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SUMMARY 

A study was conducted to determine  the  flight  characteristics and wing 
deployment transients  for a variable  geometry  logistics  spacecraft con- 
cept having a hypersonic  lift-drag ratio  near 3.0, and employing  a single- 
pivot, two-position skewed wing for deployment at subsonic  speeds. 
Unpavered  flight  conditions are considered throughout the study. The 
body of the  spacecraft is trapezoidal  in  cross  section and horizontal sta- 
bilizers and dorsal f i n s  a re  located  near  the  base of the body to  provide 
longitudinal  and directional  stability. A highly cambered  moderate  aspect 
ratio wing is staved on top of the body during  entry and is deployed at a 
subsonic  speed at a Mach number of 0.60 at an  altitude of 30,000 feet to  
a zero sweep  condition. 

Detailed static wind tunnel aerodynamic  data obtained from low subsonic 
to  hypersonic  speeds  were  used to  estimate  the dynamic aerodynamic 
stability  characteristics throughout  the entire  entry flight regime. The 
aerodynamic  data is presented as total  vehicle  derivates with the wing 
staved, and as wing increment  derivates which are  added to  the  staved 
wing values.  The wing increments are presented  for wing sweep positions 
of 0 O , 15" , 30 O , 45" , 60 O , and 75 O , with  the wing considered  rotated 
counterclockwise  during  deployment.  Extendable wing trailing edge flaps 
are  incorporated  in  some  instances to provide  increased lift at landing. 
Flap  incremental  aerodynamic  data are  presented at 0 O , 12 O , and 20 O of 
flap  deflection. 

The spacecraft concept studied is dynamically  stable throughout the flight 
envelope,  but stability  augmentation is required  to  provide  acceptable 
handling qualities with the  vehicle  center of gravity  located  at 65 percent 
of the  actual body length. The stability  augmentation  recommended is of 
the  simple rate feedback  type  with gain scheduling. 

Wing deployment transients are minor and the  piloting  task  during wing 
deployment consists of a simple  push-over  maneuver. However, main- 
taining  the  vehicle  in a low angle of attack, near zero lif t  condition is 
recommended. Deployment rates of 2, 5, 10, 15, 20, 30 and 40 degrees 
per second  were  analyzed. A rate of 10 degrees  per  second  appears to 
be  near optimum. 

For the unflapped wing  configuration,  landing characteristics of this 
spacecraft  concept  are  comparable  to  present day high performance 
fighter aircraft. The approach  speed is in  the 160-170 knot range with 



a 10" flight  path  angle. 'The flare is initiated between 200 and 250 feet in altitude, and 
flare load factor is approximately 0.2g. Little  improvement in landing characteristics 
was obtained with the addition of wing trailing edge flaps.  Therefore the addcd system 
complexity and weight introduced by  wing flaps is not warranted. 



A STUDY TO  DETERMINE THE FLIGHT 

CHARACTERISTICS AND HANDLING  QUALITIES 

OF VARIABLE  GEOMETRY SPACECRAFT 

By B. J. Kuchta 

Convair  Division of General Dynamics  Corporation 
San Diego, California 

SECTION 1 

INTRODUCTION 

Considerable  effort is at present being  devoted to the  development of lifting  entry 
spacecraft  concepts  for  use as possible  logistics  systems  with  lift-drag  ratios  varying 
from  near 1.0 to  in  excess of 3 .O. Recent  studies  related  to  the development of hyper- 
sonic  lifting  bodies,  optimized  with regard  to  improved  aerodynamic  performance, 
have  shown that body shapes of moderate  fineness  ratios having relatively good volume 
to wetted area relationships (and hence,  lower  weight)  can  provide  hypersonic  lift-to- 
drag  ratios of  up to approximately 3 . 5 ,  

For vehicles conceived to be  piloted or flown in  the conventional sense  during  the  entire 
entry and to land in  the  manner of aircraft, aerodynamic  features  must  be  tailored  for 
both hypersonic  and  lm-subsonic flight.  The  moderate-to-high  lift-to-drag ratio  hyper- 
sonic  lifting body vehicles have  unacceptable  subsonic  performance  for  horizontal land- 
ing without modification or compromise  to  the  basic  shape. The incorporation of some 
form of deployable lifting  surface  offers a possible  means of providing  efficient  sub- 
sonic  land  recovery, while retaining  the  desired  hypersonic  shape. If manned space- 
flight is to become a routine  operation, independent of massive sea recovery  logistics, 
the  desirability of landing at one of several  preselected sites with a minimum of ground 
support  requirements  must  become a reality. 

The purpose of this  investigation is to  provide  information by use of static wind tunnel 
data input into  the  simulator  to  study handling qualities and the  overall dynamic stability 
and control, wing deployment characteristics, and landing characteristics of a space- 
craft concept having a hypersonic  lift-drag  ratio of approximately 3.0. The spacecraft 
concept incorporates a two-position single-pivot wing, deployed to  improve  subsonic 
aerodynamic  characteristics.  To  aid in the landing approach, wing trailing edge flaps 
with  three deflection positions have also  been  examined. 

The investigation  incorporated both analytical  analysis and simulation. The analytical 
analysis  provided  information as to  handling qualities relative  to both longitudinal and 



lateral modes, period and  damping. The simulation  provided a vehicle by which a flight - 1  
could be flown from 100,000 feet  altitude,  through wing  deployment, to touchdown, 

The results of the  investigation are presented  in  the form of time  histories,  periods, 
damping,  and time  to damp to one-half amplitude of the longitudinal and lateral  oscil- 
lations. Where possible,  the  results are discussed  in  terms of handling qualities 
parameters which are in  current  usage  for  proposed  entry  vehicle  configurations and 
high performance aircraft. 

The  sign convention used is presented  in Figure 1-1. 

L 2 



SECTION 2 

VEHICLE DESCRIPTION 

The  spacecraft concept  investigated  has a body with a trapezoidal  cross  section and an 
area distribution  conforming to that  required to minimize  zero-lift  hypersonic wave 
drag as determined  under  the  geometric  constraints of length and volume. (l) The 
effective  fineness ratio of the body is 6.0 with a volume to  (length)3 ratio of 0.0110. 
Horizontal  stabilizers and dorsal  fins are located  near  the  base of the body to provide 
longitudinal and directional  stability. A moderate  aspect  ratio wing having a thick, 
highly cambered  airfoil  section is staved on top of the body during  entry  and is deployed 
at subsonic  speeds  to a zero sweep  condition.  Elevon controls are located on the  hori- 
zontal  stabilizers  to  provide longitudinal control,  and  roll  control when differentially 
deflected.  Rudder controls are located on the  dorsal  fins  to  provide  directional  control. 

A drawing of the  complete  spacecraft is shown in Figure 2-1. Table 2-1 presents body 
ordinates  normalized with respect to  length  and  Table 2-2 presents wing airfoil  section 
ordinates  normalized  with  respect  to  chord.  Figure 2-2 shows the  details of the wing 
and tails. 

The trapezoidal body has a tap-to-bottom ratio of 1 to 3. The flat  bottom  offers ad- 
vantages  with re ard to aerodynamic  heating, and also  provides  improved lift at hyper- 
sonic  speeds. (l) Negative c a b e r  was  incorporated  in  the body  by placing 0.333 of 
the  vertical height above and 0.667 of the  vertical  height below the  vehicle  reference 
plane at all longitudinal stations, to provide  positive  pitching  moments  near  zero angle 
of attack at hypersonic  speeds.  The large blunt base  was  retained  for  efficient 
spacecraft-booster  integration. 

The wing panel is an approximately  18-percent  thick,  highly  cambered, St. Cyr  (Royer 
156) airfoil  section  measured  parallel  to  the  airstream at zero  degree sweep of the 
half chord.  The wing taper  ratio is 0.60 and its aspect  ratio is 9.42 based on its own 
projected wing planform area. The projected  planform area is 23.1  percent of the 
body planform area. The wing incidence  angle is 4 degrees,  relative to  wing ordinate 
reference  line.  See Figure 2-2. 

