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ABSTRACT 

The descr ibed work concerns  the orbi t  evolution problem for  s trongly 
perturbed ar t i f ic ia l  sa te l l i tes  of Mercury ,  Venus, E a r t h  and Mars .  The 
unifying fea ture  i s  that the principal  effects on the o rb i t  e lements  come f r o m  
the gravltat ionai  i ie ids(s)  "1 the Sun ;znd Earth's Moon) and the coupling of 
those effects with pe r i cen te r ,  node, and inclination variat ions caused by the 
non-spherici ty of the cen t ra l  planet.  Semianalytic techniques a r e  presented  
that desc r ibe  the long- term motion of ar t i f ic ia l  sa te l l i tes  d is turbed by a 
third body, oblateness of the c ~ n t r a l  planet, and a tmospher ic  drag .  The 
techniques a r e  applied to the orbi t  evolution problem for  sa te l l i tes  of each 
of the four inper planets,  and a four-planet su rvey  outlines the effects  of 
the ma jo r  perturbat ions for  sa te l l i tes  of each planet. 

The p r i m a r y  analytic r e su l t s  of this  r epor t  a r e  modifications to  an  
existing method to inc1t.d~ the effects  of the disturbing body's eccent r ic  o rb i t .  
The principal  numer ica l  r e su l t s  a r e  compar isons  of per icenter  h i s to r i e s  
given by the method with h is tor ies  obtained by numer ica l  integration of the 
actclal equations of motion. The majo r  influences on dynamic l i fet ime a r e  
isolated and pointed out fo r  sa te l l i tes  of e a c h  inner planet and the method is 
applied to some r e a l  planetary orbi t  miss ion  opportunities in the 1970's.  

It i s  d iscovered that simulation of Mercury  and Venus o r b i t e r s  i s  r e l a -  
tively simpie since tiie ~ r l l y  significant per turbat ions  come  f r o m  the  s o l a r  
gravitational field. F o r  E a r t h  and (especial ly)  f o r  M a r s ,  the coupling 
between third body and oblateness perturbat ions makes  orbi t  prec!iction dif- 
ficult through a considerable range of possible o r b i t s .  Also ,  the possibility 
of significant a tmospher ic  effects  a t  ve ry  high al t i tudes fo r  Mar t ian  sa te l l i tes  
suggests  that it may be difficult to  get ve ry  c lose  to  that planet without appre-  
ciable r i sk  of e a r l y  orbi t  decay.  The gifficulties a r e  isolated and d i scussed .  
Recommendations a r e  made a s  to efficient resolut ion of these  problems.  
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Section 1 

INTRODUCTION AND SUMMARY 

In the design of a mission to another planet, the amount of useful payload 

that can be placed in orbit about the planet may be so  valuable scientif- 

ically that i t  becomes expedient (even necessary) to select an orbit having a 

very low pericenter and a very high apocanter. Such orbits ..re also of great  

interest  for Earth satellites when i t  is  desired to study large volumes of 

space with a maximum scientific payload. 

The dynamic lifetime of such a satellite i s  very sensitive to perturbations 

since, by definition, the pericenter i s  just above the atmosphere (or surface) 

of the planet. Not only i s  the orbit affected by the oblateness of the planet, 

it is disturbed by the sun's gravity field and possibly the atmosphere of the 

central planet. In designing such a mission it is  important to evaluate not 

only the coupling between the effects of oblateness and the long-term motiok 

caused by third -body effects but also the effect of the periodic perturbatione. 

Either of these can cause the pericenter distance to decrease by an amount 

that will end the satellite19 journey. 

F rom a scientific,point of viey the time history of the shape and orienta- - 
tion of the orbit i s  important since the type and amount of scientific 

information to be obtained depends markedly on the orbit geometry. Apart 

from the lifetime problem, it is  advisable to have a reasonably accurate 

time hietory of the pericenter radius a s  well as  the hietoriee of the other 

, orbit parameters. F o r  preliminary mieeion design, orbit evolution informa- 
I , tion should be available for a wide variety of initial (planetary orbit 
I 

injection) conditione. The pericenter radiue history--of prime importance 

f rom the lifetime and scientific information etandpoints--can be accurately 

I predicted from the time hietory of the orbit'. eccentricity and eemi-major 

axis. Thie report  euggeete some approximate technique8 that give inright 



into the orbit prediction problem and places an emphasis on how the techniques 

cttn be used to isolate and study the principal perturbations acting or. ar t i f i -  

cial planetary satell i tes.  

The report  is divided into three parts:  a theoretical discussion 

(Scction 2), some practical considerations (Section 3 ) ,  and recommendations 

f o r  further study (Section 4).  The report  is  intended to be understandable 

without Section 2 so that the reader can, if he wishes, go cn ta Section 3 after 

these introductory remarks  without serious loss  of necessary information.  

In Section 2, the concept of the approximate techniques is outlined and 

modifications to include the effects cf the disturbing planet's eccentricity and 

the effects of atmospheric drag a r e  presented. The idea is to ccmbine al l  the 

slowly varying perturbations together and numerically integrate these average 

ra tes  of the or bital elements. The mediu.n-periodic third- body variations 

in eccentricity a r e  then analytically superimposed ante the long-term varia- 

tions. This technique has  been proven very accurate for a wide range of 

possible orbits and permits the use of very large (several  hundred days in 

many cases )  computing intervals in the numerical integrations. 

Section 3 is  rite substance of the report  ar,d i.?cludes a four-planet survey 

of the dynamic behaviour of artificial satellites of the four inner planets. The 

techniques of Section 2 a r e  applied to the problem of long-term orbit  predic- 

tion. The a reas  where the methods a r e ,  and a r e  not, applicable a r e  shown 

in te rms  of pericenter and apocenter altitudes for satellites of each planet. 

The survey is pr imari ly  concerned with dynamic lifetime and the effects 

of the major disturbing forces on the pericenter history of planetary orbiters.  

Also, the survey is concentrated on the planets Venus and Mars a s  these a r e  

of the most immediate interest. The Earth is included in an approximate 

way with the assumption that the orbits  of the Earth and the Moon a r e  

coplanar. Earth is included for  reference so that those familiar with the 

major perturbations for Earth satellites will have B reference point, in the 

notation of this report ,  for evaluation of the perturbations acting on satellites 

of the other planets. 



The major disturbing forces for Venus orbiters a r e  the solar gravita- 

tional field and (?elow about 300-km altitude) the Venusian a tn~osphere .  The 

sharp  drop in density of the moet recent models of Venus' atmosphere and 

the vFry low estimates of the Venusian oblateness make orbit  prediction r e l -  

atively eaa y. 

For  Mars ,  the story i s  quite different. Even though t h ~  surface density 

of the Martian atmosphere is  much lower than that of Venus o r  Earth,  the 

maximum density models for M a r  in st i l l  have a significant effect on 

satellite lifetime a t  very high altituaes. It is  found that the atmospheric 

effects of a maximum density model, acting on a satellite in a circular 

orbit 1,000 km above the Martian surface,  cculd cause the lifetime to be only 
2 

a few Ear th  years  for a normal spacecraft [CDA/M = 0. Q3(m /kg)]. 

The possibly very dense upper Martian atmosphere i s  not the only dif- 

ficulty. The oblateness coefficient, J for Mars i s  nearly twice that of the 2' 
Earth. The great  strength of the oblateness perturbations, i t  i s  found, not 

only dominates .he motion of Martian sakellites but also cs'uses such rapid 

motion of the orbit that the assumptions of the techniques of Section 2 can be 

violated for a considerable range of possible orbits. The a c -  complex 

coupling b e k e e n  oblateness and third-body perturbations makes it reason- 

able to expect strong resonance effects between oblatenes s and medium- 

periodic third-body effects. Such resonance could result  in very short  li'c- 

t imes.  The kind.8 of orbits for which these corr~plexities exist a r e  discussed 

in the survey. 

In spite of these difficulties, the approximate techniques work well lo r  

a large range of orbit parameters  for EZ-rs and for  nearly any orbit about 

Venus o r  Mercury.  The techniques a r e  applied to the problem of aiming 

point selection for three vossi'ale miesions in the 1970'6 and the advantages 

of the high speed of the approximate methods a r e  demo..strated. Also, the 

time histories of some scientifically important parameters  a r e  presented to 

show how t ) . ~  techniques can he used to design the orbit  for maximum 

sc ientif ic value . 



Finally in Section 3, a discussion of neglectr .q factors indicates the 

need for further work in this a rea .  The n e g l e c t e ~  Items of most  significance 

a r c  the high-order oblatrness effects (that will almost certainly be 

significant for Mars  ), high -order t e rms  in the expansion of the disturbing 

function for third-body perturbations, solar radiation pressure  (for 

abilormally large spacecraft)  and short-periodic coupling betweell 

atmospheric and oblstenes s pertzrbations. 

In Section 4 a system of computer subprograms is  recommended a s  a 

solution that will permit mission analysts to study the orbit prediction 

problem in an efficient way. 

At the lowest level of sophistication, the methods of Section 2 a r e  recom- 

mended because they work sc s e l l  for Venus and can provide almost instan- 

taneous orbit  prediction. The second suggested level of computer software 

should be designed along the same lines, but should integrate numerically 

tb,e singly averaged third-body equations. This integration should be done 

in the planet's equatorial f rame s o  that the analytically averaged effects of 

high-order oblateness t e rms  can be easily included. This level  should a lso 

include the capability to s i r -ula te  the average effects of solar  radiation 

pressure .  

It i s  felt-that the tt.ird level of the recommended system wi!1 solve nearly 

all the problems. It i s  recommended that the variational equations for the 

orbit  elements be written in Gauss 's  form where the accelerations enter  the 

equations  direct?^. This form of the equations wil lpermit  the simulation of 

any per turb~ng  effect whatever but will still  retain the advantages of the vari-  

ation of parameters  formulation. The equations should then be averaged 

numerically by mechanical quadrature iormuias and these averaged ra tes  

integrated with a sophisticated numerical integration scheme.  The fourth and 

hiqhest leve! is  obtained by eliminating the preintegration averaging and by 

integrating the variational equations directly.  This level, then, would pro- 

vide the capability to test  the approximate tech-:' *les of the three lower levels 



and would provide the further advantage that the complete nun~erical  

integration would be available as  a part of the same compcter program. 

Indeed, the difference between levels three and four would be nothing more 

than a few logical Fortran statements and a few extra memory locations for 

storing the weights and abscissae necessary for a good mechanical quadrature 

technique. This recommended system is discussed in detail in Section 4. 

A final section summarizes the major conclusions of the report, a 

glossary defines the nomenclature, and the appendices give pertinent 

formulae. If the reader wishes to skip to Section 3, he may do so at this 

point, but a glance at  the nomenclature section is recommended. 
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Section 2 

THEORETICAL CONSIDERATIONS 

THE BASIC IDEA 

It is  frequently possible to obtain an accurate and relatively simple 

description of the motion of a dynamical system if the Harniltonian can be 

separated into te rms of different frequency. This separation can be 

accomplished in several ways: by an averaging technique such as  that of 

Reference 1, or  the more sophisticated many-variable expansion procedure 

championed by Kevorkian, Shi, and Eckstein in References 2 and 3, o r  by 

the elegant method of von Zeipel in which canonical transformations that 

automatically effect the separation a r e  found. No matter how the various 

terms a r e  isolated, it remains to integrate the separate te rms and then to 

determine the validity of the assumption that the actual motion can be 

adequately described by the approximate solutions. 

The concept of doubly averaging the differential equations of satellite 

motion in a three-body system was developed in the early sixties indepen- 

dently by Lidov (Reference 1) and by Williams and Lorell (Reference 4) .  By 

avelaging the variational equations for the rates of the orbit elements over 

one revolution of the satellite in its orbit, they obtained a set  of aingly- 

averaged equations free of the satellite's true anomaly. These singly- 

averaged rates  of the orbit elements were then further averaged over one 

revolution of the disturbing body around the central  primary. The resulting 

doubly-averaged equations were then not only free of the satellite's true 

anomaly but also did not contain the true anomaly of the disturbing planet. 

What is better is  that these equations for the long-term motion a r e  solvable 

in te rms of elliptic functions. The time history of the long-periodic eccen- 

tricity can be written down explicitly although the expressions a re  rather 



complicated. This discovery was a major con;ribution to celestial mechanics 

and showed, for the f i rs t  t ime,  the analytic character of the long-term motion 

in the main problern of the lunar theory. At about the same time Eckstein, 

Shi and Kevorkian (Reference 3 )  zpplied the many-variable expansion proce- 

dure  to the problem of satellite mot ion under third-body perturbations and 

showed that their solution for the Img- te rm motion was equivalent to the 

solution of the dov:.)ly averaged eauations. Kevorkian (Reference 2 ) also 

pointed out the similari t ies and d if'erences of tne two-variable expansion 

procedure and the von Ze ipel rr.etho.- . 

Later ,  both Lidov (Reference 5) snd Lorell (Reference 6)  modified the 

doubly averaged equations to incorporate the secular effects of oblateness 

into the equations for the long-per.odic motion. It was this extension that 

allowed Lidov to explain the appare.lt stability of the moons of Uranus in the 

light of his ear l ie r  discoveries concerning the instability of p ~ i a r  satellites 

perturbed (only) by a third body. 

This work provided a f i r m  theoretical foundation for  the application of 

the doubly averaged equations to the problem of long-term orbi t  prediction 

and lunar orbit  mission analysts began to  use the equations for  lifetime 

predictions. i t  was discovered that, even i f  the equations a r e  integrated . 
numerically, they provide a very  useful tool since the absence of any fas t  

variables permits the use of e ~ t r e ~ m e l y  large computing intervals. The 

doubly averaged equations a r e  written in a planetocentric nonrotating 

coordinate f rame whose xy plane lies in the orbi t  plane of the central  body 

around the disturbing (third) body. The equations can be found in the papers 

referenced above, o r  they can be easily derived f r o m  the long-periodic par t  

of "he disturbing function given in the appendix of this report .  The t e rms  

dependent upon the oblateness of the central  body a r e  obtained by t rans-  
- 

forming the (secular)  equatorial ra tes  of the argument of pericenter,  wL, 

and longitude of the ascending node, , into the f r ame  in which the doubly 

averaged equations a r e  written. In this f ramc,  there i s  a long-term rate  of 



change of inclination due simply to the motion of the node on the equator. 

The resulting doubly averaged equations, including the f i rs t  order  secular 

effects of oblateness, a r e  

diL ce; nJre  2 - - - _ - -  
d t 

sin 2i sin 2wL + - L 2 cos i sin i" sin (RL - S2 ") 
4J- P L 

d w ~  - d t 
[(cos2 iL - 1 . e  2 1 sin 2 ,+$ ( I - e d  (1) m, L 

- 
sin i" cos i cos (QL - 0 ") 2 T 2 - + r i n  1 - L 

2 I1 sin i 
P L I 

d 0  C cos iL (1  - eL) 
A = -  

d t JZ e t  sin o~ + 
L [ 2  '1 

2 
nJre  sin i l l  cos iL cos %- at')] 

- 2 sin i 
P L 

The nomenclature is standard and is given in the Glossary. It is  

important to note that angular elements with a bar over them a r e  referred 

to the planet's equator. Otherwise, orbital elements a r e  referred to the central 

planet's orbit plane. Also notice that the doubly averaged equations (with J = 0) 

do not contain QL on the right hand side. This means that we a r e  still f ree  

to choose the direction of the x-axis of th& coordinate system in a way that 



will simplify the expressions. Later we shall find i t  expedient to direct 

the x-axis along the line from the Sun to perihelion of the central body's 

orbit. 

