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ABSTRACT 

Recently, a nonlinear controllability theory based upon Liapunov- 

In this paper the theory is generalized and like notions was developed. 

strengthened, and a wider c lass  of nonlinear systems is  considered. 

In particular,  conditions for controllability of a dynamic system which 

is subject to state variable inequality constraints a r e  obtained. 

shown that initial conditions which a r e  interior to a cer ta in  ellipse can 

be made to generate t ra jector ies  which remain in  that ellipse and which 

reach the desired terminal  state. 

feasible region of s ta te  space the t ra jectory clear ly  remains in  this 

region (i. e. the state variable inequality constraints are  satisfied). 

design procedure for  finding the largest  such ellipse is given, and 

i l lustrative examples a r e  presented. In addition, stabilization of con- 

strained dynamic systems i s  considered. 

It is 

When the ellipse i s  a subset of the 

A 



I. Introduction 

Consider the problem of finding a control policy u(x, t )  to satisfy 

x(to) = x 0 ( 1 . 1 )  

X(t f )  = 0 ( 1 . 2 )  

%(t) = f (x( t ) ,  u(x9 t), t )  (1. 3) 

Here, x(t) i s  an  
0 tf '  where t and t a r e  finite, specified, and t 

n-dimensional s ta te  vector, and u(x, t )  i s  a n  m-dimensional control 

0 f 

vector. 

We call  this problem A, and, when a solution exists,  we say that 

(1. 3 )  is  controllable from (xOtJ to  (0, t:) 1- . 
The case where f ( .  ) is a l inear function of x and u, i. e . ,  where 

( 1 .  3) i s  

k(t)  = F(t)x( t )  t G(t)u(t) ( 1 . 4 )  

was solved by Kalman [ Z ]  and i s  well known. Solutions have been obtained 

by the authors [ l ]  for severa l  cases  where f ( - )  is nonlinear. 

theorem was used. 

some constraint se t  .I-. 

Theorem 1 [ l ] 'k  

The following 

It i s  assumed that u(t) ,  t o  G t G t i s  res t r ic ted to f 

If a sca la r  function V(x, t) exists such that: 

(i) 

(ii) for all continuous c ( t )  (n-vector function of t )  

V (x, t )  and Vt(x9 t )  exist for all x, t E [to) tf) 
X 

$- Note that this definition of controllability ( see  also [ l ] )  i s  different 
from Kalman's [Z].  

>k 
Some minor changes have been made in  this theorem. 



-2- 

(iii) V(xo, to) 6 B 

and i f  a control function u*(x, t) E 

(iv) 

00 

1 exists such that: 

along the t ra jectory of (1. 3) start ing a t  (1. l) ,  the full time derivative 

V of ~ ( x ,  t) satisfies:  

V(X,  t )  = Vt(X, t) t VX(X, t)f(x, u q x ,  t),  t)  < M < 0 O  

‘trt E [ t0 , t f )  

and the following limit exists:  

V(x(tf), t f )  = lim V(x(t), t )  
t 4 t f  

(v) the solution to (1. 3), (1. 1) (with u(x, t) = ul(x,  t) ) exists, i s  unique, 

and satisfies 

x(tf) = lim x(t) 

,I‘ 

f t--,t 

then system (1. 3)  is controllable from (xo, to) to (0, t f )  and u:k(x, t) 

accomplishes this t ransfer .  

In each of the examples treated by this theorem in [l], 

T V’(X, t )  = x S(t)x 

where S(t) is an  n x n positive definite symmetr ic  matr ix  satisfying 
-1 lim S ( t )  = 0 

t +tf 

and 

S(t)  t S( t )F( t )  t F(t)TS(t)  - S(t)G(t)G(t)TS(t) = 0 

( 1 . 9 )  

(1.10) 

(F and G a r e  chosen in some appropriate manner  such that (1.4) is com- 

pletely controllable) and u:k(x, t )  i s  such that 

V(,, t )  = r(x, t) o (1.11) 

i. e . ,  Theorem 1 is satisfied with M F 0. In fact, i n  [1], the function 

r ( x ,  t) is made negative or  zero  for all x (for all t E [t 0 9  t f ) ), although 

the theorem only requires that I?< 0 along a trajectory.  
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Extensions of the resul ts  given in  [ l]  a r e  contained in the present 

paper: 

1. 

for all x to be weakened. More precisely,  the region = { x l r ( x , t )  0 

for all t E [to, tf]} is  defined and the state constrained problem of 

finding u(x, t )  to satisfy Problem A such that x(t)  E 

solved. See the next paragraph. 

2. 

by Problem B: find u(x, t )  to satisfy 

A technique is developed which allows the condition that 

for  t E [to, tf] is 

Let bi be some region of n-space, and denote the following problem 

(1.12)  

The f i r s t  three conditions form Problem A; condition (1 .12)  is a state 

variable constraint. 

the case where CR is a region bounded by inequality constraints: in  

A method is developed below which is applicable to 

particular where 6$ contains the ellipse 
m m 

It is shown that i f  F and G a r e  constant and S(to) C CR, the methods 

(1. 13) 

developed in [ l ]  for Problem A also solve Problem B. 

3. 

theory is pointed out in [l]. 

relationship between the control of a system using Theorem 1 and the 

stabilization of that system using Liapunov techniques. Under cer ta in  

conditions (which include V = x S(t)x),  i f  a control exists which solves 

Problem A, a slight modification of that control stabilizes (1. 3). 

That there  is  an  analogy between Theorem 1 and Liapunov's stability 

Here,  we show a precise  mathematical 

A T  

The 
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Liapunov function 

a fixed time (t 
0 

of the stabilized system is just V(x , t l ) ,  where t l  is 

t l  < t f ) .  

This technique is then used for the problems discussed in the 

preceeding two paragraphs for cases  where xo E CR but &(to) 6 CR. 

cases  a r e  handled as follows: i f  some t 

then llstabilizeil (1. 3 )  from t = t 

control in that t ime interval) .  

obtained from Theorem 1. 

These 

exists such that &( t l )  C CR, 1 

until t = t 
0 1 

From t = t l  until t = t 

(i. e . ,  apply the stabilizing 

apply the control f' 

Ln Section I1 of this paper a r e  found the analytic resul ts  upon 

which paragraphs 1 and 2 above a r e  based. 

a r e  constant mat r ices ,  the solution to (1. 91, (1. 10) satisfies S(t)  3 0 

for all t < tf .  

It is shown that i f  F and G 

d * T  
dt As a consequence, if V = -(x (t)S(t)x(t))  =5 0 and 

, l e  

=5 t l  < t < tf, then'k(tZ) C &(tl) .  Then as t increases ,  x(t) i s  found 

Section I11 shows 

2 

in  (or  on the boundary of) a n  ever-shrinking ellipse. 

how these resul ts  can be applied to A- and B-type problems. 

In the course of applying these techniques, it is often necessary to  

ask :  Is &(t ) C CR? and What is the la rges t  ellipse of the form 
0 

T 
E(So, E )  = { x ] x  Sox E )  

such that E(So, E) C a ?  Section IV supplies techniques to solve these 

(1. 14) 

subsidiary problems when CR is  a region bounded by l inear inequalities. 

