Office of Naval Research
Contract H00014-67-A-0298-0006 NR-372-012
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Grant NGR 22-007-068

CONTROL OF NONLINEAR SYSTEMS IN REGIONS OF STATE SPACE

January 1970

Technical Report No 600

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted by the U. S. Government.

Division of Engineering and Applied Physics Harvard University - Cambridge, Massachusetts

NR-372-012
National Aeronautics and Space Administration
Grant NGR 22-007-068

CONTROL OF NONLINEAR SYSTEMS IN REGIONS OF STATE SPACE

By
Stanley B. Gershwin and David H. Jacobson

Technical Report No. 600

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted by the U. S. Government.

January 1970

The research reported in this document was made possible through support extended the Division of Engineering and Applied Physics, Harvard University by the U. S. Army Research Office, the U. S. Air Force Office of Scientific Research and the U. S. Office of Naval Research under the Joint Services Electronics Program by Contracts N00014-67-A-0298-0006, 0005, and 0008 and by the National Aeronautics and Space Administration under Grant NGR 22-007-068.

Division of Engineering and Applied Physics
Harvard University • Cambridge, Massachusetts

CONTROL OF NONLINEAR SYSTEMS IN REGIONS OF STATE SPACE

By
Stanley B. Gershwin and David H. Jacobson
Division of Engineering and Applied Physics Harvard University • Cambridge, Massachusetts

Abstract

Recently, a nonlinear controllability theory based upon Liapunovlike notions was developed. In this paper the theory is generalized and strengthened, and a wider class of nonlinear systems is considered. In particular, conditions for controllability of a dynamic system which is subject to state variable inequality constraints are obtained. It is shown that initial conditions which are interior to a certain ellipse can be made to generate trajectories which remain in that ellipse and which reach the desired terminal state. When the ellipse is a subset of the feasible region of state space the trajectory clearly remains in this region (i.e. the state variable inequality constraints are satisfied). A design procedure for finding the largest such ellipse is given, and illustrative examples are presented. In addition, stabilization of constrained dynamic systems is considered.

I. Introduction

Consider the problem of finding a control policy $u(x, t)$ to satisfy

$$
\begin{align*}
& x\left(t_{o}\right)=x_{o} \tag{1.1}\\
& x\left(t_{f}\right)=0 \tag{1.2}\\
& \dot{x}(t)=f(x(t), u(x, t), t) \tag{1.3}
\end{align*}
$$

where t_{o} and t_{f} are finite, specified, and $t_{o}<t_{f}$. Here, $x(t)$ is an n -dimensional state vector, and $u(x, t)$ is an m-dimensional control vector.

We call this problem A, and, when a solution exists, we say that (1.3) is controllable from $\left(x_{0}, t_{0}\right)$ to $\left(0, t_{f}\right)^{\dagger}$.

The case where $f(\cdot)$ is a linear function of x and u, i.e., where (1.3) is

$$
\begin{equation*}
\dot{x}(t)=F(t) x(t)+G(t) u(t) \tag{1.4}
\end{equation*}
$$

was solved by Kalman [2] and is well known. Solutions have been obtained by the authors [1] for several cases where $f(\cdot)$ is nonlinear. The following theorem was used. It is assumed that $u(t), t_{o} \leqslant t \leqslant t_{f}$ is restricted to some constraint set "L.

Theorem $1[1] *$
If a scalar function $V(x, t)$ exists such that:
(i) $\quad V_{x}(x, t)$ and $V_{t}(x, t)$ exist for all $x, t \in\left[t_{o}, t_{f}\right)$
(ii) for all continuous $c(t)$ (n-vector function of t)

$$
\begin{equation*}
\lim _{t \rightarrow t_{f}} c(t) \neq 0 \Longrightarrow \lim _{t \rightarrow t_{f}} V(c(t), t)=\infty \tag{1.5}
\end{equation*}
$$

[^0](iii) $V\left(x_{o}, t_{o}\right) \leqslant B<\infty$
and if a control function $u^{*}(x, t) \epsilon L$ exists such that:
(iv) along the trajectory of (1.3) starting at (1.1), the full time derivative \dot{V} of $V(x, t)$ satisfies:
\[

$$
\begin{align*}
& \dot{\mathrm{V}}(\mathrm{x}, \mathrm{t})=\mathrm{V}_{\mathrm{t}}(\mathrm{x}, \mathrm{t})+\mathrm{V}_{\mathrm{x}}(\mathrm{x}, \mathrm{t}) \mathrm{f}\left(\mathrm{x}, \mathrm{u}^{*}(\mathrm{x}, \mathrm{t}), \mathrm{t}\right) \leqslant \mathrm{M}<\infty \\
& \forall t \in\left[t_{o}, t_{f}\right) \tag{1.6}
\end{align*}
$$
\]

and the following limit exists:

$$
V\left(x\left(t_{f}\right), t_{f}\right)=\lim _{t \rightarrow t_{f}} V(x(t), t)
$$

(v) the solution to (1.3), (1.1) (with $\left.u(x, t)=u^{*}(x, t)\right)$ exists, is unique, and satisfies

$$
\begin{equation*}
x\left(t_{f}\right)=\lim _{t \rightarrow t_{f}} x(t) \tag{1.7}
\end{equation*}
$$

then system (1.3) is controllable from ($\left.x_{o}, t_{o}\right)$ to $\left(0, t_{f}\right)$ and $u^{*}(x, t)$
accomplishes this transfer.
In each of the examples treated by this theorem in [1],

$$
\begin{equation*}
V^{\prime}(x, t)=x^{T} S(t) x \tag{1.8}
\end{equation*}
$$

where $S(t)$ is an $n \times n$ positive definite symmetric matrix satisfying

$$
\begin{equation*}
\lim _{t \rightarrow t_{f}} S^{-1}(t)=0 \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{S}(t)+S(t) F(t)+F(t)^{T} S(t)-S(t) G(t) G(t)^{T} S(t)=0 \tag{1.10}
\end{equation*}
$$

(F and G are chosen in some appropriate manner such that (1.4) is completely controllable) and $u^{*}(x, t)$ is such that

$$
\begin{equation*}
\dot{\mathrm{V}}(\mathrm{x}, \mathrm{t})=\Gamma(\mathrm{x}, \mathrm{t}) \leqslant 0 \tag{1.11}
\end{equation*}
$$

i.e., Theorem 1 is satisfied with $M=0$. In fact, in [1], the function $\Gamma(x, t)$ is made negative or zero for all $x\left(\right.$ for all $t \epsilon\left[t_{o}, t_{f}\right)$), although the theorem only requires that $\Gamma \leqslant 0$ along a trajectory.

Extensions of the results given in [1] are contained in the present paper:

1. A technique is developed which allows the condition that $\Gamma(x, t) \leqslant 0$ for all x to be weakened. More precisely, the region $\mathbb{R}=\{x \mid \Gamma(x, t) \leqslant 0$ for all $\left.t \in\left[t_{o}, t_{f}\right]\right\}$ is defined and the state constrained problem of finding $u(x, t)$ to satisfy Problem A such that $x(t) \in \mathbb{R}$ for $t \in\left[t_{o}, t_{f}\right]$ is solved. See the next paragraph.
2. Let R be some region of n-space, and denote the following problem by Problem B: find $u(x, t)$ to satisfy

$$
\begin{align*}
& x\left(t_{o}\right)=x_{0} \\
& x\left(t_{f}\right)=0 \\
& \dot{x}(t)=f(x(t), u(x(t), t), t) \\
& x(t) \in \mathbb{R} \tag{1.12}
\end{align*}
$$

The first three conditions form Problem A; condition (1.12) is a state variable constraint. A method is developed below which is applicable to the case where \mathbb{R} is a region bounded by inequality constraints: in particular where \mathbb{R} contains the ellipse

$$
\begin{equation*}
\mathcal{E}\left(t_{o}\right)=\left\{x \mid x^{T} S\left(t_{o}\right) x \leqslant x_{o} T_{S\left(t_{o}\right)} x_{o}\right\} \tag{1.13}
\end{equation*}
$$

It is shown that if F and G are constant and $\mathcal{E}\left(t_{0}\right) \subset \mathscr{R}$, the methods developed in [1] for Problem A also solve Problem B.
3. That there is an analogy between Theorem 1 and Liapunov's stability theory is pointed out in [1]. Here, we show a precise mathematical relationship between the control of a system using Theorem 1 and the stabilization of that system using Liapunov techniques. Under certain conditions (which include $V \triangleq \mathrm{x}^{\mathrm{T}} \mathrm{S}(\mathrm{t}) \mathrm{x}$), if a control exists which solves Problem A, a slight modification of that control stabilizes (1.3). The

Liapunov function of the stabilized system is just $V\left(x, t_{1}\right)$, where t_{1} is a fixed time $\left(\mathrm{t}_{\mathrm{o}} \leqslant \mathrm{t}_{1}<\mathrm{t}_{\mathrm{f}}\right.$).

This technique is then used for the problems discussed in the preceeding two paragraphs for cases where $x_{o} \in \mathcal{R}$ but $\mathcal{E}\left(\mathrm{t}_{0}\right) \notin \mathbb{R}$. These cases are handled as follows: if some t_{1} exists such that $\mathcal{E}\left(t_{1}\right) \subset \mathbb{R}$, then "stabilize" (1.3) from $t=t_{o}$ until $t=t_{1}$ (i. e., apply the stabilizing control in that time interval). From $t=t_{1}$ until $t=t_{f}$, apply the control obtained from Theorem 1.

In Section II of this paper are found the analytic results upon which paragraphs 1 and 2 above are based. It is shown that if F and G are constant matrices, the solution to (1.9), (1.10) satisfies $\dot{\mathrm{S}}(\mathrm{t}) \geqslant 0$ for all $t<t_{f}$. As a consequence, if $\dot{V}=\frac{d^{*}}{d t}\left(x^{T}(t) S(t) x(t)\right) \leqslant 0$ and $t_{0} \leqslant t_{1}<t_{2}<t_{f}$, then $\ddot{\varepsilon}\left(t_{2}\right) \subset \mathcal{E}\left(t_{1}\right)$. Then as t increases, $x(t)$ is found in (or on the boundary of) an ever-shrinking ellipse. Section III shows how these results can be applied to A - and $B-t y p e$ problems.

In the course of applying these techniques, it is often necessary to ask: Is $\mathcal{E}\left(t_{o}\right) \subset \mathbb{R} ?$ and What is the largest ellipse of the form

$$
\begin{equation*}
E\left(S_{o}, \epsilon\right)=\left\{x \mid x^{T} S_{o} x \leqslant \epsilon\right\} \tag{1.14}
\end{equation*}
$$

such that $E\left(S_{O}, \epsilon\right) \subset \mathscr{G} ?$ Section IV supplies techniques to solve these subsidiary problems when \mathbb{R} is a region bounded by linear inequalities.

Section V contains specific examples to illustrate the techniques. These examples are modifications of problems treated in [1].

The material summarized above in paragraph 3 is contained in Section VI.

II. Analytic Results

The new control theory techniques that appear in succeeding sections are derived from the mathematical results of this section. By means of

Lemma 1, it is shown in Theorem 2 that the solution to Riccati equation (2.2) with boundary condition (2.3) has the property that $\dot{S} \leqslant 0$. Using this result and Lemma 2, Theorem 3 proves that if $V(x(t), t)=x(t){ }^{T} S(t) x(t)$ and $\dot{V} \leqslant 0$ then $x(t)$ is found in or on the boundary of an ever-shrinking ellipse.

