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CONTROL OF NONLINEAR SYSTEMS IN REGIONS

OF STATE SPACE

By
Stanley B. Gershwin and David H. Jacobson
Division of Engineering and Applied Physics

Harvard University - Cambridge, Massachusetts

ABSTRACT

Recently, a nonlinear controllability theory based upon Liapunov=-
like notions was developed. In this paper the theory is generalized and
strengthened, and a wider class of nonlinear systems is considered.

In particular, conditions for controllability of a dynamic system which
is subject to state variable inequality constraints are obtained. It is
shown that initial conditions which are interior to a certain ellipse can
be made to generate trajectories which remain in that ellipse and which
reach the desired terminal state. When the ellipse is a subset of the
feasible region of state space the trajectory clearly remains in this
region (i.e. the state variable inequality constraints are satisfied). A
design procedure for findi-ng the largest such ellipse is given, and
illustrative examples are presented. In addition, stabilization of con-

strained dynamic systems is considered.
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I. Introduction

Consider the problem of finding a control policy u(x,t) to satisfy

x(to) =% (1.1)
x(tf) =0 (1.2)
x(t) = £(x(t), u(x, t), t) (1.3)

where ty and teare finite, specified, and to <t Here, x(t) is an
n-dimensional state vector, and u(x,t) is an m~dimensional control
vector.

We call this problem A, and, when a solution exists, we say that

(1.3) is controllable from (on._t_olio (O,tf_)_ .

The case where f(-) is a linear function of x and u, i.e., where

(1.3) is
x(t) = F(t)x(t) + G(t)u(t) (1.4)

was solved by Kalman [2] and is well known. Solutions have been obtained
by the authors [1] for several cases where f(-) is nonlinear. The following
theorem was used. It is assumed that u(t), ty S tSs te is restricted to
some constraint set ' L.
Theorem 1 [1]*

If a scalar function V(x,t) exists such that:
(i) Vx(x,t) and Vt(X’ t) exist for all x, t € [to, tf)
(ii) for all continuous c(t) (n-vector function of t)

lim c(t) # 0 ==> lim V(c(t),t) = o (1. 5)
t—>’cf t_>tf

t Note that this definition of controllability (see also [1]) is different
from Kalman's [2].

¢

Some minor changes have been made in this theorem.



(iii) V(xo, to) <€ B< oo

and if a control function u¥*(x,t) € ‘| exists such that:

(iv) along the trajectory of (1. 3) starting at (1.1), the full time derivative

V of V(x,t) satisfies:

V(x, t) = V. (x,t) + V_(x, )i(x, wk(x,t),t) S M < o

Vt € [to,tf) (1.

and the following limit exists:

Vix(t,), t) = lim V{x(t), )

)
£ tot

(v) the solution to {(1.3), (1.1) (with u(x,t) = u*(x,t)) exists, is unique,

and satisfies

x(t,) = lim x(t) (1.

t—>tf

e

then system (1. 3) is controllable from (xO, fb) to (O,tf) and u*(x, t)
accomplishes this transfer.

In each of the examples treated by this theorem in [1],

Vix,t) = x L S(t)x (1.

where S(t) is an n X n positive definite symmetric matrix satisfying

lim S_l(t) =0 (1.
t—t
£
and
5(t) + S(O)F(t) + F(t) Ts(t) - S(H)G(HG(E) TS(t) = 0 (1.

(Fand G are chosen in some appropriate manner such that (1.4) is com~-

pletely ¢controllable) and u*(x,t) is such that

V(x,t) = I'(x,t) < 0 (1.

i.e., Theorem 1 is satisfied with M = 0. In fact, in [1], the function

I'(x,t) is made negative or zero for all x (for allt € [to, tg)), although

the theorem only requires that I' S 0 along a trajectory.

6)

)

9)

10)

11)
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Extensions of the results given in [1] are contained in the present
paper:
1. A technique is developed which allows the condition that I'(x,t) S 0
for all x to be weakened. More precisely, the region &= {x|Ilx,t) S 0
for allt e [to, tf]} is defined and the state constrained problem of
finding u(x, t) to satisfy Problem A such that x(t) ¢ ® for t ¢ [to, tf] is
solved. See the next paragraph.
2. Let ® be some region of n-space, and denote the following problem

by Problem B: find u(x,t) to satisfy

. x(to) =%
x(tf) =0
%(t) = f(x(t), u(x(t), t), t)
x(t) € ® (1.12)

The first three conditions form Problem A; condition (1.12) is a state
variable constraint. A methoa is ’developed below which is applicable to
the case where ® is a region bounded by inequality constraints: in
particular where & contains the ellipse

S(to) = {xleS(to)x s ng(to)xo} (1.13)
It is shown that if F and G are constant and S(to) C &, the methods
developed in [1] for Proble;'n A also solve Problem B.
3. That there is an analogy between Theorem 1 and Liapunov's stability
theory is pointed out in [1]. Here, we show a precise mathematical
relationship between the control of a system using Theorem 1 and the
stabilization of that system using Liapunov techniques. Under certain
conditions (which include V 4 xTS‘(t)x), if a control exists which solves

Problem A, a slight modification of that control stabilizes (1.3). The
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Liapunov function of the stabilized system is just V(x,tl), where t; is

a fixed time (to St <t

p <ty

This technique is then used for the problems discussed in the
preceeding two paragraphs for cases where x, € ® but S(to) ¢ ®. These
cases are handled as follows: if some t exists such that S(tl) C |,
then "stabilize" (1. 3) from t = t, until t = t (i.e., apply the stabilizing
control in that time interval). From t = tl until t = tf, apply the control
obtained from Theorem 1. |

In Section II of this paper are found the analytic results upon
which paragraphs 1 and 2 above are based. It is shéwn that if F and G
are constant matrices, the solution to (1. 9), (1.10) satisfies S(t) Z 0
forallt < t’f. As a consequence, if V = %b(xT(t)S(t)X(t)) < 0 and

t St, < t, <tg the'n"'S(tZ) - S(tl). Then as t increases, x(t) is found

o 1
in (or on the boundary of) an ever-shrinking ellipse. Section III shows
how these results can be applied to A- and B-type problems.