Section V contains specific examples to  i l lustrate the techniques. 

These examples a r e  modifications of problems treated in  [l]. 

The mater ia l  summarized above in paragraph 3 is  contained i n  

Section VI. 

11. Analytic Results 

The new control theory techniques that appear i n  succeeding sections 

a r e  derived from the mathematical  resul ts  of this section. By means of 
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Lemma 1 ,  i t  i s  shown in Theorem 2 that the solution to Riccati equation 

( 2 . 2 )  with boundary condition (2. 3)  has the property that S 

this result  and Lemma 2,  Theorem 3 proves that if V(x(t), t )  = x(t)  S(t)x(t)  

and V 4 0 then x(t)  is found in o r  on the boundary of an ever-shrinking 

0. Using 

T 

ellipse - 
Lemma 1: Let 

k = F( t )x  t G(t)u 

be a l inear time-varying dynamic system where x(t)  is an  n-vector and 

u(t)  i s  an m-vector.  Assume that (2. 1 )  i s  completely controllable a t  

time t to ( 0 ,  t f ) .  

mat r ix  Riccati equation 

Let S(t  t ) be the u,nique n x n mat r ix  that satisfies the ' f  

with boundary condition 

-1  lim S (t, tf)  = 0 
t*tf 

Then 

a - S(t, t f )  0 
atf 

Proof: Define 

-1  Z(t,  t f )  = s (t, t f )  . . 

a 
Z(t t ) satisfies , f  

5 Z(t, t f )  - F( t )Z( t ,  t f )  - Z(t, t f )F( t )  t G(t)GT(k) = 0 

Z(tf ' t f )  = 0 

and thus [3] can be expressed a s  

T T  
u t ,  t f )  = $" @(t, T)G(T)G ( T ) @  (t,  T)dT 

where @(t9 T )  (the "transition mat r ix")  satisfies 

( 2 . 3 )  
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Q(7,7)  = I . 
The controllability assumption on (2.  1)  implies that Z(t, t f )  is 

positive definite and therefore invertible for every t C t [2].  f’ 

F rom (2. 5) and (2 .8 ) ,  

(2 .9)  

(2.10) 

(2.11) 

o r ,  

The right-hand side of72. 12) is clearly negative semidefinite, so  that 

the lemma is proved. 

Theorem 2: 

constant mat r ices ,  then 

If in  addition to the hypotheses of Lemma 1, F and G a r e  

a at S(t, t f )  3, 0 

Proof:  Because F i s  constant, we can write [ 3 ]  

@(t,T) = e(7 - t )  

and (2.  8 )  can be written: 

Let r = 7 - t .  Then 

(2. 13) 

(2.  14) 

(2. 15)  

( 2 .  16)  
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From (2. 16) it is c lear  that Z( t  t ) is a function only o f t  - t. 
S = Z is a function only o f t  - t, which implies that 

Therefore ’ f  f 
-1 

f 

(2 .  17) 

The proof follows from Lemma 1. 

Henceforth we will only consider the t ime invariant Riccati equation; 

i. e .  F and G will be constant mat r ices .  In addition, t will be suppressed 

as an argument of S and Z.  
T Lemma 2: Let V(x, t )  = x S(t)x, where x i s  a n  n-vector. 

f 

Let y(t) be a 

function of t such that 

* d  v = V(y(t), t )  = v j, 4- vt 4 0 . 
Y 

(2 .  18) 

Inequality (2.19) implies that y(t2) is contained in the ellipse 

YTS(tl)Y Y T ( t l ) W l ) Y ( t l )  * ( 2 . 2 3 )  

Or, defining 

then (2 .19 )  implies that y(t2) E &(tl). 

Theorem 3 :  that for  each z E &(t2), z E &(tl). 

A stronger result  is proved i n  
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Theorem 3 :  Under the hypotheses of Lemma 2, &(t2)  ,: &(t l ) .  

Proof:  Let x E &(t2) .  Then 

From (2.21) 

T : T x S(t1)x .= x S(t2)x 

and from (2.  18) 

(2.  25) 

(2 .  26) 

( 2 . 2 7 )  

Inequality (2.  28) i s  equivalent to  x E &(t l ) .  

g(t ), the theorem i s  proved. 2 

Since x may be any point in 

These resul ts  a r e  i l lustrated in  Figure 1. Ell ipses &(ti), i = 0, . . , 4 

a r e  shown ( t  

(2.  2) ,  (2 .  3 )  with 

= 0, t l  = . 2, t2 = .4 ,  t = . 6, t = . 8 )  where S(t)  satisfies 
0 3 4 

0 0 ! 1  
F =  G =  , t f = l .  

-1 - 1  0 

Three t ra jector ies  x(t) a r e  shown such that V(x(t) , t)  = 0. 

111. Applications to Control Theory 

Consider the dynamic system 

(3.1) k = f(x, u, t )  

T Let V(x, t )  = x S(t)x be defined a s  in Theorems 1, 2, and 3. 

Theorem 1, i f  u(x, t )  is such that V 

finding such control policies a r e  given in [ 11 and below. 

F rom 

Techniques for 0, then x(tf) = 0. 

From Lemma 2, 

i f  to < t e t f9  x(t) E E(to). 

shrinking with increasing t ,  

Theorem 3 implies that the ellipse &(t)  i s  

These resul ts  a r e  significant for the following 

/ 

reasons a 



- 1  

-1.0 1 
FIG. 1 TRAJECTORIES OF (2-1) AND EVOLUTION OF ELLIPSE E (  t FROM t = 0 TO t = 1 . 
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(1) Let W(x, t )  be the minimum energy function of (2. 1) 

where x(t ) = x 

(2. 1 ) .  

x(t  ) = 0; t 
0 0' f 0 f and t a r e  given; and x( t ) ,  u( t )  satisfy 

Then W(x, t )  = xTs(t)x,  where g(t) satisfies 

'S +SF + F ~ - S  - -$scTs = o 

lim s(t)-l = o 
t +tf 

Clearly Lemma 1 and Theorem 2 apply to g( t ) .  The minimum energy 

( 3 . 3 )  

( 3 . 4 )  

1 T- 
2 control is u = - -G Sx. Then 

T -  T- - kx, t )  = (s + SF t F s - S G G ~ S ) ~  

( 3 . 5 )  
1 T- T- = -ZX SGG Sx 4 O 

so  that Lemma 2 and Theorem 3 a r e  satisfied, Thus the results of 

Section I1 apply to  the time-invariant linear-quadratic optimal control 

problem with constrained terminal  state.  

(2)  Some state-variable inequality-constrained problems can now be 

solved. Consider the following problem: region d3 contains the init ial  

point x(t ) = x and the terminal  point x(t ) = 0. Find a control fo r  ( 3 .  1) 
0 0 f 

which solves Problem A (see Section I) and i s  such that x( t )  E 6 fo r  all 

t E [to, tf] (Problem B).  

such that V(x, t )  d 0.  

therefore x(t)  E CR. 

(3 )  By using this technique f o r  B-problems, the mater ia l  in [ l]  for  

A solution is: i f  &(to) E 63, use  a control p(x, t) 

F rom Lemma 2, x(t)  E &(to) for a l l  to 4 t tf and 

F r o m  Theorem 1, x(t ) = 0. f 

A-problems may be generalized. 