Lemma 1: Let

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{F}(\mathrm{t}) \mathrm{x}+\mathrm{G}(\mathrm{t}) \mathrm{u} \tag{2,1}
\end{equation*}
$$

be a linear time-varying dynamic system where $x(t)$ is an n-vector and $\mathrm{u}(\mathrm{t})$ is an m -vector. Assume that (2.1) is completely controllable at time t to $\left(0, t_{f}\right)$. Let $S\left(t, t_{f}\right)$ be the unique $n \times n$ matrix that satisfies the matrix Riccati equation

$$
\begin{equation*}
\frac{\partial}{\partial t} S\left(t, t_{f}\right)+S\left(t, t_{f}\right) F(t)+F^{T}(t) S\left(t, t_{f}\right)-S\left(t, t_{f}\right) G(t) G^{T}(t) S\left(t, t_{f}\right)=0 \tag{2.2}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\lim _{t \rightarrow t_{f}} S^{-1}\left(t, t_{f}\right)=0 \tag{2.3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{\partial}{\partial t_{f}} S\left(t, t_{f}\right) \leqslant 0 \tag{2.4}
\end{equation*}
$$

Proof: Define

$$
\begin{equation*}
Z\left(t, t_{f}\right)=S^{-1}\left(t, t_{f}\right) \tag{2.5}
\end{equation*}
$$

$Z\left(t, t_{f}\right)$ satisfies

$$
\begin{align*}
& \frac{\partial}{\partial t} Z\left(t, t_{f}\right)-F(t) Z\left(t, t_{f}\right)-Z\left(t, t_{f}\right) F(t)+G(t) G^{T}(t)=0 \tag{2.6}\\
& Z\left(t_{f}, t_{f}\right)=0 \tag{2.7}
\end{align*}
$$

and thus [3] can be expressed as

$$
\begin{equation*}
\mathrm{Z}\left(\mathrm{t}, \mathrm{t}_{\mathrm{f}}\right)=\int_{\mathrm{t}}^{\mathrm{t}_{\mathrm{f}}} \Phi(\mathrm{t}, \tau) \mathrm{G}(\tau) \mathrm{G}^{\mathrm{T}}(\tau) \Phi^{\mathrm{T}}(\mathrm{t}, \tau) \mathrm{d} \tau \tag{2.8}
\end{equation*}
$$

where $\Phi(\mathrm{t}, \tau)$ (the "transition matrix") satisfies

$$
\begin{align*}
& \frac{\partial}{\partial t} \Phi(\mathrm{t}, \tau)=\mathrm{F}(\mathrm{t}) \Phi(\mathrm{t}, \tau) \tag{2.9}\\
& \Phi(\tau, \tau)=\mathrm{I} . \tag{2.10}
\end{align*}
$$

The controllability assumption on (2.1) implies that $Z\left(t, t_{f}\right)$ is positive definite and therefore invertible for every $t<t_{f}$, [2].

From (2.5) and (2.8),

$$
\begin{align*}
\frac{\partial}{\partial t_{f}} Z\left(t, t_{f}\right) & =-S^{-1}\left(t, t_{f}\right)\left[\frac{\partial}{\partial t_{f}} S\left(t, t_{f}\right)\right] S^{-1}\left(t, t_{f}\right) \\
& =\Phi\left(t, t_{f}\right) G\left(t_{f}\right) G^{T}\left(t_{f}\right) \Phi^{T}\left(t, t_{f}\right) \tag{2.11}
\end{align*}
$$

or,

$$
\begin{equation*}
\frac{\partial}{\partial t_{f}} \mathrm{~S}\left(\mathrm{t}, \mathrm{t}_{\mathrm{f}}\right)=-\mathrm{S}\left(\mathrm{t}, \mathrm{t}_{\mathrm{f}}\right) \Phi\left(\mathrm{t}, \mathrm{t}_{\mathrm{f}}\right) \mathrm{G}\left(\mathrm{t}_{\mathrm{f}}\right) \mathrm{G}^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \Phi^{\mathrm{T}}\left(\mathrm{t}, \mathrm{t}_{\mathrm{f}}\right) \mathrm{S}\left(\mathrm{t}, \mathrm{t}_{\mathrm{f}}\right) \tag{2.12}
\end{equation*}
$$

The right-hand side of "(2.12) is clearly negative semidefinite, so that the lemma is proved.

Theorem 2: If in addition to the hypotheses of Lemma l, F and G are constant matrices, then

$$
\begin{equation*}
\frac{\partial}{\partial t} S\left(t, t_{f}\right) \geqslant 0 \tag{2.13}
\end{equation*}
$$

Proof: Because F is constant, we can write [3]

$$
\begin{equation*}
\Phi(t, \tau)=\Psi(\tau-t) \tag{2.14}
\end{equation*}
$$

and (2.8) can be written:

$$
\begin{equation*}
Z\left(t, t_{f}\right)=\int_{t}^{t_{f}} \Psi(\tau-t) G G G^{T} \Psi^{T}(\tau-t) d \tau \tag{2.15}
\end{equation*}
$$

Let $\sigma=\tau-\mathrm{t}$. Then

$$
\begin{equation*}
z\left(t, t_{f}\right)=\int_{0}^{t_{f}-t} \Psi(\sigma) \mathrm{GG}^{\mathrm{T}} \Psi^{\mathrm{T}}(\sigma) \mathrm{d} \sigma \tag{2.16}
\end{equation*}
$$

From (2.16) it is clear that $Z\left(t, t_{f}\right)$ is a function only of $t_{f}-t$. Therefore $S=Z^{-1}$ is a function only of $t_{f}-t$, which implies that

$$
\begin{equation*}
\frac{\partial}{\partial t} S\left(t, t_{f}\right)=-\frac{\partial}{\partial t_{f}} S\left(t, t_{f}\right) \tag{2.17}
\end{equation*}
$$

The proof follows from Lemma 1.
Henceforth we will only consider the time invariant Riccati equation; i.e. F and G will be constant matrices. In addition, t_{f} will be suppressed as an argument of S and Z.
Lemma 2: Let $V(x, t)=x^{T} S(t) x$, where x is an n-vector. Let $y(t)$ be a function of t such that

$$
\begin{equation*}
\dot{\mathrm{V}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~V}(\mathrm{y}(\mathrm{t}), \mathrm{t})=\mathrm{V}_{\mathrm{y}} \dot{\mathrm{y}}+\mathrm{V}_{\mathrm{t}} \leqslant 0 \tag{2.18}
\end{equation*}
$$

Thenfor $t_{1}<t_{2}<t_{f}$,

$$
\begin{equation*}
V\left(y\left(t_{2}\right), t_{1}\right)=y^{T}\left(t_{2}\right) S\left(t_{1}\right) y\left(t_{2}\right) \leqslant y^{T}\left(t_{1}\right) S\left(t_{1}\right) y\left(t_{1}\right)=V\left(y\left(t_{1}\right), t_{1}\right) \tag{2.19}
\end{equation*}
$$

Proof: Inequality (2.18) implies

$$
\begin{equation*}
V\left(y\left(t_{2}\right), t_{2}\right)=y^{T}\left(t_{2}\right) S\left(t_{2}\right) y\left(t_{2}\right) \leqslant y^{T}\left(t_{1}\right) S\left(t_{1}\right) y\left(t_{1}\right)=V\left(y\left(t_{1}\right), t_{1}\right) \tag{2.20}
\end{equation*}
$$

Theorem 2 implies

$$
\begin{equation*}
s\left(t_{1}\right) \leqslant s\left(t_{2}\right) \tag{2.21}
\end{equation*}
$$

which means that

$$
\begin{equation*}
V\left(y\left(t_{2}\right), t_{1}\right)=y^{T}\left(t_{2}\right) S\left(t_{1}\right) y\left(t_{2}\right) \leqslant y^{T}\left(t_{2}\right) S\left(t_{2}\right) y\left(t_{2}\right)=V\left(y\left(t_{2}\right), t_{2}\right) \tag{2.22}
\end{equation*}
$$

The lemma is proved by combining (2.20) and (2.22).
Inequality (2.19) implies that $y\left(t_{2}\right)$ is contained in the ellipse

$$
\begin{equation*}
y^{T} S\left(t_{1}\right) y \leqslant y^{T}\left(t_{1}\right) S\left(t_{1}\right) y\left(t_{1}\right) \tag{2.23}
\end{equation*}
$$

Or, defining

$$
\begin{equation*}
E(t)=\left\{z \mid z^{T} S(t) z \leqslant y(t)^{T} S(t) y(t)\right\} \tag{2.24}
\end{equation*}
$$

then (2.19) implies that $y\left(t_{2}\right) \in \mathcal{E}\left(t_{1}\right)$. A stronger result is proved in Theorem 3: that for each $z \in \mathcal{E}\left(t_{2}\right), z \in \mathcal{E}\left(t_{1}\right)$.

Theorem 3: Under the hypotheses of Lemma 2, $\mathcal{E}\left(\mathrm{t}_{2}\right) \therefore \mathcal{E}\left(\mathrm{t}_{1}\right)$.
Proof: Let $x \in \mathcal{E}\left(t_{2}\right)$. Then

$$
\begin{equation*}
x^{T} S\left(t_{2}\right) x \leqslant y\left(t_{2}\right)^{T} S\left(t_{2}\right) y\left(t_{2}\right) \tag{2.25}
\end{equation*}
$$

From (2.21)

$$
\begin{equation*}
x^{T} S\left(t_{1}\right) x \not x^{T} S\left(t_{2}\right) x \tag{2.26}
\end{equation*}
$$

and from (2.18)

$$
\begin{equation*}
y\left(t_{2}\right)^{T} S\left(t_{2}\right) y\left(t_{2}\right) \leqslant y\left(t_{1}\right)^{T} S\left(t_{1}\right) y\left(t_{1}\right) \tag{2.27}
\end{equation*}
$$

Combining (2.25), (2.26), and (2.27),

$$
\begin{equation*}
x^{T} S\left(t_{1}\right) x \leqslant y\left(t_{1}\right)^{T} S\left(t_{1}\right) y\left(t_{1}\right) \tag{2.28}
\end{equation*}
$$

Inequality (2.28) is equivalent to $\mathrm{x} \in \mathcal{E}\left(\mathrm{t}_{1}\right)$. Since x may be any point in $\mathcal{E}\left(\mathrm{t}_{2}\right)$, the theorem is proved.

These results are illustrated in Figure 1. Ellipses $\mathcal{E}\left(t_{i}\right)$, i $=0, \ldots, 4$ are shown $\left(t_{0}=0, t_{1}=.2, t_{2}=.4, t_{3}=.6, t_{4}=.8\right)$ where $S(t)$ satisfies (2.2), (2.3) with

$$
F=\begin{array}{rr}
0 & 0 \\
-1 & -1
\end{array}, \quad G=\begin{aligned}
& 1 \\
& 0
\end{aligned}, \quad t_{f}=1
$$

Three trajectories $x(t)$ are shown such that $\dot{V}(x(t), t)=0$.

III. Applications to Control Theory

Consider the dynamic system

$$
\begin{equation*}
\dot{x}=f(x, u, t) \tag{3.1}
\end{equation*}
$$

Let $V(x, t)=x^{T} S(t) x$ be defined as in Theorems 1, 2, and 3. From Theorem 1, if $u(x, t)$ is such that $\dot{V} \leqslant 0$, then $x\left(t_{f}\right)=0$. Techniques for finding such control policies are given in [1] and below. From Lemma 2, if $t_{o}<t<t_{f}, x(t) \in \mathcal{E}\left(t_{o}\right)$. Theorem 3 implies that the ellipse $\mathcal{E}(t)$ is shrinking with increasing t. These results are significant for the following reasons.