“In the course of applying these techniques, it is often necessary to
ask: Is S(to) C ®? and What is the largest ellipse of the form

ES_, e = {x|x"s x < ¢ | (1.14)

such that E(SO, €) C®? Section kIVksuppliesv tec‘hniqﬁes to solve these
subsidiary problems when ®& is a‘region bounded by linear inequalities.

Section V contains specific examples to illustrate the techniques.
These examples are modifications of problems treated in [1].

The material summarized above in paragraph 3 is contained in

Section VI.

II. Analytic Results

The new control theory techniques that appear in succeeding sections

are derived from the mathematical results of this section. By means of
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Lemma 1, it is shown in Theorem 2 that the solution to Riccati equation
(2.2) with boundary condition (2. 3) has the property that S < o. Using
this result and Lemma 2, Theorem 3 proves that if V{x(t),t) = x(t)TS(t)x(t)
and V S 0 then x(t) is found in or on the boundary of an ever-shrinking
ellipse.
Lemma 1: Let

% = F(t)x + G(t)u (2.1)
be a linear time-varying dynamic system where x(t) is an n~vector and
u(t) is an m-vector. Assume that (2.1) is completely controllable at
time t to (0,t). Let S(t, tf) be the unique n x n matrix that satisfies the

matrix Riccati equation

9 T T 3
5t S(t, t0) + S(E, t)F(E) + F(6)S(t, ) = S(t,t)G()IG ()S(t,t) = 0

(2.2)
with boundary condition
lim s"l(t, t) =0 (2.3)
t—t
f
Then
2 5(t,t.) < 0 (2. 4)
ot > f .
f
Proof: Define
-1
Z(t,t) = 8" (t,ty) . . (2. 5)
Z(t, tf) satisfies
o) - T _
Bt Z(t, tf) F(t)Z(t, tf) Z(t, tf)F(t) +G(t)G @) =0 (2.6)
Z(tf, tf) =0 (2.7)
and thus [3] can be expressed as
t
d T T
Z(t,tf) = g &(t, 7)G(T)G (1)@ (t, 7)dT (2.8)
t

where &(t, 7) (the "transition matrix") satisfies



&(r,7) =1
The controllability assumption on (2.1) implies that Z(t, te is
positive definite and therefore invertible for every t < te [2].

From (2. 5) and (2. 8),

9 S 2 -1
'é;'f"z(ty tf) = =S "(t, tf)[ 8tf S(t, tf)]S (t, tf)
= a(t,t )G(t)G L (t )@ (t, t,)
't f f ot
or,
d o T T

The right-hand side of{2.12) is clearly negative semidefinite, so that
the lemma is proved;

Theorem 2: If in addition to the hypotheses of Lemma 1, F and G are
constant matrices, then

2 =
2 s(t,t) = 0

Proof: Because F is constant, we can write [3]
o(t, 7) = YT - t)
and (2. 8) can be written:
't T_T
Z(t,tf) = g‘ O(r - t)GG ¥ (7 - t)dT
vt
Let o =7 -t. Then
t.~t

£
Z(t,t,) = Y W)GG L ! (c)do
Jo

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)



From (2.16) it is clear that Z(t, tf) is a function only of tf - t. Therefore

S = Z"1 is a function only of te - t, which implies that

2

S(t, t
at, o

A - -
at 26 tp) = £

The proof follows from Lemma 1.

(2.

17)

Henceforth we will only consider the time invariant Riccati equation,;

i.e. F and G will be constant matrices. In addition, tf will be suppressed

as an argument of S and Z.
Lemma 2: Let V(x,t) = XTS(t)x, where xis an n-vector. Let y(t) be a

function of t such that

. _ -g— B . S
V= 3t Viy(t),t) = Vyy + Vt 0

Then for t <ty <ty

T T :
V(Y(tz),t ) = Y (tz)S(tl)Y(t2> S Y (tl)S(tl)V(tl) = V(Y(tl)’t ) -
Proof: Inequality (2.18) implies
T T
Viy(ty), t) = v (£)8(t,)y(ty) S vy (t))S(t))y(t)) = Viy(t),t,)-
Theorem 2 implies
<
S(t,) < S(t,)
which means that
T T
V(y(ty),t)) = v (£5)8(t)ylty) S v (£)S(t,)y(t,) = Viylty), tp) -
The lemma is proved by combining (2.20) and (2. 22).
Inequality (2. 19) implies that y(tz) is contained in the ellipse
T T
yUS(ty)y Sy (tg)S(ty)ylt)
Or, defining
_ T < T
e(t) = {z]z"s(t)z S y(t) "s(t)y(t)} ,
then (2. 19) implies that y(tz) € S(tl). A stronger result is proved in

Theorem 3: that for each z € S(tz), Z € S(tl).

(2.

(2.

(2

(2.

(2.

(2.

(2.

18)

19)

. 20)

21)

22)

23)

24)
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Theorem 3: Under the hypotheses of Lemma 2, S(tz) = S(tl).

Proof: Let x € S(tz). Then

xT8(t,)x < y(t,) TS(,)y(ty) (2.25)
From (2.21)

xSt )x < xTS(ty)x (2. 26)
and from (2.18)

yit,) TS(e,)y(t,) < y(t,) TS(e) )y (t)) (2.27)
Combining (2.25), (2.26), and (2.27),

xSt )% S y(t) TS( y(e) (2.28)

Inequality (2. 28) is equivalent to x € S(tl). Since x may be any point in

S(tz), the theorem is proved.

These results are illustrated in Figure 1. Ellipses S(ti)’ i=0,...,4
are shown (tO =0, t; = 2, ty = . 4, ty = . 6, ty = -8) where S(t) satisfies
(2.2), (2.3) with

"0 0 |
F = 5 G = s tf =1 .
-1 -1 0
Three trajectories x(t) are shown such that V(x(t),t) = 0.
III. Applications to Control Theory
Consider the dynamic system
x = f(x,u,t) (3.1)

Let V(x,t) = xTS(t)x be defined as in Theorems 1, 2, and 3. From
Theorem 1, if u(x,t) is such that V S 0, then X(tf) = 0. Techniques for
finding such control policies are given in [1] and below. From Lemma 2,
if to <t< tf’ x(t) € S(to). Theorem 3 implies that the ellipse &(t) is
shrinking with increasing t. These results are significanﬁ for the following

reasons.