The horizontal  stabilizers are located along the body laver surface  ridge  line  just 
ahead of the  base and are at zero  degrees  dihedral. The stabilizers, which are 2- 
degree (included angle)  wedge  airfoil  sections, have a 65-degree  leading edge  sweep. 
The  elevon  control surfaces  used  for  pitch and roll  control are located at the  trailing 
edge of the  stabilizers.  Total  exposed  horizontal  stabilizer area including the  elevons 
is 19.87 percent of the body planform area. 

*All references  are  listed on Page 37. 
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Table 2-1. Design Body Ordinates 

x/ 4 *al/ A * *a2/ fi h/J 

0 0 0 0 
0.01 0.00503 0.00 168 0.00591 
0.02  0.00794 0.00265 0.00936 
0.03  0.01090 0.00363 0.01287 
0.04 0 * 0 13.1.9 0.00450 0.01690 
0.05 0.0 1592 0.00531 0.01876 
0.06  0.01826 0.00809 0,02151 
0.07  0.02050 0.00683 ~ 0.02415 
0.08 0.02270 0.00757 0.02675 
0.09 0.02470 0.00825 0.02919 
0.10  0.02775 0.00925 0.03271 
0.20  0.04475 0.01492 0.05274 
0.30 0.05953 0.01984 0.07015 
0.40  O.O(iX7 0.02412 0.08529 
0.50 0 * 08402 0.02801 0.09900 
0.60 0.013408 0.0313G 0.01108 
0.70  0.102G9 0.03423 0.12101 
0.80  0.11007 0.03669 0.12970 
0.90  0.11547 0.03849 0.13607 
0.94  0.11895 0.03899 0.13782 
0.96  0.11757 0.03919 0.13855 
0.98  0.11807 0.03936 0.13914 
1.00  0.11834 0.03945 0.13946 

* Lower Surface Semiwidth 
**Upper Surface Semiwidth 

Table 2-2. Wing Ordinates 

X/C Yu/" YL/C 

0.01:: 0.038  -0.027 
0.026  0.052  -0.034 
0.050 0.074 -0.040 
0.075 0.091  -0.044 
0.100  0.105  -0.044 
0.150  0.127  -0.038 
0.200  0.144 -0.030 
0.300  0.163 -0.014 
0.400  0.166  0.001 
0.500 0.160  0,018 
0.600 0.144 0.030 
0.700  0.116  0.032 
0.800  0.083  0.030 
0.900  0.045  0.018 
0.950 0.026  0.010 
1.000 0 0 

4 



~ Dorsal fins are located on the  sides of the body and are at 45 degrees  dihedral angle 
as measured  from  the  horizontal  reference plane.  The dorsal  fins are geometrically 
identical  to  the  horizontal  stabilizers  in  planform.  Rudders are located at the  trailing 
edge  for yaw control. 

The  sizing of the  spacecraft concept  being considered  was  performed  in a study  entitled 
Weight and  Performance  Characteristics of Variable-Geometry  Spacecraft, which was 
conducted at Convair  under contract NAS1-7675. The results of that study  indicate  that 
the  spacecraft  inertia  characteristics  with wing staved should be: 

Weight 20,000 lb 

c. g. 

I 

I 
YY 

I 

xx 

zz 

0.65 Q, 

9,840 Slug-ft 

118,100 Slug-ft 

117,146 Slug-ft 

2 

2 

2 
0 

I 500 slug-ftL xz 

Reference  dimensional  data  for  reducing  the  aerodynamic characteristics  to coefficient 
form are: 

Length ( A )  

span (b) 

Area (s) S 

50 feet 

12 feet 

367 feet 2 

All of the above data is used throughout the  analysis and simulation. 
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SECTION 3 

AERODYNAMIC DATA WITHOUT WING (A= 90") 

This section is a discussion of the  aerodynamic characteristics with the wing fully 
staved (A= 90 ") . Since the wing is only deployed at subsonic  speed  the only aero- 
dynamic data which is influenced by Mach number is that without the wing. Static 
wind tunnel  aerodynamic  data were used  in  the  form of linear  tables  with Mach number 
as  the independent variable. In order  to include  the  angle of attack  non-linearities, 
first and second order  partials of each  aerodynamic  derivative  were  derived  from  the 
measured wind tunnel data. A major  effort  was expended in the development of the 
aerodynamic  data  because any stability  and  control  analysis or simulation of an  aero- 
dynamic  vehicle is only as good as  the  aerodynamic  data  used. 

The wind tunnel measured  data  consisted of static aerodynamic  coefficients  for  the 
complete  configuration, body alone,  horizontal  stabilizer-body and horizontal  stabilizer- 
dorsal fins-body. With this type of breakdown the influence of each component could 
be derived. Since this study depended upon dynamic derivatives, a method was devel- 
aped  whereby  dynamic  derivatives could be obtained from  the static component aero- 
dynamic data and geometric  considerations. 

The wind tunnel test data  were  available at Mach numbers of 0.3, 0.5, 0.80, 0.90, 
0.95, 1.00, 1.20, 2.30, 2.96, 3.96, 4.63, and 10.0. A t  each Mach number CD, CL, 
Cm, Cyg, C and CQ were  available as a function of angle of attack and several 
elevon  deflections. T a e angle of attack  range  generally  was  from about -2 degrees 
to 18 degrees. Data was  taken at 0 O , -10 O , -20 O of elevon  deflection. 

Figures 3-1 through 3-37 present all of the  reduced  aerodynamic  data as a function of 
Mach number.  A  brief  discussion is given below on each  coefficient  presented. A11 
moment  coefficients are referenced  to 62.8 percent of the longitudinal  length ( a  ) and 
0.0329a  below the spacecraft centerline. All forces and moments  were  transferred  to 
the  vehicle  center of gravity  located at 65 percent of the  length for a11 computations of 
handling qualities  parameters and  flight characteristics. All static wind tunnel  moment 
coefficients  received from the NASA were  presented  &out a moment  reference point 
located at 62.8 percent of 1. 

nB 

is the  drag coefficient (CD) at zero angle of attack and zero elevon  deflection. It is 
obtained directly  from  the wind tunnel data. 
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is the part of the  overall  drag  coefficient which is a function of angle of attack  squared. 
This  coefficient  was obtained by best fitting the equation 

C D =  a + a  CY 2 
0 2  

ac, 
aCY 

through  the wind tunnel dra.g data  for  zero  elevon deflection.  Then 7 is equal to 

the value of a and C is equal  to a The - is in a sense a curve fit to simulate 
2 

drag due to lift. 

a cD 
2 DO 0' aa! 

is the part of the  overall  drag  coefficient which is a function of elevon  deflection 
squared. The incremental  drag due to elevon  deflection  was cross plotted  versus 
elevon  deflection at constant  angle of attack and the  equation 

C = K 6  
2 

D e 

was best  fitted to the  points. It was found that K was relatively  constant with angle of 
attack and, therefore, no variation of K with  angle of attack was considered. 

is the lift coefficient at zero angle of attack and zero elevon  deflection.  It is obtained 
directly  from wind tunnel  data. 

cL 
a! 

is the  linear  portion of the lift versus angle of attack  curve  for  zero elevon  deflection. 
It-is obtained by best fitting the  eqcation 

C = b + b 2 a + b  CY 2 
L 1 3 

to the lift coefficient wind tunnel data.  bl is set equal to  CL Then b2 equals CL 

and bg equals - acL 

aCY 

0' 
01 

2 .  
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. 

is the  coefficient  obtained  from  Equation  3,  where b3 equals 7. This coefficient L 

aa! 
is primarily  the  result of the body lift that is influenced by cross-flow at the  higher 
angles of attack. 

is incremental lift due to elevon  deflection. It is obtained by plotting  the  incremental 
elevon lift versus angle of attack and best  fitting  this wind tunnel  data by the  equation 

