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Abstract 

The problem of a liquid conductor confined between two concentric, 

perfectly conducting, cylindrical electrodes is considered. 

metal is electromagnetically accelerated by the Lorentz force in  the cir- 

cumferential direction created when a current I is passed between two 

electrodes and an  axial magnetic induction field B 

Asymptotic expansions are  made in the smallness of the ratio of the 

magnetic Prandtl number (6% ) and the smallness of the ratio of the 

magnetic induction created by the current 1 to  t h a t  imposed by the magnet 

(B ).  In this  

limiting situation, nine asymptotically distinct regions are found: an  

inviscid main region in  which the body force is balanced by convective 

acceleration, and viscous boundary layers on the inner and outer electrode 

surfaces,  the top a-iid bottom insulator surfaces,  and four corner regions, 

I t  is shown that for the principal balance of effects over most of the 

domain, viscosity is unimportant but secondary flows are crucial. 

Although no solutions have been obtained, similarity laws are easi ly  

deduced and correlations are  suggested. 

evidence tends to support these correlations. 

The liquid 

is maintained. 
0 

Both parameters are  small in  a typical laboratory situation. 
0 

Preliminary experimental 

In Appendix A we show that a contradiction is obtained i f  secondary 

flows are neglected. The conditions for which the secondary flow 
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decouples from the primary (circumferential) flow are derived in  Appendix 

B and are  those of creeping flow because of infinitesmal current flow. 

b 

i 
I 



Notation 

(Rationalized MKS units are used throughout) 

B magnetic induction field (scalar components are denoted - 
by subscripts appropriate for cylindrical coordinates) 

E electric field intensity - 
g. acceleration due to gravity 

K- B r (~q)"' Hartmann number 

I electric current 

Y 

0 1  

j electric current density 

,A 

L axial  length of device.  L = L/r 

3"/2 P I / ( ~ T T ~  B o )  

P gage pressure 

1 

1 

f?Z 0 p 4 P  magnetic Prandtl number 

r radial coordinate . r = radius of inner (outer) electrode 
12 

h r = r / r  
2 2 1  

u,  v , w stretched, dimensionless components qf velocity in  boundary regions 

- V velocity of fluid (scalar components are denoted by subscripts 

appropriate €or cylindrical coordinates) 
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2 

E 

5 

rl 

8 

axial coordinate 

electrical permittivity of fluid 

stretched dimensionless axial boundary layer coordinate 

dynamic viscosity of fluid 

circumferential coordinate 

magnetic permeability of fluid 

stretched dimensionless radial boundary layer coordinate 

m a s s  density of fluid 

electric charge density of fluid measured in the laboratory frame 

0 electrical conductivity of fluid 

L 
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I. Introduction 

An electrically conducting viscous liquid is confined in the annular 

volume bounded by two perfectly conducting coaxi a1 cylindrical electrodes 

of radii r and r respectively, and length L a s  shown in Figure 1. The end 

closures are  insulators, so a n  electric current passing between the electrodes 

must pass through t h e  fluid. 

current is being passed between the electrodes, a circumferentially directed 

body force will result ,  causing the fluid to rotate. 

of the fluid is retarded by viscous effects, and steady s ta te  cmdit ions 

a re  achieved when the momentum increase due to  the body force is balanced 

by the frictional forces at the walls. 

1 2 

If an axial  magnetic field is applied while a 

In general, the motion 

Two distinct mechanisms for achieving this balance of forces are 

possible,  and one or the other may predominate depending upon the mag- 

nitude of the fluid velocity. One is  that the velocity gradient a t  any given 

point is such that the local  viscous forces jus t  equal the body force at that 

point. This mode corresponds to  "creeping flow" in  ordinary fluid mechanics 

and occurs when the velocity is small. In the second mode, the electro- 

magnetic force is balanced locally by the convective acceleration , which 

is, in  turn, balanced by viscous forces in boundary layers near the walls. 

This mode, with the increase in  fluid momentum being transported to 

viscous layers near the boundaries, predominates for large velocities. 

In both c a s e s ,  the motion of the fluid will distort the applied 
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magnetic field and the current distribution within the fluid. In general, 

the velocity, the current distribution, and the magnetic field cannot be 

decoupled and must be computed simultaneously. In order to reduce the 

equations describing these quantities to a more tractable form, a number 

of simplifying assumptions must be made. In addition to the assumptions 

that the electrodes are perfect conductors, that the end closures are  per- 

fect  insulators, and that steady state has  been achieved, a l l  variables 

are assumed to be axially symmetric, and the fluid properties a re  assumed 

to be constants. The e!ectric charge density is  assumed to be negligible 

in Ohm's Law, and the electrical conductivity is assumed to be a scalar, 

Finally, the external magnetic field is assumed to  be oriented in  the axial  

direction and constant except for the distortions induced by the presence 

of currents in the device. 