FIG. 1

TRAJECTORIES OF

(2-1)

_I.O.J..

AND EVOLUTION OF

ELLIPSE &(t) FROM

t=0 TO t=1.
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(1) Let W(x,t) be the minimum energy function of (2. 1)

t

f .
W(x ,t ) = min 5 w T (t)u(t)dt (3.2)
o’ ‘o
u(-) vt
o)
where x(to) =X, x(tf) = 0y to and tf are given; and x(t), u(t) satisfy

(2.1). Then W(x,t) = ng(t)X, where §(t) satisfies

S+S5F+F'5-2566T5 =0 (3. 3)
. =, 1
lim S{t) " =0 (3.4)
t—t
f
Clearly Lemma 1 and Theorem 2 apply to S(t). The minimum energy
control is u = ‘%GT—S_X. Then
Wix,t) = x (5 + SF + F'3 - GG 9)x
= -%XTgGGT-S—X <0 (3. 5)

so that Lemma 2 and Theorem 3 are satisfied, Thus the results of
Section II apply to the time-invariant linear-quadratic optimal control
problem with constrained terminal state.

(2) Some state-variable inequality~constrained problems can now be
solved. Consider the following problem: region @ contains the initial
point x(to) =X and the terminal point X(tf) = 0, Find a control for (3.1)
which solves Probler'n A (see Section I) and is such that x(t) € ® for all

t e [to’tf] (Problem B). A solution is: if S(to) C ®, use a control u(x,t)
such that "f(x,t)‘ S 0. From Lemma 2, x(t) € S(to) for all ts St s t; and
therefore x(t) €« & From Theorem 1, x(tf) = 0.

(3) By using this technique for B-problems, the material in [1] for

A-problems may be generalized. In Theorem l and in Section II,

';/'(x, t) S 0is required merely along a trajectory x = x(t). In each of
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the examples of Theorem 1 in [1] some inequality of form p(x,t) = 0
(equivalent to \./'(x, t) S 0) is required to be satisfied for all x, t € [to,tf].
If it happens that p(x,t) is: not positive or zero for all x, convert
this problem to a B-problem in the following way. Define
® = {x|p(x,t) Z 0 forallt e [to,tf]} (3.6)
and solve the B-problem in the manner described in the previous para-
graph. The solution to this state-constrained problem clearly also

solves the original, unconstrained A=-problem.

IV. The Ellipse of Controllability

Define
ES, €) = {z]|z.52 S ¢ . (4.1)
In the notation of Section II,
B(t,) = E(S(t,), v (£ )S(e )yie,)) - (4.2)
To apply the techniques of Section IIL, it is necessary to determine .
whether or not S(to) C ®. Also, it is of interest to find the largest € such
that E(S(to), €) C & (because for any positive definite symmetric S,
€, > €, = E(S, el) - E(S, 62) ). The latter problem is related to a
problem of Julich [5] on acceptable motions of stable systems. See

Section VI.

In the following, ® is assumed to be a region with linear boundaries,

i.e.,
&= {xlalx+b S0, i=1,...,0 4

= XaiX+bi 0, i=1,..., (4. 3)
where a;, i=1,...,fare n-vectors and bi’ i=1,...,fare scalars. We
assume that x = 0 is an interior point of &, so b, <0, i= ..., L
IV.1. 1Is the Ellipse in &7

The statement E(S, €) C & is equivalent to
max max alx+b S0 (4.4)

L

X
A xTste
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The maximum of a;rx + bi occurs on the boundary of E(S, €). Therefore,

(4. 4) is equivalent to

max max a.'irx + bi 0 . (4.

i=1,...,2

x
XTSx=' €

” To detérr‘nihe if (4 5) 1s satisfied, calculate

(4.

5)

c.= max al'x+b, . (4. 6)
i < i i
x"Sx=¢€
Ifc, S0, i=1,.,.,4 then (4.5) is satisfied. To find ¢, let
i i
J. =c, + )\..(XTSX - €) (4.7)
i i i
where )\i is a scalar Lagrange multiplier, and maximize Ji subject to
XTSX =€ . (4.8)
Rewrite
J.=a x+b, + N\ (x'Sx - €) (4.9)
i i i i
Then
J. =al+2nx's |  (4.10)
_ 80 the maximizing value of x (where J, =0)is
T S 4.11
T W (4. 11)
i
Since X, is maximizing,
0=7J. = 2\.S (4.12)
.
and since S > 0, we expect A, < 0.
From (4. 8),
€= x Sx, = —3—?: als™la, (4.13)
A TR i
i
Yo}
A= 14)
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where the sign is chosen to satisfy (4.12). Equation (4. 11) implies

——)

-1

s " a (4.

v = |—E
L [aTsl, i
1 1

which clearly satisfies (4.8). From (4.6),

c. = aTx. + b, =/ eatrS-la. + b. (4.
1 1 1 1 1

Note that the positive square root is chosen in (4. 16) and that

b, <0, i=1 L.
1

g v 0 ey

The procedure for ascertaining whether E(S, €) C ® is a simple one:

evaluate c; for eachi = 1,...,,£. If any is positive, E(S, €) is not a subset
of ® and if none are positive, E(S, €) is contained in ®.

IV.2. The Largest Ellipse in &

It is clear that the largest ellipse in ® touches one or more of the

linear constraints at one point and does not touch the others at any points.

This is equivalent to

max c. =20 (4.

. i
i=l, ..., 12

where A is given by (4. 6) and (4.16). Write (4.16) as

c.(e) = ea.TS_la. + b, . (4.
1 1 1 1

Define
5
€ = — (4
! a.TS la
i i
€nin = min € (4
R =5 DU B
Note that

C1(€1) =0 . (4.