AC = c + CIQ 
L6 0 

e 

6e Then Co is equal to C and C1 is equal  to - . From  the  data obtained  the  indi- 
L6e a a  

U 

cation  was  that CL and - e are constant to  elevon  deflections of 20" and were 
'e a a  

assumed  constant  to 25". Beyond 25", estimated  surface  effectiveness  drops off 
rapidly. However, no attempt  was  made  to include this effect into the program. 

cL 
q 

is the lift due to pitching  velocity.  This  coefficient  was  obtained from the lift curve 
slope of the  horizontal  stabilizer,  the body, and twin vertical  fins.  Figure 3-38 pre- 
sents  the  incremental  lift and moment for  the  horizontal  stabilizer  versus angle of 
attack  for low speed. The data were obtained from  the body alone lift and the body- 
horizontal  stabilizer lift. The body damping was obtained from  slender body theory 
with  cross-flaw . (2) The body angle of attack  distribution  was obtained from a unit 
pitch  rotation  velocity about the  spacecraft  center of gravity.  Then CL was obtained 
from  the equation q 

c = - 2 c  Ls MHT + 'L  BODY 
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is pitching moment due to pitching  velocity.  This  coefficient was computed in a 
manner  similar  to CL The equation  used to  compute the tail contribution was  

g' 

Then 

are components of the  pitching  moment  coefficient at zero elevon  deflection. They are  
obtained by best  fitting  the  equation 

n 

a 'm 
to wind tunnel data. Then C is equal  to d is equal  to dl,. and is 

m0 0' cmo! a a  
equal to  $. The  non-linear term is composed mostly of body cross flow moment. 

ac 
m 

m ' aa 

are components of the  pitching  moment-coefficient  proportional  to  elevon  deflection. 
They are obtained by best  fitting  the equation 

C = e  + e a  
0 1  m (9) 

"m 
6e 

to wind tunnel  data. Then C is equal to  e and is equal  to e 
m 0 a a  1' 

6e 
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‘ 6  c 9 -  

is side  force  per  side  slip angle. It is obtained by best fitting the equation 
’6 aa  

cy, = fo ‘ f p  

P a c,, 
to wind tunnel data. Then fo equals Cy and fl equals -. - s at2 

C 
- yP 

is the  side  force due to  rolling  velocity. The only aerodynamic components  contributing 
to this coefficient are the  dorsal  fins. The incremental (Cy ) side  force  from  the 
dorsal fins was computed from wind tunnel  data.  Then B VT 

where (Cdm is the  distance  from  the  center of gravity  to  the  center of pressure 

(see sketch), 
z 

/ I 

From wind tunnel data ~ p ) V T z  was computed to be approximately 0.46. 

C 
Y r - 

is the  side  force due to yawing velocity.  Contributors  to  this  coefficient are the body 
and the  dorsal  fins. From the  dorsal  fins  contribution, a computation similar  to  that 
for Cyp was made: 

11 



From wind tunnel  data (C ) was computed to  be  approximately  1.25b. The body 

contribution was computed from  slender body theory. (2) The side  slip angle distri- 
bution  used was for a unit yawing velocity. Then 

P VTx 

is the  rudder  side  force  coefficient. No wind tunnel  measurements of this coefficient 
were made. Estimates of this coefficient  were  made by assuming  the  normal  force 
coefficient of the  rudder was equal to the  elevon  normal  force  coefficient.  Geometrical- 
ly the dorsal  fins are identical  to  the two horizontal  stabilizers.  The  rudder  normal 

acY 

a a  
6r force  was  then  resolved  to a side  force.  The  term  was obtained from  the ele- 

6e von term -. a a  

c , a c  n 
B 

is yawing moment  due to  side  slip angle. A best f i t  of 

c = go + g l a  n 

a c  
tcr wind tunnel data and C equals g and - equals g "B 

nP 0 a a  1. 

C n r 

is yawing moment due  to yawing velocity.  Contributors  to  this  coefficient are the 
dorsal  fins and the body. The dorsal  fins contribution  was  determined  from 
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pn)VT 
= 2(C ) x (cP)2 

Yp VT VTX 

The body contribution  was  computed  using  slender body theory. Then 

c , ac 

au 

n  n 
p -  P 

is yawing moment due to rolling  velocity. The dorsal  fins and the horizontal  stabilizer 
contribute to this coefficient.  The dorsal  fins  contribution  was  computed by the 
equation 

where  the  center of pressures and (CP)VT~  were computed from wind 

tunnel  data.  The  horizontal  stabilizer  contribution is associated  with  the fore-and- 
aft inclination of the lift vector which depends on the leading-edge  suction. For a 
supersonic leading-edge, the l i f t  is normal  to  the  surface and no horizontal  stabilizer 

of the  horizontal  stabilizer  the leading-edge is subsonic  for Mach numbers below 
2.37. Then for Mach numbers less than 2.37 

cnP 
is present  (the  incidence  angle is zero). For the 65-degree  leading-edge  sweep 

a c  n P 
" 

- 
a 0  (CnP)HT = -2 ( c LJ€€T 

C n 
6 a 

is yawing moment  due to  differential  elevon  deflection. It is obtained from wind 
tunnel  data. 

ac n 
6 r 

'n 9 

6 r 
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are rudder yawing moment  coefficients.  They are obtained in  the  same  manner 
8% 

1 

'r that C" and - were obtained. 

1 

'r that Cy and - were obtained. 
acl 

'r 
Y acl 

'r 

is rolling moment due  to  side  slip. Obtained by best  fitting 

C = h   + h  CL 
a 0 1  

ac a 
to wind tunnel  data.  Then C equals h and 2 equals h 

% 0 aar 1- 

is rolling moment  due to yawing velocity.  It is computed by the equation 

where (CyB),,, ( C P ) V T ~ >  and (CP)VT~ were obtained from wind tunnel  data. The 

dorsal  fins  were  considered to be  the only contributor to this  coefficient. 

is rolling moment due to  rolling  velocity. Both the horizontal  stabilizer  and  the  dorsal 
fins  contribute  to  this  coefficient. If an  elliptical  spanwise  loading  distribution is as- 
sumed,  an  expression  for  roll damping is 

T hsn 
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Wind tunnel data  were  used to  compute C and C ( .,a)HT ( Lc&7T* 

are rolling moment  coefficients  due  to  differential elevon  deflection. They are 
obtained from best fitting  the equation 

C = k + k l a  
%i 

0 
a 

to wind tunnel data. Then C is equal t0 k and - a is equal to k 
% 0 ao! 1- 
a 

are rolling moment  coefficients  due to  rudder deflection.  They are obtained from 
a c  

y6 
the computed C and - r Y 

coefficients by the following equation. acr 
6r 

t , The  value of /C was  assumed  to be equal to 0.4b for all Mach numbers. 

~ At a given Mach number  aIl of the above discussed non-dimensionalized coefficients 
I are evaluated.  Since what is needed for  the six-degree-of-freedom  equations of 
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motion are six non-dimen,sionalized coefficients, the following equations  present  the 
combining equations. 

ac, 2 2 
c, = c, + - 2 Q! 3 - 2  

a6 e 0 2 0  

acL 

a a  

acL 
6e R d e  + CL zq (26) CL = CL + c  a+- a a2 + CL 6 e +- aa  L 

0 a 6 e q 

82 ac m 
m 

2 a  
R c = c  

+ ‘m m m a+- a a2 + cm 6e +-- CY be +-cm q (2 7) 
0 a aa 4 9 

ac 
b b b c = e  j3+ - r + ~  n - p + - p a z ~ + ~ n  2V 

n nP aa r P 6r 

ac 



SECTION 4 

AERODYNAMIC EFFECTS OF THE WING 

In order  to improve-the subsonic  characteristic of the spacecraft concept, a single 
pivot  skewed wing is deployed at low speeds. The altitude  and Mach number  for 
deployment are  to  be  determined  in  this study. Low speed wind tunnel tests were 
conducted at a Mach number of 0.30. Since tests were made  with and without the 
wing, downwash  on the tail surfaces induced by the wing was  determined  directly 
from wind tunnel data. 