A number of investigators have attempted to calculate the flow using 

one or more assumptions in addition to those just  l isted.  Al l  of the works 

reviewed here have assumed the radial and axial components of velocity 

to  be s m a l l  in comparison with the tangential component, and many have 

assumed the radial current density at each electrode surface to  be constant. 

The assumption of constant radial current density a t  the electrodes does 

not appear to lead to any difficulties i n  formulating the problem, although 

it imposes an additional constraint on any solution obtained. The assump- 

tion concerning the relative s izes  of the tangential and secondary velocity 
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c 

components must be treated with great care i f  a self-consistent formulation 

of the problem is to  be obtained and, as  it precludes the convection of 

momentum to the walls,  it can only be applied for s m a l l  velocities. 

1 Gordeev and Gubanov studied the flow near the center of a device 

whose length is much greater than any other dimension. A s  a consequence 

of geometry, they assumed that the radial component of the current and the 

velocity are  functions of the radius only and are not influenced by the pre- 

sence of the ends. Chang and Lundgren investigated the one-dimensional 

flow of a liquid in  a " s h ~ r t  cylinder, I' a device whose radial dimensions 

are  much greater than its length. They assumed the influence of the no- 

slip requirements a t  the electrodes to be negligible in  the region away from 

the walls and assumed the velocity, the magnetic induction field, and the 

electric field could be written in the form f(z)/r. They also set the radial 

and axial  components of velocity to zero, and proposed using the radial 

2 

and axial components of the (conservation of) momentum equation to com- 

pute the pressure distribution in  the fluid. 

3 Lewellen , commentipg on Chang and Lundgren's paper, pointed out 

that setting the secondary velocities identically equal to zero leads  to a 

mathematical inconsistency for a viscous fluid. 

the secondary flow ccPuld be treated as  a s m a l l  perturbation on a n  essentially 

one-dimensional flow- field, but did not present the conditions for which 

this might be done, 

He indicated that perhaps 

4 Gordeev , treated the one-dimensional case for a 
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general geometry wi th  the implied assumption that the radial current den- 

sity at each electrode is constant. Other researchers (cited i n  5 , 6  and 7) 

have presented various methods of solving the  problem a s  formulated in  

References 1, 2,and 4, arriving a t  essentially similar results.  In a l l  of these 

papers, the flow is assumed to be one-dimensional, and in no case are the 

limitations of this assumption defined. 

Although no conclusions can be drawn from the incomplete analysis pre- 

8 sented by Erma and Podolsky , they do present experimental observations of 

the velocity and pressure distributions for a device which can be considered a 

“short cylinder. 

current through the device and external magnetic induction field was compared 

with the analytical results obtained by previous investigators, and no correla- 

tion was found possible. A similar comparison was made with observations made 

at t h e  University of Pennsylvania using a device with quite different proportions. 

For both sets of experimental data the velocity a t  a point was found to be 

proportional to the  square root of the product of the external magnetic induction 

f ie ld  and the current passing through the device. For large Hartmann numbers 

the velocity predicted i n  References 1, 4 ,  a n d  5 for long cylinders is directly 

proportional to the product B I. For long cylinders (References 2,4, and 5 )  the 

predicted velocity is independent of the external field and directly proportional 

to the current for large Hartmann numbers. A s  the experimental Hartmann num- 

bers were of the order of 100, these limiting behaviors would correlate with 

the observed behavior i f  the assumption of one-dimensional flow was valid. 

The veloLity observed a t  a given point a s  a function of the 

0 
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This lack of correlation suggests that a more careful study is required of 

the flow configuration se t  up by the electromagnetic body force. 

In the following the  complete equations describing the three-dimen- 

sional flow field and the accompanying magnetic induction field will be 

derived under the assumptions previously mentioned. An approximation 

which is valid for velocities of the  order of magnitude observed experi- 

mentally will be derived. In this approximation, the electromagnetic body 

force is not balanced locally by frictional forces, but the increase in  

momentum due to th i s  force is convected to boundary layers near the walls 

where it is diss ipated by friction. In addition to the  inviscid main region 

where the convective acceleration balances the body force, eight viscous 

boundary regions on the four walls and i n  the four corners will be described. 

3 
The inconsistency pointed out by Lewellen will be examined i n  

Appendix A. A self-consistent formulation will be derived i n  Appendix B 

i n  which the equations and boundary conditions for v and B 8 8’ used in  

references 1 through 7 ,  for an assumed one-dimensional flow field, form 

an autonomous subsystem. In the derivation of this formulation, criteria 

l imit ing the s ize  of the current and external field for which the one-dimen- 

sional approximation is valid will be found. 

will be shown that the one-dimensional approximation is valid only for 

extremely small fluid velocities. 

