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BY 

Milind M. Lele,  David H. Jacobson, and James  L .  McCabe'lc 

Division of Engineering and Applied Physics  

Harvard University . Cambridge, Massachusetts 

ABSTRACT 

Recent investigations into necessary  conditions of optimality for 

control problems with inequality constraints on the s tate  variables have 

shown that, for a specific c lass  of problems, the optimal t ra jectory 

does not s tay on the constraint boundary for  non-zero intervals of t ime. 

This resul t  permits ,  a pr ior i ,  some insight into the s t ructure of the 

optimal solution. 

F o r  cer ta in  problems in  growth economics, this  result  i s  of 

some significance, a s  i s  shown by three  examples from two different 

a r e a s .  The f i r s t  two examples a r e  concerned with the problem of opti- 

m a l  employment; interestingly enough, they indicate that, for the models  

used, the optimal solution i s  such that full employment i s  attained at  most  

instantaneously and i s  not maintained for  non-zero intervals of t ime. The 

third example i s  concerned with the optimal investment and foreign aid 

policies for an underdeveloped economy. An institutional constraint on 

the stock of foreign debts may be derived from the 'debt-service'  ratio.  

It appears  that, contrary to ea r l i e r  resu l t s  obtained f rom simpler  models,  

this constraint i s  binding a t  most  instantaneously along the optimal t ra jec tory .  

:$Agency for International Development. 



1. Introduction 

Optimal control problems with inequality constraints  on the s tate  

variables have been the subject of much re sea rch  in  the past  decade. 

Necessary conditions of optimality fo r  the f i r s t  o rde r  caseS, i .  e .  where 

the f i r s t  t ime derivative of the constraint contained the control variable 

explicitly, were  obtained by Gamkrelidze [ l ]  in 1960.  La te r  r e sea rche r s  

extended these to the general  case  where the order  of the constraint, p, 

was grea ter  than one. Recently, Jacobson, Lele  and Speyer [2] have 

obtained sharper  resu l t s  for this general case ,  than those known hereto- 

fore.  (This  reference a lso  contains a brief history of ea r l i e r  r e sea rch .  ) 

A consequence of the new necessary  conditions of optimality i s  that, under 

cer ta in  conditions, problems with odd-ordered constraints - - except the 

case  p = 1 - -  will not, in general,  exhibit optimal t ra jector ies  with 

boundary a r c s  over non-zero intervals  of t ime, i .  e .  the optimal t ra jec tory  

will a t  most  only touch the constraint boundary, but will not lie along i t .  

The significance of this resul t  l ies in  the fact that, inasmuch a s  the 

conditions under which i t  i s  valid a r e  not overly stringent, i t  reveals ,  

a pr ior i ,  considerable information a s  regards  the s t ruc ture  of the optimal - 

solution. It i s  our opinion that such information would be of par t icular  

qualitative value in  problems of economic growth. To this end, af ter  

presenting a brief summary  of the relevant control-theoretic resul ts ,  we 

will consider three examples from economic growth theory. Two of these 

examples deal with the problem of optimal employment; the third i s  

drawn from development planning. 

+A. state-variable inequality constraint i s  pth order  if i t s  pth t ime deriva-  
tive i s  the f i r s t  to contain the control variable explicitly. 



2 .  

We briefly summarize  the resu l t s  which we will be using f rom 

control theory. The details a r e  given in [ Z ] .  

F o r  simplicity, the basic  optimization problem which we consider  

i s  in the form of Mayer.  There i s ,  however, no los s  of generality, s o  

that we a r e  a t  l iber ty to apply these resul ts  to other formulations. -f. 
The basic problem i s  

Maximize @(x(T) ) 
u 

subject to 

and the sca lar  s ta te  variable inequality constraint 

S(x(t))  6 0 for a l l  t E [0,  T] . 
Here 

x - - n-dimensional state -vector 

u - -  sca la r  control variable 

f - -  n-dimensional vector function 

S --  pth o r d e r  state variable constraint 

@ - -  sca la r  function of the te rminal  s ta te  

The necessary  conditions of optimality for the above problem a r e  

given by the following theorem, which we s tate  without proof. ( F o r  

proofs of this and other theorems,  see  [ 2 ] ) .  

+For relations between this and other formulations,  see Bryson and Ho [3]. 



Theorem 1. The necessary  conditions of optimality for the bas ic  problem 

a r e  

where 

i s  a bounded function for t E [0, TI. 

At junction points t of boundary and inter ior  a r c s ,  the influence 
i 

functions X(t) may  be discontinuous. The boundary conditions a r e  

and 

where v(ti) -( 0.  The Hamiltonian H used above, i s  defined by 

The assumptions made in  the derivation of these necessary  conditions 

a r e  given in [Z]; the only noteworthy assumption i s  that 

i. e .  that along the constraint boundary sma l l  changes i n  control can  be 

related uniquely to sma l l  changes i n  the state variables;  this i s  a common 

a s  sumption [3]. 