In 1966, a s  shown in Reference 7, the medium-periodic variations in 

eccentricity were superimposed onto the long-periodic variations described 

by the doubly averaged eq.iations ( 1). (These terms,  which vary as  the sine of 

twice the mean anomaly of the disturbing body, were misleadingly called 

short-periodic in Reference 7 .  ) In this way, i t  was possible to integrate the 

doubly averaged equations numerically and maintain the advantages of slowly 

changing variables. As an introduction to the modifications that will follow, 

we present a brief outline of the method of Reference 7. 

We begin with the very useful expression of Kozai (Reference 8 )  fo r  the 

third-body disturbing function in the form of a trigonometric ser ies  in the 

satellite's orbital elements. 

R = a 1 1 1  t 3e1 cos (4' - u t  - 1 ts2)il i r e  B 
1 5 2  I 

15 2 - 4  sin (4' - wt  - [( 1 t +e2) A' t e B ]  I 
where A ,  B, A' ,  and B' are ser ies  very conveniently separated into te rms 

whose trigonometric arguments depend upon the mean longitude of the 

disturbing body (4') and those te rms which do not inclt1.de 4'. 

The expressions for A and B a r e  given in the Appendix I. A'  and B' 

a r e  obtained by f i r s t  dropping all long -periodic t e rms  and then replacing 

cos by sin in all t e rms  depending on I .  Nccice that the expressions do 

not depend upon the position of the satellite in its orbit since the short- 

periodic variations were dropped in the expansion of the disturbing function. 



As explained in Reference 7 ,  the variations in eccentricity a r e  sought 

in order that we may describe the variations in pericenter distance since 

the energy and the semi-major axis remain constant on the average. In the 

analysis for lunar satellites, it was possible to take the plane of the central 

body's orbit about the perturbing body as principal plane and to ignore the 

eccentricity, el ,  of the orbits of the primaries about each other. Under these 

restrictions, R became 

and A and B reduced to 

A = [ (1 - $ sin2 i ) ] t$  sin2 i cos 2(4+ - nl 

1 2  sin i cos 

+ sin4 (t) cos 2(+1 t o - R) 

Considering the bracketed long-periodic te rms separately f rom the 

medium-periodic terms with 4' in the arguments, the time rate of change 

of the medium periodic eccentricity variation, 6e = e - eL, w a s  written as 

dde - - - - 3 2 
dt na 2 e aw 1 t z e  )A,+ a e2BM]J 



where A and BM refer to the medium-periodic par ts  of Equation (4). M 
Before integrating we wrote 

dde 
- - -- 15 n t 2  p1 [ i n 4  ( s i n  2 + u - a) 

42 4 n 
e 

breaking with tradition by not holding the long-periodic eccentricity constant 

during the integration wi th  respect to time. The integration yielded 

with 

r 

and c '  a constant of integration. 

Assuming that e - eL was small  enough to permit  writing Equation (5) as 

we obtained the principal resul t  of Reference 7, viz.,  



During the integration to obtain q t ) ,  i t  was assumed that variations in 

iL and nonlinear changes in w and CZ were negligible over one revolution L L 
of the disturbing body. 

This method was found to be very useful and a:curate when applied to 

the prediction of lunar satell i te lifetimes and permitted very rapid pre-  

mission and real-  t ime probability analyses to be performed. 

THE EFFECTS OF e '  

In order  to descr ibe  the third-body perturbations for  a satell i te of 

Mercury (whose orbital  eccentricity i s  over 0. 2) we should include the 

t e rms  in the disturbing f u n c t i c ~  a t  leas t  of o rder  el and, a s  it turns out, we 

can easily descr ibe  variations which go a s  el2. Unfortunately, this reccnd 

o rde r  analysis requires  that we give up the very useful disturbing function 

of Kozai and follow a line developed by Brown and Shook in Reference 9. 

(Kozai probably took this course  a l so ,  but he had no need to extend his 

analysis to second order  in el. ) 

The disturbing function fo r  the problem a t  hand i s  given in Chapter 4 

of Reference 9 as 

2 r cos  S\ R = k r n t  (6 - l? ,2 I 

with 

In t e rms  of t\e orbi t  elements 

cos S = cos cos (f - fl t o t  n) +.in (f t 1' + - n). k) 



where our variables a r e  rolated to those of Reference 9 by 

Reference 9 this report  

v I f 

v f t w t n  
e a .  

The disturbing function i s  next expanded in powers of r / r l  a s  explained 
2  

in Chapter 12 of Reference 10. We find that it is necessary to express cos S 

in terms of the elements. 

The disturbing function i s  given to second order  in r / r l  by 

Averaging the equations with respect to true anomaly o r  (what is the same 

thing) expanding a s  on p. 313 of Ref.,-ence 10 with the formulae 

2  2  r - -  
2 - 1  +A2 - 2e cos 4 - r c o s  2 + +  * * -  a 

2  

a 13 - = 1  + +el2 t 3et cos 9' ++el2 cos 24' + 
r 13 



L. 

5 2 2 ?sin 2f = -3e sin 4 + (1 - T e  ) sin 20 + e sin 34 + e sin 4+ + 
a 

3 
e t  7 

~ C O S  2f' = - ~ c o s  4 '  + (1 - I e t 2 )  cos 24'  el cos 34' 
" 1 2 

a '  3 - e ' 
'3 

sin 2ft = --sin + I  t (1 -&el2) sin 24' +:et sin 34' 
r 2 2 

i t  becomes clear that the terms involving 4 will average to zero over one 

revolution of the satellite in its orbit. 

Substituting the formulae of Equation (10) into Equation ( 9 ) ,  dropping the 

terms with sines o r  cosines of a multiple of 4 a s  a factor, and ncticing that 

cos Z U -  2 s i n 2 f 1  cos 2 n t  2 s i n ( w + n )  s i n ( " - n )  t s in2f t  sin2S2 

= cos 2(f1 - 51)  

we obtain 

3 2 [ ( I  + y e 1  ? + 3ef cos 41 t 2 e t 2  2 cos 2011 

3 2 1  3 2 lSe2 sin ~ c o s &  2 .  
[(l t ~ e  ),(l --sin 2 i) + B  2 1 



where 

R~ w 
0 s  ( cos 2 (W t n) t sin4(+) cos 2 ( W  - R )  

e ' 7 
2 

[ ~ O S  2@'  - -COS 4 '  t ~ '  C O S  34' -5 (5 COS 20' - 1: C O S  44')]  
2 

+ [cos4 (i) sin 2 (w + Q ) - siri4 (5) sin 2 (w - R )] 

e ' [sin 29' - 7 sin 4' +-$el sin 34' 

1 " -- ( 5  sin 29' - 17 sin4+')] 
2 l 

and 
3 3 2 e '  7 

R~ = -(I t ~ e  ) sin cos ~ ~ [ C O S  241 --j-cos 4' t - e '  cos 3$' 
8 2 
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12 el - y(5 cos 29' - 17 cos 4+')] t sin ZR [sin 24' -- sin*' 2 

7 L 
+-el sin 39'-$-(5 sin 241' - 17 sin 44') I}. 
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We now come to the basic assumption of this kind of perturbation 

analysis. W e  assume that 

where RM is  taken to be the sum of al l  terms of Equation ( 1  1) that involve 

the disturbing body's mean anomaly, + I ,  and de represents the mcdium 

periodic v a r i a t i ~ n s  in eccentricity. 

Integrating a s  before, we obtain the following formula for the eccen- 

tricity as  a function of time 

e( t )  = sech sech-'(eL) - sech-'(eL ) t sech-'(eJ) + F*(t) - 8*(tC)](12) 
0 



with F2::jt) given by 

.- .. . ( t i  = 15 n' CoS 2 (9' + wL - QL) , cos  2 (6' - .uL - R 
- C  - 

8 n 
DP2 DM2 

cos 2 toL - n ) cos 2 - w - ..g L -  c 
DP2 D M ~  

cos (4+' + Zw, - 2RL) cos (46' - ZwL - 2SL) 
+ 17e - 1 - c  - 

DP4 . DM4 1 
cos (4' - 2wL) c o s  (9' + 2w 

(n' t  2GL: 

(n' - GL) 

where s z sin ( i L / Z ) ,  c = cos  (iL/2) and 



The denominators of the t e rms  in Equation 13a indicate the possibility of 

resonance phenomena in the situations where the angular elements w and L 
I!= change so  rapidly that the frequencies of the t e rms  in Equation 13a 

become small. Such a situation could occur if very strong oblateness 

perturbations were present. The development of formulae valid for such 

resonance situations would require a lengthy analysis that would probably so 

cciiiiriicate the technique that the expressions would be of little practical 

value. An alternate approach that has been found useful in practice i s  to  

ignore the long-periodic changes in wL and QL during the integration and 

thus obtain the following alternate function fo r  use in Equation 12. 

F ::: = 1518 - 
(alternate) n 

+ Qpel s i n g '  - 713 sin 3 4)' + el (512 sin 2 g 1  I 
- 1714 sin 4g1) ] -  QMel ices 4 '  

- 7/3 cos 3(b1 + e '  (5/2 cos 2 4 '  - 1714 cos 4 4 ' )  . I  
2 - e '  sin i sin 2 w  3 s i n g  ' + 914 e' sin 2 4 '  L 

with 

4 'L 4 i~ 
Q, 

= sin ( T )  cos 2(wL- RL) - cos (-) cos 2(wL + R) and 
2 

4 iL 4 i~ Qp = sin ( T )  sin 2(wL - 52) + cos (T) sin 2(wL + QL). 

This alternate expression for F* circumvents a great  many numerical  

difficulties but i t  must  fail to describe a situation where t e r m s  of vaniahing 

frequency dominate the motion. In such a situation, the double averaging 

theory should be abandoned in favor of more  versati le techniques. The 

numerical integration of the singly averaged third-body equations would 

eliminate the difficulties. 



The author feels that these resonance phenomena a r e  worthy of further 

study in more than an academic sense. Resonance between medium-periodic 

third-body perturbations and oblateness effects could have a marked effect 

on the lifetimes of artificial Martian satellites. 

In this analysis, we nave not assumed (as  in Reference 7) that e is the 
Lo 

same a s  e . This modiiication complicates the method slightly but gives 
0 

a considerably better representation of the long-periodic motion. The com- 

plication i s  that we must calculate a starting value for e by writing 
Lo 

The three t e rms  of Equation (12) with subscript o can then be lumped 

into one c o ~ s t a n t  of integration an6 the time history can be obtained as 

before. 

The formulations above provide efficient means for one to obtain the time 

history of the eccentricity, including the medium -periodic variations, without 

having to solve the singly averaged equations. The idea is to  collect the 

slowly varying parts of the equations (which may include oblateness and drag 

effects) and solve them by whatever means a r e  most expedient. The 

medium-periodic variations in eccentricity can then be superimposed onto 

the long-periodic solution a s  in Equation (12). We shall show in later sec- 

tions that this idea works well in practice and, in many cases ,  allows us to 

integrate numerically using an interval of several hundred days. 

ATlMOSPHERIC DRAG 

in the following paragraphs, a method is presented that has found recent 

acceptance among several inves tiqators of long- t e r m  orbit  behavior. It 

allows study of the effects of various model atmospheres on highly eccentric 

orbits without the unrealistic assumption of an exponential density profile. 

The idea is  to average the differential equations numerically by Gauss's 

mechanical quadrature formula and then to include these averaged rates of 

the orbital elements in the evaluation of the long-term motion of the orbit. 

We can integrate the averaged rates numerically using very large computing 

intervals o r ,  if  the rates a r e  fairly l inear,  we can simply update the orbit 



elements once per revolution of the satellite. The latter procedure (Euler's 

method: is not recommended for long simulations since the process is 

nume rically unstable. 

This method is capable of a great deal more than the purpose for which 

we use it here. For exsmpie, atmospheric rotation o r  asyrnetrical atmo- 

spheric mode 1s would present no problem for the quadrature formula since 

the technique requires only the values of the integrand at certain points. This 

is in sharp contrast to the analytic averaging of the previous section since, 

with Gauss's technique, we need not develop the accelerations in a conver- 

gent series . 

For the purposes of this study, some standard assumptions will be made 

about the character of the atmospheric perturbations and use will be made of 

the Gaus s ian quadrature technique to describe the effects of a nonrotating 

atmosphere alone. In a later section, techniques will be recommended for 

further study to eliminate the need for all the assumptions except the real- 

istic one of Newtonian flow. 

For this study, we assume that the acceleration imparted to the 

satellite is given by 

where 

CD = (constant) drag coefficie~t 

A = (average) cross-sectional area of the satellite 

m = mass of the satellite 
S 

p = atmospheric density 
-e 

V = velocity and - a = acceleration. 



The vector quantities a r e  referred to 2 nonrotating coordinate system with 

origin at  the planet's center. 

Following McCus key in Reference 1 1 , we obtain for the rates of the 

Keplerian orbital elements 

da C -  
L 

2 - = -- p ~ 2  J1 + e + 2e cos f 
dt m s n h 7 7  

de - - - -- C ~ A  PV' -(e + cos 5 
d t m 

s na d l  + e2 + 2e cos f 

dw C ~ A  p V Z n ~ i n f  - -  - - - 
d t m 

s nae 4 + e2 + 2e cos f 

where n is the mean motion and f is the true anomaly. We now average 

these equations over one revolution of the satellite, writing the integral 

in terms of the true anomaly to obtain the following equations f o r  the 

average rates of the orbit elements: 

de L - -  - -- C ~ A  
d t hrms (1 + e cos f )  

2 
L .  

d w ~  
C,A (1 - - -  - - - p(f) V (f) sin f df 

dt 2rms -m (1 + eL COB f )  
2 



where it is to be understood that the integrations a r e  performed by 

Gaussian quadrature with the assumption that the orbit is Keplerian during 

tkc integration. This i s  exactly what happens during the analytic averaging 

process except that now we a r e  not required to find analytic expressions 

for  the integrinds. 

In the above equations, we have written the density a s  a function of true 

anomaly. Since the radius vector and, therefore, the altitude a r e  defined 

by the true anomaly in two-body motion, we can consider the density to be 

a function of the true anomaly. The density function may also depend upon 

the orientation of the orbit in space and the geometric flattening of the 

planet. These complications present no theoretical difficulties since the 

orbit elements (assumed constant during the integration) along with the true 

anomalv define the position of the vehicle in space. Therefore, they define 

the density for any atmospheric model (no matter how complicated). 

In the next sections we shall assume that the density is a function only of 

altitude above a spherical planet. This implies that p(f) is an even function of 

cos (f) which implies that the average rate of change of the pericenter argu- 

ment, e is zero and that the third of Equations (16) may be dropped. This 
W~ 

simplification would not be valid if a non-symmetric atmosphere model (such 

a s  the Jacchia Earth model of Reference 12) were used. Similarly, the equa- 

tions for the average rates of inclination aud node position would no longer be 

zero if a rotating atmosphere were simulated. Westerman (Reference 13) 

states that e r r o r s  of several percent in the averaged rates  can be incurred if 

we ignore the rotation of Earth's atmosphere. 

The complexities above a r e  pointed out to show that we have barely 

scratched the surface of the atmosphere problem. In Section 4 ,  we shall 

suggest methods that will not only resolve the difficulties above, but 

will also deal with the very complex problem of coupling between the short- 

periodic oblateness effects and those of atmospheric drag. 



Section 3 

PRACTICAL CONSIDERATIONS 

FOUR PLANET SURVEY 

It is the major intent of the author to present the important aspects of 

the orbit evolution problem for satellites of the four inner planets. The 

theoretical considerations of Section 2 a r e  tools to aid in the attainment of 

the primary goal- : an understanding of the complex dynamical relationships 

of satellite motion-. It is important to note that the general solution to the 

real-world problem of satellite motion is unknown to our science and that we 

must resor t  to approximate techniques to predict the motion of satellites. 