15)

16)

17)

18)

.19)

. 20)

21)
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Thus ellipse E(S, Ei) is tangent to the ith constraint; in fact E(S, Ei) is
the largest ellipse such that for every x € E(S, éi)’ a'irx + b, s 0.

)

E(S, Emin) is therefore the largest ellipse such that for every x € E(S, €min

atrx-l-b. S Oforalli=1,...,L
i i

V. Examples

V.1l. Example 1

Consider the dynamic system

%k = Fx + Gu + h(x,t) (5.1)
where
1}
G=| |
| 0
/ o
h = :
‘s,‘-p(x, t)XZ //i

p(x,t) is a scalar function of x and t and F is a constant matrix such
that the linear system
% = Fx + Gu (5.2)
is completely controllable (i.e., Foi £ 0).
Find a control u(x,t) to drive the state of (5.1) from its initial
value x(t ) = x_ to the origin at t = t >t . What conditions on p(x, t)
and X guarantee that (5.1) will be controllable from (xo, to) to (O, tf)?
This example was considered by Gershwin and Jacobson [1,
Example 2. 2. 3] who found that if p(x,t) ® 0 for all x and allt € [to, tel,
then (5.1) is completely controllable from t, to (0, tf) and a control that
drives the state to the origin is
afx, t) = =2 GS(t)x - plx, t)x (5. 3)

where S(t) satisfies
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5+SF+FLs-5GGTs = 0 (5. 4)
. -1

lim S™(t)=0 . (5. 5)

t—)tf

Control (5. 3) is known to satisfy Problem A because it satisfies

Theorem 1 with

V(x,t) = x S(t)x (5. 6)
and

V(x, t) = -2p(x, t)x " Sx . (5.7)
Clearly V S 0 because S is positive definite and p(x,t) is positive or zero
by hypothesis.

Now, relax the hypothesis that p(x,t) = 0 for all x. Define

& = {x|p(x,t) 2 0 Vte [to,tf]} . (5.8)
Assume that the origin is an interior point of & (i.e., that p(0,t) > 0 for
all t € [to’tf] ). Assume also that x_ € &.

Consider control (5. 3). If the trajectory generated by this control
stays in &, then x(tf) = 0 because if x € & p # 0 and (5. 7) implies that
Theorem 1 holds.

By Lemma 2, if ellipse S(to) C &, the trajectory stays in ®. To
find out whether S(to) C ® or to find the largest € such that E(S(to), €) T R,
the methods of Section IV al')ply, (if & has linear boundaries).

Now let t, = 0, te = 1, and

F = (5.9)

and consider the following special cases of (5.1).

V.1.1. Casel

2
pl—l-x2

Then (5.1) becomes
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i, = u (5.10)

k) = mx, = 2%, + %o (5.11)

2 1 2 t % :
Then

®]; = {x|1 - xg 2 0} = {(XI’XZ) Ile < 1}
= {(x,x,)|x;, =1 50, -x, - 1 < 0} (5.12)

The latter form for expressing (Rl is chosen to conform with the

notation of Section IV. Comparing (5.12) with (4. 3), it is readily seen

that £ = 2,
(o\
a1: 4\1v b1:‘1
0\\
a, = _1; bZ:-l

The solution of Riccati equation (5.4) with boundary condition (5. 5)

is such that

" 1 .718\}

. 718 .?58/

It is a simple matter to calculate € nin from (4.19), (4.20):

e . =1,32
min

"It should be pointed out that in [1, Example 2. 2. 3], 5(2 = TX) T Xy T xg
so that p(x,t) = xg. If we had chosen the F-matrix differently in the
present case, i.e., if instead of (5.9),

0 o)

F =
-1 0

then (5.11) would have become 5;2 = TXy T X, + xg. Thus, by a tricky
redefinition of the system matrix, we can solve a problem that might

appear to the reader of [1, Example 2. 2. 3] to be impossible.
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Figure 2 displays (Rl and the ellipse § = E(S(0), 1. 32). Three trajectories

of (5.1) (solid lines) and three trajectories of (5.10)-(5.11) (dashed lines)

are shown.

V.1.2, Case 2

pp=l-x
In this case, system (5.1) is

k) =u

5{2 = mxy - sz + X%y
Equation (5. 13) implies

(B.Z = {(xl,xz)lx1 -1 < 0}
From the notation of (4.3), £=1,

1

a = R b=-1
0

(5..13)

(5.14)

(5.15)

(5.16)

which implies that € nin - 1. Figure 3 is similar to Figure 2, displaying

&, £ = E(S(0), 1) and trajectories of (5.2) and (5.14)-(5.15).

V.2,

Example 2

Consider system (5.1) with

((5.2) is completely controllable) and

( 0
h(x,t) =
(x,t) \ —p(x,t)xl

(5.17)

where p(x,t) is a scalar function. In Example 2.2.5 of [1] it is found that

if V(x,t) = x1S(t)x (where S(t) satisfies (5.4), (5.5)) and

then

1

u(x, t) = =2 GUS(E)x + (S,,(0)/5,(D)p(x, thx

(5.18)
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detS 2

Vix,t) = 2'—8-—-X1p(x, t) (5.19)
12
h detS =S5,.S "'S2 >0
where detS = 5,,S,, 12 .

In that example p(x,t) = 0 and Slz(t) < 0 for all x and t so that
Theorem 1 applies and x(tf) = 0,
For the present, let t, = 0, te = 1, and for illustration purposes let
p(x,t) =1 + min(xl,xz) . (5.20)
and let us find a set of initial conditions that can be driven to the origin in
the time interval [0,1]. In this case, system (5.1) becomes

kl — (5.21)

5{2 = "2X1 "X, T Xy min(xl,xz) . (5.22)
It is certainly not true that p # 0 Vx. Following the method out-
lined in Section III, define

® = {x|p(x,t) = 0}

= {x]ax +b,5 0, i=1,2) (5.23)

(in the notation of Section IV), where

a, = | b, = -1
1 2_1 1

- ~

a, = | b, = -1
2 0/ 2

1}
i
—

.