Us ing  these parameters, it 
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11. Formulation of the Problem 

The problem is completely described by Maxwell's equations, Ohm's 

law, the fluid mechanical conservation equations with a Lorentz body force 

and the appropriate boundary conditions. Under the assumptions made pre- 

viously these can be written in the rationalized MKS system as: 

v . g =  0 (1 ) 

Q x - B = ~1: (2 1 

V X E =  w 0 (3 1 

v * g =  p e / €  (4 1 

A j = CT (E+ vx&> (5) 

v . 0 (6) 

v (v"/Z) - ~x(Vx2) = aP /p  + - -  j x B / p  - f'J xVxv)'i~/p -I- # 4 (7) 

Gauss'  law (Equation (4)) is not necessary for the complete formulation 

of the problem, and can be used to find the charge density measured in  the 

stationary reference frame. Although the fluid is assumed electrically 

neutml when observed from a reference frame moving with the fluid, pe is 

not generally negligible, and setting it equal, to zero would amount to 

making the unwarranted assumption that V .  (v-x I B) = 0 .  Although the charge 

density cannot be ignored i n  Gauss' law,  order of magnitude arguments (as 

given by Shercliff for example) show that it can be ignored in Ohm's law 
9 

(Equation (5)). 
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The current density and the electric field intensity can be eliminated 

from these equations by direct substitution of Equation (2) and by taking the 

curl of Equation (5). 

The resulting set is Eqs. (1) and (5) for conservation of magnetic 

flux and m a s s  respectively, and 

V x ( v x B ) = V x ( V x B ) / c r ~ ~ ,  #.I , m agnetic equation 

v (v”2) - xx(v X I )  = -vP/p - gx(vxg)/pp- vx(ox~)n/p +x ~ 

(9 ) momentum equation 

v = 0 on all boundaries. 

a B , - a B  z = 0 a t r = r  and r = r  a. ar 1 2 

The boundary conditions on these  equations 

P = P  a t z = L  and r = r .  

B and B a re  continuous across  all 
0 1 

r z 

(13) 

(14) 

oundar,ts and B As 
z 

specified on two z = constant surfaces (including the pole faces) 

and Br is specified on a (distant) r = constant surface. (15) 

Equation (10) is the usual ’no-slip condition for.viscous fluid mechan- 

Equation (11) represents the connections to the  external current a s  ics. 
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shown in Figure 1. 

form of Ampere's law $;B *d l  = p r  j -ds  and the condition of axial 

symmetry. Equation (12) s ta tes  that  j, = Q a t  the electrodes, and 

These have been derived by the u s e  of the ijltegral 

,. - - - -  

Equation (13) states that j = 0 on the electrodes. These are derived from e 
Ohm's law, the no-slip condition on velocity, and the condition that the 

electric field intensity must be normal to the surface of a perfect conductor. 

Equation (14) allows the pressure to be defined in terms of the arbitrary 

reference pressure P 

current sheets  a t  the boupdaries. In general the currents i n  the device 

will induce a B r  and BZ in addition to that present in the external field. 

In order to satisfy Equation (15), a transition solution to Ampere's law, 

Equation (15) is a consequence of the lack of 
0 '  

Equation (2) with zero current, and the conservation of magnetic flux 

eqation, Equation (l), must be found in  the region outside the device to 

match the external field with that induced in  the de  vice. 

The radial and axial  coinponents of Equation (8) can be expanded as :  

After integrating each of these once and applying Equations (10) and 

(13), the combined radial 

can be written as: 

- V B - vrBz - z r  

and axial  components of the magnetic equation 
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. -  
i 

Equatim(l3) is no longer needed a s  a separate condition since it is 

satisfied identically by Equations (10) and (8c). 

Equations (1) I (6), (8) I and (9) can be expanded in  component form, 

and coupled with Equations (10) I (11) , (12), (14) and (15), provide the complete 

formulation of the problem. 