The wind tunnel  aerodynamic  data were reduced  in a manner which allows the wing 
effects to  be  considered  as  increments which, when the wing is deployed, are alge- 
braically added to  the  spacecraft without wing data. With regard  to  the  simulator, 
this method of data handling simplifies  the  generation of the  aerodynamic  coefficicnts 
during wing deployment and thereafter. 

Figures 4-1 through 4-11 present the wing incremental  aerodynamic  data as a function 
of angle of attack and wing sweep  angle. Wind tunnel tests were conducted at 0",  ISc, 
30°, 45", 60", and 75" of wing sweep. 

AC L' ACD¶ AC 

are  the  incremental lift,  drag, and pitching  moment  coefficients  for  the  spacecraft 
with the wing at the  indicated  sweep  position obtained by subtracting  the body-alonc 
lift. The wing flaps are stowed. 

m 

cL.a   m.  
01 Q 

are the lift and pitching  moments  due to pitching  velocity. These  coefficients  are 
computed from  the  equations 

(3 I) 

C = c  X ( C )  
m.  L. P HTX 
o! 01 

(32) 

Figure 4-12 presents  the downwash (E ) as a function of angle of attack.and wing sweep 
position. These  coefficients me based on the concept o€ the lag of the downwash. 
Since the  vorticity is convected  with the stream, a change in the  circulation  at  the 
wing will not be felt as n change in downwash at the tail until a time 
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(CP) 
HTX 

At = V (33) 

has  elapsed. 

ACy , AC , ACR 

B B 
are incremental  side  force, yawing moment, and rolling  moment due to  side  slip  for 
the wing. They are obtained directly  from wind tunnel data  for tests conducted at 
p= 0, and A-5" 0. 

P 

is wing rolling  moment due to rolling  velocity. It is computed by assuming an elliptical 
spanwise loading on the wing. Then 

= -0.10 c 
P a 

L 

based on wing span. 

(34) 

From wind tunnel data the wing lift curve slope C is equal t o  0.013 l/deg,  Then Lor 
equals -0.435 based on spacecraft area and span. From  Reference 3 
-0.64 correct  to  spacecraft area and span. 

This  same  reference  predicts a lift=curve  slope CL equal to 0.0205 (corrected to space- 
craft  area and span) which is a factor of 1.57 higher  than the measure CL 

cy' 

- 
is wing rolling  moment due to yawing velocity. From  Reference 3 - equals 0.2G 

based on wing area and span. From wind tunnel data  for wing at  zero sweep angle 
CL 

CL = 0.17 + 0.013~ 

Therefore  correcting CR /CL to spacecraft  area and span r 



AC 
n 
P - 

is wing  yawing moment  due to  rolling velocity. The wing contribution is in two parts. 
The first comes  from  the change in  profile  drag  associated with the change in wing 
angle of attack. The  increase  in  drag on the  right wing accompanied by a decrease 
on the left wing produces a positive yawing moment equal to 

AC 
n 
P 

(37) 

From  the below sketch, Y is the  effective drag  center of action and is equal to approx- 
imately 0.45b. 

C D 
2 
- 

From test data at 0" half chord sweep angl 

AC Dw = 0.0021a 

Then 

AC = 0 . 0 l a  
n 
P 

.e 

(39) 

The second  contribution to wing Cn is associated with the fore-and-aft  inclination of 
the  lift  vector which depends on theheading edge suction. From the above sketch 

19 



Substituting  Equation 36 and the value of y into Equation 40 leads to 

AC (') = -(0.82 t - 0 . 0 6 3 ~ ~ )  
n 
P 

For  zero  degree sweep  angle 

The total coefficients for  the  spacecraft  plus wing are 

cD 
= c "AC 

D ~ I) 
W 

cL 
= C + A C  

L I; 
W 

C = C +A.C 
m m rn 

W 

C = C + A C  
Y  Y yW 

c = C + A C   + A C  p 
n  n n n 

W 
pW 

R = R + A c  a B + A C R  r + A C  p 
B W pW 

R r 

The spacecraft concept  being  investigated  hag  been also considered with wing trailing- 
edge  flaps which can be deployed to 0 , 12' , and 20 O . Figure 4-13 presents  the wing- 
flap  configuration, and deflections  investigated. The incremental ACL,  ACD, and 
AC, obtained from wind tunnel data as a function of angle of attack for the  flap deployed 
configuration is presented  in  Figures 4-14, 4-15, and 4-16 respcctively. The  flap in- 
crements are added to  the flaps-off data. 
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SECTION 5 

SIMULATION  EQUATIONS 

The following equations  represent six degree-of-freedom  equations of motion  about a 
system of  body oriented  axes.  The  aerodynamic  coefficients used in the equations are 
those  described  in  Section 4 of this report.  The  force  equations are wind-axis oriented 
and the moment equations are hody-axis oriented. 

The  velocity  equation is 

V = X cos fi  + Y sin 6 
S S 

The angle of attack  equation is 

cos p 
where 

P = P COSQ+ R s i n a  
S 

The  side-slip  angle equation is 

. (Ys c o s p  - x  S i n B )  
B =  S 

V 
- R  

S 

where 

R = R COSQ - P S ~ Q  
S 

The  force  equations are 

xS = cos a +-g sin a - c,, Cj 
B Z 

B ( 3  
y = g  + C * G  ;;; S 

S YB 

z =-gz  C O S Q  - - 
g* 

S ~ C L -  CL Q 
S B B 

(44) 

(47) 



The body gravity components are 

= g cos e 
YB 

(53) 

Altitude and ground track Computations are made by resolving  the  total  velocity V into 
body-axis components by the  equations 

UB = v cos a cos /? (55) 

vB 
= v s i n p  

Then the body-axis velocities are resolved  to  the  inertial axes by the Euler angles as 
a 

H = U sin 8 - V sin @ cos 8 - WB COS ~1 COS 8 

X = UB cos 8 cos JI + V (sin @ sin ecos JI - cos 4 sin JI) 

B B (58) 

B 

" wB (cos Q sin 8 cos $ + sin Q, sin $) (59) 

a 

Y = u cos 8 sin $ + v (sin Q, sin 8 sin $+ COS @ COS 9) B B 

+ W (cos @ sin 13 sin Z,!I - sin @ cos $) B (60)  

The  dynamic pressure equation is 

where  the  density ( p )  is a direct-table look-up from Reference 4 data. 

The  rotational  equations of motion are written  in the body axis,system. 

22 



The  pitch equation is 

. CM I xz 2 2 fzz 
Q = -  +r (R - P  ) -  

T 

The  roll equation is 

I I I x x x x  xx I xx 

The yaw equation is 

. GN I xz fyy -I xx) p& I 
R = - + - p -  xz 

I I I 
" 

I QR 
zz zz zz zz 

s , =  (R cos @ + Q  sin @) 
cos g 

~~ ~ 

Zontrol of the  spacecraft is accomplished by the  deflection of elevons and rudders. 
loll control is achieved by differentially  deflecting  the elevons. The roll controller 
ailerons) is computed by 

ba = be - 6  e (6 8) left right 

he total surface  deflections are 

= 6  + K  Q 
e Q P 

6 = 6  + K  R + K  ba 
r r R P 6a 

= 6  + K  p a P 
P 



The  limits  placed on the  surface  deflections a r e  

I bel I 25" 

I6,1 10" 

16,1 I .25" 

The moment equations are 

EL = C G S b  a 

E M  = C G S A  m 

E N  = C Q S b  
n 

The  expansion for C C and C is presented on page 16. 
R' m n 
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SECTION 6 

HYBRID SIMULATION 

A hybrid  simulation of the  spacecraft concept was  programmed  using  the  equations 
and data  discussed  in  Sections 4 and 5. The hybrid  simulation  provides a computa- 
tional  tool  for application that lies somewhere between a pure  digital and a pure 
analog simulation.  The diagram presented below is a schematic of the  overall  simu- 
lation, The digital  computer  portion of the  hybrid  computer  provided a function gen- 
erator  and  storage device for all of the  detailed  aerodynamic  data. 