Even the most sophisticated techniques must fail if we t r y  to predict too f a r  

into the future. It is  of interest, then, not only to determine what the major 

perturbations a r e ,  but also to evaluate the approximate techniques available 

to us  for orbit prediction in the context of their accuracy and efficiency a s  

study tools. 

There a re  three principal disturbing effects that will cause satellites of 

kach planet to deviate from two-body motion. Before separate discussions 

of each planet a r e  begun, general descriptions of the three disturbing forces 

a r e  in order .  The three effects a r e  (1)  third-body perturbations, (2) central- 

planet nonsphericity , and (3) atmospheric drag.  In the ssparate discussions 

of each planet, the three forces a r e  evaluated in t e rms  of their effects on 

orbit evolution (particularly on lifetime) and the ranges of orbit parameters 

in which the approximate techniques of Section 2 may and n a y  not be used 

a re  determined. The survey is followed by a discussion of the factors which 

were neglected and a final section recommends the development of a system 

of computer subprograms that will permit efficient study of the orbit evolution 

problem from pre!.iminary mission design to final orbit selection. 



Third Body Perturbations 

The effect of the Sun on the motion of the f i r s t  Mercury and Venus 

orbi ters  will almost certainly be the major disturbing force for those satel- 

l i tes .  Unless our best estimates of the dynamic flattening and atmospheric 

densities of the planets a r e  much too smal l ,  the Sun's influence will be the 

pr imary contributor to changes in orbit shape and will effectively determine 

the lifetimes. Obviously, a t  some point during the life of a satellite whose 

pericenter altitude is descending to the surface of the planet, atmospheric 

drag will take over and dominate the motion. Presumably,  the orbit will 

have been designed to s tar t  out above the effective atmosphere and we con- 

clude that, initially, the solar gravitational field will be the dominant pe r -  

turbing force.  This i s  not the case for Earth and especially for Mars .  The 

dynamic f!attening of these planets is sufficient to disturb satellites more 

strongly than the Sun and the Moon over a significant range of possible orbits. 

Later we shall discuss this coupling of third-body and oblateness perturba- 

tions and isolate the regions where one o r  the other effect i s  dominant. 

F i r s t  let us take up the effects of third-body perturbations alone. 

In the ear ly  601s, several  authors (References 1, 3 and 4), inde- 

pendently applied averaging techniques to  the differential equations of 

satellite motion disturbed by a third body. By averaging the equations 

initially over one revolution of the satellite in its orbit and then over one 

revolution of the disturbing body around the central  p r imary ,  these authors 

were able to derive and solve the doubly averaged equations for  the very 

long-term motion of the orbit .  Among the significant analytic results  of this 

fine work was the discovery that the average change i6 the energy of the orbit  

vanishes up through t e rms  of second order  in the ratio of satellite distance 

to disturbing body distance ( r / r l ) .  A more  startling result ,  however, was 

that for high-inclination orbi ts ,  the eccentricity could increase to very large 

values (approaching 1 for  polar orbi ts) .  Lidov (Reference 1 ) indicated that 

this phenomenon could be an explanation for the infrequency in the solar 

system of satellites highly inclined to the orbit planes of their  parent planets. 

He then considered the counter example of the satellites of Uranus (whose 

orbits  a r e  almost perpendicular to Uranus' orbit plane) and subsequently 

showed that'the oblateness of the seventh planet i s  sufficient to offset ~ n e  

instability caused by the solar gravitational field. 



In 1966, it was found possible to superimpose the medium-periodic 

variations in eccentricity onto the long-term changes (Reference 7 ) . This 

technique (described in Section 2 )  was found useful in predicting the very 

large pericenter deviations of strongly perturbed lunar satell i tes.  The work 

brings out two basic qualitative resul ts .  F i r s t ,  the long-periodic eccentric- 

ity variations a r e  most pronounced at  high inclinations and the medium 

periodic variations a r e  largest  a t  low inclinations. Secondly, the medium- 

periodic variations depend upon the magnitude of the eccentricity. Hence, 

as &e eccentricity increases u ~ d e r  the influence of long-periodic perturba- 

tions, the magnitude of the medium-periodic variations will increase 

accordingly. This implies that, a s  the pericenter altitude approaches zero,  

the medium-pe riodic variations become inc reasingly important not only 

because they a r e  larger  but also because there is l e s s  room for variation 

before the pericenter radius becomes less  than the effective planetary radius. 

More specifically, Lidov showed that the maximum value of the long- 

periodic eccentricity is given by 

whe re  

and 

2 
C2 

= e2 $ - - s i n 2 i  sin w L ) .  
L 5 

0 Lo 0 

This implies that, within the framework of the doubly averaged system, 

all eccentric polar orbits  whose initial pericenter argument is  within certain 

ranges (see Reference 5 ) will ultimately impact the central  planet. The 

above statement, although subject to qualification in the r eal-world case,  i s  

certainly.an indication that highly inclined orbits can have short  lifetimes. 



That this is the case  in the r e a l  world i s  readily ascertained by numerical  

integration o r  reference to the ephemerides of some highly eccentric Ear th  

orbits  designed to be nearly normal  to the eclipt ic.  To be more  specific 

about the time sca le ,  we consider a shor t  lifetime to be l e s s  than a planetary 

year  and a long lifetime to be g r ea t e r  than 15 Ear th  y e a r s .  Tkese ra ther  

a rb i t r a ry  definitions come :'ram scientific and planetary quarantine consider-  

ations respectively.  

Reference to the doubly averaged Equation (1 ) will show that the s t ronger  

the disturbing function ( o r ,  equivalently, the l a rge r  the o rb i t ) ,  the higher the 

frequenry of the long-periodic t e r m s .  In mos t  c a s e s  (singulari t ies excepted), 

the l a rge r  the orbi t ,  the shor te r  the long-periodic cycle .  Orbits fo r  which 
2 2 

sin iLsin WE 2 1  5 a r e  examples of asymptotic behavior of the elements.  If 

the eccentrici ty i s  increasing initially it continues to  increase to some maxi- 

mum value and then will asymptotically approach ze ro .  If, however, the 

maximum value is g r ea t e r  than the c r i t i ca l  value, the spacecraft  will impact 

before the eccentrici ty reaches  i ts  maximum. Orbits  of this  type, then, can 

be considered safe if  the eccentrici ty is decreasing initially (sin2w c0 )  and 
0 

unsafe if (de L/dt)o>O. 

In a mDre pract ica l  sense we may ask if such considerat ions have much 

significance on a 15-year t ime scale .  The k;nds of orbi ts  with which mission 

analysts  will be pr imar i ly  concerned a r e  not strongly enough perturbed by 

third-body effects to go through more  than a portion of a long periodic cycle 

in a 15-year period.  The questions of importance f rom a lifetime standpoint 

a r e  : 

1. Will the eccentrici ty increase to the c r i t i ca l  value? and, if so ,  

2 .  How long will it take? 

The answer to the f i r s t  question depends upon the initial eccentrici ty,  

inclination and argument of per icenter .  The maximum long periodic eccen- 

tr ici ty the orbit  will attain does not depend upon the semi-major  ax i s .  The 

medium-periodic eccentrici ty variat ion,  b e ,  does depend on a a s  well a s  
L 

the three quantities mentioned before - eL ,  iL,  and w - since 6e 
L max  

depends upon the maximum value of e The relat ive phase of the long- and L ' 
medium-periodic t e r m s  is a l so  impartant in the marginal  c a se s  where 



L:nax is near the crit ical  eccentricity. But the marginal cases  a re  rare  in 

practice and it is usually easy to determine whether or not the eccentricity 

will reach the critical value. We a re  then faced with the second question-- 

if the satellite will impact, when will it happen? 

Williams and Lorell (Reference 4 ) have given explicit formulae for 

lifetime in the sense of the doubly averaged Equations (1) .  No doubt, an 

inversion of Equation (12) of this report would put some light on the problem 

where the medium-periodic effects a r e  concerned. But the reader would 

have little more practical information at  the end of such an analysis than at  

the outset. Moreover, any concrete results would be immediately invalidated 

b y  the presence of strong oblateness effects. For  these reasons,  we present 

the following qualitative discussion in response to the second question posed. 

One may imagine a plot of long-periodic eccentricity vereus time as a 

sine wave extending to infinity in both directions along the time scale. The 

orbit 's position on the sine wave a t  any instant depends upon the value of the 

argument of pericenter. The extreme values of e occur when sin 2w is 
L L 

zero. For a given inclination, the eccentricity will have its largest ra te  of 

change when sin 20 i s  equal to 1 (wL = 45" or  225' ). If a satellite of Venus L 
or Mars remains within about 50,000 km of tile planet, the third- body effects 

on w a r e  s o  small  that only a small  segment of the eL versus time curve is L 
covered in a 15 year period and, if no oblateness i s  present, the long- 

periodic eccentricity variation i s  nearly linear in time. If we wish the long- 

term third-body perturbations to raise the pericenter, a good rule of thumb 

is to choose w ~ n e a r  135" o r  315". If we want no long-periodic change in  

pericenter altitude, w~ should be near 0°, 90°, 180°, o r  270"; w~ = 45" 

or  225" will lower the pericenter a t  the maximum rate. We can obtain an 

estimate of the life time by a simple calculation. 

Lifetime = (ecrit  - e ~ o l  
de , 

but such an approximation should be used only when we a r e  certain that we 

a re  operating on a linear portion of the e versus time curve and when no 
L 

significant oblateness. is present. 
27 



If the initial eccent r ic i ty  is  c lose  enough to the c r i t i ca l  value a id the 

medium-periodic t e r m s  a r e  l a q e  enough tc. make up the difference,  the 

vehicle may impact during the l i r s t  half planetary y e a r .  Reference to 

Equations ( 1 2 )  and (13)  will show that the rr,c?dium-periodic eccent r ic i ty  

v a r i a t i o ? ~  a r e  maximized a t  low inclinations (where  the long-periodic va r i -  

ations a r e  at a min imum) .  At these low i n c l i ~ a t i o n s  t h e  medium-pel*iodic 

variat ion 6e C ~ I -  be a s  large a s  

This is  the maximum 6 c  to f i r s t  o r d e r  in el if the long-pt--iodic r a t e s  ( % I  b, 
Ad 

and CI, a r e  negligible. 

Using th is  value and assuming that the eccentr ici ty s t a r t s  out on the 

bottom of a medium-periodic cyc le ,  we can define the regions in which !he 

above medium-periodic variat ions can  cause  shor t  l i fe t imes .  This does  not 

imply . it other  regions a r e  safe f r o m  a lifetime standpoint bv-'i that  the 

regions cal led out a s  possible shor t  l i fet ime regions a r e  probably marg ina l  

and selection of o rb i t s  in those ranges  could resu l t  iq v e r y  shor t  miss ions .  

The dot-dashed curves  of the f igures  to be presented l a t e r  were  gener-  

ated a s  if the planets were  150-km l a r g e r  in radius  than they actual ly a r e  to 

account for  ve ry  strong a tmospher ic  ef fec ts .  To be s t r ic t ly  c o r r e c t ,  we 

should place these  cu rves  above the 1 -year  ( o r  hnlf - y e a r )  atrnosphe r i c  

effects  lifetime curves  ( to  be desc r ibed  l a t e r ) .  Such information, however, 

would be overly conservative s ince  we d o  not expect  the a tmosphere  to be at 

a maximum but, r a t h e r ,  we wish +o know what would happen if it w e r e .  To 

add the maximum medium-periori ic effects  to those of a maximum atmo-  

sphere  would be unreal is t ic  s ince nei ther  of these "worst" effects  i s  ve ry  

likely. 

Third -Body Oblatene s s Coupling 

It has been known f o r  some  t ime  that tile effects  of the oblateness of the 

cen t ra l  planet ,  when coupled with third-body per turbat ions ,  can cause the 

orbi tal  eccentr ici ty variat ions t~ change  radical!^ f rorn thobe which would 



occur if third-body perturbations were present alone. It is important to 

understand hew this phenomenon comes about in order  to explain the effects 

of oblateness on satellite lifetime. 

T5c long-periodic variations in eccentricity , eL,  caused by third-body 

perturbations a r e  dependent upon the variations in argument of pericenter , 
wL, since the doubly averaged rate of change of eccentricitv is proportional 

to the sine of twice o That is ,  L ' 

de - 
dt - sin 2w L 

The eccentricity will go through two long-periodic cycles a s  o goes L 
through one cycle. As long a s  sin 20  remains positive, the eccentricity will L 
increase and may reach the crit ical  value at which the pericenter distance 

becomes less  than that of the effective atmosphere. Clearly, these pertur- 

bations to the orbit occur whether o r  not the central body is ot la te .  However, 

if oblateness dominates the motion of the argl-ment of pericenter, the time 

history of the eccentricity will change accordingly. In addition, If G, changes 
L 

rapidly bccause of ablateness, and does not remain in the same quadrant 

very lor;g, the eccentricity will not have time to increase s o  much a s  it would 

have if only third-body perturbations were present. We may, therefore, 

ex-ect r . to oscillate with about twice the frequency of wL if oblatenes s 
-A 

perturbations a r e  strong compared with those rasulting from a third body. 

If, however, the changes in w caused by the two disturbing forces a r e  L 
of the same order of magnitude, the motion may become extremely complex. 

For example, the oblateness perturbatior-s may nearly cancel the change in 

wL due to a third body in such a way a s  to cause w to remain essentially L 
constant. In such a situation, the eccentricity could increase to the crit ical  

value where it may not have done s o  if the oblateness effects were absent. 

Finally, if the oblateness perturbations a re  no more than a few percent 

of the third-body effects, we may expect the eccentricitv to behave nearly a s  

it would if no oblateness were present. The ..r-.sin pcint of the above discus- 

sion is  that it is through tho arg-. ment of pericenter that the coupled effects 



of oblateness and third body perturbations act on the shape (and lifetime) of 

the orbit .  The understanding of this coupling mechanism leads to a natural 

way of classifying the orbits.  To this end we define strong coupling between 

the two effects as  the situation which exists when the maximum rate of 

change of argument of pericenter caused by either disturbing force is within 

one order  of magnitude oi  the maximum rate due to the other disturbing 

force.  

Thc rr,ar;ir.un, firsc order  rate of change of 3 (the argument of L 
pericente r with respect to the equatorial plane) resulting from oblatenes s 

aione is  

2 
2 J r e  - 

- 2 rnax aL(I - e L  )2 

with J = 312 J and r the equatorial radius of the oblate planet. We have 
2 e 

chosen the equatorial element, Q in order  to simplify the definition of 
L ' 

strong coupling. 

The maximum long-periodic rate of change of o (measured with respect L 
to the central  planet's orbit plane) due to third body perturbations alone is  

where i L and o L a r e  chosen in such a way as  to maximize) doL/& Ifor a 

given value of e A few numerical experiments will show that, if the 
2 

L' 
quantity I - e ~  is  less  than about 0.85, the maximum value of the quantity in 

square brackets is 315 e t  + 215. If 1-e2 is  greater  than about 9 -85, the L 
square bracket can become as negative a s  - 3 ( l - e L l l ~ .  

2 2 2 [(cos2 iL - 1 + e ) sin o +-(I - e L L 5 max 
L 
7 

dt 

We can now determine the values of aL and e L  at which the maximum 

rates  due to the two perturbing forces a r e  numerically equal. This definition 

3 2 
12 ( I  t Z e '  ) 

- I5 n )I - - 
max 4 n 4 7  L 

need not correspond to a particular physical situation- - indeed, for arbi t rary 



inclination of the equator to the planet's orbit plane, it is not always possible 

to have both effects maximized for the same orbit. The point is that we can 

define the regions where one effect is likely to dominate the other as  well a s  

regions where the two effects will probably interact strongly. The figures, 

to be presented after these preliminary remarks,  will show (in terms of 

pericente r and apocenter altitudes) the regions where strong coupling is 

likely to occur.  The figures do not imply that strong coupling cannot occur 

elsewhere - - the regions on either side of the strong coupling region for 

Mars a re  susceptible to many complexities including the resonances dis- 

cussed in Reference 14. 