-- a (rB2 + a z  = 0 ~ conservation of magnetix flux 
P ar az  

-- 1 a br) + xz 
r a r  a z 

= , conservation of m a s s  

v B - V r B z  =-(+ 1 a B  - a B  radial-axial magnetic z r  
apJ 3.7, 

tangential magnetic 
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At t h i s  point it can be demonstrated that the additional assumption 

v = v = 0 leads to a contradiction. See Appendix A. r z  

111. Asymptotic Analysis 

A. Main Region 

In order to simplify the governing equations, it is best  to render them 

dimensionless so that relative s izes  of terms can be compared. An appro- 

priate normalization for the coordinate system can be obtained from the 

8 '  dimensions of the device. Equation (11) provides the normalization for B 

The scale  factors for the remaining variables are not known - a priori, and 

mus t  be selected to retain the maximum number of terms i n  the equations 

under the expected operating conditions. 10 In comparing relative s izes  

of terms, the normalized parameters are assumed to be of order one. For 

this  to be true i n  a region of finite extent, the normalized spatial derivatives 

of these quantities mus t  a l so  be of order one. Therefore, the relative s izes  

of the dimensionless parameters multiplying groups of terms serves a s  a 

measure of size.  In obtaining the final balance, the properties of mercury 

were used, a s  well a s  100 amperes a s  a typical current, 0.5 web./m 

the external magnetic induction field and 10 m. a s  a typical length. 

\ 

2 for 

- 2  

The resulting dimensionless forms for the variables are a s  follows, a s  

indicated by the caret notation. 
A 
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A 

P = (P + pg(z - L)) 

or 
A 

r = r/r 
1 

2 = z/r 
1 

Five independent dimensionless parameters will appear in the equa- 

tions, two describing the proportions of the  device,  and three more involving 

the properties of the  fluid and the s izes  of the current and the external 

magnetic induction field. Other dimensionless parameters are found from 

combinations of these five. 

indicated: 

The parameters follow, with typical s izes  
* 

n 
r = r / r  
2 2 1  

h 

L = L/r 

n 
r = 6 .52  
2 

A 

L =14.82 

* The numerical values for these parameters are obtained from the dimensions 

of the particular device we have used and the range of current (10 - 100 amps.) 

and magnetic induction field (0.2 5 - 0 . 5  web/m ) available to us .  2 
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P 

The parameter E is t h e  ratio of the “back emf” induced by the fluid 

moving across  the externally applied magnetic induction field to  the voltage 

due to  the electrical res is tance of the fluid. 

will be large current sheets a t  the ends,  while for decreasing values of E, 
For large values of there 

the radial component of current will vary more uniformly along the length 

of the device. 74 is the ratio of the  magnetic induction fi.eld due to the 

current entering the device to the external field. For s m a l l  values of -?-T 

the Lorentz forces involving B can be ignored. gx- is the  magnetic Prandtl 8 

number, an  index of relative thickness of viscous boundary layers compared 

with magnetic boundary layers.  T?‘?? can be seen to  be the magnetic 

Reynolds number, the ratio of induced magnetic fields to applied fields.  

gvbf is the inverse of the viscous Reynolds number, the ratio of viscous 

forces to inertial forces. 328 is the square of the Lundquist number. 
2. 

In  
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this  problem i t  can be thought of a s  the product of YG t i m e s  E, the ratio of 

the "back emf"  generated by the motion of the fluid across the induced 

fields to the resist ive voltage drop. 

Figure 2 shows constant values of these parameters on a total current- 

magnetic induction field map. & 
is of order one, and appropriate l i m i t s  on the other parameters are  fi- -p 0 

and x+O so that f i / h l ? - t O .  Figure 3 shows the l i m i t s  on 31 and 6 for 

For the region of experimental interest 

which these limits can be taken simultaneously. 

large in  comparison with the convective acceleration, a s  the lower left 

corner is approached. Moving toward the right of this map, B approaches 

B i n  s i ze ,  

voltage due to the resistivity of the fluid can be neglected in  comparison 

The viscous terms grow 

0 

The top portion of this map represents the region where the 0 

with the "back emf. I' Suppressing the carets ,  the main region equations i n  

these l i m i t s  become: 

conservation of magnetic flux (16) 
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. c  

axial momentum (22) 

Boundary conditions on these equations will be discussed after for- 

mulating the boundary region equations, Note that the problem for B, and 

B Z  h a s  decoupled and may be solved from Equations (16) and (18) once the 

other variables are known. 

€3. Boundary Regions 

A s  Equations (ZO),  (21) and (22) do not include any frictional terms, 

there is no mechanism available ford issipating the increase in  momentum 

due to the body forces. 

balance, but i n  a closed system of finite dimensions they in  turn m u s t  be 

balanced by frictional forces a t  the walls.  

The convective acceleration terms provide a local 

There must, therefore, be thin 

regions near the walls where the derivatives of velocity are large so that the 

viscous terms become the same s ize  as the convective acceleration. Eight 

of these boundary regions were found, two layers a t  the inner and outer 

electrodes, two layers at the top and bottom insulators, and four corner 

regions providing the transition between adjacent boundary layers. In 

addition, there are twelve overlap zones on the surfaces between adjacent 

regions where limiting solutions in  both adjacent regions must have the 

same behavior i f  the dependent variables are to be continuous. These 
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zones a re  discussed in  Reference 11. The locations of these regions are 

shown schematically in  Figure 4 .  