Before proceeding fur ther ,  let us make the 

Definition: The Hamiltonian H, i s  said to be repular  along an  ext remal  

i f  i t  possesses  a unique maximum with respect  to the control a t  every 

instant i n  time. 

Note that the Hamiltonian H, i s  real ly  H(x, u, 1). The above definition 

requires  that for  a l l  t E [0,  TI, given the ex t remal  t ra jec tor ies  ( say)  
7 7 - - 
x(t) ,  X(t), H(x, X,  u) have a unique maximum with respect  to  u( t ) .  This 

does not exclude the possibility of multiple, non-neighboring, extremals ,  

along each of which the Hamiltonian may s t i l l  be regular  i. e .  does not 

exclude problems having multi-maximums . So the imposition of regu-  

la r i ty  on the Hamiltonian i s  not a very stringent requirement on the 

control problem. t 
If now, we impose the additional res t r ic t ion  that the Hamiltonian 

be regular ,  i t  can  be shown [2] that the optimal control variable u, a s  

well a s  i t s  p - 1 time derivatives must  be continuous. Fur thermore ,  a 

rather  simple expression can be obtained for the entry-point multiplier, v.  

We have, + Theorem 2. If the Hamiltonian i s  regular ,  S E BZp- 1[0, T] and the extre-  

ma1 path has a boundary a r c  of non-zero length, then 

- 
where ( ) denotes ( ) on the inter ior  a r c  a t  the junction t ime t 1' 

+In point of fact, i t  i s  ra ther  difficult to  construct a non-regular 
Hamiltonian e .  g ,  see  [3] p. 126. 

+I3 2p- 1 [0, T] 5 c la s s  of functions whose (2p - 1)th derivative i s  bounded 

in the interval [0, TI. 



This expression for the entry point multiplier i s  very significant. 

Note that H ; ~  < 0 (strengthened necessary  condition for H to have a 
P-1- p - l + 2  

maximum),  [ (u) - (u) ] 3 0, and a s  S and i t s  t ime derivatives up 

2p - 2 
to dZp-'/dt (S) a r e  continuous (therefore zero)  

in  o rde r  for the t ra jec tory  to reach the boundary. This implies that 

for p odd. But v( t l )  0 (necessary  condition of optimality) and hence (13) 

implies that for odd-order constraints,  the optimal t ra jec tory  will, a t  
P-1 

most ,  only touch the constraint boundary, provided (u)- # 7;;'. Note 

that for  p = 1, i t  can be shown that ( see  [2] p. 23) v( t l )  = 0; thus for  

f i r s t  o rde r  constraints boundary a r c s  a r e  possible.  

3. Employment Model A 

The f i r s t  example deals with the imposition of a subsidy for 

employing additional laborers  where the marginal  product of labor i s  

a l ready equal to the minimum wage. Assume that the neo-classical 

theory of the f i r m  holds; in  particular,  that the long-run rat io  of labor 

demanded to capital  demanded may be determined by differentiating the 

production function and setting the rat io  of the par t ia l  derivatives equal 

to the factor pr ice  ratio.  The production function in this case  i s  Cobb- 

Douglass with constant re turns  to scale (homogeneous of degree one).  

Suppose further that the demand for capital i s  equated to the capital actually 

used but that labor demanded and labor employed a r e  not necessar i ly  

P-1- P-1 
+The case  (u) = (u)' i s  possible, but numerical experience with problems 

(p 3 3) indicates that this i s  r a r e .  In fact x would have to be carefully 
0 

chosen for this to occur.  



identical, then we may express  the rat io  of labor demanded to capital 

in use  by the equation 

r 
where (--) i s  the in te res t  wage ratio, D i s  the labor demanded, K i s  the 

W 

value of the capital  stock in  use,  and a i s  the capital elasticity of the 

output. 

The t e r m  on the r .  h. s .  of (14) must  be complicated a bit when we 

allow for the presence of government tax policies and subsidies, and 

the effect of lagged responses to changes in the effective factor pr ice  

ratio.  Consider f i r  s t  the tax adjustment coefficient for  the in te res t  

ra te .  This coefficient i s  defined by the equation 

where p i s  the amount of the investment tax credi t s  and depreciation 

deductions expressed a s  a percentage of the g ross  investment and u 
C 

i s  the tax ra te  on capital  income. A s imi lar  relationship may be defined 

for the wage adjustment coefficient v. Here we assume that the f i rm 

does not pay a tax on the labor i t  employs and that the coefficient r e p r e -  

sents  a subsidy for  the employment of additional laborers  expressed a s  

a percentage of the increment in the wage bill. The effective in te res t -  

wage rat io  g may  then be expressed a s  

r h  
g = (;)(;) (16) 

We wish to  avoid specifying how factor pr ices  a r e  determined within the 

model. Therefore,  we shal l  define the change in  the effective factor-  

pr ice  rat io  between t ime periods,  g, a s  our control variable rather  than 