Consider an imaginary planet whose equator l ies in the orbit plane of the 

planet around the sun. A satellite whose inclination were 63 - 4  " to the two 

planes would experience no f i r s t  order  oblatene s s  effects on argument of 

per icenter . Its orbital eccentricity then, could be expected to change almost 

a s  if no oblateness were present. Conversely, an orbit whose pericenter 

argument is minimally disturbed by third-body perturbations might be 

strongly influenced by the oblateness of the planet even though the orbit 

lies well above the strong coupling region. These examples serve to 

point out the kinds of problems we may expect to encounter in planetary 

satellite mission analysis and suggest a need for approximate techniques 

that can deal efficiently with the difficulties. 

Atmospheric Effects 

The effects of atmospheric drag cn orbit evolution a r e  f a r  more complex 

than the perturbations discussed ri.eviously. The difficulties become almost 

insurmountable a t  high (above 3C0 krn) altitudes because of the dynamic 

nature of upper atmospheres. Fortunately, some simplifying assumptions 

permit us to study the effects of various assumed atmospheric models. The 

primary assumption is that of a static density profiie where the density i s  a 

function of altituae only. By studying the effects of a "worst possible" 

density function we can draw some conclusions about the ranges of orbit 

altitudes where atmospheric effects can and cannot be ignored. 

In this survey, no attempt is made to describe o r  evaluate the coupling 

effects between atmospheric perturbations and the other disturbing forces.  



That this is a formidable problem is readily seen from the theory developed 

by Brou~ver and Hori (Reference 15) where an expon-qtial atmosphere 

\vas assumed and the r e ~ u l t s  a r e  valid only for moderately eccentric orbits.  

Li-e shall, ho\sever, describe the uncoupled effects of drag on lifetime in 

order to isolate the regions in which atmosphere alone can prevent satisfac- 

tory lifetime. Later we may argue that a region where both drag and some 

other perturbing effect cause low lifetimes will probably be a good region to 

avoid. On the other hand, it may be possible to select orbits where the 

other disturbing forces (by rais  - the pericenter) reduce the effects of 

drag to a negligible level. Suci. ba!anced1I orbits, however, should be 

studied with care  and numerical integration. 

The technique used to study the drag problem is described in an ear l ie r  

section and consists of a numerical integration of a set  of numerically aver- 

aged differential equations. Atmospheric rotation is neglected a s  being 

insignificant compared with our lack of knowledge of the upper atmosphere 

and the potential fields of the planets. The technique does not suffer from 

convergence problems at  high eccentricities nor a r e  any assumptions made 

about the density versus altitude function. If we keep iz m i d  that khe resul ts  

obtained by this technique a r e  not the complete solution to the atmosphere 

problem, we can gain a valuable "feeling" for  the dynamics and the numbers. 

Figures 3.1. i through 3.1.4 show contours of constant orbit  period 

(sublabel a )  and the regions in which the major disturbing forces act on ar t i -  

ficial satellites of the four inner planets (sublabel b). The displays a r e  in 

te rms of pericenter and apocenter altitudes above a fixed mean planetary 

radius. The figures a r e  presented in order  of ascending distance from the 

Sun for ease of reference but, for the purposes of discussion, le t  us begin 

with Venus (Figure 3. 1. 2). 

Venus 

Venus is  only slightly smaller and slightly less  massive than the Earth. 

Thenearness of Venus to the Sun, however, makes the solar gravitational 

disturbing function for a Venus orbiter almost 2 112 times larger  than that 
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fo r  an Ear th  satel l i te  with tk -  same  orbi ta l  per iod .  The resu l t s  o fAnderson t s  

determinations (Referen;. df the oblateness of Venus indicate a ve ry  

s m a l l  value fo, J2. The - - .  '.Sle lack  of signifj nt oblateneas indicates 

that ,  for  Venus, the d o r  inant perrurbing for;:cs u ~ i l l  b. the s o l a r  gravi ta-  

t ional fieid a ~ c ?  (below about 300-.L:m al t i tude) the Venusian a tmosphere .  

- 6 The l a r g e s t  magnitude of J ( -15  x 10 1 for  Venus repor ted  to  date was 2 
used in Figure  3 .  1 .2  to  show a possible (although not likely) s trong coupling 

region between oblatene s s  and third-body ?erturbat ions . In the f igure ,  a 

solid line s tar t ing  a t  about 14,000 km on the apocenter  altitude sca le  r i s e s  

a lmost  vert ical ly and slowly curves  to  the lc..;. This  cu rve  will  be cal led 

the equai perturbat ion curve  in this  and subsequent d iscuss ions .  On e i the r  

s ide of the equal  perturbat ion curve  i s  a region of s trong coupling se t  off by 

dashed curves  having almobt the s a m e  shape .  The left-hand dashed curve  

will be cal led the lcwer  strong cospling curve  and the right-hand dashed 

curve  will  be r e f e r r e d  to a s  the upper s trong cocpl.in3 curve .  The equal  

perturbat ion curve  i s  defined a s  the locus of points where  the  maximum r a t e  

of change of argument of per icenter  (magn:tude only) caused by the third-  

body perturbat ions is eqilal to  the -i.mum r a t e  resulting f r o m  (the as sumed)  i 

ohlateness . 

The region inside the das!,c3 curves  is the legion where  we can  expect 

the motion to  become ve ry  complicated because of third-body-oblateness 

coupling if we a s s L x e  that J fo r  Venus i s  a s  la rge  in magnitude a s  assumed 2 
in the calculations for  Figure  3 . 1  3, .  But the mxgnitude of J2 i s  probably 

a b c u ~  1 / 10 of the value assumed here. 4.T. Anderson has  recently stated that 

h is  c u r r e n t  bes t  es t imate  of J for  Venus i s  z e r o  (*lo x ) In that c a s e  2 
the equal perturbat ion curve  would become the upper s trong coupling c u r v e ,  

sinco the ra te  of (3 var ies  l inearly with J2. W e  can .  t l .e refore ,  expect L 
almost  no coupling if the apoccnter  altitude i s  above about 14,000 km. The 

energy requircd to inject a spacecraf t  into such a s m a l l  o rb i t  will probably 

be proni5itive for  many e a r l y  miss ions  and, in those c a s e s ,  we can  expect to  



deal with third-body perturbations alone. For  thesc- reasons the following 

quantitative information will be presented for the situation where no oblate- 

ness is present. Later we shall check to ascertain the effects of various 

assumed values of J on some of the examples. This philosophy is recom- 2 
mended for design purposes until more is known about the gravitational field 

of Venus. 

The alternately dotted and dashed curve of Figure 3.1.2 sets  off the 

reg ion where the maximum medium-per~odic variations in eccentricity 

(under the influence of third-body perturbations alone) will cause the peri- 

center altitude to drop to 150 km. To obtain the maximum variations, we 

assumed that the inclination of the orbit to Venus' orbit plane was zero and 

used the iormula: 

6e - - - l 5 u [ l  ++el l  e m .  
max 8 n 

The pericenter variation due to twice tiemax was used to determine the 

dot-dashed curves of Figures 3. ;. 1 - 3.1.4. As the inclination increases,  

the medium-periodic t e rms  decrease in magnitude, but the long-periodic 

term>s increase so that a smaller 6e can sti l l  cause. the pericenter altitude to 

fall below 150 km. If a long iifetime is desired, the orbit should certainly 

not 5e chosen below !or to the right of) the dot-dashed curve. Orbits near 

the curve should be selected with care  to avoid the possibility of a short 

lifetime a s  a result of a combination of the long- and medium-periodic vari-  

ations in eccentricity. 

T - curve; labeled 15 years ,  10 years  and 1 year a r e  curves of constant 

lifetime under the influence of the (non-rotating) NASA ,C.P8r)l I ... aximum der. - 

sity , maximum solar activity model Venus atmosphere V5 (Reference 17). The 

curves were generated by the technique described ear l ie r  with the assulnp- 

tion of Newtonian flow and constant drag coefficient (CD = 2 C;) for a n  



assumed vehicle whose mass  is 150 kilograms and whose effective c ross  

section is 2 . 2 5  square meters .  The curves of constant lifetime in Fig- 

ure 3 .1 .2  were cbtained fram Figure 3 .1 .5 ,  which sltows lifetime versus 

initial pericenter-altitude for curves of constant initial apocenter altitude. 

Some liberties were taken with the fairicg of the urves and the lifetimes 

shown may be in e r r o r  by several hundred days near the tops of the curves 

The character of the atmosphere is clearly shown in Figure 3 .  i . 5 .  The 

atmosphere is very dense below 150 km and almost non-existent above 300 km. 

The very sharp drop in density between 100 and 300 km is seen in Table 11-2 
I 

of Appendix I1 which was taken from page 16 of Reference 17 . The density 

falls off over 8 orders  of magnitude in the 200 krn span. When we come to the 

r'iscussion of Mars ' s  atmosphere, we shall find a different story. It turns out 

th-t the "thin" model atmospheres of Mars  have much la rger  effects on life- 

time than the "thick" Venus models. 

The shaded curve near the right margin of Fi:::rre 3.1.2 sets  off the 

region beyond which the third-body pe r tu rba t i~ns  --e s o  strong that ane of 

the assumptions of the averaging theory may be violated. The assumption is 

that the quantities wL, QL, wL - R L  and w +% a r e  slowly varying during 

one revolution of the disturbing body around the centrai  primary. Experi- 

ence has shown that the rate of change of R 1s typically about half of that L 
of w The shaded curve, then, sets  off the region where the maximum L 
vd.;e of w is 2/3 of the disturbing . .q j ' s  mean motion, o r ,  for Venus, 1.1 L 
de;rees/day. It is recommended that orbits to the right of the shaded line 

be simulated by numerical integration of the singly averaged o r  unaveraged 

(actual) equations of motion. 

In Figure 3.1.2 there i s  a conspicuous absence of information about the 

long-periodic , third-body effects on lifetime. The reason for this omission 

is  that the perturbations depend so markedly on inclination and argument of 

pericenter that it is necessary to present the information on several dia- 

grams. Figures 3. i. 6,  3. l. 7 and 3. l. 8 show the effects of semi-major axis, 

initial inclination and initial argument of pericenter (apse angle) on the time 

' ~ 1 1  the model atmospheres used a r e  presented in Appendix 11, and appear in 
order  of ascending distance cf the planet f rom the Sun. 
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history of the pericenter radius. Notice that all  the curves a r e  practically 

straight lines with the medium periodic variations superimposed on the near- 

linear long-periodic changes. 

One of the curves of each diagram (indicated by a solid line connecting 

clrcled points) shows the results of a numerical integration of the actual 

equations of motion. These comparison cases  were run ?-. a double preci- 

sion N-body computer program that integrates (numeric. ily) the accelerations 

resolved along the rectangular coordinates of a non-rotating reference irame. 

The agreement of the solutions indicates that we can simulate the third-body 

effects over long periods of time by means of the approximate techniques of 

Section 2. 

Even though our best estimate of J2 for Venus is  zero, i t  is  instructive 

to assume several values and examine the effects of such flattening on the 

pericenter history. Figure 3. 1.9 shows such a comparison and indicates 

that the effects of oblateness make only very slight differences in lifetime 

even if the apocenter aititude is  as  low a s  10,000 km. In view, however, of 

the large uncertainty of the value of J2 for Venus it is  probably safest  f rom 

a planetary quarantine standpoint to keep the initial apocenter altitude above 

10,000 km for the f i rs t  5 years of the early flights. If a 15-year lifetime i s  

to be guaranteed under the assumption of the maximum Reference 17 atmo- 

sphere model, the pericenter altitude should remain above 300 km for most 

of the flight. An initial orbit of 500-km pericenter altitude and 20,000-km 

apocenter altitude would leave a comfortable margin of safety. 

Mars 

The red planet contains about one tenth of the Earth 's  mass while its 

radius i s  a little more than half' that of the Earth. The oblatenes s coefficient 

for Mars, however, is  nearly twice that of the Earth and the cold Martian 

atmosphere may extend upward so far that satellites a thousarid kilometers 

above the su- face will have lifetimes of no more than a few Earth years. 





This combination of physical properties promises to provide celestial mech- 

anicians and mission analysts wfth more than a few headaches over the next 

several  years. 

lem,  isolate the regions where the approximate techniques of Section 2 a r e  

applicable, and give some examples to substantiate the results 

recommendations will  be made as to the most efficient methods for solving 

the orbit prediction problem in the very complex region below 30,000 km. 

In this survey, we give only a brief introduction to the prob- 

Later,  

Figure 3. 1.4b shows my:,n of the survey information for Mars. The 

strong coupling region is shown by dashed curves as  in Figure 3.1. 2b. 
Mars,  the strong-coupling region is so high that we can expect most orbits 

to be completely dominated by the oblateness. 

curve, the oblateness can cause the pericenter to rotate a s  fast as  0. 25" per 

day. 

Fo r  

At the lower strong coupling 

The effects of the Reference 18 maximumMars model atmosphere a r e  

shown in te rms  of curves of constant lifetime ( inEarth years ) .  The 15-year 

lifetime curve occurs a t  a very high altitude and suggests that it will be dif- 

ficult to get very close to the Martian surface without running a significant 

r i sk  of ear ly  orbit decay. The curves of constant lifetime under a non- 

rotating maximum model atmosphere were cross-plotted from Figure 3.1.10 

which, like Figure 3.1.5for Venus, shows lifetime versus initial pericenter 

altitude for curves of constant initial apocenter altitude. Reference to 
Table 11.4 in Appendix II will show the very gradual decrease of density with 

altitude for the maximum Mars atmosphere model. This model war taken from 
page 8 of Reference 18. 
less  than that of Venue or Earth, the density a b v e  300 km is much larger  than 
the maximum Venue model (775) density. 

340-km altitude is 1.16 x 

model is  etill greater than that value at  an altitude of 2, 000 km. 

Even though the surface density for Mars is much 

In the Venua model, the denrity at 

g/cc. The density of the maximum Mare 

To verify the accuracy of the approximate atmosphere calculations we 

have compared one of the apocenter histories with the r e ~ u l t s  of a double 

50 





precision Cowell simulation (see  Figure 3. 1. 11). The same density profiles 

and drag parameters were used in each simulation and, in the full numerical 

integration case, the oblateness and spin rate  of the planet were set  to zero. 

The agreement of the solutions indicates that the approximate technique is  

sufficiently accurate for these introductory studies. 

There a r e  several Mar tian atmosphere models in the literature. Udor  - 
tunately, they do not all  agree on how dense the upper atmosphere might be. 

We have used the Reference 18 maximum model because it was compiled 

with information from the flight of Mariner IV. It i s  recommended that, 

before the f i rs t  orbit mission, all the available information be reviewed 

thoroughly to make certain that the best possible atmosphere models a r e  

available to miss  ion planners . 

The dot-dashed curve of Figure 1'. 1.4b shows the region w h e r ~  the maxi- 

mum (third-body perturbations only) medium-periodic variations will cause 

the pericenter altitude to fall to 150 km. If one wishes to know the order of 

magnitude of the medium-periodic variations in pericenter altitude he may 

aimply subtract 150 km f rcm the pericenter altitude shown by the dot-dashed 

curve. Here, a s  wit', t =nus, i t  is recommended that orbits near the dot- 

dashed curve be selected with extrerr~r: caution i f  a long lifetime is desired. 

