						
$11-1$	$1 \mathrm{C}_{1} 8$.	81848	32.030351	-108.193646	12	-103.191693		48.c50000 -10	C8.17						
13 -	-58.5	11314	0.	-141.366:39	14	-62.328458		16.015972-139	39.72						
15 -	-62.	36586	32.030350	-139.724793	16	-59.553762		48.000050-14	41.34						
17		468.5	0.	-152.797:25	18	3.049793		16.015967-15	52.99						
19		49793	32.030346	-152.799989	21	-2.012536		48.000000-15	52.99						
$21-1$	141.3	56544	0.	58.542523	22	-137.719490		16.015972	62.34						
$23-1$	139.7	19635	32.030349	62.348608	24	-141.355469		48. 630000	58.54						
25	58.5	8553C	0.	-141.335882	26	62.394121		16.015972-13	39.69						
27	62.3	93792	32.030349	-134.599463	28	59.585550		48.000c00-14	41.33						
$25-1$	-108.	95269	0.	108.178452	30	-108.195547		16.01597410	08.17						
$31-1$	1 C8.	95554	32.63C351	108.178941	32	-103.194603		48.00000010	08.17						
331	$1 \mathrm{C8}$.	11785	0.	-1C8. 159132	24	109.213788		16.015974-10	08.16						
351	108.2	13748	32.230351	-108.160702	36	109.211785		48.000C00-10	08.15						
37.	-58.5	58.040	0.	141.349415	38	-62.365395		16.01597213	39.71						
39 -	-62.	65678	32.630348	139.712276	40	-53.557750		48.00000014	41.34						
411	141.3	66999	0.	-58.511584	42	137.732157		16.015972-6	62.32						
431	139.7	$323 C 2$	32.030348	-62.320200	44	141.366999		$48.000100-5$	58.51						
45	-6.	17106	c.	152.799327	46	-0.018133		16.01596715	52.99						
47	-6.0	18133	$32.03 C 346$	152.999996	48	-0.017166		48.00000015	52.99						
49	58.5	526139	0.	141.362357	50	62.334103		16.01597213	39.72						
51	52.3	33775	32.030347	134.726254	52	58.526139		48.00050014	41.36						
531	188.1	66166	0.	108.206160	54	123.167381		16.015974 12	:8.20						
531	168.1	67381	32. 32531	108.257112	56	129.166166		48.00000016	08.20						
571	14.	42305	0.	58.572493	58	139.705429		16.0 .15972	62.38						
591	139.7	(5574	32.030350	62.389^{-93}	60	141.342365		48.0000005	58.57						
611	152.	98013	0.	0.332784	62	152.999996		16.015967	0.03						
631	152.9	99796	32.632346	0.330801	64	152.998013		48.000 00	C. 03						
$65-1$	-152.9	999996	64.516764	0.220423	66	-152.999996		79.994410	C. 0						
67 -1	152.9	98. 35	96. ${ }^{\text {coicous }}$	-c. 201542	68	-139.715899		64.016759-6	62.35						
69 -1	-139.7	15766	79.9944C2	-62.356774	70	-141.353840		96.0.006 -	53.54						
$71-1$	108.1	84867	64. 16766	-168.189691	72	-108.185081		79.9944C4-10	08.18						
$73-$	- 88.1	91693	96.050 360	-108.179247	74	-52.340665		$64.216759-13$	39.72						
75 -	-62.	417.2	79.994402	-139.722710	76	-58.553762		96. COOCCO -14	41.34						
77		49793	64.016764	-152.799489	78	3.049793		79.994410-15	52.99						
79	-1. 0	12536	96.	-152.796964	80	-137.719604		64.016752	62.34						
$81-1$	139.7	19578	79.794395	62.348732	82	-141.355:19		96.0000005	58.54						
83	62.3	93734	64.016757	-139.579453	84	62.393979		79.9944C2-13	39.69						
85	58.5	85536	96.06cJuc	-141.335882	86	$-1^{17} 8.195961$		64.01674312	8.17						
$87-1$	128.1	95966	79.944386	128.178527	88	-123.193878		96.00000015	(8. 8.17						
891	128.	13788	04.:16759	-108.1607C?	90	128.213788		79.994402-1C	C8. 16						
91 1	158.2	11785	96. $\mathrm{COO50}$	-108.159132	92	-62.366426		64.01671313	39.71						
93 -	-62.3	66533	79.994373	139.711628	94	-59.556608		96.00000014	41.34						
951	139.7	32241	64. 16758	-62.320341	96	137.732218		79.994399 -6	62.32						
971	141.3	66999	96.002300	-58.511584	98	-C.021734		64.01665515	52.99						
99	-C. 0	21734	79.99437C	152.799996	1 CC	-0.018752		96.00000615	52.99						
101	62.3	34:04	64.:16709	139.726129	102	62.334104		79.99437513	39.72						
103	58.5	24957	96.005300	141.360773	$1 C_{4}$	123.167439		64.016741 1C	C8. 20						
105 :	108.1	67424	79.994387	108.207273	10^{6}	103.165405		96.000000 16	6. 205						
1071	134.7	CS5 24	64.016754	62.380208	108	137.705498		79.9943996	62.38						
1091	141.3	419.0	96. 00020 ?	58.572165	110	152.999996		64.016764	0.03						
1111	152.	99496	77.994410	0.)30901	112	152.998013		96.000000	U. 032						