Brown and de Cani [4] and David and van de Klundert [5] have 

adduced reasons why the response to changes in factor pr ices  may be 

considerably grea ter  in  the long-run, than in  the short-run.  The ma in  

point is that to introduce a new technology with different factor proportions 

may requi re  a new machine; on existing machines,  proportions may be 

fixed. Given that the lag s t ruc ture  i s  one with geometrically declining 

t weights , the equation for des i red  factor proportions may  be written a s  

where A ( 0  < A < 1)  i s  the initial weight. As  Koyck [6] has demonstrated, 

a reduced form of this relationship may  be obtained. Lag the equation 

one period, multiply i t  through by A ,  and then subtract the lagged 

equation from (18). The procedure yields, 

This f i r s t  o rde r  difference equation may be approximated by the f i r s t  

o rde r  differential equation. ( F o r  an alternative procedure,  see  Grill iches 

~71 .  ) 

(0 < m l ,  O . <  m 2  < 1. In what follows a l l  coefficients a r e  positive con- 

stants,  unless  otherwise stated. ) 

There  i s  a distinct difference between the change i n  the effective 

interest-wage rat io  (Ag) and the final change in  that ratio which equates 

+Est imates ,  using this form of the lag s t ructure,  have been ca r r i ed  out 
in [4], [5] for the m o r e  general  c. e .  s .  production function. 



demand and supply for labor,  (Ag'g). In the short-run,  changes in  the 

technical labor requirements  may produce a slow response from the 

supply side. There  may not be enough laborers  with the requisite 

skil ls  i n  t imes  of excess  demand, and training may be necessary;  in  

t imes  of deficit demand, f i rms  may retain their  skilled personnel. Also, 

the empir ical  evidence suggests that labor force participation r a t e s ,  while 

positively correlated with employment, tend to lag fluctuations i n  employ- 

ment.  Finally, the f i r m s  may  anticipate a future change in  demand 

opposite to  the one that has  just occurred.  Under these circumstances,  

they m a y  concentrate on meeting their  demand for production workers  

t and not overhead personnel . 
Rather than determine a n  equilibrating change in  the effective 

interest-wage ratio,  we choose to represent  these bottlenecks by a n  

adjustment equation 

Lt = plDt - Lt-l l  f Lt- l  O < p < l  (21) 

where L i s  the level of employment attained in  period t .  This i s  approxi- 
t 

mated by the f i r s t  o rde r  differential equation 

The remaining dynamic equation concerns the growth of capital  stock 

over t ime.  Given a Cobb-Douglass production function with constant 

re turns  to scale ,  value added i s  given by 

where 

Et  = minimum [ ~ ( t ) ,  D(t)] (24) 

+Most of these arguments,  along with the empir ica l  evidence supporting 
them, a r e  given i n  Kuh [8]. 



Suppose that saving i s  expressed a s  a constant proportion of 

value added, then the capital  accumulation equation i s  

where s i s  the constant average propensity to save and 6 i s  the ra te  of 

depreciation. 

t The state variable L(t)  i s  constrained below by ze ro  and above 

by the full-employment ceiling (given exogenously) z ( t ) ;  i. e .  

Finally, denoting the termination date by T, the ra te  of social  

discount .by y, the control variable cost coefficient by u, we may write 

the welfare functional which we wish to  maximize, in  the form 

+ The f i r s t  t e r m  i n  the welfare functional represents  consumption ; this 

i s  a famil iar  component of aggregate welfare. But why, one may ask ,  

i s  there  control variable costing? The answer i s  that changes in the 

control may be expensive i n  the sense that r i s k  m a y  be increased and 

speculative behavior on the pa r t  of the f i rm m a y  resul t .  (Perhaps the 

reason  that "control costing" of this form has not been used ea r l i e r  i s  

that models with high-order dynamics, where such costing i s  appro- 

priate,  have been r a re ly  considered in  the l i te ra ture  on growth theory. ) 

+The lower ceiling on L(t)  i s  of little economic significance. 

k ( t )  will  be assumed to be monotone increasing. 

?More correct ly ,  this should be  modified to include pe r  capita consump- 
tion. However, this does not affect our resu l t s .  



Gathering together the dynamics, along with the welfare functional 

(27) and the state-variable inequality constraint (26), optimal employ- 

ment i s  given by the following maximization problem: 

Max J = 
2 - uu ]dt 

subject to 

where iS'is given by (24), and init ial  conditions on the s tate  var iables  

a r e  specified ( T  i s  fixed); and subject to the third o rde r  s ta te  constraint 

- 
0 -( L(t )  -( L(t )  . ( 3 3 )  

4. 

Let  us  now tu rn  to a situation In which the obstacle to full employment 

i s  not a floor on the r ea l  wage but insufficient training of workers .  Dobell 

and Ho [9] have formulated a model which deals with this  se t  of c i rcum-  

s tances.  It centers  around a well-behaved production function with con- 

stant re turns  to scale 

where K i s  the stock of machinery and W i s  the stock of t ra ined workers .  

Denote the flow of educational serv ices  by E, g ross  additions to machinery 

+The Hamiltonian i s  s t i l l  piecewi s e  continuous and differentiable. See  
Appendix I. 



by M, and consumption by C .  Then according to Dobell and Ho [9] we 

may wri te  

V = M t C i - E  

a s  an  accounting identity. 