V(x, t )  

In Theorem 1 and in  Section 11, 

0 i s  required merely along a t ra jectory x = x(t) .  In each of 
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the examples of Theorem 1 in  [ l]  some inequality of form p(x, t )  3 0 

(equivalent to V(x, t)  0) is required to be satisfied for a l l  x, t E [ toy tf]. 

If i t  happens that p(x, t )  is not positive o r  zero for  a l l  x, convert 

this problem to a B-problem in the following way. Define 

bi = {x Ip(x, t )  3 o for all t E [to, tf]} ( 3 . 6 )  

and solve the B-problem in  the manner described in the previous para-  

graph. The solution to this state-constrained problem clearly a lso 

solves the original, unconstrained A-problem. 

IV. The Ellipse of Controllability 

Define 

T 
E(Sy E)  = { z I z  S z  4 E} . 

In the notation of Section 11, 
m 

To apply the techniques of Section 111, i t  i s  necessary to determine 

whether o r  not &(to) C @. 

that E(S(t ), E) C bi (because for  any positive definite symmetric S, 

Also, i t  is of interest  to find the largest  E such 

0 

e E(S, e l )  C E(S, E ~ )  ). The la t ter  problem i s  related to  a 

See 

€2 ' €1 

problem of Julich [5] on acceptable motions of stable systems.  

Section VI. 

In the following, bi i s  assumed to be a region with l inear boundaries, 

1. e . ,  

b i = { x l a . x t b  T 0, i = 1 ,  ..., Q} 
1 i (4.3) 

where a 

assume that x = 0 i s  an inter ior  point of , s o b . < O ,  i = l ,  . . .  ?Q. 
IV. 1.  

i = 1 , .  . . , Q a r e  n-vectors and b i' i' 
i = 1 , .  . . , Q a r e  sca la rs .  We 

1 

Is the Ellipse in bi? 

The statement E(Sy E)  c A i s  equivalent to 
m 'I max max a.  x t bi 0 

X 1 i= l ,  ... Q ' XTSX<€ 

(4.4) 
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T The maximum of ai x t b. occurs on the boundary of E(S, E). 

(4,4) is equivalent to 

Therefore,  
1 

T 
max max ai x t bi 6 0 . 

i=l ,  . . . , L X 
T -  x SX--E 

To determine i f  (4. 5 )  is satisfied, calculate 

T c = rnax a. x f  bi 
1 X i 

T x SX=E 

(4.5) 

(4 .6)  

If Ci 0, i = 1,.  . .,I, then (4. 5) is satisfied. To find ci, let 

(4 .7)  T J. C .  t X . ( X  Sx - E )  
1 1 1 

where X. i s  a sca l a r  Lagrange multiplier, and maximize J. subject to 
1 1 

T X S X = E  . 
Rewrite 

J. = aTx t bi t Xi(x T Sx - E) 
1 1  

S 

Then 

(4.8) 

(4 .9)  

x (where J. = 0) is 
1 

X 

x. = -- S- la i  
i 1 2 1  

Since x. i s  maximizing, 
1 

0 2 Ji = 2XiS 
xx 

and since S > 0, we expect X 6 0. i 

From (4.8), 

T 1 2 a i S  T -1 a E = x . S x  = -  
i 

i 41 1 

so  

1 1. = -- 
1 2 E 

(4.10) 

(4.11) 

(4.12) 

(4. 13) 

(4. 14) 
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where the sign is chosen to satisfy (4. 12). Equation (4. 11) implies 

which clear ly  satisfies (4.8). F r o m  (4. 6) ,  

c = a .  T X. t b. = ,/= T -1 t bi i 1 1  1 

(4. 15) 

(4. 16) 

Note that the positive square root is chosen in (4. 16 )  and that 

b. < O ,  i = 1, ..., 1. 
1 

The procedure fo r  ascertaining whether E(S, E) C bi is a simple one: 

evaluate c. for  each i = 1 9 . . . ,  1. If any i s  positive, E(S, E) is not a subset 

of CR and i f  none a r e  positive, E(S, E) is contained in  02. 

1 

IV. 2. The Larqest  Ellipse in  02 

It is c lear  that the largest  ellipse in 02 touches one o r  m o r e  of the 

linear constraints at one point and does not touch the others a t  any points. 

This is equivalent to 

max  c = o  i i=l ,  . . . , L 
where c .  is given by (4. 6) and (4.16). Write (4.16) as 

1 

c . ( E )  1 = ,/- t bi . 
Define 

- b2 i 
‘i T -1 

- 
ai S a i 

= min  E. 
i=1, ..., L 1 ‘min 

(4. 17) 

(4. 18) 

(4.19) 

(4.20) 

Note that 

C.(E.) = 0 . 
1 1  

(4.21) 
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Thus ellipse E(S, E ~ )  is tangent to the ith constraint; in fact E(S, E.)  is 

the largest  ellipse such that for every x E E(S, E.)? a.  x t b 

E(S, emin) i s  therefore the largest  ellipse such that for  every x E E(S, emin), 

a.  x t b 

1 
T 

1 1 i 0. 

T 
1 i 6 0 for all i = 1 , .  . .,I. 

V. Examples 

V. 1. Example 1 

Consider the dynamic system 

j ,  = F x  t Gu t h(x, t )  

where 

I o  1, 
h =  1 

\,$ -p(x, t)x2 1 

p(x, t )  i s  a sca la r  function of x and t and F i s  a constant mat r ix  such 

that the l inear system 

k = F x  t Gu 

i s  completely controllable (i. e . ,  FZ1 # 0). 

Find a control u(x, t )  to drive the state of (5. 1 )  from i ts  initial 

value x(to) = xo to the origin a t  t = tf > to. 

and x 

What conditions on p(x, t )  

guarantee that (5 .1)  wil l  be controllable from (xo, to) to (0, t,)? 
0 

This example was considered by Gershwin and Jacobson [ I ,  

Example 2. 2. 31 who found that i f  p(x, t )  2 0 f o r  a l l  x and all t E [to, tf], 

then (5. 1) i s  completely controllable f rom to to (0,  t f )  and a control that 

drives the state to the origin is 

1 T  
U(X, t )  = - 2 G  S(t)x - p(x, t )xl  

where S(t)  satisfies 

( 5 . 1 )  

(5 .3)  
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T S t S F  t FTS - SGG S = 0 (5.4) 

-1 lim S (t) = 0 . 
t+ t  f 

Control (5.  3)  is known to satisfy Problem A because it satisfies 

Theorem 1 with 

T V(x,t)  = x S(t)x 

and 

T V(x, t )  = -2p(x, t )x  s x  . 

(5.5) 

(5. 7) 

Clearly V 0 because S i s  positive definite and p(x, t )  is positive o r  zero 

by hypot.hesis. 

