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Abstract
The problem of a ligquid conductor confined between two concentric,

perfectly conducting, cylindrical electrodes is considered. The liquid
metal is electromagnetically accelerated by the Lorentz force in the cir-
cumferential direction created when a current I is passed between two
electrodes and an axial magnetic induction field BO is maintained.
Asymptotic expansions are made in the smallness of the ratio of the
magnetic Prandtl number (é%, ) and the smallness of the ratio of the
magnetic induction created by the current I to that imposed by the magnet
(BO). Both parameters are small in a typical laboratory situation. In this
limiting situation, nine asymptotically distinct regions are found: an
inviscid main region in which the body force is balanced by convective
‘acceleration, and viscous boundary layers on the inner and outer electrode
surfaces, the top and bottom insulator surfaces, and four corner regions,
It is‘ shown that for the principal balance of effects over most of the
domain, viscosity is unimportant but secondary flows are crucial.
Although no solutions have been obtained, similarity laws are easily
deduced and correlations are suggested. Preliminary experimental
evidence tends to support these correlations.

B In Appendix A we show that a contradiction is obtained if secondary

flows are neglected. The conditions for which the sécondary flow



decouples from the primary (circumferential) flow are derived in Appendix

B and are those of creeping flow because of infinitesmal current flow,
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Notation

(Rationalized MKS units are used throughout)

magnetic induction field (scalar components are denoted
by subscripts appropriate for cylindrical coordinates)
electric field intensity

[2m? o°B2 /(1)1 %

acceleration due to gravity

Bor1 (o/n )W' Hartmann number

electric current.

electric current density
1 /2
5= (o/n)
axial length of device. 1= 1/r

w1/ (anlBO )

gage pressure

oun/o magnetic Prandt]l number
radial coordinate . r = radius of inner (outer) electrode
1.2
7
r =r/r
2 2 1

stretched, dimensionless components of velocity in boundary regions
velocity of fluid (scalar components are denoted by subscripts

appropriate for cylindrical coordinates)
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axial coordinate
electrical permittivity of fluid

stretched dimensionless axial boundary layer coordinate

"dynamic viscosity of fluid

circumferential coordinate

magnetic permeability of fluid

stretched dimensionless radial boundary layer coordinate

mass density of fluid

electric‘charge density of fluid measured in the laboratory frame

electrical conductivity of fluid



I. Introduction

An electrically conducting viscous liquid is confined in the annular
volume bounded by two perfectly conducting coaxial cylindrical electrodes
of radii r1 and r.2 respectively, and length L. as shown in Figure 1, The end
closures are insulators, so an electric current passing between the electrodes
must pass through the fluid. If an axial magnetic field is applied while a
current is being passed between the electrodes, a circumferentially directed
body force will result, causing the fluid to rotate. In general, the motion
of the fluid is retarded by viscous effects, and steady state conditions
are achieved when the momentum increase due to the body force is balanced
by the frictional forces at the walls,

Two distinct mechanisms for achie\}ing this balance of forces are
possible, and one or the other may predominate depending upon the mag-
nitude of the fluid velocity. One is that the velocity gradient at any given
point is such that the local viscous forces just equal the body forbe at that
point., This mode corresponds to "creeping flow" in ordinary fluid mechanics
and occurs when the velocity is small. In the second vmode, the electro-
magnetic force is balanced locally by the convective acceleration, which
is, in turn, balanced by viscous forces in boundary layers near the walls.
This mode, with the increase in fluid momentum being transported to
viscous layers near the boundaries, predominates for large velocities.

In both cases, the motion of the fluid will distort the applied



magnetic field and the current distribution within the fluid. In general,
the velocity, _ the current distribution, and the magnetic field cannot be
decoupled and must be computed simultaneously. In order to reduce the
equations describing these quantities to a more tractable fbrm, a number
of simplifying assumptions must be made, In addition to the assumptions
that the electrodes are perfect conductors, that the end closures are per-
fect insulators, and that steady state has been achieved, all variables
are assumed to be axially symmetric, and the fluid properties are assumed
to be constants. The electric charge density is assumed to be negligible
in Ohm's Law, and the electrical conductivity is assumed to be a scalar.
Finally, the external magnetic field is assumed to be oriented in the axial
direction and constant except for the distortions induced by the presence
of currents in the device,

A number of investigators have attempted to calculate the fl.Qw using
one or more assumptions in addition to those just listed. All of the works
reviewed here have assumed the radial and axial components of velocity
to be small in comparison with the tangential component, and many have
assumed the radial current densiiy at each electrode surface to be constant.
The assumption of constant radial current density at the electrodes does
not appear to lead to any difficulties in formulating the problem, although
it imposes an additional constraint on any solution obtained. The assump-

tion concerning the relative sizes of the tangential and secondary velocity



components must be treated with great care if a self-consistent formulation
of the problem is to be obtained and, as it precludes thé convection of
momentum to the walls, it can only be applied for small velocities.