Dobell and Ho go on to  argue that this identity may be used a s  

a transformation surface; this appears  to be a simplified model. It 

implies that resources  may be shifted instantaneously from one form 

of production to  another with no loss  i n  the total value of serv ices  

rendered.  However, t ime may  be required for retraining of workers  

and for the restructur ing or  re t i rement  of machines.  Even in  the c a s e  

of an  increment  in  V, the planning authority would have to exert  consider-  

able control over vocational choice and the bill of new machines to 

achieve a relationship independent of past  production. 

Let  us  remedy this lack of rea l i sm with a simple modification of 

the Dobell-Ho model. Denote the ratio of educational serv ices  to total  

Then postulate a relationship involving a delayed value added by z = - V '  

adjustment 

z = p[z::: - 
t t z t -1  I i- z t - l  

O < p < l  (36) 

where z':' i s  the des i red  rat io  of educational serv ices  to value added. We 
t 

will write z':: a s  t 

z* t = u1 ( 3 7 )  

where u l ( t )  i s  a control variable.  Then, approximating (36) by a differential 

equation, we have 

Z = T I U 1  - 7 5 2  (38) 

where 0 < ? i l  < 1, 0 < T 2  < 1. 

Delays in the shifting of resources  between machinery and consump- 

tion goods production only complicate the problem without affecting the 



end resul t .  Therefore,  in  the case  of machinery, neglecting deprecia-  

tion, we may write 

Dobell and Ho specifically mention that they neglect gestation lags 

in  the training of workers .  Assuming that the r a t e  of worker re t i rement  

i s  ze ro  (for simplicity),  their  equation fo r  the level  of educational s e r -  

vices  i s  

where W i s  the level of employment. The coefficient d they a s sume  to be 

a n  increasing function of the employment ra te  'w/I', where I i s  a n  

exogenously given full employment r a t e .+  Let us  make d a constant 

independent of the employment rate ,  and denote the desired change in 

the trained labor force between periods t and t f 1 by 

Then, given a lag s t ruc ture  with geometrically declining weights, the 

change in the t rained labor force  may be expressed  a s  

Again, following [6], [ 7 ] ,  this equation reduces to 

1 
A W  =--(I -h l )E t -kh . lAWt  . 

t d  

+In [ l o ]  Dobell and Ho consider the case  of a constant training cost.  F o r  
this case,  their  resu l t s  unequivocally yield sustained full employment 
for a significant portion of the optimal t ra jectory.  The case  of a n  
increasing training cost gives the solution discussed in  191. 



We approximate this second o rde r  difference equation with the 

differential equation 

w = p lE  - p2w P 2 < 1  (44) 

The dynamic equations for our system a r e  (38), (39) and (44). F o r  

convenience, we will re-wri te  these equations in a normalized form, 

assuming that the total  labor force grows a t  a n  exponential ra te  n 

(0 < n < 1) i. e.  

- nt L = L  e L = initial value 
0 0 

(45) 

Define 

and 

M - v = u2 
control variable 

Then (38), (39) and (44) may  be written a s  

k = -nk t u2f(k, w )  

and 

a .  

w = plzf(k,  w )  - (p2 t 2n); - n(n + 1)w 

In addition to  the full employment ceiling on w, 

O S w G l  ) 

the identity (35) gives the following constraints on z and u 2 ;  



The welfare functional which we wish to maximize consis ts  of the 

discounted pe r  capita consumption s t r e a m  le s s  penalty t e r m s  (which 

reflect our des i r e  for  some stability in  policy). Summarizing, optimal 

employment i s  obtained by maximizing the welfare functional 

with the dynamics 

and 

= plzf(k,w) - (p2 t 2n)y - n(n t l ) w  

and subject to the constraints 

O - < w d l  ( third order  state constraint)  (63) 

Before going on to discuss the implications of this model along with 

those of model A, we note the following: 

i )  As the proportion of resources  devoted to education changes 

the re  may be increasing opportunity costs;  thus a quadratic penalty i s  

applied to k.  



2 
i i )  The penalty t e r m  - r2(u2  - b( t ) )  ref lects  our  des i re  for a stable 

policy of investment. Absence of such a t e r m  would lead to 'bang-bang' 

solutions; such solutions a r e  not economically very meaningful. The 

presence of the penalty reflects the des i re  for  some mean ra te  of 

machinery investment, b( t ) ,  and the possibility of increasing oppor- 

tunity costs  when resources  a r e  shifted into machines.  

iii) Some consideration should also be given to the te rminal  con- 

ditions in  both models A and B. We have not done so  for this would not 

change our qualitative resu l t s .  This i s ,  however, certainly a point to 

remember  in computing solutions. 

5. Discussion of Models A and B 

The constraints on the state variables representing the employment 

level in  both models A and B a r e  third o rde r  (odd o r d e r ) .  Before applying 

Theorem 2, however, we must  verify i f  the problems satisfy the condi- 

tions imposed therein.  