FIG. 1 TRAJECTORIES OF $(2-1)$ AND EVOLUTION OF ELLIPSE $\varepsilon(t)$ FROM $t=0$ TO $t=1$.
(1) Let $W(x, t)$ be the minimum energy function of (2.1)

$$
\begin{equation*}
W\left(x_{o}, t_{o}\right)=\min _{u(\cdot)} \int_{t_{o}}^{t_{f}} u^{T}(t) u(t) d t \tag{3,2}
\end{equation*}
$$

where $x\left(t_{o}\right)=x_{o}, x\left(t_{f}\right)=0 ; t_{o}$ and t_{f} are given; and $x(t), u(t)$ satisfy (2.1). Then $W(x, t)=x^{T} \bar{S}(t) x$, where $\bar{S}(t)$ satisfies

$$
\begin{equation*}
\overline{\overline{\mathrm{S}}}+\overline{\mathrm{S} F}+\mathrm{F}^{\mathrm{T}} \overline{\mathrm{~S}}-\frac{1}{2} \overline{\mathrm{~S} G G^{\mathrm{S}}} \overline{\mathrm{~S}}=0 \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{t \rightarrow t_{f}} \bar{s}(t)^{-1}=0 \tag{3.4}
\end{equation*}
$$

Clearly Lemma 1 and Theorem 2 apply to $\overline{\mathrm{S}}(\mathrm{t})$. The minimum energy control is $u=-\frac{1}{2} G^{T} \bar{S} x$. Then

$$
\begin{align*}
\dot{W}(x, t) & =x^{T}\left(\overline{\bar{S}}+\bar{S} F+F^{T} \bar{S}-\bar{S} G G^{T} \bar{S}\right) x \\
& =-\frac{1}{2} x^{T} \bar{S}_{\bar{S} G}{ }^{T} \bar{S}_{x} \leqslant 0 \tag{3.5}
\end{align*}
$$

so that Lemma 2 and Theorem 3 are satisfied. Thus the results of Section II apply to the time-invariant linear-quadratic optimal control problem with constrained terminal state.
(2) Some state-variable inequality-constrained problems can now be solved. Consider the following problem: region \mathbb{G} contains the initial point $x\left(t_{o}\right)=x_{o}$ and the terminal point $x\left(t_{f}\right)=0$. Find a control for (3.1) which solves Problem A (see Section I) and is such that $x(t) \in \mathbb{R}$ for all $t \in\left[t_{o}, t_{f}\right]$ (Problem B). A solution is: if $\mathcal{E}\left(t_{o}\right)=\mathbb{R}$, use a control $u(x, t)$ such that $\dot{V}(x, t) \leqslant 0$. From Lemma $2, x(t) \in \mathcal{E}\left(t_{o}\right)$ for all $t_{o} \leqslant t \leqslant t_{f}$ and therefore $x(t) \in \mathfrak{A}$. From Theorem $1, x\left(t_{f}\right)=0$.
(3) By using this technique for B-problems, the material in [1] for A-problems may be generalized. In Theorem 1 and in Section II, $\dot{\mathrm{V}}(\mathrm{x}, \mathrm{t}) \leqslant 0$ is required merely along a trajectory $\mathrm{x}=\mathrm{x}(\mathrm{t})$. In each of
the examples of Theorem 1 in [1] some inequality of form $p(x, t) \geqslant 0$ (equivalent to $\dot{V}(x, t) \leqslant 0$) is required to be satisfied for all $x, t \in\left[t_{o}, t_{f}\right]$.

If it happens that $p(x, t)$ is not positive or zero for all x, convert this problem to a B-problem in the following way. Define

$$
\begin{equation*}
\mathfrak{R}=\left\{x \mid p(x, t) \geqslant 0 \text { for all } t \in\left[t_{o}, t_{f}\right]\right\} \tag{3.6}
\end{equation*}
$$

and solve the B-problem in the manner described in the previous paragraph. The solution to this state-constrained problem clearly also solves the original, unconstrained A-problem.
IV. The Ellipse of Controllability

Define

$$
\begin{equation*}
E(S, \epsilon)=\left\{z \mid z^{T} S z \leqslant \epsilon\right\} \tag{4.1}
\end{equation*}
$$

In the notation of Section II,

$$
\begin{equation*}
E\left(t_{o}\right)=E\left(S\left(t_{0}\right), y^{T}\left(t_{o}\right) S\left(t_{o}\right) y\left(t_{o}\right)\right) \tag{4.2}
\end{equation*}
$$

To apply the techniques of Section III, it is necessary to determine whether or not $\mathcal{E}\left(t_{0}\right) \subset \mathbb{R}$. Also, it is of interest to find the largest ϵ such that $E\left(S\left(t_{o}\right), \epsilon\right) \subset \mathbb{R}$ (because for any positive definite symmetric S, $\left.\epsilon_{2}>\epsilon_{1} \Longrightarrow E\left(S, \epsilon_{1}\right) \subset E\left(S, \epsilon_{2}\right)\right)$. The latter problem is related to a problem of Julich [5] on acceptable motions of stable systems. See Section VI.

In the following, \mathbb{R} is assumed to be a region with linear boundaries, i.e.,

$$
\begin{equation*}
\mathfrak{R}=\left\{x \mid a_{i}^{T} x+b_{i} \leqslant 0, i=1, \ldots, l\right\} \tag{4.3}
\end{equation*}
$$

where $a_{i}, i=1, \ldots, \ell$ are n-vectors and $b_{i}, i=1, \ldots, \ell$ are scalars. We assume that $\mathrm{x}=0$ is an interior point of \boldsymbol{R}, so $\mathrm{b}_{\mathrm{i}}<0, \mathrm{i}=1, \ldots, \ell$.
IV. 1. Is the Ellipse in \mathbb{R} ?

The statement $E(S, \epsilon) \subset \mathbb{R}$ is equivalent to

$$
\begin{equation*}
\max _{i=1, \ldots, l} \max _{x^{T}{ }_{S x}^{x} \leqslant \epsilon} a_{i}^{T} x+b_{i} \leqslant 0 \tag{4.4}
\end{equation*}
$$

The maximum of $a_{i}^{T} x+b_{i}$ occurs on the boundary of $E(S, \epsilon)$. Therefore, $(4,4)$ is equivalent to

$$
\begin{equation*}
\max _{i=1, \ldots, l} \max _{T_{i}^{x}} a_{i}^{T} x+b_{i} \leqslant 0 \tag{4.5}
\end{equation*}
$$

To determine if (4.5) is satisfied, calculate

$$
\begin{equation*}
c_{i}=\max _{x_{x} T_{S x}=\epsilon} a_{i}^{T} x+b_{i} \tag{4.6}
\end{equation*}
$$

If $c_{i} \leqslant 0, i=1, \ldots, \ell$, then (4.5) is satisfied. To find c_{i}, let

$$
\begin{equation*}
J_{i}=c_{i}+\lambda_{i}\left(x^{T} S x-\epsilon\right) \tag{4.7}
\end{equation*}
$$

where λ_{i} is a scalar Lagrange multiplier, and maximize J_{i} subject to

$$
\begin{equation*}
x^{T} S x=\epsilon \tag{4.8}
\end{equation*}
$$

Rewrite

$$
\begin{equation*}
J_{i}=a_{i}^{T} x+b_{i}+\lambda_{i}\left(x^{T} S x-\epsilon\right) \tag{4.9}
\end{equation*}
$$

Then

$$
\begin{equation*}
J_{i}=a_{i}^{T}+2 \lambda_{i} x^{T} S \tag{4.10}
\end{equation*}
$$

so the maximizing value of x (where $J_{i}=0$) is

$$
\begin{equation*}
x_{i}=-\frac{1}{2 \lambda_{i}} s^{-1} a_{i} \tag{4.11}
\end{equation*}
$$

Since x_{i} is maximizing,

$$
\begin{equation*}
0 \geqslant J_{i x x}=2 \lambda_{i} S \tag{4.12}
\end{equation*}
$$

and since $S>0$, we expect $\lambda_{i} \leqslant 0$.
From (4.8),

$$
\begin{equation*}
\epsilon=x_{i}^{T} S x_{i}=\frac{1}{4 \lambda_{i}^{2}} a_{i}^{T} S^{-1} a_{i} \tag{4.13}
\end{equation*}
$$

so

$$
\begin{equation*}
\lambda_{i}=-\frac{1}{2} \sqrt{\frac{a_{i}^{T} S^{-1} a_{i}}{\epsilon}} \tag{4.14}
\end{equation*}
$$

where the sign is chosen to satisfy (4.12). Equation (4.11) implies

$$
\begin{equation*}
x_{i}=\sqrt{\frac{\epsilon}{a_{i}^{T} S^{-1} a_{i}}} \quad S^{-1} a_{i} \tag{4.15}
\end{equation*}
$$

which clearly satisfies (4.8). From (4.6),

$$
\begin{equation*}
c_{i}=a_{i}^{T} x_{i}+b_{i}=\sqrt{\epsilon a_{i}^{T} S^{-1} a_{i}}+b_{i} \tag{4.16}
\end{equation*}
$$

Note that the positive square root is chosen in (4.16) and that $b_{i}<0, i=1, \ldots, \ell$.

The procedure for ascertaining whether $E(S, \epsilon) \subset \mathbb{R}$ is a simple one: evaluate c_{i} for each $i=1, \ldots, \ell$. If any is positive, $E(S, \epsilon)$ is not a subset of \mathbb{R} and if none are positive, $E(S, \epsilon)$ is contained in \mathbb{R}.
IV. 2. The Largest Ellipse in \mathcal{R}

It is clear that the largest ellipse in \mathbb{R} touches one or more of the linear constraints at one point and does not touch the others at any points. This is equivalent to

$$
\begin{equation*}
\max _{i=1, \ldots, \ell}^{c_{i}=0} \tag{4.17}
\end{equation*}
$$

where c_{i} is given by (4.6) and (4.16). Write (4.16) as

$$
\begin{equation*}
c_{i}(\epsilon)=\sqrt{\epsilon a_{i}^{T} S^{-l} a_{i}}+b_{i} \tag{4.18}
\end{equation*}
$$

Define

$$
\begin{align*}
& \epsilon_{i}=\frac{b_{i}^{2}}{a_{i}^{T} S^{-1} a_{i}} \tag{4.19}\\
& \epsilon_{\min }=\min _{i=1, \ldots, \ell} \epsilon_{i} \tag{4.20}
\end{align*}
$$

Note that

$$
\begin{equation*}
c_{i}\left(\epsilon_{i}\right)=0 \tag{4.21}
\end{equation*}
$$

Thus ellipse $E\left(S, \epsilon_{i}\right)$ is tangent to the i th constraint; in fact $E\left(S, \epsilon_{i}\right)$ is the largest ellipse such that for every $\mathrm{x} \in E\left(S, \dot{\epsilon}_{\mathrm{i}}\right), \mathrm{a}_{\mathrm{i}}^{\mathrm{T}} \mathrm{x}+\mathrm{b}_{\mathrm{i}} \leqslant 0$.
$E\left(S, \epsilon_{\min }\right)$ is therefore the largest ellipse such that for every $x \in E\left(S, \epsilon_{\min }\right)$, $a_{i}^{T} x+b_{i} \leqslant 0$ for all $i=1, \ldots, \ell$.