Gordeev and Gubanov1 studied the flow near the center of a device
whose length is much greater than any other dimension., As a consequence
of geometry, they assumed that the radial component of the current and the
velocity are functions of the radius only and are not influenced by the pre-
sence of the ends, Chang and Lunc:lc._;fren2 investigated the one-dimensional
flow of a liquid in a "shert cylinder, " a device whose radial dimensions
are much greater than its 1ehgth. - They assumed the influence of the no-
slip requirements at the electrodes to be negligible in the region away from
the walls and assumed the velocity, the magnetic induction field, and the
electric field could be written in the form f(z)/r. They also set the radial
and axial components of velocity to zero, and proposed using the Aradial
and axial components of the (conservation of) momentum equation to com-
pute the pressure distribution in the fiuid.

Lewellens, commenting on Chang and Lundgren's paper, pointed out
that setting the secondary velocities identically equal to zero leads to a
mathematical inconsistency for a viscous fluid, He indicated that perhaps
the secondary flow caeuld be treated as a small perturbation on an essentially
one-dimensional flow field, but did not present the conditions for which

4
this might be done. Gordeev , treated the one-dimensional case for a



general geometry with the implied assumption that the radial current den-
sity at each electrode is constant. Other researchers (cited in 5,6 and 7)
have presented various methods of solving the problem as formulated in
References 1, 2,and 4, arriving at essentially similar results. In all of these
papers, the flow is assumed to be one-dimensional, and in no case are the
limitations of this assumption defined.

Although no conclusions can be drawn from the incomplete analysis pre-
sented by Erma and Podolsky8, they do present ex'perimental observations of
the velocity and pressure distributions for a device which can be considered a
“short cylinder,"” The velocity observed at a given point as a function of the
current through the device and external magnetic induction field was compared
with the analytical results obtained by previous investigators, and no correla-
tion was found possible. A similar comparison was made with observations made
at the University of Pennsylvania using a device with quite different proportions.
For both sets of experimental data the velocity at a point was found to be
proportional to the square root of the product of the external magnetic induction
field and the current passing through the device. For large Hartmann numbers
the velocity predicted in References 1, 4, and 5 for long cylinders is directly
proportional to the' product BOI. For long cylinders (References 2,4, and 5) the
predicted velocity is independent of the external field and directly proportional
to'the current for iarge Hartmann numbers. As the experimental Hartmann num-

bers were of the order of 100, these limiting behaviors would correlate with

the observed behavior if the assumption of one-dimensional flow was valid.



This lack of correlation suggests that a more careful study is required of
the flow configuration set up by the electromagnetic body force.

In the following the complete equations describing the three-dimen-
sional flow field and the accompanying magnetic induction field will be
derived under the assumptions previously mentioned. An approximation
which is valid for velocities of the order of magnitude observed experi-
mentally will be derived. In this approximation, the electromagnetic body
force is not balanced locally by frictional forces, but the increase in
momentum due to this force is convected to boundary layers near the walls
where it is dissipated by friction. In addition to the inviscid main region
where the convective acceleration balances the body force, eight viscous
boundary regions on the four walls and in the four corners will be described.

The inconsistency pointed out by Lewellen3 will be examined in
Appendix A, A seli-consistent formulation will be derived in Appendix B
in which the equations and boundary conditions for ve and BG' used in
references 1 through 7, for an assumed one—dimensional flow field, form
an autonomous subsystem., In the derivation of this formulation, criteria
limiting the size of the current and external field for which the one-dimen-
sional approximation is valid will be found. Using these parameters, it
will be shown that the one~dimensional approximation is valid only for

extremely small fluid velocities.
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II. Formulation of the Problem

The problem is completely described by Maxwell's equations, Ohm's
law, the fluid mechanical conservation equations with a Lorentz body force
and the appropriate boundary conditions., Under the assumptions made pre-

viously these can be written in the rationalized MKS system as:

v-B=10 ()
VX B=pj (2)
vxE= 0 3)
v-E=0p/¢ (4)
j=o(E+yvxpB) (5)
v.v=0 (6)
v (v®/2) - yQX(vxg)‘ =VP/p+jxB/p - (VrVRYIN/p + g (7)

Gauss' law (Equation (4)) is not necessary for the complete formulation
of the problem, and can be used to find the charge density measur_ed in the
stationary reference frame. Although the fluid is assumed electrically
neutral when observed from a reference frame moving with the fluid, fq is
not generally negligible, and setting it equal to zero would amount to
making the unwarranted assumption that V. (vxB) = 0. Although the charge
density cannot be ignored in Gauss' law, order of magnitude arguments (as
given by Shercliff9 for example) show that it can be ignored in Ohm's law

(Equation 5).
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The current density and the electric field intensity can be eliminated
from these equations by direct substitution of Equation (2) and by taking the
curl of Equation (5).