In both models A and B, the Hamiltonians a r e  regular .  In model  A, 

the t e r m  c(t)  = min (D, L),  does not prevent the application of Theorem 2, 

a s  shown in  Appendix I; we assume x ( t )  to be sufficiently differentiable. 

In model  B, the presence of constraints on u and z apar t  f rom that on 2 

w ,  makes  for added complexity. We show in  Appendix I1 that these con- 

2 
s t ra in ts  do not affect our conclusions provided p2 > 4n(l - p2). t 

With these prel iminaries ,  we can now state  our central  resu l t  for 

both problems:  F r o m  Theorem 2 (and Appendix 11) the charac ter i s t ic  of 

the optimal employment path i s  that: 

+This is not an  overly stringent condition if education in  the model i s  
defined a s  shor t - te rm vocational training. Other educational serv ices  
may be expressed a s  an  exogenous component of E without affecting the 
end resul t .  



Note that in  model B, the cost of training has been assumed to 

remain  constant a s  the employment level r i s e s .  By contrast ,  the 

example discussed by Dobell and Ho in [9] does not exhibit full employ- 

ment along the optimal t ra jectory due to increasing training costs;  

whereas their  constant training cost model  of (1 01 exhibits sustained 

full employment. In both our models A and B it i s  the lag s t ruc ture  

(i. e .  the o rde r  of the constraint)  alone that causes sustained full 

employment to be non-optimal. 

What a r e  the policy implications of our two employment models?  

If the problems were re-formulated so that L or  b was controlled 

directly,  the employment level would move to i t s  upper bound and s tay 

there.  Unequivocally, the integral  of the discounted consumption 

s t r eam would be l a rge r  in  the case  of model A (provided there i s  no 

control variable costing) than i t  i s  in  the original case  with the third 

o rde r  constraint;  for  value added, and hence consumption, i s  an every-  

where increasing function of employment. 

How effective the planning authorities can  be in  eliminating delays 

remains unclear .  But some possibilities do exist .  One i s  subsidized 

on-the-job training. Employment model B may depend too heavily on 

the assumption that a threshold level of skil l  must  be achieved before 

hiring can be justified. On-the-job training may be l e s s  efficient f rom 

a production standpoint, but i t  s t i l l  affords the possibility of optimal full 

employment. Training i s  conducted a s  par t  of the education process ;  

thus an  instantaneous t ransfer  of resources  into education may be plausible. 



Fur ther ,  there  is flexibility in the skill  level required for employment. 

Whether or  not i t  i s  optimal to substitute this scheme for slower 

training procedures i s  s t i l l  open to question. -h 

6. A Model of Foreign Debt 

In the study of developing nations, i t  i s  interesting to evaluate the 

optimal accumulation path of foreign debt over t ime.  Here mounting 

in teres t  costs  mus t  be balanced against the increased capital accumu- 

lation and imports  which an  inflow of foreign loans permi ts .  

Our model centers  around four dynamic equations. Let us  f i r s t  

consider the inve stment-demand equation. 

Assume again that total value added i s  given by a Cobb-Douglass 

production function with constant re turns  to scale .  The pr ice  of t raded 

and domestically produced goods i s  the same.  The level of employment 

i s  constant, and the units in which labor i s  expressed may be normalized 

to equal one. Then, following the principles of optimality for the f i rm,  

the desired level of capital stock Kz may be derived from the condition 

that the value of the marginal  product of capital should be equal to the 

rental  pr ice  of capital; for  a Cobb-Douglass production function this gives: 

where z i s  the r e a l  ra te  of interest  multiplied by a tax adjustment coeffi- 
t 

cient like the one in (15), and a i s  the capital  elasticity of output. .f. 

+Dobell [11] d iscusses  a model which permi ts  reductions in the extent of 
training a s  a means of offsetting rising training costs ,  ra ther  than a s  a 
method of reducing the gestation lag in  training. In this model i t  i s  
optima1 to achieve full employment. 

+This discussion borrows heavily from the work of Jorgenson [12] 



On the basis  of a 'putty-clay' model of the f i rm,  Bischoff [13] 

has  shown that the response of investment to  changes in  relative pr ices  

i s  m o r e  delayed than i t s  response to output. Therefore,  let us  divide 

the demand for investment, PC, into two pa r t s :  that due to output changes 

I ' b n d  that due to in te res t  changes 1:;. Assume that there  i s  no demand 
v' 

lag in  reaction to variations in output. Then we may approximate 1::: a s  
v 

The capital accumulation equation i s  

K = I - 6 ~  (69)  

where I i s  g ross  investment and 6  i s  the r a t e  of depreciation. 