Equations 44 through 60 and 75 through 77 were  programmed on the digital  computer 
in  Fortran 11. These  equations  were  numerically  integrated and the  integration  scheme 
included terms to compensate for phase-lag  due to the  sampling time, The  overall 
digital  computer  cycle  time  was 0.06 second, which not only included the solution to 
the  indicated  differential  equations but also the  generation of the  aerodynamic  data 
for the analog  computer. 

Equations 62 through 74 were programmed on the analog  computer.  The  analog 
computer  was  the  device  used.to  link  the visual display and the  cockpit  to  the  overall 
simulation.  Approximately three-quarters of the  available equipment on a Comcor 
CI-5000 analog  computer  was used. 

DIGITAL (TOkIPUTER (SDS $:io) 

- AERO F L ' K T I O N  GENERATOR - TOTAL VELOCITY EQI'ATIOS 

* TRANSLATIONAI. EQC'ATIONS 
* TRANSFER FZ'NCTIONS 

OF llOTION 

Schematic of Hybrid  Computer  Simulation 
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SECTION 7 

RESULTS 

7.1 OVERALL  TRAJECTORIES 

Early  trajectories were flown on the  simulator  starting at an altitude of 100,000 feet 
and initial Mach numbers of 3, 4, and 5 .  The  piloting  task  was to fly a given flight 
path  angle  profile.  The  profiles  consisted of a constant  flight  path  angle  to wing de- 
ployment and then  transition to a new night  path  angle which was held to landing site 
acquisition. Figure 7-1 presents  spacial  histories  for  the  various  simulated flights. 
All of the  flights  were flown with  the  stability  augmentation  system  that is discussed 
later in this section. 

With an  initial Mach number of 5 at 100,000 feet,  this  spacecraft is capable of flying 
constant  flight  paths of from 5 to 7 degrees. At  flight  paths below 5 degrees,  the  vel- 
ocity dropoff was too large and the tr im angle of attack  required  was beyond the  trim 
capability of the  vehicle  control  system.  For  flight  path  angles  greater  than 7 degrees, 
the speed dropoff is not great enough and therefore the vehicle's  velocity between 25,000 
and 30,000 feet was  well above the  subsonic  value  desired  for wing deployment.  The 
flight  path  range for  an  initial Mach number of 4 was 6 to 8 degrees ; for  an  initial Mach 
number of 3 it was 10 to 12 degrees. 

Figures 7-2 through 7-4 present  the  time  histories of various  parameters  for  flight 
with initial Mach numbers 'of 5, 4, and 3, respectively.  Summaries of the tr im angle 
of attack and elevator  requirements  for  the  range of altitudes and velocities of interest 
are presented  in  Figures 7-5 and 7-6. I 

7.2 WING DEPLOYMENT 

Since this  spacecraft  concept  employs a single  pivot,  two-position  skewed wing, it is 
felt that to minimize wing deployment transients which would be  produced  by  transonic 
shocks and aerodynamic flow, the wing should  be deployed  below  the transonic  speed 
regime. However,  the wing deployment  should occur at an  altitude and distance  from 
the  landing sufficient enough to allow  cross-range and down range e r ro r s  to  be nulled 
out by the high maneuverability allowed  with wing deployed L/D. Results of the  present 
study  indicate that for the  single  pivot, two position wing concept, the best  speed  for 
wing deployment is at a Mach number of approximately 0.60. 

At this Mach number  shock  effects  and flow interference are minimum  and,  therefore, a 
minimum of dynamic transient  will  occur.  This Mach number occurs at approximately 
30,000 feet in altitude  for  the  flight  path  profiles  presented earlier. This  speed and 
altitude  allows  sufficient  time and maneuvering  capability for landing site acquisition. 
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During wing deployment, the  vehicle  experiences a pitch-up due to a forward  shift of 
the  center of pressure and an increase  in  the  overall l i f t  coefficient. To  reduce  the 
lift and to add a nose-down moment,  the  pilot  does a push-over  maneuver. The pilot- 
ing objective during wing deployment is to maintain a constant  flight  path angle. 
Figure 7-7 along with Table 7-1 present  the wing deployment  sequence for  the  pilot 
performing a push-over  maneuver. The wing was  swept  at 10 degrees per second. 
Figure 7-8 presents the same  data  for a flight  during which the  pilot  does  not perform 
a push-over  maneuver. 

Without a push-over maneuver, the sink rate reduces to zero and the  vehicle  begins 
to  climb due to  the  increase  in lift. A s  the  vehicle  climbs,  the  velocity  drops off in 
the exchange of kinetic  energy for potential energy.  The  flight path oscillation, being 
only lightly  damped, persists  for  several minutes. If the  oscillation  were  uncontrolled 
it would be  intolerable to the spacecraft  crew. 

Wing deployment rates of 2, 5, 10,  15, 20,  25, 30, and 40 degrees per second were 
simulated. For each  case  the  pilot did a push-over  maneuver. Figures 7-9, 7-10 and 
7-11 present  time  histories  for 2, 20,  and 40 degree  per second  deployment rates 

Table 7-1. Wing Deployment Sequence 
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respectively.  Figure 7-12 presents a summary of average  elevator  deflection rates 
required  during wing deployment and flight  path  deviations  versus wing deployment 
rates. A s  wing deployment rates increase,  elevator  deflection rates increase  to com- 
pensate for the  trim and angle of attack  changes,  but beyond 30 deg/sec wing rate the 
response of the  vehicle is slow enough that  elevator rates of greater than 10 to 11 deg/ 
see are not required. Much more  precise  flight  path  control  can  be  obtained by pro- ' gramming  the  elevator to wing sweep  position. A possible  elevon  program is: 

then 

6, = 0.4 A 

7.3 LANDING  CHARACTERISTICS 

The  landing characteristics of this  spacecraft  concept  were  analyzed by flying piloted 
simulated  landings with the  hybrid  computer and visual  display. A time history of a 
landing  without flaps is presented  in  Figure 7-13. An approach  speed of 190 knots and 
104egree flight  path  angle was flown and an  average  incremental  load  factor of 0.2 g 
was  maintained  throughout  flare. The  landing speed without flaps is approximately 165 
knots, and the  flare  initiation  altitude is approximately 275 feet. At this  speed, suffi- 
cient elevon  deflection is available for roll  control or  additional  pitch  maneuvering. 
Figure 7-14 summarizes  the  landing  characteristics without flaps by presenting  flare 
load  factor,  flare  initiation  altitude and end of flare  speeds  versus  approach  speed  for 
a 10-degree  flight  path  angle. A 10-degree  flight  path  angle  was  chosen  because it is 
the  approximate  equilibrium  glide  angle  for  speeds of from 170 to 200 knots.  Figure 
7-15 presents  the  equilibrium  glide angle versus  speed  for no flaps and various  flap 
deflections. Figures 7-16 and 7-17 present  trim angle of attack and elevon  deflection 
versus  speed  for  spacecraft  configurations  with and without flaps. 