The resulting set is Egs. (1) and (8) for conservation of magnetic
flux and mass respectively, and

Vx(vxB)=9x(VxB) /o m agnetic equation (8)

J

v (v?/2) - yx(Vxy)= -VP/p - Bx(VxB)/pu- Vx.(vxx)n/p +9

p)
momentum equation (9)
The boundary conditions on these equations
v = 0 on all boundaries. (10)
Be =0 at z =1.
3 (11)
Be: uI/(an) at z= 0
3 (B.)=0at r=r and r=r. (12)
—— e 1 o
or
9B _ 2B, _ g atr=r and r=r1 . (13)
32 or 1 2
P=P_ atz=1 and r=r . 14)
0 1

Br and B7 are continuous across all boundaries and BZ is
specified on two z = constant surfaces (including the pole faces)

and B, is specified on a (distant) r = constant surface. (15)

Equation (10) is the usual no-slip condition for-viscous fluid mechan-

ics. Equation (l1) represents the connections to the external current as
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shown in Figure 1, These have been derived by the use of the iutegral

form of Ampere's law 9§§ +dl = p[’l ds and the condition of axial
symmetry.’ Equation (12) states that j, = 0 at the electrodes, and
Equation (13) states that je= 0 on the electrodes. These are derived from
Ohm's law, the no-slip condition on velocity, and the condition that the
electric field intensity must be normal to the surface of a perfect conductor.
Equation (14) allows the pressure to be defined in terms of the arbitrary

reference pressure P Equation (15) is a consequence of the lack of

0
currenf sheets at the boundaries. In general the currents in the device
will induce a Br and BZ in addition to that present in the external field.
In order to satisfy Equation (15), a transition solution to Ampere's law,
Equation (2) with zero current, and the conservation of magnetic flux
eqgation, Equation (1), must be found in the region outside the device to

match the external field with that induced in the device.

The radial and axial components of Equation (8) can be expanded as:

"
o v,B -v . B) _1 3 (aBr —aBz)

Dz oW qZ 0z or (8a)
12 Triv -vpB)= 11 arrios - _5_1%2,31 (8b)
r or op T BdL dZ  JTr

After integrating each of these once and applying Equations (10) and
(13), the combined radial and axial components of the magnetic equation

can be written as:

V'zBr - VrBz = L(E—EP—Q-B%) (8c)
op 0% or
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Equation(13) is no longer needed as a separate condition since it is
satisfied identically by Equations (10) and (8c).

Equations (1), (6), (8), and (9 can be expanded in component form,
and coupled with Equations (10), (1), (12), (14) and (15), provide the complete

formulation of the problem.

1 _a_(rBr) + -aéz = (0 , conservation of magnetix flux (1a)
T r Dz ? :
13 (rvr) + N, o Qg . conservation of mass (6a)
r 3r Y >
v,B. - v.Bz =1 (aB - —B—Eczj radial-axial magnetic (8c)
oy "dZ ar - ?
3 W,B. -Bv) > W.B. ~v.B) 1 o 1a(rB)+agB}
——"0 - o e 2 90 a. B
> z 8z - Te e Solrt ar O a226 )(8d)
tangential magnetic
2 i - i -
R R _Lap 1 \,Ee 2 By) - B B, @.&z}}
3z r p dr pptr Jr DZ ;r 7
+ _TL[ 12 (Wr) +—-———azvr
dr r 3r dz= sy radial momentum (9a)

T .
v, 2 vy v oav, _1FB 5 (B)+ B ,a__ael

r-oar B aze - ;ulrr_a—; ° dz
nla 1 3 (rve) v 1
p idr r »r _X tangential momentum (9b)
Vr-—-—--;'av +Vz§—\—7—z-———1-gf-—l-Be§—Be+B~—r_aB}}
ar” 3z~ 7 pd oy dz dz

2
+ _n{}_ o) (rav ‘) + Q Zz] -g , axial momentum (9c)
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At this point it can be demonstrated that the additional assumption

v = vZ = 0 leads to a contradiction., See Appendix A.

III. Asymptotic Analysis

A. Main Region

In order to simplify the governing equations, it is best to render them
dimensionless so that relative sizes of terms can be compared., An appro-
priate normalization for the coordinate system can be obtained from the
dimensions of the device. Equation (11) provides the normalization for B6 .
The scale factors for the remaining variables are not known a priori, and
must be selected to retain the maximum number of terms in the equations
under the expected operating conditions.10 In comparing relative sizes
of terms, the normalized parameters are assumed to be of order one. For
this to be true in a region of finite extent, the normalized spatial derivatives
of these quantities must also be of order one, Therefore, the relative sizes
of the dimensionless parameters multiplying groups of terms serve‘s as a
measure of size, In obtaining the fihal balance, the properties of mercury
were used, as well as 100 amperes as a typical current, 0.5 web./m2 for
the éxternal magnetic induction field and 10—2m. as a typical length.

The resulting dimensionless forms for the variables are as follows, as

indicated by the caret notation.

A 1
B OI
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W
1

g = 24mi By
pl
1
B -—{i 2mp T B = B
r ~ |o®u®r B3I r =t
. 1 0 777B0€
v
A = 21’fp 2 _
B, [czp,zr 331} B, BO) =B, -8By
10 me Bo
P = 2mr (P+pg(z - L)
BOI
r = 1/t 1<ft<r
1 2
2 = z/r 0<z<T
1

Five independent dimensionless parameters will appear in the equa~
tions, two describing the proportions of the device, and three more involving
the properties of the fluid and the sizes of the current and the external
magnetic induction field. Other dimensionless parameters are found from
combinations of these five. The parameters follow, with typical sizes

*
indicated:

T =r/r I = 6.52
2 2 1 2
L =1L/r I =14.82

1

* The numerical values for these parameters are obtained from the dimensions
of the particular device we have used and the range of current (10 - 100 ampé.)