V. Examples

V.1. Example 1

Consider the dynamic system

$$
\begin{equation*}
\dot{x}=F x+G u+h(x, t) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& G=\left(\left.\begin{array}{l}
1 \\
0
\end{array} \right\rvert\,\right. \\
& \left.h=\left\lvert\, \begin{array}{c}
0 \\
-p(x, t) x_{2}
\end{array}\right.\right)
\end{aligned}
$$

$p(x, t)$ is a scalar function of x and t and F is a constant matrix such that the linear system

$$
\begin{equation*}
\dot{x}=F x+G u \tag{5.2}
\end{equation*}
$$

is completely controllable (i.e., $\mathrm{F}_{21} \neq 0$).
Find a control $u(x, t)$ to drive the state of (5.1) from its initial value $x\left(t_{o}\right)=x_{o}$ to the origin at $t=t_{f}>t_{o}$. What conditions on $p(x, t)$ and x_{o} guarantee that (5.1) will be controllable from (x_{o}, t_{o}) to ($0, t_{f}$) ?

This example was considered by Gershwin and Jacobson [1, Example 2.2.3] who found that if $p(x, t) \geqslant 0$ for all x and all $t \in\left[t_{o}, t_{f}\right]$, then (5.1) is completely controllable from t_{o} to $\left(0, t_{f}\right)$ and a control that drives the state to the origin is

$$
\begin{equation*}
u(x, t)=-\frac{1}{2} G^{T} S(t) x-p(x, t) x_{1} \tag{5.3}
\end{equation*}
$$

where $S(t)$ satisfies

$$
\begin{align*}
& \dot{S}+S F+F^{T} S-S G G^{T} S=0 \tag{5.4}\\
& \lim _{t \rightarrow t_{f}} S^{-1}(t)=0 \tag{5.5}
\end{align*}
$$

Control (5.3) is known to satisfy Problem A because it satisfies
Theorem 1 with

$$
\begin{equation*}
V(x, t)=x^{T} S(t) x \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{V}(x, t)=-2 p(x, t) x^{T} S x \tag{5.7}
\end{equation*}
$$

Clearly $\dot{\mathrm{V}} \leqslant 0$ because S is positive definite and $p(x, t)$ is positive or zero by hypothesis.

Now, relax the hypothesis that $p(x, t) \geqslant 0$ for all x. Define

$$
\begin{equation*}
\mathfrak{R}=\left\{\mathrm{x} \mid \mathrm{p}(\mathrm{x}, \mathrm{t}) \geqslant 0 \quad \forall \mathrm{t} \in\left[\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{f}}\right]\right\} \tag{5.8}
\end{equation*}
$$

Assume that the origin is an interior point of $\mathcal{B}(\mathrm{i} . \mathrm{e} .$, that $\mathrm{p}(0, \mathrm{t})>0$ for all $t \in\left[\mathrm{t}_{\mathrm{o}}, \mathrm{t}_{\mathrm{f}}\right]$). Assume also that $\mathrm{x}_{\mathrm{o}} \in \mathbb{R}$.

Consider control (5.3). If the trajectory generated by this control stays in \mathbb{R}, then $\mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)=0$ because if $\mathrm{x} \in \mathbb{R}, \mathrm{p} \geqslant 0$ and (5.7) implies that Theorem 1 holds.

By Lemma 2, if ellipse $\mathcal{E}\left(t_{o}\right) \subset \mathbb{R}$, the trajectory stays in \mathbb{R}. To find out whether $\mathcal{E}\left(\mathrm{t}_{\mathrm{o}}\right) \subset \mathbb{R}$ or to find the largest ϵ such that $\mathrm{E}\left(\mathrm{S}\left(\mathrm{t}_{\mathrm{o}}\right), \epsilon\right) \subset \mathbb{R}$, the methods of Section IV apply (if \mathbb{R} has linear boundaries).

Now let $t_{o}=0, t_{f}=1$, and

$$
F=\left(\begin{array}{rr}
0 & 0 \tag{5,9}\\
-1 & -1
\end{array}\right)
$$

and consider the following special cases of (5.1).
V.1.1. Case 1

$$
\mathrm{p}_{1}=1-\mathrm{x}_{2}^{2}
$$

Then (5.1) becomes

$$
\begin{align*}
& \dot{x}_{1}=u \tag{5.10}\\
& \dot{x}_{2}=-\mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{2}^{3 *} \tag{5.11}
\end{align*}
$$

Then

$$
\begin{align*}
\mathcal{R}_{1} & =\left\{x \mid 1-x_{2}^{2} \geqslant 0\right\}=\left\{\left(x_{1}, x_{2}\right)| | x_{2} \mid \leqslant 1\right\} \\
& =\left\{\left(x_{1}, x_{2}\right) \mid x_{2}-1 \leqslant 0,-x_{2}-1 \leqslant 0\right\} \tag{5.12}
\end{align*}
$$

The latter form for expressing \mathfrak{R}_{1} is chosen to conform with the notation of Section IV. Comparing (5.12) with (4.3), it is readily seen that $\ell=2$,

$$
\begin{aligned}
& a_{1}=\left(\begin{array}{c}
0 \\
1
\end{array}\right. \\
& a_{2}=\binom{0}{-1} \quad b_{1}=-1
\end{aligned}
$$

The solution of Riccati equation (5.4) with boundary condition (5.5) is such that

$$
S^{-1}(t=0)=\left(\begin{array}{cc}
1 & .718 \\
.718 & .758
\end{array}\right)
$$

It is a simple matter to calculate $\epsilon_{\min }$ from (4.19), (4.20):

$$
\epsilon_{\min }=1.32
$$

* It should be pointed out that in [1, Example 2.2.3], $\dot{x}_{2}=-x_{1}-x_{2}-x_{2}^{3}$ so that $p(x, t)=x_{2}^{2}$. If we had chosen the F-matrix differently in the present case, i.e., if instead of (5.9),

$$
F=\left(\begin{array}{rr}
0 & 0 \\
-1 & 0
\end{array}\right)
$$

then (5.11) would have become $\dot{x}_{2}=-x_{1}-x_{2}+x_{2}^{3}$. Thus, by a tricky redefinition of the system matrix, we can solve a problem that might appear to the reader of [1, Example 2.2.3] to be impossible.

Figure 2 displays \mathbb{R}_{1} and the ellipse $\mathcal{E}=\mathrm{E}(\mathrm{S}(0), 1.32)$. Three trajectories of (5.1) (solid lines) and three trajectories of (5.10)-(5.11) (dashed lines) are shown.

V.1.2. Case 2

$$
\begin{equation*}
\mathrm{p}_{2}=1-\mathrm{x}_{1} \tag{5.13}
\end{equation*}
$$

In this case, system (5.1) is

$$
\begin{align*}
& \dot{x}_{1}=u \tag{5.14}\\
& \dot{x}_{2}=-x_{1}-2 x_{2}+x_{1} x_{2} \tag{5.15}
\end{align*}
$$

Equation (5.13) implies

$$
\begin{equation*}
\mathfrak{R}_{2}=\left\{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mid \mathrm{x}_{1}-1 \leqslant 0\right\} . \tag{5.16}
\end{equation*}
$$

From the notation of (4.3), $\ell=1$,

$$
a=\binom{1}{0} \quad, \quad b=-1
$$

which implies that $\epsilon_{\min }=1$. Figure 3 is similar to Figure 2, displaying $\mathfrak{R}, \mathcal{E}=E(S(0), 1)$ and trajectories of (5.2) and (5.14)-(5.15).

V.2. Example 2

Consider system (5.1) with

$$
F=\left(\begin{array}{rr}
0 & 0 \\
-1 & -1
\end{array}\right), \quad G=\binom{1}{0}
$$

((5.2) is completely controllable) and

$$
\begin{equation*}
h(x, t)=\binom{0}{-p(x, t) x_{1}} \tag{5,17}
\end{equation*}
$$

where $p(x, t)$ is a scalar function. In Example 2.2.5 of [1] it is found that if $V(x, t)=x^{T} S(t) x$ (where $S(t)$ satisfies (5.4), (5.5)) and

$$
\begin{equation*}
u(x, t)=-\frac{1}{2} G^{T} S(t) x+\left(S_{22}(t) / S_{12}(t)\right) p(x, t) x_{1} \tag{5.18}
\end{equation*}
$$

then

FIG. 2 REGION R, ELLIPSE ε AND TRAJECTORIES OF NONLINEAR SYSTEM (5.10) - (5.11) AND LINEAR SYSTEM (5.2) EXAMPLE 1, CASE 1.

FIG. 3 REGION R, ELLIPSE ε AND TRAJECTORIES OF NONLINEAR SYSTEM (5.14)-(5.15) AND LINEAR SYSTEM (5.2) - EXAMPLE 1, CASE 2

$$
\begin{equation*}
\dot{V}(x, t)=2 \frac{\operatorname{det} S}{S_{12}} x_{1}^{2} p(x, t) \tag{5.19}
\end{equation*}
$$

where det $S=S_{11} S_{22}-S_{12}^{2}>0$.
In that example $p(x, t) \geqslant 0$ and $S_{12}(t)<0$ for all x and t so that Theorem 1 applies and $x\left(t_{f}\right)=0$.

For the present, let $t_{o}=0, t_{f}=1$, and for illustration purposes let

$$
\begin{equation*}
\mathrm{p}(\mathrm{x}, \mathrm{t})=1+\min \left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \tag{5.20}
\end{equation*}
$$

and let us find a set of initial conditions that can be driven to the origin in the time interval $[0,1]$. In this case, system (5.1) becomes

$$
\begin{align*}
& \dot{x}_{1}=u \tag{5.21}\\
& \dot{x}_{2}=-2 x_{1}-x_{2}-x_{1} \min \left(x_{1}, x_{2}\right) \quad \therefore \tag{5.22}
\end{align*}
$$

It is certainly not true that $p \geqslant 0 \mathrm{Vx}$. Following the method outlined in Section III, define

$$
\begin{align*}
\mathcal{R} & =\{x \mid p(x, t) \geqslant 0\} \\
& =\left\{x \mid a_{i}^{T} x+b_{i} \leqslant 0, i=1,2\right\} \tag{5.23}
\end{align*}
$$

(in the notation of Section IV), where

$$
\begin{array}{ll}
a_{1}=\binom{0}{-1} & b_{1}=-1 \\
a_{2}=\binom{-1}{0} & b_{2}=-1
\end{array}
$$

From (4.19) and (4.20), $\epsilon_{1}=1.32, \epsilon_{\min }=\epsilon_{2}=1$.
Figure 4 shows region \boldsymbol{R}, ellipse $\mathcal{E}=E(S(0), 1)$ and a set of trajectories of (5.21)-(5.22) with control law (5.18).
V.3. Example 3

Consider the dynamic system

$$
\begin{equation*}
\dot{x}=F x+\widetilde{G}(x, t) u \tag{5.24}
\end{equation*}
$$