In order to study the boundary regions the variables can be expanded 

in  powers of the s m a l l  parameter g/?f. @'&was selected for these  expan- 

sions because the viscous terms must be recovered in  the boundary regions 

to satisfy the boundary conditions for the complete problem. After expanding 

all the variables in  arbitrary powers of s t h e  exponents were evaluated t o  

retain the maximum number of terms in the boundary region equations and to 

satisfy the boundary conditions at the walls.  In this  process,  the only 

requirements used were that the viscous terms be retained and that the 

maximum number of the remaining t e rms  should be retained. The fact  that 

the convective acceleration terms are retained indicates that the formulation 

is complete, and no new regions need to be found for f of order one. 

The resulting expansions and equations for the top and botiom 

boundary layers are: 

in the bottom boundary layer. 

i n  the top boundary layer. 
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in  both end boundary layers. In these  regions v and v do not change 

their scale. 

r 8 

To the order indicated, the resulting equations are as follows. 

Where the symbol - + or:p appears,  the top symbol is to be used in the 

bottom boundary layer ( rl) and the bottom symbol for the top boundary 

layer (g2L 

( 1 )  

- -  1 a (r~;’)) a B z  conservation of magnetic flux (24) ar aCi = o  

radial -axial magnetic (25) 

tangential  momentum (2 7 )  
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I 

_- 

axial momentum (29) 
The boundary conditions on these equations are that a l l  velocities as  

('1 well as  the higher order terms B 'I' must be zero at 

1. = 0. A s  v and v do not change scaling through the boundary layers 
1 8 r 

B "' 
e t  r I z  B "' and P 

they must remain finite as  r , - + w .  A s  P i + w ,  all variables must match the 
-1 

solutions obtained in  the main region a s  well a s  match the corner region 

solutions as  r-+-1 and r-+r 2 '  

A similar procedure can be used to obtain the boundary layer equa- 

tions for the inner and outer boundary layers.  The resulting expansions and 

l/z equations are: 
r = 1 -+ 5 ( & / W E )  

r = r - 5 C&~/Z!E,'~" 

in  the inner boundary layer 

i n  the outer boundary layer 

1 

2 2  
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= 0 ( (Qw/n? E ) " z )  (01 a B  t 1) 

& a& + B r  + -Z a Si aZ 

conservation of magnetic flux (30) 

tang entia1 momentum (34 1 

radial momentum (35) 
= v2 + 0 ( ( E l / m d / z )  +om) a P") 

a si  0 
2.- 

A 

+ OC-rVl) axial momentum 

The boundary conditions on these  equations are similar t o  those 

for the end boundary layers.  The velocit ies and higher order terms in the 

expansions must go t o  zero on the wal ls ,  and all variables must match 

with the adjacent regions in  the overlap zones.  

The corner regions which provide the transition between the side 

and end boundary layers must be s m a l l  i n  r and in  z.  A s i m i l a r  procedure 
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of scaling in  terms of powers of (&/m,) and attempting to select the 

powers to retain the greatest  number of terms can be used. 

In these  regions the following scalings and equations are obtained. 

The indices i and j each take on the value of 1 or 2 depending on which 

corner is under consideration. 

i = 1 denotes the inside and i = 2 the outside. The relations for the top 

two corners are  obtained with j = 2 

and outer regions a s  before. 

For the bottom two corners j = 1, while 

and the values of i indicating inner 

r = 1 5 < G / W  €)"% in the inner two corner regions 
1 

in  the outer two corner regions 

in the bottom two corner regions 

in  the top two corner regions 
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B (" and B (') are constants which will have different values ( 0 )  

~r Z 

in  each of the corner regions, to  match the values a t  the appropriate cor- 

ners of the main region. 

Equation (11). Similarly B 

B i o )  = l/r in  the  outer bottom corner region from Equation (11). The 

equations are: 

(') = 0 in  the top two corner regions from 

= 1 in the  inner bottom corner region and 
0 

2 

conservation of magnetic flux (37) 

i 
(-1) & + (-1)j jW.7- = 0 ( I  /7f.:€)"*) 

conservation of mass (38) a 5, a cj 

tangential momentum (41) 
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Again velocities and higher order terms in  t h e  expansions must be 

zero on the walls,  and solutions m u s t  match those obtained in  adjacent 

regions in  the overlap zones.  