and magnetic induction field (0.25 - 0.5 Web/mz) available to us,
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1
E =[2nr3 £B3 \/2 25 < £<2.5
, pI
moo= 4.38x10"% <M< 8.76x107°
27T BO -t
1
Fr = gun fr=1.53x10"7
p
ME- = (BQI )Ag our 6.96x10_4 <mé < 3.12><:1O“3
2nr 1
™ lp
P, y
S # M) i 4.88x107° <Py 20x10™%
wE ( BOI rlp .88x o =2
g £ nE -4 ) -3
267 = BRrio™u 5.54x10 < WEH< 2.21x10

p

The parameter £ is the ratio of the "back emf" induced by the fluid
moving across the externally applied magnetic induction field to the voltage
due to the electrical resistance of the fluid. For large values of &, there
Will be large current sheets at the ends, while for decreasing values of 5,
the radial component of current will vary more uniformly along the length
of the device. ?V is the ratio of the magnetic induction field due to the
current entering the device to the external field. For small values of X

the Lorentz forces involving B, can be ignored, IQ/.»« is the magnetic Prandtl

S
number, an index of relative thickness of viscous boundary layers compared
with magnetic boundary layers, ME can be seen to be the magnetic
Reynolds number, the ratio of induced magnetic fields to applied fields,

(/gf!/?/}f is the inverse of the viscous Reynolds number, the ratio of viscous

-, 2 -
forces to inertial forces, E s the square of the Lundquist number. In
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this problem it can be thought of as the product of M{ times £, the ratio of
the "back emf" generated by the motion of the fluid across the induced
fields to the resistive voltage drop.

Figure 2 shows constant values of these parameters on a total current-
magnetic induction field map. For the region of experimental interest é;
is of order one, and appropriate limits on the other parameters are ﬂ. -0
and M -0 so that @1/7?75 40, Figure 3 shows the limits on 7/ and £ for
which these limits can be taken simultaneously. The viscoqs terms grow
large in comparison with the convective acceleration, as the lower left

corner is approached. Moving toward the right of this map, B, approaches

8
B0 in size., The top portion of this map represents the region where the
voltage due to the resistivity of the fluid can be neglected in comparison

with the "back emf." Suppressing the carets, the main region equations in

these limits become;

e
Q)
=
oy}
la

~
Q/
|

=0 conservation of magnetic flux (16)

1
Q/
L]
[0}
N

P
3
+

5
1t

conservation of mass 17)

i
ct
=
Q)
N

ve =3B, - 3B + O(WE) radial-axial magnetic (18)
>z

3 13 (l”Be) +9%By =-£ v + o(Mm&) + O(ME?)
Ar r 3r d>z° 3z
tangential magnetic {19)

vy 3 (tve) + vz'a;ze =3By + O(!?FA/’}Mé') + O(ME)
r r az 2z
tangential momentum (20)
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3P =¥ - vr 3vr - v, av ¥ Ev. + Ol /mE) + OM) +O (me)
r Jr z
radial momentum (21

ap ' 3 -
rel %‘Lz ~ Yy, aZZ v O(B/mE)+OM) + O (ME?)

axial momentum (22)
Boundary conditions on these equations will be discussed after for-
mulating the boundary region equations, Note that the problem for B, and
BZ has decoupled and may be solved from Equations (16) and (18) once the
other variables are known.

B, Boundary Regions

As Equations (20), (21) and (22) do not include any frictional terms,
there is no mechanism available fordissipating the increase in momentum
due to the body forces. The convective acceleration terms provide a local
balance, but in a closed system of finite dimensions they in turn must be
balanced by frictional forces at the walls, There must, therefore, be thin
regions near the walls where the derivatives of velocity are large so that the
viscous terms become the same gize as the convective acceleration. FEight
of these boundary regions were found, two layers at the inner and outer
electrodes, two layers at the top and bottom insulators, and four corner
regions providing the transition between adjacent boundary layers. In
addition, there are twelve overlap zones on the surfaces between adjacent
regions where limiting solutions in both adjacent regions must have the

same behavior if the dependent variables are to be continuous. These
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zones are discussed in Reference 11. The locations of these regions are
shown schematically in Figure 4.

In order to study the boundary regions the variables can be expanded
in powers of the small parameter Iz HE, ﬁ/’%?gwas selected for these expan-
sions because the viscous terms must be recovered in the boundary regions
to satisfy the boundary conditions for the complete problem. After expanding
all the variables in arbitrary powers of % the expcnents were evaluated to
retain the maximum number of terms in the boundary region equations and to
satisfy the boundary conditions at the walls. In this process, the only
requirements used were that the viscous terms be retained and that the
maximum number of the remaining terms should be retained. The fact that
the convective acceleration terms are retained indicates that the formulation
is complete, and no new regions need to .be found for £ of order one.

The resulting expansions and equations for the top and botiom

boundary layers are:

i if2
z= (B/m€) ¢

N

_ G ¥ 1
SENC NS

in the bottom boundary layer.

y
) .

&
By = ((%‘/mé)Be(') (, T2

z=L~-

in the top boundary layer.
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v
v ~@®&mE) w (r, ) i=1,2

14
Br = B, © (1) +(ﬁ;/?}7£)Br‘[) e, )

e
( ¢
BZ = B, °) )+ (ﬁl\/nz&)BZ(" (r, Ci)

) . PO
P="P im P .
(r) + S E r, &)

in both end boundary layers. In these regions vr and ve do not change
their scale,.