From (4.19) and (4. 20), € = 1.32, €min - €2 °

E(S(0),1) and a set of trajec-

Figure 4 shows region ®, ellipse §
tories of (5.21)-(5.22) with control law (5.18).
V.3. Example 3

Consider the dynamic system

% = Fx + G(x, t)u (5.24)
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where F is a constant matrix and G(x,t) is a matrix function of x and t.
Let G be a constant matrix such that the linear system
% = Fx + Gu (5.25)
is completely controllable and define S(t) as the solution to (5.4), (5.5).

In [1, Example 2.2.5] Theorem 1l is used to show that if the control

u = —%GTS(t)x (5. 26)
is used over the interval [to, tf] and G, G satisfy
A=2GGT - GGT -GG <0 . (5.27)

For all x, t, then x(tf) = 0. In this case, V = xTS(t)x and
- 2x75(2GGT - GG - GG)sx . (5.28)
Now, if matrix A is not negative semidefinite for all x and t, the
methods of the previous sections may apply. Define region &
R = {x|Aa(x,t) € 0 for all x,t} . (5.29)
According to Section III, if x € E(S(to), €) and € is such that E(S(to), €) C K,
then controller (5. 26) transfers system (5.24) from x(to) =X to

x(tf) = 0.

As a specific case, let t, = 0, .tl =1,

0 0
F =
-1 -1
0 ;
System (5. 24) becomes
5(1 = (2 + %y + xz)u (5.31)
5(2 = "Xy 7%, (5.32)

. Let
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From (5.27),

1+x1+x2 0
A= -2 <90 (5. 33)
0 0

which is satisfied whenever

l+x,+x, 20 . (5.34)

1

Therefore ® is defined by a linear inequality and the methods of

2

Section IV apply.

& ={x|alx +b < 0}

where
-1
a = b=-1
-1
From (4.19), (4.20), € nin = ° 31, Figure 5 displays region R,

ellipse § = E(S(0), . 31), and trajectories of (5. 31)-(5. 32).
Note that system (5. 31)~(5.32) is a bilinear system, of the form

discussed by Rink and Mohler [4].

V.4. Example 4

Consider the problem of driving

k= (24 % +x,)u (5. 35)

i}

5{2 "Xy - sz + %1%, (5. 36)
from x = x_ to x = 0 in the time interval [0,1]. This system combines
the least desirable features of systems (5.14)-(5.15) and (5. 31)-(5. 32).
Let
0 0 1
F =
-1 -1 0

and let S satisfy (5.4), (5.5).
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Rewrite (5.35)=(5.36) as
¥ = Fx + Gu + h(x, t) (5.37)
where h is given in Example 1, case 2 and G is given in Example 3. Let

Vi(x,t) = xTS('t)x and choose

u=-2GTsx+qix,t) . (5.38)
Then
V = >xTsaSx + 2% S(Gq + h) (5. 39)
where
a =26GT - 86T - GGt
14+x, +x 0
= =2 1 2 (5. 40)
0 0
and
~ (2 + Xy + xz)q
Gq + h = . (5.41)
-xz(l - Xl)
Consider the following nonlinear control term:
-x,{1l - %x;)
1 1
q = 5or———————— . (5.42)
2+ X + X5

Ignore, for the moment, the difficulty that arises when the denomina-
tor of q is zero. Egquation (5.41) becomes
Gg +h=-(1 -xl) (5. 43)
*2
so the second term of (5. 39) is
(1= x)xTsx . (5. 44)

Define region ® in the following way:

\Y

a:{x|1+x1+x2>o and 1 - x; 0} . (5. 45)

V S 0 for all x € & The largest ellipse E(S(0), €) C ® can be found

by the methods of Section IV. Rewrite
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&= {x|a/x+b<0, i=1,2} (5. 46)
where
-1
a, = b, = -1
1 i 1
/1

a, -1

i
T
o
o
[\
H

From (4.19), (4.20), ¢ = .31, €, = 1, € = €. Then if

min
X € E(S(0), .31) and u(x,t) is given by (5. 38) and (5.42), x(t) € E(5(0),.31),
0 <t<1andzx(l)=0.

What about th‘e denominator of (5. 42)?_ Clearly, if x € E(S(0),.31), then
x€®, and ! +x; +x, Z 0. Therefore 2 + x + %, Z 1, so the deno-
minator of (5.42) is never zero.

Figure 6 showé fegion ®, ellipse & = E(S(0),.31) and several tra-
jectories of (5.35)-(5.36).

V.5. "Example 5

There are cases where the states of linear, time-varying systems
may be bounded by the techniques used in Section III, even though those
results seem to apply only to autonomous systems.

Consider the system

%= F(t)x + G(t)u . (5.47)

Find a control to drive the state from x(to) =% to x(t,) = 0.

£
Let F and G be constant matrices such that the constant coefficient
system

x = Fx + Gu (5. 48)

is completely controllable, and define S(t) as the solution to (5.4), (5.5).



710

FIG. 6

%// T

-0.27

|

72
REGION R, ELLIPSE &€ AND SET OF TRAJECTORIES OF EXAMPLE

07




-28-

where we have used the asymptotic expression for I, and (lEL(t')I 2) is
the time average of the laser intensity. The maximum of the exponent

le)z/l"z, and the result is essentially the

occurs at (t' - t") = Klnz( |E
steady state power gain exp GSS with GSS given by Eq. (14),

If the input Stokes signal ES(O,t') has a constant phase, and does
not follow the phase variations in the laser pump, the integral in Eq. (lla)
is reduced by GSSAw/'_", compared to the case that the phases of the laser
and Stokes are in sychronism. This may be seen from the fact that th_e |
exponential in Eq, (18) has a 1/e width of GSS /= aréund its maximum,
and the laser phases reverse sign about Gss(Aw/l“) times, The Stokes
gain coefficient is thus GSS - J&n(GSSAw/T‘). For large steady state gain
GSS this reduction is insignificant, The amplified Stokes field ""automa-
tically' assumes t,h; correct phase variation for maximum gain,