C. Main Region Boundary Conditions 

With the formulation of the boundary layer equations complete, the 

boundary conditions on the main region equations can be examined. As the 

variation in  B has  been shown to  be small in  the boundary regions, the 

boundary conditions on B that  apply a t  the walls will carry over into the 

main region. The noma1 components of velocity are  a l so  small in t h e  

boundary regions. To within the order indicated by the scaling of the 

dependent variables in the boundary regions the boundary conditions for 

the main region are Equation 

0 

0 

(15) for Br and BZ,  and 

v ( r , ~ )  = v (r, L) = v r  ( 1 , ~ )  = v  (r , z )  = 0 
Z z r 2  

B (r, L) = 0 9 

a ( rB)  = 0 at r = l , r  e 2 
- 
ar 

No te  that there are  no boundary conditions on v However, we 

believe that the main region problem is well formulated. There is 

8' 
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a sufficient number of equations and boundary conditions for an  adequate 

formulation of the complete problem, (as will be demonstrated in  Appendix 

B for the slow flow (one-dimensional) case), and the boundary region 

equations appear to be properly formulated. 

From the boundary condition on the secondary velocities i n  the main 

region, the conservation of m a s s  equation, and the requirements that 

velocities be continuous, there must be a t  least one point in the main 

region where v = v = 0 simultaneously. At th i s  point, the radial component 

of current (-a B /az) must also be zero from the tangential momentum equa- 

tion. It is expected that the radial current will vary smoothly over the 

length of the device,  and be of order one in most of the main region for 

moderate or s m a l l  values of 

r z  

8 

D. Subsidiary L i m i t s  

In the l i m i t ,  as E+ 0, Equation (19) reduces to the form it would have 

if the velocity was sero. The solution to this  equation is B = .(L - z)/Lr. 

As this solution cannot satisfy Equation (20) a t  the point where v and v 

0 

r Z 

are  zero simultaneously, an  additional asymptotic region must appear for 

the limiting case  as 63 0. In this region, derivatives must be large enough 

to enable a B  / a Z  to go to zero a t  this point where v and v are  zero. 0 r Z 

In the other extreme, as  E+.., avO/az and aB8/az approach zmo through- 

out the entire main region. These two quantities will both be large in  the 
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the  end boundary layers,  resulting in the formation of Hartmann layers.  

In this extreme Equations (16) through (22)  must be rescaled to 

retain a maximum balance. The new scaled variables (indicated by the 

tilde notation) can be defined i n  terms of the old scaled variables (caret) 

used for moderate or small values of E 
A -- V Bo - q = = v =  2 n G a  

*.u - 
I 

Y h 

r B B r =  “ B r  = 2 n r  
P I  - 4 

B = E B  = z r r r l  ( B ~ - B  z 
Z z -  

U l  

Pd P. 

Be = B = 2nr e - Be 
PI 

Equations (16) and (17) do not change i n  form. The remaining equa- 

tions for the main region are: 

radial momentum (46) 
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IV. Comparison with Experiment 

Although the system of equations describing the flow has  not 

been solved, some conclusions can be drawn concerning the  behavior 

of the flow by inspection of the equations. The only parameter appearing 

explicitly in  the main region equations is E, 

At any given point, therefore, the normalized velocity and pressure 

is expected to  be only a function of and the geometric parameters 

and ? , to the  order of the terms neglected. Velocity measurements a s  

shown in Figure 5 tend to support th i s  conclusion. A s  the device used 

by Erma and Podolsky is of quite different proportions ( r  = 4 ,  L = 1 ) 

than that used at the University of Pennsylvania (T = 6 . 2 5 ,  2 = 14.82) 

the two sets of data a re  not expected to have the same numerical values.  

\ 2  

.A A 8 
2 

2 

The trends of both sets of data indicates that not only is v a function of 

6 only , but that  it is a weak function of I over the range 0. '2 < E < '2.0. 

0 

Measurements of the pressure distribution in the top plane of the 

device at the University of Pennsylvania shown in Figure 6 indicate tha t  

the normalized radial pres sure gradient varies only slightly with current 

and magnetic field over most of the gap width. Measurements of the pres- 

sure difference between two points i n  this  region are  shown on a n  expanded 

scale as a function of in  Figure 7.  Again, the normalized pressure dif- 

ference appears to be primarily a function of E only. All  of these  observa- 

tions t m d  to confirm the ability of the analytic formulation t o  adequately 

represent the, experiment5 , 
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Attempts to  measure the direction of flow were not nearly as  satis-  

factory. Measurements made of the ratio vI/ve near the bottom of the 

device indicated that this  ratio tends to  increase with the magnetic field 

for a constant value of &. Measurements of the ratio v /v as  a function 

of radius , current and magnetic field proved to be not reproducible. In 

general the s ize  of this  ratio was large near the electrodes, but the sign 

varied between successive experiments. Once a particular flow pattern 

was established, it persisted for a s  long as  the device was kept in  con- 

tinuous operation. 

restarting it generally led to the establishment of a new pattern, however. 

z 8  

Stopping the device for a period of time and then 

A s  values for the ratios v /v and v /v a s  large a s  0.2 were 
r 8  z e  

observed, the existence of a significant secondary flow field was confirmed. 