On the other hand, 1; depends on past a s  well a s  present  changes 

in  the r ea l  ra te  of interest ,  z.  With a lag s t ructure involving geometr i -  

cally declining weights, this can  be expressed a s  

where (AK':') i s  the change in the  desired capital stock between t ime 
Z t  

periods t - 1 and t due to a change in z .  This i s  approximated by the f i r s t  

o rde r  differential equation 

The control variable i s  defined by the equation 

z = u  472) 

Thus far ,  nothing has been said about the lag in supply; this brings 

us to  the third dynamic equation. Generally there i s  a considerable 

length of t ime between the ordering of machines and s t ruc tures  and their  

availability. Specifying this gestation lag a s  one with geometrically de- 

clining weights, we determine cu r ren t  gross  investment with the function 



1 = (1 - ), )I::: + ), 1:: 
t 2 t  2 t - l  

which we approximate by the differential  equation 

1 = p 1 1:: - p21 t- p3K 

Recognising that I:: - I" t I ' a n d  using (68) we have for I 
Z v 

. . 
The control u en te r s  through i 'g ;  hence we control not i but I .  

Z 

The last  dynamic equation concerns the growth in foreign debt. 

Net foreign capital  inflow i s  the difference between gross  investment 

and g ross  domestic saving. Let V represent  g ross  domestic product, 

and assume that g ross  domestic savings S may be expressed a s  a 

a 
l inear function of V (= K ) 

S = S K ~ - - ~  ( 7 6 )  

where s i s  the aggregate (constant) savings ra te .  Substituting this into 

the identity for net foreign capital  inflow and subtracting off in te res t  

payments f rom savings yields 

D = I -  s ~ ~ t b t f ~  (77) 

where D i s  foreign debt, and f represents  in te res t  payments a s  a propor-  

tion of foreign debt. 

An explicit balance of payments equation i s  neglected. Imports,  

i t  i s  presumed, a r e  allowed to vary so  a s  to always equal the sum of 

exports and net capital inflow. We note that c redi tor  nations tend to  

scrutinize the ra t io  of total debt service payments to export earnings,  

the 'debt-service rat io ' .  Suppose that debt-service payments may  be 

+See, for example, Avramovic [14]. 



represented a s  a fixed proportion, 8, of total debt and that export 
w 

earnings E a r e  taken a s  exogenous. Then, we a s s e r t ,  no more  loans 

will be forthcoming once debt-service payments reach a cer tain p e r -  

centage, p,  of export earnings.  Symbolically 

0 D(t) -( p E ( t )  

i. e.  a constraint on the debt level. 

In this model the welfare  functional which i s  to be maximized i s  

T 

subject to (69 ) ,  (71), (72), (75), ( 7 7 )  and (78). Here  T i s  the planning 

horizon and y i s  the ra te  of social  discount. (The r emarks  of the footnote 

on page .9 regarding p e r  capita consumption a lso  apply. ) The main compo- 

nent of the integrand i s  consulnption which i s  determined by subtracting 

savings from gross  domestic product. F o r  the reasons  cited ea r l i e r ,  

we penalize changes in  the control variable with the coefficient cr. 

Some allowance should also be made for  the effect of tax policy on income 

distribution. This effect i s  not accounted for a s  i t  i s  difficult to do s o  

without explicitly determining the ra te  of interest .  

In sum, the optimal debt policy i s  given by the following optimiza- 

tion problem. 

2 
Maximize J = e - ~ ~ [ { ( l  - s)Ka 4- b) - m ]dt 

u 

subject to 



K = I - 6 ~  (84) 

and 

D = I - S K ~  t b i - f ~  (8 5) 

and subject to the third o r d e r  state constraint 

e D(t) -( p E ( t )  (86) 

with specified init ial  and te rminal  conditions on the five state var iables .  

As  the Hamiltonian for  the above problem i s  regular ,  we have by 

Theorem 2 that: 

The optimal debt level touches the debt-service ratio ceiling: a t  

most  instantaneously i. e .  optimal debt level i s  not maintained equal to 

the debt-service rat io  ceiling for a non-zero time interval.  

There  i s  a significant contrast  between the optimal path in our 

model and the 'bang-bang' solutions of Chenery and MacEwan [15] and 

Cetin and Manne [16]. The la t te r  models a r e  l inear  programs;  upper 

bounds a r e  placed either on the change in investment o r  the net change 

in the level  of debt. These constraints a r e  continuously binding in the 

ear ly  periods of the solutions. Considering the general  s t ruc ture  of 

both models,  this i s  equivalent to saying that the constraints on rnaxi- 

mum debt a r e  binding in each of the initial periods.  Yet, we know f rom 

the o r d e r  of the constraint in  our model that the debt level touches i t s  

upper bound a t  most  instantaneously. Consequently, the nature of the 

optimum debt path for higher o rde r  models (which a r e  perhaps m o r e  

rea l i s t ic )  i s  considerably m o r e  complex than past programming resu l t s  

suggest. 



Given a lower order  constraint on D(t), i. e .  m o r e  direct  control 

of the debt level, and no costing on the control, the economy i s  better 

off growing along the upper bound on debt than i t  i s  in  meeting the 

optimality conditions in  the third o r d e r  constrained model. In calcu- 

lating the social  cost of discarding capital, the possible social  benefits 

of eliminating the lagged demand must  be netted out. Thus, because 

f i rms  do not consider this effect  i n  their  cost calculations, subsidized 

discarding of capital may  be justified under some circumstances.  F o r  

the delay in  the response of investment demand to changes in  the effective 

in te res t  ra te  may be reduced. Obviously, such tradeoffs can  only be 

examined in the context of l a rge r  models.  