To the order indicated, the resulting equations are as follows.
Where the symbol + orx appears, the top symbol is to be used in the

bottom boundary layer (&) and the bottom symbol for the top boundary

layer (¢2)
1 3 (v L3w =9 mass conservation (23)
r dr 3 li
(0) ) .
1 o @B ) £ 2Bz = 0 conservation of magnetic flux (24)
roar 14

H
ve= 28"y B o[ (Bu/mE) ] + O ey + O [MmE (@ /me) "]

ar T aCi
radial -axial magnetic (25)
2B " Sy i
228 = 3E28 + OB/ mg) +OMHE) + O [ne™(n /mg)/"]
oG o, (26)

tangential magnetic

v. 3V 3V _ Q) ‘ 1/
r Vg & W ¥y = 3B Qz—g‘ge + O(Ru/mE ) + o[wécég/mé)”’j

tangential momentum ' (27)
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._B_PE(D)_Y.%_Vr_a_‘Lr T W ovy _ £Vr+5_‘_’;
or T ar 3 3¢e”

* OCe. /'mg)—t-O[M(é%/mgﬂ +O(Wgzc)hal momentum (28)
;a_'_l?“’ V. AW W W W 2 Il
sei o Yo T arg ¥ + OL(G/ mgY 1+ O (R /MME)]

+ O me* (G /me)']

axial momentum (29)
The boundary conditions onthese equations are that all velocities as

\ {
well as the higher order terms Bem Br” , BZ('\ and P ‘)must be zero at

Ci = 0. As ve and vr do not change scaling through the boundary layers

they must remain finite as tiﬂm. As zf’i -+, all variables must match the

solutions obtained in the main region as well as match the corner region

solufions as r—+1 and r»»rz .

A similar procedure can be used to obtain the boundary layer equa-

tions for the inner and outer boundary layers. The resulting expansions and

equations are:

r=1+§ (F/‘ME) in the inner boundary layer
i
r=r - § (ﬂi/?% £) - in the outer boundary layer
2 2
2.y
v =AW
- (@ /7)15)1/L . i=1,2
B, =B, (2) + (& B.w (5.2 i=1,
(o) A% @ 5 O
a W Y
By = BG (z) [l :FG}}&) j - B@ (gi,Z)

]
(9) B2 W
B =B (2) *@E) B, (5.7

p=p 0 (Bl p O, o
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(“) 0) \
+ Br + B + b =o((@m/'m£)’"‘)

conservation of magnetic flux (30)

i conservation of mass (31)
0) Q)
Pz e =0 ((&/MD)™)
3 i ~ radial -axial magnetic (32)
0 0} 4
°B L EBe L€ () @ Y
agfe Y =- & 50 G By agei
O /mE) ) e OmME)
+ O {( ""/ n tangential magnetic (33)
v v 3B ) i,
— &z — S z
FUE T Vs oaa? TRl A v OUG/mE) )+ Omé)
i
n tangential momentum (34)
* 5'% =v2 + O ((B/mE)"™) +O0m)
i ' radial momentum (35)

l,"
3P @ = zu av, - v, v + 3% +0 ((R/mE)")

>z a%‘i“ dz a%;
+ O0m) axial momentum (36)

The boundary conditions on these equations are similar to those

for the end boundary layers. The velocities and higher order terms in the

expansions must go to zero on the walls, and all variables must match

with the adjacent regions in the overlap zones.

The corner regions which provide the transition between the side

and end boundary layers must be small inr and in z. A similar procedure
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of scaling in terms of powers of (;%/7775) and attempting to select the
powers to retain the greatest number of terms can be used.

In these regions the following scalings and equations are obtained.
The indices i énd j each take on the value of 1 or 2 depending on which
corner is under consideration. For the bottom two corners j = 1, while
i =] denotes the inside and i = 2 the outside. The relations for the top
two corners are obtained with j = 2, and the values of i indicating innex"

and outer regions as before.

'I‘L
r=1+8 ('@H /m é) in the inner two corner regions
1

in the outer two corner regions

2 2
L
()
1 in the bottom two corner regions
:
z=1 - (Fm/mg)l ¢ in the top two corner regions
2
! A i
- 4_ e
vy = (G/mE)*u , Ve = Bon&) v v, = Bofme) w

129} % ("
= G /%
B.=B -+ (%/7E)'s (6. t)

By = Bew’ [ 1+ (-t gi(f?n/ma% g2 (@/7%5)]

34 '
+(yme) B, €. %)

(%)

B =B + (@/7715)%82“) @i'ci )

VA Z

p=p" ¢ (/)P e, £)
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€5 (0

p . B (0)
r

and BZ are constants which will have different values

in each of the corner regions, to match the values at the appropriate cor-

(0)

ners of the main region. Be = 0 in the top two corner regions from

Equation (11). Similarly B ew) = 1 in the inner bottom corner region and

Be(o) =1/r in the outer bottom corner region from Equation (11). The
2

equations are:

. i Q)
U 2k -5 (0 ek e me)®)
38, oL, '

conservation of magnetic flux (37)