The measurements of v /v 

flow cells, but a l so  indicate that a number of different cell arrangements 

may be stable once established. Apparently, the establishment of any 

given cell arrangement is qui te  dependent on comparatively s m a l l  effects , 

and it seems unreasonable to suppose that the location of instrumentation 

probes would not influence the configuration established. Therefore obtain- 

ing comparable measurements of flow direction a t  different axial  locations 

will be difficult unless a means of controlling the cell arrangements is 

established. 

s e e m  t o  confirm the existence of secondary 2 8  

The device occupies a comparatively small portion of the volume 

between the pole faces ,  and the variation of the axial  magnetic induction 
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field is less than 2%of the centerline average throughout the volume 

actually enclosed by the device. Small as  this  variation is, it still 

is much larger than that induced by the tangential currents in  the device,  

and may have a n  appreciable influence on the character of the secondary 

flow. This inhomogeniety in the external field may explain the behavior 

observed in  the ratio vr/v 

V. Conclusions 

9'  

The problem of a n  electromagnetically accelerated liquid conductor 

confined between two concentric, perfectly conducting, cylindrical 

electrodes was considered. Asymptotic expansions %re made in  the 

smallness of the magnetic Prandtl number ( i%- ) and the smallness of the 

ratio of the magnetic induction created by the current I t o  that imposed by 

the magnet (Bo). Both parameters were shown to be s m a l l  in a typical 

laboratory situation. 

distinct regions were found: a n  inviscid main region in  which the body 

force was balanced by convective acceleration, and viscous boundary 

layers on the inner and outer electrode surfaces,  the top and bottom insula- 

tor surfaces,  and four corner regions. It was shown that for the principal 

balance of effects over most of the domain, viscosity is unimportant but 

secondary flows are crucial. Although no solutions were obtained, 

In this  limiting situation, nine asymptotically 

similarity laws were easi ly  deduced and correlations were suggested. 

Preliminary experimental evidence tended to  support these correlations. 
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In Appendix A we show that a contradiction is obtained if  secondary 

flows are neglected. The conditions for which the secondary flow 

decoup1.e~ from the primary (circumferential) flow are derived in  Appendix 

B and are those of creeping flow because of infinitesmal current flow. 
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Appendix A: Contradiction Obtained by Neglecting Secondary Flow 

If secondary flows are  neglected, i .e. ,  v r z  = v = 0 ,  then 

Equation (8c) becomes: 

a 3  -  AB^ = o  
a z  ar 

Equations (sa) and (9c) then become: 

Solving (A-3) for P 

p = -  - n 1 Be" - pgz + f  (r), 

where f (r) is a n  arbitrary function of the radius only. After substituting 

this  into Equation (A - 2 )  we obtain: 

r d f r )  = pvi  - - 1 Be" 
dr c1 

The left hand side of this  expression is a function of the radius only, 

and the relation must hold for any position within the device. Selecting 

the surface of the inner electrode ( r = r ) to evaluate the expression, 

v = 0 from Equation (10) and r - df(r) = C. The relationship can now be 

written as: 

1 

dr 8 

(A - 4) 

C = -  1 B 2 ( r  ). 
- 8 1  LJJ 

(A - 6) 
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From Equation (ll), B (r ) is not a constant,  and the secondary 
0 1  

velocity cannot be ignored in  the formulation of the problem. A s  

jr  =L this demonstration is not restricted to problems of finite 

length, but can be applied to  the "long cylinder" case as well. The 
lJJ a= 

assumption of perfect electrodes,  constant fluid properties, axial  

symmetry, steady state conditions, and the pres enceof a radial com- 

ponent of current are  sufficient t o  require the inclusion of the secondary 

components of velocity in  the calculations. 
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Appendix B: One-Dimensional Flow Analysis 

For low flow velocit ies,  the electromagnetic body forces can be 

balanced locally by the viscous terms. By forcing this  balance on 

Equations (la), (6a), (8c) , (8d) , (9a), (9b) ,and (9c), a set of parameters can 

be derived which must be s m a l l  i f  the  body forces are t o  be balanced locally 

by the viscous terms. In deriving these parameters, the magnetic Prandtl 

number ( & ) was assumed to be of order one or smaller. A s  the magnetic 

Prandtl number is large only for highly ionized plasmas , and the assump- 

tions of constant properties and scalar  conductivity would not be valid in 

this  case, the restriction to moderate values of g- does not affect the 

generality of the resul ts .  In developing th i s  formulation, the Hartmann 

number based on the axial magnetic induction field was assumed to be of 

order one, and no boundary layers appear in  the resulting approximate 

equations. These equations are shown to  be valid for quite large axial  

Hartmann numbers, and Hartmann layers do appear for this  condition. The 

dimensionless forms (indicated by 'the carets)  are: 
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The following dimensionless parameters can be defined in  addition 

is the Hartmann number based on the axial magnetic induction 

field,and J the Hartmann number based on the tangential field. 