FIG. 4 REGION R, ELLIPSE ε AND SET OF TRAJECTORIES OF EXAMPLE 2.
where F is a constant matrix and $\widetilde{G}(x, t)$ is a matrix function of x and t.
Let G be a constant matrix such that the linear system

$$
\begin{equation*}
\dot{x}=F x+G u \tag{5.25}
\end{equation*}
$$

is completely controllable and define $S(t)$ as the solution to (5.4), (5.5).
In [1, Example 2.2.5] Theorem 1 is used to show that if the control

$$
\begin{equation*}
u=-\frac{1}{2} G^{T} S(t) x \tag{5.26}
\end{equation*}
$$

is used over the interval $\left[t_{o}, t_{f}\right]$ and \widetilde{G}, G satisfy

$$
\begin{equation*}
\Delta=2 \mathrm{GG}^{\mathrm{T}}-\widetilde{\mathrm{GG}}^{\mathrm{T}}-\mathrm{GG}^{\mathrm{T}} \leqslant 0 \tag{5.27}
\end{equation*}
$$

For all x, t, then $x\left(t_{f}\right)=0$. In this case, $V=x^{T} S(t) x$ and

$$
\begin{equation*}
\dot{\mathrm{V}}=\frac{1}{2} \mathrm{x}^{\mathrm{T}} \mathrm{~S}\left(2 G G^{\mathrm{T}}-\widetilde{G G}^{\mathrm{T}}-\mathrm{G} \widetilde{\mathrm{G}}^{\mathrm{T}}\right) \mathrm{Sx} \tag{5.28}
\end{equation*}
$$

Now, if matrix Δ is not negative semidefinite for all x and t, the methods of the previous sections may apply. Define region \mathbb{R}

$$
\begin{equation*}
\mathfrak{R}=\{x \mid \Delta(x, t) \leqslant 0 \text { for all } x, t\} . \tag{5.29}
\end{equation*}
$$

According to Section III, if $x_{0} \in E\left(S\left(t_{o}\right), \epsilon\right)$ and ϵ is such that $E\left(S\left(t_{o}\right), \epsilon\right) \subset \mathbb{R}$, then controller (5.26) transfers system (5.24) from $x\left(t_{0}\right)=x_{0}$ to $x\left(t_{f}\right)=0$.

As a specific case, let $t_{0}=0, t_{1}=1$,

$$
\begin{align*}
& F=\left(\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right) \\
& \widetilde{G}=\binom{2+x_{1}+x_{2}}{0} \tag{5.30}
\end{align*}
$$

System (5.24) becomes

$$
\begin{align*}
& \dot{x}_{1}=\left(2+x_{1}+x_{2}\right) u \tag{5.31}\\
& \dot{x}_{2}=-x_{1}-x_{2} \tag{5.32}
\end{align*}
$$

Let

$$
G=\binom{1}{0}
$$

From (5.27),

$$
\Delta=-2\left(\begin{array}{cc}
1+x_{1}+x_{2} & 0 \tag{5.33}\\
0 & 0
\end{array}\right) \leqslant 0
$$

which is satisfied whenever

$$
\begin{equation*}
1+x_{1}+x_{2} \geqslant 0 \tag{5.34}
\end{equation*}
$$

Therefore \mathbb{R} is defined by a linear inequality and the methods of Section IV apply.

$$
\mathfrak{R}=\left\{\mathrm{x} \mid \mathrm{a}^{\mathrm{T}} \mathrm{x}+\mathrm{b} \leqslant 0\right\}
$$

where

$$
a=\binom{-1}{-1} \quad b=-1
$$

From (4.19), (4.20), $\epsilon_{\text {min }}=.31$. Figure 5 displays region \mathbb{R}, ellipse $\mathcal{E}=E(S(0), .31)$, and trajectories of (5.31)-(5.32).

Note that system (5.31)-(5.32) is a bilinear system, of the form discussed by Rink and Mohler [4].

V.4. Example 4

Consider the problem of driving

$$
\begin{align*}
& \dot{x}_{1}=\left(2+x_{1}+x_{2}\right) u \tag{5.35}\\
& \dot{x}_{2}=-x_{1}-2 x_{2}+x_{1} x_{2} \tag{5:36}
\end{align*}
$$

from $x=x_{0}$ to $x=0$ in the time interval $[0,1]$. This system combines the least desirable features of systems (5.14)-(5.15) and (5.31)-(5.32).

Let

$$
F=\left(\begin{array}{cc}
0 & 0 \\
-1 & -1
\end{array}\right), \quad G=\binom{1}{0}
$$

and let S satisfy (5.4), (5.5).

FIG. 5 REGION \mathbb{R}, ELLIPSE ε AND SET OF TRAJECTORIES OF EXAMPLE 3.

$$
\begin{align*}
& \text { Rewrite (5.35)-(5.36) as } \\
& \qquad \mathbf{x}=F \mathbf{x}+\widetilde{\mathbf{G} u}+\mathrm{h}(\mathrm{x}, \mathrm{t}) \tag{5.37}
\end{align*}
$$

where h is given in Example 1, case 2 and \widetilde{G} is given in Example 3. Let $V(x, t)=x^{T} S(t) x$ and choose

$$
\begin{equation*}
u=-\frac{1}{2} G^{T} S x+q(x, t) \tag{5.38}
\end{equation*}
$$

Then

$$
\begin{equation*}
\dot{\mathrm{V}}=\frac{1}{2} \mathrm{x}^{\mathrm{T}} \mathrm{~S}_{\mathrm{S}} \Delta \mathrm{~S}+2 \mathrm{x}^{\mathrm{T}} \mathrm{~S}(\widetilde{\mathrm{G} q}+\mathrm{h}) \tag{5.39}
\end{equation*}
$$

where

$$
\begin{align*}
\Delta & =2 G G^{T}-\widetilde{G G}^{\mathrm{T}}-\mathrm{G} \widetilde{\mathrm{G}}^{\mathrm{T}} \\
& =-2\left(\begin{array}{cc}
1+\mathrm{x}_{1}+\mathrm{x}_{2} & 0 \\
0 & 0
\end{array}\right) \tag{5.40}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{G q}+h=\binom{\left(2+x_{1}+x_{2}\right) q}{-x_{2}\left(1-x_{1}\right)} \tag{5.41}
\end{equation*}
$$

Consider the following nonlinear control term:

$$
\begin{equation*}
q=\frac{-x_{1}\left(1-x_{1}\right)}{2+x_{1}+x_{2}} \tag{5.42}
\end{equation*}
$$

Ignore, for the moment, the difficulty that arises when the denominator of q is zero. Equation (5.41) becomes

$$
\begin{equation*}
\widetilde{G} q+h=-\left(1-x_{1}\right)\binom{x_{1}}{x_{2}} \tag{5.43}
\end{equation*}
$$

so the second term of (5.39) is

$$
\begin{equation*}
-\left(1-x_{1}\right) x^{T} S x \tag{5.44}
\end{equation*}
$$

Define region \mathbb{R} in the following way:

$$
\begin{equation*}
\mathfrak{R}=\left\{x \mid 1+x_{1}+x_{2} \geqslant 0 \text { and } 1-x_{1} \geqslant 0\right\} \tag{5.45}
\end{equation*}
$$

$\dot{\mathrm{V}} \leqslant 0$ for all $\mathrm{x} \in \mathbb{R}$. The largest ellipse $\mathrm{E}(\mathrm{S}(0), \epsilon) \subset \mathbb{R}$ can be found by the methods of Section IV. Rewrite

$$
\begin{equation*}
\mathfrak{R}=\left\{x \mid a_{i}^{T} x+b_{i} \leqslant 0, i=1,2\right\} \tag{5.46}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a_{1}=\binom{-1}{-1} & b_{1}=-1 \\
a_{2}=\binom{1}{0} & b_{2}=-1
\end{array}
$$

From (4.19), (4.20), $\epsilon_{1}=.31, \epsilon_{2}=1, \epsilon_{\min }=\epsilon_{1}$. Then if $x_{0} \in E(S(0), .31)$ and $u(x, t)$ is given by (5.38) and (5.42), $x(t) \in E(S(0), .31)$, $0 \leqslant t \leqslant 1$ and $x(1)=0$.

What about the denominator of (5.42)? Clearly, if $x \in E(S(0), .31)$, then $\mathrm{x} \in \mathbb{R}$, and $1+\mathrm{x}_{1}+\mathrm{x}_{2} \geqslant 0$. Therefore $2+\mathrm{x}_{1}+\mathrm{x}_{2} \geqslant 1$, so the denominator of (5.42) is never zero.

Figure 6 shows region \mathbb{R}, ellipse $\mathcal{E}=\mathrm{E}(\mathrm{S}(0), .31)$ and several trajectories of (5.35)-(5.36).

V. 5. "Example 5

There are cases where the states of linear, time-varying systems may be bounded by the techniques used in Section III, even though those results seem to apply only to autonomous systems.

Consider the system

$$
\begin{equation*}
\dot{x}=\widetilde{F}(t) x+\widetilde{G}(t) u \tag{5.47}
\end{equation*}
$$

Find a control to drive the state from $x\left(t_{o}\right)=x_{o}$ to $x\left(t_{f}\right)=0$.
Let F and G be constant matrices such that the constant coefficient system

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{Fx}+\mathrm{Gu} \tag{5.48}
\end{equation*}
$$

is completely controllable, and define $S(t)$ as the solution to (5.4), (5.5).

FIG. 6 REGION \mathbb{R}, ELLIPSE ε AND SET OF TRAJECTORIES OF EXAMPLE 4.
where we have used the asymptotic expression for I, and $\left.\left.\langle | E_{L}\left(t^{\prime}\right)\right|^{2}\right\rangle$ is the time average of the laser intensity. The maximum of the exponent occurs at $\left.\left(t^{\prime}-t^{\prime \prime}\right)=\left.\mu_{1} \mu_{2}\langle | E_{L}\right|^{2}\right\rangle z / \Gamma^{2}$, and the result is essentially the steady state power gain $\exp G_{S S}$ with $G_{S S}$ given by Eq. (14).

If the input Stokes signal $E_{S}\left(0, t^{\prime}\right)$ has a constant phase, and does not follow the phase variations in the laser pump, the integral in Eq. (11a) is reduced by $\mathrm{G}_{\mathrm{SS}} \Delta \omega / \Omega$, compared to the case that the phases of the laser and Stokes are in sychronism. This may be seen from the fact that the exponential in Eq. (18) has a $1 / \mathrm{e}$ width of $\mathrm{G}_{\mathrm{SS}} / \mathrm{around}$ its maximum, and the laser phases reverse sign about $\mathrm{G}_{\mathrm{SS}}(\Delta \omega / \sim)$ times. The Stokes gain coefficient is thus $G_{S S}-\ln \left(G_{S S} \Delta \omega / \Gamma\right)$. For large steady state gain $G_{S S}$ this reduction is insignificant. The amplified Stokes field "automatically" assumes the correct phase variation for maximum gain.

In figure 12, the result of a numerical calculation is shown for the dispersionless case in which these considerations are confirmed. A Gaussian envelope with a random spectral distribution is taken. The half width of the power spectrum is $\Delta \omega=20$. This corresponds to a stationary random process switched on at $t^{\prime}=0$. Since the numerical calculation is possible only for a finite number of Fourier components, the laser pulse shown in figure 12 is assumed to repeat itself with a period of about $800 / \Gamma$. The Stokes gain coefficient is calculated from Eq. (lla) as a function of time at a point z, for which $G_{S S}=46$. The broken line in figure 12 shows the Stokes gain coefficient for a laser with no phase modulation or frequency broadening, switched on at $t^{\prime}=0$. The Stokes gain coefficient for the random laser pulse follows essentially the same curve except for a constant factor of about $\ln \left(G_{S S} \Delta \omega / \Gamma\right)$, and except near $z=0$. Figures 12 b and c show that the Stokes amplitude structure follows the variations in the

VI. Extensions

VI. 1. Enlarging the Region of Controllability

Suppose $x_{o} \in \mathbb{R}$ but x_{o} is not in ellipse $E\left(S\left(t_{o}\right), \epsilon\right)$ for any ϵ such that $E\left(S\left(t_{0}\right), \epsilon\right) \subset \mathcal{R}$. This case is not covered by the methods discussed above. In this section we shall develop a method to drive the state from some such x_{o} to the origin within the time interval $\left[t_{o}, t_{f}\right]$.