Now, relax the hypothesis that p(x, t )  3 0 for all x. Define 

di = {xlp(x , t )  0 Vt  E [t0,tf]} . (5 .8)  

Assume that the origin is an  interior point of 43 (i. e .  , that p(0, t)  > 0 for  

all t E [to, tf] ). Assume also that x E CR. 
0 

Consider control (5. 3 ) .  If the trajectory generated by this control 

stays in di, then x(t ) = 0 because i f  x E CR, p 3 0 and (5. 7) implies that 

Theorem 1 holds. 

f 

By Lemma 2, if ellipse &(t ) C 63, the t ra jectory stays in  bi. To 
0 

find out whether &(to) C di o r  to find the largest  E such that E(S(t ), E) C 63, 

the methods of Section IV apply ( i f  bi has l inear boundaries). 

0 

Now let to = 0, t = 1, and f 

= [-: -P) 
and consider the following special ca ses  of (5.1). 

(5. 9) 

V . l . l .  Case 1 

2 p l = l - x 2 .  

Then (5.1) becomes 



x1 = 

3 
k2 = -xl - 2x2 t x2 

-16- 

(5.10) 

(5.11) 

Then 

= ((x1,x2) 1x2 - 1 d 0, -x2 - 1 d 0) (5.12) 

The latter form for expressing a1 is chosen to conform with the 

Comparing (5. 12)  with (4. 3 ) ,  i t  i s  readily seen notation of Section IV. 

that 1 = 2, 

10\ a l - '  - I 

\ I '  
b = -1 1 

0 '\\ 

a 2 = (  - l /  j 
b 2 =  -1 . 

The solution of Riccati equation (5 .4)  with boundary condition (5. 5) 

is such that 

,718 .7'8\ . 7 5 8 /  ' 

from (4. 19) ,  (4 .20):  mi  n 

-1 s (t = 0)  = 

It is a simple mat te r  to calculate E 

E = 1.32 . min 

3 .t. 1% 

It should be pointed out that in [ l ,  Example 2.2.31, k2 = -xl - x2 - x2 

so  that p(x, t )  = x2 

present case,  i. e. i f  instead of (5. 9) ,  
If we had chosen the F-matr ix  differently in the 2 "  

O o \  

= [-1 01  3 then (5.11) would have become k Thus, by a tricky 

redefinition of the system matrix,  we can solve a problem that might 

appear to the reader  of [ l ,  Example 2. 2.31 to be impossible. 

= -xl - x2 t x2. 



-17- 

Figure 2 displays Three t ra jector ies  

of (5. 1) (solid lines) and three t ra jector ies  of (5. 10)-(5. 11) (dashed l ines) 

and the ellipse & = E(S(O), 1. 32). 

a r e  shown. 

V. 1.2. Case 2 

p2 = 1 - x1 

In this case,  system (5. 1)  is 

( 5 1  3) 

kl = u (5. 14) 

k2 = -xl - 2xz t x1x2 e 

Equation (5. 13) implies 

(5.  15) 

a2 = {(X1,Xz)lX1 - l < O } .  (5. 16) 

F rom the notation of (4. 3) ,  1 = 1, 

a = [ : )  b = - 1  

which implies that E = 1. Figure 3 is s imi la r  to Figure 2, displaying 

a,  
min  

= E(S(O), 1) and t ra jector ies  of (5 .2)  and (5. 14)-(5. 15). 

V.2 .  Example 2 

Consider system (5. 1) with 

, G =  
0 l )  

((5.2) is completely controllable) and 

0 
h(x, t )  = (5. 17) 

where p(x, t )  is  a sca la r  function. 

i f  V(x, t) = x S(t)x (where S(t)  satisfies (5.4), (5. 5))  and 

In Example 2. 2. 5 of [ l ]  i t  is found that 

T 

(5.18) 

then 



+ 
-1.5 

FIG. 2 REGION R ,  ELLIPSE & AND TRAJECTORIES OF NONLINEAR SYSTEM (5.10)- (5.1 1 )  AND LINEAR SYSTEM (5.2) 
EXAMPLE 1 , CASE 1 . 



x,= 1 

-1  

PATH OF (5.14) - (5.15) --- 

FIG. 3 REGION R, ELLIPSE € AND TRAJECTORIES OF NONLINEAR SYSTEM (5.14) - (5.15) AND LINEAR SYSTEM 
(5.2) - EXAMPLE 1 ,  CASE 2 
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detS 2 
V(x, t )  = 2 - X l P ( X ,  t )  

s12 

2 
where detS = SllS22 - S12 > 0. 

In that example p(x, t )  a 0 and S12(t) < 0 for all x and t so that 

(5.19) 

Theorem 1 applies and x(t ) = 0. f 
F o r  the present,  let  t = 0, t = 1, and fo r  illustration purposes let  

0 f 

p(x, t)  = 1 t min (x 19x2) * (5.20) 

and let  us  find a se t  of initial conditions that can be driven to the origin in  

the t ime interval [0,1]. In this case,  system (5.1) becomes 

k1 = u (5.21) 

- x2 - x min(x 19x2) ;. (5. 22) k2 = -2x1 1 

It is certainly not t rue that p 3 0 Vx. Following the method out- 

lined in Section 111, define 

6i = {xlp(x, t)  0 )  

(5.23) T = {xlai  x t b.G 0, i = 1,2} 
1 

(in the notation of Section IV),  where 

- F r o m  (4. 19) and (4.20), el = 1. 32, E - E2 = 1. min  

Figure 4 shows region CR, ellipse 8 = E(S(O), 1) and a set  of t ra jec-  

tor ies  of (5.21)-(5.22) with control law (5.18). 

V. 3. Example 3 

Consider the dynamic system 

k = Fx  t c ( x , t ) u  (5. 24) 



+ 
-1.5 

t 

R 

x , = - 1  

FIG. 4 REGION d3, ELLIPSE & AND SET OF TRAJECTORIES OF EXAMPLE 2 .  
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rr, 

where F i s  a constant mat r ix  and G(x, t )  is a mat r ix  function of x and t. 

Let G be a constant mat r ix  such that the l inear system 

k = F x  t Gu (5.25) 

i s  completely controllable and define S(t)  a s  the solution to (5.4),  ( 5 . 5 ) .  

Ln [ l ,  Example 2. 2. 51 Theorem 1 is used to  show that i f  the control 

1 T  u = - 2 G  S(t)x 
N 

i s  used over the interval [t t ] and G, G satisfy 
0' f 

(5.26) 

T F o r  all x, t ,  then x(t ) = 0. In this case,  V = x S(t)x and f 

( 5 . 2 8 )  e 1 T  "I: V = - x  S(2GGT - ZGT - GG )Sx . 2 

Now, i f  mat r ix  A i s  not negative semidefinite fo r  all x and t, the 

methods of the previous sections may apply. Define region CR 

a = {xlA(x, t )  o for all x , t}  . ( 5 . 2 9 )  

According to Section 111, i f  x 

then controller (5 .26)  t ransfers  system (5.24) from x(t  ) = x 

E E(S(to), E) and E i s  such that E(S(t ), E) C 61, 
0 0 

to 
0 0 

X(tf) = 0. 

As a specific case,  let  to = 0, t l  = 1, 

- 2 t X 1 t X 2  \ 
G =  i o ;  

System (5.  24) becomes 

k1 = (2  t x1 t x2)u 

(5. 30) 

(5. 31) 

(5.32) k2 = -xl - x2 

Let 

G =  i:) 



- 2 3 -  

From (5. 27) ,  

A = -2[1tx:tx2 1) < 0 

which is satisfied whenever 

l t x l t x z ~ o  . 
Therefore CR is defined by a l inear  inequality and the methods of 

Section IV apply. 