The shaded curve near the right edge of Figure 3. 1.4b sets  off the region 

above which the doubly averaged equations a r e  not recommended for pre- 

dicting the effects of third-body perturbations. This recommendation is  

based on the possibility that the long-periodic effects on the elements (eepe- 

cially wL and ) may cause the orbit to move iaeter than Mars moves around L 
the Sun. Such rapid motion of the elements would violate the aaaumptions of 

the double averaging technique. This ia in dirit-t analogy to the recommenda- 

tion that Venus orbits to the right of the shadeu curve of Figure 3. 1 . 2  be 

simulated by integration of the singly averaged equations or  the complete 

unaveraged equations. 
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On the Venus diagram (Figure 3. 1. 2b), there was no limit below which 

double averaging was not recommended. This is because even the largest 

magnitude of J estimated for Venus is too weak to move the orbit faster 
2 

than Venus' motion around the Sun. The strong oblateness of Mars, however, 

is sufficient to move the orbit faster than the planet's mean motion for a verv 

considerable range of orbits. The shaded curve to the icft of the lower 

strong coupling curve is the author's estimate of the lower limit of appli- 

cability of the double averaging techniques of Section 2. Fortunately, below 

tbe shaded curve, the third-body perturbations are  small enough that they 

can probably be ignored for preliminary design purposes. But, below the 

curve, testing the double averaging theory against numerical integration for 

the long time periods of interest from a planetary quarantine standpoint would 

be prohibitively expensive. To simulate an orbit of 300-km pericenter alti- 

tude by 20,000-km apocenter altitude for only 100 days required more than 

20 minutes of 1108 computer time for a double precision Cowell integration. 

Also, in the region below the shaded curve, the oblateness effects a re  so 
2 

strong that the higher order effects of J2, Jj, and J a r e  probably more 4 
important than the effects described by the techniques of Section 2. 

At this point, i t  is tempting to say th-t, below the left-hand shaded curve, 

we should use a theory intended to describe motion in an oblate field and con- 

sider the third-body effects as  small perturbations to be added to the oblate- 

ness effects. We might then use the double averaging theory for high orbits 

and the oblateness theory for close satellites. One reason for not recom- 

mending this two-theory approach i s  that the atmospheric effects tend to 

lower the apocenter. This effect would require a switch from one theory 

to the other for any decaying orbit that started out above the shaded curve 

in Figure 3.1.4. There is, however, a more important reason for recom- 

mending more sophisticated techniques than those of Section 2. The reason 

is that there is the possibility of strong resonance between the effects of 

oblatene s s  and the medium periodic third-body perturbations. Breakwell 

and Hensley (Reference 14) have studied the theoretical aspects of 

resonance between oblateness and the long-periodic third-body effects and 



have predicted some remarkable variations in pericenter altitude. These 

variations, however, would necessarily have an extremely long period and 

would be of little practical consequence. One of the implications of resonat- 

ing medium-periodic te rms i s  that very ltirge variations in pericenter could 

occur in less  than half a planetary year. Considering any of the pericenter 

histories in this report ,  one may imagine what would happen if, a t  some 

pokt ,  the medium periodic variations did not t ~ - n  over and oscillate around 

the long-periodic motion but, instead, continued downward a t  the maximum 

rate.  The pericenter would change drastically in a v e r y  short  time. 

Physically, these hypo thetical resonances between oblatenes s and 

medium-periodic third-body effects correspond to situations where the 

oblateness of the central planet causes the orbit to move in such a way a s  

to maintain the same orientation with r e s y  ;' '-0 the sun-planet line. The 

orbit, then, presents the same "side" to the Sun all the time and the disturb- 

ing force can remain nearly constant for a s  long a s  the orbit maintains i ts  

synodic orientation. 

These points will be discusscd later v-hen recommendations a r e  made 

as  to how the combined effects of third-body, oblateness, and atmospheric 

perturbations can be efficiently predicted. We now continue with the survey 

information for Mars  ic order  to present, more specifically, the regions of 

applicability and the accuracy of the techniques of Section 2. 

In the Venus survey, we assumed that the third-body perturbations will 

dominate the motion and then, after studying the third-body effects, checked 

some examples to show the effects of possible values of J For  Mars, we 2' 
must begin with the complexities of the coupling between the two disturbing 

forces since the motions of the orbits of Phobos and Deimos make it unmis- 

takeably clear that Mars 's  gravitational field is strongly oblate. 

Figure 3. 1. 12 i s  an example of strong coupling between oblateness and 

third- body perturbations. In this example, the oblateness is  dominant and, 
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we see the marked effect of J2 on the character of the motion. Figure 3 . 1 . 1 3  

shows an example of strong coupling with third-body perturbations dominant. 

Here, even though the oblateness effects a r e  small, they a r e  still large enough 

to prevent impact. The oblateness could just a s  easily have been the cause of 

impact in some situations vrhere third-body effects alone would have given 

long lifetimes. 

Figures 3 .  1. 12 and 3. 1. 13 also show the results of numerical integra- 

tlons of the actual equations of motion (Cowell-double precision) a s  circled 

points connected by solid lines. These comparisons show that the approxi- 

mate techniques of Section 2 a r e  sufficiently accurate for preliminary mis- 

sion design work but they also show that there a r e  e r r o r s  which were not 

encountm-ed when strong oblateness effects were absent. These e r r o r s  a r e  
2 due t . ~  two separate effects. The f i r s t  i s  that there a r e  te rms of order J2 

in the averaged disturbing function that cause long-periodic variations in 

eccentricity proportional to J The second (and principal) cause of e r r o r  2' 
i s  that the motion of the argument of pericenter i s  large enough to violate 

the assumptions of the double averaging theory to a small  degree. These 

e r r o r s  could become significant near resonance situations where the fre-  

quencies of the medium-periodic t e rms  become small. It is recommended 

that the frequencies of the medium-periodic t e rms  be monitored during 

simulations using the techniques of Section 2. 

In Figure 3. 1. 14, a large orbit is simulated to show the accuracy of 

the approximate techniques for orbits where the oblateness perturbations 

a r e  negligible. The s hor t-periodic (per orbit period) variations a r e  large 

enough to be noticable in this example and a r e  shown cn the plot. Orbits 

this large would probably occur only if the injection r e t ro  rocket burned 

out prernatur ely. 
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In this survey, the effects of atmospheric drag were evaluated separately 

from the combined effects of third-body and oblatcness perturbations. 

Whereas this philosophy is  probably realist ic for Venus orbiters,  the pos- 

sibility of a significant high-altitude atmosphere for Mars suggests that 

coupling between the oblateness and atmospheric effects will be a major 

factor in the long-term orbit predictior: for Martian satellites. The very 

strong oblateness of Mars indicates that, far  orbits whose apocenter alti- 

tudes a r e  below about 30,000 km, the higher order harmonics of the planet' s 

gravitational field could be more important than the variations we describe 

with the techniques of Section 2. 

In order to adequately study the orbit evolution problem for close Mars 

orbiter 3, the author considers it absolutely essential to include the com- 

biqded effects of (1) atmospheric drag, (2) central planet non-sphericity 

(including J and J ) and (3) third-body perturbations. The techniques 3 4 
required must work for high eccentricities and for a wide range of semi- 

major axes. It is  the author's considered opinion tnat no analytic theory 

exists that is  capable of meeting the above requirements. It is  therefore 

recommended that a system of semi-analytic techniques be used for mission 

analysis and in-flight determination of orbit injection conditions. A system 

of techniques will be described later that will range in complexity from the 

methods of Section 2 to a completely numerical approach involving the 

numerical solution of the variational equations in Gauss's form. 

Mercury 

Mercury i s  so close to the Sun that the solar gravitational field i s  a very 

strong perturbing force for satellites of the innermost planet. The eccentric- 

ity of Mercury's orbit i s  over 0.2 and the effects of such a large value of e '  on 

a Mercury orbiter a r e  striking. The medium-periodic variations in pericenter 

radius for such a satellite a r e  alternately large and small  according a s  Mercury 

is  near  perihelion o r  aphelion. 

Even though recent estimates (Reference 19) of the flattening of Mercury 

indicate a larger  value of J2 than for Venus, the strength of the third-body 

effects fo r  Mercury orbiters puts the strong coupling curves even lower than 



the corresponding curves for Venus. Figure 3. 1. l b  shows the regions 

where the three major d3~:tGrbing forces will probably be dominant. The fig- 

ure  indicates that third-body perturbations a r e  by f a r  the most important 

and, in fact, a w e  so strong that the lower strong coupling curve does not 

appear on the d ~ a g r a m .  The effects of a maximum density model of the 

Mercurian atmosphere (Reference 20) a r e  shown a s  lines of constant lifetime 

in Ear th  vears  and a r e  shown more  specifically i n  Figure 3. 1. 15. This dia- 

g ram shows lifetime versus  initial pericenter altitude for  curves of constant 

initial apocenter altituc'e. The assumptions made were the same a s  those 

for  the Venus and Mars  studies except for  the assumed density prolile. 

Table 11.1 in Appendix I1 gives the density model used for this survey. 

Notice that this model, like the Mars  model, i s  more  dense a t  high altitudes 

than the Ear th  or  Venus models. We should therefore expect to encounter 

problems s imilar  to those encountered for  the Mars  orbit prediction problem 

when we simulate the effects of the maximum density Mercury model atmos- 

phere of Reference 20. It should be noted that there  i s  considerable doubt 

about the density of the Mercurian atmosphere a s  is  clearly pointed out in 

Reference 20. The maximum density models for Mercury and Mars  a r e  

probably conservative estimates reflecting our necessari ly limited knowledge 

of the planetary atmospheres. The results  of this survey, then, should be 

cowsidered an unlikely upper limit below which we should proceed cautiously 

with the f i r s t  planetary orbiters.  

The value r,f J2 used for the evaluation of third-body-ohlateness coupling 

in Figure 3,l. l b  was obtainea f r o m  the work of Liu in  Reference 19 where 

a theoretical estimate of the dynamical figure of Mercury was presented. Let 

the three principal moments of inertia of Mercury be represented by Ix, I 

IZ where 
Y' 

Liu obtains the following results: 
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Liu's theory is that, in the distant past, Xercury was in a molten state 

and was in hydrostatic equilibrium. Isostatic ad juetment of the crust  during 

a very rapid solidification period caused the ratios of the moments of inertia 

to increase from v t  ry small values to a t  least the values given above. In 

another paper (Reference 21) Liu obtained an estimate of the secular 

decrease of the polar moment of inertia I=. Liu's calculations indicate that the 

polar moment decreased slowly during an epoch of cooling that lasted about 

48 million years. The rate given by Liu indicates that IZ has decreased by 

about 0.570 sluce the planet was in hydrostatic equilibrium a s  a liquid globe. 

For r a c t i c a l  purposes, then, we can as une that the polar moment has 

approximately the value it had before departure from hydrostatic equilibrium. 

W e  therefore assume that 

~vnere m is  the total rnaa s of Mercpry and r is the mean equatorial radius of e 
the planet. Ignoring the ellipticity of the equator, we obtain an  estimate of JZ 

for Mercury a s  follows: 

To be strictly correct we should have included the equatorial nonsphericity 

a s  tiesc ribed in Chapter 3 of Reference 10 but the calculation would lower the 

\ * d u e  of J and we wish to make our estimate slightly higher since Liu stated 2 



that the rat ios 41 - Ix)/Iz and (I - Ix)/Iz were grea te r  than o r  approximatel.{ 
2 Y 

equal to the values given above. Unfortunately, Liu gives no estimate of the 

e r r o r s  in  his calculations. Dr. Kaula of UCLA, using arguments based on 

comparisons of Mercury with the Earth and the Moon, has recentl) (Pr iva te  

communication, Xovernber 1969) given an  estimate of an upper linlit o n  J for 2 
Mercury. He stated that it  i s  very unlikely that .T2 for  Mercury is greater  

- 5  than 7 x 10 . The author concludes that the v-2: .e of J i s  probably between 
- 5 2 

2 x and 4 x 10 and, fo r  this survey, has adopted the value 

fo r  use in calculations of the strong coupling curves of Figure 3. 1. lb.  

This very smal l  es t imate  of J2 and the  great  strength of the solr - 
g ravitational pe rturbations indicate that third-body effects will probably 

dominate the motion of a l l  but very close Mercurian satellites. The high 

eccentricity of Mercury's  orbit  about the Sun will cause  the strong third-body 

perturbations to be much m o r e  complex than they were  fo r  Venus orbi ters  and 

we can expect the t e r m s  of Equation 13 with e '  a s  a factor to be very important 

in the orbit  prediction problem. Figure 3. 1. 16 shows the effects of e' on the 

time history of the pericenter radius for  a Mercury orbiter .  The solid curve 

was obtained with the approximate techniques of Section 2 and the dashed curve 

was generated in the same way except that the t e rms  involving e '  were  se t  to 

zero in the generation of the dashed curve. The circled points represent the 

results  of a Cowell double precision numerical integration of the actual equa- 

tions of motion. The comparisons not only demonstrate the striking effects of 

e' ,  but they a l so  show that the approximate techniques give an accurate  repre-  

sentation of the actual motion. Figure 3. 1. 17 i s  a comparisnn of the approxi- 

mate  technique with numerical  integration for  a very large orbit.  This orbit  

i s  just below the shaded curve of Figure 3. 1. l b  and the comparison i i~dicates 

how the approximate technique begins to fall a s  the perturbations become s o  

strong that the assumptions of the double averaging theory a r e  violated. 

This completes the survey for  o rb i te r s  of the three inner planets; 

Mercury, Venus, and Mars.  Emphasis has been placed upon the effects of the 

three major  disturbing forces,  third -body, oblatenes s ,  and atmosphc r ic  
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perturbations and upon the interactions of those forces and their effects on the 

long term motion of satellites of each planet. 

Earth 

The orbit prediction problem for artificial Earth satellites i s  necessarily 

more  complex than the corresponding problem for planetary satellites since 

the Moon's gravitational field introduces a fourth major contribution to the 

perturbations. Indeed, the long periodic effects of the Moon a r e  stronger than 

those due to the Sun's influence. The double-averaging theory, furthermore, 

is applicable to Earth satellites only over a limited range of orbits and i s  

probably not worth the effort required to tes t  the more  compiicated iormulae 

that would be required to include the effects of a fourth body. Even though the 

techniques of Section 2 a r e  recommended only for preliminary analysis of 

Earth satellite orbit evolution, i t  i s  instructive to perform the same kind of 

survey that was done for  the other planets. Such a survey will make i t  possible 

for one to compare the magnitudes of the various disturbing forces with the 

magnitudes of the perturbations for satellites of the other planets. This will 

allow persons familiar with the orbit prediction problem for  Earth satellites 

to compare satellites of the other planets with those of the Earth in the long- 

term orbit prediction problem. 

Figure 3. 1.4b shews the same kind of information about Earth satellites 

a s  was presented for planetary orbiters. The primary assumption i s  tnat the 

orbits of the Earth and the Moon a r e  coplanar. (The Moon's orbit i s  actually 

inclined about 5 degrees to the ecliptic. ) This assumption permitted a realistic 

definition of strong coupling between oblateness and the combined effects of 

Lunar and Solar gravi ta t io~al  perturbations. The regions where medium-periodic 

Luni- solar perturbations could cause a short  lifetime a r e  se. 3ff by a dot-dashed 

curve a s  was done for the other planets. For  the Earth, however, there a r e  two 

different medium-periodic frequencies - a semi-monthlyvariation and a semi- 

annualvariation. It i s  interesting to note that, whereas the long-periodic lunar 

perturbations a r e  about 50 percent larger  than the long-periodic solar perturba- 

tions, the medium-periodic effects of the Sun a r e  larger  than the semi-monthly 

lunar perturbations. We can therefore, expect the Moon to dominate the long- te rm 

motion and the Sun to dominate the medium-periodic motion if oblatenees 

perturbations a r e  negligible. The shaded curve of Figure 3. 1.4b sets  off the 



regron bel7w which double averaging i s  not recommended even for preliminary 

analysis. This estimate of the lower limit of applicability of the double- 

averaging theory i s  based on the possibility tiiat oblatenes s perturbations might 

cause the orbit to turn faster than the Earth moves around the Sun. In such a 

situation, resonance between the oblatenes s and the medium-periodic Solar 

perturbations could give r i se  to very rapid changes in pericenter altitude. The 

singly-averaged third-body equations do not suffer f rom this shortcoming of 

the double-averaging theory and could be used to great advantage in Earth 

satellite orbit prediction even for  very close satellites. No upper limit was 

placed on Figure 3. 1.4b since the author i s  uncertain of the range above which 

ihe short-periodic (per satellite orbit period) lunar perturbations will become 

important f rom a practical point of view. Even the singly averaged equations 

should probably not be used for Earth satellites whose apocenter altitude i s  

ahove about 200,000 kilometers. 