A piloted  simulated  landing with a flap deflection of 12 degrees is presented  in  Figure 
7-18. An approach  speed of 190 knots at the  minimum  flight  path angle of 11.3 degrees 
was flown and an  average  incremental  load  factor of 0.4  g  was  maintained  throughout 
flare. The  end of flare  speed  was 165 knots.  The flare was  initiated at 230 feet alti- 
tude. A summary of the  landing characteristics with 12-degree  flaps is presented in 
Figure 7-19. Little  improvement in  landing characteristics was obtained  with  the 
addition of wing trailing-edge  flaps. With flaps  the flare initiation  altitude  decreases, 
the  approach  glide  flight  path  angle  increases, and the flare load factor is increased 
by a factor of two. It  appears that the performance  gains of wing trailing-edge  flaps 
are small  compared  to  the added system weight and complexities. 
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7.4 HANDLING QUALITIES - IJNAUGMENTED 

7.4.1 LONGITUDIXAL. The handling qualities of this  spacecraft concept  have  bccn 
analyzed  in terms of existing  military  specifications  for handling qualities of piloted 
airplanes, although it is realized  that in some areas these  criteria may not be  directly 
applicable  to-piloted entry vc!hicles. For  comparison  purposes,  some of the  results of 
the  investigation  have  also been analyzed in  terms of several  proposed  criteria for 
piloted  entry  vehicles(5). 

The results of the  three-degree-of-freedom small  perturbation  calculation for wing 
stowed  and wing deployed  configurations are presented  in Figures 7-20 and 7-21 re- 
spectively.  These  calculations  were made at various  speeds and altitudes.  The damping 
results  are  presented in terms of the  time  factor %/z since  decreasing values of t l /2 
correspond to increasing valucs of damping.  The data show lhat-  the  configuration was 
stable  for  all conditions  investigated. A s  expected,  increasing  altitude reduced  thc 
damping because  such  changes  increased  the  relative  density  factor. 

Presented in Figures 7-22 and 7-23 are the  damping results for  wing stowed and wing 
deployed together with the military  specification of flying  qualities for piloted airplanes, 
respectively(6).  The  boundary shown in this  figure  specifies  the minimum value of 
inverse  cyclic damping (l/C *) required  for  satisfactory damping of the short  period 
mode of motion.  The calculated  data  points for the  basic  (unaugmented)vehicle are  
below this  boundary,  an  indication  that  the  vehicle would have unsatisfactory longitu- 
dinal handling qualities. However, with the  addition of artificial  damping in pitch as  
shown in Section 7.5, the  damping is easily  increased enough to move all the calculated 
points above the specified boundary. 

For the past few years,  considerable  effort  has  been  directed  toward  more  specific 
longitudinal handling qyalities  requirements than those given in  Reference 5. Extensive 
work has  been done with variable  stability  airplanes  wherein  the  stick  force  character- 
istics  were  keptunaltered and the  aerodynamics  were  artifically  varied. The studies 
gave  qualitative  information  in  the form of pilot opinion and quantitative  information  in 
the  form of time  histories. An example of the handling qualities  information  derived 
in  these  studies is given in Figure 7-24(6). Presented in this  figure is a plot of un- 
damped natural  frequency fn as a function of the  short  period damping ratio, c ,  tagether 
with flying qualities  boundaries  specified by the  solid lines. Note that  the r-esults of 
this  figure are in agrecment with those of Figure 7-22 in  that t,he basic  vehicle is de€i- 
cient  in damping.  Also,  the  addition of artificial damping in pitch (see Section  7.5) 
yields  acceptable handling qualities. 

Another  dynamic characteristic which appears  to play a role in  the  evaluation of the 
handling qualities and land characteristics is 1/T The smaller the  value  of-l/T&, 
the  greater  the  accident  rate.  Figure 7-25 presents  the  accumulated  accident  data 
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and  the  value of 1/Te2 for this  spacecraft concept versus speed.  The  lower  the  value of 
1/Te2,  the greater  the  overshoot following a change in  elevator position.  Thus, there 
is more difficulty  in performing landing site acquisition o r  c'onstant load  factor flare. 

Figure 7-26 presents  the motion following an abrupt change in  elevator  position  for 
several points  along  the  flight  corridor. The motion is oscillatory, which is apparently 
due to the low damping of the  short-period  mode  previously  discussed.  Results of the 
simulator  studies  indicate  that  this me of oscillatory  response to elevator  control is 
very objectionable to the pilot. 

7.4.2 LATERAL - DZRECTIONAL. Figures 7-27 and 7-28 present  the  period and 
damping characteristics of the lateral modes of motion for wing stowed and  wing de- 
ployed, respectively.  These computations are for  several altitudes and speeds. In- 
creasing  altitude  decreases Dutch roll damping,  and increasing  speed  increases Dutch 
roll damping. The spiral mode is slightly  unstable at the high dynamic pressures. 
The spiral mode  motion  may be thought of as a banked turn of gradually  increasing 
radius. When this mode is unstable  then with increasing  time  the  flight of the  airplane 
is in a banked turn of ever-decreasing  radius.  For  the  instabilities  encauntered  in 
this vehicle  the  pilot has no problem  in  maintaining  the  proper heading. 

Figure 7-29 presents  the damping characteristics of the  vehicle for wing stowed and 
deployed in terms of the  military  specification for flying  qualities of piloted airplanes@). 
This  figure  presents a  plot of the inverse  cyclic damping (1/C 4) as a function of the 
roll-side  velocity  ratio I $I I / IVe 1. The  upper  boundary  in  this  plot  specifies  the  value 
of 1/C 4 required for  satisfactory Dutch roll damping. The results show unsatisfactory 
Dutch roll  characteristics  at  all  points  in  the  flight envelope. However, these  charac- 
teristics  can  be improved to an  acceptable level by increasing  the  roll damping and yaw 
damping artificially. The artificially  damped condition will  be  presented in a later 
section. 

The results of time-history  motion  studies to determine  the  lateral damping character- 
istics of the  vehicle are  presented  in  Figures 7-30 through 7-32. A step  aileron deflec- 
tion of 10 degrees  was  used to start a lateral oscillation and to obtain  steady-state  roll 
rates. The results  substantiated  the  period and damping characteristics  presented 
earlier. 

At low speeds  the  vehicle  has  positive  side  slip  (adverse) due to the low negative side 
force and low positive yawing moment  produced by the  rolling  velocity and the  relatively 
larger positive  side  force  produced by bank angle. At high speeds, both with wings-in 
and wings-out, the  side  slip is negative  (favorable)  due to the high negative  side  force 
and  high  positive yawing moment  produced by the  rolling  velocity.  Positive  values of 
side  slip  produce  rolling  moments which oppose the  rolling motion  through the  effective 
dihedral  parameter, CA . 
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For evaluating  the  roll  performance of airplanes,  the  nondimensional  rolling  parameter, 
pb/2 V, is conventionally  used. Figure 7-33 presents this parameter  for  various  alti- 
tude and speeds throughout the vehicle's  flight  corridor. The roll  requirements for 
fighter  type  aircraft (pb/Z V = 0 .07)  are  based  on  present  military handling qualities 
requirements. The data shows this  spacecraft  concept to have values of pb/2 V which 
are considerably below the required  value for  satisfactory  roll  response. Although 
the vehicle is deficient in roll  response with regard to this parameter,  recent flight 
tests of the M2/F2 arrl HL-10, both of which are deficient in this  parameter, have 
shown that  pilot  ratings and military  specifications do not appear  compatible.  Pilots 
that  flew  the  simulation of this vehicle rate the  rolling  performance of this  spacecraft- 
concept as adequate.  Recent  work by NASA which uses  a ground simulator  appears to- 
agree  with  the  pilots who have flown the  simulation of this  spacecraft  concept. (') A 
proposed  revision  to the pb/2 V criterion  specifies  that  in the landing  approach condi- 
tion the vehicle  shall be capable of 30" of roll  in 1 second after  an  initiation of an abrupt 
aileron  deflection. In addition,  the time  required  for  the  rolling  velocity to reach G3 
percent of the steady-stale  rolling  velocity shall not be greater than 2 seconds.  This 
spacecraft concept meets both of these  requirements. 