T CR = { x l a  x t b 0 )  

where 

( 5 . 3 3 )  

(5 .  34) 

F r o m  (4.19)’ (4. ZO), emin = . 3 1 .  Figure 5 displays region di, 

ellipse & = E(S(O), . 3 1 ) ,  and t ra jector ies  of (5. 3 1 ) - ( 5 .  3 2 ) .  

Note that system (5. 3 1 ) - ( 5 . 3 2 )  is  a bilinear system, of the form 

discussed by Rink and Mohler [4]. 

V. 4. ’Example 4 

Consider the problem of driving 

k1 = (2  t x1 t x2)u (5. 3 5 )  

(5: 36) 
+ x1x2 k2 = -xl - 2x2 

f rom x = x 

the least  desirable features of systems (5.14)-(5.  1 5 )  and (5. 3 1 ) - ( 5 .  3 2 ) .  

to x = 0 in  the t ime interval [0, 11. This system combines 
0 

Let 

and let S satisfy (5.4)’ (5. 5). 



x2 
1.0 

0.6 

FIG. 5 REGION R, ELLIPSE & AND SET OF TRAJECTORIES OF EXAMPLE 3 .  
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Rewrite (5. 35)-(5. 36) as 
N 

k = Fx  t Gu t h(x, t) (5.37) 
” 

where h is given in  Example 1, case  2 and G is given in Example 3.  

V(x, t )  = x S(t)x and choose 

Let 

T 

1 T  
2 u = --G Sx t q(x, t )  . 

Then 
* 1 T  T “  V = z x  SASx t 2x S(Gq t h) 

where 

f-Jr A = 2GGT - CGT - GG 

(5.38) 

(5.39) 

(5.40) 

and 

? 
G q t h =  

Consider the following nonlinear control te rm:  

- x p  - x1) 
~ = 2 t X 1 t X 2  * .  

(5.41) 

(5.42) 

Ignore, for the moment, the difficulty that a r i s e s  when the denomina- 

tor  of q is zero. Equation (5.41) becomes 

so  the second t e r m  of (5. 39) is  

T ‘(1 - x l )x  s x  . 

(5.43) 

(5.44) 

Define region 6i in  the following way: 

6 € =  { x l l  t x1 t x2 3 0 and 1 - x1 2 0 )  . (5.45) 

-(r 0 for all x E 4%. The largest  ellipse E(S(O), E) C6€ can be found 

by the methods of Section IV. Rewrite 



T di = {xla .  x t b. 0, i = 1, 2} 
1 1 

(5.46) 

where 

a2 = b2 = -1 

From (4. 19), (4. 20), el = ., 31, c2 = 1, emin - - el. Then if 

x 

0 t 1 and x(1) = 0. 

E E(S(O), . 31) and u(x, t )  is given by (5. 38) and (5.42), x(t) E E(S(O), . 31), 
0 

What about the denominator of (5.42)? Clearly, i f  x E E(S(O), . 31), then 

x E a, and 

minator of (5.42) is nb+er zero.  

1 t x1 t x2 3 0. Therefore 2 t x1 4- x2 1, so the deno- 

Figure 6 shows region di, ellipse c = E(S(O), . 31) and several  tra- 

jectories of (5. 3 5 ) - ( 5 .  36). 

V.  5. "Example 5 

There a r e  cases  where the s ta tes  of l inear,  time-varying systems 

may be bounded by the techniques used i n  Section 111, even though those 

results seem to apply only to autonomous systems. 

Consider the system 

j ,  = F( t )x  t c"(t)u . (5.47) 

Find a control to drive the state from x(t  ) = x to x(t ) = 0. 
0 0 f 

Let F and G be constant mat r ices  such that the constant coefficient 

system 

j ,  = Fx  t Gu (5.48) 

is completely controllable, and define S(t) as the solution to (5.4), (5. 5). 



X 2  

T '*O 
x,=l 

I 

__t__ 

0.7 

FIG.6 REGION R ,  ELLIPSE & AND SET OF TRAJECTORIES OF EXAMPLE 4 . 
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2 
where we have used the asymptotic expression for I, and ( 1  EL(t ') l  

the time average of the laser intensity. The maximum of the exponent 

occurs  a t  ( t '  - t") = K- K. ( lELl ) z /T  , and the r e s u l t  is essentially the 

steady state power gain exp G 

) is 

2 2 
1 2  

with GSS given by Eq. (14). ss 
If the input Stokes signal ES(O,t') has a constant phase,  and does 

not follow 

is reduced 

and Stokes 

expo n (1 nt ia 

he phase variations i n  the l a se r  pump, the integral in Eq. ( l l a )  

by G S S ~ ~ / 7 ,  compared to the case  that the phases of the laser 

a r e  i n  sychronism. This may be seen from the fact that t h e  

in Eq. (18) has a 1 / e  width of GSS /7 around its maximum, 

and t h v  l aser  phases r eve r se  sign about G S S ( ~ w / : - )  t imes.  

gain coefficient is thus G ss - Ln(GSSAW/7). 

GSS this reduction is insignificant. 

The Stokes 

F o r  large steady state gain 

The amplified Stokes field "autorna- 

tically" assumes the co r rec t  phase variation for maximum gain. 

In figure 12, the resul t  of a numerical  calculation is shown for the 

dispersionless case in which these considerations a re  confirmed. A 

Gaussian envelope with a random spec t ra l  distribution is taken. 

width o f  the power spec t rum is Ahw 

random process  switched on a t  t '  = 0. Since the numerical  calculation is 

possible only for a finite number of Four ie r  components, the laser pulse 

shown i n  figure 12  is assumed to  repeat itself with a period of about 8 0 0 / 7 .  

The S t o k e s  gain coefficient is calculated f rom Eq. ( 1  l a )  as a function of 

t ime a t  a point z ,  for which GSS = 46. 

the Stokes gain coefficient for a laser  with no phase modulation o r  fre- 

quency broadening, switched on a t  t '  = 0. 

the random laser  pulse follows essentially the same curve except for  a 

constant factor of about An(GssAW/r), and except near  z = 0. 

and c show that the Stokes amplitude s t ruc ture  follows the variations in  the 

The half 

20T. This  corresponds to  a stationary 

The broken line in figure 12 shows 

The Stokes gain coefficient for  

Figures  12b 
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VI. Extensions 

VI. 1 .  Enlarging the Region of Controllability 

Suppose x E CR but xo is not in ellipse E(S(to), E) for any E such that 
0 

E(S(to), E) C CR. This case  is not covered by the methods discussed 

above. In this section we shall  develop a method to drive the state f rom 

some such x 

Define 

to the origin within the t ime interval [t t 1. 0 0’ f 

- - 
Ut)  = E(S(t), E ( t ) )  (6 .2)  

T - 
i. e . ,  &(t)  is  the largest  ellipse of the form { x [ x  S(t)x e} which i s  a 

subset of 6%. S(t)  satisfies (5 .4) ,  (5. 5) with some appropriately chosen 

F, G mat r ices .  