In the atmospheric studies for  the other planets, we always used a maxi- 

mum model density profile. In order  to provide a valid comparison for Earth 

satellites a model atmosphere was chosen that corresponds to a high (but not 

unrealistically high) sunspot maximum. This model will not only provide a 

reference point for comparison of the maximum atmospheric effects of the 

planetary atmospheres but will a lso point out the conservatism inherent in the 

use of such maximum models for  orbit prediction.. In this survey, we have 

tried to place an upper limit 0:: the planetary a t m ~ e p h e r i c  effects, For  detailed 

mission planning, however, the effects of the atmospheric models should be 

carefully considered with regard to the probability that the density will actually 

be a s  large a s  was assumed. 

Figure 3. 1.4b shows curves of constant lifetime for satellites under the 

influence of a non- rotating, high sunspot maximum, Spring -Fall atmosphere 

model of Reference 22. Table 11. 3 in Appendix 11 gives the density profile 

and Figure 3. 1. 18 shows lifetime versus initial pericenter altitude for curves 

of constant apocenter altitude. It should be recalled that for Earth and Mars 

the atmospheric rotation can cause the rates of the semi-major axis and 

eccentricity to vary by 5 to 10 percent with the sense of the variation 

depending upon the equatorial inclination. 
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The information oi  Figure 3. 1. 4b has been presented primarily for  

reference purposes so  that the perturbations acting on planetary satellites 

can be evaluated in te rms of their relative strength or  weakness a s  compared 

with the perturbations to Earth satellites. With the four-planet survey com- 

plete, we now return to Venus and Mars for some applications of the approxi- 

mate techniques to real-world mission analysis problems. 

APPLICATION TO SOME REAL MISSIONS 

In the previous survey the orientation and shape of the orbit was dis- 

cussed a s  if  any orbit could be selected provided that i t  had a long lifetime. 

In the real  world, the orbit is constrained by the approach geometry, the 

size of the injection motor, and a variety of communication an? shad~wing 

requirements. In this section, the advantages of very fast  orbit prediction 

techniques a r e  demonstrated for some feasible Venus and Mars approach 

trajectories in the 1970's. Maps of the impact parameter plane that require 

thousands of lifetime predictions a r e  constructed and regions of high-and 

low-lifetime a r e  shown fo r  a realist ic range of re t ro  (Av) capability. 

Of more fundamental importance is the reason for orbiting the planets in 

the fir s t  place - -the gathering of scientific information about our celestial 

neighbors. To provide irliormation that will help show the kinds of scientific 

information that will be available for measurement, we include the time 

h i ~ t b r y  of the position of the orbit for some orbits that might actually be 

obtained. In one case, the position of the pericenter with respect to the Suil- 

Venus line i s  shown. In another example, the ground t race of the pericenter 

point i s  shown on a map of the Martian surface. .Before these detailed 

studies a r e  presented, it is necessary to give a brief introduction to the 

languoge of interplanetary flight dynamics. 

The impact parameter plane is one which passes through the center of 

the planet and is  normal to the incoming asymptote of the approach hyperbola. 
+ IC .c 

The TRS (T, R, and S mutually orthogonal unit vectors) coordinate system 
+ 

(used for aiming point seleccion in trajectory analysis) is defined with the T 

axis the intersection of the impact parameter plane and the ecliptic (or 
+ 

equator or  orbit plane) with T positive to the right. The x i s  is in the 
IC 

impact parameter plane and directly downward. The S axis, then, forms a 



right-hand system and points ir:to the paper in  the following figures. The 

reader may imagine himself skewere2 by thc incoming excess velocity vector 
-D 

with his feet along the positive R axis and his extended right a r m  pointing 
-D * 

along the T axis. The. S axis, then, points directly from him to the center of 

the target planet. If we pass a plane parallel to the ecliptic and through the 

observer, his head i s  always above that plane (on the same side a s  the North 

ecliptic pole). 

The impact parameter B is  just the semi-minor axis of the approach 

hyperbola. A vector i s  usually defined to specify the aiming point of the 

approach trajectory. This vector l ies in the TR plane and has the length of 

the semi-minor axis of the hyperbola. The semi-major axis of the apprach 

hyperbola and the orientation of the incoming asymptote a r e  fixed by selec- 
* -D * * 

tion of launch and ar r iva l  dates. Hence, the specification of B 0 T  and B* R is 

sufficient to uniquely define the two-body orbit which describes the motion 

during a close approach to the target planet. Notice, that a given closest 

approach distance depends not only upon the magnitude of B but also upon the 

semi-major axis of the hyperbola. This means that the planet will appear 

larger  in impact parameter space than i t  is in reali ty but will appear to be 

the same size for all  incoming trajectories having the same energy (semi- 

major axis). 

By stepping through dif fermt values nf the direction and magnitude of the 

B vector, we can sequentially define a family of approach trajectories. If 

we assume that a retro velocity is added in the direction apposite the velocity 

vector a t  closest approach, we obtain a good approximation to the family of 

captured orbits which would be obtained if maximum use were made of an 

actual re t ro  rocket. In this way, we can associate with each aiming point 

(g vector) a unique set  of orbit  elements and, therefore, a unique time 

history and lifetime. Using the approximate techniques we can afford to 

study a great many aiming points and, by cross-plotting, generate a detailed 

map of the impact parameter plane showing lines of constant lifetime for  a 

given incoming asymptote and incremental velocity capability. We begin with 

a m i s s i ~ n  to Venus in 1972. 



Venus 1972 

A sp-cccraft could be launched in May of 1972 and a r r ive  a t  Venus on 

September 26 of that year. The approach trajectory would have an excess  

speed (Vco) of about 5, '- kmlsec  and the hyperbolic excess velocity vector 

would have right ascension and declination1 of 91.1 " and -28.9 " with 

respect to the (Earth) ecliptic and equinox. 

The size,  shape and orientation of the orbit  that can be obtained ; ~ v  firing 

a retro-rocket of given capability depends markedly upon the position L. the 

aiming point in the impact parameter  plane. It i s ,  therefore. valuable to  be 

able to study the evolution of orbits  obtained by changing the aiming point of 

the approach trajectory since, by examinicg a large number of possible 

approaches, we can design the trajectory not only to satisfy the mission con- 

s t ra ints  but also to give the largest  amount of scientific information. 

With the above goals in mind, le t  us  consider the details of constructing 

a lifetime map of the impact parameter plane. We f i r s t  assume that the 

re t ro-rocket  will be fired near  the closest  approach point on the approach 

hyperbola and that the effective change in velocity will be applied along the 

vehicle's p re - re t ro  velocity. These assumptions a r e  not unrealistic since it 

i s  to be presumed that the most efficient use will be made of the on-board 

propu1':ion system. We further suppose that the scientific payload will have 

been optimized and that some given amount (say 2.0 km/sec)  of incremental 

velocity will be available. We now choose various values of the impact 

parameter ,  B, in a region that will yield pericenter altitudes near  some 

dcsired value (say 1,000 km). For  each of these values of B, we can sweep 

the aiming point around in a c i rc le  in the impact parameter plane. Automat- 

ing this procedure on the computer and using the methods of Section 2, we can 

can easily construct plots of lifetime versue position on ci rc les  of constant B 

1. These te rms ,  normally reserved for describing longitude and latitude on 
the Earth 's  celestial sphere, will be meant here to specify the orientation 
of the excess vector in various coordinate systerxle. 



fcr  each of the values we select. Figure 3.2. 1 i s  such a plot for the Venus 

1972 approach. The ~ p p r o a c h  energy i s  rather high for this trajectory and 

the incremental velocity (AV) required to obtain even a large orbit (1 ,  000 by 

50, 000 km) i s  accordingly high. The data fo;. this case, however, -..as 

available from a previous analysis and provides a good e x ~ m p l e  of how the 

lifetime maps a r e  cons t r~c ted .  Later, we shall study a Venus approach in 

1973 that is  much more attractive from an energy standpoint. 

Notice, in Figure 3. 2. 1, that there a r e  three distinct regions of ( rela-  

tivcly) low lifetime. The regions near 0" and 180" a r e  vanishing and the 

region near + = 90" i s  becoming more pronounced a s  B increases.  This 
TR 

effect i s  caused by complex phase relationships between the iriitirtl argument 

of pericenter and in i t id  inclination of the orbit. These relationships depend 

upon the energy of the approach hyperbola, the pozition of the closest 

approach point and, most importantly, upon the declination of the incoming 

asymptote. The maps of the impact parameter plane, then, will change a s  

the approach geometry changes and w-e rnust construct a new map for each 

significantly different approach. 

F rom Figare 3.2. 1, we can cross-plot onto a diagram of tLe impact 

parameter plane and construct contours of constant lifetime for a given value 

of AV. Figure 3.2.2 i s  an example of such contour maps which, if we still 

have senses of humor in the midst of these complexities, might be called 

Disney plots because of the resemblance of the contours to the e a r s  of a 

famous cartoon character. In Figure 3.2.2, the regions of low lifetime near 

t$TR = 0"  and +TR = 180" a r e  vanishing with increasing B. That is ,  the 

lifetime i s  becoming greater a s  the impact parameter becomes greater.  In 

the region near the R axis (+TR = 90 " )  the opposite is  true - the lifetime 

is decreasing a s  B increases. It would seem, f rom the plot, that the 

approach trajectory should pass over the north ecliptic pole of Venue i f  a 

long lifetiins is desired. F o r  this particular trajectory, the region near 

+TK = 270' does provide the biggest target but, a s  we shall see in the data 
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ior  the Venus '73 mission, the reglons below the T axis (+TR = 30' o r  4TR 
= 150" ) a r e  more satisfactory f r ~ n ~  a lifetime standpoint since those regions 

would yield long lifetimes even if only a very low incremental velocity capa- 

bility were available. Approximztely 360 10,000 day lifetime predictions 

\vere required for the curves of Figure 3.2.2 and the author estimates that 

if the predictions had been made by numerical integration of the actual equa- 

tions of motion, the generation of the data would have required about 60 hours 

of CDC 6600 computer time. The small  program used for the generation of 

the data for Figure 3.2.2 required about 50 seconds of 6600 t ime to apply the 

techniques of Secticn 2 to the 360 ini:ial orbits. We thus see  the very great  

advantage to be had from rapid approximate techniques in that we can study 

enough aiming points to permit the efficient selection of a nominal approach 

to the planet. 

Venus 1 973 

For  the Venus '72 mission, a value of r e t ro  velocity ( AV) was picked 

that gave a reasonable orbi t  about Venus and then contours of constant life- 

time were plotted on the impact parameter plane. A mission with much 

lower energy requirement could be flown that leaves Earth  in late Novem - 
ber 1973 and a r r ives  a t  Venus on March 15, 1974 with the following incoming 

hyperbolic excess velocity: 

V, = 3.0775 kml'sec 

Right Ascension = 5 1  5.52" 

Declination = -24. 11 ' 

ecliptic and 

equinox 

For  this mission, we shall lonstruct  three plots a s  shown in Figure 3.2. 1 

and cross-plot  c o ~ t o u r s  of c o n s t a ~ ~ t  15 Earth-year lifetime for each of three 

different re t ro  velocity ( AV) values. This procedure will show how, with the 

approximate techniques, we can trade re t ro  AV for  acceptable target a r ea  in 

the impact-parameter plane. 



The three sets  of curves of lifetime versus  4 will not be presented a s  TR 
they a r e  identicai in form to Figure 3.2. 1. Suffice it to say that their gen- 

eration required over a thousand lifetime predictions. Cross-plotting the 

resul ts  of the lifetime predictions onto a diagram of the TR plane, we obtain 

Figure 3.2.3. The contours a r e  labeled according to the value of AV 

assumed for each se t  of lifetime calculations. Fo r  this approach, the three 

~ a l * ~ e  s of AV correspond approximately to the following nominal initial orbit  

altitudes : 

To obtain these initial orbit  parameters ,  the magnitude of the impact 

parameter ,  B, must be about 23, 150 km. Changing the value of B causes a 

considerable change in the s ize  of the orbi t  and a s  we move the aiming point 

outward, the semi-major axis of the post-retro orbit  increases  (for this 

approach) by about twice the amount of change in B. 

The contours of F i g w e  3.2.3 clearly show the regions of high and low 

lifetime for the March '74 approach. The figure points out that, if a long 

lifetime i s  desired, the  upr roach should not be over the north ecliptic pole 

unless plenty of reserve  4V is available. Even in the cases  of the higher 

values of AV, subnominal performance of the r e t ro  could resul t  in a short  

lifetime whereas, if the aiming point i s  below the T axis (as  recommended on 

the figure), even a very low amoun;. of re t ro  velocity would s t i l l  yield an 

orbit  with a long lifetime. It should 5e noted, however, that the aiming point 

recommendation i s  made f rom lifetime considerations only. The main point 

is that, with ti-: approximate technique < nd a smal l  amount of t ime on a good 

computer, a great  deal of valuable inforrri-ition can be easily obtained for  the 

mission planner. 





A Possible Orbit 

Having selected an aiming point region 'hat looks good from a lifetime 

standpoint, let us examine the time history of an orbit that might be obtained 

by firing a rocket in line wiih the velocity vector at  closest approach on the 

incoming hyperbola. Assuming that AV is 1.23 kmlsec, the resultant orbit 

would have the following elements: 

w = 284: 15 ecliptic 

i = 37:77 and 

= 350°.80 equinox 

Epoch: March 15, 1974 

Figure 3.2.4 shows the time history of the pericenter position during the 

first 700 days after injection. The latitude is given with respect to the Venus 

orbit plane, and the longitude is measured from the instantaneous Sun-Venus 

line. Examination of information like that given in Figure 3.2.4 can be of 

much value to nJssion planners by allowing them to select an aiming point 

that will yield the most desirable orbit from a scientific standpoint. 

Mars 1973 

The complex interactions between the three disturbing forces for 

Martian satellites make i t  very difficult to construct accurate lifetime con- 

tours in the impact parameter plane. Because of these difficulties, no aim- 

ing point regions will be recommended. The author feels that considerable 

further study is necessary before such recommendations can be made. The 

short-periodic coupling between oblateness and atmospheric effects, the pos- 

s ibility of resonance between the oblatenes s and medium-per iodic third- body 

effects, and the possibility of strong higher order non-sphericity effects 

should be carefully considered before an actual mission is designed. 

Two maps of the impact parameter plane have been prepared - one shows 

the effects of third- body and oblateness effects only, the other includes the 

possible effects of a dense high-altitude atmosphere. The presentation of 

such a map implies that wc have included all  three effects in the lifetime 

predictions - a capability that was not tested in the previous survey work. 