D' au o+ (1) aw =0 (e /mE)™)

ag’ 0 C conservation of mass (38)
. ) e j ‘ (1 s
j radlal axial magnetic (39)
) « j
%s —ff—%e =(DEX oftmen)+ 0@ Ane)"]
0 i aCj j tangential magnetic (40)
-0t v o+ () waw —(—). () - 3fv v
dE; acj ag 28 L,
- mgf/*f 16785 + OUG/mE) "]
tangential momentum (41)
(l) . .
S a€ =-v?- (D" uau - ) owan - Eu
i : AE, _a'?ij

—a%-ﬁ1+o@£ﬂ+o[MMWW£ﬁ]
3 E? atg

radial momentum (42)
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(1 22" == (0! waw - ) woaw - 2w Fw

+O(mer)+ O (B /)™ ]

axial momentum (43)

Again velocities and higher order terms ih the expansions must be
zero on the walls, and solutions must match those obtained in adjacent
regions in the overlap zones.

C. Main Region Boundary Conditions

With the formulation of the boundary layer equations complete, the
boundary conditions on the main region equations can be examined. As the
variation in Be has been shown to be small in the boundary regions, the

boundary conditions on B, that apply at the walls will carry over into the

)
main region. The normal components of velocity are also small in the
boundary regions. To within the order indicated by the scaling of the
dependent variables in the boundary regions, the boundary conditions for

the main region are Equation (I15) for Br and Bz’ and

v, €,0)=v 1) =v ({,z) =v (rz. z)= 0
B, (c, 0) =1/
B6 (r, L) =0

_B__(rBe) = Qatr=1,r

ar 2

Note that there are no boundary conditions on v o However, we

believe that the main region problem is well formulated. There is
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a sufficient number of equations and boundary conditions for an adequate
formulation of the complete problem, (as will be demonstrated in Appendix
B for the slow flow (one-dimensional) case), and the boundary region
equations appear to be properly formulated.

From the boundary condition on the secondary velocities in the main
region, the conservation of mass equation, and the requirements that
velocities be continuous, there must be at least one point in the main
region where v, = v, = 0 simultaneously. At this point, the radial component
of current (-3 Be/az) must also be zero from the tangential momentum equa-
tion. It is expected that the radial current will vary smoothly over the
length of the device, and be of order one in most of the main region for
moderate or small values of &

D. Subsidiary Limits

In the limit, as £~ 0, Equation (19) reduces to the form it would have

if the velocity was =zero. The solution to this equation is B, = .(I. - z)/Lr.

8
As this solution cannot satisfy Equation (20) at the point where vr and v,
are zero simultaneously, an additional asymptotic region must appear for
‘the limiting case as &~ 0. In this region, derivatives must be large enough
to enable aBe/az to go to zero at this point where vr and vZ are zero,
In the other extreme, as (S—b» e, ave/az and aBe/az approach zero through-

out the entire main region. These two quantities will both be large in the
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the end boundary layers, resulting in the formation of Hartmann layers,

In this extreme Equations (16) through (22) must be rescaled to

retain @8 maximum balance, The new scaled variables (indicated by the

tilde notation) can be defined in terms of the old scaled variables (caret)

used for moderate or small values of &

(p+ ﬁg(z-L)}

‘{rm=5$= 2L oB v
I
BI‘: £Br = 21‘\'1‘ B
wl T
B = <€BZ =2nr, (B
wl
5 8 4202
Po=dP =4n ;:S“BO
pI
B -8, - 2o,
Bg= Bg= 2mr, By
Wl

Equations (16) and (17) do not change in form.

tions for the main region are:

The remaining equa-

2. L3 (B) +2°B, __a¥, + 0m)
dr r Jr 3227 T a3z tangential magnetic (44)
_\I:rr_a_;(rve) +VAZ_XZS =gagi3 + OCRAM) « O (WE)
o - tangential momentum (45)
PV W V.3 ¥
- =-f - Oy - ¥ . .Vr ‘ a7
ot O > z S5+ + OC& /M) + O(w&E)
radial momentum (46)
3P = - % a¥, - T, aF, + 0@/ mM)r OOHE) |
oz 3T YA axial momentum (47)
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v, Comparison with Experiment

Although the system of equations describing the flow has not
been solved, some conclusions can be drawn concerning the behavior
of the flow by inspection of the equationsA. The only parameter appearing
explicitly in the main region equations is &.

At any given point, therefore, the normalized velocity and pressure
is expected to be only a functiop of € and the geometric parameters f.
an\d ?2 , to the order of the terms neglected. Velocity measurements as
shown in Figure 5 tend to support this conclusion. As the device used
by Erma and Podolsky8 is of quite different proportions (’1:' =4, I: =1)

2

than that used at the University of Pennsylvania (fe = 6.25, L= 14.82)
the two sets of data are not expected to have the same numerical values,
The trends of both sets of data indicates that not only is v 5 a function of
& only, but that it is a weak function of £ over the range 0.2 < £ < 2.0.