Define

$$
\begin{align*}
& \bar{\epsilon}(t)=\arg \max _{\epsilon}\{E(S(t), \epsilon) \subset \mathbb{R}\} \tag{6.1}\\
& \overline{\mathcal{E}}(\mathrm{t})=\mathrm{E}(\mathrm{~S}(\mathrm{t}), \bar{\epsilon}(\mathrm{t})) \tag{6.2}
\end{align*}
$$

i.e., $\bar{\varepsilon}(t)$ is the largest ellipse of the form $\left\{x \mid x^{T} S(t) x \leqslant \epsilon\right\}$ which is a subset of \mathbb{R}. $S(t)$ satisfies (5.4), (5.5) with some appropriately chosen F, G matrices.

Consider the case where $\mathrm{x}_{\mathrm{o}} \notin \overline{\mathcal{E}}\left(\mathrm{t}_{\mathrm{o}}\right)$ but $\mathrm{x}_{\mathrm{o}} \in \overline{\mathcal{E}}(\mathrm{t})$ for some t , $t_{o}<t<t_{f}$. Define t_{1} as the smallest value of t for which $x_{o} \in \overline{\mathcal{E}}(t)$. Consider the function

$$
\begin{equation*}
V(x, t)=x^{T} \bar{S}(t) x \tag{6.3}
\end{equation*}
$$

where $\overline{\mathrm{S}}(\mathrm{t})$ satisfies

$$
\begin{array}{ll}
\lim _{t \rightarrow t_{f}} \bar{S}(t)^{-1}=0 \\
\bar{S}+\bar{S} F+F^{T} \bar{S}-\bar{S}_{G G}{ }^{T} \bar{S}=0, & t_{1}<t<t_{f} \\
\bar{S}(t)=\bar{S}\left(t_{1}\right), & t_{o} \leqslant t \leqslant t_{1} \tag{6.6}
\end{array}
$$

Note that $\bar{S}(\mathrm{t})=\mathrm{S}(\mathrm{t}), \mathrm{t}_{1} \leqslant \mathrm{t}<\mathrm{t}_{\mathrm{f}}$ and $\overline{\mathrm{S}}(\mathrm{t})=\mathrm{S}\left(\mathrm{t}_{1}\right), \mathrm{t}_{\mathrm{o}} \leqslant \mathrm{t} \leqslant \mathrm{t}_{1}$.
It is clear that $V(x, t)$ and x_{o} satisfy conditions (i), (ii), and (iii) of Theorem 1. Consider the control

$$
\begin{equation*}
\mathrm{u}(\mathrm{x}, \mathrm{t})=\mathrm{w}(\mathrm{x}, \overline{\mathrm{~S}}(\mathrm{t}), \mathrm{t}) \tag{6.7}
\end{equation*}
$$

where $\mathrm{w}(\cdot)$ is a function such that the control

$$
\begin{equation*}
u(x, t)=w(x, S(t), t) \tag{6.8}
\end{equation*}
$$

satisfies Theorem 1 with $V=x^{T} S(t) x$ for all $x \in \bar{\varepsilon}\left(t_{o}\right)$. \quad Clearly condition (v) of Theorem 1 is satisfied by (6.7) if $x(t)$ is sufficiently close to 0 for $t>t_{1}$, because for $t>t_{1},(6.7)$ and (6.8) coincide. Note that the state is sufficiently near the origin if $x\left(t_{1}\right) \in \overline{\mathcal{E}}\left(\mathrm{t}_{1}\right)$.

Condition (iv) is satisfied as follows:

$$
\begin{equation*}
\dot{\mathrm{V}}=\mathrm{x}^{\mathrm{T}}\left(\dot{\bar{S}}+\bar{S} F+F^{T} \bar{S}-\bar{S}^{\mathrm{S}} \mathrm{~F}^{\mathrm{T}} \overline{\mathrm{~S}}\right) \mathrm{x}+Q(\mathrm{x}, \mathrm{t}) \tag{6.9}
\end{equation*}
$$

where the derivative is taken with the control given by (6.7), and $Q(x, t)^{\dagger}$ is a negative semidefinite function in \mathbb{R}.

When $t>t_{f}$, (6.9) reduces to $\dot{V}=Q(x, t)$ and if $x \in R, \dot{V} \leqslant 0$.
Therefore, if $x\left(\mathrm{t}_{1}\right) \in \overline{\mathcal{E}}\left(\mathrm{t}_{1}\right), \dot{\mathrm{V}} \leqslant 0$.
For $t_{0} \leqslant t_{t} \leqslant{ }_{1}$, (6.9) becomes

$$
\begin{equation*}
\dot{\mathrm{V}}=\mathrm{x}^{\mathrm{T}}\left(\overline{\mathrm{~S}} \mathrm{~F}+\mathrm{F}^{\mathrm{T}} \overline{\mathrm{~S}}-\overline{\mathrm{S} G G^{T}} \overline{\mathrm{~S}}^{\mathrm{S}}\right) \mathrm{x}+Q(\mathrm{x}, \mathrm{t}) \tag{6.10}
\end{equation*}
$$

From Theorem $2(2.13) \dot{\bar{S}}(\mathrm{t}) \geqslant 0, \mathrm{t}_{1}<\mathrm{t}<\mathrm{t}_{\mathrm{f}}$. Then, from (6.5)

$$
\begin{equation*}
\bar{S} F+F^{T} \bar{S}-\bar{S} G G^{T} \bar{S} \leqslant 0 \tag{6.11}
\end{equation*}
$$

for $t_{1}<t<t_{f}$. Inequality (6.11) also holds for $t_{o} \leqslant t \leqslant t_{1}$ because \bar{S} is defined to be continuous at $t=t_{1}$ and constant on $\left[t_{o}, t_{1}\right]$. Therefore $\dot{\mathrm{V}} \leqslant 0$ on $\mathrm{t}_{\mathrm{o}} \leqslant \mathrm{t} \leqslant \mathrm{t}_{1}$ as well as $\mathrm{t}_{1}<\mathrm{t}<\mathrm{t}_{\mathrm{f}}$, so condition (iv) of Theorem 1 holds.
 $t \geqslant t_{1}, \bar{S}(t)=S(t)$ so $V\left(x_{0}, t_{0}\right)=x_{0}^{T} \bar{S}\left(t_{0}\right) x_{0}=x_{0}^{T} \bar{S}\left(t_{1}\right) x_{0} \leqslant \bar{\epsilon}\left(t_{1}\right)$. Because

* In other words, $w(x, S(t), t)$ is the general form of the control function. For the linear system $\dot{x}=F x+G u, w(x, S, t)=-\frac{1}{2} G^{T} S x$. In Example 1, $w(x, S, t)=-\frac{1}{2} G^{T} S x-p(x, t) x_{1}$ (from (5.3)). Equation (6.7) says to use \bar{S} instead of S.
$t_{Q(x, t)}$ is due to the nonlinear part of the dynamics. For a linear system, $Q=0$. In Example 1, $Q=-2 p(x, t) x^{T} \bar{S} x$. In Example $3, Q=\frac{1}{2} x^{T} \bar{S}\left(2 G G^{T}\right.$. $\widetilde{G G}^{T}-\widetilde{G G}^{T} \bar{S} \bar{S}_{x}$.
$\dot{V} \leqslant 0, V(x(t), t) \leqslant V\left(x_{0}, t_{o}\right) \leqslant \bar{\epsilon}\left(t_{1}\right)$ for all $t \in\left[t_{o}, t_{f}\right]$. In particular, $V\left(x\left(t_{1}\right), t_{1}\right)=x\left(t_{1}\right)^{T} S\left(t_{1}\right) x\left(t_{1}\right) \leqslant \bar{\epsilon}\left(t_{1}\right)$. Therefore $x\left(t_{1}\right) \in \overline{\mathcal{E}}\left(t_{1}\right)$, and Theorem 1 holds.

Also, Lemma 2 and Theorem 3 hold.for $t \in\left[t_{1}, t_{f}\right.$).
To summarize, consider the problem of driving the system

$$
\dot{x}=f(x, u, t)
$$

from $x\left(t_{o}\right)=x_{o}$ to $x\left(t_{f}\right)=0$ such that $x(t) \in \mathcal{R}_{1}$ for all t. Define $S(t)$ to be the solution to (5.4), (5.5) for some F, G matrices. Define $V=x^{T} S(t) x$ and let $u=w(x, S(t), t)$ be such that

$$
\begin{equation*}
\dot{\mathrm{V}} \leqslant 0 \tag{6.13}
\end{equation*}
$$

for all $x \in \mathbb{R}_{2}$ for all $t \in\left[t_{o}, t_{f}\right]$. Let $\mathbb{R}=\mathbb{R}_{1} \cap \mathfrak{R}_{2}$ and define $\overline{\mathcal{E}}(\mathrm{t})$ as in (6.1), (6.2). If there exists some $t_{1} \in\left(t_{o}, t_{f}\right)$ such that $x_{o} \in \overline{\mathcal{E}}\left(\mathrm{t}_{1}\right)$, define $\bar{S}(t)$ as in (6.4), (6.5), (6.6). The control $u=w(x, \bar{S}(t), t)$ is such that $x\left(t_{f}\right)=0$ and $x(t) \in \mathbb{R}$ for all $t \in\left[t_{o}, t_{f}\right]$.

The region of controllability, i. e. the set of all x_{o} such that a control exists to drive the system from x_{o} to 0 in $\left[t_{o}, t_{f}\right]$ and $x(t) \in \mathbb{R}_{1}$, is thus a set that contains the following set as a subset

$$
\begin{equation*}
c=\bigcup_{t \in\left[t_{0}, t_{f}\right)} \bar{\varepsilon}(t) \tag{6.14}
\end{equation*}
$$

because if $x_{o} \in C$, some t_{1} exists such that $x_{o} \in \overline{\mathcal{E}}\left(t_{1}\right)$.
VI. 2. Example 6

Consider Example 1, case 1. From Figure 2, it is apparent that the point

$$
\begin{equation*}
x_{0}=\binom{a}{0} \quad a>.65 \tag{6.15}
\end{equation*}
$$

is not covered by the analysis of that example. However, we shall construct a controller to drive system (5.10)-(5.11) from x_{o} to the origin in the time interval $[0,1]$ using the method of Section VI. 1.

The first step is to find t_{1} such that $\mathrm{x}_{\mathrm{o}} \in \overline{\mathcal{E}}\left(\mathrm{t}_{1}\right)$ and $\overline{\mathcal{E}}\left(\mathrm{t}_{1}\right) \subset \mathbb{R}$, where \mathbb{R} is given by (5.12). This is equivalent to the problem discussed and solved in Section IV.1. We ask "Is $E\left(S(t), x_{o}^{T} S(t) x_{o}\right) \subset \mathbb{R}$?" for each t starting at $t=t_{0}$. Define the first value of t for which the answer is "yes" as t_{1}.