For this reason we present a pericenter history comparison of a CoweH 

79 
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double precision numerical integration and the approximate techniques of 

Section 2 where the approximate curves were obtained by numerical integra- 

tion of the long-periodic effects of third-body, oblateness and drag pertur - 
bations . The medium periodic variations in eccentricity were then super - 
imposed onto the long-periodic solution as  in Equation (12; of this report. 

Figure 3.2. 5 shows the comparison and indicates that a fairly realistic 

simulation can be obtained by the approximate methods. Figcre 3.2. 6 shows 

the hs to ry  of the semi-major axis and displays the principal effects of drag 

on the orbit. 

In an earlier study, the author erroneously assumed that the principal 

effects of drag could be accounted for by using an efiective planetary radius 

150-km larger than the actual Martian radius. The results of this assump- 

tion a r e  shown in Figure 3.2.7 which, like the Disney plots for Venus, show 

contours of constant lifetime in the impact parameter plane. The effects of 

oblateness a r e  immediately apparent - the character of the contours i s  com- 

pletely different from the Venus curves because of the very strong oblateness 

of Mars. For this reason, the small program used to generate the data was 

modified to include the atmospheric effects along with the other disturbing 

forces. The same Mars approach was re- .  m on the modified program and 

the results appear in Figure 3.2.8. 

The difference between Figures 3.2. 7 and 3. 2. 8 i s  remarkable when we 

consider that the change i s  due only to the atmosphere above 150 km. The 

elimination of large areas as possible aiming points shows that we should 

include atm'ospheric effects in any realistic attempt to select an aiming point. 

Further, the possibility of such a dense upper atmosphere for  *Mars and the 

(known) very strong oblateness of Mars suggest that we should have included 

the short-periodic (per orbit period) coupling between the two tzects .  This 

study has not coneidered the practical effects of such .coupling or the possible 

significance of higher order harnxonics but there is little doubt that these 

effects should be carefully studied before a multimillion-dollar spacecraft is 

sent to Mars and expected to stay in orbit for 15 years. 

In order to present information that may be valuable f rom a scientific 

point of view, we include the time history of the pericenter position on a map 

of Mars. This orbit is not a realistic one since the inclination is low with 
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respect to the Mzrtian orbit plane but the numerical  integration fror. wliich 

the data were taken was meant to se rve  a dual purpose. The caluculations 

were also made to give an idea of the shadow-time per orbit period that can be 

expected for a Martian orbiter.  For a given semi-major axis and eccrn t r ' s -  

ity, the total amount of time spent in shadow will be maximized for orbits 

with low inclinations with respect to the ;:lanet's orbit around the Sun. 

Figure 3. 2. 9 shows the history of the position of the sub-paricenter point 

on the Martian surface for an orbit whose initial pericenter altitude i s  305 km 

and whose initial apocenter altitude is  50,000 km. The circled points show 

the position of 'he vehicle a selected pericenter passages. The revolution 

number i s  given beside each circled point. The p-.riod of this orbic i s  about 

40 hours and i s  decreasing under the influence of atmospheric drag. Since 

the Martian day i s  about 24. 5 hours, the sub-pericezter point seems to "hop 

around" on the Martian map. The important point i s  that, fo r  the f i r s t  year, 

the latitude of the sub-pericenter point remains between -10" and -30'. This 

orbit,  then, would be !ess than satisfactory were low altitude data desired 

for the entire Marhan  surface. On the other hand, if it were desired to con- 

centrate on tE.6 latitude range f rom -10" to  -30°,  this orbit would be ideal. 

Fipare 3.2. i 0  shows the time spent in shadow for the same orbit and 

shows how the shadow-time per orbit period changes with t '.mc during the 

mission. This kind of information i s  valuable to spacecraft  designers and, 

a!though the data of the figuie were obtained from the full numerical  integra- 

tion, they could have been generated quite accurately with the approximate 

techniques. It is recoxmended that computer programs using the approxi- 

mate techniques inclr~de the capability to calculate the average shad.ow-time 

per orbit  period f rom the average orbit  elements and the position of the Sun. 

We have presented some possible applications of the approximate tech- 

niques of Sectlon 2 and have shown how they can be used to great  advantage 

by mission analysts. Also presented were some curves showing the time 

histories of some quantities of interest  f rom a scientific point of view in 

order  to give an idea of how the techniques can be used to select  an orbi t  that 

will provide the most desirable scientific information. 
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In the previous analyses several factors have been mentioned a s  possible 

trouble a reas  in the long-term orbit prediction problem and there a r e  several 

factors that were not mentioned a t  all. In the next section, we take up these 

neglected factors and their possible significance to the design of actual 

planetary orbit missions . 

NEGLECTED FACTORS 

There a r e  a great  many disturbing effects that have not been considered 

here. Shap;ro(Reference 19)presents an excellent discussion of many per-  

turbations that should be included in an accurate orbit determination philoso- 

phy. Some of these effects can even become dominant for abnormal 

satellites. For  example, solar radiation pressure is the dominant disturbing 

force for balloon satellites like the Echo se r i e s  and electrostatic drag can 

have a large effect on small  metallic objects like the controversial needles of 

a few years  ago. F o r  normal spacecraft, however, most of these "minor" 

perturbation a r e  truly insignificant for a l l  but the most stringent analyses. 

On the other hand, there a r e  several  points that need clarification and 

some e r r o r s  that need explaining. The author feels that it is the responsi- 

bility of a proponent of an approximate method not only to show that the 

technique works but also to show where the method fails. The most impor- 

tant argument for this attitude is that i t  helps fix the direction of future 

research. L e ~ s  important perhaps, but no less  cogent is  the fact that i t  

helps the reader in his evaluation of the method a s  i t  may apply to his needs. 

We therefore present the following discussions which, in the author's opinion, 

encompass the most significant omissions of the preceding studies. 

The f i r s t  point is that of the short-periodic coupling between oblateness 

and atmospheric effects. This phenomenon i s  most pronounced for satellites 

whose pericenter points a r e  near the poles or  the equator. The coupling 

takes on a l e s s  formidable appearance if vre think in te rms of the physics of 

the problem. M'e know that, in the drag-frc? p oblen~,  the energy of the 

satellite must not change. That is  

v2 E = - + ( -U)  = constant 
2 



where 

with /3 the equatorial latitude of the satellite. Clearly, the instantaneous 

semi-major  axis must change during one revolution of the satellite ir, its 

orbit siacc 

This means that, if we a r e  using the mean semi-major axis (the average 

value -ver one revolution), the spacecraft must  be going fas ter  o r  sio-xer, 

for a given value of r, than the speed we calculate f r o m  the average 

semi-major  axis. The difference, of course, is greater  a t  low altitudes. 

But this i s  where the atmospheric drag and the velocity a r e  maximized and 

the drag is a velocity-dependent force. Thus, by using the Keplerian ele- 

ments to obtain the speed for :he drag calculations, we commit an e r r o r  a t  

the worst  possible point - the closest approach point. Such an omission is 

bound to cause e r r o r s  in the average ra tes  of change of the elements for 

highly eccentric orbits  disturbed by atmospheric drag. It is therefore 

recommended that this problem be studied fur ther  and that adequate modifi - 
cations be incorporated in future long-term orbit  prediction schemes. 

Referring now to Equation (9) of Section 2, we find a second source c f  

e r r o r  that may be significant for large orbits. The infamous expression 

t. . . implies that there a r e  higher order  t e rms  in the disturbing function that 

have not been considered in the averaging theory. Recall that the expansion 

was in t e rms  of the ratio of satellite distance to disturbing body distance 

r r  Brouwer and Clemence (Reference 10) outline the procedure for 

expanding the disturbing function beyond the second power of r / r l  and 

indicate how quickly the expressions become almost unmanagable even in the 

low-inclination approximation for  Ear th 's  moon. The very great  difficulty of 

developing an accurate lunar theory for high-inclination, high-eccentricity 

orbits leads us to recommend numerical solutions if the orbit  i s  so  large 

that the t e rms  not included in Equation (9) become important. An efficient 

way to deal with this point will be ouilined in the next section. 

90 



Even though solar radiation pressure is  usually negligibie for normal 

epacecraft, this third shortcoming of the techniques of Section 2 should be 

remedied. An approximate solution to the problem could be easily included 

in the double averaging theory if the assumption that the vehicle spends a 

negligible time in sfiadow i s  valid. Such an extension to the theory would be 

very valuable to mission designers who might want to use the solar pressure 

to stabilize an otherwise short-lived orbit. 

Of perhaps the most practical importance, i s  the inability of the 

techniques of Section 2 to describe the high-order oblateness effects. The 

author has attempted to transform the second order effects of J2 to the orbit 

plane frame used in the double averaging technique. The expressions for the 

rates become very involved and abound in complicated numerical singular- 

ities. These difficulties lead to a recommendation of a more accurate (and 

more numerical) technique that will be described in the next section. For 

Venus orbiters, the very low estimates of J2 permit us to use the double 

averaging theory for a wide range of orbits. For Mars, however, the very 
2 strong oblateness indicates that, for close satellites, the effects of J2, J3' 

and J4 may be much more important than the effects considered here. The 

author has found that Mars could have a very large value of J without our 3 
being able to detect such non-sphericity in the motion of Phobos. 

Although the masses of the natural Martian satellites a re  very small, 

collision with or very close approaches to Phobos or  Deimos a r e  unlikely 

possibilities that should, nevertheless, be considered in detailed Mars qrbit 

mission analyses. Mission planners should have access t the most accurate 

ephemerides for the two natural satellites of Mars. 

In the next section, recoinmendations for further study a "1 be directed 

primarily toward rectifying the above omissions. 
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Section 4 

RECOMMENDATIONS FOR FURTHER STUDY 

In the preceding studies, it has been shown that the approximate 

techniques of Section 2 work very well for Venus orbiters and tolerably well 

for Martian satellites but it i s  clearly of value to rectify the shortcomings 

mentioned in the previous paragraphs. It i s  relatively easy to perform the 

kind of survey study of this report. It i s  quite different to actually solve the 

orbit dynamics problems for a real mission. The primary purpose of this 

section i s  to recommend a set  of techniques through which i t  will be possible 

to resolve the orbit prediction problem in an actual mission design and 

flighi control situation. 

It is  recommended that a set  of compatible computer subprograms be 

developed to incorporate the following four levels of orbit prediction 

capability. 

LEVEL I 

This level should consist of the following: 

1. Numerical integrationof: 

a Doubly averaged third-body equations 

a Fi rs t  order effects of oblateness 

a Long-term effects of atmospheric drag obtained by mechanical 

quadrature. 

2. Superposition of: 

a Medium periodic third-body effects on eccentricity a s  in 

Equation (12). 

This lowest level technique i s  just the method described in Section 2 

and is recommended because the technique works so  well for Venus orbiters 



that a significant advantage in speed can be had over  the next level.  F o r  

example,  any of the Venus o rb i t e r  per icenter  h i s to r i e s  of Section 3 could have 

been generated accura te ly  with one o r  two numerica l  integrat icn s teps .  The 

medium-periodic e f fec t s  could then have been determined v e r y  rapidly f r o m  

Equation ( 1 2 )  of this  r epor t  and the power s e r i e s  f r o m  the numerical  integra-  

tion routine. In many c a s e s ,  a l ,  000 day computing interval  could be used 

f o r  the long-periodic integration with no significant l o s s  of accuracy.  The 

speed advantage to  be  had by such a scheme  could be of g rea t  value where  a 

l a rge  number of orbi t s  a r e  t c  be simulated. Construct ion of detailed impact  

pa ramete r  m a p s  o r  Monte C a r l o  ana lyses  t o  de termine  the  probability of 

achieving a long l i fet ime would der ive  considerable benefit f rom the  techniques 

recommended for  Level  I. This  level  i s  recommended p r imar i ly  f o r  v e r y  

rapid simulat ion of Mercury ,  Venus, and high apogee (ha, 2 30,000 k m )  M a r s  

o rb i t e r s .  F o r  m o r e  a c c u r a t e  predict ions and f o r  c lose  M a r s  sa te l l i tes ,  the  

next level should be  employed. 

LEVEL I1 

The main  difference between th is  level  and the previous one is that, f o r  

Level  11, the singly-averaged third-body equations a r e  to  be integrated 

numerica l ly  to  obtain the medium-periodic third-body variat ions of the 

orbi tal  elements.  Integration of the  singly averaged equations yields much 

m o r e  accura te  r e su l t s  in the  situations where  obla teness  s o  dominates the 

motion that  the orbi t  moves  f a s t e r  than the c e n t r a l  planet around the Sun. 

The p r i c e  of th is  increased accuracy  i s  c ~ m p u t i n g  t ime.  The numer ica l  

integration routine m u s t  now take s t eps  significantly s m a l l e r  than half a . 

planetary y e a r  in  o r d e r  to follow the  per iodic i t ies  in  the (singly ave raged)  

equations of motion. 

The recommended second level  of capability is a numer ica l  integrat ion 

of: 

1. The singly averaged third -body equations, and / o r  

2. The analytically averaged r a t e s  of the e lements  caused by f i r s t -  

and second-order  effects  of Z2, (the f i r s t  non-zero  oblateness 

coefficient), and the f i r s t - o r d e r  effects  of J3 and J4 ( severa l  o ther  



high-order effects could easily be includc; if necessary.  (J2, will 

probably be important for very close satellites of Mercury),  andlor  

3.  The rates  caused by atmospheric drag,  numerically averaged t.v 

mechanical quadrature as  described in Section 2. (This capability 

should include atmospheric rotation effects for actual mission design. ) 

One of the important advantages of the singly averaged equations for 

third-body effects i s  that the same number of t e rms  a r e  required in any 

non-rotating coordinate system. Thus, i t  i s  possible to choose the equa- 

torial  plane of the central  planet a s  the principal plane without having to 

evaluate several  extra quantities a t  each computing interval to account for 

coordinate transformations. In an equatorial coordinate system, it i s  pos- 

sible to account for the average high-order oblateness effects in a relatively 

easy way. Therefore, i t  i s  possible to extend the analysis to a high order  

with ease since the l i terature i s  filled with the equations for the average 

ra tes  of t).e equatorial orbital  elements. 

The singly averaged equations may be obtained by averaging Equation (9) 

of this report  with respect to t rue anomaly, f, and retaining al l  t e rms  

dependent upon the position of the disturbing body. B. Kaufman of Goddard 

Space Flight Center has recently derived expressions for th:? singly averaged 

ra tes  caused by third- body perturbations. The expressions a r e  particularly 

amenable to efficient computation and, in recent experiments, have been 

checked against Cowell and Encke integrations with extremely encouraging 

results. Where the doubly ave-aged equations break down, the singly aver -  

aged equations continue to describe the average motion of the orbit very 

accurately. This i s  a s  i t  should be since fewer assumptions a r e  made in the 

derivation of the singly averaged rates  than a r e  made in the double averaging 

theory. Kaufman's equations a r e  not available in  the l i terature  but the 

the interested reader  could probably obtain the equations f rom the 

author. 

At this level certain nuances should begin to appear in the orbit predic- 

tion techniques. In Section 2, no mention was made of the variation of the 

attitude of the spacecraft with respect to i ts  velocity vector and the resultant 



change in the effective cross-sect ional  a r e a  that the vehicle p resen t s  to the 

atmospheric disturbances.  The difference between the satellite's actual 

altitude and the altitude above the mean radius of the planet was s imi lar ly  

neglected. These a r e  relatively minor p ~ i n t s  but it i s  the sum of a great  

many minor points that makes  the difference between a working, useful 

computer program and a box of Fo r t r an  cards .  It i s  recommended that the 

calculations fo r  simulating the above effects be included, a s  options, in 

iuture study tools so  a s  to provide the capability for  evaluating the importance 

of the effects. 