Measurements of the pressure distribution in the top plane of the
device at the University of Pennsylvania shown in Figure 6 indicate that
the normalized radial pressure gradient varies only slightly with current
and magnetic field over most of the gap width. Measurements of the pres-
sure difference between two points in this region are shown on an expanded
scale as a func_:tion of & in Figure 7. Again, the normalized pressure dif-
ference appears to be primarily a function of £ only, All of these observa-

tions tend to confirm the ability of the analytic formulation to adequately

represent the experiments.
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Attempts to measure the direction of flow were not nearly as satis-
factory. Measurements made of the ratio VI/VG near the bottom of the
device indicated that this ratio tends to increase with the magnetic field
for a constant value of é . Measurements of the ratio vz/ve as a function
of radius, current and magnetic field proved to be not reproducible. In
general the size of this ratio was large near the electrodes, but the sign
varied between successive experiments, Once a particular flow pattern
was established, it persisted for as long as the device was kept in con-
tinuous operation, Stopping the device for a period of time and then
restarting it generally led to the establishment of a new pattern, however.

As values for the ratios vr/v and vz/ve as large as 0.2 were

0
observed, the existence of a significant secondary flow field was confirmed.
The measurements of vz/ve seem to confirm the existence of secondary

flow cells, but also indicate that a number of different cell arrangements
may be stable once established. Apparently, the establishment of any
given cell arrangement is quité dependent on comparatively small effects,
and it seems unrea‘sonable to suppose that the location of instrumentation_
probes would not influence the configuration established, Therefore obtain-
ing comparable measurements of flow direction at different axial locations
will be ‘difficu_l’c unless a means of controlling the cell arrangements is
established.

The device occupies a comparatively small portion of the volume

between the pole faces, and the variation of the axial magnetic induction
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field is less than 2% of the centerline average throughout the volume
actually enclosed by the device. Small as this variation is, it still

is much larger than that induced by the tangential currents in the device,
and may have an appreciable influence on the character of _the secondary
flow. This inhomogeniety in the external field may explain the behavior
observed in the ratio Vr/Ve.

V. Conclusions

The problem of an electromagnetically accelerated liquid conductor
confined between two concentric, perfectly conducting, cylindrical
electrodes was considered. Asymptotic expansions were made in the
smallness of the magnetic Prandti number t( ) and the smallness of the
ratio of the magnetic induction created by the current I to that imposed by
the magnet (Bo). Both parameters were shown to be small in a typical
laboratory situation. In this limiting situation, nine asymptotically
distinct regions were found: an inviscid main region in which the body
force was balanced by convective acceleration, and viscous boundary
layers on the inner and outer electrode surfaces, the top and bottom insula-
tor surfaces, and four corner regions, It was shown that for the principal
balance of effects over most of the domain, viscosity is unimportant but
secondary flows are crucial. Although no solutions were dbtained,
similarity laws were easily deduced and correlations were suggested..

Preliminary experimental evidence tended to support these correlations.
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In Appendix A we show that a contradiction is obtained if secondary
flows are neglected. The conditions for which the secondary flow
decouples from the primary (circumferential) flow are derived in Appendix

B and are those of creeping flow because of infinitesmal current flow.
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Appendix A; Contradiction Obtained by Neglecting Secondary Flow

If secondary flows are neglected, i.e., v, = v, = 0, then
Equation (8c) becomes:

2B - 2B, =0 a-1)
dZ or

Equations (9a) and (9c) then become:

— 2 .
2 =03 - 1By alrB) @-2)
T r prooar
__f_ = - .B.e i&e - p9
oZ v oz (A‘ 3)
Solving (A-3) for P
P=-~_1 Bf-p9z +1 (), (A - 4)
2p.

where f (r) is an arbitrary function of the radius only. After substituting
this into Equation (A - 2) we obtain:
r df f) = pv® - 1 B2
3 B — 8
r e

The left hand side of this expression is a function of the radius only,
and the relation must hold for any position within the device. Selecting

the surface of the inner electrode (r =r ) to evaluate the expression,
1

Vo= 0 from Equation (10) and r df(r) = C. The relationship can now be
dr
written as:

C=-1B2(). @ - 6)
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From Equation (11)) Be (r') is not a constant, and the secondary
1
velocity cannot be ignored in the formulation of the problem., As

jr=1 ﬁe this demonstration is not restricted to problems of finite
u 0%

length, but can be applied to the "long cylinder" case as well. The
assumption of perfect electrodes, constant fluid properties, axial
symmetry, steady state conditions, and the presenceof a radial com-
ponent of current are sufficient to require the inclusion of the secondary

components of velocity in the calculations.
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Appendix B: One-Dimensional Flow Analysis

For low flow velocities, the electromagnetic body for.ces can be
balanced locally by the viscous terms. By forcing this balance on
Equations (la), (6a), (8c), (8d), (9a), (9b),and (9c), a set of parameters can
be derived which must be small if the body forces are to be balanced locally
by the viscous terms. In deriving these parameters, the magnetic Prandtl
number (f. ) was assumed to be of order one or smaller. As the magnetic
Prandtl number is large only for highly ionized plasmas, and the assump-
tions of constant properties and scalar conductivity would not be valid in
this case, the restriction to moderate values of % does not affect the
generality of the resuits. In developing this formulation,the Hartmann
number based on the axial magnetic induction field was assumed to be of
order one, and no boundary layers appear in the resulting approximate
equations., These equations are shown to be valid for quite large axial
Hartmann numbers, and Hartmann layers do appear for this condiéion. The

dimensionless forms (indicated by the carets) are:
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p = 4nfon [P+ pg(z - 1]
pI®