In figure 12, the result of a numerical calculation is shown for the
dispeyrsionless case in which these considerations are confirmed, A
Gaussian envelope with a random spectral distribution is taken, The half
width of the power spectrum is Aw = 20", This corresponds to a stationary
random process switched on at t' = 0. Since the numerical calculation is
possible only for a finite number of Fourier components, the laser pulse
shown in figure 12 is assumed to repeat itself with a period of about 800/T,
The Stokes gain coefficient is calculated from Eq. (lla) as a function of
time at a point z, for which GSS =46, The broken line in figure 12 shows
the Stokes gain coefficient for a laser with no phase modulation or fre-
quency broadening, switched on att' = 0. The Stokes gain coefficient for
the random laser pulse follows essentially the same curve except for a
constant factor of about Zn(GSSAw/I‘), and except near z = 0, Figures 12b

and c show that the Stokes amplitude structure follows the variations in the
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VI. Extensions

VI.1l. Enlarging the Region of Controllability

Suppose X € & but X is not in ellipse E(S(to), €) for any € such that

E(S(to), €) C ®. This case is not covered by the methods discussed

above. In this section we shall develop a method to drive the state from

some such x  to the origin within the time interval [to, tf].

Define

€(t) = arg max {E(S(t), €) C K}
€

£(t) = E(S(t), e(t))

i.e., £(t) is the largest ellipse of the form {x[xTS(t)x < €} which is a

subset of ®. S(t) satisfies (5.4), (5.5) with some appropriately chosen

F, G matrices.

Consider the case where X f_é(to) but X, € —é(t) for some t,

(6.1)

(6.2)

to <t<t, Define t; as the smallest value of t for which’xo € §(t). Con-

f

sider the function
V(x,t) = ng(t)x
where §(t) satisfies

lim 5¢) ! =0

t—>tf .

S+SF+F's-5GGIS=0, t; <t<t
S(t) =S <t <
S(t)-S(tl), t, t t

Note that S(t) = S(t), t; S t<t,and S(t) = S(t)), t, St <t

It is clear that V(x,t) and X satisfy conditions (i), (ii), and (iii)

of Theorem 1. Consider the control
u(x, t) = wix, S(t), t)

where w(- ) is a function such that the control

(6. 3)

(6.4)

(6. 5)

(6. 6)

(6.7)



-30~

u(x, t) = w(x, S(t), t) (6. 8)
satisfies Theorem 1 with V = xTS(t)x for all x eg(to). * Clearly condition
(v) of Theorem 1 is satisfied by (6. 7) if x(t) is sufficiently close to 0 for
t> tl’ because for t > t1s (6.7) and (6. 8) coincide. Note that the state
is sufficiently near the origin if x(tl) € _é(tl)'

Condition (iv) is satisfied as follows:

V= xTE +5F + FTS - 56GTE)x + Q(x, 1) (6.9)
where the derivative is taken with the control given by (6. 7), and Q(x, t)+
is a negative semidefinite function in &.

Whent >t,, (6.9) reduces to V = Q(x,t) and if.x € R, v < 0.

f}
Therefore, if x(t) € E(t;), VvV S 0.

For ty Sts tys (6.9) becomes
v = xTEF + FT5 - 366 T8)x + Q(x, ) (6.10)
From Theorem 2 (2.13) :S_(t) = 0, t; <t <ty Then, from (6.5)
SF + F'S - 5GG'S5 < 0 | (6.11)
for t; <t <t,. Inequality (6.11) also holds for ty S t S t) because Sis

defined to be continuous at t = t and constant on [to,tl]. Therefore

V < 0on tg St St as wellas t, <t <t, so condition (iv) of Theorem 1

1 1 £
holds.
By hypothesis, X € 5(1:1) and therefore xrc])'ﬂS(tl)xo < E(tl). For

t >y, 5(t) = S(t) so V(x_,t ) = x_5(t_)x_ = x.S(t;)x_ < €(t;). Because

sk

"In other words, w(x,S(t),t) is the general form of the control function.
For the linear system % = Fx + Gu, w(x,S5,t) = —-;:GTSX. In Example 1,
w(x,S,t) = "IZ'GTSX - pix, t)x
S instead of S.

1 (from (5. 3)). Equation (6.7) says to use

‘+Q(x, t) is due to the nonlinear part of the dynamics. For a linear system,
Q = 0. In Example 1, Q = -2p(x,t)x Sx. In Example 3, Q = 3x 5(2GG" -
GGT - GGT)5x.
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v s 0, V(x(t)b,t) N Vix_,t) N -E(tl) for allt € [to, tf]. In particular,
Vix(t;), t1) = x(t)) TS(e))x(t,) S €(t;). Therefore x(t;) € &(t;), and
Theorem 1 holds.

Also, Lemma 2 and Theorem 3 hold.for t € [tl’tf)'

To summarize, consider the problem of driving the system

x = f(x,u,t)

1]

from x(to) x  to x(tf) = 0 such that x(t) € (Rl for all t. Define S(t) to
be the solution to (5.4), (5.5) for some F, G matrices. Define
V = xTS(t)x and let u = w(x, S(t), t) be such~that
Vso (6.13)
for-all x € &, for allt e [to,tf]. Let & = &, N ®, and define €(t) as in

(6.1), (6.2). Ifthere exists some t; € (t such that X eg(tl), define

o’ tf)
S(t) as in (6.4), (6.5), (6.6). The controlu = w(x, S(t), t) is such that
x(tf) = 0and x(t) € ® for allt e [to, tf].

The region of controllability, i.e. the set of all X such that a

control exists to drive the system from x_to 0 in [to’tf] and x(t) € &,

is thus a set that contains the following set as a subset

C = U (t) (6.14)

tet ,ty)
because if x € C, some tl' exists such that X, € E(tl).