Bel'ore the descriptions of Levels 111 and IV a r e  begun, i t  should be men- 

tioned that neither of the f i r s t  two levels  has  the capability of including the 

neglected t e rms  of the third-body disturbing function nor i s  ei ther capable of 

simulating short-periodic coupling between a tmospher ic  d r ag  and oblatenes s 

effects. In Level 111, the f i r s t  of these points will be taken c a r e  of but the 

short-periodic coupling of oblateness and d rag  will have to be handled 

separately.  

LEVELS I11 AND IV 

The derivation of the equations for  the third level  requires ,  a s  a s tar t ing 

point, the equations fo r  the fourth. These equations fo r  the instantaneous 

r a t e s  of the Keplerian orbi ta l  e lements  a r e  taken f rom page 147 of Refer-  

ence 11. Reference 10 also presents  the variational equations in Gauss ' s  

fo rm on page 301. They a r e :  

. sin f JEZ R' + e = J1.[a2~-e2-r2 1 S' 

- e2 )  cos f &] d - i l - e 2 i  sin f [I + r ] St 
na 2 ane a (1-e  ) 



r sin u n = w' 
a2n sin i JL? 

W = 
- c o ~  s i n  [I + r I ] g 

t 
an e an e a (1-e  ) 

r sin u cot i W' - 
2 JF a n 

di r cos u W' - -  
dt  - 

a2n JZ 

where 

u = w + f and cr = 9 rn the mean anomaly a t  epoch. R: S' and W' 
0 

a r e  the components of the disturbing accelerations resolved along the radius 

vector, the in-plane normal to the radius vector (in the direction of satellite 

motion) and the normal to the orbit plane. 

With this formulation, one can include any disturbing forces whatever 

simply by writing the accelerations resulting from those forces  in a non- 

rotating planetocentric f rame a n i ~  then rotating the accelerations to the 

R', s', W' f rame described above. The equations should be integrated 

numerically with an efficient predict-correct  scheme. (A  self starting routine 

such a s  the Runge-Kutta technique may be useful for some applications). 

Care  should be taken to eliminate any unnecessary calculations in the evalu- 

ation of the derivatives. An efficient automatic computing interval selector 

should also be employed. 

The above i s  a description of Level I V  of the recommended study tool 

and provides an excellent basis for evaluation of the three lower levels. 

Level IV is, of course, exact and must be paid for in computing rime. The 

reason fo r  leaving the description of Level 111 to the last will be obvious to 

those who have read Section 2.3. There remains only to place integral signs 



in front of the expressions and transform the independent variable f rom 

time to true anomaly. The ra tes ,  then, a r e  to be averaged by mechanical 

quadrature before they a r e  integrated. It i s  recommended that the averaging 

be done with respect to t rue anomaly a s  was done for the atmospheric drag 

effects in Section 2. 

Of the four levels of orbit prediction capability recomme.nded above, 

only Level IV i s  capable of describing short-periodic coupling between 

oblateness and drag perturbations. The three lower levels have been 

derived with the assumption that the motion i s  Keplerian during one revolc- 

tion of the satellite around the central body. The speed of a satellite of an 

oblate planet i s  not Keplerian, a s  discussed in Section 3.3 and, if velocity 

dependent forces a r e  present, the short-periodic variat-ions in speed should 

be accounted for. It i s ,  therefore, suggested that the major effects of short-  

periodic coupling between cblateness and drag can be accounted for by making 

use of the integral of energy in the problem of motion around an oblate planet. 

That is ,  whenever the speed i s  required for calculation of the accelerations 

caused by atmospheric drag, the magnitude of the velocity should be calcu- 

lated in such a way a s  to maintain the sum of kinetic and potential energy 

(including al l  harmonics being us-d in the simulation) a t  a constant value 

during that revolution of the satellite. In this way the magnitude of the 

atmospheric drag forces  will be much more accurately calculated and the 

decay ra te  simulation will improve accordingly. 

The above techniques, if efficiently programmed and studied carefully to 

eliminate unnecessary calculations, will provide an extremely useful tool for  

pre-mission analysis, and for practically any orbit  prediction problem for 

many years  to come. 



Section 5 

C ONC TAUSIONS 

This  r e?or t  has  given an introduction to the orbi t  prediction problem lo r  

ar t i f ic ia l  planetary satel l i tes .  Emphasis  h a s  been placed 0.n the ma jo r  p e r t u r -  

bations acting on sa te l l i tes  of each inner planet, on the complex interact ions 

of those perturbat ions,  and on the influen,:e of the disturbing fo rces  on the 

orbi t  evolution and l i fet ime of sa te l l i tes  oc the inner  p la rc t s .  

In Section 2 an approximate method fo r  simulating the t i m t  h is tory  of the 

o rb i t  e lements ,  including the second o r d e r  effects  of the disturbing body's orbi ta l  

eccentr ici ty was presented.  An efficient numer ica l  technique was a l so  p r e -  

sented that p e r m i t s  the simulation of the effects  of a tmospher ic  d r a g  on orbi t  

evolution. This method involves the numerica l  averaging o i  the differential 

equations for  the orbi ta l  e lements  in a way that el iminates the need for  the 

assumpt ions  of s m a l l  eccent r ic i ty  and an exponential densi ty profile.  

A four-planet surdey in Section 3 presented the ma jo r  influences of p e r -  

turbat ions to the o rb i t s  of planetary satel l i tes .  Coupling betwecn third-body 

and obla teness  per turbat ions  was defined i r  t e r m s  of the maximum ra te  of the 

argument  of pe r i cen te r  caused by ei ther  disturbing force  acting alone. The 

uncoupled effects of a tmospher ic  d rag  w e r e  evaluated with respect  to the i r  

influence on sa te l l i te  lifetime. P e r h a p s  the mos t  su rp r i s ing  resul t  of the 

su rvey  is that the maximum M a r s  model  a tmosphere  (Reference IS) has a 

much g r e a t e r  effect on l i fet ime than the maximum Venus model  (Refer  - 
ence 17). It  was  a l s o  found that, whereas  the approximat;? methods of 

Section 2 work ext remeiy  well  for  Venusian o rb i t e r s ,  the very  strong 

oblateness of M a r s  causes  such rapid motion of the orbi t  that the double 

averaging theory b reaks  down f o r  Mart ian o r b i t e r s  whose apocenter  al t i tudes 

a r e  below about 30, 000 km. M a r s  and Venus were  emphasized in the s d r v t y  

s ince  they a r e  of ,nost in~ tned ia re  in teres t .  An es t imate  of tkc oblateness of 



Mercury was obtained from the work of Liu and some pericenter histories 

were given for Mercury orbiters. The survey work for Earth satellites was 

done with the assumption that the orbits  of the Moan a3d the Ear th  l ie  in the 

sac., plane. The Earth survey was presented p r i m a r i l ~  for reference. 

The methods used for the survey work were combined and used to show 

the advantages of very rapid orbit prediction techniques in pre-mission 

analysis and aiming point selection for some possible missions to Venus and 

Mars in the 1970's. Contours of constant lifetime were constructed on a map 

of the impact parameter piane and the time histories of some scientifically 

important parameters  were presented. 

The major result of the survey and detailed work on Mars  and Venus i s  

that the simulation of Martian orbi ters  is very difficult. Whereas the es t i -  

mated weak oblateness of Venus and the sharp density gradient of the model 

Venus atmospheres makes i t  relatively easy to predict the long-term motion 

of satellites of that planet, the combination of third-body perturbations, 

oblateness effects twice a s  strong a s  for Ear th  satellites, and an atmosphere 

that may extend up to 2,500 krn suggests that consider: ~ l e  further study 

should be directed toward the orbit  prediction problem for Martian satellites. 

A discussion of neglected factors was included that pointed out the major 

omissions of the preceding studies. The possible significant factors were: 

(1) short-periodic coupling between oblateness and drag effects, (2)  high- 

order  oblateneas perturbations, (3) high-order third-body perturbations, .and 

(4) solar radiation pressure.  Also mentioned a s  possible trouble a r e a s  were 

hypothetical very close approaches to the natural Martian satellites and the 

possibility of rescnance between medium-periodic third-body effects and 

oblateness perturbations. 

The recommendations for iurther study in Section 4 included the develop- 

ment of a four-level computer program that will permit  sfficient future stud;. 



It was suggested that high-order oblateness effects, the coupling of 

atmospheric and oblatenes s perturbations and the coupled effects of third- 

body perturbations will be absolutely essential  to Martian orbit  mission 

analysis. 

It was iurther recommended that sirnulatior! of solar  radiation pressure  

be included in future study tools along with accurate ephemerides of the 

natural satellites of Mars. Other suggestions included the ,stablishment of 

an upper bound on the third harmonic of the Martian gravity field and a 

thorough review of the available atmospheric models for Mars.  

It i s  hoped that the techniques and the numerical experience presented 

in this r e p ~ r t  will be of some introductory value in the efforts directed 

toward .he efficient unmanned exploration of the planets. 
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Orbital Elements 

a Semimajor axis of osculating eclipse. 

e Eccentricity. 

f True  anomaly. 

Argument of pericenter measured f rom the ascending node in 
the orbi t  plane positive in the direction of satell i te motion, 

i Inclination of the orbi t  plane to the xy plane of the reference 
f rame.  

Longitude (right ascension) of the ascending node of the satell i te 
orbi t  measured in the xy plane of the reference f r ame  and posi- 
tive in the counter-clockwise sense f rom the x axis. 

n 

n '  

R~ 

e c r i t  

Mean longitude of the satellite; measured f rom the x axis  to the 
line of nodes, then along the orbi t  to pericenter,  then along the 
orbi t  to the mean position of the satellite, @ = w t Q t M 
where M is the mean anomaly of the satellite. 

NOTE: Pr imed quantities re fe r  to the perturbing body. 
Doubly primed quantities re fe r  to the central  planet's 
equator. 
Subscripts L and M re fe r  to the long and medium- 
periodic variations in a l l  quantities. 

Mean motion of the satellite. 

Mean motion of the perturbing body. 

Mean radius of the central  planet. 

Crit ical  eccentricity--the value of e a t  which the pericenter 
distance becomes l e s s  than the radius of the central  planet plus 
an  assumed effective atmosphere. 

NOTE: The subscript  0 r e f e r s  to epoch time. 

Medium periodic eccentricity variation 



Ratio of the m a s s  of the disturbing body (the Sun) to the com- 
bined mass  of the Sun and the centra l  planet. 

Inclination of the centra l  planet 's equator to the centra l  planet 's 
orbi t  about the Sun. 

Right ascension of the equator 's  ascending node on the central 
planet 's orbit  plane, measured f r o m  the x axis of the OPP 
frame. 

Inclination of satel l i te 's  orbi t  plane to centra l  planet 's equato- 
r i a l  plane 

- 
cosi  = cosi  cosi" t sini  sini" cos (i2-S2")  

Vector having the length of the semi-minor  axis of the approach 
hyperbolz and lying in the impact parameter  plane. (See 
Section 3. ) 

AV Impulsive planetary orbit  insert ion speed increment. 

pc P 
Gravitational constant of the centra l  planet. 

R A Right ascension of the incoming hyperbolic excess  velocity 
vector. 

DEC Declination of the incoming hyperbolic excess  velocity vector. - 
+T R Angle specifying the angular position of the B vector in the 

impact paramete r  plane. 

Coefficient of the second tern1 in the expansion of the disturbing 
function describing the potential due to an  oblate planet; viz 

where 

r i s  the distance of the satel l i te  f r o m  the center  of m a s s  of 
the centra l  planet. 
Q is the equatorial  latitude of the satellite. 
r i s  the equatorial radius of the centra l  planet. 
e 



Universal gravitational constant 

Mass of disturbing body 

Mass of central planet 

Mass of the satellite 

Medium-periodic eccentricity function of Reference 7 

Medium-periodic c -centricity function of this report 
2 

Semi-latus rectum p = a( l  - e ) 
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Appendix I 

KOZAI'S DISTURBING FUNCTION [ ~ e f e r e n c e  81 

where 

1 A = - ( l  'i - 3 sin2 i )  ( 1 - s in  i 2 2 ' )  

3  I 1 + -  s in  2 i s i n  2 i cos(Q - SZ ) 16 

I 1 
+ % s i n 2  i sin2 i cos a(n - n  ) 

3 2 '  3 2 I 
t g s i n  i (1 - ? s i n  i ) c o s  a ( + ' -  n )  

I 
3 4 i I + g sin2 i cos + cos 2(9 - Q)  

I 
3 2 i  t 1 

- 3 s i n  2 i s i n i  cos Tcos(2)  -n - R )  

I 
3 4 i 1 I 

t 3 sin2 i sin cos 2(0 - 2L2 + a )  

I 

2 L  I I + $ s i n Z i s i n i  sin 2 cos(2b + 3  - 3 k 2 ) ;  



I 
t 

= COS4i C0s4 L COS 2(+ - - S I )  
2 2 

3 2 + +sin2 i (1  - 5 sin i t )  cos 2 w 

1 2 I 
t l  c o s 4 1 s i n  i cos 2 ( w  t R - Q )  2 

1 
1 

t t ..,! i cos4 i cos 2(m t - R )  2 2 

I 1 
t cos4 f sin4 L cos 2(4' t w + R - 2R ) 2 

. 1 1 t 1 

t s in4is in4-? .cos  2(+ - 2R - u t $2) 2 2 

2 1 I 

t g sin i sin2 i' cos 2(4 - R - W )  

I 
I 2 i t I + sin i cos2 +sin i cos - 2 cos(26 - R - 2w - $2) 

1 1 1 - 7 sin i c o a 2 ~ a i n  2 2 i cos(Zw+ $2 - R )  

1 2 I 
t sin4 4 sin i cos Z(w - R + R ) 

1 I I 

t 7 sin i sin2 i sin 2 i cos(2w - Ci t R ) 2 

I I I + sin i a in2+sin i c o s 2 i c o s ( 2 4  2 t 2 w  - R - $ 2 )  



I 

2 i I I I + sin i sin 7 sin i sin2 $cos(2.4 - 3R - 2u + R). 
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Appendix I1 

MODEL PLANETARY ATMOSPHERES 

Table  11. 1 

M e r c u r y  Model  A tmosphe re  (Re fe rence  20) 

Altitude ( k m )  Densi ty ( e ;  / c c )  

Table  11. 2 

Venus Model  Atmosphere  iSP80 11 V5) 

Altitude (km ) Density ( g l c c )  



Tab le  11. 3 

High Sunspot Maximum E a r t h  Model  A tmosphere  

Altitude (krn) D e ~ s i t y  (g lee) 
- - -- 

0 ARDC 1959 1.22 l o 4  
5 0 CIRA 1965 1.04 x 1 0 ' ~  

100 5.06 x i 0 - l o  
150 2 .1  x 1 0 - l 2  
2 00 3 .9  1 0 - l 3  
300 6 .7  lo4* 
400 Reference  22 1 .9  x 10:;; 
500 7.0 x 10 
600 2.8 x lo-15 
700 1 .3  10"15 
800 5.9 x 10':: 
900 2 .9  x 10- 

1000 ? 5 x 10' 16 - 

Tab le  11.4 

M a r s  Model A tmospheres  (SP80 10 Maximum) 

Altitude (krn) D e ~ s i t y  (g / cc )  

0 2.06 x 1 0 ' ~  
5 0 1 .07  x 10 ' 

100 1.16 x 
150 1.53 x 10 - lo  
200 9.12 x 10- l2  
300 6.79 x lo-13 
400 1.56 x l0 ' l3  
60 0 3 . 0 i  x 
800 1.17 lo-14 

1000 6.00 x 
1500 2.05 x lo-'' 
20CO 1.37 x 
2 500 9.87 x 1 0 - l 6  

Langley Most  P r o b a b l e  M a r s  Model  Atmosphere  
(Reference  24) 

Altitude (km) Density (g / cc )  