7.  Conclusions 

We have shown that there  exist  economic growth problems, with 

constraints  on the state variables,  where some qualitative features  of 

the optimal t ra jec tor ies  may be deduced a pr ior i ,  i f  the o rde r  of the 

constraint i s  odd (but not one). The empir ica l  validity of geometrically 

declining weights for the lag functions - -  a n  assumption upon which many 

of our  differential equations re ly  - -  i s  perhaps But few 

would deny that some form of lag s t ruc ture  exists.  This, together with 

our resul ts ,  suggests that decision ru les  based on sys tems not incor-  

porating these lag s t ruc tures  mus t  be held suspect. 

Thus in  this sense,  our main  contribution has been negative. Let  

us  now outline some possible a r e a s  for  future research .  

What a r e  the propert ies  of the optimal employment t ra jectory 

beyond i t s  touching the full employment bound a t  most  instantaneously? 

+However, s ee  Grill iches [7]  with r ega rd  to  other est imates .  



Clearly,  the policy implications differ radically depending upon whether 

o r  not the s tate  variable path i s  cyclical in nature,  i. e .  bounces on 

and off the full employment bound. In situations where a cer ta in  level 

of unemployment i s  optimal, i t  may be desirable  to  pse income redis  - 
tribution policy to compensate the unemployed (e. g. , "a guaranteed 

annual income").  But for  an optimal t ra jec tory  which i s  cyclical, 

the timing of such a policy would be cr i t ica l j  thus, in  this c a s e  redis-  

tribution of income may  be intractable i n  view of the institutional in- 

flexibilities of f iscal  p ~ l i c y .  F o r  a n  optimal t ra jectory which touches 

only in  the te rminal  period, i f  a t  311, a slow implementation of policies 

may be considerably l e s s  ser ious.  

P a s t  programming resu l t s  ([I51 and [16]) indicate that i t  may be 

extremely costly to  employ periodic l imits  on accumulated foreign 

debt other than the usual  te rminal  condition. Our anitlysis throws no 

light on the expense inherent i n  the imposition ~f the s ta te  variable con- 

s t raint .  Nor do we have any indication of the number of t imes,  if a t  all, 

the serv ice  payments s t r ike  the i r  upper bound. These g r e  c ruc ia l  i s sues .  

Take, for  instance, the c a s e  where the qpper bound on service payments 

coincides with the te rminal  requirement  a t  that point i n  t ime. If i t  

could be  established that the s ta te  variable constraint i s  binding only in  

the te rminal  period, then considerable pupport would be given to the 

institutionalized system of debt allocation where a given debt -service 

ratio i s  not exceeded. Insight into these problems m a y  well come f rom 

numerical  solutions. 

8. 

The authors would like to thank Pro fesso r  Kenneth J. Arrow for  

his  valuable suggestions. 
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Lemma:  The Hamiltonian of employment model A i s  continuous and 

piecewise differentiable, except a t  points t .  E [0, T] 3 D(t . )  = L( t . ) .  
1 1 1 

Proof:  The only (possibly) non-differentiable function is 

S(t) = min [W), L(t ) l  

But D(t), L( t )  a r e  continuous and differentiable on [0, TI. Hence c(t)  is 

continuous and piecewise differentiable except (possibly) a t  ti t [0, TI a 

D(ti) = L(ti) 

where the derivative c( t )  may  not be continuous. 

The discontinuities i n  i ( t )  will not affect the application of Theorem 2 

provided they do not occur a t  ~ . { E [ o ,  T I )  such that L(t  .) = z ( t  . ) .  That this 
J J J 

i s  the case  i s  seen i f  we re-wri te  (31) in the form 

- - 
Then, assuming that the init ial  value of L i s  l e s s  than L, L( t . )  = L(t.) 

J J 

i f  and only i f  D( t . )  > L ( t . )  ( a s  ql > qZ and q1 - qZ < 1) .  So the changeover 
J J 

c(t)  = ~ ( t ) [ D ( t ) ]  f rom r ( t )  = D(t)[L(t)] does not occur a t  t The case  when 
J. 

the initial value of L, L(to) ,  i s  equal to z ( t o )  and D(t o ) = L(t o ) (= L ( t  o ) )  

causes no difficulties; for a t  t = t C E ( E  > 0) 
0 

So, if a t  to we se t  h(to) = L(to),  a t  t ime t Y(t) i s  s t i l l  equal to L(t)  [if 

D(t)  > L(t),  i f  not s e t  c(to) = D(to) = L(to)]. In either case ,  there  i s  no 

changeover when L( t )  = x ( t ) .  

+zi;(t) i s  assumed to be a monotone increasing function of t ime. 