From (4.8),

$$
\begin{equation*}
\epsilon=x_{o}^{T} S(t) x_{0}=S_{11}(t) a^{2} \tag{6.16}
\end{equation*}
$$

Note that $a_{1}=-a_{2}=(0,1)^{T}$ and $b_{1}=b_{2}=-1$. Then if $Z(t)=S^{-1}(t)$, $a_{i} T^{-1}(t) a_{i}=Z_{22}(t)$ and, from (4.16), $C_{1}(t)=C_{2}(t)=$

$$
\begin{equation*}
C(t)=\sqrt{a^{2} S_{11}(t) Z_{22}(t)}-1 \tag{6.17}
\end{equation*}
$$

As long as $C(t)>0$, the answer to the above question is "no". The first time* at which $C\left(\begin{array}{c}(t)\end{array} \leqslant 0\right.$ is the time t_{1} 。

If $a=5, t_{1}=.84$ (when $[0,1]$ is discretized into 100 subintervals).
The control law for system (5.2) is

$$
\begin{equation*}
\mathrm{u}=-\frac{1}{2} \mathrm{G}^{\mathrm{T}} \overline{\mathrm{~S}}(\mathrm{t})_{\mathrm{x}} \tag{6.18}
\end{equation*}
$$

where $\bar{S}(t)$ is given by (6.4), (6.5), (6.6). In this case, of course, the restriction that $x(t) \in \mathbb{R}$ is a state constraint; it need not be satisfied to guarantee that $x\left(t_{f}\right)=0$. The solid trajectories in Figure 7 are from system (5.2). The trajectory that leaves \mathbb{B} is controlled by

$$
\begin{equation*}
u=-\frac{1}{2} G^{T} S(t) x \tag{6.19}
\end{equation*}
$$

where $S(t)$ is given by (5.4), (5.5). The solid line that stays inside \mathbb{R} is the trajectory of (5.2) that starts at $x_{0}^{T}=(5,0)$ and is controlled by (6.18).

The dashed line is the trajectory of (5.10)-(5.11) driven by

$$
\begin{equation*}
u=-\frac{1}{2} G^{T} \bar{s}(t) x-\left(1-x_{1}^{2}\right) x_{1} \tag{6.20}
\end{equation*}
$$

[^1]

FIG. 7 REGION R, ELLIPSE $\varepsilon\left(t_{1}\right)$, CONSTRAINED TRAJECTORIES OF (5.2), (5.10)-(5.11), AND AN UNCONSTRAINED TRAJECTORY OF (5.2).
starting at $x(0)^{T}=(5,0)$.
It appears that it is not necessary to use this method for all initial conditions in set C (6.14) which are not in $\overline{\mathcal{E}}\left(\mathrm{t}_{\mathrm{o}}\right)$. For instance, Figure 2 and Figure 7 both seem to indicate that if $x_{0}^{T}=(a, 0)$ and $|a|<4$, the trajectory of (5, 2) stays inside \mathbb{R} even though the control used is (6.19). Furthermore, this also may be true for the trajectory of (5.11)-(5.12) with control $u=-\frac{1}{2} G^{T} S(t) x-\left(1-x_{1}^{2}\right) x_{1}$. Further research is required in order to develop methods for characterizing these initial conditions. VI. 3. Application to Stability Theory

Theorem 4: Let $V(x, t)$ and $u^{*}(x, t)$ satisfy Theorem 1 for

$$
\begin{equation*}
\dot{x}=f(x, u) \tag{6.21}
\end{equation*}
$$

such that $\dot{V} \leqslant 0$ over the interval $\left[t_{o}, t_{f}\right)$ for all $x \in \mathcal{R}$. Let $t_{1} \in\left[t_{o}, t_{f}\right)$ be such that

$$
\begin{align*}
& V\left(0, t_{1}\right)=0 \tag{6.22}\\
& x \in \mathbb{R} \Longrightarrow V\left(x, t_{1}\right)>0 \Longleftrightarrow x \neq 0 \tag{6.23}\\
& \frac{\partial V}{\partial t}\left(x, t_{1}\right) \geqslant 0 \text { for all } x \in \mathbb{R} . \tag{6.24}
\end{align*}
$$

Then the system of differential equations

$$
\begin{equation*}
\dot{x}=f\left(x, u^{*}\left(x, t_{1}\right)\right) \tag{6.25}
\end{equation*}
$$

is stable about $\mathrm{x}=0$.
Proof: Define $W(x)=V\left(x, t_{1}\right)$. Then

$$
\begin{equation*}
\dot{W}=W_{x} \dot{x}=V_{x}\left(x, t_{1}\right) f\left(x, u^{*}\left(x, t_{1}\right)\right) \tag{6.26}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\dot{V}(x, t)=V_{t}(x, t)+V_{x}(x, t) f\left(x, u^{*}(x, t)\right) \leqslant 0 \tag{6.27}
\end{equation*}
$$

so

$$
\begin{equation*}
V_{x}(x, t) f\left(x, u^{*}(x, t)\right) \leqslant-V_{t}(x, t) \tag{6.28}
\end{equation*}
$$

Evaluating (6.28) at $t=t_{1}$,

$$
\begin{equation*}
V_{x}\left(x, t_{1}\right) f\left(x, u^{*}\left(x, t_{1}\right)\right) \leqslant-\frac{\partial V}{\partial t}\left(x, t_{1}\right) \leqslant 0 \tag{6.30}
\end{equation*}
$$

Comparing (6.30) and (6.26), we see that $\dot{W} \leqslant 0$, so that W is a Liapunov function and therefore (6.25) is stable.[7].

Note that if $\dot{V}(x, t)-\partial V(x, t) / \partial t<0$ at $t=t_{1}$ for all non-zero $x \in \mathbb{R}$, then (6.25) is asymptotically stable.

Theorem 5: Let $V(x, t)=x^{T} S(t) x$ satisfy Theorem 1 for

$$
\begin{align*}
& \dot{x}=f(x, u, t) \tag{6.31}\\
& x\left(t_{o}\right)=x_{o}, \quad x\left(t_{f}\right)=0 \tag{6.32}
\end{align*}
$$

with

$$
\begin{equation*}
u=w(x, S(t), t) \tag{6.33}
\end{equation*}
$$

for any x in some region \mathcal{E}, where $\mathrm{S}(\mathrm{t})$ satisfy the usual Riccati equation (5.4) and boundary conditions (5.5). Assume F and G are constant.

Assume that condition (iv) of Theorem 1 is satisfied as follows:

$$
\begin{equation*}
\dot{\mathrm{V}}=\mathrm{x}^{\mathrm{T}}\left(\dot{S}+S F+\mathrm{F}^{T} S-\mathrm{SGG}^{T} S\right) x+Q(x, S(t), t) \tag{6.34}
\end{equation*}
$$

where the first term is zero because $\mathbf{S}(\mathrm{t})$ satisfies the Riccati equation and where it is required that

$$
\begin{equation*}
Q\left(x, S\left(t_{1}\right), t\right) \leqslant 0 \tag{6.35}
\end{equation*}
$$

for some $t_{l} \in\left[t_{o}, t_{f}\right.$), for all $x \in \mathcal{E}$. Then system (6.31) is stabilized by

$$
\begin{equation*}
\mathrm{u}=\mathrm{w}\left(\mathrm{x}, \mathrm{~S}\left(\mathrm{t}_{\mathrm{l}}\right), \mathrm{t}\right) \tag{6.36}
\end{equation*}
$$

A Liapunov function for the stabilized system is

$$
\begin{equation*}
W(x)=V\left(x, t_{1}\right)=x^{T} S\left(t_{1}\right) x \tag{6.37}
\end{equation*}
$$

Proof: In the problem of solving (6.31), (6.32), the full time derivative of V is

$$
\begin{equation*}
\dot{\mathrm{V}}=\mathrm{x}^{\mathrm{T}} \dot{\mathrm{~S}} \mathrm{x}+2 \mathrm{x}^{\mathrm{T}} \mathrm{Sf}(\mathrm{x}, \mathrm{w}(\mathrm{x}, \mathrm{~S}, \mathrm{t}), \mathrm{t}) \tag{6.38}
\end{equation*}
$$

Comparing (6.38) and (6.34),

$$
\begin{equation*}
Q(x, S, t)=2 x^{T} S f(x, w(x, S, t), t)-x^{T}\left(S F+F^{T} S-S G G^{T} S\right) x \tag{6.39}
\end{equation*}
$$

Comparing (6.39) and (6.35),

$$
\begin{align*}
\Omega\left(x, S_{1}, t\right) & =2 x^{T} S_{1} f\left(x, w\left(x, S_{1}, t\right), t\right)-x^{T}\left(S_{1} F+F^{T} S_{1}-S_{1} G G^{T} S_{1}\right) x \\
& \leqslant 0 \tag{6.40}
\end{align*}
$$

(where $S_{1}=S\left(t_{1}\right)$), or

$$
\begin{equation*}
2 x^{T} S_{1} f\left(x, w\left(x, S_{1}, t\right), t\right) \leqslant x^{T}\left(S_{1} F+F^{T} S_{1}-S_{1} G G^{T} S_{1}\right) x \tag{6.41}
\end{equation*}
$$

Now calculate W for the system with u given by (6.36):

$$
\begin{equation*}
\dot{W}=2 x^{T} S_{1} f\left(x, w\left(x, S_{1}, t\right), t\right) \tag{6.42}
\end{equation*}
$$

From Theorem 2,

$$
\begin{equation*}
\mathrm{S}_{1} \mathrm{~F}+\mathrm{F}^{\mathrm{T}} \mathrm{~S}_{1}-\mathrm{S}_{1} \mathrm{GG}^{\mathrm{T}} \mathrm{~S}_{1} \leqslant 0 \tag{6,43}
\end{equation*}
$$

Then, by comparing (6.41), (6.42), (6.43), we see that

$$
\dot{W} \leqslant 0
$$

and the theorem is proved.
Consider a problem of Julich [5]: to find out if a given system is stable and if all trajectories that start in a region \mathcal{R}^{\prime} stay in that region for all t. System (6.25) is stable in that way if $W(x)=V\left(x, t_{1}\right) \leqslant \epsilon \Longrightarrow$ $x \in \mathbb{R} \cap \mathbb{R}^{\prime}$ for some real number ϵ (i.e., $\left.E\left(S\left(t_{1}\right), \epsilon\right) \subset \mathbb{R} \cap \mathbb{R}^{\prime}\right)$.

We have already (in Sections VI. 1, VI. 2) made use of Theorem 5 in the interval $\left[t_{o}, t_{1}\right]$. When F and G are constant, it is clear that Theorem 4 is satisfied by $V=x^{T} S(t) x$. All the systems in this paper that are controlled (by some control $u=w(x, S(t), t)$) can be stabilized (by $u=w\left(x, S\left(t_{1}\right), t\right)$ for any $\left.t_{1}\right)$.

Kalman [2] has shown conditions under which it is possible to stabilize

$$
\begin{equation*}
\dot{\mathrm{x}}=\mathrm{Fx}+G u \tag{6.44}
\end{equation*}
$$

by integrating a Riccati equation

$$
\begin{equation*}
\dot{S}+S F+F^{T} S-S G B^{-1} G^{T} S=-A \tag{6.45}
\end{equation*}
$$

backwards from $t=\infty$ to a finite value of t. (In practice, one integrates
(6.45) backwards from a finite value of t to a value of t such that $S(t)$ has settled down to a "steady state" solution* -- i.e., $\dot{\mathrm{S}}=0$.) A and B are positive definite matrices. (Actually, the conditions on A and B are somewhat more restrictive.)