The roll  performance of the vehicle in terms of the  revised  interim  can  be seen in 
Figure 7-30. The  vehicle  reached 63 percent of the  steady-s  tate  rolling  velocity i n  
0 . 7  second and a bank angle of 33 in  1 second. A t  faster approach  speeds  there  is 
an  improvement  in  this  parameter due to  the low trim angle of attack.  This low angle 
reduces  the  adverse  side-slip  produced by rolling  velocity at the lowest  approach 
speeds  that might be flown in f:his spacecraft  concept.  This  parameter  deteriorates 
to 1 second  to  reach 63 percent-steady-state  roll  rate and a bank angle of 25" in 1 
second.  However, pilots on the simulator still considered  this  to be adequate. 

The calculated  lateral  response of the vehicle following a  step  rudder input is presented 
in Figures 7-34 and 7-35. In summary,  side-slip  angle, bank angle,  rolling  velocity, 
and yawing rate reached in  1 second following a step  rudder  are: 0 . 5  degree, 1 .O de- 
grce, l .2 degree  per  second, 0.6 degree  per  second,  respectively. The initial roll 
rates and roll  angles  produced by rudder  deflection are  adverse. This is due to t h e  
positive C R ~  and the high value of the  parameter T&. Rolling  motions  such as these 
result in a time  lag betwcen the  pilot  control input. and the  desired  rolling motion which 
might lead to pilot-induced oscillation. However,  throughout the flight corridor of this 
spacecraft  concept, if t he  pilot; flew  with no rudder  control input no pilot induced os- 
cillations were produced. 

Proposed  revisions  to the lateral handling qualities  requirements  include  the  param- 
eter (%/ad) . A v a l u e  of (a )z of 1.0 corresponds to a steady-state  rolling 
velocity  equivalent-to that given by a one-degree-of-frccdom rolling analysis. Values 
of (kb/ad)  less than 1.0 indicate a steady-state rolling velocity less than  that of the 
simplified  analysis. Sueh a cmdition is generally  associated with aileron adversc? yaw. 
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! Values of (W /o ) less than 0 indicate  rolling  reversal;  that is, the  vehicle  will  reach 2 
@ d  

a steady-state rolling  velocity  opposite  in  direction to that  desired. In order to have 
satisfactory  flight  ratings (pilot ratings of 3 or less) the (%/q) parameter should be 
in  the  range of from about 0.8 to 1.1. Figure 7-36 presents  values of (%/ad) versus 
Mach number and altitude. The results indicate  that  this  spacecraft  concept  will have 
adequate lateral characteristics. 

7.5 STABILITY AUGMENTATION  SYSTEM 

The  need for a stability augmentation system is evident  from  the low short-period 
longitudinal damping and  the low  Dutch roll damping. This  type of deficiency suggests 
that a simple rate feedback system,  possibly  gain  scheduled with Mach number, would 
provide  improvements to the handling qualities of this  spacecraft concept which would 
render  them adequate  throughout the  entire  flight envelope. 

A system of this type can  be  built with a high degree of reliability by using  current 
state-of-the-art fail operational  techniques. High speed  modern  flight  aircraft employ 
gained  scheduled  damper  systems  in both longitudinal  and lateral modes. These  sys- 
tems  must cope  with a large  center of gravity  variation which is not present  in  this 
spacecraft concept. 

The improvements  that are  gained by feeding  back 1 degree of elevon to 1 deg/sec of 
pitch rate are  presented in Figure 7-37. Without pitch rate feedback all points  in  the 
flight  envelope fell in  the  unacceptable  region. However, with pitch rate feedback 
(constant  gain) all points  in  the  flight envelope fell either  in  the  acceptable or the de- 
sired region of the  Cornell(6)  short-period handling qualities  recpirements  for entry 
vehicles. 

By feeding back 0.5 degree of rudder to 1 deg/sec of yaw rate the Dutch roll  charac- 
teristics were  improved to the point where all points  in  the  flight envelope, when com- 
pared to the  military  requirements of 1/C -$ and ]@ 1 / lVel, fell in  the  satisfactory 
region. 

Figure 7-38 presents  the lateral damping characteristics of this  spacecraft concept in 
terms of military specification  for flying qualities of piloted  airplanes. The  yaw rate 
feedback is equivalent to that of increasing Cnr. 

Another  effective way for  increasing  the lateral damping is to feed  back roll rate. An 
increased C negatively  (equivalent to roll  rate feedback) gives  increased Dutch roll 
damping and roll subsidence. However, it reduced  the  steady-state  roll rate and the 
time to reach 30 O bank angle. From a pilot's  standpoint, yaw rate feedback is better 
than  roll rate feedback. 
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SECTION 8 

CONCLUSIONS 

This  study  was conducted to determine the flight  characteristics of a high  L/D space- 
craft concept with a single  pivot, two-position skewed wing which is deployed at sub- 
sonic  speeds  from the stowed position (A= 90") to the fully deployed position (A= 0"). 
The results of the  analysis have been  presented in terms of time  histories, landing 
characteristic  parameters,  existing  military  specifications, and proposed  entry ve- 
hicle  specifications.  The following conclusions are drawn: 

a. 

b. 

C. 

d. 

e. 

f. 

g. 

The  vehicle with center of gravity  located at 65 percent of the body length  was 
dynamically stable longitudinally for  all points in the  flight envelope, but artifi- 
cial damping in pitch is required  for all conditions to achieve a satisfactory  degree 
of longitudinal stability  based on handling qualities  specification for  entry  vehicles. 

The  vehicle  was  dynamically  stable  in  the Dutch roll mode  for all points  in  the 
flight envelope, but artificial damping in yaw is required for all conditions to 
achieve a satisfactory  degree of Dutch roll  stability  based on handling qualities 
specification  for  piloted  airplanes. 

The lateral control  provided by the  ailerons  gave  satisfactory  roll  response  in 
terms of a proposal  criterion for piloted  entry  vehicles which require  that  the 
aileron  produce a bank angle of at least 30" in 1 second;  the  evaluation of the 
response in roll  control in terms of qj/w indicated  that  the lateral control  char- 
acteristics of this  spacecraft concept are adequate. 

The stability augmentation system needed for  this  spacecraft concept is within the 
state-of-the-art fail  operational type. Simple rate feedback  with possible  gain 
scheduling  with Mach number is the type of system  proposed. 

The best  speed  for wing deployment is approximately Mach 0.6 at an  altitude of 
30,000 feet. The dynamic transients  produced  are  minimum  because  the  angles 
of attack at wing deployment are below those  values  where  the skewed wing produces 
severe lateral cross coupling. 

The vehicle  has good landing characteristics with a no flap  approach  speed of 165 
h o t s  at a flight  path  angle of 10". The flare initiation  altitude is 275 feet and a 
flare  load  factor of 0.2 g. It does  not  appear  that wing flaps  improve  the landing 
characteristics enough to warrant  the added  weight  and  complexity. 

More  control  power  for  trimming  the  vehicle would reduce  the  elevon deflection 
which borders  the 25" point. The control  effectiveness  drops off rapidly at about 
25". 
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APPENDIX A 

SMALL PERTURBATION EQUATIONS 

Since most  handling qualities requirements  are  specified  in  terms of modes,  frequen- 
cies, and  damping, it is important to have a method  which can readily  evaluate  these 
parameters. A digital  computer  program  was  designed to proceed  from a description 
of the  vehicle in  terms of its mass  properties and  aerodynamic  characteristics to the 
various  transfer function.  The program  trims  the vehicle to one of four  possible con- 
ditions: (1) maximum L/D, (2) maximum lift, (3) flight  path angle, and (4) load  factor. 

From  the  trim condition, dimensionalized  stability  coefficients a re  computed by per- 
turbing  in  sequence  all of the  independent  variables  and noting the  resulting  change  in 
the  forces and moments. The resulting  perturbation  quantities, which a re  normalized 
to units of angular and linear  acceleration,  are  the first partial  derivative  terms of the 
Taylor's  series  expansion  about  the  trim  point. 