We have the following constraints [(63) -(66)] 

Before we can apply Theorem 2, we must  ensure that the presence of 

constraints  (11. 2) - (11. 4) does not affect the continuity of u l ,  u2 and 

their  de rivative s . 
Consider only (11. 2) - (11.4). This gives r i s e  to the seven cases :  

A. z and u both slack, 0 < u f z < 1. 2 2 

B.  z and u both slack, 0 < u2 f z = 1. 2 

F. O < z < l ,  u 2 = 0 ,  0 < u 2 f  z < 1 .  

G. z = 1, u Z = O ;  u f z = 1 .  2 

We will now analyze each case  individually. 

A. No constraints effective. Then we can apply Theorem 2 directly.  

B. u2 and z slack; u + z = 1. A s  z i s  slack, u l  i s  given by 2 

Then 

and, assuming that f f exist  - -  a reasonable assumption - -  k' w u19 i1 a r e  
. . . . 

continuous and u exis ts .  F r o m  u + z = 1, u2 = 1 - z ;  hence, u2, ' 1 2 u2' u2 



a r e  continuous. We can now repeat  the analysis (given in [2]) leading 

to the equation (1 1); this gives an expression for  the multiplier v of w 

the form 

The second t e r m  on the r .  h. s .  i s  zero,  but the f i r s t  i s  not (except under 

ve ry  unusual c i rcumstances) .  Thus we can apply a modified version of 

Theorem 2, and s tate  that for this case  w = 1 a t  mos t  instantaneously. 

Cases  C, D and E can be t reated together, fo r  f rom the dynamic 

equations for  w and y, namely 

w = y  (11. 8 )  

y = plf(k,w).z - (p2 f 2n)y - n(n + l ) o  (11. 9 )  

we see  that if z = 0, w i s  governed by a homogeneous second o rde r  

differential equation. F o r  feasibility, i f  w = 1, h = y .-( 0. So, provided 

p: > 4n(l - p2) i. e .  negative r e a l  eigenvalues, the t ra jec tory  will not s tay 

on w = 1 except instantaneously. 

F. z slack, u2 = 0, u t z slack. This i s  fur ther  subdivided a s  follows: 2 

Let w = 1 a t  t = t where condition F holds. Then e i ther  1 
. . 

i )  u2 has saturated p r io r  to t ime t l .  In this case  u2, u2 exis t  

and a r e  continuous and the modification of Theorem 2 used in case  B 

holds, and w = 1 only instantaneously. 

ii) u saturates  a t  the same time, i. e .  the t ransi t ion from any of 
2 

the other cases  to  this i s  made a t  t ime t In this case  a s  w < 1 p r io r  to  1 '  

t (we anticipate some of our analysis)  we cannot unequivocally ru le  out 1 

the possibility of a sustained boundary a r c  in  w, i. e .  w = 1 for a non-zero 

interval  of t ime.  Were this to be the case,  however, the optimal solution 

would exhibit simultaneously 



a .  decreasing per  capita capital stock 

b. increasing pe r  capita investment in education 

c .  decreasing pe r  capita consumption. 

Economically, this makes little sense; fur ther  a n  optimal solution 

exhibiting such a sustained a r c  would be (economically) indefensible. 

We thus conclude that we can safely rule out this possibility on purely 

economic grounds. 

G .  z = 1, u2 = 0, u t z = 1. Then u must  saturate  pr ior  to the t ime, 2 2 

t l ,  a t  which w = 1 - -  from continuity of z and u t z = 1. This leaves 2 

only two possibilities 

i). z saturates  a t  the same instant, 

ii) z saturates  p r i o r  to t 1 ' 

In ei ther  case,  subsequent to the t ime t i f  the solution i s  to exhibit a 1' 

sustained boundary a r c  in  w ,  the controls u 1' u2 must  satisfy 

L 
= constant 

U2 = 0 

and 

~u t ' (11 .  12) would require ul and u2 to be time-varying, hence a 

boundary a r c  cannot be sustained. 
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1 3 .  A B S T R A C T  

Recent investigations into necessary  conditions of optimality for control 
problems with inequality constraints on the s tate  var iables  have shown that, for a 
specific c l a s s  of problems, the optimal t ra jec tory  does not stay on the constraint 
boundary for non-zero intervals of t ime.  This resul t  permi ts ,  a pr ior i ,  some in- 
sight into the s t ruc ture  of the optimal solution. - 

F o r  cer ta in  problems in  growth economics, this resul t  i s  of some significance, 
a s  i s  shown by three examples from two different a r e a s .  The f i r s t  two examples a r e  
concerned with the problem of optimal employment; interestingly enough, they indi- 
cate that, for  the models used, the optimal solution i s  such that full employment i s  
attained a t  most  instantaneously and i s  not maintained for non-zero intervals  of t ime.  
The third example i s  concerned with the optimal investment and foreign aid policies 
for a n  underdeveloped economy. An institutional constraint on the stock of foreign 
debts may be derived f rom the 'debt-service'  ratio.  I t  appears  that, contrary to 
e a r l i e r  resu l t s  obtained from simpler  models,  this constraint i s  binding a t  most  
instantaneously along the optimal t ra jectory.  
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