Consider the case  where x {$(t ) but x E :(t) for some t, 
0 0 0 

t < t < t Define t l  as the smallest  value o f t  for which x E: z ( t ) .  Con- 
0 f ’  0 

s ider  the function 

T- V(x,t)  = x S(t)x 

where s ( t )  satisfies 

lim S( t ) - l  = o 
t +tf 

T- - - 
S + S F + F  S - S G G T g = O ,  t l < t < t  f 
- 
S(t) = 9 d t d  

Note that S ( t )  = S(t) ,  t l  

It is c lear  that V(x, t )  and x satisfy conditions (i),  (ii), and (iii) 

t < t and s ( t )  = S( t l ) ,  to d t d t l .  f 

0 

of Theorem 1. Consider the control 

u(x, t )  = W ( X , S ( t ) ,  t )  

where w(-  ) is a function such that the control 

(6 .3)  

(6.4) 

(6.7) 
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u(x, t )  = w(x, s ( t ) ,  t )  (6 .8)  
T satisfies Theorem 1 with V = x S(t)x for all x E g(to).  'g Clearly condition 

(v)  of Theorem 1 is satisfied by (6. 7)  i f  x(t)  is  sufficiently close to 0 for 

t > t l ,  because for t > t l ,  (6. 7)  and (6 .8)  coincide. 

is sufficiently near  the origin i f  x( t l )  E g(tl). 
Note that the state 

Condition (iv) is satisfied as follows: 

( 6 . 9 )  
T -  T- - G = (s t SF t F s - S G G ~ S ) ~  t t )  

where the derivative i s  taken with the control given by (6. 7),  and Q(x, t )  t 
i s  a negative semidefinite function in  A. 

When t > tf ,  (6 .  9 )  reduces to V = Q(x, t )  and i f  x E a, ? d 0. 

Therefore,  if x ( t l )  E E(t l ) ,  -(r 0. 

F o r t  d t 4 t l ,  ( 6 . 9 )  becomes 
0 

'I' 

' I ,  

T -  V = x (SF + F ~ B  - ~ G G ~ s ) ~  t t )  (6. 10)  

F rom Theorem 2 (2. 1 3 )  %(t) 3 0, t l  < t < tf.  Then, from (6. 5) 

(6.11) 
T- - - 

SF t F s - S G G ~ Z  =S o 
for t l  < t < tf .  

defined to be continuous at t = t l  andconstant  on [t 

Inequality (6. 11) also holds for to t 4 t l  because 3 is  

t 3 .  Therefore 
0' 1 

V d 0 on to 6 t d t l  as well as t 

holds. 

< t < tf ,  so  condition (iv) of Theorem 1 1 

- T By hypothesis, x 
- T- - 

E z(tl) and therefore xoS(tl)xo d E(tl). Fo r  
0 

t 3 t19 S(t) = S(t)  s o  V(x0, to) = xTs(t  )x = xoS(t l )xo d E(tl). Because 
0 0 0  

In other words, w(x, S(t) ,  t )  is the general  fo rm of the control function. 

F o r  the linear system k = F x  t Gu, w(x, S ,  t )  = - 2 G  Sx. 

w(x,S, t )  = --G Sx - p(x, t )xl  (from (5. 3 ) ) .  

S instead of S. 

1 T  In Example 1, 
1 T  
2 Equation (6. 7) says to use - 

tQ(x ,  t )  is due to the nonlinear par t  of the dynamics. F o r  a l inear system, 
T- 1 T- T '  Q = O. 

G? - GG )sx. 

In Example 1 ,  Q = -2p(x, t )x  Sx. In Example 3 ,  Q = z x  S(ZGG - 
" T  
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- 

V d 0,  Vr(x(t), t )  
T 

V(x(tl), t l )  = x( t l )  S ( t l )x ( t l )  4 E ( t l ) .  

V(xo, to) E(tl) fo r  all t E [to, tf]. III particular,  
- 

Therefore x ( t l )  E E(t l ) ,  and 

Theorem 1 holds. 

Also, Lemma 2 and Theorem 3 hold.for t E [t19 tf). 

To summarize,  consider the problem of driving the system 

k = f(x, u, t )  

f rom x(t  ) = x 

be the solution to (5.4),  (5. 5)  for some F, G mat r ices .  

V = x S(t)x and le t  u = w(x, S(t), t )  be such that 

to x(tf)  = 0 such that x(t)  E dil for all t.  Define S(t)  to 
0 0 

Define 

T 

v - (  0 (6. 13) 

1 

If there  exists some tl E (to, t f )  such that xo E x( t l ) ,  define 

for all x E di2 fo r  all t E [to, tf]. 

(6. l ) ,  (6.2).  

S( t )  as in  (6.4),  (6. 5), (6. 6).  

x(tf) = 0 and x(t)  E CR for all t E [t 

Let 63 = di n di2 and define z ( t )  a s  in 

- 
The control u = w(x,s( t ) ,  t )  is such that 

t ] o ' f '  

The region of controllability, i. e. the se t  of all xo such that a 

control exists to drive the system from x to  0 in [to, tf] and x(t) E dil, 

i s  thus a s e t  that contains the 'following se t  as a subset 

0 

c = u Z(t) 
t 4 t o ,  tf) 

because i f  x 

VI. 2. Example 6 

E C, some tl '  exists such that xo E %(tl). 
0 

Consider Example 1, case 1. F r o m  Figure 2, i t  i s  apparent that 

(6. 14) 

the point 

xo = [;) a > . 6 5  (6.15) 

i s  not covered by the analysis of that example. However, we shall  con- 

s t ruct  a controller to drive system (5. 10)-(5.11)' from x 

in the time interval [0, 11 using the method of Section VI. 1. 

to the origin 
0 
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The first step is to find t l  such that xo E r ( t l )  and z(tl) C R,  

where A is given by (5.12). 

and solved in  Section IV. 1. 

t start ing at t = t . 
"yes 1' as t 

This is equivalent to the problem discussed 

We a s k  "Is E(S(t), xoS(t)xo) C R ? I r  for  each T 

Define the first value of t fo r  which the answer is 
0 

1'  

F rom (4.8), 
m 3 E = X;s(t )Xo = Sll(t)a, L (6 .  16) 

T -1 Note that a l  = -a2 = (0, 1) 

(t)ai = Z22(t)  and, f rom (4. 16), C,(t) = c2(t) =, 

and bl  = b2 = -1. Then i f  Z(t)  = S (t) , ,  
T -1 

ai S 

(6. 17) 

As long as C(t)  > 0, the answer to the above question is '*no" . The 
,I' 

first time* at which C'(t) 0 is the t ime t l .  

If a, = 5, t l  = . 84  (when [0,1] is discretized into 100 subintervals). 

The control law for  system (5. 2)  i s  

1 T- u = - 2 G  S(t)x 

where s(t) is given by (6.4),  (6. 5), (6.6).  In this case,  of course,  the 

restriction that x(t) E 61 is a state constraint; i t  need not be satisfied to 

guarantee that x(tf) = 0. 

system (5 .2) .  