Dropping the caret  notation, Equations (la), (6a), (8c), (8d), ( sa ) ,  

(9b) , and (9c) can be written as: 

1 a (rv) 3- a v , = O  
r ar az  (B-1) r - -  

conservation of m a s s  

conservation of magnetic f lux (B-2) 

axial-radial magnetic (B- 3) 

ar tangential magnetic (B- 4 
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which 

axial momentum z d " z ]  
v a v + v  "c a r  az 6% 

r -2 
c 

By inspection, the two sets of conditions can be determined for 

the viscous terms dominate the convective acceleration terms: 

(B- 7) 

The first defines the maximum current for which the viscous t e rms  

predominate in  the momentum equations while the second defines the 

maximum external field for which the induced fields can be neglected. 

The maximum value of E a n d h ?  for which these Conditions can be m e t  

simultaneously for mercury are indicated in  the lower left corner of 

Figure 3. 

For ?{ < ?, , the two independent conditions reduce to one: 

J-=e ec2 P* 
These two conditions can be seen to be equivalent for I/= 1 and 

of order one or smaller. 

gL 



-37- 

If these conditions are m e t ,  Equations (B-3) through (B-7) can be 

written to  t h e  order indicated as :  

v = & - AB,- + 0 (J7Pm.l r ar az axial-radial magnetic 

a 1 a ( rBe)  + 8% =-pa& + O(f%)+ o(JzA'/$??) 
ar r ar az 

tangential magnetic 
-3 ---  

tangential momentum 

+ 0 (Jy&2) -4- oca, w )  radial momentum 

(B- 3a) 

(B-4a) 

(B- Sa) 

(B-62) 

The boundary conditions on these equations are Equations ( lo) ,  (ll), 

(12) , (14) , and (15) for the complete problem with Equation (11) written 

a s  Be  (r , 0) = l/r i n  scaled form. 

Equations (€3-4a) and (B-5a), and Equations ( lo) ,  (11) and (12) are  

equivalent to the systems solved in References 1 through 7 for one-dimen- 

sional flow, and their compute3 values for v and B apply directly. The 0 0 

secondary velocities can be written in  terms of partial derivatives of a 

stream function Y,and Equations (B-1) , (B-6a) and (B-7a) reduce to  a 

single linear inhomogenous fourth order partial differential equation 



- 38- 

with a known forcing function. 

are  that Y and its normal derivatives be zero on the boundaries. Once 

the secondary velocity is known, Equations (B-2) and (3-3a) can be 

solved with Equation (15) for the induced fields.  

and (3-3a) through (B-7a) with Equations (lo), (ll), (12), (14), and (15) 

have been shown to  constitute a well formulated representation of the 

complete problem for low velocity flows. A s  the low velocity approxi- 

mation is of the s a m e  derivative order a s  the complete problem, these  

boundary conditions must be sufficient for a well formulated system for 

the high velocity representation. 

The boundary conditions on this  equation 

Equations (B-1), (B-Z), 

For most liquid metals %, is much smaller than one, and the terms 

involving B in  Equations (3-6a) and (€3-7a) can be neglected. Assuming 

thatx' is greater than one, the error in Equations (B-3a) through (B-7a) is 

less than 10% if  7<4.7 x 

This condition on&s  shown in  Figure 3 along with the conditions for 

which the three-dimensional equations are valid. These restrictions 

0 

6 -7  and &'-C6.5 x 10 for mercury (Lg= 1.53 x 10 ). 

are equivalent to  requiring that the  current be less than 

and the axial  magnetic induction field be less than 2 x 10 

for r = 10 

is of the order of 4 x 10 

city is much smaller than those of experimental interest ,  it is not surprising 

that the results obtained in  References 1 through 7 have not been observed 

experimentally. 

amperes, 

3 2 web/m , 
-2  m.  The tangential velocity corresponding to  these conditions 

m/sec. A s  this current and corresponding velo- 
1 

-6  
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Figure C a p  tion s : 

1. MHD Device  a n d  Coordinate System 

2 .  Current-Magnetic Field Map for Mercury 

3 .  Parameter Map for Mercury 

4.  Location of Asymptotic Regions 

5. Normalized Velocity as  a Function of I 

6. Typical Normalized Pressure  Distribution 

7. Normalized P res su re  a s  a Function of E 
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