Table A-4 (contd)

NO. OF NUDES 112 NO. OF BC 32 NU. OF ELTS 96 END

Table A-5. List of input data for cylindrical shell problem for membrane and bending case

CYLINDIRICAL SHELL Problem bending			INPUT TYPE NO.	2
DATA FOR THREE DIMENSIONAL PROBLEM				
NUMBER OF THREE UIMENSIONAL SUBDOMAINS	NVIL	2		
NUMBER OF FACES UR TWI DIM. SUBDOMAINS	NSUR	13		
NUM3ER OF LINEAR FACES OR ON: DIM. ELEMENTS	NLTN	2		
NO. UF SUBDIVISIUN IN WHICH SPECIAL POINT LIES	10	1		
NUMBER OF DIVISIUN IN THREE DIRECTIONS	$\mathrm{N} \times(10)$	2		
	NY(10)	2	-	
	NZ (10)	2		
FACTUR OF REFINEMENT COLRDINATES OF SPECIAL POINT	CF	0.100010 OL		
	x0113)	-0.15300JE O3		
	YOt10)	0.480000 E 02		
	$20110)$	-0.		

Table A-5 (contd)

LINES INFORMA:ION

LINE	NO	ELEMNT	MATERL	PRESSR	TEM	CH	TEM	GY	TEM	G2	5	ARFA	TOR	CS	MOIN	r	MOIN	2	A VG	F1	BNO	CN	NDTIN			CE	
1	1	-r	:	-0		2		-2		-		-0		0		-0		0		-		0	?	1	2	1	12
2	2	-0	t	-6		0		-2		0		- 0		0		-0		0		-c		0	0	1	3	1	13
3	3	- 0	0	-0		0		-0		0		-		0		-0		0		-0		2	0	1	12	2	6
4	4	-c	:	-0		0		-2		C		-		0		-0		0		-0		0	0	1	3	13	6
5	-5	-6	:	-0		0		-?		c		-0		0		-0		0		-c		0	0	1	1	4	12
6	6	-6	2	-3		0		-?		c		-c		0		-0		0		-0		0	0	1	8	6	13
7	-7	-	0	-0		c		-2		0		-0		0		-0		0		-0		0	0	1	7	6	13
8	8	-0	5	-0		0		-		0		-0		0		-0		0		- 0		0	0	1	8	13	11
9	-9	-0	9	-0		0		-2		0		-2		0		-0		0		-c		0	0	1	5	9	12
10	10	-0	0	-0		0		-9		c		-0		0		-0		0		-0		2	\bigcirc	1	4	12	6
11	-11	-0	?	-0		0		-9		$\stackrel{5}{6}$		-6		0		-0		0		-		0	0	1	1	5	13
12	12	- 6	\%	-0		0		-2		c		-9		0		-0		0		-c		0	0	1	13	5	6
13	13	-0	\%	-0		0		-c		0		-0		0		-0		0		-0		0	0	1	13	10	11
14	-14	-0	:	-1		3		-0		c		-8		c		-0		0		-0		0	0	1	8	11	12
15	-15	-0	:	-0		3		-?		0		-0		0		-0		0		-0		0	?	1	11	7	12
16	16	-0	2	-0		3		-0		0		-6		0		-0		0		-0		0	0	1	7	12	11
17	17	-0	-	-0		2		-2		0		- 0		0		-6		0		-0		0	0	1	5	10	12
18	18	-c	2	-0		,		-2		c		-0		0		-6		c		-0		0	0	1	11	10	12
19	19	-c	c	-0		2		-0		c		-0		0		-0		0		-0		0	0	1	7	11	12
26	-20	-0		-c		,		-0		0		-0		0		-0		0		-c		0	ν	1	12	7	6