The solid t ra jector ies  in Figure 7 a r e  f rom 

The t ra jectory that leaves A i s  controlled by 

1 T  u = --G S(t)x 2 

(6.18) 

(6.19) 

where S(t)  is  given by (5.4),  (5. 5). 

the t ra jectory of (5. 2) that starts at x,' = (5, 0) and is controlled by (6. 18). 

The solid line that stays inside R is 

The dashed line is the t ra jectory of (5.10)-(5. 11) driven by 

(6.20) 1 T- 2 
U = -2G S(t)x - (1 - x )X 1 1  

:$ >8 
Note that t l  is not cri t ical .  
control law described in  Section IV. 1. 

Any t i  3 t i  will work equally well in  the 



I 
-1 0 IbX' 

--- PATH OF (5.10) - (5.11) 

PATH OF (5.2) - 

FIG. 7 REGION R, ELLIPSE &(t,), CONSTRAINED TRAJECTORIES OF (5.21, (5.10) -(5.11), AND AN UNCONSTRAINED TRAJECTORY OF (5.2). 
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T start ing at x(0) = (5,O). 

It appears  that it i s  not necessary to  use this method for all initial 

F o r  instance, Figure 2 conditions in se t  C (6.14) which a r e  not i n z ( t o ) .  

and Figure 7 both seem to indicate that i f  x: = (a, 0) and la I < 4, the 

t ra jectory of ( 5 . 2 )  stays inside even though the control used is (6. 19). 

Furthermore,  this a lso may be t rue for the t ra jectory of (5.11)-(5. 12) 

with control u = -2G S(t)x - (1 - xl)xl .  Further  r e sea rch  is required 
1 T  2 

in  order  to develop methods for characterizing these initial conditions. 

VI. 3. Application to Stability Theory 

Theorem A :  Let V(x, t) and u*(x, t )  satisfy Theorem 1 for 

j, = f (x ,u)  (6. 21) 

such that V 0 over the interval [to, tf) f o r  all x E bi. Let t l  E [to, tf) be 

such that 

V(O,tl) = 0 (6 .22 )  

x e a  V ( x , t l ) > O  x f o  (6. 23) 

(6.24) av ( x , t l )  3 0 fo r  all x E bi . 
Then the system of differential equations 

k = f(x, u*(x, t l ) )  

is stable about x = 0. 

Proof: Define W(x) = V(x, t l ) .  Then 

w = Wkk = v (x, t1)f(x, u%, t l ) )  * 
X 

Also, 

so 

V(x, t )  = Vt(X, t )  t v (x, t)f(x, u y x ,  t ) )  d 0 

VX(X, t)f(x, u q x ,  t ) )  d -Vt(x, t )  

X 

. 

(6. 25) 

(6.26) 

(6.27) 

(6.28) 
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1’  Evaluating (6. 28) at t = t 

Comparing (6. 30) and (6.26) ,  we see  that W 0, so that W i s  a 

Liapunov function and therefore (6.  25) is stable.[7]. 

Note that i f  V(x, t )  - aV(x, t) /at  < 0 at t = t l  for all non-zero x E (51, 

then (6.25) is asymptotically stable. 

Theorem 5: Let V ( x , t )  = x S(t)x satisfy Theorem 1 for T 

(6. 30) 

j ,  = f(x, u, t) 

x(t ) = 0 f x(t ) = x 
0 0’ 

with 

(6. 31) 

(6. 32) 

u = w(x, S(t), t )  (6. 33) 

for any x in some region &, where S(t)  satisfy the usual Riccati equation 

(5.4)  and boundary conditions (5. 5). Assume F and G a r e  constant. 

Assume that condition (iv) of Theorem 1 is  satisfied as follows: 

T T T V = x (S t SF t F S - SGG S)x t Q(x,S(t) , t)  (6. 34) 

where the first t e r m  is zero  because S(t) satisfies the Riccati equation 

and where it is required that 

Q(x, S( t l ) ,  t )  0 (6. 35) 

for some t l  E [to, tf), for  all x E &. Then system (6. 31) is  stabilized by 

A Liapunov function for the stabilized system is 

T w(x) = V(x, t ) = x S(t1)x . 1 (6. 3 7 )  

Proof: In the problem of solving (6.31), (6. 32), the full t ime derivative 

of V is 

T. T V = x s x  t 2x Sf(x,w(x,S,t),t) , 

Comparing (6. 38) and (6.34), 

(6. 38) 

T T T T Q(x, S, t )  = 2x Sf(x, w(x,S, t), t)  - x (SF t F S - SGG S)x . (6.39) 



Comparing (6. 39) and (6. 35) ,  

Q(x, S1, t )  = 2x T Slf(x, w(x, S1, t),  t )  - x T ( S I F  t F T SI - SIGG T S1)x 

5 0  (6.40) 

(where S1 = S( t l ) ) ,  o r  

(6.41) 2x T Sl f (x ,w(x ,S1 , t ) , t )  5 x T (SIF  t F T S1 - SIGG T S1)x . 
Now calculate W for the system with u given by (6. 36): 

T w = 2x S1f(x, w(x, sl, t), t )  . 

From Theorem 2, 

S I F  t F T S1 - SIGG T S1 0 . 

(6.42) 

(6.43) 

Then, by comparing (6.41), (6.42), (6.43), we see  that 

W G  0 

and the theorem i s  proved. 

Consider a problem of Julich [5]: to find out i f  a given system is 

stable and i f  all t ra jector ies  that s t a r t  in a region bit stay in that region 

for  all t. System (6. 25) is stable in  that way i f  W(x) = V(x, t l )  

x E 6% r\ 
E 

fo r  some r e a l  number E (i. e . ,  E(S( t l ) ,  E) C Q1. n b i t ) .  

We have already (in Sections VI. 1, VI. 2 )  made use  of Theorem 5 

in  the interval [to, t l ] .  

Theorem 4 i s  satisfied by V = x S(t)x. All the systems in this paper 

that a r e  controlled (by some control u = w(x, S(t), t ) )  can be stabilized 

When F and G a r e  constant, i t  is c lear  that 

T 

(by u = w(x, S( t l ) ,  t )  fo r  any t l ) .  

Kalman [2] has shown conditions under which it is possible to  

stabilize 

k = F x  t Gu 

by integrating a Riccati equation 

-1 T S t S F  t FTS - SGB G S = -A 

(6.44) 

n 

c 

(6.45) 

backwards from t = 00 to a finite value o f t .  (In practice,  one integrates 
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(6.45) backwards from a finite value of t to a value of t such that S(t)  

has settled down to a "steady s ta te"  solution* - -  i . e . ,  S = 0 . )  A a n d  B 

a r e  positive definite mat r ices .  (Actually, the conditions on A and B 

a r e  somewhat m o r e  restrictive.  ) 

By contrast ,  we stabilize (6.44) in the following manner:  integrate 

i - FZ - Z F ~  t G G ~  = o (6.46) 

with boundary condition 

Z(tf) = 0 (6.47) 
-1 

until t = t l  C t where t l  and t are  finite t imes.  Define S( t l )  = Z(t l )  . 
f' f 

Use control 

1 T  u = - 2 G  S( t l )x  . (6.48) 

It should be pointed out that we have only stabilized (6.44);  we may 

not have rendered i t  asymptotically stable. Theorem 2 only guarantees 

that S ( t l )  3 0, s o  that S ( t l ) F  t F T S( t l )  - S(tl)GG T S( t l )  G 0. Then i f  