VI.2. Example 6

Consider Example 1, case 1. From Figure 2, it is apparent that

the point
x = a>.65 (6.15)

is not covered by the analysis of that example. However, we shall con-
struct a controller to drive system (5.10)-(5.11) from X to the origin

in the time interval [0, 1] using the method of Section VI. 1.
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The first step is to find t; such that x_ € E(tl) and 's'(tl) C |,
where ® is given by (5.12). This is equivalent to the problem discussed
and solved in Section IV.1. We ask "Is E(S(t), xZS(t)xo) C R ?" for each
t startingatt =t _. Define the first value of t for which the answer is

"ves" as ty-

From (4.8),
T 2
= xOS(t)xo = Sll(t)o, . (6.16)
T . -1
Note that a; = -a, = (0,1)" and b1 = b2 = =1. Then if Z(t) =S " (t),
T.-1
a, S (t)a.i = ZZZ(t) and, from (4. 16), Cl(t) = Cz(t) =
2
Clt) =ﬂsll(t)z22(t) -1 (6.17)
As long as C(t) > 0, the answer to the above question is "no". The

first time* at which C(t) < 0 is the time t;.
Ifa =5, t; =.84 (when [0, 1] is discretized into 100 subintervals).
The control law for system (5.2) is

= -%GTg(t)X (6.18)

where S(t) is given by (6.4), (6.5), (6.6). In this case, of course, the
restriction that x(t) € & is a state constraint; it need not be satisfied to
guarantee that x(tf) = 0. The solid trajectories in Figure 7 are from

system (5.2). The trajectory that leaves @& is controlled by

1

->GTs(t)x (6.19)

where S(t) is given by (5.4), (5.5). The solid line that stays inside & is
the trajectory of (5. 2) that starts at x;r = (5, 0) and is controlled by (6. 18).

The dashed line is the trajectory of (5.10)-(5.11) driven by

[u—

2

u=-2GTS(0x - (1= x0)x, (6. 20)

sk 3k
Note that ty is not critical. Any t] # t] will work equally well in the
control law described in Section IV. 1.
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starting at x(0)T = (5, 0).

It appears that it is not necessé.ry to use this method for all initial
conditions in set C (6.14) which are not in E(to). For instance, Figure 2
and Figure 7 both seem to indicate that if xg = (a, 0) and ]al < 4, the
trajectory of (5.2) stays inside ® even though the control used is (6.19).
Furthermore, this also may be true for the trajectory of (5.11)-(5.12)
with control u = -%GTS(t)x - (1 - x%)xl. Further research is required
in order to develop methods for characterizing these initial conditions.

VI.3. Application to Stability Theory

Theorem 4: Let V(x,t) and u*(x,t) satisfy Theorem 1 for

% = £(x, u) (6.

such that V S 0 over the interval [to’tf) for all x € &. Lett; €[t ,t;) be

such that

V(o,tl) =0 (6.

xe® =>V(x,t1)>0®x;!0 (6.

v

—(,3-E-(x,t1)2 0 for all x.e(R . (6.
Then the system of differential equations

% = f(x, uw¥(x, tl)) (6.
is stable about x = 0.
Proof: Define Wix) = V(x,t_l). Then

W= Wx}'{ = Vx(x, tl)f(x, wk(x, tl)) . (6.

Also,

Vix, t) = V. (x,t) + V_(x, t)(x, u¥(x,t)) S 0 (6.
SO

Vx(x, t)f(x, uk(x, t)) S -Vt(x, t) . (6.

21)

25)

26)

27)

28)
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Evaluating (6.28) at t = t1s

Vx(x,t )f(x,u*(x,tl)) S -== (x,tl) S0

Comparing (6. 30) and (6.26), we see that W S 0, so that Wis a

Liapunov function and therefore (6.25) is stable.[7].

(6.

Note that if V(x,t) - oV(x,t)/ot <0 att = t; for all non-zero x € &,

then (6.25) is asymptotically stable.

Theorem 5: Let V(x,t) = xTS(t)x satisfy Theorem 1 for
% = f(x,u,t)
x(to) =%, x(tf) =0

with

u = w(x,S(t),t)

(6.
(6.

(6.

for any x in some region §, where S(t) satisfy the usual Riccati equation

(5. 4) and boundary conditions (5. 5).. Assume F and G are constant.
Agsume that condition (iv) of Theorem 1 is satisfied as follows:

V = x1(§ + SF + FIS - SGGLS)x + Q(x, S(t), t)
where the first term is zero because S(t) satisfies the Riccati equation
and where it is required that

Q(x, S(t]),t) S 0

(6.

(6.

for some t; € [to, tg), for all x € & Then system (6.31) is stabilized by

u = wix, S(tl), t)
A Liapunov function for the stabilized system is

Wix) = V(x,tl) = XTS(tl)X

(6.

(6.

Proof: In the problem of solving (6.31), (6.32), the full time derivative

of Vis
V = xTSx + ZXTSf(x,w(x, S, t),t)
Comparing (6. 38) and (6. 34),

Q(x, S, t) = 2x ' Sf(x, w(x, S, t),t) - x (SF + F1S - SGG1S)x

(6.

(6.

30)

31)

35)

36)

37)

38)
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Comparing (6. 39) and (6. 35),

T ' T T T
Q(x,Sl,t) = 2x Slf(x, w(x,Sl,t),t) - x (SIF +F78) - SlGG Sl)x

S0 (6. 40)
(where S1 = S(tl)), or

ZXTSIf(x, w(x,Sl,t),t) < xT(SlF + FT

s, - 5,GGTs)x . (6. 41)
Now calculate W for the system with u given by (6. 36):
W = ZxTSlf(x, wlx, S,t),t) . (6. 42)
From Theorem 2,
5,F+F's -5GG's <0 . (6.43)
Then, by comparing (6.41), (6.42), (6.43), we see that
W <o
and the theorem is proved.
Consider a problem of Julich [5]: to find out if a given S}.rstem is
stable and if all trajectories that start in a region ®' stay in that region
for allt. System (6.25) is stable in that way if W(x) = Vix,tg) S ¢ =
x € ® N R' for some real number € (i.e., E(S(tl), e C @ NA".
We have already (in Sections VI. 1, VI.2) made use of Theorem 5
in the interval [to, t;]. When F and G are constant, it is clear that
Theorem 4 is satisfied by V'= xTS(t)x. All the systems in this paper
that are controlled (by some control u = w(x, S(t),t)) can be stabilized
(by u = w(x, S(tl),t) for any tl).
Kalman [2] has shown conditions under which it is possible to
stabilize
¥ =Fx + Gu (6.44)
by integrating a Riccati equation
5+SF+F's-sGB lGTs = -A (6. 45)

backwards from t = oo to a finite value of t. (In practice, one integrates
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(6.45) backwards from a finite value of t to a value of t such that S(t)
has settled down to a "steady state" solution* --i.e., S = 0.) Aand B
are positive definite matrices. (Actually, the conditions on A and B
are somewhat more restrictive.)
By contrast, we stabilize (6.44) in the following manner: integrate