5 UN NO COEFFICIENTS OF SURFACE EQUATIONS

1	1	-c.	-C.	1.0000	-2.	-c.	-0.	-c.	-c.	-0.	-c.
2	2	23409.0L20	-0.	-0.	-0.	-	-9.	-C.	-1.0000	-0.	-1.0000
3	3	23409.0000	-0.	-0.	-0.	-c.	-0.	-c.	-1.0000	-0.	-1.0300
4	4	23409.0CLC	-0.	-0.	-0.	-	-C.	-0.	-1.0000	-0.	-1.0300
5	5	23409.000C	-c.	-6.	-0.	-C.	$\cdots \mathrm{C}$	-0.	-1.0000	-c.	-1.0003
6	6	-48.005:	-3.	1.03:?	-2.	-0.	-0.	-0.	-0.	-6.	-0.
7	7	23409.000:	-0.	-0.	-0.	-6.	-0.	-2.	-1.0000	-0.	-1.0000
8	6	23409. 600	-0.	-0.	-0.	-0.	-c.	-0.	-1.0000	-c.	-1.0000
9	9	23409. COC	-6.	-0.	-0.	- -	-0.	-0.	-1.0000	-0.	-1.0000
10	10	23409. $0^{\text {a }}$	-6.	-0.	-0.	-0.	-c.	-9.	-1.0000	-0.	-1.0203
11	11	-96.Lico	-0.	1.2000	-0.	-0.	-0.	-0.	-0.	-0.	-0.
12	12	-0.	-6.	-0.	1.000 C	-6.	-0.	-0.	-0.	-c.	-c.
13	13	-0.	1.0000	-	-0.	-0.	-0.	-0.	-c.	-0.	-0.

3 UV NO NO GH DIRECTIONS RELATED TO EACH OTHER AND THE RELATION CONSTANTS

Table A-6. List of output data after successful execution for membrane and bending case

References

1. Akyuz, F. A., "Natural Coordinate Systems, An Automatic Data Generation Scheme for a Finite-Element Method," Nucl. Eng. Des. (to be published).
2. Hilbert, D., and Cohn-Vosseu, S., Geometry and Imagination. Chelsea Publishing Co., New York, 1952.
3. Akyuz, F. A., and Utku, S., "An Automatic Node Relabelling Scneme for Bandwidth Minimization of Stiffness Matrices," AIAA J., Vol. 6, No. 4, pr. 728-730, Apr. 1968.
4. Utku, S., and Akyuz, F. A., ELAS-A General Purpose Computer Program for the Equilibrium Problems of Linear Structures: Volume I. User's Manual, Technical Report 32-1240. Jet Propulsion Laboratory, Pasadena, Calif., Feb. 1, 1968.

[^0]: *Computer Software Management and Information Center, Computer Center, University of Georgia, Athens, Georgia 30601; telephone (404) 452-3265.