Equations A-1 and A-2 a re  the  linearized small perturbation  equations of motion for 
the  longitudinal  and lateral  modes of motion  respectively.  These  equations are  the 
conventional set used  in  aircraft  analysis and can be found in  Reference 7. 
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Figure 3-1. Drag Coefficient at Zero Angle of  Attack 
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Figure 3-2. Partial Derivative of the Drag Coefficient with Angle of 
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Figure 3-3. Partial Derivative of the Drag Coefficient with 
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Figure 3-4. Lift  Coefficient  at Zero Angle  of  Attack 
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Figure 3-5. Lift  Curve Slope 
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Figure 3-6. Partial Derivative of  the Lift  Coefficient  with  Angle  of Attack  Squared 
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Figure 3-7. Partial  Derivative of the Lift Coefficient with Elevator Deflection 

Figure 3-8. Partial of Elevator Lift Curve Slope  Coefficient  with Angle  of  Attack 
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Figure 3-9. Lift Coeffioient Due to Pitching Velocity 
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Figure 3-11. Pitching Moment Coefficient at Zero Angle of Attack 
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Figure 3-13. Partial of Pitching Moment Coefficient with Angle of  Attack  Squared 
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Figure 3-14. Pitching Moment Coefficient Due to Elevator Deflection 
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Figure 3-15. Partial of Pitching Moment Coefficient Due to 
Elevator Deflection with Angle  of  Attack 
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Figure 3-16. Side Force Stability Parameter 

Figure 3-17. Partial of Side Force Stability Parameter with, Angle of Attack 
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Figure 3-18. Side Slip Side Force Coefficient Due to Rolling  Velocity 
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Figure 3-19. Side  Slip  Side Force Coefficient Due to Yawing  Velocity 

Figure 3-20. Rudder Side Force Coefficient 

Figure 3-21. Partial of  Rudder Side Force Coefficient with  Angle of  Attack 
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Figure 3-22. Side  Slip Directional  Stability  Parameter 
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Figure 3-23. Partial of Side Slip Directional  Stability  Parameter with Angle of Attack 
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Figure 3-24. Yawing  Moment Coefficient Due to Yawing Velocity 
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Figure 3-25. Yawing  Moment Coefficient Due to  Rolling Velocity 
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Figure 3-26. Partial of  Yawing  Moment Coefficient Due t o  Aileron Deflection 
with Angle of Attack 

Figure 3-27. Yawing Moment Coefficient Due to Aileron Deflection 
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Figure 3-28. Yawing Moment Coefficient Due to  Rudder Deflection 

Figure 3-29. Partial of Yawing Moment-Coefficient Due to Rudder  Deflection 
with Angle of Attack 

Figure 3-30. Lateral  Stability  Parameter Due to  Side Slip 
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Figure 3-31. Partial of Lateral Stability Parameter Due to 
Side  Slip  with  Angle of Attack 

Figure 3-32. Rolling Moment Coefficient Due to Yawing Velocity 
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Figure 3-33. R.olling Moment Coefficient Due to Rolling  Velocity 
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Figure 3-34. Rolling Moment Coefficient Due to Aileron  Deflection 
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Figure 3-35. Partial of Rolling Moment Coefficient Due to 
Aileron Deflection with  Angle of  Attack 

Figure 3-36. Rolling Moment Coefficient Due to Rudder Deflection 
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Figure 3-37. Partial of Rolling Moment Coefficient Due t o  Rudder  Deflection 
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Figure 3-38. Horizontal  Tail  Incremental Lift and Moment at Low Speed 
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Figure 4-1. Incremental Wing Lift 

59 



ANGLE OF ATTACK, (deg) 

Figure 4-2. Incremental  Wing Drag 
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Figure 4-4. Lift Coefficient Due to  Angle  of  Attack  Rate 
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Figure 4-5. Pitching Moment Coefficient Due to Angle of Attack Rate 
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Figure 4-6. Wing Incremental Side Force  Parameter Due to Side Slip 
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Figure 4-7. Wing Incremental  Directional  Stability  Parameter Due to Side  Slip 
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Figure 4-8. Wing Incremental  Lateral  Stability  Parameter Due to  Side Slip 
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Figure 4-9. Wing Incremental  Rolling Moment Coefficient 
Due to Rolling  Velocity 
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Figure 4-10. Wing Incremental  Rolling Moment Coefficient 
Due to Yawing Velocity 
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Figure 4-13. Wing Trailing-Edge  Flap  Configuration 
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Figure 4-14. Flap  Incremental  Lift  Coefficient 
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Figure 4-15. Flap Incremental  Drag  Coefficient 
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Figure 4-16. Flap Incremental  Pitching Moment Coefficient 
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HORIZONTAL  DISTANCE (thousands of feet) 

,Figure 7-1. Spacial Histories of Simulated Flights 
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Figure 7-2. Time  Histories of Dynamic Parameter for an Initial Mach of 5 
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Figure 7-3. Time Histories of Dynamic Parameter for an Initial Mach of 4 (meet 1 of 2) 
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Figure 7-3. Time Histories of Dynamic Parameter for an Initial Mach of 4 (Sheet 2 of 2) 
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.gure 7-4. Time  Histories of Dynamic Parameter for an  Initial Mach of 3 
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Figure 7-6. Trim  Elevator Deflection Requirements A = 90" 



Figur 'eep Rate) 

77 



START WING 
DEPLOYMENT 

Figure 7 -a. 'eep Rate) 

78 



c 

Figure 7-9. Wing Deployment with Pilot Input ( 2 O  /sec Sweep Rate) 
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Figure 7-10. Wing Deployment with Pilot Input (20’ /sec Sweep Rate) 
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Figure 7-11. Wing Deployment  with Pilot Input (40"j'sec  Sweep Rate) 
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Figure 7-12. Elevator Deflection Rates Required  During Wing Deployment 
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Figure 7-13. Time Histories of Dynamic Parameter During Landing without Fhps 
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Figure 7-14. Summary of Landing Characteristics without Flaps 

Figure 7-15. Approach  Glide  Angles with and without Flaps 
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Figure 7-17. Trim Elevator  Deflections for Landing Approach with and without Flaps 
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Figure 7-18. Time Histories of Various Dynamic Parameters During Landing with Flaps 
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Figure 7-19. Summary of Landing Characteristics with 12" of Flaps 
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Figure 7-20. Wing Stowed Longitudinal Characteristics (Unaugmented) 
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Figure 7-2 1. Wing Deployed Longitudinal Characteristics (Unaugmented) 
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Figure 7-22. Wing  Stowed  Longitudinal  Damping Characteristics (Unaugmented) 
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Figure 7-24. Longitudinal Handling Qualities Compared to  Specified  Entry 
Vehicle Characteristics (Unaugmented) 
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Figure 7-26. Longitudinal Time History for an Elevator Step (Unaugmented) 
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Figure 7-27. Wing Staved  Lateral  Characteristics (Unaugmented) 
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Figure 7-28. Wing Deployed Lateral Characteristics (Unaugmented) 
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Figure 7-29. Lateral Characteristics in Terms of Military 
Specification (Unaugmented) 



4 -  

E 
.t? 
Q 2 -  

-1.0 0 

s 
m 
5 10 
10 

0 I I I I I I I I I 
0 1 2 3 4 5 6 7 8 9 10 

TIME (sec) 

Figure 7-30. Lateral  Time  Histories at Lav Speed for Aileron 
Step A = 0" (Unaugmented) 
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Figure 7-31. Lateral  Time  Histories at Medium Speed for Aileron 
Step A =  0" (Unaugmented) 
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Figure 7-32. Lateral Time Histories at High Speed for Aileron 
Step (A= 90°) (Unaugmented) 
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Figure 7-34. Lateral  Time  Histories at Low Speed for Rudder 
Step (A= 0) (Unaugmented) 
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Figure 7-35. Lateral  Time  Histories at High Speed for Rudder 
Step (A= 90") (Unaugmented) 
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Figure 7-36. Lateral  Parameter ( q W d )  
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