The following dimensionless parameters can be defined in addition
toL and T :
2

= Byr fo/n = (mEYAN"
I =il fo/n = (WE/ ()
21
e = opr/p
%/~ is the Hartmann number based on the axial magnetic induction
field,and J the Hartmann number based on the tangential field.
Dropping the caret notafioh, Equations (la), (6a), (8c), (8d), (9a),

(9b), and (9c) can be written as:

1av) + dw=0
r r Y4 conservation of mass (B-1)
13 (B) +3By =0
r ar 32 conservation of magnetic flux (B-2)

32 Gore
axial-radial magnetic (B-3)
o L alB)+3 2Be=— av - a(BV)+a(BV)
dr r or dz® %/ or §r
L JEH 3 (vgB) + 3 (v B)
Fn dz dr tangential magnetic (B-4)
2 L abv) +Fv, 3B -J#[B, 5 (rB.) +B_ 3B
A r 3r e) 322 = faze A Za—z—e

L [ 2l +v, _a_yJ
ﬁf r or 9z |tangential momentum (B-5)
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or OZ 92 or
. HIJL ! . -
+ @ Bo 20%0) - 55 B ak - 2B
ro oar -1 dZ o1
_ J-L _ ] .
= Lvr BV + v, 3V ‘
/f,'; dr dz radial momentum (B-6)

- 52 THY*
QE_ = _l-_,__a___(r Qv ) + 3 \;Z - ﬁ“— Be _a__B_e - ZK Br( a_}ér - b__BZ)
r 3r or dz 0Z ﬂ,o dZ or

T
.
A * dr >3z axial momentum (B-7)

By inspection, the two sets of conditions can be determined for
which the viscous terms dominate the convective acceleration terms:
For%/ >1 5

J <<
7% << ﬁi/Jz‘

The first defines the maximum current for which the viscous terms
predominate in the momentum equations while the second definesv the
maximum external field for which the induced fields can be neglected.

The maximum value of & and M for which these conditions can be met
simultaneously for mercury are indicated in the lower left corner of
Figure 3.

For 7 < 1, the two independent conditions reduce to one:

Tt<< G
These two conditions can be seen to be equivalent for #=1and Og-

of order one or smaller.
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If these conditions are met, Equations (B-3) through (B-7) can be

written to the order indicated as:

v.= 3B - 3B + O (JT/hn) . . _ |
3r 2 axial-radial magnetic (B-3a)

a1 3By + B =_gav, + O(J/8)+ O T H/R.)

or r Jr o D2 ya}fe

tangential magnetic (B-4a)

3 13 (vy) + 3% ﬁ_age + O(T*H/ )+ O(TY2™)
dr r I 822
tangential momentum (B-5a)

P = + 3 la(rv)“Lf_‘.’.r—i/er“L £.By 2 (rB)
ar r rr r 3z® r or

+ 0 (JV{{;Z) + OC Gu 57%)' radial momentum (B-62)
ax1a1 momentum (B-7a)

The boundary conditions on these equations are Equations (10), (11),
(12), 14), and (15) for the complete problem with Equation (11) written
as Be(r, 0) = l/r in scaled form.

Equations (B-4a) and (B-5a), and Equations (10), (11) and (12) are
equivalent to the systems solved in References 1 through 7 for one-dimen-
sional flow, and their computed values for v 0 and B 0 apply directly. The
secondary velocities can be written in terms of partial derivatives of a

stream function V,and Equations (B-1), (B-6a) and (B-7a) reduce to a

single linear inhomogenous fourth order partial differential equation
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with a known forcing function. The boundary conditions on this equation
are that ¥ and its normal derivatives be zero on the boundaries. Once
the secondary velocity is known, Equations (B-2) and (B-3a) can be
solved with Equation (15) for the induced fields. Equations (B-1), (B-2),
and (B-3a) through (B-7a) with Equations (10), (11), (12), (14), and (i5)
have been shown to constitute a well formulated representation of the
complete problem for low velocity flows. As the low velocity approxi-
mation is of the same derivative order as the complete problem, these
boundary conditions must be sufficient for a well formulated system for
the high velocity representation,

For most liquid metals %. is much smaller than one, and the terms

involving B . in Equations (B-6a) and (B-7a) can be neglected. Assuming

8
that#’ is greater than one, the error in Equations (B-3a) thréugh (B-7a) is

less than 10% if J<4.7 x 10”8 and A=6.5 x 106 for mercury (tﬁ= 1.53 x 10-7

).
This condition on J'is shown in Figure 3 along with the conditions for

which the three-dimensional equations are valid. These restrictions

are equivalent to requiring that the current be less than 10"5 amperes,

and the axial magnetic induction field be less than 2 x lO3 Web/mz,

for r1= 10_2 m. The tangential velocity corresponding to these conditions

is of the orde_r of 4 x 10—6m/sec. As this current and corresponding velo-
city is much smaller than those of experimental interest, it is not surprising

that the results obtained in References 1 through 7 have not been observed

experimentally.
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Figure Captions:

1. MHD Device and Coordinate System

2, Current-Magnetic Field Map for Mercury
3. Parameter Map for Mercury

4, Location of Asymptotic Regions

5. Normalized Velocity as a Function of &
6. Typical Normalized Pressure Distribution

7. Normalized Pressure as a Function of &
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