By contrast, we stabilize (6.44) in the following manner: integrate

$$
\begin{equation*}
\dot{Z}-F Z-Z F^{T}+G G^{T}=0 \tag{6.46}
\end{equation*}
$$

with boundary condition

$$
\begin{equation*}
\mathrm{Z}\left(\mathrm{t}_{\mathrm{f}}\right)=0 \tag{6.47}
\end{equation*}
$$

until $t=t_{1}<t_{f}$, where t_{1} and t_{f} are finite times. Define $S\left(t_{1}\right)=Z\left(t_{1}\right)^{-1}$. Use control

$$
\begin{equation*}
u=-\frac{1}{2} G^{T} S\left(t_{1}\right) x \tag{6.48}
\end{equation*}
$$

It should be pointed out that we have only stabilized (6.44); we may not have rendered it asymptotically stable. Theorem 2 only guarantees that $\dot{S}\left(\mathrm{t}_{1}\right) \geqslant 0$, so that $\mathbf{S}\left(\mathrm{t}_{1}\right) F+\mathrm{F}^{\mathrm{T}} \mathbf{S}\left(\mathrm{t}_{1}\right)-\mathbf{S}\left(\mathrm{t}_{1}\right) \mathrm{GG}^{\mathrm{T}} \mathbf{S}\left(\mathrm{t}_{1}\right) \leqslant 0$. Then if $V=x^{T} S\left(t_{1}\right) x, \dot{V}=x^{T}\left(S\left(t_{1}\right) F+F^{T} S\left(t_{1}\right)-S\left(t_{1}\right) G G^{T} S\left(t_{1}\right)\right) x \leqslant 0$. If some t exists such that $\dot{S}(t)>0$, we may use that as t_{1} and thereby guarantee that $\lim x(t)=0$.
$t \rightarrow \infty$
As Kalman did, we calculate our stabilizing control by integrating an $n \times n$ matrix differential equation. However, we integrate over a finite interval, and thereby save computer time. The shortcomings of this method are that (l) it is only guaranteed for autonomous systems and (2) it may only result in non-asymptotic stability unless the user verifies that $S F+F^{T} S-S G G^{T} S<0$.

[^2]Of course, we are not restricted to linear systems. We may apply the techniques of this paper and [1] to control some time-varying systems and some nonlinear systems. Similar results have been obtained by Barnett and Storey [6].

VII. Conclusion

In [1], Theorem 1 was used to solve the following problem (Problem A) for various cases of system dynamics (7.3): find a control law $u(x, t)$ such that

$$
\begin{align*}
& x\left(t_{o}\right)=x_{o} \tag{7.1}\\
& x\left(t_{f}\right)=0 \tag{7.2}\\
& \dot{x}=f(x, u, t) \tag{7.3}
\end{align*}
$$

Theorem 1 requires a function $V(x, t)$ to exist and have certain properties. The control function $u(x, t)$ is such that

$$
\begin{equation*}
\dot{\mathrm{V}}(\mathrm{x}, \mathrm{t}) \leqslant \mathrm{M}<\infty \tag{7.4}
\end{equation*}
$$

(where M is a constant) on the trajectory of (7.3) starting at $x\left(t_{o}\right)=x_{0}$.
In all the applications of Theorem 1 in [1],

$$
\begin{equation*}
V=x^{T} S(t) x \tag{7.5}
\end{equation*}
$$

where $S(t)$ satisfies

$$
\begin{align*}
& \lim _{t \rightarrow t_{f}} S(t)^{-1}=0 \tag{7.6}\\
& \dot{S}+S F+F^{T} S-S G G^{T} S=0
\end{align*}
$$

The analogy between Theorem 1 and Liapunov stability theory [7] is clear. In the latter, the uncontrolled system

$$
\begin{equation*}
\dot{x}=g(x, t) \tag{7.8}
\end{equation*}
$$

is stable (asymptotically stable) about the origin if a function $V(x, t)$ exists which is positive definite and whose derivative satisfies $\dot{\mathrm{V}} \leqslant 0$ $(\dot{\mathrm{V}}<0)$.

The results of [1] have been extended in the following ways.

1. Consider Problem B: satisfy (7.1), (7.2), (7.3) and

$$
\begin{equation*}
\mathrm{x}(\mathrm{t}) \in \mathbb{R}, \quad \mathrm{t}_{\mathrm{o}} \leqslant \mathrm{t} \leqslant \mathrm{t}_{\mathrm{f}} \tag{7.9}
\end{equation*}
$$

where \mathbb{R} is some region in n-space.
When (7.4) is satisfied with $M=0$ and (7.7) is satisfied with constant F and G matrices, then it is shown in Section II that for $t_{o}<t \leqslant t_{f}$, $x(t) \in \mathcal{E}\left(t_{o}\right)$, where
so that if $\mathcal{E}\left(t_{o}\right)$ is a subset of \mathbb{R} the control function found for Problem A solves Problem B.
2. Controls are found above to solve Problem A for more general systems (7.3) then in [1]. In [1], some inequality $p(x, t) \geqslant 0$ is required to hold for all x and all $t, t_{o} \leqslant t \leqslant t_{f}$. By contrast in this paper, $p(x, t) \geqslant 0$ (for all t) defines a region \mathbb{R}. If (7.9) as well as (7.1), (7.2), (7.3) is required, we have a type B problem, to which the above technique may be applied. If it has a solution, the type A problem ((7.1), (7.2), (7.3)) has the same solution.

Several examples were performed to illustrate these techniques on type A and B problems. The type A problems considered in this paper cannot be solved by the methods given in [1].
3. In Section VI, the condition $\mathcal{E}\left(t_{0}\right) \subset \mathbb{R}$ is weakened as follows. With a small modification in the control law, any x_{0} that satisfies

$$
\begin{equation*}
\mathcal{E}(\mathrm{t})=\left\{\mathrm{z} \mid \mathrm{z}^{\mathrm{T}} \mathrm{~S}(\mathrm{t}) \mathrm{z} \leqslant \mathrm{x}_{\mathrm{o}}^{\mathrm{T}} \mathrm{~S}(\mathrm{t}) \mathrm{x}_{\mathrm{o}}\right\} \subset \mathbb{R} \tag{7.11}
\end{equation*}
$$

for some $t \in\left[t_{o}, t_{f}\right)$ can be driven to the origin. If some ellipse $x^{T} S(t) x=\epsilon$ passes through x_{o} and lies inside \mathbb{R} then (with the suitably modified control function) $x\left(t_{f}\right)=0$, and the trajectory satisfies $x(t) \in \mathbb{R}$.

Also in Section VI the relationship between Theorem 1 and Liapunov stability theory is demonstrated. For a large class of V functions satisfying Theorem 1 (including $V=x^{T} S(t) x$) and a large class of systems (7.3), a control function $\bar{u}(x, t)$ to stabilize the system is closely related to $u^{*}(x, t)$, a control function obtained from Theorem 1 . In that case a Liapunov function for (7.3) with $u=\bar{u}(x, t)$ is $V\left(x, t_{1}\right)$, where t_{1} is some fixed time.

Several areas of further research present themselves. Among them are the following questions.

1. Can any further statements be made about the trajectories beyond those of Section II? As pointed out in Section VI. 2, it is probably not necessary to resort to the technique of VI. 1 for all $x_{o} \in \mathbb{R}$ where $\mathcal{E}\left(t_{o}\right)$ is not a subset of \mathcal{R}. In other words, there are probably many $x_{0} \in \mathbb{R}$ where the trajectory generated by naively applying Theorem 1 behaves properly. How can these x_{0} be characterized?
2. For the type A problems as generalized herein, under what conditions can the state venture out of \mathbb{R} (i.e., go to where $p(x, t)<0)$ and still satisfy $x\left(t_{f}\right)=0$?
3. Generally, the F, G matrices chosen to form the "linear part" of the dynamics and thus to enter the Riccati equation are not unique. In most cases, any of a large set of such matrices would be appropriate. Is it possible to be "best" in some sense? For example, can we choose the F, G matrices to maximize the volume of $E\left(S\left(t_{o}\right), \epsilon\right)$ (which must be a subset of (R)? Note that this is not the same problem as in Section IV, where ϵ was chosen. Here we would like to manipulate $S\left(t_{o}\right)$. 4. For a given region R, how can set $C(6.14)$ be characterized? For instance, if $\mathbb{R}=\left\{x| | x_{n} \mid \leqslant 1\right\}$, under what conditions, if any, does C
include all of \boldsymbol{R} ? Also, because C is a union of ellipses, if $x \in C$, then $-\mathrm{x} \in \mathrm{C}$. What other properties of C can be determined?

\checkmark

[1] S. B. Gershwin and D. H. Jacobson, A Controllability Theory for Nonlinear Svstems with Applications, Harvard University Technical Report No. 592, July, 1969.
[2] R. E. Kalman, Contributions to the Theory of Optimal Control, Boletin de la Sociedad Matematica Mexicana, 2nd Series, Vol. 5, 1960, pp. 102-119.
[3] A. E. Bryson and Y. C. Ho, Applied Optimal Control, Blaisdell, 1969.
[4] R. E. Rink and R. R. Mohler, Completely Controllable Bilinear Systems, SIAM J. Control, Vol. 6, No. 3, 1968.
[5] P. M. Julich, Region of Acceptable Motions, IEEE Trans. Automatic Control, Vol. AC-13, No. 6, December 1968.
[6] S. Barnett and C. Storey, Some Result on the Sensitivity and Synthesis of Asymptotically Stable Nonlinear Systems. Automatica, Vol. 4, pp. 187-194. 1968.
[7] J. P. Lasalle and S. Lefschetz, Stability by Liapunov's Direct Method with Applications, Academic Press. 1961.

Security Classification

DOCUMENT CONTROL DATA - R \& D

4. DESCRIPTIVE NOTES (Type of report and, inctusive dates)
Interim technical report
5. AUTHRR(s) (First name, middle initial, last name)
Stanley B. Gershwin
\& David H. Jacobson

6. REPORT DATE	7a. Total no. of pages	7b. NO. OF REFS
January 1970	47	7
N00014-67-A-0298-0006 and NASA	9a. ORIGINATOR'S REPORT NUMBER(S)	

c.
d.
10. Distribution statement

This document has been approved for public release and sale; its distribution is unlimited. Reproduction in whole or in part is permitted by the U. S. Government.
11. SUPPLEMENTARY NOTES
12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

Recently, a nonlinear controllability theory based upon Liapunov-like notions was developed. In this paper the theory is generalized and strengthened, and a wider class of nonlinear systems is considered. In particular, conditions for controllability of a dynamic system which is subject to state variable inequality constraints are obtained. It is shown that initial conditions which are interior to a certain ellipse can be made to generate trajectories which remain in that ellipse and which reach the desired terminal state. When the ellipse is a subset of the feasible region of state space the trajectory clearly remains in this region (i. e. the state variable inequality constraints are satisfied). A design procedure for finding the largest such ellipse is given, and illustrative examples are presented. In addition, stabilization of constrained dynamic systems is considered.

Unclassified
Security Classification

[^0]: † Note that this definition of controllability (see also [1]) is different from Kalman's [2].
 *
 Some minor changes have been made in this theorem.

[^1]: ${ }^{*}$ Note that t_{1} is not critical. Any $t_{1}^{*} \geqslant t_{1}$ will work equally well in the control law described in Section IV.1.

[^2]: *We restrict ourselves to the constant coefficient case. Kalman allows F, G, A, and B to vary with time.