TiacT:-o (6. 46)

2 - FZ - ZF
with boundary condition

Z(tf) =0 (6.47)
until t = t1 < tf, where tl and t.f are finite times. Define S(tl) = Z(tl)-l.
Use co.ntrol

uw=-2GTs(e)x (6. 48)

It should be pointed out that we have only stabilized (6. 44); we may

not have rendered it asymptotically stable. Theorem 2 only guarantees
that 5(t;) > 0, so that S(t;)F + F S(t;) - S(t)GG S(t,) < 0. Then if
V= xTS(t)x, V= xT(S(tl)F + FTS(tl) - S(tl)GGTS(tl))x < 0. If some t
exists such that é(t) > 0, we may use that as t; and thereby guarantee

that lim x(t) = 0.
t —-o0

As Kalman did, we calculate our stabilizing control by integrating
an n x n matrix differentia'.l equation. However, we integrate over a finite
interval, and thereby save computer time. The shortcomings of this
method are that (1) it is only guaranteed for autonomous systems and
(2) it may only result in non-asymptotic stability unless the user verifies

that SF + F1S - SGGTS < 0.

“We restrict ourselves to the constant coefficient case. Kalman allows
F, G, A, and B to vary with time. '
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Of course, we are not restricted to linear systems. We may apply
the techniques of this paper and [1] to control some time-varying systems
and some nonlinear systems. Similar results have been obtained by

Barnett and Storey [6].

VII. Conclusion
In [1], Theorem 1 was used to solve the following problem (Problem A)

for various cases of system dynamics (7. 3): find a control law u(x,t)

such that
x(t ) = % (7.1)
x(tf) =0 (7.2)
% = f(x,u,t) . (7.3)
Theorem 1 requires a function V(x,t) to exist and have certain
properties. The control function u(x,t) is such that
V(x,t) S M < o (7. 4)
(where M is a constant) on the trajectory of (7. 3) starting at x(to) =X
In all the applications of Theorem 1 in [1],
V = x S(t)x (7.3)
where S(t) satisfies
lim S(t)" = 0 (7.6)
1:—>tf
S+SsF+Fis-scgis=0 . (7.7)
The analogy between Theorem 1 and Liapunov stability theory [7]
is clear. In the latter, the uncontrolled system
% = g(x,t) (7.8)

is stable (asymptotically stable) about the origin if a function V(x, t)
exists which is positive definite and whose derivative satisfies V<o

(V < 0).
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The results of [1] have been extended in the following ways.
1. Consider Problem B: satisfy (7.1), (7.2), (7.3) and
x(t) e ] , tOStStf (7.9)
where ® is some region in n-space.

When (7. 4) is satisfied with M = 0 and (7. 7) is satisfied with con-
stant F and G matrices, then it is shown in Section II that for t <t < te
x(t) € S(to), where

&t ) = {zlzTS(t Yz S XTS(t )x } (7.10)

o o o ‘oo

so that if S(to) is a subset of ® the control function found for Problem A
solves Problem B.
2, Controls are found above to solve Problem A for more general systems
(7.3) then in [1]. In [1], some inequality p(x,t) ® 0 is required to hold
for all x and all t, t_ St s t; By contrast in this paper, p(x,t) Z 0 (for
all't) defines a region & . If (7.9) as well as (7.1), (7.2), (7.3) is re~
quired, we have a type B problem, to which the above technique may be
applied. If it has a solution, the type A problem ((7.1), (7.2), (7.3)) has
the same solution. ‘

Several examples were performed to illustrate these techniques on
type A and B problems. The type A problems considered in this paper
cannot be solved by the methods given in [1].

3. In Section VI, the condition S(to) C @ is weakened as follows. With
a small modification in the control law, any X that satisfies

&(t) = {z|27S(t)z < x2S(t)x } C & (7.11)
for some t € [to’tf) can be driven to the origin. If some ellipse xTS(t)x =€

passes through X and lies inside ®& then (with the suitably modified control

function) x(tf) = 0, and the trajectory satisfies x(t) € &.
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Also in Section VI the relationship between Theorem 1 and
Liapunov stability theory is demonstrated. For a large class of V=
functions satisfying Theorem 1 (including V = xTS(t)x) and a large class
of systems (7. 3), a control function E(x, t) to stabilize the system is
closely related to u*(x,t), a control function obtained from Theorem 1.
In that case a Liapunov function for (7. 3) withu = E(x, t) is V(x,tl),
where t is some fixed time.

Several areas of further research present themselves. Among
them are the following questions.

1. Can any further statements be made about the trajectories beyond
those of Section II? As pointed out in Section VI. 2, it is probably not
necessary to resort to the technique of VI.1 for all X € ® where S(to)
is not a subset of ® In other words, there are probably many X e ®
where the trajectory generated by naively applying Theorem ‘1 behaves
properly. How can these X be characterize'd?

2. For the type A problems as generalized herein, under what condi-
tions can the state venture out of a.(i. e., go to where p(x,t) < 0) and
still satisfy x(tf) =07

3. Generally, the F, G matrice.s chosen to form the "linear part" of
the dynamics and thus to }enter the Riccati equation are not unique. In
most cases, any of a large set of such matrices would be appropriate.
Is it possible to be "best" in some sense? For example, can we choose
the F, G matrices to maximize the volume of E(S(to), €) (which must be
a subset of ®)? Note that this is not the same problem as in Section IV,
where € was chosen. Here we would like to manipulate S(to)"

4., For a given region ®, how can set C (6. 14) be characterized? For

instance, if ® = {x lxnl S 1}, under what conditions, if any, does C
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include all of ®? Also, because C is a union of ellipses, if x € C, then

-x € C. What other properties of C can be determined?
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