T T T T V = x S( t l )x ,  V = x (S(tl)F t F S( t l )  - S(tl)GG S(t l ) )x  9 0. If some t 

exists such that S(t)  > 0, we may  use  that as t l  and thereby guarantee 

that lim x(t)  = 0 .  
t+oo 

As Kalman did, we calculate our stabilizing control by integrating 

an  n x n mat r ix  differential equation. However, we integrate over a finite 

interval, and thereby save computer t ime. The shortcomings of this 

method a r e  that (1)  it i s  only guaranteed for autonomous systems and 

(2 )  it may  only result  in  non-asymptotic stability unless the use r  verifies 

that S F  t FTS - SGG S < 0. T 

4. -8- 

We res t r ic t  ourselves to the constant coefficient case.  Kalman allows 
F, G, A, and B to vary  with time. 
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Of course,  we a r e  not res t r ic ted to  l inear  systems.  We may apply 

the techniques of this paper and [ l]  to control some time-varying systems 

and some nonlinear systems. 

Barnett and Storey [6]. 

Similar resul ts  have been obtained by 

VII. Conclusion 

In [l], Theorem 1 was used to  solve the following problem (Problem A) 

for various cases  of system dynamics (7. 3):  find a control law u(x, t )  

such that 

(7.1) 

X(tf) = 0 (7 .2)  

j ,  = f (x ,u , t )  . (7.3) 

Theorem 1 requires a function V(x, t) to exist and have cer ta in  

properties.  The control function u(x, t )  is such that 

C(x, t )  M < a3 (7.4) 

(where M i s  a constant) on the t ra jectory of (7. 3) start ing a t  x(t ) = x . 
0 0 

In all the applications of Theorem 1 in  [l], 

T v = x S(t)x 

where S(t)  satisfies 
-1 lim S(t)  = 0 

t + t f  

(7.5) 

(7 .7 )  
T T S t S F t F  S - S G G  S = O  . 

The analogy between Theorem 1 and Liapunov stability theory [7] 

i s  c lear .  In the la t ter ,  the uncontrolled system 

k = g(x, t )  (7.8) 

i s  stable (asymptotically stable) about the origin if a function V(x, t) 

exists which is positive definite and whose derivative satisfies V 6. 0 

(V < 0) .  
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The results of [ l]  have been extended in  the following ways. 

1. Consider Problem B: satisfy (7. l ) ,  (7.2), (7. 3) and 

x(t) E R 9 to 4 t d  t f  ( 7 . 9 )  

where R is some region in  n-space. 

When ( 7 . 4 )  is satisfied with M = 0 and (7.  7) is satisfied with con- 

tf’  stant F and G mat r ices ,  then it is shown in Section 11 that for t 

x(t) E &(to), where 

< t 
0 

rl- m 

(7.10) 

so that if &(to) is a subset of 63 the control function found for Problem A 

solves Problem B. 

2. 

(7. 3 )  then in  [ l] .  

for all x and all t, to t 

all t )  defines a region 6% . 

Controls a r e  found above to solve Problem A for m o r e  general  systems 

In [ l] ,  some inequality p(x, t )  3 0 i s  required to hold 

tf. By contrast  in this paper, p(x, t )  3 0 (for 

If (7 .  9 )  as well as (7 .  l ) ,  (7 .  2) ,  (7 .  3)  is  r e -  

quired, we have a type B problem, to which the above technique may be 

applied. If it has  a solution, the type A problem ((7 .  l ) ,  (7.  2 ) ,  (7 .  3 ) )  has 

the same solution. 

Several  examples were performed to i l lustrate these techniques on 

type A and B problems. The type A problems considered in this paper 

cannot be solved by the methods given in  [l]. 

3. 

a small modification in  the control law, any x 

In Section VI, the condition &(to) C di is weakened as follows. With 

that satisfies 
0 

(7.11) T T 
&(t) = {z I z S(t)z xoS(t)xo) c a 

T for some t E [to, t f )  can be driven to  the origin. If some ellipse x S(t)x = E 

passes  through xo and l ies  inside cR then (with the suitably modified control 

function) x(t ) = 0, and the t ra jectory satisfies x(t)  E R .  f 
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Also in  Section V I  the relationship between Theorem 1 and 

Liapunov stability theory is demonstrated. 

functions satisfying Theorem 1 (including V = x S(t)x) and a large c lass  

of systems (7.  3 ) ,  a control function u(x, t) to stabilize the system i$ 

closely related to u*(x, t) ,  a control function obtained from Theorem 1. 

In that case a Liapunov function for  (7. 3) with u = u(x7 t) i s  V(x, t l ) ?  

where t l  is some fixed t ime. 

Fo r  a large c lass  of V- 
T 

Several  a r e a s  of further research  present themselves. Among 

them a r e  the following questions. 

1. Can any further statements be made about the t ra jector ies  beyond 

those of Section II? As pointed out i n  Section VI. 2, i t  is probably not 

necessary to resor t  to the technique of VI. 1 fo r  all x E CR where E(to) 

is not a subset of 61. In other words, there  a r e  probably many x E 61 

where the t ra jectory generated by naively applying Theorem 1 behaves 

0 

0 

properly. How can these x be character ized? 

2. 

tions can the state venture out of 63 (i. e . ,  go to where p(x, t )  < 0) and 

s t i l l  satisfy x(tf)  = O ?  

3 .  Generally, the F, G mat r ices  chosen to form the "linear par t"  of 

0 

For  the type A problems a s  generalized herein, under what condi- 

the dynamics and thus to enter  the Riccati equation a r e  not unique. In 

most  cases ,  any of a large se t  of such mat r ices  would be appropriate. 

Is it possible to be "best" in  some sense?  F o r  example, can we choose 

the F, G mat r ices  to  maximize the volume of E(S(t ) ?  E) (which must  be 

a subset of a)? Note that this is not the same problem as in Section IV, 

where E was chosen. 

4. For  a given region , how can set  C (6.14) be characterized? For  

instance, i f  CR = {x )xnI 

0 

Here we would like to manipulate S(to)* 

l}, under what conditions, i f  any, does C 

N 
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include of a? Also, because C is a union of ell ipses,  i f  x C ,  then 

-x IE C. What other propert ies  of C can be determined? 
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3 .  A B S T R A C T  

Recently, a nonlinear controllability theory based upon 
Liapunov-like notions was developed. 
is generalized and strengthened, and a wider c lass  of nonlinear 
sys tems is considered. I n  particular,  conditions for  controllability 
of a dynamic sys tem which is subject t o  state variable inequality 
constraints a re  obtained. It is shown that initial conditions which 
are  interior t o  a cer ta in  ellipse can be made to  generate t ra jector ies  
which remain in that ellipse and which reach  the desired te rmina l  
state. When the ellipse is a subset of the feasible region of state 
space the t ra jectory clear ly  remains  in this region (i. e. the state 
variable inequality constraints are  satisfied). 
for  finding the largest  such ellipse is given, and illustrative 
examples a re  presented. In  addition, stabilization of constrained 
dynamic sys tems is considered. 
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